ML17291A624: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(StriderTol Bot change)
 
(4 intermediate revisions by the same user not shown)
Line 2: Line 2:
| number = ML17291A624
| number = ML17291A624
| issue date = 12/31/1994
| issue date = 12/31/1994
| title = Rev 1, Cycle 10 Colr.
| title = Rev 1, Cycle 10 Colr
| author name =  
| author name =  
| author affiliation = WASHINGTON PUBLIC POWER SUPPLY SYSTEM
| author affiliation = WASHINGTON PUBLIC POWER SUPPLY SYSTEM
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:941229 1498 CpLR 94 10 Remsion 1 ContmHed Copy No-WNP-2 Cycle 10 , Core Operating Lixnits Report December 1994 Washington Public Power Supply System 9502010200 950125 PDR ADOCK 05000397 P PDR 4 941229 149$WNP-2 Cycle 10 Coze Qperatiag Limits Repozt LIST F EFFECTlVE PA ES~Revisi n 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 WNP-2 Cycle 10 Coic OpeiatlIlg L1101~Report ST F EFFECTIVE PAGES$Mvi~ig 35 35a 36 37 1 1 0 0 LEP-2 WNP-2 Cycle 10 Core Operating Limits Report B E F 1.0 D N AND RY o~-~~~~~~~~~~~~~~~~~~~~~~~~~1 A 2.0 AVERA EP ANAR AR ENERATI N TE AP H R R EIN AL P IFI ATI N 21............
{{#Wiki_filter:941229 1498 CpLR 94 10 Remsion 1
2 3.0 L P A N 2~~~~~~o~~~~~~~~o~~~~~~~~~~o 8 4.0 A AT L P N R E 4~~~~~o~,~~~~~~~~~~o~~~~~~~~~29 2 5.0 I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~35 Washington Nuclear-Unit 2 COLR 94-10, Revision 0 l~/w'C' 1.0 INTR D CTI N AND SUhQvfARY This report provides the Average Planar Linear Heat Generation Rate (APLHGR)limits, the Minimum Critical Power Ratio (MCPR)limits, and the Linear Heat Generatioa Rate (LHGR)limits for WNP-2, Cycle 10 as required by Technical Specificatioa 6.9.3.1.As zequized by Technical Specifications 6.9.3.2 and 6.9.3.3, these limits were determined using NRC-approved methodology and axe established so that all applicable limits of the plant safety analysis are met.The thexmal limits for SPC fuel given in this report are documented in the"Cycle 10 Plant Transient Analysis" (Refezcnce 5.1.1), the"Cycle 10 Reload Analysis" (Reference 5.1.2)and the"Impzoved Reduced Plow MCPR Oyexatiug Limits for WNP-2 Cycle 10" (Refezence 5.1.9).The thezmal limits detexmined thxough the approved methodology aze modified for the GE11 and SVEA-96 LPAs as discussed below.The WNP-2 Cycle 10 core includes four Siemens Power Corpoxation (SPC), four GE Nuclear Energy (GE), and four ABB Combustion Eugiaeexing Nuclear Ogexatioas (ABB CENO)Lead Puel Assemblies (LFAs).The SPC LFAs were inserted duziug the reload for Cycle 5.The GE and ABB CENO LPAs were inserted at the beginning of Cycle 6 and were designed to be compatible with the reload fuel utilized in Cycle 6.The LFAs are loaded in core locations which analysis has shown to have sufficient thermal margin such that the LFAs axe not expected" to be the most limiting fuel assemblies oa either a nodal or an assembly power basis.The GE Nuclear Energy GE11=LPAs aze described in the"GE11 Lead Fuel Assembly Report for Washington Public Power Supply System Nuclear Project No.2, Reload 5, Cycle 6" (Refexence 5.3.1).This xefexence describes the design goals of the GE11 LPAs and provides support for monitozing the GE11 LPAs at thermal limits based on the SPC 8x8 reload fuel thezmal limits.The ABB CENO SVEA-96 LPAs are described ia the"Supplemental Lead Fuel Assembly Licensing Report-SVEA-96 LPAs for WNP-2-Summaxy" (Reference 5.3.2).The process for developing thermal limits for the SVEA-96 LPAs based upon the SPC 8x8 xeload fuel thermal limits is described in References 5.3.2 thxough 5.3.4 The MAPLEGR limits for the GE11 LFAs are the same as for the SPC 8x8 reload fuel, except that a ratio ([64-2]/I'81-7])
ContmHed CopyNo WNP-2 Cycle 10
is applied to account for the different number of fuel pins in the two designs.The MAPLHGR limits for the SVEA-96 LPAs are the same as for the SPC 8x8 reload fuel, except that a ratio ([64-2]/f100-4])
, Core Operating Lixnits Report December 1994 Washington Public Power Supply System 9502010200 950125 PDR ADOCK 05000397 P
is apylied to account for the diffezent number of fuel pins in the two designs.Fuzthexmoze, the MAPLHGR limits for the SVEA-96 LPAs are multiplied by the following constants: (a)1.04 to account for a diffezent estimation of the local power in the output from POWEIU'LEX compaxed to ABB CENO methods aad (b)1.02 to account for a different estimation of exposure ia the output from POWERPLEX compared to ABB CENO methods.The MCPR limit is the maximum of (a)the applicable exposure dependeat, full power and full flow MCPR limit, (b)the applicable exposure and power dependent MCPR limit, and (c)the flow dependent MCPR limit specified in this reyoxt.This stipulation assures that the safety limit MCPR will not be violated thzoughout the WNP-2 operating regime.Full power MCPR limits are specified to define oyexating limits at rated power and Qow.For the WNP-2 coze, the Turbine Trip without Bypass event is limiting for operation at xated power and fiow.Power dependent MCPR limits axe specified to define opexatiag limits at other thaa zated power Washington Nuclear-Unit 2 COLR 94-10, Revision 1 941229 14QS conditions.
PDR 4
For the WNP-2 core, the Feedwater Controller Failure event from zeduced power is calculated to be more severe than from full power conditions.
 
A fiow dependent MCPR is slxeified to define operating limits at other than rated flow conditions.
941229 149$
The reduced flow MCPR limit provides bounding protection for the limiting Recizculation Flow Increase event (Refezence 5.1.9).The LHGR limits for the GE11 LFAs are the same as for the SPC 8x8 zeload fuel, except that a ratio ([64-2]/[81-7J) is applied to account for the different number of fuel pins in the two designs.The LHGR limits for the SVEA-96 LFAs are taken dimply from Refezence 5.3.2.The reload licensing analyses for this cycle provide opezating limits for Extended Load Line (ELl~)operation which extends the power and flow operating regime for WNP-2 up to the 109%zod line which at full power cozzesponds to 87%of zated flow.The MCPR limits deflned in this zepozt aze applicable up to 100%of rated thermal power along and below the 109%zod line.The minimum low for operation at rated power is 87%of zated fiow;the maximum is 106%.Refezences 5.1.1 and 5.1.2 and the zefezences in Section 5.4 document the analyses in suppozt of ELLLA opezation.
WNP-2 Cycle 10 Coze Qperatiag Limits Repozt LIST F EFFECTlVE PA ES
~Revisi n 1
1 2
3 4
5 6
7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 0
1 1
0 0
0 0
0 0
0 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
 
WNP-2 Cycle 10 Coic OpeiatlIlg L1101~ Report ST F EFFECTIVE PAGES
$Mvi~ig 35 35a 36 37 1
1 0
0 LEP-2
 
WNP-2 Cycle 10 Core Operating Limits Report B E F
1.0 D
N AND RY o
~
- ~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
1 A
2.0 AVERA EP ANAR AR ENERATI N TE AP H R R
EIN AL P IFI ATI N 21............
2 3.0 L
P A
N 2
~
~
~
~
~
~
o
~
~
~
~
~
~
~
~
o
~
~
~
~
~
~
~
~
~
~
o 8
4.0 A
AT L
P N
R E
4
~
~
~
~
~
o ~, ~
~
~
~
~
~
~
~
~
~
o
~
~
~
~
~
~
~
~
~ 29 2
5.0 I
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~ 35 Washington Nuclear-Unit 2 COLR 94-10, Revision 0
 
l
~ /
w'C'
 
1.0 INTR D CTI N AND SUhQvfARY This report provides the Average Planar Linear Heat Generation Rate (APLHGR) limits, the Minimum Critical Power Ratio (MCPR) limits, and the Linear Heat Generatioa Rate (LHGR) limits for WNP-2, Cycle 10 as required by Technical Specificatioa 6.9.3.1.
As zequized by Technical Specifications 6.9.3.2 and 6.9.3.3, these limits were determined using NRC-approved methodology and axe established so that all applicable limits of the plant safety analysis are met.
The thexmal limits for SPC fuel given in this report are documented in the "Cycle 10 Plant Transient Analysis" (Refezcnce 5.1.1), the "Cycle 10 Reload Analysis" (Reference 5.1.2) and the "Impzoved Reduced Plow MCPR Oyexatiug Limits for WNP-2 Cycle 10" (Refezence 5.1.9). The thezmal limitsdetexmined thxough the approved methodology aze modified for the GE11 and SVEA-96 LPAs as discussed below.
The WNP-2 Cycle 10 core includes four Siemens Power Corpoxation (SPC), four GE Nuclear Energy (GE), and four ABB Combustion Eugiaeexing Nuclear Ogexatioas (ABB CENO) Lead Puel Assemblies (LFAs). The SPC LFAs were inserted duziug the reload for Cycle 5. The GE and ABB CENO LPAs were inserted at the beginning of Cycle 6 and were designed to be compatible with the reload fuel utilized in Cycle 6.
The LFAs are loaded in core locations which analysis has shown to have sufficient thermal margin such that the LFAs axe not expected to be the most limitingfuel assemblies oa either a nodal or an assembly power basis.
The GE Nuclear Energy GE11= LPAs aze described in the "GE11 Lead Fuel Assembly Report for Washington Public Power Supply System Nuclear Project No. 2, Reload 5, Cycle 6" (Refexence 5.3.1).
This xefexence describes the design goals of the GE11 LPAs and provides support for monitozing the GE11 LPAs at thermal limits based on the SPC 8x8 reload fuel thezmal limits.
The ABB CENO SVEA-96 LPAs are described ia the "Supplemental Lead Fuel Assembly Licensing ReportSVEA-96 LPAs forWNP-2Summaxy" (Reference 5.3.2). The process for developing thermal limits for the SVEA-96 LPAs based upon the SPC 8x8 xeload fuel thermal limits is described in References 5.3.2 thxough 5.3.4 The MAPLEGRlimits for the GE11 LFAs are the same as for the SPC 8x8 reload fuel, except that a ratio ([64-2]/I'81-7])is applied to account for the different number of fuel pins in the two designs.
The MAPLHGRlimits forthe SVEA-96 LPAs are the same as for the SPC 8x8 reload fuel, except that a ratio ([64-2]/f100-4]) is apylied to account for the diffezent number of fuel pins in the two designs.
Fuzthexmoze, the MAPLHGR limits for the SVEA-96 LPAs are multiplied by the following constants:
(a) 1.04 to account for a diffezent estimation of the local power in the output from POWEIU'LEX compaxed to ABB CENO methods aad (b) 1.02 to account for a different estimation of exposure ia the output from POWERPLEX compared to ABB CENO methods.
The MCPR limitis the maximum of (a) the applicable exposure dependeat, fullpower and full flow MCPR limit, (b) the applicable exposure and power dependent MCPR limit, and (c) the flowdependent MCPR limitspecified in this reyoxt. This stipulation assures that the safety limit MCPR willnot be violated thzoughout the WNP-2 operating regime. Fullpower MCPR limits are specified to define oyexating limits at rated power and Qow.
For the WNP-2 coze, the Turbine Trip without Bypass event is limiting for operation at xated power and fiow. Power dependent MCPR limits axe specified to define opexatiag limits at other thaa zated power Washington Nuclear-Unit 2 COLR 94-10, Revision 1
 
941229 14QS conditions.
For the WNP-2 core, the Feedwater Controller Failure event from zeduced power is calculated to be more severe than from fullpower conditions. A fiow dependent MCPR is slxeified to define operating limitsat other than rated flowconditions. The reduced flowMCPR limit provides bounding protection for the limiting Recizculation Flow Increase event (Refezence 5.1.9).
The LHGR limits for the GE11 LFAs are the same as for the SPC 8x8 zeload fuel, except that a ratio ([64-2]/[81-7J) is applied to account for the different number of fuel pins in the two designs.
The LHGR limits for the SVEA-96 LFAs are taken dimply from Refezence 5.3.2.
The reload licensing analyses for this cycle provide opezating limits for Extended Load Line (ELl~) operation which extends the power and flow operating regime for WNP-2 up to the 109% zod line which at fullpower cozzesponds to 87% ofzated flow. The MCPR limits deflned in this zepozt aze applicable up to 100% of rated thermal power along and below the 109% zod line.
The minimum low for operation at rated power is 87% of zated fiow; the maximum is 106%.
Refezences 5.1.1 and 5.1.2 and the zefezences in Section 5.4 document the analyses in suppozt of ELLLAopezation.
Preparation, zeview and approval of this report weze performed in accordance with applicable Supply'System pzoceduzes.
Preparation, zeview and approval of this report weze performed in accordance with applicable Supply'System pzoceduzes.
The specific topical report revisions and supplements which describe the.methodology utilized in this cycle specific analysis aze zefezenced in Section 5.2.2.0 AVERA EPLANARLINEARHEATGENIHMTI NRATE APLH R LIMITSFOR U E IN TE CAL SPECIFICATI N 3 2.The APLHGRs for use in Technical Specification 3.2.1 shall not exceed the limits shown in Figures 2.1, 2.2, 2.4, and 2.5 when in two-loop opezation and in Figuzes 2.1, 2.3, 2.4, and 2.5 when in single loop operation.
The specific topical report revisions and supplements which describe the. methodology utilized in this cycle specific analysis aze zefezenced in Section 5.2.
The limits for each fuel type as a function of Average Planar Exposure are provided for the SPC reload fuel, the SPC LFAs, the SVEA-96 LFAs, and the GE11 LFAs.Washington Nuclear-Unit 2-2-COLR 94-10, Revision 1 wwwwgwwwwgwwwwgwwww'gwwwwpg+'gwwgwwwwggwww Qwwgg a--as=a~-s=-saaaas~as~~as~-===-=====ass===
2.0 AVERA EPLANARLINEARHEATGENIHMTINRATE APLH R LIMITSFOR U E IN TE CAL SPECIFICATI N 3 2.
~@=ma$-HERE:===P=REElg ERR=-====hP~E
The APLHGRs for use in Technical Specification 3.2.1 shall not exceed the limits shown in Figures 2.1, 2.2, 2.4, and 2.5 when in two-loop opezation and in Figuzes 2.1, 2.3, 2.4, and 2.5 when in single loop operation.
....I~~~~s;:~wwwwwwwwgwwwww wwwwwwwwwww 1w wwwwwwwgw gwwww wwwwwwwwwwwwwwgwwwwwwwwwwwwww PAYEE)EEEEgPgEgggEmEmEEggmmEEgmkmgPg+EggPgEg C I I--mme--=-===-h-asm-ea~~~~wwwwwwwwwww
The limits for each fuel type as a function of Average Planar Exposure are provided for the SPC reload fuel, the SPC LFAs, the SVEA-96 LFAs, and the GE11 LFAs.
~'www wwwww wwwww wwwwwwwwwwwg%wwwwww'g wwwww wwwwwwwwwww
Washington Nuclear-Unit 2 COLR 94-10, Revision 1
'www'www wwww I wwwww wwwwwwwwwwww
 
