ML12068A133: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(2 intermediate revisions by the same user not shown)
Line 19: Line 19:


=Text=
=Text=
{{#Wiki_filter:Attachment II to Serial: RNP-RA/12-0010 18 Pages (Including Cover Page)H. B. ROBINSON STEAM ELECTRIC PLANT, UNIT NO. 2 Calculation RNP-M/MECH-1815, Revision 1 SYSTEM# 5095 CALC. SUB-TYPE MC PRIORITY CODE NA QUALITY CLASS A NUCLEAR GENERATION GROUP RNP-M/MECH-1815 (Calculation  
{{#Wiki_filter:Attachment II to Serial: RNP-RA/12-0010 18 Pages (Including Cover Page)
#)EVALUATION OF EMERGENCY DIESEL GENERATOR STARTING CAPABILITY AT 150 PSIG (Title including structures, systems, components)
H. B. ROBINSON STEAM ELECTRIC PLANT, UNIT NO. 2 Calculation RNP-M/MECH- 1815, Revision 1
F-D BNP UNIT--CR3 D HNP NZRNP EZINCP W[[]ALL APPROVAL M Electronically Approved REV [PREPARED BY REVIEWED BY SUPERVISOR Signature Signature Signature Signed Electronically Signed Electronically Signed Electronically 0 Name Name Name Date Date Date Signature Signature Signature Signed Electronically Signed Electronically Signed Electronically Name Name Name Date Date Date (For Vendor Calculations)
 
Vendor N/A Vendor Document No.N/A Owner's Review By N/A Date N/A CALCULATION NO. RNP-M/MECH-1815 PAGE NO. i REVISION 1 LIST OF EFFECTIVE PAGES PAGE REV PAGE REV ATTACHMENTS ii iii 1 2 3 4 5 6 7 1 1 1 0 0 0 0 0 0 0 Number of Pages Number 1 2 3 Rev 1 0 1 4 1 1 AMENDMENTS Letter None Rev Number of Pages CALCULATION NO. RNP-M/MECH-1815 PAGE NO. ii REVISION 1 TABLE OF CONTENTS List of Effective Pages .....................................................................................................
SYSTEM#                             5095 CALC. SUB-TYPE                       MC PRIORITY CODE                         NA QUALITY CLASS                           A NUCLEAR GENERATION GROUP RNP-M/MECH-1815 (Calculation #)
i Table of Contents ......................................................................................................
EVALUATION OF EMERGENCY DIESEL GENERATOR STARTING CAPABILITY AT 150 PSIG (Title including structures, systems, components)
ii Revision Summary .........................................................................................................
F-DBNP        UNIT
iii P u rp o s e ..........................................................................................................................
                        -- CR3     D   HNP   NZRNP         EZINCP     W((]ALL APPROVAL                                                 M     Electronically Approved REV     [PREPARED BY                         REVIEWED BY                 SUPERVISOR Signature                   Signature                   Signature Signed Electronically       Signed Electronically       Signed Electronically 0             Name                         Name                         Name Date                         Date                         Date Signature                   Signature                   Signature Signed Electronically       Signed Electronically       Signed Electronically Name                         Name                         Name Date                         Date                         Date (For Vendor Calculations)
1 R e fe re n c e s ....................................................................................................................
Vendor         N/A                         Vendor Document No.               N/A Owner's Review By N/A                                       Date N/A
1 Body of Calculation  
 
........................................................................................................
CALCULATION NO. RNP-M/MECH-1815 PAGE NO.                 i REVISION                 1 LIST OF EFFECTIVE PAGES PAGE REV PAGE       REV           ATTACHMENTS ii   1                                    Number iii 1                       Number Rev of Pages 1
1 Conclusions  
1   0 2    0 3    0                       1        1  4 4    0                       2        0   1 5    0                       3        1   1 6    0 7    0 AMENDMENTS Letter Rev Number of Pages None
............................................................................................................
 
6 Document Indexing Table ...........................................................................................
CALCULATION NO. RNP-M/MECH-1815 PAGE NO.                                           ii REVISION                                           1 TABLE OF CONTENTS List of Effective Pages .....................................................................................................                     i Table of Contents ......................................................................................................                         ii Revision Summary .........................................................................................................                     iii Pu rp os e ..........................................................................................................................             1 R e fe re n c e s ....................................................................................................................           1 Body of Calculation ........................................................................................................                     1 Conclusions ............................................................................................................                         6 Document Indexing Table ...........................................................................................                             7 Attachments ......................................................................................................                   (4 Pages) .......................................................................................................                   (1 Page) .......................................................................................................                     (1 Page)
7 Attachments Attachment 1 ......................................................................................................
Amendments N/A
(4 Pages)Attachment 2 .......................................................................................................
 
(1 Page)Attachment 3 .......................................................................................................
CALCULATION NO. RNP-M/MECH-1815 PAGE NO.                   iii REVISION                   1 Revision Summary (list ECs incorporated)
(1 Page)Amendments N/A CALCULATION NO. RNP-M/MECH-1815 PAGE NO. iii REVISION 1 Revision Summary (list ECs incorporated)
Rev. #
Rev. #0 Initial Revision 1 Corrected Reference 14 to Reference 11 on Attachment 1 Page 1 of 4.Added Attachment 3 -Design Verification Form for Rev. 1.
0   Initial Revision 1   Corrected Reference 14 to Reference 11 on Attachment 1 Page 1 of 4.
CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 1 REVISION 0 PURPOSE Reference 1 provides the following request: "Provide an analysis or calculation to justify the Fairbanks Morse recommendation that a minimum air pressure of 150 psig in the air start receiver will ensure a reliable start for each Robinson EDG." This request was in response to information provided in Reference 2.REFERENCES
Added Attachment 3 - Design Verification Form for Rev. 1.
: 1. NRC Letter RRA-12-0005, H.B. ROBINSON STEAM ELECTRIC PLANT, UNIT NO.2 -REQUEST FOR ADDITIONAL INFORMATION RELATED TO REQUEST FOR TECHNICAL SPECIFICATIONS CHANGES TO SECTION 3.8.3, DIESEL FUEL OIL AND STARTING AIR, AND SECTION 3.8.5, DC SOURCES- SHUTDOWN (TAC NO. ME5408), January 24, 2012.2. Progress Energy Letter, REQUEST FOR TECHNICAL SPECIFICATIONS CHANGES TO SECTION 3.8.3, DIESEL FUEL OIL AND STARTING AIR, AND SECTION 3.8.5, DC SOURCES -SHUTDOWN (ADAMS Accession No. ML110310012)
 
January 20, 2011.3. Vendor Technical Manual VTMA 729-063-16, FAIRBANKS MORSE POWER SYSTEMS PRODUCTS, Rev. 76.4. Diesel Engine Engineering, Thermodynamics, Design, and Control, Andrei Makartchouk, 2002 Marcel Dekker.5. RNP UFSAR Section 8.3.1, AC Power Systems.6. Design Basis Document Emergency Diesel Generator System Document No.DBD/R87038/SD05, Rev. 10.7. RNP Calculation 87-17, Rev. 0, DG AIR START SYSTEM.8. Introduction to Chemical Engineering Thermodynamics, Smith and Van Ness, McGraw Hill, Third Edition, 1975.9. Fairbanks Morse Publication E3440-1, August 1979.10. Fairbanks Morse Publication El102-1, August 1979.11. Pre-Operational Tests of Emergency Diesel Generator Robinson File No. PO-35.12. Matheson Gas Data Book, seventh edition, 2001.13. Mark's Standard Handbook for Mechanical Engineer's, Eighth Edition.14. RNP Technical Specifications 3.8.1, AC Sources -Operating.
CALCULATION NO. RNP-M/MECH-1815 PAGE NO.                             1 REVISION                             0 PURPOSE Reference 1 provides the following request:
      "Provide an analysis or calculation to justify the Fairbanks Morse recommendation that a minimum air pressure of 150 psig in the air start receiver will ensure a reliable start for each Robinson EDG."
This request was in response to information provided in Reference 2.
REFERENCES
: 1.       NRC Letter RRA-12-0005, H.B. ROBINSON STEAM ELECTRIC PLANT, UNIT NO.2 -REQUEST FOR ADDITIONAL INFORMATION RELATED TO REQUEST FOR TECHNICAL SPECIFICATIONS CHANGES TO SECTION 3.8.3, DIESEL FUEL OIL AND STARTING AIR, AND SECTION 3.8.5, DC SOURCES- SHUTDOWN (TAC NO. ME5408), January 24, 2012.
: 2.       Progress Energy Letter, REQUEST FOR TECHNICAL SPECIFICATIONS CHANGES TO SECTION 3.8.3, DIESEL FUEL OIL AND STARTING AIR, AND SECTION 3.8.5, DC SOURCES -
SHUTDOWN (ADAMS Accession No. ML110310012) January 20, 2011.
: 3.       Vendor Technical Manual VTMA 729-063-16, FAIRBANKS MORSE POWER SYSTEMS PRODUCTS, Rev. 76.
: 4.       Diesel Engine Engineering, Thermodynamics, Design, and Control, Andrei Makartchouk, 2002 Marcel Dekker.
: 5.       RNP UFSAR Section 8.3.1, AC Power Systems.
: 6.       Design Basis Document Emergency Diesel Generator System Document No.
DBD/R87038/SD05, Rev. 10.
: 7.       RNP Calculation 87-17, Rev. 0, DG AIR START SYSTEM.
: 8.       Introduction to Chemical Engineering Thermodynamics, Smith and Van Ness, McGraw Hill, Third Edition, 1975.
: 9.       Fairbanks Morse Publication E3440-1, August 1979.
: 10.       Fairbanks Morse Publication El102-1, August 1979.
: 11.       Pre-Operational Tests of Emergency Diesel Generator Robinson File No. PO-35.
: 12.       Matheson Gas Data Book, seventh edition, 2001.
: 13.       Mark's Standard Handbook for Mechanical Engineer's, Eighth Edition.
: 14.       RNP Technical Specifications 3.8.1, AC Sources - Operating.
BODY OF CALCULATION Diesel Generator Set Onsite emergency power is available from two emergency diesel generator sets. Each diesel generator set consists of a Fairbanks-Morse Model 38TD8-1/8 engine coupled to a Fairbanks-Morse generator.
BODY OF CALCULATION Diesel Generator Set Onsite emergency power is available from two emergency diesel generator sets. Each diesel generator set consists of a Fairbanks-Morse Model 38TD8-1/8 engine coupled to a Fairbanks-Morse generator.
The emergency diesels are automatically started by injecting compressed air into the cylinders.
The emergency diesels are automatically started by injecting compressed air into the cylinders. Each engine has compressed air storage sufficient for 8 cold diesel engine starts. However, the diesel engine will only consume enough air for one of these eight cold starts upon receiving an automatic start signal.
Each engine has compressed air storage sufficient for 8 cold diesel engine starts. However, the diesel engine will only consume enough air for one of these eight cold starts upon receiving an automatic start signal.This is due to the engine control system which is designed to stop cranking within 10 sec. To ensure rapid start, each unit is equipped with heaters and pumps for circulation of lube oil and jacket water when the unit is not running (Ref. 5).
This is due to the engine control system which is designed to stop cranking within 10 sec. To ensure rapid start, each unit is equipped with heaters and pumps for circulation of lube oil and jacket water when the unit is not running (Ref. 5).
CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 2 REVISION 0 Lube Oil Subsystem A motor-driven standby circulating pump circulates the oil through the lubricating oil heater and back to the engine sump to maintain the lube oil warm (1 30F minimum) to support rapid starting and loading. Lube oil used in the EDG lube oil Subsystem is controlled as a "Q-List consumable" or equivalent item. This guarantees that lube oil quality will not interfere with the safety-related function of the EDGS (Ref. 3 and 6).Jacket Water Coolinq Subsystem This system, like the Lube Oil system, is used to maintain the diesel generators in a warm standby status. Jacket water is heated as needed (11 OF minimum) to facilitate fast engine starting.
 
A motor driven standby pump circulates flow through an 18 KW heater (Ref. 3 and 6).Diesel Starting (Ref. 4)To start a diesel engine it is necessary to rotate its crankshaft at a speed such that the fuel oil that is injected into the cylinders during start mode can self-ignite.
CALCULATION NO. RNP-M/MECH-1815 PAGE NO.                           2 REVISION                           0 Lube Oil Subsystem A motor-driven standby circulating pump circulates the oil through the lubricating oil heater and back to the engine sump to maintain the lube oil warm (130F minimum) to support rapid starting and loading. Lube oil used in the EDG lube oil Subsystem is controlled as a "Q-List consumable" or equivalent item. This guarantees that lube oil quality will not interfere with the safety-related function of the EDGS (Ref. 3 and 6).
The forces of resistance that appear inside a diesel engine when the starting air rotates the crankshaft during startup are: 1. The forces of friction of reciprocating and rotating parts.2. The forces of resistance to air and gas flow in the intake and exhaust systems.3. The force of resistance of the auxiliary mechanisms mounted on the engine.Prior to the engine starting the force of cylinder charge compression is approximately equal to the force of cylinder charge expansion.
Jacket Water Coolinq Subsystem This system, like the Lube Oil system, is used to maintain the diesel generators in a warm standby status. Jacket water is heated as needed (11 OF minimum) to facilitate fast engine starting. A motor driven standby pump circulates flow through an 18 KW heater (Ref. 3 and 6).
Therefore, the work of cylinder charge compression does not contribute to the work of the resistant forces. Additionally, the starting system must impart sufficient kinetic energy to the engine rotating mass to achieve engine start.Vendor Recommendation Fairbanks Morse (Ref. 9) states that reliable engine starting may be expected at starting air receiver pressures between 250 psig and 150 psig. The RNP EDG Fairbanks Morse Vendor manual states that air for the starting system is required at between 150 and 250 psig (Ref. 3, Pg. 446 of 1036). Fairbanks Morse (Ref. 10) states that the starting air receiver sizing basis is based on 45.0 ft3 of free air per start.
Diesel Starting (Ref. 4)
CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 3 REVISION 0 Historical Data Reference 11 documents a special test run on the "B" EDG to evaluate a proposed engine lockout after a 20 second overcrank with a failure to start. In this test the ability to start is determined after a simulated failure to auto start of the EDG. The data below is the recorded data from Ref. 11; the data is further analyzed in Attachment 1.Start # Crank Time Start Air Pressure End Air Pressure (sec) (psig) (psig)Did Not Start (1) 20 245 120 1 (2) 2 120 110 Notes: 1. Simulated failure to start. Fuel shut off for the 20 second over-crank.
To start a diesel engine it is necessary to rotate its crankshaft at a speed such that the fuel oil that is injected into the cylinders during start mode can self-ignite. The forces of resistance that appear inside a diesel engine when the starting air rotates the crankshaft during startup are:
: 2. Successful start.Evaluation of Historical Data versus Vendor Recommendation The historical data tabulated above cannot be used directly to justify reliable starting of the Robinson EDG's at a minimum air pressure of 150 psig in the air start receiver.
: 1.       The forces of friction of reciprocating and rotating parts.
This is because the actual starting of the "B" EDG in the above test run occurred after a 20 second overcrank in which the EDG was not allowed to start. The differences between starting the EDG with a minimum air pressure of 150 psig in the air start receiver and after a 20 second overcrank in which the EDG was not allowed to start, will be examined.The differences between starting the EDG with no prior start and the successful start after a 20 second overcrank are mainly due to differences in the static and dynamic coefficients of friction and differences in initial temperature of the EDG. Reference 13 discusses static and dynamic coefficients of friction and states that the coefficients of sliding (dynamic) friction are smaller than the coefficients of static friction.Comparing starting the EDG with a minimum air pressure of 150 psig in the air start receiver and starting the EDG after a 20 second overcrank, it should be noted that both starting regimes have a static component and a dynamic component because both starts occur from rest.There is expected to be little difference in the dynamic coefficients of friction between the two starts because the engine was not fired during the 20 second overcrank period and very little engine heatup would have occurred.
: 2.       The forces of resistance to air and gas flow in the intake and exhaust systems.
Therefore the main difference between the 150 psig start under consideration and the start after the 20 second overcrank, lies in the reduction of the static coefficient of friction caused by the 20 second overcrank.
: 3.       The force of resistance of the auxiliary mechanisms mounted on the engine.
The effect of this difference is minimized because each EDG is operated monthly for at least 60 minutes per RNP technical Specification Surveillance Requirements (Ref. 14).Ability to Do Work To start the EDG, the starting air system must have the ability to do work. This work is divided between the work required to overcome the forces resisting the rotation of the engine and the kinetic energy imparted to the rotational mass.Examining the historical data, the amount of work required to start the EDG can be determined, this is provided in Attachment
Prior to the engine starting the force of cylinder charge compression is approximately equal to the force of cylinder charge expansion. Therefore, the work of cylinder charge compression does not contribute to the work of the resistant forces. Additionally, the starting system must impart sufficient kinetic energy to the engine rotating mass to achieve engine start.
: 1.
Vendor Recommendation Fairbanks Morse (Ref. 9) states that reliable engine starting may be expected at starting air receiver pressures between 250 psig and 150 psig. The RNP EDG Fairbanks Morse Vendor manual states that air for the starting system is required at between 150 and 250 psig (Ref. 3, Pg. 446 of 1036). Fairbanks Morse (Ref. 10) states that the starting air receiver sizing basis is based on 45.0 ft3 of free air per start.
CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 4 REVISION 0 Calculate Startinq Air Receiver Stored Energy (a150 psig Fairbanks Morse recommends that 45.0 ft 3 of free air (Ref. 10) be available to start the engine. The amount of available energy 45.0 ft 3 of free air discharged from an initial air receiver pressure of 150 psig will be determined.
 
Given an initial receiver air pressure of 150 psig, determine the final receiver air pressure after a discharge of 45.0 ft 3: PIV 1 = P 2 V 2 P1 = air start receiver initial pressure (psia)P1 = 150 psig P1 = (14.7 + 150) (psia)P1 = 164.7 (psia)Vl = 34.0 ft3 P2 = air start receiver final pressure (psia)P2 = 0.0 psig P2 = (14.7 + 0.0) (psia)P2 =14.7 (psia)Determine V2: V2 = (PR 1 V)I P 2 V2 = [(164.7 psia)(34.0ft3)]/(14.7 psia)V2 = 380.94 ft3 A discharge of 45.0 ft3 of free air would yield the following volume of free air left in the air receiver: V2 = 380.94 ft3 -45.0 ft3 V2 = 335.94 ft3 CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 5 REVISION 0 This is equivalent to the following pressure in the air receiver: P3 = (P2V2)N3 P3 = [(14.7 psia)( 335.94 ft3)]/(34.0 ft3)P3 = 145.25 psia or P3 = 130.55 psig Thus after a 45.0 ft3 discharge the expected air receiver pressure would be greater than 130.0 psig.Calculate the amount of stored energy represented by the above discharge of 45.0 ft3 of free air stored in the air receiver: Because the engine starts quickly and there is little time for heat transfer, it is reasonable to use an adiabatic expansion from the air start receiver initial pressure to the final pressure, to calculate the amount of energy this represents.
CALCULATION NO. RNP-M/MECH-1815 PAGE NO.                               3 REVISION                             0 Historical Data Reference 11 documents a special test run on the "B"EDG to evaluate a proposed engine lockout after a 20 second overcrank with a failure to start. Inthis test the ability to start is determined after a simulated failure to auto start of the EDG. The data below is the recorded data from Ref. 11; the data is further analyzed in Attachment 1.
From Ref. 8, Page 71: ([-i P1 = air start receiver initial pressure (psia)P1 = 150 psig P1 = (14.7 + 150) (psia)P1 = 164.7 (psia)P2 = air start receiver final pressure (psia)P2 =145.25 (psia)V1 = 34.0 ft3 y = Ratio of Heat capacities Cp/Cv y = 1.33 (Ref. 7, Page 5)(Ref. 12, Page 8)~(0.33) 1 (164.7 psia)(34.0 ft3) (145.25 psia) 1.33-(144 in2lft2)(0.33) (1 6. ]ii2/t2 CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 6 REVISION 0 W = 7.50 x 104 ft Ibf From Attachment 1, Start #1 consumed the following amount of air receiver energy: W = 3.80 x 104 ft lbf Calculate ratio between work available at 150 psig and work expended for actual start at 120 psig: Ratio 7.50x10 4 ftlbf/3.80xl04ftlbf Ratio = 1.97 CONCLUSION By examining the historical startup data, the amount of stored energy in the air receiver expended to start the diesel engine at a 120 psig initial receiver air pressure can be determined.
Start #             Crank Time   Start Air Pressure       End Air Pressure (sec)         (psig)                   (psig)
As demonstrated above, the amount of stored energy in the air receiver that is available at 150 psig to start the diesel engine is approximately twice the value expended at 120 psig to actually start the diesel during the historical test.With all initial parameters the same, there would be expected to be differences in the amount of energy required to start a diesel engine at 150 psig with no prior starts and that required to start a diesel engine following a 20 second overcrank.
Did Not Start (1)   20           245                       120 1 (2)               2             120                       110 Notes:
These differences lie mainly in the breakaway frictional forces required to start the cylinders and crankshaft moving and the frictional forces from heat up of the engine represented by the 20 second overcrank.
: 1. Simulated failure to start. Fuel shut off for the 20 second over-crank.
The difference in breakaway frictional forces present after the overcrank and the breakaway frictional forces present with no prior cranking is considered to have a relatively small impact to engine starting forces. This is primarily due to the benefit of the engine keep warm system and monthly operation of the diesel in minimizing the difference in breakaway friction and to the fact that the engine was not started during the overcrank reducing the effect of engine heatup.Given that the amount of stored energy in the air receiver that is available at 150 psig to start the diesel engine is approximately twice the value expended starting the engine from a lower air pressure of 120 psig during the historical startup, and that the differences in work required to start the engine are not expected to be 100 % more between the two examined starting conditions, there is sufficient air at a minimum air pressure of 150 psig in the air start receiver to ensure a reliable start for each Robinson EDG.
: 2. Successful start.
CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 7 REVISION 0 Document ID Number Function Relationship to Calc. Action Type (e.g., Calc No., (i.e. IN for (e.g. design input, (specify if Doc.(e.g. CALC, Dwg. No., design inputs or assumption basis, Services or DWG, TAG, Equip. Tag No., references; OUT reference, document Config. Mgt. to PROCEDURE Procedure No., for affected affected by results) Add, Deleted or ,SOFTWARE)
Evaluation of Historical Data versus Vendor Recommendation The historical data tabulated above cannot be used directly to justify reliable starting of the Robinson EDG's at a minimum air pressure of 150 psig in the air start receiver. This is because the actual starting of the "B"EDG in the above test run occurred after a 20 second overcrank in which the EDG was not allowed to start. The differences between starting the EDG with a minimum air pressure of 150 psig in the air start receiver and after a 20 second overcrank in which the EDG was not allowed to start, will be examined.
Software name documents)
The differences between starting the EDG with no prior start and the successful start after a 20 second overcrank are mainly due to differences in the static and dynamic coefficients of friction and differences in initial temperature of the EDG. Reference 13 discusses static and dynamic coefficients of friction and states that the coefficients of sliding (dynamic) friction are smaller than the coefficients of static friction.
Retain) (e.g., CM and version) Add, DS Delete)VTMA 729-063-16 IN REFERENCE CM ADD DRAW 5379-01161 IN REFERENCE CM ADD CALC 87-17 IN REFERENCE CM ADD 4. 4 t 4. 1 4 1- 1+ 4 t *1~ 1 4 4*1* 1.1- 4+I I + 4 I I + I (For the purpose of creating cross references to documents in the Document Management System and equipment in the Equipment Data Base)
Comparing starting the EDG with a minimum air pressure of 150 psig in the air start receiver and starting the EDG after a 20 second overcrank, it should be noted that both starting regimes have a static component and a dynamic component because both starts occur from rest.
Attachment 1 CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 1 of 4 REVISION 1 Analysis of Historical Data Reference 11 discusses a test run on the "B" EDG to determine the ability to start after a simulated failure to auto start the EDG. During the simulated failure to auto start the engine was cranked for 20 seconds. The data in the first four columns is the recorded data from Ref. 11; the fifth and sixth columns are calculated in this  
There is expected to be little difference in the dynamic coefficients of friction between the two starts because the engine was not fired during the 20 second overcrank period and very little engine heatup would have occurred. Therefore the main difference between the 150 psig start under consideration and the start after the 20 second overcrank, lies in the reduction of the static coefficient of friction caused by the 20 second overcrank. The effect of this difference is minimized because each EDG is operated monthly for at least 60 minutes per RNP technical Specification Surveillance Requirements (Ref. 14).
Ability to Do Work To start the EDG, the starting air system must have the ability to do work. This work is divided between the work required to overcome the forces resisting the rotation of the engine and the kinetic energy imparted to the rotational mass.
Examining the historical data, the amount of work required to start the EDG can be determined, this is provided in Attachment 1.
 