'%g&wwwg wwwww wwwwwwwwwwwwgiCwwwwPii wwwwf J PwwpgwwEwEPwwwwww&gEMEgg wwww i wwwwwwwwwwwwwwwwwwwww
wwwwgwwwwgwwwwgwwww'gwwwwpg+'gwwgwwwwggwww Qwwgg a-as=a~-s=-saaaas~as~~as~-===-=====ass===
'%www wwwwwgwwwwwwwwwwwwwwg 1www wwwww wwwwwwwwwwwwww wwwwww o I/Em5gE[)gmmmEEmsmmPmmmEmmm/Rmh~%g
~@=ma
~a~~~~~~~+++a~III~III III I III III~III li I i I I II~~~~~~~~I W WWW W g WAg WWWQWWQW gWP PQWQAWWW gWW gpss$m NREM fgggMg mgml m mmWml~gAWWAgWgWgmWWW AAWAgrXrgWgagrrXWWXWWWPgXAWA RWNRWWWWQRWWW WCWWWkliBWWQWWWWWWWWWWWWWRWWWgg WWggWWQWWWWWWWWWCWWWWWW WWWWWWWWWCWWWRgLWWWWWWWWQWWWWWWQWWWWWWWWggWWWWWm hii ii>aLm l3VI<=-=:--
$-HERE:===P=REElg ERR=-====hP~E I
="==:>i':=:=-==-==-s
~
~H LR Wki WWR AWWgWt WWW LWWWWWWWWWWWWXeXWWWWW WWQW)WW g WWW aWWWQWWWWWWWAAgrglr WWWW 1 W W WWWWNWWWWWWWWWWWWW WWWWW~I WAWW W WWWSWAWWWCWWWWWWWA AWWWQ gaea aealaaaaaagagama a a aagag aaaaaaaa eaaag gWW W ggW Wg gWWgWWWW WWWAAW WWW WWW I~I I I~I I I I I I I I I I I I I I II I I I~I I I I~~~~I I I I I~I~I I gism g~~m m~~==Il===a=m=-
~
CMWC ggWM mHH I gin MMR~~~I MMMM MgMM~III 5 a581hmsRmlmmm I I I I I I II I III I~K~NRMMN>>RQR g~g ERR mJKm NRR=HRRHSR
~
/gag KRl~gRQR~ggggg MMM MMM'MMMO RON MMM MMMM&MMMM MMM MMM MMMMM&'MMM MMMM MMMMMMMMMM QMMMMMMM g MMMM MMMMMMk MME MMMM MMMMMMMMMM QW MMM MMMMM MMMMMMMMMMLMMMMMMMM MMMMMMML~MMMM MMMMM%MMM LW MMMM MMM MMMMMMMMMMMMMMMM
~ s;:
~
wwwwwwwwgwwwww wwwwwwwwwww 1w wwwwwwwgw gwwww wwwwwwwwwwwwwwgwwwwwwwwwwwwww PAYEE)EEEEgPgEgggEmEmEEggmmEEgmkmgPg+EggPgEg C
II mme-=-===
h asm-ea
~
~
~
~
wwwwwwwwwww
~'wwwwwwww wwwww wwwwwwwwwwwg%wwwwww'g wwwww wwwwwwwwwww 'www'www wwww I
wwwww wwwwwwwwwwww'%g&wwwg wwwww wwwwwwwwwwwwgiCwwwwPii wwwwf J
PwwpgwwEwEPwwwwww&gEMEgg wwww i wwwwwwwwwwwwwwwwwwwww'%www wwwwwgwwwwwwwwwwwwwwg1www wwwww wwwwwwwwwwwwww wwwwww o I
/Em5gE[
)gmmmEEmsmmPmmmEmmm/Rmh~%g
~a
~~ ~
~~~~ ++ + a~
III
~ III III I III III
~ III liI i I I II
~
~
~ ~
~
~
~
~ I
 
WWWW W g WAg WWWQWWQW gWP PQWQAWWW gWW gpss m
NREM fgggMg mgml m
mmWml
~ gAWWAgWgWgmWWW AAWAgrXrgWgagrrXWWXWWWPgXAWA RWNRWWWWQRWWW WCWWWkliBWWQWWWWWWWWWWWWWRWWWgg WWggWWQWWWWWWWWWCWWWWWW WWWWWWWWWCWWWRgLWWWWWWWWQWWWWWWQWWWWWWWWggWWWWWm hii ii>aLm l3VI<=-=:--
="==:>i':=:=-==-==-s ~H LR Wki WWR AWWgWt WWW LWWWWWWWWWWWWXeXWWWWW WWQW)
WW g WWW aWWWQWWWWWWWAAgrglr WWWW 1
W W
WWWWNWWWWWWWWWWWWW WWWWW
~ I WAWW W
WWWSWAWWWCWWWWWWWA AWWWQ gaea aealaaaaaagagama a a aagag aaaaaaaa eaaag gWW W
ggW Wg gWWgWWWW WWWAAW WWW WWW I
~ I I I
~ I I I I I I I I I I I I I I II I I I
~ I I I I
~
~
~ ~
I I I
 
I I
~ I
~ I I
gism g~~m m~~
 
== Il===a=m=-
CMWC ggWM mHH I
gin MMR
~
~
~ I MMMM MgMM
~ III 5 a581hmsRmlmmm I
I I I I
I II I III I
~K~NRMMN>>
RQR g~g ERR mJKm NRR=HRRHSR
/gag KRl~gRQR~ggggg MMM MMM 'MMMO RON MMM MMMM&MMMMMMM MMM MMMMM&'MMM MMMM MMMMMMMMMMQMMMMMMMg MMMMMMMMMMkMME MMMM MMMMMMMMMM QWMMMMMMMM MMMMMMMMMMLMMMMMMMM MMMMMMML~
MMMMMMMMM%MMM LWMMMM MMM MMMMMMMMMMMMMMMM
@MM MMMMMMMMMMMMMMMMML%
@MM MMMMMMMMMMMMMMMMML%
~I I~I~I~I III~II~0~~~~~~~~I g&%&wg&%&H&g&m g&%%&ggg%%%gygmy amgmg a Ig AA W~WOW RjWW WWW CSWAAW W~WWW IIIIIII85IIRHI-=>Im=mgliKPim-=I:=Ii====my==-II WWWWWWWWA@WWW AWWW+WWWWg WAALLWWWWWAWWWWAAWg WWWWWWWCWWWWWAAWWWQWWWAR WAACWkLWW WWWAAAWWW WWQWWRW~WWRWWWWARWWAI I WWW I WA WWWWRiWQWWWWIIAWWW WWWWWW&~~~~~~~~~~~W WWW WNWWWWWR.'WWWWWW AWWW QWWWAWS WWWA R QgWWW WWWWAWWWWWWgOA AWW gW W WWW WWWWA WWWWWWkiW A WW WWWWW WWWWWRRWWWWWW
~ I I ~ I
%AWW WWAWW~I WWWWWA WWWWWWWWA WaaW&i WWW~WWWAW WWWWW WWWWWWWWWWWWAPQAWWlg iRIH~ACWAWWCCI AAWWWWS WWWWWWWWAWWWWWWW WWWWA WWW&&AWWWWQW W W W W W A W W W A 5 W W W W W W W W W W W A W W Q~AAWWWWQ WWAWWWWWWWWWWWWWWWWAWW AWWWAWWWLemmmmmwmmm HWWWWAWWWAWWWWWWWWWAAWWWWW AWWWSSWWWAAAWWWAAWWWW&WWAWWWAWWWWWWW WWWWA WWWWW AWWWWWWWWWWWWWAAWWWWWWWWWWWWWWWWWWWWWWWAWWWWW AWWWA WWWWAWWWWAAWWWWWWWWWWCWAWWWWWA WWWWA WWWWW AWWWAWWWAAWWWCAOWWWWWWWWWWAAWWWWWWWWWWAAWAWWW AWWWWWWWWAWWWWCAA'WWAWWWAWWAAWWWWWWWWWWAAWWWWW AWWWWWWWWWWWWWAAWWWRWWWAWWWWWWWWWWWWWWAAkf AWWW I~ll I Ill lil I ill Ill I ll~ili~I III'II I~~~y C'~~.I I I I I I~I~I~I aawaaaa aw awaa aaa awa wwaa wwaaa aawaawwa aaCg jlaaaa aaa aaaa a a i aa''':~g 5 5 g g I m j wwg ROC NN i a=Z-~Z-wi e===i=gaawaaawwaagawggawa awga gwawgaawagagawwaawwww m&w g)Pm)/N,.,/gRggggm55gwm~g(XRm8/g~gmgg l~~i h'h'=$5hliRNa==~~RE~a53h==-ih 3=-=l kl)'L3-5~iP=.:sl===.=='h====lssl~i5
~ I ~
%Ill==i:=amms.=g=<liamllh=-li=-.ll*==:==-::-==-='5 a Caaaa a5 a a wow Cw wwwww I I II I~Ii I I I I I I I I I I~I I I III~I I I I~II 940610 13:46 SPECIFICATl N 3 2.3 t t 3.0 MINXMUM RlTI AL P WER RATI CPR LIMIT FOR USE IN TECKVI AL'he MCPR limit for use in Technical Specification 3.2.3 shall be: Greater than or equal to the greater of the limits determined from Tables 3.la and 3.1b and Figures 3.1 and 3.2a through 3.lib.J Washington Nuclear-Unit 2-8-COLR 94-10, Revision 0 e 940614 l6:54 Table 3.1a WNP-2 Cycle 10 MCPR Operating Conditions Cycle Exposures s 4500 MWd/MTU SLMCPR=1.07 Condition Limit NM" How Depcndcnt Power Dependents SPC 8xS SPC 9x9 SPC 9x9 SVBA-96 GB11 LFA LFA I L24 1M+1.28 1A4 Figure 3.1 Fig.3.2a Fig.33a Fig.33a Fig.3.2a Nssu~Flow Dcpcndcnt Power Dependent'+
I III
1.26 1.24 135 1A8 Figure 3.1 Fig.3.4a Fig.3.5a Fig.3.5a Fig.3Aa RFF Full Power Inoperable Flow Dcpcndcnt Power Dcpcndcntro SLOP NSS How Dcpcndcnt Power Dependents SLO TSSS Full Power Flow Dcpcndcnt Power Dcpcndcn&#xc3;LO+NSS RFI'ull Power Inoperable Flow Dcpcndcnt Power Dependent'+
~ II
1.2S 1.27 1.43 1.51 Figure 3.1 Fig.3.10a Fig.3.11a Fig.3.11a Fig.3.10a 186 136 1.36 1.9S None Fig.3.2a Fig.3.3a Fig.3.3a Fig.3.2a 1.56 1.36 1.36 1.98 None Fig.3.4a Fig.3.5a Fig.3.5a Fig.3.4a 1.56 1.36 1.36 1.98 None Fig.3.10a Fig.3.11a Fig.3.11a Fig.3.10 Washington Nuclear-Unit 2-9-COLR 94-10, Revision 0 940614 16M Table 3.1b WNP-2 Cycle 10 MCPR, Operating Conditions Cyde Exposures)4500 MWd/MTU SLMCPR=1.07 SLMCPR=1.07 FFTR Condition Limit NSS'o SPC 8xg SPC 9x9 SPC 9x9 SVBA-96 GEII LFA LFA SPC gxg SPC 9x9SPC 9x9 SVBA-9 GBII LFA LFA 1.30 1.27 1.44'64 192 1.29 1.46 168 co Flow Dcpcndcnt Power Dependent+
~
Figure 3.1 Figure 3.1 Fig.3.2b Fig.3.3b Fig.3.3b Fig.3.2b Fig.3.6 Fig.3.7 Fig.3.7 Fig.3.6 1.33 1.30 1.49 1.60 1.35 1.32 1.51 1.63 NSS"'low Dcpcndcnt Power Dependent Figure 3.1 Figure 3.1 Fig.3Ab Fig.3.5b Fig.3.5b Fig.3.4b Fig.3.8 Fig.3.9 Fig.3.9 Fig.3.8 RFI'ull Power inoperable Flow Dcpcndent Power Dcpcndcn&SLO NSS 1.38 1.35 1.61 1.68 Figure 3.1 Fig.3.10b Fig.3.11b Fig.3.11b Fig.3.10b Not Analyzed 1.56 1.36 1.36 1.98 1.56 1.36 1.36 1.98 Flow Dcpendcnt Power Dcpcndcn&#xc3;None Fig.3.2b Fig.33b Fig.3.3b Fig.3.2b None Fig.3.6 Fig.3.7 Fig.3.7 Fig.3.6 SLO TSSS Full Power 186 196 1.36 1.98 186 1.36 136 1.98 Flow Dcpendcnt Power Dependent+
0
SLO+NSS None Fig.3.4b Fig.3.5b Fig.3.5b None Fig.3.4b Fig.3.8 Fig.3.9 Fig.3.9 Fig.3.8 RFF Full Power inoperable Flow Dcpcndcnt Power Dependent'+
~
1.56 1.36 1.36 None 1.98 I Fig.3.10b Fig.3.11b Fig.3.11b Fig.3.10b Not Analyzed Washington Nuclear-Unit 2-10-COLR 94-10, Revision 0  
~
'NoM for Tables 3.1a and 3.lb Note 1: The scram insertion times must meet the requirements of Technical Specification 3.1.3.4.The NSS MCPR values are based on the SPC transient analysis performed using the control rod insertion times shown below (defined as normal scram speed: NSS).In the event that Surveillance 4.1.3.2 shows these scram insertion times have been exceeded, the MCPR limit shaQ be determined from the applicable Technical Specification Scram Speed (TSSS)MCPR limits in Tables 3.la and b.Position Inserted From Fully Withdrawn Notch 45 Notch 39 Notch 25 Notch 5 Slowest measured average control rod insertion times qmcified notches for all operable control rods for each grou of four contxol rods arranged in a two-by-two array (seconds)0.380 0.720 1.600 2.950 Note 2: For Single Loop Operation (SLO), the SLMCPR increases by 0.01.The increase is included in the MCPR limits for SLO.Note 3: For the noted full power MCPR limits, the control rod withdrawal error (CRWE)event is limiting.The turbine trip without bypass{TI'NB)event is limiting for the remaining full power limits.CRWE analysis was performed with a nominal rod block monitor (RBM)setpoint of 1.06.Use of the nominal setpoint is in accordance with the methodology described in Reference 5.2.6, consistent with approved industry practice.Note 4: Power dependent MCPR limits are provided for core thermal powers greater than or equal to 25%of rated power at all core flows.The power dependent MCPR limits for core thermal powers less than or equal to 30%of rated power are subdivided by core flow.Limits are provided for core flows greater than 50%of rated flow and less than or equal to 50%of rated flow, reslxctively.
~
A step change in the power dependent MCPR limits occurs at 30%of rated power because direct scram on turbine throttle valve closure is automatically bypassed per Technical Specification 3.3.1.Washington Nuclear-Unit 2 COLR 94-10, Revision 0  
~
'XX++~+~++++~+~~lkkkkkkkkkXWXkkkkkkkkkkk k~aa IWWWWWWWWR
~
'lkk 5%W WWWWWWWWQ"~~~~~'WQW kkkkkkkki5
~
,...k WW&#xc3;kkkkkkkkS k WWLkkkkkkkkkkkkkkkkkkkkkkS
~
~k WLlkWWWWRWWWWWk Wkkkkkkkki Rk WWLOWWWWQWWWWROWWWWWWWWWO
~ I
, , Rk~EASEL)ERRRIIRSRLSL55$
 
55551''R , kkkR&#xc3;kkkkkkkkkkkkkkkkkkk5
g&%&wg&%&H&g&m g&% %&ggg gygmy amgmg a Ig AAW
,.Rk WWWWWRg'%WWWWWWNWWWWWWWWWWA
~WOW RjWW WWW CSWAAW W~WWW IIIIIII85IIRHI-=>Im=mgliKPim-=I:=Ii====my==-II WWWWWWWWA@WWW AWWW+WWWWg WAALLWWWWWAWWWWAAWg WWWWWWWCWWWWWAAWWWQWWWARWAACWkLWW WWWAAAWWW WWQWWRW~WWRWWWWARWWAIIWWW IWAWWWWRiWQWWWWIIAWWW WWWWWW&~~~~~~~~~~~W WWW WNWWWWWR.'WWWWWW AWWW QWWWAWS WWWA R
''W WWWW WWWWW555i5NWWWWWWWWS WWWWRWRPQkkkkRQWWWWWWWWWQ W kkk WWWWAVOWWWWWWWWWWWWWQ
QgWWW WWWWAWWWWWWgOA AWW gW W
'''W~WWW kkkkkkkkh8SWWWWWWWWWWShaaaaaarrra W k WW~kkkkkkkkkli~%kkkkkkkkkkkkkkkkk Wkkkk Wkkk WWWWWWWWWWWSQHWkkkkkkkkkkkkkkkkkkk WWWW WWWWWWWWWWWWWWRR50kkkkkkkkkkkkkkkk WSWWWWWWWWWWWWWWWWWWWWWNHQWWkkkkkkkkkkk SWWWSSWWWWSWWWWWWWWWkkkkkkh~~%kkkkkkkkkkk Wkkkkkkkkkkkkkkkkkkkkkkkkkkkkh&#xc3;QWWWAWWWW WWWWW WWWWWkkkkkkkkkkkkkkkkkWWWARSgkkkkk SWWWS kkkWWWWWWWWWWSkkkkkkkkkkkkkkkPBOWW WWWWW WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWkk&#xc3;%
WWW WWWWAWWWWWWkiW AWW WWWWW WWWWWRRWWWWWW%
~Wkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkh 3.0 2.8 2.6 Power Core Flow>50%Power a 30%SPC 8x8 GE11 LFA SVEA-96 LFA Two Loop and Single Loop Operation'E 2.4 0).~2.2 o 2.0 K 0 g 1.8 26%30%2.60 2AO 2.68 2.68 Core Flow c 50%Power c 30%SPC 8x8 Power GE11 LFA SVEA-96 LFA 26%.2.10 2.28 30%2.00 2.18 All Core Flows Power)30%30%1.45.1.63 100%1.21 1.39 SPC 8x8 Power GE11 LFA SVEA-96 LFA 1.6 SVEA-96 LFA 1.4 1.2 20%SPC 8x8 GE11 LFA 30%40%50%60%70%80%Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power'SS, RPT Operable SPC 8x8, GE11 LFA, SVEA-96 LFA Cycle Exposures x 4500 MWd/MT 90%.100%110%Figure 3.2a 3.0 2.8 Core Flow)50%Power s 30%Two Loop and Single Loop Operation 2.6 Power 25%30%SPC SxS GE11 LFA 2.50 2.40 SVEA-96 LFA 2.74 2.64 All Core Flows Power>30%'E 2.4 0)-22 o 2.0 K CL g 1.8 Power 25%30%-SPC SxS GE11 LFA 2.10 2.00 SVEA-96 LFA 2.34 2.24 Core Row a 50%Power s 30%Power 30%100%SPC 8x8 GE11 LFA 1A5 1.30 SVEA-96 LFA SVEA-96 LFA 1.69 1.64 1.6 1.4 SPC SxS GE11 LFA 1.2 20%30%40%50%60%70%80%Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, RPT Operable SPC Sx8, GE11 LFA, SVEA-96 LFA Cycle Exposures)4500 MWd/MT S0%100%110%Figure 3.2b wwCCK Hmam-=Bi===gHHQ wHw'.0 WWW&~C~~Ca MWMWW mi5 gR~gWW WWW WWW WWW WgW WMW WMW HaB Ei~i g-a=g R~mm=-8 5=am~I I g 1 I'~~~~~~~~~~~~~~~~~~~~~
AWW WWAWW
~~~~W4~~~~~~~~~~~~~MMMM%Cs~~~8~~~~~I III~~:: I I~I I I I'i~~~~W+~~~/w w MML w w w w w w e w N w w w w g~I I~~,.gag,===5':=Fl~5==~~~P=I wag'R~H.i I I'.I I I I 8~~Igg~~+~~~
~
~a+~~~~~~~hLJ~~~~~IWg~~~~~Sah~P%I~~~~~~~~~~~~
I WWWWWAWWWWWWWWAWaaW&i WWW
Q~~~~e~~~~~~~~PaL~~~~~~~~~
~
WWM WWWWWWa~WWWWMWWWh&WWWMMMM H~~~~~~~~~+~If'~~~~~~~~~~~
WWWAW WWWWW WWWWWWWWWWWWAPQAWWlg iRIH
MWM WWMMW WMMMWM&aa M~WMMWWWMMM WWWW WWM WWWW'WWWWWWMMMMWa
~
~W~WWWMMM~e I I'I~I'~I'~~II', I~I~~I I I I~~~.: I I I I  
ACWAWWCCI AAWWWWS WWWWWWWWAWWWWWWWWWWWAWWW&&
~W~Wlg ate I'I'>>~~~WWW~os~s: WWWg WWWg WWR~~~~~~~~~~~~~~HW gWWW WWWW WWW I>>I'>>~I I~I'>>g IL"~~~~~~WWWMWI I III=ggII I-I=CORK%I>>MWWWWM W..8 xjgg I=-~+WWWWHaee++14 WWWWW WWWWWWWWWWWWWWWWWWXMWWWW WWWWWWWWaa
AWWWWQW WWWWWAWWWA5WWWWWWWWWWWAWWQ~
~+WWWWWWWWWWWWWWWWWWWWWWWWWWWW a~~QW W W W W W M W W W W W W W W W W W W W WWWWWWMa>>MW+WWWWWWWWWWWWWWW WWC~~~WWWWWWWWWWWWW~>>
AAWWWWQ WWAWWWWWWWWWWWWWWWWAWW AWWWAWWWLemmmmmwmmm HWWWWAWWWAWWWWWWWWWAAWWWWW AWWWSSWWWAAAWWWAAWWWW&WWAWWWAWWWWWWW WWWWAWWWWW AWWWWWWWWWWWWWAAWWWWWWWWWWWWWWWWWWWWWWWAWWWWW AWWWAWWWWAWWWWAAWWWWWWWWWWCWAWWWWWA WWWWAWWWWW AWWWAWWWAAWWWCAOWWWWWWWWWWAAWWWWWWWWWWAAWAWWW AWWWWWWWWAWWWWCAA'WWAWWWAWWAAWWWWWWWWWWAAWWWWW AWWWWWWWWWWWWWAAWWWRWWWAWWWWWWWWWWWWWWAAkf AWWW I
WW&WWWWWCSWWWWWWW&Pe~
~ ll I Ill lil I ill Ill I ll~
+Wgg WWWWW Wg WWWWWWWWWWWWWWWWWWWWWWWW~
ili
>>y>>~I'>>~>>I I'~)~I~~~I~II:S~~~~I I 3.0 2.8 2.6 Power Core Flow)50%Power a 30%SPC SxS GE11 LFA SVEA;96 LFA Two Loop and Single Loop Operation 25%2.50 2.72'E 2.4 Ol 2 2 I L Q o 2.0 K O.g 1.8-1.6 30%Power 25%30%2.40 2.62 Core Flow a 50%Power a 30%2.10 2.00 2.32 2.22 SPC SxS GE11 LFA SVEA-96 LFA Power.30%100%SPC 8x8 GE11 LFA 1.45 1.26 SVEA-96 LFA 1.67 1.48 SVEA-96 LFA All Core Flows Power>30%1.4 1.2 SNP SxS GE11 LFA 20%30%40%50%6Q%7Q%8Q%9Q%'PQ%1 1P%Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power TSSS, RPT Operable SPC SxS, GE11 LFA, SVEA-96 LFA Cycle Exposures w 4500 MWdIMT Figure 3.4a 3.0 2.8 Core Flow>609o Power a 309o Two Loop and Single Loop Operation 2.6 Power SPC SxS GE11 LFA SVEA-96 LFA I OO I'E 2.4 0)~2.2 o 2.0 K Q.g 1.8 26%30%Power 26%30%2.50 2.40 2.77 2.67 Core Flow s 609o Power a 309o 2.10 2.00 2.37 2.27 SPC SxS GE11 LFA SVEA-96 LFA Power 30%100%SPC SxS GE11 LFA 1A6 1.33 SVEA-96 LFA 1.72 1.60 SVEA-96 LFA All Core Flows Power>30%1.6 A 0 I C)Wo 0 C)1.4 1.2 20%SPC Sx8 GE11 LFA 30%40%50%60%70%80%Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power TSSS, RPT Operable SPC SxS, GE11 LFA, SVEA-96 LFA Cycle Exposures>4600 MWd/IVIT Figure 3Ab 90%100%110%
~ I III 'II I
leg ggRgm m g>>R>>%5~RSR~~~I I I~~~I:~i~~'~i'i i's~~8~~~~a g~~~~~~~K Lese~~~~~~~~~~~~~~~~~~//gal~;Rii=aiii==iiiii>g
~
~~~i'.~~~I wwgwm e MM W MM W M W MM W M W M M M M W W WW MM I I WMWWWWMMMMWMMMMWWWMWWMM
~
~
y C '
~
~
. I
 
I I
I I I
~ I
~ I
~ I aawaaaa aw awaa aaa awa wwaa wwaaa aawaawwa aaCg jlaaaa aaa aaaa a a i aa
~
g 5 5 g g I mj wwg ROC NN i a
=
Z
- ~Z-wi e=== i=
gaawaaawwaagawggawa awga gwawgaawagagawwaawwww m&w g
)Pm)/N,.,
/gRggggm55gwm~g(XRm8/g~gmgg l~~i h
'h'=$ 5hliRNa==~~RE~a53h==-ih 3=-=l kl)
'L3-5~iP=.:sl===.=='h====lssl~i5
%Ill==i:=amms.=g=<liamllh=-li=-.ll*==:==-::-==-='5 a
Caaaa a5 a a wow Cw wwwww I
I II I
~ Ii I I I I I I I I I I
~ I I I III
~ I I I I
~ II
 
940610 13:46 SPECIFICATl N 3 2.3t t
3.0 MINXMUM RlTI ALP WER RATI CPR LIMITFOR USE IN TECKVI AL'he MCPR limitfor use in Technical Specification 3.2.3 shall be:
Greater than or equal to the greater of the limits determined from Tables 3. la and 3.1b and Figures 3.1 and 3.2a through 3.lib.
J Washington Nuclear-Unit 2 COLR 94-10, Revision 0
 
e 940614 l6:54 Table 3.1a WNP-2 Cycle 10 MCPR Operating Conditions Cycle Exposures s 4500 MWd/MTU SLMCPR = 1.07 Condition Limit NM" How Depcndcnt Power Dependents SPC 8xS SPC 9x9 SPC 9x9 SVBA-96 GB11 LFA LFA I
L24 1M+
1.28 1A4 Figure 3.1 Fig. 3.2a Fig. 33a Fig. 33a Fig. 3.2a Nssu~
Flow Dcpcndcnt Power Dependent'+
1.26 1.24 135 1A8 Figure 3.1 Fig. 3.4a Fig. 3.5a Fig. 3.5a Fig. 3Aa RFF Full Power Inoperable Flow Dcpcndcnt Power Dcpcndcntro SLOP NSS How Dcpcndcnt Power Dependents SLO TSSS Full Power Flow Dcpcndcnt Power Dcpcndcn&#xc3; LO+ NSS RFI'ull Power Inoperable Flow Dcpcndcnt Power Dependent'+
1.2S 1.27 1.43 1.51 Figure 3.1 Fig. 3.10a Fig. 3.11a Fig. 3.11a Fig. 3.10a 186 136 1.36 1.9S None Fig. 3.2a Fig. 3.3a Fig. 3.3a Fig. 3.2a 1.56 1.36 1.36 1.98 None Fig. 3.4a Fig. 3.5a Fig. 3.5a Fig. 3.4a 1.56 1.36 1.36 1.98 None Fig. 3.10a Fig. 3.11a Fig. 3.11a Fig. 3.10 Washington Nuclear-Unit 2 COLR 94-10, Revision 0
 
940614 16M Table 3.1b WNP-2 Cycle 10 MCPR, Operating Conditions Cyde Exposures ) 4500 MWd/MTU SLMCPR = 1.07 SLMCPR = 1.07 FFTR Condition Limit NSS'o SPC 8xg SPC 9x9 SPC 9x9 SVBA-96 GEII LFA LFA SPC gxg SPC 9x9SPC 9x9 SVBA-9 GBII LFA LFA 1.30 1.27 1.44
'64 192 1.29 1.46 168 co Flow Dcpcndcnt Power Dependent+
Figure 3.1 Figure 3.1 Fig. 3.2b Fig. 3.3b Fig. 3.3b Fig. 3.2b Fig. 3.6 Fig. 3.7 Fig. 3.7 Fig. 3.6 1.33 1.30 1.49 1.60 1.35 1.32 1.51 1.63 NSS"'low Dcpcndcnt Power Dependent Figure 3.1 Figure 3.1 Fig. 3Ab Fig. 3.5b Fig. 3.5b Fig. 3.4b Fig. 3.8 Fig. 3.9 Fig. 3.9 Fig. 3.8 RFI'ullPower inoperable Flow Dcpcndent Power Dcpcndcn&
SLO NSS 1.38 1.35 1.61 1.68 Figure 3.1 Fig. 3.10b Fig. 3.11b Fig. 3.11b Fig. 3.10b Not Analyzed 1.56 1.36 1.36 1.98 1.56 1.36 1.36 1.98 Flow Dcpendcnt Power Dcpcndcn&#xc3; None Fig. 3.2b Fig. 33b Fig. 3.3b Fig. 3.2b None Fig. 3.6 Fig. 3.7 Fig. 3.7 Fig. 3.6 SLO TSSS Full Power 186 196 1.36 1.98 186 1.36 136 1.98 Flow Dcpendcnt Power Dependent+
SLO+ NSS None Fig. 3.4b Fig. 3.5b Fig. 3.5b None Fig. 3.4b Fig. 3.8 Fig. 3.9 Fig. 3.9 Fig. 3.8 RFF Full Power inoperable Flow Dcpcndcnt Power Dependent'+
1.56 1.36 1.36 None 1.98 I
Fig. 3.10b Fig. 3.11b Fig. 3.11b Fig. 3.10b Not Analyzed Washington Nuclear-Unit 2 COLR 94-10, Revision 0
 
NoMfor Tables 3.1a and 3.lb Note 1:
The scram insertion times must meet the requirements of Technical Specification 3.1.3.4.
The NSS MCPR values are based on the SPC transient analysis performed using the control rod insertion times shown below (defined as normal scram speed: NSS).
In the event that Surveillance 4.1.3.2 shows these scram insertion times have been exceeded, the MCPR limit shaQ be determined from the applicable Technical Specification Scram Speed (TSSS)
MCPR limits in Tables 3. la and b.
Position Inserted From Fully Withdrawn Notch 45 Notch 39 Notch 25 Notch 5 Slowest measured average control rod insertion times qmcified notches for all operable control rods for each grou of four contxol rods arranged in a two-by-two array (seconds) 0.380 0.720 1.600 2.950 Note 2:
For Single Loop Operation (SLO), the SLMCPR increases by 0.01.
The increase is included in the MCPR limits for SLO.
Note 3:
For the noted full power MCPR limits, the control rod withdrawal error (CRWE) event is limiting. The turbine trip without bypass {TI'NB)event is limiting for the remaining fullpower limits. CRWE analysis was performed with a nominal rod block monitor (RBM) setpoint of 1.06. Use ofthe nominal setpoint is in accordance with the methodology described in Reference 5.2.6, consistent with approved industry practice.
Note 4:
Power dependent MCPR limits are provided for core thermal powers greater than or equal to 25% of rated power at all core flows. The power dependent MCPR limits for core thermal powers less than or equal to 30% of rated power are subdivided by core flow. Limits are provided for core flows greater than 50% of rated flow and less than or equal to 50% of rated flow, reslxctively.
A step change in the power dependent MCPR limits occurs at 30% of rated power because direct scram on turbine throttle valve closure is automatically bypassed per Technical Specification 3.3.1.
Washington Nuclear-Unit 2 COLR 94-10, Revision 0
 
'XX ++~+~++++~+~~lkkkkkkkkkXWXkkkkkkkkkkk k~aa IWWWWWWWWR
'lkk 5%W WWWWWWWWQ
~
~
~
~
~
WQW kkkkkkkki5 k
WW&#xc3; kkkkkkkkS k
WWLkkkkkkkkkkkkkkkkkkkkkkS
~k WLlkWWWWRWWWWWkWkkkkkkkki Rk WWLOWWWWQWWWWROWWWWWWWWWO Rk
~EASEL)ERRRIIRSRLSL55$55551
'R
, kkkR&#xc3;kkkkkkkkkkkkkkkkkkk5 Rk WWWWWRg'%WWWWWWNWWWWWWWWWWA W
WWWW WWWWW555i5NWWWWWWWWS WWWWRWRPQkkkkRQWWWWWWWWWQ W
kkk WWWWAVOWWWWWWWWWWWWWQ W
~WWW kkkkkkkkh8SWWWWWWWWWWShaaaaaarrra W
kWW~
kkkkkkkkkli~%kkkkkkkkkkkkkkkkkWkkkk Wkkk WWWWWWWWWWWSQHWkkkkkkkkkkkkkkkkkkk WWWW WWWWWWWWWWWWWWRR50kkkkkkkkkkkkkkkk WSWWWWWWWWWWWWWWWWWWWWWNHQWWkkkkkkkkkkk SWWWSSWWWWSWWWWWWWWWkkkkkkh~~%kkkkkkkkkkk Wkkkkkkkkkkkkkkkkkkkkkkkkkkkkh&#xc3;QWWWAWWWW WWWWW WWWWWkkkkkkkkkkkkkkkkkWWWARSgkkkkk SWWWS kkkWWWWWWWWWWSkkkkkkkkkkkkkkkPBOWW WWWWW WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWkk&#xc3;%
~Wkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkh
 
3.0 2.8 2.6 Power Core Flow > 50%
Power a 30%
SPC 8x8 GE11 LFA SVEA-96 LFA Two Loop and Single Loop Operation
'E 2.4 0)
.~ 2.2 o 2.0 K
0 g 1.8 26%
30%
2.60 2AO 2.68 2.68 Core Flow c 50%
Power c 30%
SPC 8x8 Power GE11 LFA SVEA-96 LFA 26%
2.10 2.28 30%
2.00 2.18 All Core Flows Power ) 30%
30%
1.45
.1.63 100%
1.21 1.39 SPC 8x8 Power GE11 LFA SVEA-96 LFA 1.6 SVEA-96 LFA 1.4 1.2 20%
SPC 8x8 GE11 LFA 30%
40%
50%
60%
70%
80%
Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power
'SS, RPT Operable SPC 8x8, GE11 LFA, SVEA-96 LFA Cycle Exposures x 4500 MWd/MT 90%
100%
110%
Figure 3.2a
 
3.0 2.8 Core Flow ) 50%
Power s 30%
Two Loop and Single Loop Operation 2.6 Power 25%
30%
SPC SxS GE11 LFA 2.50 2.40 SVEA-96 LFA 2.74 2.64 All Core Flows Power > 30%
'E 2.4 0)-22 o 2.0 K
CL g 1.8 Power 25%
30%-
SPC SxS GE11 LFA 2.10 2.00 SVEA-96 LFA 2.34 2.24 Core Row a 50%
Power s 30%
Power 30%
100%
SPC 8x8 GE11 LFA 1A5 1.30 SVEA-96 LFA SVEA-96 LFA 1.69 1.64 1.6 1.4 SPC SxS GE11 LFA 1.2 20%
30%
40%
50%
60%
70%
80%
Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, RPT Operable SPC Sx8, GE11 LFA, SVEA-96 LFA Cycle Exposures ) 4500 MWd/MT S0%
100%
110%
Figure 3.2b
 
wwCCK Hmam
-=Bi===
gHHQ wHw'.0 WWW&~
C~~Ca MWMWW mi5 gR~
gWW WWW WWW WWW WgW WMW WMW HaB Ei~i g-a=g R~mm=-
8 5 =am
~
I I
g 1
I'
~~~~~~~~~~~~~~~~~~~~~
~~~~ W4~~~~~~~~~~~~~
MMMM%
Cs~~~
8
~
~
~
~
~
I III ~
~ ::
I I
~ I I
I I 'i
~~~~W
+~~~/
wwMMLwwwwwwe wNwwwwg~
I I
~
~
. gag,
 