CALCULATION NO. RNP-M/MECH-1815 PAGE NO.                               4 REVISION                               0 Calculate Startinq Air Receiver Stored Energy (a150 psig Fairbanks Morse recommends that 45.0 ft3 of free air (Ref. 10) be available to start the engine. The amount of available energy 45.0 ft3 of free air discharged from an initial air receiver pressure of 150 psig will be determined.
Given an initial receiver air pressure of 150 psig, determine the final receiver air pressure after a discharge of 45.0 ft3 :
PIV 1 = P2 V2 P1     = air start receiver initial pressure (psia)
P1     = 150 psig P1     = (14.7 + 150) (psia)
P1     = 164.7 (psia)
Vl     = 34.0 ft3 P2     = air start receiver final pressure (psia)
P2     = 0.0 psig P2     = (14.7 + 0.0) (psia)
P2     =14.7 (psia)
Determine V2:
V2 = (PRV)I 1    P2 V2 = [(164.7 psia)(34.0ft3)]/(14.7 psia)
V2 = 380.94 ft3 A discharge of 45.0 ft3 of free air would yield the following volume of free air left in the air receiver:
V2       = 380.94 ft3 - 45.0 ft3 V2       = 335.94 ft3
 
CALCULATION NO. RNP-M/MECH-1815 PAGE NO.                     5 REVISION                     0 This is equivalent to the following pressure in the air receiver:
P3     = (P2V2)N3 P3 = [(14.7 psia)( 335.94 ft3)]/(34.0 ft3)
P3 = 145.25 psia or P3     = 130.55 psig Thus after a 45.0 ft3 discharge the expected air receiver pressure would be greater than 130.0 psig.
Calculate the amount of stored energy represented by the above discharge of 45.0 ft3 of free air stored in the air receiver:
Because the engine starts quickly and there is little time for heat transfer, it is reasonable to use an adiabatic expansion from the air start receiver initial pressure to the final pressure, to calculate the amount of energy this represents.
From Ref. 8, Page 71:
([-i P1       = air start receiver initial pressure (psia)
P1       = 150 psig P1       = (14.7 + 150) (psia)
P1       = 164.7 (psia)
P2       = air start receiver final pressure (psia)
P2       =145.25 (psia)
V1       = 34.0 ft3                                                             (Ref. 7, Page 5) y       = Ratio of Heat capacities Cp/Cv y       = 1.33                                                                 (Ref. 12, Page 8)
(0.33)
(164.7 psia)(34.0 ft3)
(1 6. p*
                                    ~(0.33)
(145.25          1]ii2/t2 in2lft2) psia) 1.33-(144
 
CALCULATION NO. RNP-M/MECH-1815 PAGE NO.                             6 REVISION                             0 W       = 7.50 x 104 ft Ibf From Attachment 1, Start #1 consumed the following amount of air receiver energy:
W       = 3.80 x 104 ft lbf Calculate ratio between work available at 150 psig and work expended for actual start at 120 psig:
Ratio     7.50x10 4 ftlbf/3.80xl04ftlbf Ratio   = 1.97 CONCLUSION By examining the historical startup data, the amount of stored energy in the air receiver expended to start the diesel engine at a 120 psig initial receiver air pressure can be determined. As demonstrated above, the amount of stored energy in the air receiver that is available at 150 psig to start the diesel engine is approximately twice the value expended at 120 psig to actually start the diesel during the historical test.
With all initial parameters the same, there would be expected to be differences in the amount of energy required to start a diesel engine at 150 psig with no prior starts and that required to start a diesel engine following a 20 second overcrank. These differences lie mainly in the breakaway frictional forces required to start the cylinders and crankshaft moving and the frictional forces from heat up of the engine represented by the 20 second overcrank.
The difference in breakaway frictional forces present after the overcrank and the breakaway frictional forces present with no prior cranking is considered to have a relatively small impact to engine starting forces. This is primarily due to the benefit of the engine keep warm system and monthly operation of the diesel in minimizing the difference in breakaway friction and to the fact that the engine was not started during the overcrank reducing the effect of engine heatup.
Given that the amount of stored energy in the air receiver that is available at 150 psig to start the diesel engine is approximately twice the value expended starting the engine from a lower air pressure of 120 psig during the historical startup, and that the differences in work required to start the engine are not expected to be 100 % more between the two examined starting conditions, there is sufficient air at a minimum air pressure of 150 psig in the air start receiver to ensure a reliable start for each Robinson EDG.
 
CALCULATION NO. RNP-M/MECH-1815 PAGE NO.                         7 REVISION                           0 Document         ID Number           Function             Relationship to Calc.       Action Type         (e.g., Calc No.,       (i.e. IN for           (e.g. design input,   (specify if Doc.
(e.g. CALC,         Dwg. No.,       design inputs or         assumption basis,         Services or DWG, TAG,       Equip. Tag No.,   references; OUT         reference, document     Config. Mgt. to PROCEDURE         Procedure No.,       for affected           affected by results)   Add, Deleted or
,SOFTWARE)         Software name         documents)                                   Retain) (e.g., CM and version)                                                     Add, DS Delete)
VTMA             729-063-16         IN                     REFERENCE                 CM ADD DRAW             5379-01161         IN                     REFERENCE                 CM ADD CALC             87-17               IN                     REFERENCE                 CM ADD
: 4.                         4 t                                         4.                         1 4
1-                         1
                                                        +                           4 t                                         *1~                       1 4                           4
                                                        *1*                         1
                                                        .1-                         4
                                                        +
I                   I                     +                         4 I                   I                   +                           I (For the purpose of creating cross references to documents in the Document Management System and equipment in the Equipment Data Base)
 
Attachment 1 CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 1 of 4 REVISION                   1 Analysis of Historical Data Reference 11 discusses a test run on the "B"EDG to determine the ability to start after a simulated failure to auto start the EDG. During the simulated failure to auto start the engine was cranked for 20 seconds. The data in the first four columns is the recorded data from Ref. 11; the fifth and sixth columns are calculated in this  


==Attachment:==
==Attachment:==


20 Second Overcrank  
20 Second Overcrank + 1 Engine Start Start #   Crank       Start Air         End Air         Volume of Free   Air Receiver Time       Pressure         Pressure         Air Consumed     Expended (sec)       (psig)           (psig)           (ft3)             Energy Did Not Start (1) 20           245               120             n/a               n/a 1(2)       2           120               110             23.13             38024.84 Notes:
+ 1 Engine Start Start # Crank Start Air End Air Volume of Free Air Receiver Time Pressure Pressure Air Consumed Expended (sec) (psig) (psig) (ft3) Energy Did Not Start (1) 20 245 120 n/a n/a 1(2) 2 120 110 23.13 38024.84 Notes: 1. Simulated failure to start. Fuel shut off for the 20 second over-crank.
: 1. Simulated failure to start. Fuel shut off for the 20 second over-crank.
: 2. Successful start.Calculate Volume of Free Air Consumed Calculate Volume of Free Air Consumed used in the fifth column of the Table above: Start #1 Since the beginning and ending air temperatures will be approximately equal, we can use: P 1 V 1= P 2 V 2 Attachment 1 CALCULATION NO. RNP-M/MECH-1 815 PAGE NO. 2 of 4 REVISION 1 Volume of Free Air Consumed Volume of Free Air@ Higher Pressure Volume of Free Air@ Higher Pressure Volume of Free Air@ Higher Pressure Volume of Free Air@ Lower Pressure Volume of Free Air@ Lower Pressure Volume of Free Air@ Lower Pressure Volume of Free Air Consumed Volume of Free Air Consumed= Volume of Free Air @ Higher Pressure-Volume of Free Air @ Lower Pressure= (PHigher VHigher)/14.7 psia= [(120 + 14.7)psia 34 ft3]/14.7 psia= 311.55 ft3= (P Lower V Lower)/14.7 psia= [(110 + 14.7)psia 34 ft3]/14.7 psia= 288.42 ft3= 378.63 ft3 -364.75.3 ft3= 23.13 ft3 Attachment 1 CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 3 of 4 REVISION 1 Calculate Startinq Air Receiver Stored Energy Expended Because the engine starts quickly and there is little time for heat transfer, it is reasonable to use an adiabatic expansion from the air start receiver initial pressure to the final pressure for Start #1, to calculate amount of energy this represents.
: 2. Successful start.
From Ref. 8, Page 71: P1 air start receiver initial pressure (psia)P1 =120 psig P1 (14.7 + 120) (psia)P1 134.7 (psia)P2 air start receiver final pressure (psia)P2 =110 psig P2 (14.7 + 110) (psia)P2 =124.7 (psia)V1 = 34.0 ft3 y = Ratio of Heat capacities Cp/Cv Y z 1.33 (Ref. 7, Page 5)(Ref. 12, Page 8)
Calculate Volume of Free Air Consumed Calculate Volume of Free Air Consumed used in the fifth column of the Table above:
Attachment 1 CALCULATION NO. RNP-M/MECH-1 815 PAGE NO. 4 of 4 REVISION 1 (0.33)W (134.7 psia)(34.0 ft3) (_124.7 psia)) 133 (144 1n2/ft2)-- (0.33) " (134.7 psia)) "I n2f2 W = 3.80 x 104 ft Ibf RNP-M/MECH-1815 Attachment 2 p. 1 Rev. 0 ATTACHMENT 2 Sheet 1 of 1 Record of Lead Review F *1 Document RNP-M/MECH-1815 Revision 0 The signature below of the Lead Reviewer records that:-the review indicated below has been performed by the Lead Reviewer;-appropriate reviews were performed and errors/deficiencies (for all reviews performed) have been resolved and these records are included in the design package;-the review was performed in accordance with EGR-NGGC-0003.
Start #1 Since the beginning and ending air temperatures will be approximately equal, we can use:
Design Verification Review r- Engine E Design Review[- Alternate Calculation F-- Qualification Testing I Special Engineering Review F-1 YES F-1 N/A Other Records are attached.ering Review-" Owner's Review Don Phillips (signed electronically)
P1 V1 = P2 V 2
Lead Reviewer (print/sign) mechanical Discipline 2/14/12 Date Item Deficiency Resolution No.1 The best argument that the engine will start is a test. Revised to include 20 second Think a much better argument can be made using the 20 overcrank test.second no start cranking test results. There are 2 tests that show the engine will start cold with the starting air pressure less than that being evaluated.
 
The only difference between the test and the condition of interest is the prior cranking without start. That should only make a difference in the static friction that needs to be overcome.
Attachment 1 CALCULATION NO. RNP-M/MECH-1 815 PAGE NO. 2 of 4 REVISION                   1 Volume of Free Air Consumed           = Volume of Free Air @ Higher Pressure
Static friction does increase over time. Based on references, the difference between oiled steel static and dynamic friction is only the difference between 0.10 and 0.08. Considering the friction load is a small part of the overall load in cranking the engine, the change is small, and the engine was in fact stopped for a period of time before cranking, the affect on the engine would be very small.2 The historical data section should include the 20 second Revised to include 20 second no start tests. overcrank test.FORM EGR-NGGC-0003-2-10 This form is a QA Record when completed and included with a completed design package.Owner's Reviews may be processed as stand alone QA records when Owner's Review is completed.
                    - Volume of Free Air @ Lower Pressure Volume of Free Air
EGR-NGGC-0003 Rev. 11 RNP-M/MECH-1815 Attachment 3 P. 1 Rev. 1 ATTACHMENT 2 Sheet 1 of 1 Record of Lead, Review Document RNP-M/MECH-1815 Revision I The signature below of the Lead Reviewer records that:-the review indicated below has been performed by the Lead Reviewer;-appropriate reviews were performed and errors/deficiencies (for all reviews performed) have been resolved and these records are included in the design package;-the review was performed in accordance with EGR-NGGC-0003.
@ Higher Pressure = (PHigher VHigher)/14.7 psia Volume of Free Air
Design Verification Review II Enginei E Design Review F-D Alternate Calculation F-- Qualification Testing[-- Special Engineering Review I- YES F-] N/A Other Records are attached.ering Review I-] Owner's Review Dave Markle (sianed electronically)
@ Higher Pressure = [(120 + 14.7)psia 34 ft3]/14.7 psia Volume of Free Air
Lead Reviewer (print/sign)
@ Higher Pressure = 311.55 ft3 Volume of Free Air
Mechanical Discipline 2/21/12 Date Item Deficiency Resolution No.1 None NA FORM EGR-NGGC-0003-2-10 This form is a QA Record when completed and included with a completed design package.Owner's Reviews may be processed as stand alone QA records when Owner's Review is completed.
@ Lower Pressure   = (P Lower V Lower)/14.7 psia Volume of Free Air
EGR-NGGC-0003 Rev. 11 Attachment III to Serial: RNP-RA/12-0010 5 Pages (Including Cover Page)H. B. ROBINSON STEAM ELECTRIC PLANT, UNIT NO. 2 References for Calculation RNP-M/MECH-1815, Revision 1 Page 1 Air Start System Information from Vendor Manual 729-063-16 Page 2 Vendor Document E3440-1 Page 3 Vendor Document E 1102-11 Page 4 Historical Startup Test Data From Vendor Manual 729-063-16 Fairbanks Morse Opposed Piston Engines 3800TD8-118  
@ Lower Pressure  = [(110 + 14.7)psia 34 ft3]/14.7 psia Volume of Free Air
-Page Ri R. AIR START SYSTEM General The air starting system consists of the starting air piping and the engine starting mech-anism.Air for the starting system is required at between 150 and 250 psi (250 psi preferred) at the engine and is stored In suitable air tanks.Engine starting is accomplished by the ac-tion of compressed air on the pistons In their proper firing order.The engine starting mechanism includes the air start control valve, air start distributor.
@ Lower Pressure  = 288.42 ft3 Volume of Free Air Consumed          = 378.63 ft3 - 364.75.3 ft3 Volume of Free Air Consumed          = 23.13 ft3
the air header, the pilot air tubing and the air start check valves at the individual cylinders.
 