===5
':=
Fl~
5==
~
~
~
P=
I wag R~H.
i I
I '.
I I I I 8 ~~Igg~~+~~~
~a
+~ ~~~
~~~hLJ
~~~~
~IWg~ ~~~~
Sah~P%I~~~~~~~~~~~~
Q~~~~e ~~~~~~~~
PaL~~~~~~~~~
WWM WWWWWWa ~WWWWMWWWh&WWWMMMM H~~~~ ~~~~~ +~If'~~~~~~~~~~~
MWM WWMMW WMMMWM&aa M~WMMWWWMMM WWWW WWM WWWW'WWWWWWMMMMWa~W~WWWMMM
~e I
I 'I
~ I'
~ I '
~ ~
II',
I
~
I
~
~ I I I
I
~
~
~.: I I
I I
 
~ W~Wlg ate I '
I '>>
~
~
~
WWW
~ os
~ s:
WWWg WWWg WWR~~~~~~~~~~~~~~HW gWWW WWWW WWW I
I '>>
~ I I
~
I '>>
g IL "
~
~
~
~
~
~
WWWMWII III=
ggII I-I=
CORK%
I MWWWWM W..
8 xjgg I=-
~+
WWWWHaee
++14 WWWWW WWWWWWWWWWWWWWWWWWXMWWWW WWWWWWWWaa ~ +WWWWWWWWWWWWWWWWWWWWWWWWWWWW a
~~ QWWWWWWMWWWWWWWWWWWWW WWWWWWMa>>MW+WWWWWWWWWWWWWWW WWC
~
~
~
WWWWWWWWWWWWW~>>
WW&WWWWWCSWWWWWWW&Pe~ +WggWWWWW WgWWWWWWWWWWWWWWWWWWWWWWWW~
y>>
~ I '>>
~
I I '
~
)
~
I
~
~
~ I
~ II:S
~
~
~
~
I I
 
3.0 2.8 2.6 Power Core Flow ) 50%
Power a 30%
SPC SxS GE11 LFA SVEA;96 LFA Two Loop and Single Loop Operation 25%
2.50 2.72
'E 2.4 Ol 2 2 I
LQ o 2.0 K
O.
g 1.8
-1.6 30%
Power 25%
30%
2.40 2.62 Core Flow a 50%
Power a 30%
2.10 2.00 2.32 2.22 SPC SxS GE11 LFA SVEA-96 LFA Power.
30%
100%
SPC 8x8 GE11 LFA 1.45 1.26 SVEA-96 LFA 1.67 1.48 SVEA-96 LFA All Core Flows Power > 30%
1.4 1.2 SNP SxS GE11 LFA 20%
30%
40%
50%
6Q%
7Q%
8Q%
9Q% 'PQ%
1 1P%
Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power TSSS, RPT Operable SPC SxS, GE11 LFA, SVEA-96 LFA Cycle Exposures w 4500 MWdIMT Figure 3.4a
 
3.0 2.8 Core Flow > 609o Power a 309o Two Loop and Single Loop Operation 2.6 Power SPC SxS GE11 LFA SVEA-96 LFA I
OOI
'E 2.4 0)~ 2.2 o 2.0 K
Q.
g 1.8 26%
30%
Power 26%
30%
2.50 2.40 2.77 2.67 Core Flow s 609o Power a 309o 2.10 2.00 2.37 2.27 SPC SxS GE11 LFA SVEA-96 LFA Power 30%
100%
SPC SxS GE11 LFA 1A6 1.33 SVEA-96 LFA 1.72 1.60 SVEA-96 LFA All Core Flows Power > 30%
1.6 A0 I
C)
Wo0 C) 1.4 1.2 20%
SPC Sx8 GE11 LFA 30%
40%
50%
60%
70%
80%
Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power TSSS, RPT Operable SPC SxS, GE11 LFA, SVEA-96 LFA Cycle Exposures > 4600 MWd/IVIT Figure 3Ab 90%
100%
110%
 
leg ggRgm m g>>
R>>
%5
~RSR
~
~
~ I I
I
~
~
~ I:
~
i
~
~
~ i'i i's
~~8~~~~
a g~
~~~~~~KLese~~~~~~~~~~~~~~~
~
~
~
//gal~;Rii=aiii==iiiii>g
~
~
~ i '.
~
~
~
I wwgwm e
MMWMMWMWMMWMWMMMMWWWWMM I I WMWWWWMMMMWMMMMWWWMWWMM
~~~~IH5~~~~~~~~~~~~~~~~~~~~+~~~~
~~~~IH5~~~~~~~~~~~~~~~~~~~~+~~~~
~H55%CpR KH~~HR~~~a5~~~~~~~~~~~~~~~~~~~~
~H55%
~I'>>0 g~I~g~I I'I~~I~~I: I~I~~.II~~~~I I  
CpR KH~~HR~~~a5~~~~~~~~~~~~~~~~~~~~
~~~~I~~;:~W W>>>>>>WWWWWWWMWWWWWW I'i~~as I I s I W>>WWWW WWWW WW WWWW WWWWWWW W>>>>WW>>W BR WW tm>>WWWWW>>WWWWWW>>>>>>>>WE WWWWWWWWWWWWWWWWWWWW lW I I W>>>>@ac>>>>m IW Ca>>WW OWNED~>>>>m~I;~IW l~p Im~s~I'IW w~W>>>>>>M I I'l>>W>>>>~~8 I Q Ig>>>>>>>>W IWW WW5 R.-l>>>>WW l>>W>>W Wgg>>Wgg>>l>>WWWW>>W~WW l>>WWW>>>>W~WWW I I'.I~'I I BI IWWWW~WWWQWWWW>>W>>>>W>>WW>>WW I'I I I I~>>>>~>>WWWWWWWW>>
~ I'>>
t>>W~~~~IW>>g>>W>>RW>>WW~WW>>W~M>>WWWWWQSIaaaja5~~~~~~>>>>WWW>>>>>>WW Wg>>W'WWW>>>>WWWWW>>>>g>>WW>>>>g>>>>WWWW>>WW>>aassaaLLLLRX:IW>>>>WW
0 g
~+%>>taaaaw>>>>>>>>>>ww>>>>H>>wwwww>>w>>>>w>>ww>>wwww W>>>>>>WW>>>>~+iWWWWWWWWWWWWWWWW>>WWWWWWWWWWWW WWW>>~WWW>>he%>>~
~
WWW>>WW>>erne WQ>>~~~>>W>>W>>WWWWWM~>>
I~ g
+WWW>>>>WWWW WWWW WWWW WWWWWWWWWWWWWWWWWWW WWWQQPW>>WW s~I'~'s~f~~~~I Is=I s~'Is..~~~~I I 3.0 2.8 Core Flow>50%Power s 30%Two Loop and Single Loop Operation Power SPC 8x8, GE11 LFA SVEA-96 LFA 2.6 25%2.50 2.76'E 2.4 0)-22 o 2.0 K 0 g 1.8 30%Power 25%30%2.40 2.66 SPC 8x8, GE11 LFA 2.10 2.00 SVEA-96 LFA 2.36 2.26 Core Flow s 50%Power~30%All Core Flows Power)30%SVEA-96 LFA 1.80 100%1.32 1.58 SVEA-96 LFA SPC 8x8, Power GE11 LFA 30%1.6 ,1.4 1.2 20%30%SPC 8x8 GE11 LFA 40%50%60%70%80.%Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, RPT Operable SPC Bx8, GE11 LFA, SYEA-96 LFA FFTR Operation Figure 3.6 90%100%1 10%
~
gfs~hN my=a 5:=RR.~mR Rgga I~I~I I: I~~I I I', RMWWWMMWM~WWMWWWWW WMWWMWMM I~~I I WMWWWMWW WW WWWWW~~~~M W M g W MMM g MMMM W g W MM W MMMMM WWW WWWW WMWWW WWWWWMWMW MWMWgMMWWMWWWWWWWW&W&WW&
I I '
MWWMMMM5'M W MMMMM8 WRIWWMWWWW&MMWkg WWWWCMW'.I', WMWWWMM I'I', WWWWWMW I'MWWMWWW~~~~I RmmRR~~~~~~WWMWWWW I I M WMMMMM MWMMMMMS W W M W W MMMN MMMM W~MMM M MMMM W I'e I I M W M W R MMM W MMMM W HMMMMMMMM WWW M W W M W MMM W M W W MM M W M M W W W MM W sae~~~~~~~m
I
~~~WMWWWMWMWWMMMMWWMMMWMMMW L.f ggWWggg W gag gWWWWWQWWWg WWWWWWWWg W W W M~~<%M W M W W MM W W W MMM W W W M W Ss~IM W MMM WWWWWWWa+WWWMMMWWMWMWWWWWWWMWWW W MM W MMM W MMMM W~>>~ISED MM W MMMMMMMMMM MMMM W MM W MMMM MMM W Mam~+%55/MMMM W M MMMM MMMWMWMMMMMWMWMMMMWMMMMWMhaa
~
~+If MMMMM MWWgHWWWQWMWWCgMWWCWMWWWWMWMWMWWWm
~
&MMMM WMM WWW MMMM+MWMWMMMMWMMWMWMWWWMMMMMW MMMM StSMWggMMM MMWWWWMMMWMMMMMWWMMWMWMMM WWWMHWMWMMMWWMWWMWMWMMMMWWMMMWMMMWMMMMMM
I
~0's~I'a~g~~~'e~~~I.
~
3.0 2.8 Core Flow)50%Power a 30%Two Loop and Single Loop Operation 2.6 Power 25%30%SPC 8x8, GE11 LFA 2.50 2.40 SVEA-96 LFA 2.78 2.68 All Core Flows Power>30%'E 2.4 Ol~22 L rD o 2.0 K 0 g 1.8 Power 25%30%SPC 8x8, GE11 LFA 2.10 2.00 SVEA-96 LFA 2.38 2.28 Core Flow c 50%Power c 30%Power 30%100%1.64 1.35 1.82 1.63 SVEA-96 LFA SPC Sx8, GE11 LFA SVEA-96 LFA.1.6 1.4 SPC SxS GE11 LFA 1.2 20%30%40%50%60%70%80%Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power TSSS, RPT Operable SPC SxS, GE11 LFA, SVEA-96 LFA FFTR Operation Figure 3.8 90%100%110%  
~ I:
~~~~~~~>>85P5M~~>>~~~
I
~~~I'I I'.&#x17d;+~~~+~~~I~~I~E~:~~~~~~s~>>>>>>>>LIII~~~~~~~~~~~~~+H>>
~ I
I>>>>W>>>>>>>>I>>W>>>>WWW>>>>WMW>>
~
I>>>>>>>>>>>>5 I~I g>>>>>>>>>>>>Q WWWWWMWWW>>>>>>WAN>>M>>>>>>W
~. II
~~>>~~~>>~M&#xc3;6588~M~I I''.~~~~~~>>>>>>M>>>>>>WW>>W>>(~>>>>>>>>>>>>I c>>H>>>>w>>>>WW>>>>>>>>W>>>>>>>>W>>>>>>>>>>>>>>M I I II II>>~~~I+&>>>>>>>>>>>>>>>>>>
~
~~~555>>>>mw Cw>>C>>>>>>>>>>>>>>>>CC>>>>>>>>>>>>>>>>>>
~
~
~
I I
 
~
~
~
~ I
~ ~ ;:
~
W W>>>>>>WWWWWWWMWWWWWW I'i
~
~ as I
I s
I W>>
WWWW WWWW WW WWWW WWWWWWW W>>>>WW>>W BR WW tm>>WWWWW>>WWWWWW>>>>>>>>WE WWWWWWWWWWWWWWWWWWWW lW I
I W>>>>@ac>>>>m IW Ca>>WW OWNED~>>>>m
~
I;
~
IW l~
p Im
~
s
~
I '
IW w~
W>>>>>>M I
I' l>>W>>>>
~
~
8 I Q
Ig>>>>>>>>W IWWWW5 R.-
l>>>>WW l>>W>>W Wgg>>
Wgg>>
l>>WWWW>>W~
WW l>>WWW>>>>W~
WWW I I '.
I
~ '
I I
BI IWWWW~WWWQWWWW>>W>>>>W>>WW>>WW I '
I I I I
~>>>>~>>WWWWWWWW>>
t>>W
~
~
~
~ IW>>
g>>W>>RW>>WW~WW>>W~M>>WWWWWQSIaaaja5~~~~~~>>>>WWW>>>>>>WW Wg>>W'WWW>>>>WWWWW>>>>g>>WW>>>>g>>>>WWWW>>WW>>aassaaLLLLRX:IW>>>>WW
~+%>>taaaaw>>>>>>>>>>ww>>>>H>>wwwww>>w>>>>w>>ww>>wwww W>>>>>>WW>>>>
~+iWWWWWWWWWWWWWWWW>>WWWWWWWWWWWW WWW>>~WWW>>he%>>~
WWW>>WW>>erne WQ>>
~
~
~
>>W>>W>>WWWWWM~>> +WWW>>>>WWWW WWWW WWWW WWWWWWWWWWWWWWWWWWW WWWQQPW>>WW s
~ I'
~ 's
~ f
~
~
~
~ I Is=
I s
~
Is..
~
~
~
~
I I
 
3.0 2.8 Core Flow > 50%
Power s 30%
Two Loop and Single Loop Operation Power SPC 8x8, GE11 LFA SVEA-96 LFA 2.6 25%
2.50 2.76
'E 2.4 0)-22 o 2.0 K
0 g 1.8 30%
Power 25%
30%
2.40 2.66 SPC 8x8, GE11 LFA 2.10 2.00 SVEA-96 LFA 2.36 2.26 Core Flow s 50%
Power ~ 30%
AllCore Flows Power ) 30%
SVEA-96 LFA 1.80 100%
1.32 1.58 SVEA-96 LFA SPC 8x8, Power GE11 LFA 30%
1.6
,1.4 1.2 20%
30%
SPC 8x8 GE11 LFA 40%
50%
60%
70%
80.%
Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, RPT Operable SPC Bx8, GE11 LFA, SYEA-96 LFA FFTR Operation Figure 3.6 90%
100%
1 10%
 
gfs~hN my=a 5:=RR.
~mR Rgga I
~ I
~ I I:
I
~
~
I I
I ',
RMWWWMMWM
~WWMWWWWW WMWWMWMM I
~
~ I I
WMWWWMWW WW WWWWW
~
~
~
~
MWMgWMMMgMMMMWg WMMWMMMMM WWW WWWW WMWWW WWWWWMWMW MWMWgMMWWMWWWWWWWW&W&WW&
MWWMMMM5 MWMMMMM8 WRIWWMWWWW&MMWkg WWWWCMW I ',
WMWWWMM I
I ',
WWWWWMW I '
MWWMWWW
~
~
~
~
I RmmRR
~
~
~
~
~
~
WWMWWWW I
I MWMMMMM MWMMMMMS WWMWWMMMNMMMMW~MMMMMMMMW I 'e I I MWMWRMMMWMMMMWHMMMMMMMM WWW MWWMWMMMWMWWMMMWMMWWWMMW sae~~~~~~~m
~~~
WMWWWMWMWWMMMMWWMMMWMMMW L.fggWWggg W
gag gWWWWWQWWWg WWWWWWWWg WWWM~~ <%MWMWWMMWWWMMMWWWMWSs~ IMWMMM WWWWWWWa
+WWWMMMWWMWMWWWWWWWMWWW WMMWMMMWMMMMW~>> ~ ISEDMMWMMMMMMMMMM MMMMWMMWMMMM MMMWMam ~+%55/MMMMWMMMMM MMMWMWMMMMMWMWMMMMWMMMMWMhaa~+IfMMMMM MWWgHWWWQWMWWCgMWWCWMWWWWMWMWMWWWm&MMMM WMM WWW MMMM+ MWMWMMMMWMMWMWMWWWMMMMMW MMMM StSMWggMMM MMWWWWMMMWMMMMMWWMMWMWMMM WWWMHWMWMMMWWMWWMWMWMMMMWWMMMWMMMWMMMMMM
~ 0's
~ I 'a
~ g
~
~ ~ 'e
~
~
~ I.
 
3.0 2.8 Core Flow ) 50%
Power a 30%
Two Loop and Single Loop Operation 2.6 Power 25%
30%
SPC 8x8, GE11 LFA 2.50 2.40 SVEA-96 LFA 2.78 2.68 All Core Flows Power > 30%
'E 2.4 Ol~ 22 L
rD o 2.0 K
0 g 1.8 Power 25%
30%
SPC 8x8, GE11 LFA 2.10 2.00 SVEA-96 LFA 2.38 2.28 Core Flow c 50%
Power c 30%
Power 30%
100%
1.64 1.35 1.82 1.63 SVEA-96 LFA SPC Sx8, GE11 LFA SVEA-96 LFA
.1.6 1.4 SPC SxS GE11 LFA 1.2 20%
30%
40%
50%
60%
70%
80%
Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power TSSS, RPT Operable SPC SxS, GE11 LFA, SVEA-96 LFA FFTR Operation Figure 3.8 90%
100%
110%
 
~
~
~
~
~~~>>85P5M~~>>~~~
~
~
~ I '
I I '.
'+~~~+
~
~
~ I
~
~ I
~
E ~:
~
~
~
~
~
~
s
~
>>>>>>>>LIII~~~~~~~~~~~~~+H>>
I W>>>>>>>> I>>W>>>>WWW>>>>WMW>>
I
>>>>>>>>>>>>5 I
~
I g>>>>>>>>>>>>Q WWWWWMWWW>>>>>>WAN>>M>>>>>>W
~~>>~~~>>~M &#xc3;6588~M~
I I '
~
~
~
~
~
~
>>>>>>M>>>>
>>WW>>W>>
(
~
I c>>H>>>>w
>>>>WW>>>>>>>>W>>>>>>>>W>>>>>>>>>>>>>>M I
I II II
>>~~~ I+&>>>>>>>>>>>>>>>>>>
~
~
~
555>>>>mw Cw>>C>>>>>>>>>>>>>>>>CC>>>>>>>>>>>>>>>>>>
ggg>>>>ggg>>ga
ggg>>>>ggg>>ga
~>%+>>Wgg>>WW>>>>M>>>>W>>>>WW'W cl>>g>>>>>>>>>>>>>>>>>>>>I%0~>>
~>%+>>Wgg>>WW>>>>M>>>>W>>>>WW'W cl>>
g>>>>>>>>>>>>>>>>>>>>I%0~>>
W>>>>>>WAN>>W>>>>>>
W>>>>>>WAN>>W>>>>>>
W>>>>W>>>>>>W>>>>>>>>>>aaa~~~>>>>>>>>>>>>>>
W>>>>W>>>>>>W>>>>>>>>>>aaa~~~>>>>>>>>>>>>>>
>>>>>>>>W>>>>W>>>>W>>>>>>>>>>>>>>>>>>>>>>>>>>>>W>>W~~~M>>>>>>>>
>>>>>>>> W>>>>W>>>>W>>>>>>>>>>>>>>>>>>>>>>>>>>>>W>>W~~~M>>>>>>>>
>>>>g I w>>>>g>>>>>>g>>>>>>g>>>>>>>>>>+>>>>>>Mw>>>>>>w
>>>>gI w>>>>
~I'I~g I~f I I I'I I I I~~I~~I~S.IS 3.0 2.8 Core Flow>509o Power s 309o Two Loop and Single Loop Operation 2.6 SPC Sx8 Power GE11 LFA 259o 2.50 SVEA-96 LFA 2.?3'F 2.4 CD-22 Q 6)o 2.0 K fL g 1.8=1.6 309o Power 259o 309o 2.40 2.63 Core Flow w 509o Power a 309o 2.'IO 2.00 2.33 2.23 SPC Sx8 GE'I'I LFA SVEA-96 LFA Power 30%100%All Core Rows Power>30%1.45 1.28 1.68 1.51 SVEA-98 LFA SPC 8x8 GE11 LFA SVEA-96 LFA 1.4.2 20%SPC Sx8 GE11 LFA 30%40%50%60%70%80%Percent of Rated Power Reduced Power NICPR Operating Limit Versus Percent of Rated Power NSS, RPT Inoperable SPC Bx8, GE11 LFA, SVEA-S6 LFA Cycle Exposures w 4500 MWd/MT 90%'00%1 10%Figure 3.10a 00 O 3.0 2.8 Core Flow>50%Power a 30%Two Loop and Single Loop Operation 2.6 Power 25%30%SPC 8xS GE11 LFA 2.50 2.40 SVEA-96 LFA 2.80 2.70 All Core Flows Power>30%Ch I'E 2.4 0)~22 0 2.0 K 0 g 1.8 Power 25%30%Core Flow s 50%Power a 30%2.10.2.00 2AO 2.30 SPC SxS GE11 LFA SVEA-96 LFA Power 30%=100%1.46 1.38 1.76 1.68 SVEA-96 LFA SPC 8x8 GE11 LFA SVEA-96 LFA.1.6 1.4 SNP SxS GE11 LFA A 0 C)C)1.2 20%30%40%50%60%70%80%Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, APT inoperable SPC SxS, GE11 LFA, SYEA-96 LFA Cycle Exposures>4500 MWd/MT Figure 3.10b 90%'00%110%  
g>>>>>>g>>>>>>g>>>>>>>>>>+>>>>>>Mw>>>>>>w
@5%I-=/I MMMM'511 1m==i IIRII am888 PgQ SBR HHHQ WWWWWWWWWMWWWWWWWWMWWWMMW W MM W W W W MM i I'WWWQWWWW I~I~~~~8 MMMM/I I I'I I g WMWW~MWWW1 I's I I I~I', I I'M~l I'.I I 555551:-55hmlliimmmllggilg I I'I I I I WMWWWWMMMWMWM WWMWWWWWWWWWMWWWWWWCQWWMM WWW M WWM WM WMWM W MMMM W WWMMM W MMMM WMMMH W WMM W g W M++WWWW eked JK'g ggg+W MMW W MMMM MMMMM WgWHIWWCSWgWWWgWQCERg~~ggWFIMWMWWWMMWWWMWW RRIRRK-=HIIII5558555555RHIRmKKRRIR'%5551
~ I 'I
~~~WWWW WMQWQWWSsP
~ g I
~ f I I I 'I I
I I
~
~
I
~
~
I
~ S.
IS
 
3.0 2.8 Core Flow > 509o Power s 309o Two Loop and Single Loop Operation 2.6 SPC Sx8 Power GE11 LFA 259o 2.50 SVEA-96 LFA 2.?3
'F 2.4 CD-22 Q
6) o 2.0 K
fL g 1.8
=1.6 309o Power 259o 309o 2.40 2.63 Core Flow w 509o Power a 309o 2.'IO 2.00 2.33 2.23 SPC Sx8 GE'I 'I LFA SVEA-96 LFA Power 30%
100%
All Core Rows Power > 30%
1.45 1.28 1.68 1.51 SVEA-98 LFA SPC 8x8 GE11 LFA SVEA-96 LFA 1.4
.2 20%
SPC Sx8 GE11 LFA 30%
40%
50%
60%
70%
80%
Percent of Rated Power Reduced Power NICPR Operating Limit Versus Percent of Rated Power NSS, RPT Inoperable SPC Bx8, GE11 LFA, SVEA-S6 LFA Cycle Exposures w 4500 MWd/MT 90% '00%
1 10%
Figure 3.10a
 
00 O
3.0 2.8 Core Flow > 50%
Power a 30%
Two Loop and Single Loop Operation 2.6 Power 25%
30%
SPC 8xS GE11 LFA 2.50 2.40 SVEA-96 LFA 2.80 2.70 All Core Flows Power > 30%
ChI
'E 2.4 0)~ 22 0 2.0 K
0 g 1.8 Power 25%
30%
Core Flow s 50%
Power a 30%
2.10
.2.00 2AO 2.30 SPC SxS GE11 LFA SVEA-96 LFA Power 30%
=100%
1.46 1.38 1.76 1.68 SVEA-96 LFA SPC 8x8 GE11 LFA SVEA-96 LFA
.1.6 1.4 SNP SxS GE11 LFA A0 C)
C) 1.2 20%
30%
40%
50%
60%
70%
80%
Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, APT inoperable SPC SxS, GE11 LFA, SYEA-96 LFA Cycle Exposures > 4500 MWd/MT Figure 3.10b 90% '00%
110%
 
@5%
I-=/I MMMM'511 1m==i IIRII am888 PgQ SBR HHHQ WWWWWWWWWMWWWWWWWWMWWWMMW WMMWWWWMM i I'WWWQWWWW I
~
I
~
~
~
~
8 MMMM/
I I
I '
I I
gWMWW~MWWW1 I 's I
I I
~
I ',
I I
M
~l I '.
I I
555551:-55hmlliimmmllggilg I
I '
I I I I WMWWWWMMMWMWMWWMWWWWWWWWWMWWWWWWCQWWMM WWWMWWMWMWMWMWMMMMWWWMMMWMMMMWMMMHWWMMW g WM++WWWWeked JK'gggg+W MMWWMMMMMMMMM WgWHIWWCSWgWWWgWQCERg~~ggWFIMWMWWWMMWWWMWW RRIRRK-=HIIII5558555555RHIRmKKRRIR'%5551
~
~
~
WWWW WMQWQWWSsP
+IOQWWWWMWWWMWWg
+IOQWWWWMWWWMWWg
~~~~a~~WWWW MMMM MMMM+MWWWW MMWQQMWMW I I~~~;: I~~I I'I'I~I'I'~~~I~II'I I~I I;: I I I'~~'ll  
~~~~a ~~
~I~Ss~S: Wg<<W<<~~~~~~~~~~~~~~
WWWW MMMM MMMM+ MWWWW MMWQQMWMW I I
<<WWMM<<MWWWWWWWWWWWWWWW W<<<<<<W<<<<&<<Cfg WMWWWW<<W<<'WWWWWWA WWWWWW<<%~~~I~'I: I'.WM<<WWW<<<<<<s'.%<<<<W<<WWW WWR>llg WWWWWWWW<<W~~~~g<<WMWW<<WW<<W<<WW<<MW<<WB M<<W<<W<<<<M<<MW<<MW<<MW<<WW WWW W<<WWWWWWW<<W<<M<<~<<<<M<<<<~<<Rg
~
~I~I<<WW~W<<M<<g I<<<<WB<<WMWH~~''<<<<<<W Q<<WW<<W<<<<WM WWWW WWWWWWW<<g 5 WWW<<'LWW&WWWWWWW&WW&
~ ~;:
<<WWMMW<<W<<WWMMWWW W<<Sa.~<<WWMMW<<W 8<<<<a~I~i I''<<W~<<<<W<<WC'I'.WWW 8--I W<<W I'I I I I<<WWWWWWMM<<WWMWW M<<W~~~~~~~~~~>>
I
W awe~~~~WWWWWMWWW<<MW<<<<g i~eC<<w ggwaaatQQQCClaCKQ55RTKK&~~~~~~gfg~fg~pg~~~p<<www<<<<w<<ww W<<W'WWM WMWWWWW<<W<<<<W<<WW
~
<<WMWWWWW<<W<<WW<<WWW<<W WQW WWM gWWW<<WW<<W<<MWWWM
~
<<WMWWWWW<<M<<W<<g<<WWWQ W<<<<WW<<MW<<QW<<~W<<~W<<<<W+MW<<W<<WWWWWW<<<<lg<<WWWW m<<W<<aa5<<WWW<<WW<<MWRW<<<<~W<<<<<<<<W<<<<WR<<<<<<W~
I I' I 'I
W<<g g<<M~~~h&W~NIW<<W<<<<W<<W<<MWW<<WW<<WW<<W<<WW<<MWM<<g WWW<<g<<WWCQWWWWWWMaaa~~
~ I' I'
+<<W~WWWWWWWW<<WWWWWW<<<<<<WAN
~
~~<<W<<<<W<<<<~~e
~
<<WWW<<WWW<<<<WWM~
~ I
'~<<W<<<<WWWW
~
~~WWW WWW<<WWWWWWW<<W<<<<WWWWWWWWWWWWW W<<W QSW<<<<WW<<W<<WWWMWMW<<MW<<<<WW<<WWWWWWW<<W<<<<WW
II'I I
~I'e~I'~0'~~~I~S I;S I~~I I~~I I 940610 l3:46'4.0~LINEAR HEAT GENERATION RATE GR LIMIT FOR USE IN SPECIFICATION 3.2 4 The LHGR limit for use in Technical Specification 3.2.4 sha1l not exceed the values shown in Figures 4.1 through 4.5.Washington, Nuclear-Unit 2-29-COLR 94-10, Revision 0  
~
$Esg$48 RERRssmS Esp Ess/Esg gs s Ess E Es.,),m L~.L)IJ ILL~H.:.LI.8'i--'Pllglll
I I;:
/I~lb)I~)Ill ll~)Ig Ill~i REsmsEEsmmsgkp'4EsgREssggENPgggggEFREsgmss glRg EPEE EEX EPEE EWEEWlhhs 0 WEWE WEWRWEXEEWEEEW EWE sssE Rsvp IEGER EsssssEshhi 1ELRLsERERREERRRE LRER WEE WEEP EWW WWEEEEEEEEOVWEW WEEWEEWEEWEEEWWEWEE EEX WXWE EEE WEE EEE WW$'OEO EEWXEXXEgEEEWRRW Eg WgEgmEEWggEWgggPEWEgPWPggWWEgWPXEPEENEEPEEXag EPP RWERREXWF WEEEWLCWOERSEEESRE~EW WEX XEXXWXEES WEEEWWl~WEEEEXEXEXXP WEE EXXXEEXEO IEEEWWSilEEEEEWXCEEE EXEX EEWg WWEEi~~EEEWWEE'.%XEEEWEEWEWWWEEWg W X.EPEE 8 EEEWWEWk PEEWEE W EE%)5 gg 5 Qe EEECEEPEELOEPEEEQW PRCE gWEW gXEXg gXWEEWEEggEgEEEEWmgEEgm WWEW PEEWEE WEE WEWEWEERLi REEEEEWEEX II WEEWEEEEEa E E E E 5 E P E P E E E E 8 E E E E W W X E E E EEE g gg 5 E5 EPEE gllgg P PEEWEQEPX EEW XEEXPQEWEWXEWEQWEEXEEWP2'%EWXEE
I I I
~WN NWWW WCWW WWQ RWEaRWWWWaaWWWEWEWWEWWWW h~e5 PXW XXEEgEEEW EEE EEEWagEEWEWEXWEEEEWWEaEE Eah E EEXEEEEE EEEWX EEE WEEPS WEXEWEWE WEEXXEXOWE EEWE I I~~I II~III I III III I III II~~I ill~ill I~~I I~~~~
~
i"i iii'"''il i'mmmwwwmmwmwmwCa N N N N N Ikk Ik kk kkkkkkligkg)kkkklgkk kkkkkkiI Igkkkklx gPk I gA NN g hj N gA N N N N A NA A A iII~I iIIIIIIIIakl,sill LIIIIII.IIII.I Illl.i kklklkkkk llkIIkkkkI
~
~hPkkk Ikkkkkkkkgkkllkllk kkPglk Ill II IIlk I I I L ha%kl IIIII illkklkII I iii lkliliII kkIIHlili I IIIIlkhalk IIIllilllllklkl I Llil lANI AA AAA AAAN>0 ANNA NA AAA A A A A I I.11llllkll Ilklh5 IIIIIIIII IIL II r AAA'''AAAAAAAANAAAASliWAANAAAAAAAAAAAAANN
' ll
~kkkkkkkkkkkkkkkllEklkkkkllkkkkk kkk~kk kksssssssssssssss ILk IIIILII LllllklkLkhkkkk
 
~I II~lkkiklk kkllkkkk kkkkikkIIklkkkkkkikkkkk~kkk/
~
g i I',ilii';, g i i jjjliligiiI
I
~I~~I III II~~i lil I I I I~~III 14.0 8.0 LHGR 13.7 13.7 7.0 Average Planar Exposure 0 15,000 60,000 7.0 6.0 0 10,000 20,000 30,000'0,000 Average Planar Exposure (IVIWd/MT)
~ Ss
Linear Heat Generation Rate (LHGR)Limit Versus Average Planar Exposure , SPC 9x9-1X LFA Fuel 60,000 Rgure 4.3 I S ROSS S SS S 8%8 I e I 8 0%0 g pig gll I Igp5glgggp 5CgRQ p555gl5g gLISILSSRgREi5liRgSgg RRIIRgR~IIILRS LVRERSEI55555555LL5$
~ S:
555 5 5 i+i+i+ii+S g 55555 55pQS RSRSO aa ear~5%55'.: 55 8555555SWWQROWQS55 0 88RW QRRRQREQRRRQQSORQQQSOS OSIS,...,,>OSQQSSSSREOSA OQSS55'0 iSSSQASSOSWS55555S OO 888 5 RQS55555555555558 SW WRR Weaaaewar 5 58555555%55SOSRSSR ar ru aeSSrarrrra sraaaarxeaaaaaaaaa RiSQOSRQSQSASSSOSOSOWRQREE555ASRIERSRES 50 50 SiOiOQOQS Si WOOWQQQS SS gag fa j aggVgPg fa55lgl~s~allapRFeaaVallag QS 5 555 55555585 OS585 5 QSSQA 55 885 88 58 WQSOOS 5 5 S 8 88558888888 MM MMM M M M M M M M 5)M M~gg%$5)R~%4lggg51PI RRE SE i PQIEI~,e:ia:aa.I'.lsea'.-.a a a aalaa.h.'ace.aaa aaaaeua ma~qeamaa emaaaae aa~ea S i ii)': RSII Hi pisa iil Hp A 5 MMMMMOSMMRaeaaraa aaaSMMMMMMMMMMMMMMMMMEIMMRMMS
Wg<<W<< ~~~~~~~~~~~~~~
<<WWMM<<MWWWWWWWWWWWWWWW W<<<<<<W<<<<&
<<Cfg WMWWWW
<<W
<<'WWWWWWA WWWWWW<<%
~
~
~ I
~
'I:
I '.
WM<<WWW<<
<<<< s'.%
<<<<W<<WWW WWR>llg WWWWWWWW
<<W
~
~
~
~
g<<WMWW<<WW<<W<<WW<<MW<<WB M<<W<<W<<<<M<<MW<<MW<<MW<<WW WWW W<<WWWWWWW<<W<<M<<~<<<<M<<<<~<<Rg
~ I
~ I
<<WW~W<<M<<g I
<<<<WB<<WMWH
~
~
<<<<<<W Q<<WW<<W<<<<WM WWWW WWWWWWW<<g 5
WWW<<
'LWW&WWWWWWW&WW&<<WWMMW<<W
<<WWMMWWW W<<Sa.~
<<WWMMW<<W 8<<<<a~
I
~
i I '
<<W~<<<<W<<WC I '.
WWW 8--
I W<<W I '
I I I I
<<WWWWWWMM<<WWMWW M<<W
~~~~~~~~~~>>
W awe~~~~
WWWWWMWWW<<MW<<<<g i~eC<<w ggwaaatQQQCClaCKQ55RTKK&~~~~~~gfg~fg~pg~~~p<<www<<<<w<<ww W<<W
'WWM WMWWWWW<<W<<<<W<<WW <<WMWWWWW<<W<<WW<<WWW<<W WQW WWM gWWW<<WW<<W<<MWWWM <<WMWWWWW<<M<<W<<g<<WWWQ W<<<<WW<<MW<<QW<<~W<<~W<<<<W+MW<<W<<WWWWWW<<<<lg<<WWWW m<<W<<aa5<<WWW<<WW<<MWRW<<<<~W<<<<<<<<W<<<<WR<<<<<<W~
W<<g g<<M~~
~h&W~NIW<<W<<<<W<<W<<MWW<<WW<<WW<<W<<WW<<MWM<<g WWW<<g<<WWCQWWWWWWMaaa~~ +<<W~WWWWWWWW<<WWWWWW<<<<<<WAN
~
~
<<W<<<<W<<<<~~e
<<WWW<<WWW<<<<WWM~'~<<W<<<<WWWW
~
~
WWW WWW
<<WWWWWWW<<W<<<<WWWWWWWWWWWWW W<<W QSW<<<<WW<<W<<WWWMWMW<<MW<<<<WW<<WWWWWWW<<W<<<<WW
~ I'e
~ I '
~ 0'
~
~
~
I
~
S I; S
I
~
~ I I
~
~
I I
 