Illus. RI. The air start control valve and the distributor are amply lubricated by the splash of engine oil. The air start check valves re-ceive lubricating oil with the air from the dis-tributor.NOTE: The distributor on the 6-9 cylinder engines is driven from the control end of the upper crankshaft.
Attachment 1 CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 3 of 4 REVISION                       1 Calculate Startinq Air Receiver Stored Energy Expended Because the engine starts quickly and there is little time for heat transfer, it is reasonable to use an adiabatic expansion from the air start receiver initial pressure to the final pressure for Start #1, to calculate amount of energy this represents.
On 12 cylinder en-gines. the distributor is mounted opposite the governor drive on the pump mounting plate and is driven from the lower crank-shaft.Starting Mechanism The air start control valve is mounted near the control or governor end of the engine on the side opposite the controls.
From Ref. 8, Page 71:
When the control shaft lever is moved to "START" position, a lever linkage opens the air start control valve.This is explained and illustrated Ln Sec. J.With the air start control valve open, com-pressed air passes into the header. Illus. RI, which leads to the individual cylinder air start check valves. Air also passes into the pilot air supplypipe connected to the air startdistributor.
P1         air start receiver initial pressure (psia)
The air start distributor includes one pilot air valve for each air start check valve. The valves are arranged radially and in cylinder firing order around the air start distributor camshaft, Illus. RZ. A spring holds each valve normally out of contact with the cam. as shown in Illus. R3. Air enters the distributor from the air start control valve, air pressure over-comes the spring tension and forces each valve plunger down into contact with the cam.Regardless of where the camshaft stopped, one valve will be on the low point of the cam and will therefore be open, as shown in Illus.R4. Two other valves, one on each side of the open valve, will be partially open. Each of the pilot air valves, when open, admits air through a connecting tube. Illus. RI. to an air start check valve. The air, under pressure, opens the air start check valve. The actual starting air then rushes into the cylinder from the air header. The starting air forces the pistons apart and thus causes the crankshafts to rotate.The air start distributor camshaft rotates with the upper crankshaft on 6- 9 cylinder en-gines and with the lower crankshafton 1Z cylinder engines. The can opens and closes the valves in sequence to the engine firing order. Soon the engine begins to fire. The control shaft lever should then be moved to "RUN" position.
P1     =120 psig P1         (14.7 + 120) (psia)
This actuates linkage on the control shaft which AM! START CCONTRC VALNI AS! START KEASM AS START 04CX VAtY! As! START OCm1C VAvEs-CO#CT,",4 TO SASTAWO ADV WKSN FVN&Illus. RL Air Start System -6 Cyl. Engines U1XILIARY EQUIPMENT AND SYSTEMS FAIRBANKS MORSE OPPOSED PISTON ENGINES E3440-1 Aug. 1979 STARTING AIR SYSTEM-- Stationary Engines The basic starting airsystem is shown in Fig. 1.The air compressor charges the :air tanks to nearly 250 psi, storing sufficient .energy for several starts.On starting, air flows from the tanks to the engine where it is admitted into the cylinders with required timing to rapidly turn the engine (and ýattached generator or other driven equipment).
P1         134.7 (psia)
Rate of air flow during starting is very high but it is of short duration (usually 3 or 4 seconds).
P2         air start receiver final pressure (psia)
Reliable starting may be expected at pressures between 250 and 150 psi, A filter and 250/70 psi regulator is required as a 70 psi air source for the pneumatic remote shutdown system, which is controlled by a solenoid valve in the line. This source also supplies control air for dual fuel engine fuel/air ratio control and, on the turbocharged dual fuel engine, for controlof switch-back to diesel on overspeed trip.A 250/20 psi filter-regulator is required for the turbocharged dual fuel engine as a20 psi source for the pneumatic air receiver temperature control in the air cooler water system.If theengine has been ordered with a worm gear barring device (hand ratchet device is standard), a larger filter and250/70 psi regulator will be required as a 70 psi airsource for the portable air barring motor which is used with it.If the engine is installed in-an existingplant with adequate starting air pressure and tankage~avaitable and with piping essentially-as shown in Fig. 1 so water does notget into.,theair lie to the engine, the plant system may be used.STARTING AIR STORAGE TANKS: Required storage tank volume may be'calculated by.the formula: VT PA x Vf x N (PH PL)VT= Required total tank volume, cu. ft.PA Atmospheric pressure, PSIA (14.7 nominally)
P2       =110 psig P2         (14.7 + 110) (psia)
PH Highest pressure for starting, PSIG (245 PSIG)PL = Lowest pressure for starting, PSIG (150 PSiG)Vi Volume of free air required per start, cu. ft, (from Data Page E1102-2 for blower scavenged engines or E1102- 1 for turbocharged engines)N = Number of starts desired without recharging air tanks.The number of starts to be expected from a given available tank volume may be calculated by trans-posedformula:
P2     =124.7 (psia)
N VTX (PH -PL)PA'Standard FM air tanks are vertically mounted with a base ring to support the bottom head 6" off the foundation to allow for drain piping. Sizes are as follows: Length Over FM No. O.D. -In. Heads -In. Vol. -Cu. Ft.16109954 30 84 31.7 16111127 30 96 36 2 Special tanks of different size or for horizontal mounting can be provided if required.The volume of free air required per start given on Data Pages Ell02-2 and El102-11 is based on the engine being at keep-warm temperature and being directly connected to an average alternator.
V1       = 34.0 ft3                                                             (Ref. 7, Page 5) y        = Ratio of Heat capacities Cp/Cv Y       z 1.33                                                                   (Ref. 12, Page 8)
An initialstart at lower temperature and/or with greater connected rotating mass may require as much as twice that volume of free air.Examples (assuming keep-warm systems are or-dered): 1.., A 12-cylinder turbochargedengine is to be in-stalled with a'new starting air system. Ten starts are desired without recharging air tanks. How much air tankage is required?Vf = 45cu. ft. (Pg. Et102-11)N = 10 VT = 14.7 (245-1.50) x 45 x 10 = 69.7 cu. ft.Twoair tanks 30" OD x 96' OTHwith a vol-umeof 72..4 cu, ft. would meet the require-ment.2. A 12-cylinder turbocharged engine is to be in-stalled in a plant with existing 35.7 cu. ft. air tankage, How many starts may be expected without recharging air tanks?N 35.7 x (245-150)
 
= 5 starts 45 x .14.7 FAIRBANKS MORSE .E1102-11 OPPOSED PISTON ENGINES Aug. 1979 GENERAL DATA.- (cont.)-- Turbocharged Diesel and Dual Fuel Engines Applicable to Continuous Ratings GENERAL DATA Number of Cylinders
Attachment 1 CALCULATION NO. RNP-M/MECH-1 815 PAGE NO. 4 of 4 REVISION                   1 (0.33)
..................................
W   (134.7 (0.33) " ft3)
6 9 12 Bore and stroke -inches .................  
      -- psia)(34.0     (134.7 psia)) 133
..... 8-1/8x10 8-1/8x10 8-1/8x10 Compression Ratio (Total swept volume) ..................
(_124.7              (144 1n2/ft2)
13,8 13:8 13.8 Hot Engine Compression at Rated Speed -max, variation between cylinders -psi .................
                                              "n2f2 W = 3.80 x 104 ft Ibf
50 50 50 Firing Pressure (epprox,)
 
-maximum psi ..............
RNP-M/MECH-1815 Attachment 2
1340 1340 1340 Total Piston Displacement
: p. 1 Rev. 0 ATTACHMENT 2 Sheet 1 of 1 Record of Lead Review F                                                                                                           *1 Document RNP-M/MECH-1815                                                               Revision 0 The signature below of the Lead Reviewer records that:
-cu, in.....................
      - the review indicated below has been performed by the Lead Reviewer;
6221 9332 12443 Piston Speed -ipm At 720'rpm ........................................
      - appropriate reviews were performed and errors/deficiencies (for all reviews performed) have been resolved and these records are included in the design package;
1200 1200 1200 At 750 rpm .......................................
      - the review was performed in accordance with EGR-NGGC-0003.
1250 1250 1250 At 900 rpm .............  
Design Verification Review               r-   Engine ering Review          -" Owner's Review E Design Review
............................
[- Alternate Calculation F-- Qualification Testing I Special Engineering Review F-1 YES     F-1 N/A Other Records are attached.
1500 1500 1500 Firing Order Note: For complete firing orderdata, with engine diagram, refer to page E1222-1.BLOWER Stationary Engines: Air Delivery (Turbocharger)
Don Phillips (signed electronically)                       mechanical          2/14/12 Lead Reviewer                       (print/sign)               Discipline         Date Item                               Deficiency                                       Resolution No.
-approx. cfm At 720 rpm ....... ...............................
1         The best argument that the engine will start is a test.         Revised to include 20 second Think a much better argument can be made using the 20           overcrank test.
5960 8950 11930 A1900 rpm ............................................
second no start cranking test results. There are 2 tests that show the engine will start cold with the starting air pressure less than that being evaluated. The only difference between the test and the condition of interest is the prior cranking without start. That should only make a difference in the static friction that needs to be overcome. Static friction does increase over time. Based on references, the difference between oiled steel static and dynamic friction is only the difference between 0.10 and 0.08. Considering the friction load is a small part of the overall load in cranking the engine, the change is small, and the engine was in fact stopped for a period of time before cranking, the affect on the engine would be very small.
6930; 10400 13860 Marine Engines: Air Delivery"(Turbocharger)
2         The historical data section should include the 20 second       Revised to include 20 second no start tests.                                                 overcrank test.
;-approx.
FORM EGR-NGGC-0003-2-10 This form is a QA Record when completed and included with a completed design package.
cfM At 750 rpm .............  
Owner's Reviews may be processed as stand alone QA records when Owner's Review is completed.
.............................
EGR-NGGC-0003                                         Rev. 11
8210 9320 12430 At 900 rpm ............................  
 
.6530 9800 13070 Scavenging Pressure -approx, psi ...........  
RNP-M/MECH-1815 Attachment 3 P. 1 Rev. 1 ATTACHMENT 2 Sheet 1 of 1 Record of Lead, Review Document RNP-M/MECH-1815                                                     Revision I The signature below of the Lead Reviewer records that:
,......, At 720 rpm .........................................
      - the review indicated below has been performed by the Lead Reviewer;
.17 17 17 At 760 rpm ..... .................................
      - appropriate reviews were performed and errors/deficiencies (for all reviews performed) have been resolved and these records are included in the design package;
18 18 18 At 00 rpm ................  
      - the review was performed in accordance with EGR-NGGC-0003.
...........
Design Verification Review       II   Engineiering Review      I-]  Owner's Review E Design Review F-D Alternate Calculation F-- Qualification Testing
23 23 23 BEARINGS Number of MainBearings (upper andilower crankshaft) as. 7 10 13 Main Bearing Size (upper and lower, crankshaft)
[-- Special Engineering Review I- YES     F-] N/A Other Records are attached.
-'in ... 8x3 8x3 8x3 ,Number of'Thrust Bearings (upper and'lower crankshaft) ea. .......................
Dave Markle (sianed electronically)                 Mechanical        2/21/12 Lead Reviewer                 (print/sign)             Discipline         Date Item                         Deficiency                                   Resolution No.
1 1 1 Thrust Bearing Size (upper and lower) -in...... ........8x4 8x4 8x4 Crankpin Bearing Size -inn .........................
1         None                                                   NA FORM EGR-NGGC-0003-2-10 This form is a QA Record when completed and included with a completed design package.
6-3/4x3.3/4 6-3/4x3-3/4 6-3/4x3-3/4 Piston Pin Bearing Size -in ..........................
Owner's Reviews may be processed as stand alone QA records when Owner's Review is completed.
3x3-3/16 3x3-3/16 3x3-3/16 EXHAUST Exhaust Temperature at individual Cylinder Exhaust Poris at Full Load -Max; F ..................
EGR-NGGC-0003                                 Rev. 11
1000 1000 1000 Stationary Engines: Exhaust Gas at Full Load -ibs. per hr.At 720 rpm ...... ................  
 
...........
Attachment III to Serial: RNP-RA/12-0010 5 Pages (Including Cover Page)
27360 41080 54760 At 900 rpm .. .....................................
H. B. ROBINSON STEAM ELECTRIC PLANT, UNIT NO. 2 References for Calculation RNP-M/MECH- 1815, Revision 1 Page 1           Air Start System Information from Vendor Manual 729-063-16 Page 2           Vendor Document E3440-1 Page 3           Vendor Document E 1102-11 Page 4           Historical Startup Test Data
31810 47740 83620 Marine Engines:.
 