940610 l3:46
'4.0
~ LINEARHEAT GENERATION RATE GR LIMITFOR USE IN SPECIFICATION 3.2 4 The LHGR limitfor use in Technical Specification 3.2.4 sha1l not exceed the values shown in Figures 4.1 through 4.5.
Washington, Nuclear-Unit 2 COLR 94-10, Revision 0
 
$Esg
$48 RERRssmS Esp Ess/Esg gs s Ess E Es
.,),m L~.L) IJ ILL~H.:. LI. 8
'i--'Pllglll /I~lb)I~) Illll~) Ig Ill~i REsmsEEsmmsgkp'4EsgREssggENPgggggEFREsgmss glRg EPEE EEX EPEE EWEEWlhhs 0
WEWE WEWRWEXEEWEEEW EWE sssE Rsvp IEGER EsssssEshhi 1ELRLsERERREERRRE LRER WEE WEEP EWW WWEEEEEEEEOVWEW WEEWEEWEEWEEEWWEWEE EEX WXWE EEE WEE EEE WW$'OEO EEWXEXXEgEEEWRRW Eg WgEgmEEWggEWgggPEWEgPWPggWWEgWPXEPEENEEPEEXag EPP RWERREXWF WEEEWLCWOERSEEESRE~EW WEX XEXXWXEES WEEEWWl~WEEEEXEXEXXP WEE EXXXEEXEO IEEEWWSilEEEEEWXCEEE EXEX EEWgWWEEi
~
~
EEEWWEE'.%XEEEWEEWEWWWEEWg W
X. EPEE 8 EEEWWEWk PEEWEE W
EE
%)5 gg 5 Qe EEECEEPEELOEPEEEQW PRCE gWEW gXEXg gXWEEWEEggEgEEEEWmgEEgm WWEW PEEWEE WEE WEWEWEERLi REEEEEWEEX II WEEWEEEEEa EEEE5EP EP EEEE8 EEEE WWXEE E
EEE g
gg 5 E5 EPEE gllgg P
PEEWEQEPX EEW XEEXPQEWEWXEWEQWEEXEEWP2'%EWXEE
~WN NWWW WCWW WWQ RWEaRWWWWaaWWWEWEWWEWWWW h~e5 PXW XXEEgEEEW EEE EEEWagEEWEWEXWEEEEWWEaEE Eah E
EEXEEEEE EEEWX EEE WEEPS WEXEWEWE WEEXXEXOWE EEWE I
I ~ ~
I II~
III I III III I III II ~
~ I ill
~ ill I
~
~
I I
~
~
~
~
 
i "i iii'
"''il i'mmmwwwmmwmwmwCa N
N N
N N
Ikk Ik kk kkkkkkligkg)kkkklgkk kkkkkkiI Igkkkklx gPk I gA NN g hj N
gA N
N N
N A NA A
A iII
~ I iIIIIIIIIakl,sill LIIIIII.IIII.I Illl.i kklklkkkk llkIIkkkkI~ hPkkk Ikkkkkkkkgkkllkllk kkPglk Ill II IIlk I I I L ha%
kl IIIIIillkklkII I iii lkliliIIkkIIHliliI IIIIlkhalkIIIllilllllklklI Llil lANI AA AAA AAAN
>0 ANNA NA AAA A A A A I I 11llllkllIlklh5 IIIIIIIIIIILII rAAA
'AAAAAAAANAAAASliWAANAAAAAAAAAAAAANN
~kkkkkkkkkkkkkkkllEklkkkkllkkkkkkkk
~
kk kksssssssssssssss ILk IIIILIILllllklkLkhkkkk
~I II ~ lkkiklk kkllkkkk kkkkikkIIklkkkkkkikkkkk~kkk/
g i I',ilii';,g i i jjjliligiiI
~ I ~ ~
I III II ~
~ i lil I I I I
~ ~ III
 
14.0 8.0 LHGR 13.7 13.7 7.0 Average Planar Exposure 0
15,000 60,000 7.0 6.0 0
10,000 20,000 30,000
'0,000 Average Planar Exposure (IVIWd/MT)
Linear Heat Generation Rate (LHGR) Limit Versus Average Planar Exposure
, SPC 9x9-1X LFA Fuel 60,000 Rgure 4.3
 
I S
ROSS S
SS S
8%8 I
e I8 0
%0 g pig gll I Igp5glgggp 5CgRQ p555gl5g gLISILSSRgREi5liRgSgg RRIIRgR
~IIILRS LVRERSEI55555555LL5$ 555 5 5 i+i+i+ii+S g 55555 55pQS RSRSO aa ear
~5
%55 55 8555555SWWQROWQS55 0 88RW QRRRQREQRRRQQSORQQQSOS OSIS,...,,
OSQQSSSSREOSA OQSS55 0
iSSSQASSOSWS55555S OO 888 5
RQS55555555555558 SW WRR Weaaaewar 5 58555555%55SOSRSSR ar ru aeSSrarrrra sraaaarxeaaaaaaaaa RiSQOSRQSQSASSSOSOSOWRQREE555ASRIERSRES 50 50 SiOiOQOQS SiWOOWQQQS SS gag faj aggVgPg fa55lgl~s~allapRFeaaVallag QS 5 555 55555585 OS585 5 QSSQA 55 885 88 58 WQSOOS 5 5
S 8 88558888888
 
MM MMM M
M M
M M
M M
5)
M M
~gg%$ 5)R~%4lggg51PI RRE SE i PQIEI
~
,e:ia:aa.
I'.lsea'. -.a a a
aalaa.h
'ace.aaa aaaaeua ma~qeamaa emaaaae aa~ea S
i ii)
RSII Hi pisa iilHp A 5 MMMMMOSMMRaeaaraa aaaSMMMMMMMMMMMMMMMMMEIMMRMMS
~551M Sggl18855$
~551M Sggl18855$
~RSSSSSASSkpLRARSAARA4g%5555 RMMMMM M MM M M M MOM M MM MMM 5 MMMMMO , ah era a i:.ila i la5s iiahi:ih.h ili belli~II I I~~I I III i I iil~II' 941229 14:38'5:0'MFHR HE 5.1 R rts for Curient C cle 5.1.1 5.1.2 5.1.3 5.1.4 EMF-94-095,"WNP-2 Cycle 10 Plant Transient Analysis," Siemens Power Corporation, June 1994.EMF-94-096,"WNP-2'ycle 10 Reload Analysis," Siemens Power Corporation, June 1994.SPCWP-94-041,"Licensing Results Supporting Section 3/4.2 of the WNP-2 Technical Specifications for Cycle 10," Letter from YU Fresk, Siemens Power Corporation, to RA Vopalensky, Supply System, April 1, 1994.SPCWP-94-062,"STAIF Stability Results in Support of WNP-2 Cycle 10," Letter from YU Fresk, Siemens Power Corporation, to RA Vopalensky, Supply System, June 14, 1994.SPCWP-94-042,"Licensing Results Supporting Section 2.1 of the WNP-2 Technical Specifications for Cycle 10," Letter from YU Fresk, Siemens Power Corporation, to RA Vopalensky, Supply System, April 1, 1994.SPCWP-94-068,"SPC Comments on WNP-2 Cycle 10 Draft COLR," Letter from YU Fresk, Siemens Power Corporation, to RA Vopalensky, Supply System, June 23, 1994.RDW:94-092,"WNP-2 Cycle 9 Core Operating Limits Report-GE11 Lead Use Assemblies," Letter Born RD Williams, GE Nuclear Energy, to DL Whitcomb, Supply System, June 21, 1994.ABBWP-94-040,"SVEA-96 Lead Fuel Assembly Treatment in WNP-2 Cycle 10 Core Operating Limits Report," Letter from CG Schon, ABB Combustion Engineering Nuclear Operations, to RA Vopalensky, Supply System, June 15, 1994.SPCWP-94-108,"Improved Reduced Flow MCPR Operating Limits for WNP-2 Cycle 10," Letter from YU Fresk, Siemens Power Corporation, to RA Vopalensky, Supply System, December 12, 1994.RDW:94-162,"WNP-2 Cycle 10 Core Operating Limits Report-Rev.1," Letter from RD Williams, GE Nuclear Energy, to DL Whitcomb, Supply System, December 14, 1994.NFBWR-94-055,"SVEA-96 LFA Flow-Dependent MCPR Limits," Letter from CG Schon, ABB CENO Fuel Operations, to R Vopalensky, Supply System, December 22, 1994."Washington Nuclear-Unit 2-35-COLR 94-10, Revision) 5.2 Licen in T ical rt in Technical S ification 6.3 2 5.2.1 5.2.2 ANF-1125(P)(A) and Supplements 1 and 2,"ANFB Critical Power.Correlation," Advanced Nuclear Fuels Corporation, April 1990."NRC Approval of ANFB Additive Constants for 9x9-9X BWR Fuel," Letter from RC Jones, NRC, to RA Copeland, Advanced Nuclear Fuels Corporation, November 14, 1990.Washington Nuclear-Unit 2-35a-COLR 94-10, Revision 1 940523 11:03'.2.3 ANF-524(P)(A), Revision 2 and Supplements 1 and 2,"Advanced Nuclear Fuels Critical Power Methodology for Boiling Water Reactors," Advanced Nuclear Fuels Corporation, November 1990.5.2.4 5.2.5 5.2.6 ANF-913(P)(A), Volume 1, Revision 1 and Volume 1, Supplements 2, 3, and 4,"COTRANSA2:
~ RSSSSSASSkpLRARSAARA4g%5555 RMMMMM M MM M
A Computer Program for BoiTing Water Reactor Transient Analyses," Advanced Nuclear Fuels Corporation, August 1990.'I ANF-CC-33(P)(A), Supplement 2,"EGDPZ: A Generalized Multirod Heatup Code with 10 CFR 50, Appendix K, Heatup Option,," Advanced Nuclear Fuels Corporation, January 1991.XN-NF-80-19(P)(A), Volume 1, Supplements 3 and 4,"Advanced Nuclear Fuels Methodology for Boiling Water Reactors: Benchmark Results for the CASMO-3G/MICROBURN-B Calculation Methodology," Advanced Nuclear Fuels Corporation, November 1990.5.2.7 XN-NF-80-19(P)(A), Volume 4, Revision 1,"Exxon Nuclear Methodology for Boiling Water Reactors: Application of the ENC Methodology to BWR Reloads," Exxon Nuclear Company, Inc., June 1986.5.2.8 XN-NF-80-19(P)(A), Volume 3;Revision 2,"Exxon Nuclear Methodology for Boiling Water Reactors THERhiEX: Thermal Limits Methodology Summary Description," Exxon Nuclear Company, Inc., January 1987.5.2.9 XN-NF-85-67(P)(A), Revision 1,"Generic Mechanical Design for Exxon Nuclear Jet Pump BWR.Reload Fuel," Exxon Nuclear Company, Inc., September 1986.5.2.10 ANF-89-014(P)(A), Revision 1 and Supplements 1 and 2","Generic Mechanical Design for Advanced Nuclear Fuels 9x9-IX and 9x9-9X Reload Fuel," Advanced Nuclear Fuels Corporation, October 1991.5.2.11 XN-NF-81-22(P)(A),"Generic Statistical Uncertainty Analysis Methodology," Exxon Nuclear Company, Inc., November 1983.5.2.12 NEDE-24011-P-A-6,"General Electric Standard Application for Reactor Fuel," GE Nuclear Energy, April 1983.5.3 E Nuclear En r d ABB C m u tion En ineerin Nuclear e tion Lead Fuel A sembl 5.3.1"GEll Lead Fuel Assembly Report for Washington Public Power Supply System Nuclear Project No.2, Reload 5, Cycle 6," GE Nuclear Energy, December 1989.Washington Nuclear-Unit 2-36-COLR 94-10, Revision 0 5.4 5.3.2 5.3.3 5.3.4 UK 90-126,"Supplemental Lead Fuel Assembly Licensing Report-SVEA.9$.LFAs for WNP-2-Summary,." ABB Atom', January 1990.ATOF-91-120,"Assembly Treatment in WNP-2 Cycle 7 Core Operating Limits Report," Letter from WR Harris, ABB Atom, to DL Whitcomb, Supply System, May 1, 1991.ABBWP-94-039,"WNP-2 SVEA-96 Lead Fuel Assembly Operating Limit MCPR," Letter&om CG Schon, ABB Combustion'Engineering Nuclear Operations, to RA Vopalensky, Supply System, June 15, 1994.f r xten Li imi An L 5.4.1 5.4.2 5.4.3"Reactor Vessel Internals Evaluation Task Report for WNP-2 Power Uprate Project," GE Nuclear Energy, April 1993 (DRAFT)."WNP-2 Power Uprate Containment Response Evaluation Input to Engineering Report," GE Nuclear Energy, January 19, 1993 (DRAFT).GE-NE-189-69-1092,"Effects of Adjustable Speed Drive on Reactor Internal Vibration at the WNP-2 Nuclear Power Plant," GE Nuclear Energy, October 1992.5.4.4 5.4.5 5.4.6 GE-NE-189-34-0392,"Jet Pump Sensing Line Vibration Test for Washington Nuclear Project 2," GE Nuclear Energy, March 1992.NEDE-24222,"Assessment of BWR Mitigation of ATWS, Vol.II (MlREG 0460, Alternate No.3)," General Electric Company, December 1979."Washington Nuclear Project Unit 2 System Evaluation Report for Power Uprate-Reactor Recirculation Control System," GE Nuclear Energy, February 1, 1993..5.4.7 5.4.8 5.4.9 GE Report 22A7104, Revision 0,"Dynamic Load Report-Fuel Vertical Support," GE Nuclear Energy, June 30, 1982."Fuel Lift Non-Proprietary Letter," Letter from DM Kelly, GE Nuclear Energy, to WC Wolkenhauer, Supply System, February 15, 1993.93-PU-0054,"ELLLA Related Power Uprate Task Reports," Letter from DM Kelly, GE Nuclear Energy, to WC Wolkenhauer, Supply System, June 3, 1993.Washington Nuclear-Unit 2-37-COLR 94-10, Revision 0}}
M M
MOM M
MM MMM 5 MMMMMO ah era a i:.ila i la5s iiahi:ih.h ilibelli
~ III I
~ ~ I I III i I iil
~ II'
 
941229 14:38
'5:0 'MFHR HE 5.1 R
rts for Curient C cle 5.1.1 5.1.2 5.1.3 5.1.4 EMF-94-095, "WNP-2 Cycle 10 Plant Transient Analysis," Siemens Power Corporation, June 1994.
EMF-94-096, "WNP-2'ycle 10 Reload Analysis,"
Siemens Power Corporation, June 1994.
SPCWP-94-041, "Licensing Results Supporting Section 3/4.2 of the WNP-2 Technical Specifications for Cycle 10," Letter from YUFresk, Siemens Power Corporation, to RA Vopalensky, Supply System, April 1, 1994.
SPCWP-94-062, "STAIF Stability Results in Support of WNP-2 Cycle 10,"
Letter from YU Fresk, Siemens Power Corporation, to RA Vopalensky, Supply System, June 14, 1994.
SPCWP-94-042, "Licensing Results Supporting Section 2.1 of the WNP-2 Technical Specifications for Cycle 10," Letter from YUFresk, Siemens Power Corporation, to RA Vopalensky, Supply System, April 1, 1994.
SPCWP-94-068, "SPC Comments on WNP-2 Cycle 10 Draft COLR," Letter from YU Fresk, Siemens Power Corporation, to RA Vopalensky, Supply System, June 23, 1994.
RDW:94-092, "WNP-2 Cycle 9 Core Operating Limits Report - GE11 Lead Use Assemblies," Letter Born RD Williams, GE Nuclear Energy, to DL Whitcomb, Supply System, June 21, 1994.
ABBWP-94-040, "SVEA-96 Lead Fuel Assembly Treatment in WNP-2 Cycle 10 Core Operating Limits Report," Letter from CG Schon, ABB Combustion Engineering Nuclear Operations, to RA Vopalensky, Supply System, June 15, 1994.
SPCWP-94-108, "Improved Reduced Flow MCPR Operating Limits for WNP-2 Cycle 10," Letter from YUFresk, Siemens Power Corporation, to RA Vopalensky, Supply System, December 12, 1994.
RDW:94-162, "WNP-2 Cycle 10 Core Operating Limits ReportRev. 1,"
Letter from RD Williams, GE Nuclear Energy, to DL Whitcomb, Supply System, December 14, 1994.
NFBWR-94-055, "SVEA-96 LFA Flow-Dependent MCPR Limits," Letter from CG Schon, ABB CENO Fuel Operations, to R Vopalensky, Supply System, December 22, 1994.
"Washington Nuclear-Unit 2 COLR 94-10, Revision )
 
5.2 Licen in T ical rt in Technical S ification 6
.3 2 5.2.1 5.2.2 ANF-1125(P)(A) and Supplements 1
and 2,
"ANFB Critical Power.
Correlation," Advanced Nuclear Fuels Corporation, April 1990.
"NRC Approval of ANFB Additive Constants for 9x9-9X BWR Fuel," Letter from RC Jones, NRC, to RA Copeland, Advanced Nuclear Fuels Corporation, November 14, 1990.
Washington Nuclear-Unit 2
-35a-COLR 94-10, Revision 1
 
940523 11:03
'.2.3 ANF-524(P)(A), Revision 2 and Supplements 1 and 2, "Advanced Nuclear Fuels Critical Power Methodology for Boiling Water Reactors,"
Advanced Nuclear Fuels Corporation, November 1990.
5.2.4 5.2.5 5.2.6 ANF-913(P)(A), Volume 1, Revision 1 and Volume 1, Supplements 2, 3, and 4, "COTRANSA2: A Computer Program for BoiTing Water Reactor Transient Analyses," Advanced Nuclear Fuels Corporation, August 1990.
'I ANF-CC-33(P)(A), Supplement 2, "EGDPZ: A Generalized Multirod Heatup Code with 10 CFR 50, Appendix K, Heatup Option,," Advanced Nuclear Fuels Corporation, January 1991.
XN-NF-80-19(P)(A), Volume 1, Supplements 3 and 4, "Advanced Nuclear Fuels Methodology for Boiling Water Reactors:
Benchmark Results for the CASMO-3G/MICROBURN-B Calculation Methodology," Advanced Nuclear Fuels Corporation, November 1990.
5.2.7 XN-NF-80-19(P)(A), Volume 4, Revision 1, "Exxon Nuclear Methodology for Boiling Water Reactors:
Application of the ENC Methodology to BWR Reloads," Exxon Nuclear Company, Inc., June 1986.
5.2.8 XN-NF-80-19(P)(A), Volume 3; Revision 2, "Exxon Nuclear Methodology for Boiling Water Reactors THERhiEX: Thermal Limits Methodology Summary Description," Exxon Nuclear Company, Inc., January 1987.
5.2.9 XN-NF-85-67(P)(A), Revision 1, "Generic Mechanical Design for Exxon Nuclear Jet Pump BWR.Reload Fuel," Exxon Nuclear Company, Inc.,
September 1986.
5.2.10 ANF-89-014(P)(A), Revision 1 and Supplements 1 and 2", "Generic Mechanical Design for Advanced Nuclear Fuels 9x9-IX and 9x9-9X Reload Fuel,"
Advanced Nuclear Fuels Corporation, October 1991.
5.2.11 XN-NF-81-22(P)(A), "Generic Statistical Uncertainty Analysis Methodology,"
Exxon Nuclear Company, Inc., November 1983.
5.2.12 NEDE-24011-P-A-6, "General Electric Standard Application for Reactor Fuel," GE Nuclear Energy, April 1983.
5.3 E Nuclear En r d ABB C m u tion En ineerin Nuclear e
tion Lead Fuel A sembl 5.3.1 "GEll Lead Fuel Assembly Report for Washington Public Power Supply System Nuclear Project No. 2, Reload 5, Cycle 6," GE Nuclear Energy, December 1989.
Washington Nuclear-Unit 2 COLR 94-10, Revision 0
 
5.4 5.3.2 5.3.3 5.3.4 UK 90-126, "Supplemental Lead Fuel Assembly Licensing ReportSVEA.9$.
LFAs for WNP-2Summary,." ABB Atom', January 1990.
ATOF-91-120, "Assembly Treatment in WNP-2 Cycle 7 Core Operating LimitsReport," Letter from WR Harris, ABBAtom, to DLWhitcomb, Supply System, May 1, 1991.
ABBWP-94-039, "WNP-2 SVEA-96 Lead Fuel Assembly Operating Limit MCPR," Letter &om CG Schon, ABB Combustion'Engineering Nuclear Operations, to RA Vopalensky, Supply System, June 15, 1994.
f r xten Li imi An L
5.4.1 5.4.2 5.4.3 "Reactor Vessel Internals Evaluation Task Report for WNP-2 Power Uprate Project," GE Nuclear Energy, April 1993 (DRAFT).
"WNP-2 Power Uprate Containment Response Evaluation Input to Engineering Report," GE Nuclear Energy, January 19, 1993 (DRAFT).
GE-NE-189-69-1092, "Effects ofAdjustable Speed Drive on Reactor Internal Vibration at the WNP-2 Nuclear Power Plant," GE Nuclear Energy, October 1992.
5.4.4 5.4.5 5.4.6 GE-NE-189-34-0392, "Jet Pump Sensing Line Vibration Test for Washington Nuclear Project 2," GE Nuclear Energy, March 1992.
NEDE-24222, "Assessment ofBWR Mitigation of ATWS, Vol. II (MlREG 0460, Alternate No. 3)," General Electric Company, December 1979.
"Washington Nuclear Project Unit 2 System Evaluation Report for Power UprateReactor Recirculation Control System,"
GE Nuclear
: Energy, February 1, 1993.
.5.4.7 5.4.8 5.4.9 GE Report 22A7104, Revision 0, "Dynamic Load ReportFuel Vertical Support," GE Nuclear Energy, June 30, 1982.
"Fuel Lift Non-Proprietary Letter," Letter from DM Kelly, GE Nuclear Energy, to WC Wolkenhauer, Supply System, February 15, 1993.
93-PU-0054, "ELLLA Related Power Uprate Task Reports," Letter from DM Kelly, GE Nuclear Energy, to WC Wolkenhauer, Supply System, June 3, 1993.
Washington Nuclear-Unit 2 COLR 94-10, Revision 0}}

Latest revision as of 04:47, 8 January 2025

Rev 1, Cycle 10 Colr
ML17291A624
Person / Time
Site: Columbia Energy Northwest icon.png
Issue date: 12/31/1994
From:
WASHINGTON PUBLIC POWER SUPPLY SYSTEM
To:
Shared Package
ML17291A623 List:
References
COLR-94-10, COLR-94-10-R01, COLR-94-10-R1, NUDOCS 9502010200
Download: ML17291A624 (43)


Text

941229 1498 CpLR 94 10 Remsion 1

ContmHed CopyNo WNP-2 Cycle 10

, Core Operating Lixnits Report December 1994 Washington Public Power Supply System 9502010200 950125 PDR ADOCK 05000397 P

PDR 4

941229 149$

WNP-2 Cycle 10 Coze Qperatiag Limits Repozt LIST F EFFECTlVE PA ES

~Revisi n 1

1 2

3 4

5 6

7 8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 0

1 1

0 0

0 0

0 0

0 0

0 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

WNP-2 Cycle 10 Coic OpeiatlIlg L1101~ Report ST F EFFECTIVE PAGES

$Mvi~ig 35 35a 36 37 1

1 0

0 LEP-2

WNP-2 Cycle 10 Core Operating Limits Report B E F

1.0 D

N AND RY o

~

- ~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

1 A

2.0 AVERA EP ANAR AR ENERATI N TE AP H R R

EIN AL P IFI ATI N 21............

2 3.0 L

P A

N 2

~

~

~

~

~

~

o

~

~

~

~

~

~

~

~

o

~

~

~

~

~

~

~

~

~

~

o 8

4.0 A

AT L

P N

R E

4

~

~

~

~

~

o ~, ~

~

~

~

~

~

~

~

~

~

o

~

~

~

~

~

~

~

~

~ 29 2

5.0 I

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~ 35 Washington Nuclear-Unit 2 COLR 94-10, Revision 0

l

~ /

w'C'

1.0 INTR D CTI N AND SUhQvfARY This report provides the Average Planar Linear Heat Generation Rate (APLHGR) limits, the Minimum Critical Power Ratio (MCPR) limits, and the Linear Heat Generatioa Rate (LHGR) limits for WNP-2, Cycle 10 as required by Technical Specificatioa 6.9.3.1.

As zequized by Technical Specifications 6.9.3.2 and 6.9.3.3, these limits were determined using NRC-approved methodology and axe established so that all applicable limits of the plant safety analysis are met.

The thexmal limits for SPC fuel given in this report are documented in the "Cycle 10 Plant Transient Analysis" (Refezcnce 5.1.1), the "Cycle 10 Reload Analysis" (Reference 5.1.2) and the "Impzoved Reduced Plow MCPR Oyexatiug Limits for WNP-2 Cycle 10" (Refezence 5.1.9). The thezmal limitsdetexmined thxough the approved methodology aze modified for the GE11 and SVEA-96 LPAs as discussed below.

The WNP-2 Cycle 10 core includes four Siemens Power Corpoxation (SPC), four GE Nuclear Energy (GE), and four ABB Combustion Eugiaeexing Nuclear Ogexatioas (ABB CENO) Lead Puel Assemblies (LFAs). The SPC LFAs were inserted duziug the reload for Cycle 5. The GE and ABB CENO LPAs were inserted at the beginning of Cycle 6 and were designed to be compatible with the reload fuel utilized in Cycle 6.

The LFAs are loaded in core locations which analysis has shown to have sufficient thermal margin such that the LFAs axe not expected to be the most limitingfuel assemblies oa either a nodal or an assembly power basis.

The GE Nuclear Energy GE11= LPAs aze described in the "GE11 Lead Fuel Assembly Report for Washington Public Power Supply System Nuclear Project No. 2, Reload 5, Cycle 6" (Refexence 5.3.1).

This xefexence describes the design goals of the GE11 LPAs and provides support for monitozing the GE11 LPAs at thermal limits based on the SPC 8x8 reload fuel thezmal limits.

The ABB CENO SVEA-96 LPAs are described ia the "Supplemental Lead Fuel Assembly Licensing ReportSVEA-96 LPAs forWNP-2Summaxy" (Reference 5.3.2). The process for developing thermal limits for the SVEA-96 LPAs based upon the SPC 8x8 xeload fuel thermal limits is described in References 5.3.2 thxough 5.3.4 The MAPLEGRlimits for the GE11 LFAs are the same as for the SPC 8x8 reload fuel, except that a ratio ([64-2]/I'81-7])is applied to account for the different number of fuel pins in the two designs.

The MAPLHGRlimits forthe SVEA-96 LPAs are the same as for the SPC 8x8 reload fuel, except that a ratio ([64-2]/f100-4]) is apylied to account for the diffezent number of fuel pins in the two designs.

Fuzthexmoze, the MAPLHGR limits for the SVEA-96 LPAs are multiplied by the following constants:

(a) 1.04 to account for a diffezent estimation of the local power in the output from POWEIU'LEX compaxed to ABB CENO methods aad (b) 1.02 to account for a different estimation of exposure ia the output from POWERPLEX compared to ABB CENO methods.

The MCPR limitis the maximum of (a) the applicable exposure dependeat, fullpower and full flow MCPR limit, (b) the applicable exposure and power dependent MCPR limit, and (c) the flowdependent MCPR limitspecified in this reyoxt. This stipulation assures that the safety limit MCPR willnot be violated thzoughout the WNP-2 operating regime. Fullpower MCPR limits are specified to define oyexating limits at rated power and Qow.

For the WNP-2 coze, the Turbine Trip without Bypass event is limiting for operation at xated power and fiow. Power dependent MCPR limits axe specified to define opexatiag limits at other thaa zated power Washington Nuclear-Unit 2 COLR 94-10, Revision 1

941229 14QS conditions.

For the WNP-2 core, the Feedwater Controller Failure event from zeduced power is calculated to be more severe than from fullpower conditions. A fiow dependent MCPR is slxeified to define operating limitsat other than rated flowconditions. The reduced flowMCPR limit provides bounding protection for the limiting Recizculation Flow Increase event (Refezence 5.1.9).

The LHGR limits for the GE11 LFAs are the same as for the SPC 8x8 zeload fuel, except that a ratio ([64-2]/[81-7J) is applied to account for the different number of fuel pins in the two designs.

The LHGR limits for the SVEA-96 LFAs are taken dimply from Refezence 5.3.2.

The reload licensing analyses for this cycle provide opezating limits for Extended Load Line (ELl~) operation which extends the power and flow operating regime for WNP-2 up to the 109% zod line which at fullpower cozzesponds to 87% ofzated flow. The MCPR limits deflned in this zepozt aze applicable up to 100% of rated thermal power along and below the 109% zod line.

The minimum low for operation at rated power is 87% of zated fiow; the maximum is 106%.

Refezences 5.1.1 and 5.1.2 and the zefezences in Section 5.4 document the analyses in suppozt of ELLLAopezation.

Preparation, zeview and approval of this report weze performed in accordance with applicable Supply'System pzoceduzes.

The specific topical report revisions and supplements which describe the. methodology utilized in this cycle specific analysis aze zefezenced in Section 5.2.

2.0 AVERA EPLANARLINEARHEATGENIHMTINRATE APLH R LIMITSFOR U E IN TE CAL SPECIFICATI N 3 2.

The APLHGRs for use in Technical Specification 3.2.1 shall not exceed the limits shown in Figures 2.1, 2.2, 2.4, and 2.5 when in two-loop opezation and in Figuzes 2.1, 2.3, 2.4, and 2.5 when in single loop operation.

The limits for each fuel type as a function of Average Planar Exposure are provided for the SPC reload fuel, the SPC LFAs, the SVEA-96 LFAs, and the GE11 LFAs.

Washington Nuclear-Unit 2 COLR 94-10, Revision 1

wwwwgwwwwgwwwwgwwww'gwwwwpg+'gwwgwwwwggwww Qwwgg a-as=a~-s=-saaaas~as~~as~-===-=====ass===

~@=ma

$-HERE:===P=REElg ERR=-====hP~E I

~

~

~

~ s;:

~

wwwwwwwwgwwwww wwwwwwwwwww 1w wwwwwwwgw gwwww wwwwwwwwwwwwwwgwwwwwwwwwwwwww PAYEE)EEEEgPgEgggEmEmEEggmmEEgmkmgPg+EggPgEg C

II mme-=-===

h asm-ea

~

~

~

~

wwwwwwwwwww

~'wwwwwwww wwwww wwwwwwwwwwwg%wwwwww'g wwwww wwwwwwwwwww 'www'www wwww I

wwwww wwwwwwwwwwww'%g&wwwg wwwww wwwwwwwwwwwwgiCwwwwPii wwwwf J

PwwpgwwEwEPwwwwww&gEMEgg wwww i wwwwwwwwwwwwwwwwwwwww'%www wwwwwgwwwwwwwwwwwwwwg1www wwwww wwwwwwwwwwwwww wwwwww o I