Exhaust Gas at Full Load -lbs. per hr.At 750 rpm ........................  
From Vendor Manual 729-063-16                   3800TD8-118 - Page Ri Fairbanks Morse Opposed Piston Engines R. AIR START SYSTEM General                                                 This is explained and illustrated Ln Sec. J.
... .... .....28500 42780 57050 At.900 rpm ......................................
With the air start control valve open, com-The air starting system consists of the           pressed air passes into the header. Illus. RI, starting air piping and the engine starting mech-       which leads to the individual cylinder air start anism.                                                  check valves. Air also passes into the pilot air Air for the starting system is required at         supplypipe connected to the air startdistributor.
29970 44980 60000 STARTING AIR (Air Cylinder Start)Stationary
between 150 and 250 psi (250 psi preferred) at                 The air start distributor includes one pilot the engine and is stored In suitable air tanks.         air valve for each air start check valve. The Engine starting is accomplished by the ac-         valves are    arranged radially and in cylinder tion of compressed air on the pistons In their           firing order around the air start distributor proper firing order.                                     camshaft, Illus. RZ. A spring holds each valve The engine starting mechanism includes             normally out of contact with the cam. as shown the air start control valve, air start distributor.     in Illus. R3. Air enters the distributor from the air header, the pilot air tubing and the air         the air start control valve, air pressure over-start check valves at the individual cylinders.         comes the spring tension and forces each valve Illus. RI. The air start control valve and the           plunger down into contact with the cam.
-Diesel & Dual Fuel Cu. Ft. of free air per. start ............................
distributor are amply lubricated by the splash               Regardless of where the camshaft stopped, of engine oil. The air start check valves re-           one valve will be on the low point of the cam ceive lubricating oil with the air from the dis-         and will therefore be open, as shown in Illus.
30 35 46 Starting Air to 1/2 the cylinders on 6 & 12 cyl.engines and to 5 cylinders on the 9 cyl ,engine.Marine -Cu. Ft. of free air per start ............................
tributor.                                               R4. Two other valves, one on each side of the open valve, will be partially open. Each of the NOTE: The distributor on the 6-9 cylinder           pilot air valves, when open, admits air through engines is driven from the control end of         a connecting tube. Illus. RI. to an air        start the upper crankshaft. On 12 cylinder en-           check valve. The air, under pressure, opens gines. the distributor is mounted opposite         the air start check valve. The actual starting the governor drive on the pump mounting           air then rushes into the cylinder from the air plate and is driven from the lower crank-         header. The starting air forces          the pistons shaft.                                            apart and thus causes the crankshafts to rotate.
40 45 55 Starting air to all cylinders.
The air start distributor camshaft rotates Starting Mechanism                                      with the upper crankshaft on 6- 9 cylinder en-gines and with the lower crankshafton 1Z cylinder The air start control valve is mounted near      engines. The can opens and closes the valves the control or governor end of the engine on the         in sequence to the engine firing order. Soon the side opposite the controls. When the control            engine begins to fire. The control shaft lever shaft lever is moved to "START" position, a            should then be moved to "RUN" position. This lever linkage opens the air start control valve.       actuates linkage on the control shaft which AM! START CCONTRC VALNI AS! STARTKEASM  AS START04CX VAtY!              As! STARTOCm1CVAvEs-CO#CT,",4 TO SASTAWO ADV WKSN FVN&
For Tank Sizing See: Marine -Page E3,740 Stationary
Illus. RL    Air Start System - 6 Cyl. Engines
-PageE3440 4<~ .4,4' t 4'4, ~, ~ 4 ~ '~> ~4~2 4 y'44; ~ 4 4 4 s ~ ~ L 4 '44 44 44~4~ '~}~''4~ '4~ ~ 44, *~4,4~4~) j1'4~4 .44,~T 444 ~ 44''444~f)4
 
't '4'4'44 ~ '''4 .. 4~, 444.4444~ 4444 ~' ~ A ~94.44...,.4.44 444..4.44 44. '~''4" '~.'. '41"4~5~-.4~'4
U1XILIARY EQUIPMENT AND      SYSTEMS FAIRBANKS MORSE                                                                                  E3440-1 OPPOSED PISTON ENGINES                                                                                    Aug. 1979 STARTING AIR SYSTEM
* 4$1 '~ .4 .'444'4' 4'- ~ ~~4.~444 4.; 4.4.~44j4*
                                                -- Stationary Engines The basic starting airsystem is shown in Fig. 1.                   N    = Number of starts desired without The air compressor charges the :air tanks to nearly                              recharging air tanks.
....,,. .44~4444<~, ~ 4*, 4Q ,4 y .3 4 s 4*Q~.4 ,.4~ ~ ~ 44.' 44 ~ , 44'*4 ..4..'444~4.4.4.44444~9
250 psi, storing sufficient .energy for several starts.
,.'. ~ '4~p6~h) r.( / 99 .4'~4~'~4'44''
On starting, air flows from the tanks to the engine          The number of starts to be expected from a given where it is admitted into the cylinders with required        available tank volume may be calculated by trans-timing to rapidly turn the engine (and &#xfd;attached              posedformula:
.4 , '4>'4, 4 , ..4~ -'''4 4, 4,, 4.44 4-' '4/4444, 444 4; 4~'~4'4A~A~ 4.44, ~ '444 4 44' ~*44~. ~ .4''4'' 4' 4.g~ "~j,'~~t 44,4~~ 4,> ~ I/ 3 ~' 4' ~ 4444~4 444;4/ ~ 4 '4 44 4 4 4' '44'~4.~4 44'~~74,4  
generator or other driven equipment). Rate of air                              (PH - PL)
.4 9' ~>t4 II ~444, i'.' ? 4 Nf 4~."4'4~~444 4 4,,..44444'4~444~4.
N    VTX flow during starting is very high but it is of short                        Vf*X PA' duration (usually 3 or 4 seconds). Reliable starting may be expected at pressures between 250 and 150              Standard FM air tanks are vertically mounted with a psi,                                                          base ring to support the bottom head 6" off the A filter and 250/70 psi regulator is required as a      foundation to allow for drain piping. Sizes are as 70 psi air source for the pneumatic remote shutdown          follows:
4 4 4. 44~ 4.44 44444..4,444 "4 ~ '~ 1/2144 '4'4'4.4~4/
system, which is controlled by a solenoid valve in the line. This source also supplies control air for dual                                    Length Over fuel engine fuel/air ratio control and, on the                 FM No. O.D. - In.        Heads - In. Vol. -  Cu. Ft.
~' *4 4' , 44, , 44,4 4 .4' .4 ... 44..,. 4~4.'4,,.;44~44,4
turbocharged dual fuel engine, for controlof switch-          16109954        30            84              31.7 back to diesel on overspeed trip.                              16111127        30            96              36 2 A 250/20 psi filter-regulator is required for the       Special tanks of different size or for horizontal turbocharged dual fuel engine as a20 psi source for          mounting can be provided if required.
~4~,4' '. V''~"' ~.'*' 44444 4'44 44.4 4.'-'.4. 4 '4 44'44~4~4.44~:'4444.4.
the pneumatic air receiver temperature control in the air cooler water system.                                  The volume of free air required per start given on If theengine has been ordered with a worm gear          Data Pages Ell02-2 and El102-11 is based on the barring device (hand ratchet device is standard), a          engine being at keep-warm temperature and being larger filter and250/70 psi regulator will be required       directly connected to an average alternator. An as a 70 psi airsource for the portable air barring            initialstart at lower temperature and/or with greater motor which is used with it.                                  connected rotating mass may require as much as If the engine is installed in-an existingplant with    twice that volume of free air.
~'4 44~ ~ 4 .4'44 4 .4.7 ~ f(~,, ,4 ,~ ~.4' '~.4444." 4 44 4 .44 .44 ~ 4~' .4 4'4 'I ~4~4424 ~ ~/o6 '~ .'4'4'4~ 4 4 4444'~:5,2 4""T'4 ~ 4' 4444444~4.;'4~ '1' 44 4'4',ap 4  4 Z '4<444'44 444 44~444,,44
adequate starting air pressure and tankage~avaitable          Examples (assuming keep-warm systems are or-and with piping essentially- as shown in Fig. 1 so            dered):
~44~'.~444 j'4'~ 44'~4 444 f 4., 4  '444 '44'1~-;44 44 44..44. , ,'~ '4"'~ ' , ~4~4'.4.4
water does notget into.,theair lie to the engine, the plant system may be used.                                       1.., A 12-cylinder turbochargedengine is to be in-stalled with a'new starting air system. Ten starts STARTING AIR STORAGE TANKS:                                          are desired without recharging air tanks. How Required storage tank volume may be'calculated by.                   much air tankage is required?
'4'4.>~.:~~L4.~A
the formula:
~ '4'~>'~~'~'"4
Vf = 45cu. ft. (Pg. Et102-11)          N  = 10 VT      PA          x Vf x N (PH  PL)                                                                         x 45 x 10 = 69.7 cu. ft.
'44~, 4'4 i>4  ~ ~4~4' '7 ~.' 4' 44.4 44 4 ~- '44444 i/ ~ '444,44 .44 4444 ~, ~ v''' .4,,44~444444
VT = 14.7 VT= Required total tank volume, cu. ft.                               (245-1.50)
&sect;44 ~'4~~144~'
PA   Atmospheric pressure, PSIA                               Twoair tanks 30" OD x 96' OTHwith a vol-(14.7 nominally)                                       umeof 72..4 cu, ft. would meet the require-PH   Highest pressure for starting, PSIG                     ment.
~ A/or Sra/?r '4 ~ ~ve~wf~~'
(245 PSIG)
(44/ 4 44~ :o"~.4'4.~~~'44".
PL = Lowest pressure for starting, PSIG               2. A 12-cylinder turbocharged engine is to be in-(150 PSiG)                                         stalled in a plant with existing 35.7 cu. ft. air Vi    Volume of free air required per start,             tankage, How many starts may be expected cu. ft, (from Data Page E1102-2 for                 without recharging air tanks?
.44 444 44~44.4'4'4~444~4 444444 j 4 4 4.'4.4 .4~ 44'.4 ~'''
blower scavenged engines or                             N 35.7 x (245-150) = 5 starts 45 x .14.7 E1102- 1 for turbocharged engines)
* 1''4'~"4" ~ /,A ~ Sr ~ 4 44 '244~' s ~ #r.4\.;~,'4 4 4> ~444. 4.4}}
 
FAIRBANKS MORSE                                      .                                                    E1102-11 OPPOSED PISTON ENGINES                                                                                                Aug. 1979 GENERAL DATA.- (cont.)
                                                    --  Turbocharged Diesel and Dual Fuel Engines Applicable to Continuous Ratings GENERAL DATA Number of Cylinders ..................................                                          6            9          12 Bore and stroke - inches .................                                        ..... 8-1/8x10    8-1/8x10    8-1/8x10 Compression Ratio (Total swept volume) ..................                                     13,8        13:8        13.8 Hot Engine Compression at Rated Speed -
max, variation between cylinders -psi                          .................               50          50          50 Firing Pressure (epprox,) - maximum psi ..............                                          1340        1340        1340 Total Piston Displacement - cu, in.....................                                        6221        9332      12443 Piston Speed - ipm At 720'rpm ........................................                                           1200        1200        1200 At 750 rpm .......................................                                           1250        1250        1250 At 900 rpm .............               ............................                         1500        1500        1500 Firing Order Note: For complete firing orderdata, with engine diagram, refer to page E1222-1.
BLOWER Stationary Engines:
Air Delivery (Turbocharger) - approx. cfm At 720 rpm .......                 ...............................                         5960        8950      11930 A1900 rpm ............................................                                      6930;      10400      13860 Marine Engines:
Air Delivery"(Turbocharger) ;-approx. cfM At 750 rpm .............           .............................                           8210        9320      12430 At 900 rpm ............................                                             .       6530        9800      13070 Scavenging Pressure - approx, psi ...........                               ,......,
At 720 rpm .........................................                                         . 17            17          17 At 760 rpm .....         .................................                                    18          18          18 At 00 rpm          ................ ...........                                               23          23          23 BEARINGS Number of MainBearings (upper andilower crankshaft) as.                                         7          10          13 Main Bearing Size (upper and lower, crankshaft) -'in                                  ... 8x3          8x3        8x3
  ,Number of'Thrust Bearings (upper and'lower crankshaft) ea. .......................                                     1            1          1 Thrust Bearing Size (upper and lower) - in...... ........                                     8x4          8x4        8x4 Crankpin Bearing Size - inn                    ......................... 6-3/4x3.3/4                6-3/4x3-3/4 6-3/4x3-3/4 Piston Pin Bearing Size - in ..........................                                   3x3-3/16    3x3-3/16    3x3-3/16 EXHAUST Exhaust Temperature at individual Cylinder Exhaust Poris at Full Load - Max; F ..................                                     1000        1000        1000 Stationary Engines: Exhaust Gas at Full Load - ibs. per hr.
At 720 rpm ......                ................                   ...........         27360      41080      54760 At 900 rpm .. .....................................                                       31810      47740      83620 Marine Engines:. Exhaust Gas at Full Load - lbs. per hr.
At 750 rpm ........................                                 ... .... .....       28500      42780      57050 At.900 rpm ......................................                                         29970      44980      60000 STARTING AIR (Air Cylinder Start)
Stationary - Diesel & Dual Fuel Cu. Ft. of free air per.start ............................                                     30          35          46 Starting Air to 1/2 the cylinders on 6 & 12 cyl.
engines and to 5 cylinders on the 9 cyl ,engine.
Marine -
Cu. Ft. of free air per start ............................                                     40          45          55 Starting air to all cylinders.
For Tank Sizing See: Marine - Page E3,740 Stationary - PageE3440
 