/Em5gE[

)gmmmEEmsmmPmmmEmmm/Rmh~%g

~a

~~ ~

~~~~ ++ + a~

III

~ III III I III III

~ III liI i I I II

~

~

~ ~

~

~

~

~ I

WWWW W g WAg WWWQWWQW gWP PQWQAWWW gWW gpss m

NREM fgggMg mgml m

mmWml

~ gAWWAgWgWgmWWW AAWAgrXrgWgagrrXWWXWWWPgXAWA RWNRWWWWQRWWW WCWWWkliBWWQWWWWWWWWWWWWWRWWWgg WWggWWQWWWWWWWWWCWWWWWW WWWWWWWWWCWWWRgLWWWWWWWWQWWWWWWQWWWWWWWWggWWWWWm hii ii>aLm l3VI<=-=:--

="==:>i':=:=-==-==-s ~H LR Wki WWR AWWgWt WWW LWWWWWWWWWWWWXeXWWWWW WWQW)

WW g WWW aWWWQWWWWWWWAAgrglr WWWW 1

W W

WWWWNWWWWWWWWWWWWW WWWWW

~ I WAWW W

WWWSWAWWWCWWWWWWWA AWWWQ gaea aealaaaaaagagama a a aagag aaaaaaaa eaaag gWW W

ggW Wg gWWgWWWW WWWAAW WWW WWW I

~ I I I

~ I I I I I I I I I I I I I I II I I I

~ I I I I

~

~

~ ~

I I I

I I

~ I

~ I I

gism g~~m m~~

== Il===a=m=-

CMWC ggWM mHH I

gin MMR

~

~

~ I MMMM MgMM

~ III 5 a581hmsRmlmmm I

I I I I

I II I III I

~K~NRMMN>>

RQR g~g ERR mJKm NRR=HRRHSR

/gag KRl~gRQR~ggggg MMM MMM 'MMMO RON MMM MMMM&MMMMMMM MMM MMMMM&'MMM MMMM MMMMMMMMMMQMMMMMMMg MMMMMMMMMMkMME MMMM MMMMMMMMMM QWMMMMMMMM MMMMMMMMMMLMMMMMMMM MMMMMMML~

MMMMMMMMM%MMM LWMMMM MMM MMMMMMMMMMMMMMMM

@MM MMMMMMMMMMMMMMMMML%

~ I I ~ I

~ I ~

I III

~ II

~

0

~

~

~

~

~

~

~

~ I

g&%&wg&%&H&g&m g&% %&ggg gygmy amgmg a Ig AAW

~WOW RjWW WWW CSWAAW W~WWW IIIIIII85IIRHI-=>Im=mgliKPim-=I:=Ii====my==-II WWWWWWWWA@WWW AWWW+WWWWg WAALLWWWWWAWWWWAAWg WWWWWWWCWWWWWAAWWWQWWWARWAACWkLWW WWWAAAWWW WWQWWRW~WWRWWWWARWWAIIWWW IWAWWWWRiWQWWWWIIAWWW WWWWWW&~~~~~~~~~~~W WWW WNWWWWWR.'WWWWWW AWWW QWWWAWS WWWA R

QgWWW WWWWAWWWWWWgOA AWW gW W

WWW WWWWAWWWWWWkiW AWW WWWWW WWWWWRRWWWWWW%

AWW WWAWW

~

I WWWWWAWWWWWWWWAWaaW&i WWW

~

WWWAW WWWWW WWWWWWWWWWWWAPQAWWlg iRIH

~

ACWAWWCCI AAWWWWS WWWWWWWWAWWWWWWWWWWWAWWW&&

AWWWWQW WWWWWAWWWA5WWWWWWWWWWWAWWQ~

AAWWWWQ WWAWWWWWWWWWWWWWWWWAWW AWWWAWWWLemmmmmwmmm HWWWWAWWWAWWWWWWWWWAAWWWWW AWWWSSWWWAAAWWWAAWWWW&WWAWWWAWWWWWWW WWWWAWWWWW AWWWWWWWWWWWWWAAWWWWWWWWWWWWWWWWWWWWWWWAWWWWW AWWWAWWWWAWWWWAAWWWWWWWWWWCWAWWWWWA WWWWAWWWWW AWWWAWWWAAWWWCAOWWWWWWWWWWAAWWWWWWWWWWAAWAWWW AWWWWWWWWAWWWWCAA'WWAWWWAWWAAWWWWWWWWWWAAWWWWW AWWWWWWWWWWWWWAAWWWRWWWAWWWWWWWWWWWWWWAAkf AWWW I

~ ll I Ill lil I ill Ill I ll~

ili

~ I III 'II I

~

~

~

y C '

~

~

. I

I I

I I I

~ I

~ I

~ I aawaaaa aw awaa aaa awa wwaa wwaaa aawaawwa aaCg jlaaaa aaa aaaa a a i aa

~

g 5 5 g g I mj wwg ROC NN i a

=

Z

- ~Z-wi e=== i=

gaawaaawwaagawggawa awga gwawgaawagagawwaawwww m&w g

)Pm)/N,.,

/gRggggm55gwm~g(XRm8/g~gmgg l~~i h

'h'=$ 5hliRNa==~~RE~a53h==-ih 3=-=l kl)

'L3-5~iP=.:sl===.=='h====lssl~i5

%Ill==i:=amms.=g=<liamllh=-li=-.ll*==:==-::-==-='5 a

Caaaa a5 a a wow Cw wwwww I

I II I

~ Ii I I I I I I I I I I

~ I I I III

~ I I I I

~ II

940610 13:46 SPECIFICATl N 3 2.3t t

3.0 MINXMUM RlTI ALP WER RATI CPR LIMITFOR USE IN TECKVI AL'he MCPR limitfor use in Technical Specification 3.2.3 shall be:

Greater than or equal to the greater of the limits determined from Tables 3. la and 3.1b and Figures 3.1 and 3.2a through 3.lib.

J Washington Nuclear-Unit 2 COLR 94-10, Revision 0

e 940614 l6:54 Table 3.1a WNP-2 Cycle 10 MCPR Operating Conditions Cycle Exposures s 4500 MWd/MTU SLMCPR = 1.07 Condition Limit NM" How Depcndcnt Power Dependents SPC 8xS SPC 9x9 SPC 9x9 SVBA-96 GB11 LFA LFA I

L24 1M+

1.28 1A4 Figure 3.1 Fig. 3.2a Fig. 33a Fig. 33a Fig. 3.2a Nssu~

Flow Dcpcndcnt Power Dependent'+

1.26 1.24 135 1A8 Figure 3.1 Fig. 3.4a Fig. 3.5a Fig. 3.5a Fig. 3Aa RFF Full Power Inoperable Flow Dcpcndcnt Power Dcpcndcntro SLOP NSS How Dcpcndcnt Power Dependents SLO TSSS Full Power Flow Dcpcndcnt Power Dcpcndcnà LO+ NSS RFI'ull Power Inoperable Flow Dcpcndcnt Power Dependent'+

1.2S 1.27 1.43 1.51 Figure 3.1 Fig. 3.10a Fig. 3.11a Fig. 3.11a Fig. 3.10a 186 136 1.36 1.9S None Fig. 3.2a Fig. 3.3a Fig. 3.3a Fig. 3.2a 1.56 1.36 1.36 1.98 None Fig. 3.4a Fig. 3.5a Fig. 3.5a Fig. 3.4a 1.56 1.36 1.36 1.98 None Fig. 3.10a Fig. 3.11a Fig. 3.11a Fig. 3.10 Washington Nuclear-Unit 2 COLR 94-10, Revision 0

940614 16M Table 3.1b WNP-2 Cycle 10 MCPR, Operating Conditions Cyde Exposures ) 4500 MWd/MTU SLMCPR = 1.07 SLMCPR = 1.07 FFTR Condition Limit NSS'o SPC 8xg SPC 9x9 SPC 9x9 SVBA-96 GEII LFA LFA SPC gxg SPC 9x9SPC 9x9 SVBA-9 GBII LFA LFA 1.30 1.27 1.44

'64 192 1.29 1.46 168 co Flow Dcpcndcnt Power Dependent+

Figure 3.1 Figure 3.1 Fig. 3.2b Fig. 3.3b Fig. 3.3b Fig. 3.2b Fig. 3.6 Fig. 3.7 Fig. 3.7 Fig. 3.6 1.33 1.30 1.49 1.60 1.35 1.32 1.51 1.63 NSS"'low Dcpcndcnt Power Dependent Figure 3.1 Figure 3.1 Fig. 3Ab Fig. 3.5b Fig. 3.5b Fig. 3.4b Fig. 3.8 Fig. 3.9 Fig. 3.9 Fig. 3.8 RFI'ullPower inoperable Flow Dcpcndent Power Dcpcndcn&

SLO NSS 1.38 1.35 1.61 1.68 Figure 3.1 Fig. 3.10b Fig. 3.11b Fig. 3.11b Fig. 3.10b Not Analyzed 1.56 1.36 1.36 1.98 1.56 1.36 1.36 1.98 Flow Dcpendcnt Power Dcpcndcnà None Fig. 3.2b Fig. 33b Fig. 3.3b Fig. 3.2b None Fig. 3.6 Fig. 3.7 Fig. 3.7 Fig. 3.6 SLO TSSS Full Power 186 196 1.36 1.98 186 1.36 136 1.98 Flow Dcpendcnt Power Dependent+

SLO+ NSS None Fig. 3.4b Fig. 3.5b Fig. 3.5b None Fig. 3.4b Fig. 3.8 Fig. 3.9 Fig. 3.9 Fig. 3.8 RFF Full Power inoperable Flow Dcpcndcnt Power Dependent'+

1.56 1.36 1.36 None 1.98 I

Fig. 3.10b Fig. 3.11b Fig. 3.11b Fig. 3.10b Not Analyzed Washington Nuclear-Unit 2 COLR 94-10, Revision 0

NoMfor Tables 3.1a and 3.lb Note 1:

The scram insertion times must meet the requirements of Technical Specification 3.1.3.4.

The NSS MCPR values are based on the SPC transient analysis performed using the control rod insertion times shown below (defined as normal scram speed: NSS).

In the event that Surveillance 4.1.3.2 shows these scram insertion times have been exceeded, the MCPR limit shaQ be determined from the applicable Technical Specification Scram Speed (TSSS)

MCPR limits in Tables 3. la and b.

Position Inserted From Fully Withdrawn Notch 45 Notch 39 Notch 25 Notch 5 Slowest measured average control rod insertion times qmcified notches for all operable control rods for each grou of four contxol rods arranged in a two-by-two array (seconds) 0.380 0.720 1.600 2.950 Note 2:

For Single Loop Operation (SLO), the SLMCPR increases by 0.01.

The increase is included in the MCPR limits for SLO.

Note 3:

For the noted full power MCPR limits, the control rod withdrawal error (CRWE) event is limiting. The turbine trip without bypass {TI'NB)event is limiting for the remaining fullpower limits. CRWE analysis was performed with a nominal rod block monitor (RBM) setpoint of 1.06. Use ofthe nominal setpoint is in accordance with the methodology described in Reference 5.2.6, consistent with approved industry practice.

Note 4:

Power dependent MCPR limits are provided for core thermal powers greater than or equal to 25% of rated power at all core flows. The power dependent MCPR limits for core thermal powers less than or equal to 30% of rated power are subdivided by core flow. Limits are provided for core flows greater than 50% of rated flow and less than or equal to 50% of rated flow, reslxctively.

A step change in the power dependent MCPR limits occurs at 30% of rated power because direct scram on turbine throttle valve closure is automatically bypassed per Technical Specification 3.3.1.

Washington Nuclear-Unit 2 COLR 94-10, Revision 0

'XX ++~+~++++~+~~lkkkkkkkkkXWXkkkkkkkkkkk k~aa IWWWWWWWWR

'lkk 5%W WWWWWWWWQ

~

~

~

~

~

WQW kkkkkkkki5 k

WWÃ kkkkkkkkS k

WWLkkkkkkkkkkkkkkkkkkkkkkS

~k WLlkWWWWRWWWWWkWkkkkkkkki Rk WWLOWWWWQWWWWROWWWWWWWWWO Rk

~EASEL)ERRRIIRSRLSL55$55551

'R

, kkkRÃkkkkkkkkkkkkkkkkkkk5 Rk WWWWWRg'%WWWWWWNWWWWWWWWWWA W

WWWW WWWWW555i5NWWWWWWWWS WWWWRWRPQkkkkRQWWWWWWWWWQ W

kkk WWWWAVOWWWWWWWWWWWWWQ W

~WWW kkkkkkkkh8SWWWWWWWWWWShaaaaaarrra W

kWW~

kkkkkkkkkli~%kkkkkkkkkkkkkkkkkWkkkk Wkkk WWWWWWWWWWWSQHWkkkkkkkkkkkkkkkkkkk WWWW WWWWWWWWWWWWWWRR50kkkkkkkkkkkkkkkk WSWWWWWWWWWWWWWWWWWWWWWNHQWWkkkkkkkkkkk SWWWSSWWWWSWWWWWWWWWkkkkkkh~~%kkkkkkkkkkk WkkkkkkkkkkkkkkkkkkkkkkkkkkkkhÃQWWWAWWWW WWWWW WWWWWkkkkkkkkkkkkkkkkkWWWARSgkkkkk SWWWS kkkWWWWWWWWWWSkkkkkkkkkkkkkkkPBOWW WWWWW WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWkkÃ%

~Wkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkh

3.0 2.8 2.6 Power Core Flow > 50%

Power a 30%

SPC 8x8 GE11 LFA SVEA-96 LFA Two Loop and Single Loop Operation

'E 2.4 0)

.~ 2.2 o 2.0 K

0 g 1.8 26%

30%

2.60 2AO 2.68 2.68 Core Flow c 50%

Power c 30%

SPC 8x8 Power GE11 LFA SVEA-96 LFA 26%

2.10 2.28 30%

2.00 2.18 All Core Flows Power ) 30%

30%

1.45

.1.63 100%

1.21 1.39 SPC 8x8 Power GE11 LFA SVEA-96 LFA 1.6 SVEA-96 LFA 1.4 1.2 20%

SPC 8x8 GE11 LFA 30%

40%

50%

60%

70%

80%

Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power

'SS, RPT Operable SPC 8x8, GE11 LFA, SVEA-96 LFA Cycle Exposures x 4500 MWd/MT 90%

100%

110%

Figure 3.2a

3.0 2.8 Core Flow ) 50%

Power s 30%

Two Loop and Single Loop Operation 2.6 Power 25%

30%

SPC SxS GE11 LFA 2.50 2.40 SVEA-96 LFA 2.74 2.64 All Core Flows Power > 30%

'E 2.4 0)-22 o 2.0 K

CL g 1.8 Power 25%

30%-

SPC SxS GE11 LFA 2.10 2.00 SVEA-96 LFA 2.34 2.24 Core Row a 50%

Power s 30%

Power 30%

100%

SPC 8x8 GE11 LFA 1A5 1.30 SVEA-96 LFA SVEA-96 LFA 1.69 1.64 1.6 1.4 SPC SxS GE11 LFA 1.2 20%

30%

40%

50%

60%

70%

80%

Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, RPT Operable SPC Sx8, GE11 LFA, SVEA-96 LFA Cycle Exposures ) 4500 MWd/MT S0%

100%

110%

Figure 3.2b

wwCCK Hmam

-=Bi===

gHHQ wHw'.0 WWW&~

C~~Ca MWMWW mi5 gR~

gWW WWW WWW WWW WgW WMW WMW HaB Ei~i g-a=g R~mm=-

8 5 =am

~

I I

g 1

I'

~~~~~~~~~~~~~~~~~~~~~

~~~~ W4~~~~~~~~~~~~~

MMMM%

Cs~~~

8

~

~

~

~

~

I III ~

~ ::

I I

~ I I

I I 'i

~~~~W

+~~~/

wwMMLwwwwwwe wNwwwwg~

I I

~

~

. gag,

===5

':=

Fl~

5==

~

~

~

P=

I wag R~H.

i I

I '.

I I I I 8 ~~Igg~~+~~~

~a

+~ ~~~

~~~hLJ

~~~~

~IWg~ ~~~~

Sah~P%I~~~~~~~~~~~~

Q~~~~e ~~~~~~~~

PaL~~~~~~~~~

WWM WWWWWWa ~WWWWMWWWh&WWWMMMM H~~~~ ~~~~~ +~If'~~~~~~~~~~~

MWM WWMMW WMMMWM&aa M~WMMWWWMMM WWWW WWM WWWW'WWWWWWMMMMWa~W~WWWMMM

~e I

I 'I

~ I'

~ I '

~ ~

II',

I

~

I

~

~ I I I

I

~

~

~.: I I

I I

~ W~Wlg ate I '

I '>>

~

~

~

WWW

~ os

~ s:

WWWg WWWg WWR~~~~~~~~~~~~~~HW gWWW WWWW WWW I

I '>>

~ I I

~

I '>>

g IL "

~

~

~

~

~

~

WWWMWII III=

ggII I-I=

CORK%

I MWWWWM W..

8 xjgg I=-

~+

WWWWHaee

++14 WWWWW WWWWWWWWWWWWWWWWWWXMWWWW WWWWWWWWaa ~ +WWWWWWWWWWWWWWWWWWWWWWWWWWWW a

~~ QWWWWWWMWWWWWWWWWWWWW WWWWWWMa>>MW+WWWWWWWWWWWWWWW WWC

~

~

~

WWWWWWWWWWWWW~>>

WW&WWWWWCSWWWWWWW&Pe~ +WggWWWWW WgWWWWWWWWWWWWWWWWWWWWWWWW~

y>>

~ I '>>

~

I I '

~

)

~

I

~

~

~ I

~ II:S

~

~

~

~

I I

3.0 2.8 2.6 Power Core Flow ) 50%

Power a 30%

SPC SxS GE11 LFA SVEA;96 LFA Two Loop and Single Loop Operation 25%

2.50 2.72

'E 2.4 Ol 2 2 I

LQ o 2.0 K

O.

g 1.8

-1.6 30%

Power 25%

30%

2.40 2.62 Core Flow a 50%

Power a 30%

2.10 2.00 2.32 2.22 SPC SxS GE11 LFA SVEA-96 LFA Power.

30%

100%

SPC 8x8 GE11 LFA 1.45 1.26 SVEA-96 LFA 1.67 1.48 SVEA-96 LFA All Core Flows Power > 30%

1.4 1.2 SNP SxS GE11 LFA 20%

30%

40%

50%

6Q%

7Q%

8Q%

9Q% 'PQ%

1 1P%

Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power TSSS, RPT Operable SPC SxS, GE11 LFA, SVEA-96 LFA Cycle Exposures w 4500 MWdIMT Figure 3.4a

3.0 2.8 Core Flow > 609o Power a 309o Two Loop and Single Loop Operation 2.6 Power SPC SxS GE11 LFA SVEA-96 LFA I

OOI

'E 2.4 0)~ 2.2 o 2.0 K

Q.

g 1.8 26%

30%

Power 26%

30%

2.50 2.40 2.77 2.67 Core Flow s 609o Power a 309o 2.10 2.00 2.37 2.27 SPC SxS GE11 LFA SVEA-96 LFA Power 30%

100%

SPC SxS GE11 LFA 1A6 1.33 SVEA-96 LFA 1.72 1.60 SVEA-96 LFA All Core Flows Power > 30%

1.6 A0 I

C)

Wo0 C) 1.4 1.2 20%

SPC Sx8 GE11 LFA 30%

40%

50%

60%

70%

80%

Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power TSSS, RPT Operable SPC SxS, GE11 LFA, SVEA-96 LFA Cycle Exposures > 4600 MWd/IVIT Figure 3Ab 90%

100%

110%

leg ggRgm m g>>

R>>

%5

~RSR

~

~

~ I I

I

~

~

~ I:

~

i

~

~

~ i'i i's

~~8~~~~

a g~

~~~~~~KLese~~~~~~~~~~~~~~~

~

~

~

//gal~;Rii=aiii==iiiii>g

~

~

~ i '.

~

~

~

I wwgwm e

MMWMMWMWMMWMWMMMMWWWWMM I I WMWWWWMMMMWMMMMWWWMWWMM

~~~~IH5~~~~~~~~~~~~~~~~~~~~+~~~~

~H55%

CpR KH~~HR~~~a5~~~~~~~~~~~~~~~~~~~~

~ I'>>

0 g

~

I~ g

~

I I '

I

~

~

I

~

~ I:

I

~ I

~

~. II

~

~

~

~

I I

~

~

~

~ I

~ ~ ;:

~

W W>>>>>>WWWWWWWMWWWWWW I'i

~

~ as I

I s

I W>>

WWWW WWWW WW WWWW WWWWWWW W>>>>WW>>W BR WW tm>>WWWWW>>WWWWWW>>>>>>>>WE WWWWWWWWWWWWWWWWWWWW lW I

I W>>>>@ac>>>>m IW Ca>>WW OWNED~>>>>m

~

I;

~

IW l~

p Im

~

s

~

I '

IW w~

W>>>>>>M I

I' l>>W>>>>

~

~

8 I Q

Ig>>>>>>>>W IWWWW5 R.-

l>>>>WW l>>W>>W Wgg>>

Wgg>>

l>>WWWW>>W~

WW l>>WWW>>>>W~

WWW I I '.

I

~ '

I I

BI IWWWW~WWWQWWWW>>W>>>>W>>WW>>WW I '

I I I I

~>>>>~>>WWWWWWWW>>

t>>W

~

~

~

~ IW>>

g>>W>>RW>>WW~WW>>W~M>>WWWWWQSIaaaja5~~~~~~>>>>WWW>>>>>>WW Wg>>W'WWW>>>>WWWWW>>>>g>>WW>>>>g>>>>WWWW>>WW>>aassaaLLLLRX:IW>>>>WW

~+%>>taaaaw>>>>>>>>>>ww>>>>H>>wwwww>>w>>>>w>>ww>>wwww W>>>>>>WW>>>>

~+iWWWWWWWWWWWWWWWW>>WWWWWWWWWWWW WWW>>~WWW>>he%>>~

WWW>>WW>>erne WQ>>

~

~

~

>>W>>W>>WWWWWM~>> +WWW>>>>WWWW WWWW WWWW WWWWWWWWWWWWWWWWWWW WWWQQPW>>WW s

~ I'

~ 's

~ f

~

~

~

~ I Is=

I s

~

Is..

~

~

~

~

I I

3.0 2.8 Core Flow > 50%

Power s 30%

Two Loop and Single Loop Operation Power SPC 8x8, GE11 LFA SVEA-96 LFA 2.6 25%

2.50 2.76

'E 2.4 0)-22 o 2.0 K

0 g 1.8 30%

Power 25%

30%

2.40 2.66 SPC 8x8, GE11 LFA 2.10 2.00 SVEA-96 LFA 2.36 2.26 Core Flow s 50%

Power ~ 30%

AllCore Flows Power ) 30%

SVEA-96 LFA 1.80 100%

1.32 1.58 SVEA-96 LFA SPC 8x8, Power GE11 LFA 30%

1.6

,1.4 1.2 20%

30%

SPC 8x8 GE11 LFA 40%

50%

60%

70%

80.%

Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, RPT Operable SPC Bx8, GE11 LFA, SYEA-96 LFA FFTR Operation Figure 3.6 90%

100%

1 10%

gfs~hN my=a 5:=RR.

~mR Rgga I

~ I

~ I I:

I

~

~

I I

I ',

RMWWWMMWM

~WWMWWWWW WMWWMWMM I

~

~ I I

WMWWWMWW WW WWWWW

~

~

~

~

MWMgWMMMgMMMMWg WMMWMMMMM WWW WWWW WMWWW WWWWWMWMW MWMWgMMWWMWWWWWWWW&W&WW&

MWWMMMM5 MWMMMMM8 WRIWWMWWWW&MMWkg WWWWCMW I ',

WMWWWMM I

I ',

WWWWWMW I '

MWWMWWW

~

~

~

~

I RmmRR

~

~

~

~

~

~

WWMWWWW I

I MWMMMMM MWMMMMMS WWMWWMMMNMMMMW~MMMMMMMMW I 'e I I MWMWRMMMWMMMMWHMMMMMMMM WWW MWWMWMMMWMWWMMMWMMWWWMMW sae~~~~~~~m

~~~

WMWWWMWMWWMMMMWWMMMWMMMW L.fggWWggg W

gag gWWWWWQWWWg WWWWWWWWg WWWM~~ <%MWMWWMMWWWMMMWWWMWSs~ IMWMMM WWWWWWWa

+WWWMMMWWMWMWWWWWWWMWWW WMMWMMMWMMMMW~>> ~ ISEDMMWMMMMMMMMMM MMMMWMMWMMMM MMMWMam ~+%55/MMMMWMMMMM MMMWMWMMMMMWMWMMMMWMMMMWMhaa~+IfMMMMM MWWgHWWWQWMWWCgMWWCWMWWWWMWMWMWWWm&MMMM WMM WWW MMMM+ MWMWMMMMWMMWMWMWWWMMMMMW MMMM StSMWggMMM MMWWWWMMMWMMMMMWWMMWMWMMM WWWMHWMWMMMWWMWWMWMWMMMMWWMMMWMMMWMMMMMM

~ 0's

~ I 'a

~ g

~

~ ~ 'e

~

~

~ I.

3.0 2.8 Core Flow ) 50%

Power a 30%

Two Loop and Single Loop Operation 2.6 Power 25%

30%

SPC 8x8, GE11 LFA 2.50 2.40 SVEA-96 LFA 2.78 2.68 All Core Flows Power > 30%

'E 2.4 Ol~ 22 L

rD o 2.0 K

0 g 1.8 Power 25%

30%

SPC 8x8, GE11 LFA 2.10 2.00 SVEA-96 LFA 2.38 2.28 Core Flow c 50%

Power c 30%

Power 30%

100%

1.64 1.35 1.82 1.63 SVEA-96 LFA SPC Sx8, GE11 LFA SVEA-96 LFA

.1.6 1.4 SPC SxS GE11 LFA 1.2 20%

30%

40%

50%

60%

70%

80%

Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power TSSS, RPT Operable SPC SxS, GE11 LFA, SVEA-96 LFA FFTR Operation Figure 3.8 90%

100%

110%

~

~

~

~

~~~>>85P5M~~>>~~~

~

~

~ I '

I I '.