4<
4                                                                            ~      '~>                      ~
t4 '4,          ~
            ~                                          .4,4' 4
                                                                              ~,
4                                                    '4444 44 s 4                                                                                                                                            L 4~2 y'44;      ~                                                      ~                                                    ~
                                                                                                                                                                                                                                            ~                              44,    *~
44~4~'~}~''4~                '4~
j1'4~4            .44,~T                  444          ~                              44''444~f)4 4,4~4~)
                                                                                        '4'4'44                          ~                          '''4                                      ..                     4~,    444
                                                                                  't
                                                                                                                                                    .4444~ 4444                                        ~'        ~    A                                              ~94.44...,.4.44    444
                                                                                                                      .44
                                                                                                                                                                                  '4"
                                                                                                                                                                                            '~.'.
                                                                                                                                                                                                  .4            '41"4~5~ '~'
44.
                                                                                                                                                            -                                                                                .4
                                                                                                                                                                                                                    ~'4
* 4
                                                                                                                                                                                            ..'444'4'                4'-  ~                                      ~~4.~444 4.; 4.4.~44j4*
    $1                                                    '~                                                                                                                                                                                                                      .44~4444<
                                                                                                                                                                                                                    ~                                              4*,                            4Q
                                                                                                        ~,
,4  y    .                 3          4 s4*Q~.4      ,.4~          ~        ~                        44.'      44    ~                                                        ,          44'*4                      .. 4..'444~4.4.4.44444~9
                                                                                                                                                                                                                ,.'.             ~                                '4
                                                                                                                                                                                                                                                                                    ~
p6~h) r.(                '4>'4,                        4
                                                                                                                                  / 99
                                                                                                                                    ,      .         .4~    -'''4                                  4,        4,,      4.44
                                                                                                                                                                                                                                          .4'~4~'~4'44''
                                            .4
                                                                                                                                                                                                                                    '4/4444, 4-'
444 4;                                                                    4~'~ 4 '4A~A~                      4.44, ~      '444 4        44'                ~*44~.~                        .                 4 4
                                                                                                                                                                                                                ''4''        4'      .g~          "~j,'~~t                      44,4~~        4,> ~      I
                                                                                                                                  / 3 ~'                                                                     4'             ~                                   4444~4                       444;4
                                                                                                                                                                                                                                                                                                      ~>
4      4   4'        '44'~4.~4             44'~~74,4          .4           9'
                                                                                                          /            ~     4     '4      44 4 4~
i'.'                                                         ?                Nf .                "4 t4                II                                                                          ~444,                                                                                                                                  '4~~444                          4    4,,..44444'4~444~4.
: 4.                                                        44~             4.4444444..4,444     "4    ~     '~   1/2 4                                                                4 44,                ,      44,4 144    '4'4'4.4~4/        ~'               *4          4'        ,
44..,.           4~4.'4,,.;44~44,4          ~4~,4'       '. V''~"'          ~.'
4'       .4                             ...
4     .
4'44      44.4                                4.
                          *'                        44444
                                                                                                                                                                                                                            ~
44'44~4~4.44~:'4444.4.
                                                                                                                                                                                                                                          ~                                        4 ~                  .4'
                      '-'.4.       4              '4                                                                                                                                                                                                                      44 44      4    .4.
f(~,,
'4
                                                                                                                                                                                                                      ~
7                ~
4
                                                                                                                                                                          ,4
                                                                                                                                                                              .44 .44       ~         4~'
                                                                                                                                                                                                              ,~
                                                                                                                                                                                                                  .4           4'4   'I          ~4~4424 ~                                       ~
                                              .4'    '~.4444." 4    44
                                                                                                                                    /o6                                                                                      4
:5,2                                                                                                                                                                          '4'4'4~                     4   4 4444'~
                                                                                                                                                          '~                  .
                                                                                                                                                                                                                                ""T'4         ~             4'    4444444~4
                                                                                                                                                                                                                                                                                          .;'4~           '1
                                                                                                                                  '                                                       44             4'4' 4
                      ,ap                                                                                        4                                                             Z                                    '4<444'44              444 44~444,,44                              ~44~'.
                                                                                                                                                                          ~444      j'4'~            44'~4 444f 4     ., 4       '444        '44'1~-;44 44'       44.                                                                    '4'4.>~.:~~L4.~A                                                 ~                                 '4'
                                                                                                '4"'~               ,                                                        ~4~4'.4.4
                                                              .44.          , ,'~
                          ~>'~~'~'"4      '44~,               4'4             i> 4 ~ 4
                                                                                                  ~4~4'
                                                                                                                                        ~-
                                                                                                                                          '7              ~.'
                                                                                                                                                                                      '44444 4'         44
              .4                                                         44 v'''               .4,,44~444444&sect;44              ~'4~~144~'
                                                                                                                            ~
i/      ~                                              '444,44      .44      4444          ~,
                                            ~ A/or Sra/?r                                                                      '4   ~~ve~wf~~'                                                        (
4     44~      :o"~.4'4.~~~'44".                                          .44 44/                                                                                                                                                                  j4 4 444 44~44.4'4'4~444~4
                                                                                                                                                                                                                                                      '4.4     .4~ 44 444444
: 4.                                 1''4
                                                                                  '~"4"          ~
                                                                                                            '.4  ~'''
                                                                                                                  /,A              ~
* Sr  ~                         4         44        '244~' s                  ~                        #r.4\.;~,'44 4 > ~
444.             4.4}}

Latest revision as of 17:19, 20 March 2020

Calculation RNP-M/MECH-1815, Revision 1, Evaluation of Emergency Diesel Generator Starting Capability at 150 PSIG
ML12068A133
Person / Time
Site: Robinson Duke Energy icon.png
Issue date: 02/23/2012
From:
Progress Energy Carolinas
To:
Office of Nuclear Reactor Regulation
References
RNP-RA/12-0010, TAC ME5408 RNP-M/MECH-1815, Rev 1
Download: ML12068A133 (23)


Text

Attachment II to Serial: RNP-RA/12-0010 18 Pages (Including Cover Page)

H. B. ROBINSON STEAM ELECTRIC PLANT, UNIT NO. 2 Calculation RNP-M/MECH- 1815, Revision 1

SYSTEM# 5095 CALC. SUB-TYPE MC PRIORITY CODE NA QUALITY CLASS A NUCLEAR GENERATION GROUP RNP-M/MECH-1815 (Calculation #)

EVALUATION OF EMERGENCY DIESEL GENERATOR STARTING CAPABILITY AT 150 PSIG (Title including structures, systems, components)

F-DBNP UNIT

-- CR3 D HNP NZRNP EZINCP W((]ALL APPROVAL M Electronically Approved REV [PREPARED BY REVIEWED BY SUPERVISOR Signature Signature Signature Signed Electronically Signed Electronically Signed Electronically 0 Name Name Name Date Date Date Signature Signature Signature Signed Electronically Signed Electronically Signed Electronically Name Name Name Date Date Date (For Vendor Calculations)

Vendor N/A Vendor Document No. N/A Owner's Review By N/A Date N/A

CALCULATION NO. RNP-M/MECH-1815 PAGE NO. i REVISION 1 LIST OF EFFECTIVE PAGES PAGE REV PAGE REV ATTACHMENTS ii 1 Number iii 1 Number Rev of Pages 1

1 0 2 0 3 0 1 1 4 4 0 2 0 1 5 0 3 1 1 6 0 7 0 AMENDMENTS Letter Rev Number of Pages None

CALCULATION NO. RNP-M/MECH-1815 PAGE NO. ii REVISION 1 TABLE OF CONTENTS List of Effective Pages ..................................................................................................... i Table of Contents ...................................................................................................... ii Revision Summary ......................................................................................................... iii Pu rp os e .......................................................................................................................... 1 R e fe re n c e s .................................................................................................................... 1 Body of Calculation ........................................................................................................ 1 Conclusions ............................................................................................................ 6 Document Indexing Table ........................................................................................... 7 Attachments ...................................................................................................... (4 Pages) ....................................................................................................... (1 Page) ....................................................................................................... (1 Page)

Amendments N/A

CALCULATION NO. RNP-M/MECH-1815 PAGE NO. iii REVISION 1 Revision Summary (list ECs incorporated)

Rev. #

0 Initial Revision 1 Corrected Reference 14 to Reference 11 on Attachment 1 Page 1 of 4.

Added Attachment 3 - Design Verification Form for Rev. 1.

CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 1 REVISION 0 PURPOSE Reference 1 provides the following request:

"Provide an analysis or calculation to justify the Fairbanks Morse recommendation that a minimum air pressure of 150 psig in the air start receiver will ensure a reliable start for each Robinson EDG."

This request was in response to information provided in Reference 2.

REFERENCES

1. NRC Letter RRA-12-0005, H.B. ROBINSON STEAM ELECTRIC PLANT, UNIT NO.2 -REQUEST FOR ADDITIONAL INFORMATION RELATED TO REQUEST FOR TECHNICAL SPECIFICATIONS CHANGES TO SECTION 3.8.3, DIESEL FUEL OIL AND STARTING AIR, AND SECTION 3.8.5, DC SOURCES- SHUTDOWN (TAC NO. ME5408), January 24, 2012.
2. Progress Energy Letter, REQUEST FOR TECHNICAL SPECIFICATIONS CHANGES TO SECTION 3.8.3, DIESEL FUEL OIL AND STARTING AIR, AND SECTION 3.8.5, DC SOURCES -

SHUTDOWN (ADAMS Accession No. ML110310012) January 20, 2011.

3. Vendor Technical Manual VTMA 729-063-16, FAIRBANKS MORSE POWER SYSTEMS PRODUCTS, Rev. 76.
4. Diesel Engine Engineering, Thermodynamics, Design, and Control, Andrei Makartchouk, 2002 Marcel Dekker.
5. RNP UFSAR Section 8.3.1, AC Power Systems.
6. Design Basis Document Emergency Diesel Generator System Document No.

DBD/R87038/SD05, Rev. 10.

7. RNP Calculation 87-17, Rev. 0, DG AIR START SYSTEM.
8. Introduction to Chemical Engineering Thermodynamics, Smith and Van Ness, McGraw Hill, Third Edition, 1975.
9. Fairbanks Morse Publication E3440-1, August 1979.
10. Fairbanks Morse Publication El102-1, August 1979.
11. Pre-Operational Tests of Emergency Diesel Generator Robinson File No. PO-35.
12. Matheson Gas Data Book, seventh edition, 2001.
13. Mark's Standard Handbook for Mechanical Engineer's, Eighth Edition.
14. RNP Technical Specifications 3.8.1, AC Sources - Operating.

BODY OF CALCULATION Diesel Generator Set Onsite emergency power is available from two emergency diesel generator sets. Each diesel generator set consists of a Fairbanks-Morse Model 38TD8-1/8 engine coupled to a Fairbanks-Morse generator.

The emergency diesels are automatically started by injecting compressed air into the cylinders. Each engine has compressed air storage sufficient for 8 cold diesel engine starts. However, the diesel engine will only consume enough air for one of these eight cold starts upon receiving an automatic start signal.

This is due to the engine control system which is designed to stop cranking within 10 sec. To ensure rapid start, each unit is equipped with heaters and pumps for circulation of lube oil and jacket water when the unit is not running (Ref. 5).

CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 2 REVISION 0 Lube Oil Subsystem A motor-driven standby circulating pump circulates the oil through the lubricating oil heater and back to the engine sump to maintain the lube oil warm (130F minimum) to support rapid starting and loading. Lube oil used in the EDG lube oil Subsystem is controlled as a "Q-List consumable" or equivalent item. This guarantees that lube oil quality will not interfere with the safety-related function of the EDGS (Ref. 3 and 6).

Jacket Water Coolinq Subsystem This system, like the Lube Oil system, is used to maintain the diesel generators in a warm standby status. Jacket water is heated as needed (11 OF minimum) to facilitate fast engine starting. A motor driven standby pump circulates flow through an 18 KW heater (Ref. 3 and 6).

Diesel Starting (Ref. 4)

To start a diesel engine it is necessary to rotate its crankshaft at a speed such that the fuel oil that is injected into the cylinders during start mode can self-ignite. The forces of resistance that appear inside a diesel engine when the starting air rotates the crankshaft during startup are:

1. The forces of friction of reciprocating and rotating parts.
2. The forces of resistance to air and gas flow in the intake and exhaust systems.
3. The force of resistance of the auxiliary mechanisms mounted on the engine.

Prior to the engine starting the force of cylinder charge compression is approximately equal to the force of cylinder charge expansion. Therefore, the work of cylinder charge compression does not contribute to the work of the resistant forces. Additionally, the starting system must impart sufficient kinetic energy to the engine rotating mass to achieve engine start.

Vendor Recommendation Fairbanks Morse (Ref. 9) states that reliable engine starting may be expected at starting air receiver pressures between 250 psig and 150 psig. The RNP EDG Fairbanks Morse Vendor manual states that air for the starting system is required at between 150 and 250 psig (Ref. 3, Pg. 446 of 1036). Fairbanks Morse (Ref. 10) states that the starting air receiver sizing basis is based on 45.0 ft3 of free air per start.

CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 3 REVISION 0 Historical Data Reference 11 documents a special test run on the "B"EDG to evaluate a proposed engine lockout after a 20 second overcrank with a failure to start. Inthis test the ability to start is determined after a simulated failure to auto start of the EDG. The data below is the recorded data from Ref. 11; the data is further analyzed in Attachment 1.

Start # Crank Time Start Air Pressure End Air Pressure (sec) (psig) (psig)

Did Not Start (1) 20 245 120 1 (2) 2 120 110 Notes:

1. Simulated failure to start. Fuel shut off for the 20 second over-crank.
2. Successful start.

Evaluation of Historical Data versus Vendor Recommendation The historical data tabulated above cannot be used directly to justify reliable starting of the Robinson EDG's at a minimum air pressure of 150 psig in the air start receiver. This is because the actual starting of the "B"EDG in the above test run occurred after a 20 second overcrank in which the EDG was not allowed to start. The differences between starting the EDG with a minimum air pressure of 150 psig in the air start receiver and after a 20 second overcrank in which the EDG was not allowed to start, will be examined.

The differences between starting the EDG with no prior start and the successful start after a 20 second overcrank are mainly due to differences in the static and dynamic coefficients of friction and differences in initial temperature of the EDG. Reference 13 discusses static and dynamic coefficients of friction and states that the coefficients of sliding (dynamic) friction are smaller than the coefficients of static friction.

Comparing starting the EDG with a minimum air pressure of 150 psig in the air start receiver and starting the EDG after a 20 second overcrank, it should be noted that both starting regimes have a static component and a dynamic component because both starts occur from rest.

There is expected to be little difference in the dynamic coefficients of friction between the two starts because the engine was not fired during the 20 second overcrank period and very little engine heatup would have occurred. Therefore the main difference between the 150 psig start under consideration and the start after the 20 second overcrank, lies in the reduction of the static coefficient of friction caused by the 20 second overcrank. The effect of this difference is minimized because each EDG is operated monthly for at least 60 minutes per RNP technical Specification Surveillance Requirements (Ref. 14).

Ability to Do Work To start the EDG, the starting air system must have the ability to do work. This work is divided between the work required to overcome the forces resisting the rotation of the engine and the kinetic energy imparted to the rotational mass.

Examining the historical data, the amount of work required to start the EDG can be determined, this is provided in Attachment 1.

CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 4 REVISION 0 Calculate Startinq Air Receiver Stored Energy (a150 psig Fairbanks Morse recommends that 45.0 ft3 of free air (Ref. 10) be available to start the engine. The amount of available energy 45.0 ft3 of free air discharged from an initial air receiver pressure of 150 psig will be determined.

Given an initial receiver air pressure of 150 psig, determine the final receiver air pressure after a discharge of 45.0 ft3 :

PIV 1 = P2 V2 P1 = air start receiver initial pressure (psia)

P1 = 150 psig P1 = (14.7 + 150) (psia)

P1 = 164.7 (psia)

Vl = 34.0 ft3 P2 = air start receiver final pressure (psia)

P2 = 0.0 psig P2 = (14.7 + 0.0) (psia)

P2 =14.7 (psia)

Determine V2:

V2 = (PRV)I 1 P2 V2 = [(164.7 psia)(34.0ft3)]/(14.7 psia)

V2 = 380.94 ft3 A discharge of 45.0 ft3 of free air would yield the following volume of free air left in the air receiver:

V2 = 380.94 ft3 - 45.0 ft3 V2 = 335.94 ft3

CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 5 REVISION 0 This is equivalent to the following pressure in the air receiver:

P3 = (P2V2)N3 P3 = [(14.7 psia)( 335.94 ft3)]/(34.0 ft3)

P3 = 145.25 psia or P3 = 130.55 psig Thus after a 45.0 ft3 discharge the expected air receiver pressure would be greater than 130.0 psig.

Calculate the amount of stored energy represented by the above discharge of 45.0 ft3 of free air stored in the air receiver:

Because the engine starts quickly and there is little time for heat transfer, it is reasonable to use an adiabatic expansion from the air start receiver initial pressure to the final pressure, to calculate the amount of energy this represents.

From Ref. 8, Page 71:

([-i P1 = air start receiver initial pressure (psia)

P1 = 150 psig P1 = (14.7 + 150) (psia)

P1 = 164.7 (psia)

P2 = air start receiver final pressure (psia)

P2 =145.25 (psia)

V1 = 34.0 ft3 (Ref. 7, Page 5) y = Ratio of Heat capacities Cp/Cv y = 1.33 (Ref. 12, Page 8)

(0.33)

(164.7 psia)(34.0 ft3)

(1 6. p*

~(0.33)

(145.25 1]ii2/t2 in2lft2) psia) 1.33-(144

CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 6 REVISION 0 W = 7.50 x 104 ft Ibf From Attachment 1, Start #1 consumed the following amount of air receiver energy:

W = 3.80 x 104 ft lbf Calculate ratio between work available at 150 psig and work expended for actual start at 120 psig:

Ratio 7.50x10 4 ftlbf/3.80xl04ftlbf Ratio = 1.97 CONCLUSION By examining the historical startup data, the amount of stored energy in the air receiver expended to start the diesel engine at a 120 psig initial receiver air pressure can be determined. As demonstrated above, the amount of stored energy in the air receiver that is available at 150 psig to start the diesel engine is approximately twice the value expended at 120 psig to actually start the diesel during the historical test.

With all initial parameters the same, there would be expected to be differences in the amount of energy required to start a diesel engine at 150 psig with no prior starts and that required to start a diesel engine following a 20 second overcrank. These differences lie mainly in the breakaway frictional forces required to start the cylinders and crankshaft moving and the frictional forces from heat up of the engine represented by the 20 second overcrank.

The difference in breakaway frictional forces present after the overcrank and the breakaway frictional forces present with no prior cranking is considered to have a relatively small impact to engine starting forces. This is primarily due to the benefit of the engine keep warm system and monthly operation of the diesel in minimizing the difference in breakaway friction and to the fact that the engine was not started during the overcrank reducing the effect of engine heatup.

Given that the amount of stored energy in the air receiver that is available at 150 psig to start the diesel engine is approximately twice the value expended starting the engine from a lower air pressure of 120 psig during the historical startup, and that the differences in work required to start the engine are not expected to be 100 % more between the two examined starting conditions, there is sufficient air at a minimum air pressure of 150 psig in the air start receiver to ensure a reliable start for each Robinson EDG.

CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 7 REVISION 0 Document ID Number Function Relationship to Calc. Action Type (e.g., Calc No., (i.e. IN for (e.g. design input, (specify if Doc.

(e.g. CALC, Dwg. No., design inputs or assumption basis, Services or DWG, TAG, Equip. Tag No., references; OUT reference, document Config. Mgt. to PROCEDURE Procedure No., for affected affected by results) Add, Deleted or

,SOFTWARE) Software name documents) Retain) (e.g., CM and version) Add, DS Delete)

VTMA 729-063-16 IN REFERENCE CM ADD DRAW 5379-01161 IN REFERENCE CM ADD CALC 87-17 IN REFERENCE CM ADD

4. 4 t 4. 1 4

1- 1

+ 4 t *1~ 1 4 4

  • 1* 1

.1- 4

+

I I + 4 I I + I (For the purpose of creating cross references to documents in the Document Management System and equipment in the Equipment Data Base)

Attachment 1 CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 1 of 4 REVISION 1 Analysis of Historical Data Reference 11 discusses a test run on the "B"EDG to determine the ability to start after a simulated failure to auto start the EDG. During the simulated failure to auto start the engine was cranked for 20 seconds. The data in the first four columns is the recorded data from Ref. 11; the fifth and sixth columns are calculated in this

Attachment:

20 Second Overcrank + 1 Engine Start Start # Crank Start Air End Air Volume of Free Air Receiver Time Pressure Pressure Air Consumed Expended (sec) (psig) (psig) (ft3) Energy Did Not Start (1) 20 245 120 n/a n/a 1(2) 2 120 110 23.13 38024.84 Notes:

1. Simulated failure to start. Fuel shut off for the 20 second over-crank.
2. Successful start.

Calculate Volume of Free Air Consumed Calculate Volume of Free Air Consumed used in the fifth column of the Table above:

Start #1 Since the beginning and ending air temperatures will be approximately equal, we can use:

P1 V1 = P2 V 2

Attachment 1 CALCULATION NO. RNP-M/MECH-1 815 PAGE NO. 2 of 4 REVISION 1 Volume of Free Air Consumed = Volume of Free Air @ Higher Pressure

- Volume of Free Air @ Lower Pressure Volume of Free Air

@ Higher Pressure = (PHigher VHigher)/14.7 psia Volume of Free Air

@ Higher Pressure = [(120 + 14.7)psia 34 ft3]/14.7 psia Volume of Free Air

@ Higher Pressure = 311.55 ft3 Volume of Free Air

@ Lower Pressure = (P Lower V Lower)/14.7 psia Volume of Free Air

@ Lower Pressure = [(110 + 14.7)psia 34 ft3]/14.7 psia Volume of Free Air

@ Lower Pressure = 288.42 ft3 Volume of Free Air Consumed = 378.63 ft3 - 364.75.3 ft3 Volume of Free Air Consumed = 23.13 ft3

Attachment 1 CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 3 of 4 REVISION 1 Calculate Startinq Air Receiver Stored Energy Expended Because the engine starts quickly and there is little time for heat transfer, it is reasonable to use an adiabatic expansion from the air start receiver initial pressure to the final pressure for Start #1, to calculate amount of energy this represents.

From Ref. 8, Page 71:

P1 air start receiver initial pressure (psia)

P1 =120 psig P1 (14.7 + 120) (psia)

P1 134.7 (psia)

P2 air start receiver final pressure (psia)

P2 =110 psig P2 (14.7 + 110) (psia)

P2 =124.7 (psia)

V1 = 34.0 ft3 (Ref. 7, Page 5) y = Ratio of Heat capacities Cp/Cv Y z 1.33 (Ref. 12, Page 8)

Attachment 1 CALCULATION NO. RNP-M/MECH-1 815 PAGE NO. 4 of 4 REVISION 1 (0.33)

W (134.7 (0.33) " ft3)

-- psia)(34.0 (134.7 psia)) 133

(_124.7 (144 1n2/ft2)

"I n2f2 W = 3.80 x 104 ft Ibf

RNP-M/MECH-1815 Attachment 2

p. 1 Rev. 0 ATTACHMENT 2 Sheet 1 of 1 Record of Lead Review F *1 Document RNP-M/MECH-1815 Revision 0 The signature below of the Lead Reviewer records that:

- the review indicated below has been performed by the Lead Reviewer;

- appropriate reviews were performed and errors/deficiencies (for all reviews performed) have been resolved and these records are included in the design package;

- the review was performed in accordance with EGR-NGGC-0003.

Design Verification Review r- Engine ering Review -" Owner's Review E Design Review

[- Alternate Calculation F-- Qualification Testing I Special Engineering Review F-1 YES F-1 N/A Other Records are attached.

Don Phillips (signed electronically) mechanical 2/14/12 Lead Reviewer (print/sign) Discipline Date Item Deficiency Resolution No.

1 The best argument that the engine will start is a test. Revised to include 20 second Think a much better argument can be made using the 20 overcrank test.

second no start cranking test results. There are 2 tests that show the engine will start cold with the starting air pressure less than that being evaluated. The only difference between the test and the condition of interest is the prior cranking without start. That should only make a difference in the static friction that needs to be overcome. Static friction does increase over time. Based on references, the difference between oiled steel static and dynamic friction is only the difference between 0.10 and 0.08. Considering the friction load is a small part of the overall load in cranking the engine, the change is small, and the engine was in fact stopped for a period of time before cranking, the affect on the engine would be very small.

2 The historical data section should include the 20 second Revised to include 20 second no start tests. overcrank test.

FORM EGR-NGGC-0003-2-10 This form is a QA Record when completed and included with a completed design package.

Owner's Reviews may be processed as stand alone QA records when Owner's Review is completed.

EGR-NGGC-0003 Rev. 11

RNP-M/MECH-1815 Attachment 3 P. 1 Rev. 1 ATTACHMENT 2 Sheet 1 of 1 Record of Lead, Review Document RNP-M/MECH-1815 Revision I The signature below of the Lead Reviewer records that:

- the review indicated below has been performed by the Lead Reviewer;

- appropriate reviews were performed and errors/deficiencies (for all reviews performed) have been resolved and these records are included in the design package;

- the review was performed in accordance with EGR-NGGC-0003.

Design Verification Review II Engineiering Review I-] Owner's Review E Design Review F-D Alternate Calculation F-- Qualification Testing

[-- Special Engineering Review I- YES F-] N/A Other Records are attached.

Dave Markle (sianed electronically) Mechanical 2/21/12 Lead Reviewer (print/sign) Discipline Date Item Deficiency Resolution No.

1 None NA FORM EGR-NGGC-0003-2-10 This form is a QA Record when completed and included with a completed design package.

Owner's Reviews may be processed as stand alone QA records when Owner's Review is completed.

EGR-NGGC-0003 Rev. 11

Attachment III to Serial: RNP-RA/12-0010 5 Pages (Including Cover Page)

H. B. ROBINSON STEAM ELECTRIC PLANT, UNIT NO. 2 References for Calculation RNP-M/MECH- 1815, Revision 1 Page 1 Air Start System Information from Vendor Manual 729-063-16 Page 2 Vendor Document E3440-1 Page 3 Vendor Document E 1102-11 Page 4 Historical Startup Test Data

From Vendor Manual 729-063-16 3800TD8-118 - Page Ri Fairbanks Morse Opposed Piston Engines R. AIR START SYSTEM General This is explained and illustrated Ln Sec. J.

With the air start control valve open, com-The air starting system consists of the pressed air passes into the header. Illus. RI, starting air piping and the engine starting mech- which leads to the individual cylinder air start anism. check valves. Air also passes into the pilot air Air for the starting system is required at supplypipe connected to the air startdistributor.

between 150 and 250 psi (250 psi preferred) at The air start distributor includes one pilot the engine and is stored In suitable air tanks. air valve for each air start check valve. The Engine starting is accomplished by the ac- valves are arranged radially and in cylinder tion of compressed air on the pistons In their firing order around the air start distributor proper firing order. camshaft, Illus. RZ. A spring holds each valve The engine starting mechanism includes normally out of contact with the cam. as shown the air start control valve, air start distributor. in Illus. R3. Air enters the distributor from the air header, the pilot air tubing and the air the air start control valve, air pressure over-start check valves at the individual cylinders. comes the spring tension and forces each valve Illus. RI. The air start control valve and the plunger down into contact with the cam.

distributor are amply lubricated by the splash Regardless of where the camshaft stopped, of engine oil. The air start check valves re- one valve will be on the low point of the cam ceive lubricating oil with the air from the dis- and will therefore be open, as shown in Illus.

tributor. R4. Two other valves, one on each side of the open valve, will be partially open. Each of the NOTE: The distributor on the 6-9 cylinder pilot air valves, when open, admits air through engines is driven from the control end of a connecting tube. Illus. RI. to an air start the upper crankshaft. On 12 cylinder en- check valve. The air, under pressure, opens gines. the distributor is mounted opposite the air start check valve. The actual starting the governor drive on the pump mounting air then rushes into the cylinder from the air plate and is driven from the lower crank- header. The starting air forces the pistons shaft. apart and thus causes the crankshafts to rotate.

The air start distributor camshaft rotates Starting Mechanism with the upper crankshaft on 6- 9 cylinder en-gines and with the lower crankshafton 1Z cylinder The air start control valve is mounted near engines. The can opens and closes the valves the control or governor end of the engine on the in sequence to the engine firing order. Soon the side opposite the controls. When the control engine begins to fire. The control shaft lever shaft lever is moved to "START" position, a should then be moved to "RUN" position. This lever linkage opens the air start control valve. actuates linkage on the control shaft which AM! START CCONTRC VALNI AS! STARTKEASM AS START04CX VAtY! As! STARTOCm1CVAvEs-CO#CT,",4 TO SASTAWO ADV WKSN FVN&

Illus. RL Air Start System - 6 Cyl. Engines

U1XILIARY EQUIPMENT AND SYSTEMS FAIRBANKS MORSE E3440-1 OPPOSED PISTON ENGINES Aug. 1979 STARTING AIR SYSTEM

-- Stationary Engines The basic starting airsystem is shown in Fig. 1. N = Number of starts desired without The air compressor charges the :air tanks to nearly recharging air tanks.

250 psi, storing sufficient .energy for several starts.

On starting, air flows from the tanks to the engine The number of starts to be expected from a given where it is admitted into the cylinders with required available tank volume may be calculated by trans-timing to rapidly turn the engine (and ýattached posedformula:

generator or other driven equipment). Rate of air (PH - PL)

N VTX flow during starting is very high but it is of short Vf*X PA' duration (usually 3 or 4 seconds). Reliable starting may be expected at pressures between 250 and 150 Standard FM air tanks are vertically mounted with a psi, base ring to support the bottom head 6" off the A filter and 250/70 psi regulator is required as a foundation to allow for drain piping. Sizes are as 70 psi air source for the pneumatic remote shutdown follows:

system, which is controlled by a solenoid valve in the line. This source also supplies control air for dual Length Over fuel engine fuel/air ratio control and, on the FM No. O.D. - In. Heads - In. Vol. - Cu. Ft.

turbocharged dual fuel engine, for controlof switch- 16109954 30 84 31.7 back to diesel on overspeed trip. 16111127 30 96 36 2 A 250/20 psi filter-regulator is required for the Special tanks of different size or for horizontal turbocharged dual fuel engine as a20 psi source for mounting can be provided if required.

the pneumatic air receiver temperature control in the air cooler water system. The volume of free air required per start given on If theengine has been ordered with a worm gear Data Pages Ell02-2 and El102-11 is based on the barring device (hand ratchet device is standard), a engine being at keep-warm temperature and being larger filter and250/70 psi regulator will be required directly connected to an average alternator. An as a 70 psi airsource for the portable air barring initialstart at lower temperature and/or with greater motor which is used with it. connected rotating mass may require as much as If the engine is installed in-an existingplant with twice that volume of free air.

adequate starting air pressure and tankage~avaitable Examples (assuming keep-warm systems are or-and with piping essentially- as shown in Fig. 1 so dered):

water does notget into.,theair lie to the engine, the plant system may be used. 1.., A 12-cylinder turbochargedengine is to be in-stalled with a'new starting air system. Ten starts STARTING AIR STORAGE TANKS: are desired without recharging air tanks. How Required storage tank volume may be'calculated by. much air tankage is required?

the formula:

Vf = 45cu. ft. (Pg. Et102-11) N = 10 VT PA x Vf x N (PH PL) x 45 x 10 = 69.7 cu. ft.

VT = 14.7 VT= Required total tank volume, cu. ft. (245-1.50)

PA Atmospheric pressure, PSIA Twoair tanks 30" OD x 96' OTHwith a vol-(14.7 nominally) umeof 72..4 cu, ft. would meet the require-PH Highest pressure for starting, PSIG ment.

(245 PSIG)

PL = Lowest pressure for starting, PSIG 2. A 12-cylinder turbocharged engine is to be in-(150 PSiG) stalled in a plant with existing 35.7 cu. ft. air Vi Volume of free air required per start, tankage, How many starts may be expected cu. ft, (from Data Page E1102-2 for without recharging air tanks?

blower scavenged engines or N 35.7 x (245-150) = 5 starts 45 x .14.7 E1102- 1 for turbocharged engines)

FAIRBANKS MORSE . E1102-11 OPPOSED PISTON ENGINES Aug. 1979 GENERAL DATA.- (cont.)

-- Turbocharged Diesel and Dual Fuel Engines Applicable to Continuous Ratings GENERAL DATA Number of Cylinders .................................. 6 9 12 Bore and stroke - inches ................. ..... 8-1/8x10 8-1/8x10 8-1/8x10 Compression Ratio (Total swept volume) .................. 13,8 13:8 13.8 Hot Engine Compression at Rated Speed -

max, variation between cylinders -psi ................. 50 50 50 Firing Pressure (epprox,) - maximum psi .............. 1340 1340 1340 Total Piston Displacement - cu, in..................... 6221 9332 12443 Piston Speed - ipm At 720'rpm ........................................ 1200 1200 1200 At 750 rpm ....................................... 1250 1250 1250 At 900 rpm ............. ............................ 1500 1500 1500 Firing Order Note: For complete firing orderdata, with engine diagram, refer to page E1222-1.

BLOWER Stationary Engines:

Air Delivery (Turbocharger) - approx. cfm At 720 rpm ....... ............................... 5960 8950 11930 A1900 rpm ............................................ 6930; 10400 13860 Marine Engines:

Air Delivery"(Turbocharger) ;-approx. cfM At 750 rpm ............. ............................. 8210 9320 12430 At 900 rpm ............................ . 6530 9800 13070 Scavenging Pressure - approx, psi ........... ,......,

At 720 rpm ......................................... . 17 17 17 At 760 rpm ..... ................................. 18 18 18 At 00 rpm ................ ........... 23 23 23 BEARINGS Number of MainBearings (upper andilower crankshaft) as. 7 10 13 Main Bearing Size (upper and lower, crankshaft) -'in ... 8x3 8x3 8x3

,Number of'Thrust Bearings (upper and'lower crankshaft) ea. ....................... 1 1 1 Thrust Bearing Size (upper and lower) - in...... ........ 8x4 8x4 8x4 Crankpin Bearing Size - inn ......................... 6-3/4x3.3/4 6-3/4x3-3/4 6-3/4x3-3/4 Piston Pin Bearing Size - in .......................... 3x3-3/16 3x3-3/16 3x3-3/16 EXHAUST Exhaust Temperature at individual Cylinder Exhaust Poris at Full Load - Max; F .................. 1000 1000 1000 Stationary Engines: Exhaust Gas at Full Load - ibs. per hr.

At 720 rpm ...... ................ ........... 27360 41080 54760 At 900 rpm .. ..................................... 31810 47740 83620 Marine Engines:. Exhaust Gas at Full Load - lbs. per hr.

At 750 rpm ........................ ... .... ..... 28500 42780 57050 At.900 rpm ...................................... 29970 44980 60000 STARTING AIR (Air Cylinder Start)

Stationary - Diesel & Dual Fuel Cu. Ft. of free air per.start ............................ 30 35 46 Starting Air to 1/2 the cylinders on 6 & 12 cyl.

engines and to 5 cylinders on the 9 cyl ,engine.

Marine -

Cu. Ft. of free air per start ............................ 40 45 55 Starting air to all cylinders.

For Tank Sizing See: Marine - Page E3,740 Stationary - PageE3440

4<

4 ~ '~> ~

t4 '4, ~

~ .4,4' 4

~,

4 '4444 44 s 4 L 4~2 y'44; ~ ~ ~

~ 44, *~

44~4~'~}~4~ '4~

j1'4~4 .44,~T 444 ~ 44444~f)4 4,4~4~)

'4'4'44 ~ 4 .. 4~, 444

't

.4444~ 4444 ~' ~ A ~94.44...,.4.44 444

.44

'4"

'~.'.

.4 '41"4~5~ '~'

44.

- .4

~'4

  • 4

.4 .'444'4' 4'- ~ ~~4.~444 4.; 4.4.~44j4*

$1 '~ .44~4444<

~ 4*, 4Q

~,

,4 y . 3 4 s4*Q~.4 ,.4~ ~ ~ 44.' 44 ~ , 44'*4 .. 4..'444~4.4.4.44444~9

,.'. ~ '4

~

p6~h) r.( '4>'4, 4

/ 99

, . .4~ -4 4, 4,, 4.44

.4'~4~'~4'44

.4

'4/4444, 4-'

444 4; 4~'~ 4 '4A~A~ 4.44, ~ '444 4 44' ~*44~.~ . 4 4

4 4' .g~ "~j,'~~t 44,4~~ 4,> ~ I

/ 3 ~' 4' ~ 4444~4 444;4

~>

4 4 4' '44'~4.~4 44'~~74,4 .4 9'

/ ~ 4 '4 44 4 4~

i'.'  ? Nf . "4 t4 II ~444, '4~~444 4 4,,..44444'4~444~4.

4. 44~ 4.4444444..4,444 "4 ~ '~ 1/2 4 4 44, , 44,4 144 '4'4'4.4~4/ ~' *4 4' ,

44..,. 4~4.'4,,.;44~44,4 ~4~,4' '. V~"' ~.'

4' .4 ...

4 .

4'44 44.4 4.

  • ' 44444

~

44'44~4~4.44~:'4444.4.

~ 4 ~ .4'

'-'.4. 4 '4 44 44 4 .4.

f(~,,

'4

~

7 ~

4

,4

.44 .44 ~ 4~'

,~

.4 4'4 'I ~4~4424 ~ ~

.4' '~.4444." 4 44

/o6 4

5,2 '4'4'4~ 4 4 4444'~

'~ .

""T'4 ~ 4' 4444444~4

.;'4~ '1

' 44 4'4' 4

,ap 4 Z '4<444'44 444 44~444,,44 ~44~'.

~444 j'4'~ 44'~4 444f 4 ., 4 '444 '44'1~-;44 44' 44. '4'4.>~.:~~L4.~A ~ '4'

'4"'~ , ~4~4'.4.4

.44. , ,'~

~>'~~'~'"4 '44~, 4'4 i> 4 ~ 4

~4~4'

~-

'7 ~.'

'44444 4' 44

.4 44 v .4,,44~444444§44 ~'4~~144~'

~

i/ ~ '444,44 .44 4444 ~,

~ A/or Sra/?r '4 ~~ve~wf~~' (

4 44~ :o"~.4'4.~~~'44". .44 44/ j4 4 444 44~44.4'4'4~444~4

'4.4 .4~ 44 444444

4. 14

'~"4" ~

'.4 ~

/,A ~

  • Sr ~ 4 44 '244~' s ~ #r.4\.;~,'44 4 > ~

444. 4.4