'+~~~+

~

~

~ I

~

~ I

~

E ~:

~

~

~

~

~

~

s

~

>>>>>>>>LIII~~~~~~~~~~~~~+H>>

I W>>>>>>>> I>>W>>>>WWW>>>>WMW>>

I

>>>>>>>>>>>>5 I

~

I g>>>>>>>>>>>>Q WWWWWMWWW>>>>>>WAN>>M>>>>>>W

~~>>~~~>>~M Ã6588~M~

I I '

~

~

~

~

~

~

>>>>>>M>>>>

>>WW>>W>>

(

~

I c>>H>>>>w

>>>>WW>>>>>>>>W>>>>>>>>W>>>>>>>>>>>>>>M I

I II II

>>~~~ I+&>>>>>>>>>>>>>>>>>>

~

~

~

555>>>>mw Cw>>C>>>>>>>>>>>>>>>>CC>>>>>>>>>>>>>>>>>>

ggg>>>>ggg>>ga

~>%+>>Wgg>>WW>>>>M>>>>W>>>>WW'W cl>>

g>>>>>>>>>>>>>>>>>>>>I%0~>>

W>>>>>>WAN>>W>>>>>>

W>>>>W>>>>>>W>>>>>>>>>>aaa~~~>>>>>>>>>>>>>>

>>>>>>>> W>>>>W>>>>W>>>>>>>>>>>>>>>>>>>>>>>>>>>>W>>W~~~M>>>>>>>>

>>>>gI w>>>>

g>>>>>>g>>>>>>g>>>>>>>>>>+>>>>>>Mw>>>>>>w

~ I 'I

~ g I

~ f I I I 'I I

I I

~

~

I

~

~

I

~ S.

IS

3.0 2.8 Core Flow > 509o Power s 309o Two Loop and Single Loop Operation 2.6 SPC Sx8 Power GE11 LFA 259o 2.50 SVEA-96 LFA 2.?3

'F 2.4 CD-22 Q

6) o 2.0 K

fL g 1.8

=1.6 309o Power 259o 309o 2.40 2.63 Core Flow w 509o Power a 309o 2.'IO 2.00 2.33 2.23 SPC Sx8 GE'I 'I LFA SVEA-96 LFA Power 30%

100%

All Core Rows Power > 30%

1.45 1.28 1.68 1.51 SVEA-98 LFA SPC 8x8 GE11 LFA SVEA-96 LFA 1.4

.2 20%

SPC Sx8 GE11 LFA 30%

40%

50%

60%

70%

80%

Percent of Rated Power Reduced Power NICPR Operating Limit Versus Percent of Rated Power NSS, RPT Inoperable SPC Bx8, GE11 LFA, SVEA-S6 LFA Cycle Exposures w 4500 MWd/MT 90% '00%

1 10%

Figure 3.10a

00 O

3.0 2.8 Core Flow > 50%

Power a 30%

Two Loop and Single Loop Operation 2.6 Power 25%

30%

SPC 8xS GE11 LFA 2.50 2.40 SVEA-96 LFA 2.80 2.70 All Core Flows Power > 30%

ChI

'E 2.4 0)~ 22 0 2.0 K

0 g 1.8 Power 25%

30%

Core Flow s 50%

Power a 30%

2.10

.2.00 2AO 2.30 SPC SxS GE11 LFA SVEA-96 LFA Power 30%

=100%

1.46 1.38 1.76 1.68 SVEA-96 LFA SPC 8x8 GE11 LFA SVEA-96 LFA

.1.6 1.4 SNP SxS GE11 LFA A0 C)

C) 1.2 20%

30%

40%

50%

60%

70%

80%

Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, APT inoperable SPC SxS, GE11 LFA, SYEA-96 LFA Cycle Exposures > 4500 MWd/MT Figure 3.10b 90% '00%

110%

@5%

I-=/I MMMM'511 1m==i IIRII am888 PgQ SBR HHHQ WWWWWWWWWMWWWWWWWWMWWWMMW WMMWWWWMM i I'WWWQWWWW I

~

I

~

~

~

~

8 MMMM/

I I

I '

I I

gWMWW~MWWW1 I 's I

I I

~

I ',

I I

M

~l I '.

I I

555551:-55hmlliimmmllggilg I

I '

I I I I WMWWWWMMMWMWMWWMWWWWWWWWWMWWWWWWCQWWMM WWWMWWMWMWMWMWMMMMWWWMMMWMMMMWMMMHWWMMW g WM++WWWWeked JK'gggg+W MMWWMMMMMMMMM WgWHIWWCSWgWWWgWQCERg~~ggWFIMWMWWWMMWWWMWW RRIRRK-=HIIII5558555555RHIRmKKRRIR'%5551

~

~

~

WWWW WMQWQWWSsP

+IOQWWWWMWWWMWWg

~~~~a ~~

WWWW MMMM MMMM+ MWWWW MMWQQMWMW I I

~

~ ~;:

I

~

~

I I' I 'I

~ I' I'

~

~

~ I

~

II'I I

~

I I;:

I I I

~

~

' ll

~

I

~ Ss

~ S:

Wg<<W<< ~~~~~~~~~~~~~~

<<WWMM<<MWWWWWWWWWWWWWWW W<<<<<<W<<<<&

<<Cfg WMWWWW

<<W

<<'WWWWWWA WWWWWW<<%

~

~

~ I

~

'I:

I '.

WM<<WWW<<

<<<< s'.%

<<<<W<<WWW WWR>llg WWWWWWWW

<<W

~

~

~

~

g<<WMWW<<WW<<W<<WW<<MW<<WB M<<W<<W<<<<M<<MW<<MW<<MW<<WW WWW W<<WWWWWWW<<W<<M<<~<<<<M<<<<~<<Rg

~ I

~ I

<<WW~W<<M<<g I

<<<<WB<<WMWH

~

~

<<<<<<W Q<<WW<<W<<<<WM WWWW WWWWWWW<<g 5

WWW<<

'LWW&WWWWWWW&WW&<<WWMMW<<W

<<WWMMWWW W<<Sa.~

<<WWMMW<<W 8<<<<a~

I

~

i I '

<<W~<<<<W<<WC I '.

WWW 8--

I W<<W I '

I I I I

<<WWWWWWMM<<WWMWW M<<W

~~~~~~~~~~>>

W awe~~~~

WWWWWMWWW<<MW<<<<g i~eC<<w ggwaaatQQQCClaCKQ55RTKK&~~~~~~gfg~fg~pg~~~p<<www<<<<w<<ww W<<W

'WWM WMWWWWW<<W<<<<W<<WW <<WMWWWWW<<W<<WW<<WWW<<W WQW WWM gWWW<<WW<<W<<MWWWM <<WMWWWWW<<M<<W<<g<<WWWQ W<<<<WW<<MW<<QW<<~W<<~W<<<<W+MW<<W<<WWWWWW<<<<lg<<WWWW m<<W<<aa5<<WWW<<WW<<MWRW<<<<~W<<<<<<<<W<<<<WR<<<<<<W~

W<<g g<<M~~

~h&W~NIW<<W<<<<W<<W<<MWW<<WW<<WW<<W<<WW<<MWM<<g WWW<<g<<WWCQWWWWWWMaaa~~ +<<W~WWWWWWWW<<WWWWWW<<<<<<WAN

~

~

<<W<<<<W<<<<~~e

<<WWW<<WWW<<<<WWM~'~<<W<<<<WWWW

~

~

WWW WWW

<<WWWWWWW<<W<<<<WWWWWWWWWWWWW W<<W QSW<<<<WW<<W<<WWWMWMW<<MW<<<<WW<<WWWWWWW<<W<<<<WW

~ I'e

~ I '

~ 0'

~

~

~

I

~

S I; S

I

~

~ I I

~

~

I I

940610 l3:46

'4.0

~ LINEARHEAT GENERATION RATE GR LIMITFOR USE IN SPECIFICATION 3.2 4 The LHGR limitfor use in Technical Specification 3.2.4 sha1l not exceed the values shown in Figures 4.1 through 4.5.

Washington, Nuclear-Unit 2 COLR 94-10, Revision 0

$Esg

$48 RERRssmS Esp Ess/Esg gs s Ess E Es

.,),m L~.L) IJ ILL~H.:. LI. 8

'i--'Pllglll /I~lb)I~) Illll~) Ig Ill~i REsmsEEsmmsgkp'4EsgREssggENPgggggEFREsgmss glRg EPEE EEX EPEE EWEEWlhhs 0

WEWE WEWRWEXEEWEEEW EWE sssE Rsvp IEGER EsssssEshhi 1ELRLsERERREERRRE LRER WEE WEEP EWW WWEEEEEEEEOVWEW WEEWEEWEEWEEEWWEWEE EEX WXWE EEE WEE EEE WW$'OEO EEWXEXXEgEEEWRRW Eg WgEgmEEWggEWgggPEWEgPWPggWWEgWPXEPEENEEPEEXag EPP RWERREXWF WEEEWLCWOERSEEESRE~EW WEX XEXXWXEES WEEEWWl~WEEEEXEXEXXP WEE EXXXEEXEO IEEEWWSilEEEEEWXCEEE EXEX EEWgWWEEi

~

~

EEEWWEE'.%XEEEWEEWEWWWEEWg W

X. EPEE 8 EEEWWEWk PEEWEE W

EE

%)5 gg 5 Qe EEECEEPEELOEPEEEQW PRCE gWEW gXEXg gXWEEWEEggEgEEEEWmgEEgm WWEW PEEWEE WEE WEWEWEERLi REEEEEWEEX II WEEWEEEEEa EEEE5EP EP EEEE8 EEEE WWXEE E

EEE g

gg 5 E5 EPEE gllgg P

PEEWEQEPX EEW XEEXPQEWEWXEWEQWEEXEEWP2'%EWXEE

~WN NWWW WCWW WWQ RWEaRWWWWaaWWWEWEWWEWWWW h~e5 PXW XXEEgEEEW EEE EEEWagEEWEWEXWEEEEWWEaEE Eah E

EEXEEEEE EEEWX EEE WEEPS WEXEWEWE WEEXXEXOWE EEWE I

I ~ ~

I II~

III I III III I III II ~

~ I ill

~ ill I

~

~

I I

~

~

~

~

i "i iii'

"il i'mmmwwwmmwmwmwCa N

N N

N N

Ikk Ik kk kkkkkkligkg)kkkklgkk kkkkkkiI Igkkkklx gPk I gA NN g hj N

gA N

N N

N A NA A

A iII

~ I iIIIIIIIIakl,sill LIIIIII.IIII.I Illl.i kklklkkkk llkIIkkkkI~ hPkkk Ikkkkkkkkgkkllkllk kkPglk Ill II IIlk I I I L ha%

kl IIIIIillkklkII I iii lkliliIIkkIIHliliI IIIIlkhalkIIIllilllllklklI Llil lANI AA AAA AAAN

>0 ANNA NA AAA A A A A I I 11llllkllIlklh5 IIIIIIIIIIILII rAAA

'AAAAAAAANAAAASliWAANAAAAAAAAAAAAANN

~kkkkkkkkkkkkkkkllEklkkkkllkkkkkkkk

~

kk kksssssssssssssss ILk IIIILIILllllklkLkhkkkk

~I II ~ lkkiklk kkllkkkk kkkkikkIIklkkkkkkikkkkk~kkk/

g i I',ilii';,g i i jjjliligiiI

~ I ~ ~

I III II ~

~ i lil I I I I

~ ~ III

14.0 8.0 LHGR 13.7 13.7 7.0 Average Planar Exposure 0

15,000 60,000 7.0 6.0 0

10,000 20,000 30,000

'0,000 Average Planar Exposure (IVIWd/MT)

Linear Heat Generation Rate (LHGR) Limit Versus Average Planar Exposure

, SPC 9x9-1X LFA Fuel 60,000 Rgure 4.3

I S

ROSS S

SS S

8%8 I

e I8 0

%0 g pig gll I Igp5glgggp 5CgRQ p555gl5g gLISILSSRgREi5liRgSgg RRIIRgR

~IIILRS LVRERSEI55555555LL5$ 555 5 5 i+i+i+ii+S g 55555 55pQS RSRSO aa ear

~5

%55 55 8555555SWWQROWQS55 0 88RW QRRRQREQRRRQQSORQQQSOS OSIS,...,,

OSQQSSSSREOSA OQSS55 0

iSSSQASSOSWS55555S OO 888 5

RQS55555555555558 SW WRR Weaaaewar 5 58555555%55SOSRSSR ar ru aeSSrarrrra sraaaarxeaaaaaaaaa RiSQOSRQSQSASSSOSOSOWRQREE555ASRIERSRES 50 50 SiOiOQOQS SiWOOWQQQS SS gag faj aggVgPg fa55lgl~s~allapRFeaaVallag QS 5 555 55555585 OS585 5 QSSQA 55 885 88 58 WQSOOS 5 5

S 8 88558888888

MM MMM M

M M

M M

M M

5)

M M

~gg%$ 5)R~%4lggg51PI RRE SE i PQIEI

~

,e:ia:aa.

I'.lsea'. -.a a a

aalaa.h

'ace.aaa aaaaeua ma~qeamaa emaaaae aa~ea S

i ii)

RSII Hi pisa iilHp A 5 MMMMMOSMMRaeaaraa aaaSMMMMMMMMMMMMMMMMMEIMMRMMS

~551M Sggl18855$

~ RSSSSSASSkpLRARSAARA4g%5555 RMMMMM M MM M

M M

MOM M

MM MMM 5 MMMMMO ah era a i:.ila i la5s iiahi:ih.h ilibelli

~ III I

~ ~ I I III i I iil

~ II'

941229 14:38

'5:0 'MFHR HE 5.1 R

rts for Curient C cle 5.1.1 5.1.2 5.1.3 5.1.4 EMF-94-095, "WNP-2 Cycle 10 Plant Transient Analysis," Siemens Power Corporation, June 1994.

EMF-94-096, "WNP-2'ycle 10 Reload Analysis,"

Siemens Power Corporation, June 1994.

SPCWP-94-041, "Licensing Results Supporting Section 3/4.2 of the WNP-2 Technical Specifications for Cycle 10," Letter from YUFresk, Siemens Power Corporation, to RA Vopalensky, Supply System, April 1, 1994.

SPCWP-94-062, "STAIF Stability Results in Support of WNP-2 Cycle 10,"

Letter from YU Fresk, Siemens Power Corporation, to RA Vopalensky, Supply System, June 14, 1994.

SPCWP-94-042, "Licensing Results Supporting Section 2.1 of the WNP-2 Technical Specifications for Cycle 10," Letter from YUFresk, Siemens Power Corporation, to RA Vopalensky, Supply System, April 1, 1994.

SPCWP-94-068, "SPC Comments on WNP-2 Cycle 10 Draft COLR," Letter from YU Fresk, Siemens Power Corporation, to RA Vopalensky, Supply System, June 23, 1994.

RDW:94-092, "WNP-2 Cycle 9 Core Operating Limits Report - GE11 Lead Use Assemblies," Letter Born RD Williams, GE Nuclear Energy, to DL Whitcomb, Supply System, June 21, 1994.

ABBWP-94-040, "SVEA-96 Lead Fuel Assembly Treatment in WNP-2 Cycle 10 Core Operating Limits Report," Letter from CG Schon, ABB Combustion Engineering Nuclear Operations, to RA Vopalensky, Supply System, June 15, 1994.

SPCWP-94-108, "Improved Reduced Flow MCPR Operating Limits for WNP-2 Cycle 10," Letter from YUFresk, Siemens Power Corporation, to RA Vopalensky, Supply System, December 12, 1994.

RDW:94-162, "WNP-2 Cycle 10 Core Operating Limits ReportRev. 1,"

Letter from RD Williams, GE Nuclear Energy, to DL Whitcomb, Supply System, December 14, 1994.

NFBWR-94-055, "SVEA-96 LFA Flow-Dependent MCPR Limits," Letter from CG Schon, ABB CENO Fuel Operations, to R Vopalensky, Supply System, December 22, 1994.

"Washington Nuclear-Unit 2 COLR 94-10, Revision )

5.2 Licen in T ical rt in Technical S ification 6

.3 2 5.2.1 5.2.2 ANF-1125(P)(A) and Supplements 1

and 2,

"ANFB Critical Power.

Correlation," Advanced Nuclear Fuels Corporation, April 1990.

"NRC Approval of ANFB Additive Constants for 9x9-9X BWR Fuel," Letter from RC Jones, NRC, to RA Copeland, Advanced Nuclear Fuels Corporation, November 14, 1990.

Washington Nuclear-Unit 2

-35a-COLR 94-10, Revision 1

940523 11:03

'.2.3 ANF-524(P)(A), Revision 2 and Supplements 1 and 2, "Advanced Nuclear Fuels Critical Power Methodology for Boiling Water Reactors,"

Advanced Nuclear Fuels Corporation, November 1990.

5.2.4 5.2.5 5.2.6 ANF-913(P)(A), Volume 1, Revision 1 and Volume 1, Supplements 2, 3, and 4, "COTRANSA2: A Computer Program for BoiTing Water Reactor Transient Analyses," Advanced Nuclear Fuels Corporation, August 1990.

'I ANF-CC-33(P)(A), Supplement 2, "EGDPZ: A Generalized Multirod Heatup Code with 10 CFR 50, Appendix K, Heatup Option,," Advanced Nuclear Fuels Corporation, January 1991.

XN-NF-80-19(P)(A), Volume 1, Supplements 3 and 4, "Advanced Nuclear Fuels Methodology for Boiling Water Reactors:

Benchmark Results for the CASMO-3G/MICROBURN-B Calculation Methodology," Advanced Nuclear Fuels Corporation, November 1990.

5.2.7 XN-NF-80-19(P)(A), Volume 4, Revision 1, "Exxon Nuclear Methodology for Boiling Water Reactors:

Application of the ENC Methodology to BWR Reloads," Exxon Nuclear Company, Inc., June 1986.

5.2.8 XN-NF-80-19(P)(A), Volume 3; Revision 2, "Exxon Nuclear Methodology for Boiling Water Reactors THERhiEX: Thermal Limits Methodology Summary Description," Exxon Nuclear Company, Inc., January 1987.

5.2.9 XN-NF-85-67(P)(A), Revision 1, "Generic Mechanical Design for Exxon Nuclear Jet Pump BWR.Reload Fuel," Exxon Nuclear Company, Inc.,

September 1986.

5.2.10 ANF-89-014(P)(A), Revision 1 and Supplements 1 and 2", "Generic Mechanical Design for Advanced Nuclear Fuels 9x9-IX and 9x9-9X Reload Fuel,"

Advanced Nuclear Fuels Corporation, October 1991.

5.2.11 XN-NF-81-22(P)(A), "Generic Statistical Uncertainty Analysis Methodology,"

Exxon Nuclear Company, Inc., November 1983.

5.2.12 NEDE-24011-P-A-6, "General Electric Standard Application for Reactor Fuel," GE Nuclear Energy, April 1983.

5.3 E Nuclear En r d ABB C m u tion En ineerin Nuclear e

tion Lead Fuel A sembl 5.3.1 "GEll Lead Fuel Assembly Report for Washington Public Power Supply System Nuclear Project No. 2, Reload 5, Cycle 6," GE Nuclear Energy, December 1989.

Washington Nuclear-Unit 2 COLR 94-10, Revision 0

5.4 5.3.2 5.3.3 5.3.4 UK 90-126, "Supplemental Lead Fuel Assembly Licensing ReportSVEA.9$.

LFAs for WNP-2Summary,." ABB Atom', January 1990.

ATOF-91-120, "Assembly Treatment in WNP-2 Cycle 7 Core Operating LimitsReport," Letter from WR Harris, ABBAtom, to DLWhitcomb, Supply System, May 1, 1991.

ABBWP-94-039, "WNP-2 SVEA-96 Lead Fuel Assembly Operating Limit MCPR," Letter &om CG Schon, ABB Combustion'Engineering Nuclear Operations, to RA Vopalensky, Supply System, June 15, 1994.

f r xten Li imi An L

5.4.1 5.4.2 5.4.3 "Reactor Vessel Internals Evaluation Task Report for WNP-2 Power Uprate Project," GE Nuclear Energy, April 1993 (DRAFT).

"WNP-2 Power Uprate Containment Response Evaluation Input to Engineering Report," GE Nuclear Energy, January 19, 1993 (DRAFT).

GE-NE-189-69-1092, "Effects ofAdjustable Speed Drive on Reactor Internal Vibration at the WNP-2 Nuclear Power Plant," GE Nuclear Energy, October 1992.

5.4.4 5.4.5 5.4.6 GE-NE-189-34-0392, "Jet Pump Sensing Line Vibration Test for Washington Nuclear Project 2," GE Nuclear Energy, March 1992.

NEDE-24222, "Assessment ofBWR Mitigation of ATWS, Vol. II (MlREG 0460, Alternate No. 3)," General Electric Company, December 1979.

"Washington Nuclear Project Unit 2 System Evaluation Report for Power UprateReactor Recirculation Control System,"

GE Nuclear

Energy, February 1, 1993.

.5.4.7 5.4.8 5.4.9 GE Report 22A7104, Revision 0, "Dynamic Load ReportFuel Vertical Support," GE Nuclear Energy, June 30, 1982.

"Fuel Lift Non-Proprietary Letter," Letter from DM Kelly, GE Nuclear Energy, to WC Wolkenhauer, Supply System, February 15, 1993.

93-PU-0054, "ELLLA Related Power Uprate Task Reports," Letter from DM Kelly, GE Nuclear Energy, to WC Wolkenhauer, Supply System, June 3, 1993.

Washington Nuclear-Unit 2 COLR 94-10, Revision 0