ML17286A893
| ML17286A893 | |
| Person / Time | |
|---|---|
| Site: | Columbia |
| Issue date: | 06/30/1991 |
| From: | WASHINGTON PUBLIC POWER SUPPLY SYSTEM |
| To: | |
| Shared Package | |
| ML17286A892 | List: |
| References | |
| COLR-91-7, COLR-91-7-R, COLR-91-7-R00, NUDOCS 9106240264 | |
| Download: ML17286A893 (47) | |
Text
COLR 91-7 Rev.
0 Controlled Copy No.
MNP-2 CYCLE 7 CORE OPERATING LIMITS REPORT June 1991 WASHINGTON PUBLIC POWER SUPPLY SYSTEM 9106240264 910617 PDR ADQCK 05000397 P
=
0 v'
C C
I
PAGE 1
1 2
3 4
5 6
7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 MNP"2 CYCLE 7 CORE OPERATING LIMITS REPORT LIST OF EFFECTIVE PAGES REVISION 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0.
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 LEP-1
~ ~
1g
WNP-2 CYCLE 7'ORE OPERATING LIMITS REPORT, TABLE OF CONTENTS
1.0 INTRODUCTION
AND
SUMMARY
PAGE NO.
2.0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR) LIMIT 2
FOR USE IN TECHNICAL SPECIFICATION 3.2.1 3.0 MINIMUM CRITICAL POWER RATIO (MCPR) LIMIT FOR USE IN TECHNICAL SPECIFICATION 3.2.3 4.0 LINEAR HEAT GENERATION RATE (LHGR) LIMIT FOR USE IN TECHNICAL SP ECIFICATION 3.2. 4
5.0 REFERENCES
10 33 39 WASHINGTON NUCLEAR-UNIT 2 COLR 91-7 REV.
0
l l
lt 1
I r
g dC gh V';r I W~
I
~
4 't1gQ p
c t
F.
P 1
1J, I
1 0'NTRODUCTION AND
SUMMARY
This report provides the AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR) limits, the MINIMUM CRITICAL POWER RATIO (MCPR) limits, and the LINEAR HEAT GENERATION RATE (LHGR) limits for WNP-2, Cycle 7
as required by Technical Specification 6.9.3.1.
As required by Technical Specifications 6.9.3.2 and 6.9.3.3, these limits have been determined using NRC-approved methodology and are established such that all applicable limits of the plant safety analysis are met.
The thermal limits given here are developed in the Cycle 7
Transient Analysis Report (Reference 1.0),
and the Cycle 7 Reload Analysis Report (Reference 2.0).
Included in the WNP-2 Cycle 7
reload are four Advanced Nuclear Fuels (ANF), four General Electric (GE),
Lead Fuel Assemblies (LFA's).
The four ANF LFA's were inserted at the beginning of Cycle 5
and were designed to be compatible with the reload utilized for Cycle 5.
The four GE and ABB LFA's were inserted at the beginning of Cycle 6
and were designed to be compatible with the reload fuel utilized for Cycle 6.
The Supply System will load the LFA's in core locations which have been analyzed to have sufficient margi n such that the LFA's are not expected to be the limiting assemblies in the core on either a
nodal or an assembly power basis.
This approach is intended to prevent the possibility of the LFA's from ever being the limiting fuel assemblies.
The GEll LFA is described in the GEll Lead Fuel Assembly Report for Washington Public Power Supply System Nuclear Project No.
2 Reload 5,
Cycle 6
(Reference 3.0).
This reference describes the design goals of the GE11 LFA's, and provides support for monitoring the GE11 LFA's to thermal limits based on the ANF Sx8 reload fuel thermal limits.
The SYEA-96 LFA is described in the Supplemental LFA Licensing Report -
SYEA-96 LFA's for WNP-2 (Reference 4.0).
The process for developing thermal limits for the SVEA-96 LFA fuel based upon the ANF 8x8 reload fuel thermal limits is described in this Reference.
The MAPLHGR limit for the GEll'FA's use the same values as the ANF Bx8 reload fuel, but a ratio (64-2I81-7) is applied to account for the, differing number of fuel pins in each assembly.
The MAPLHGR limit for the SVEA-96 LFA's use the same values as the ANF Bx8 reload fuel, but a ratio (64-2/100-4) is applied to account for the differing number of fuel pins in each assembly.
Furthermore, the MAPLHGR limit on the SVEA-96 LFA's are multiplied by 1.04 to account for the underestimation of the local power in the output from POWERPLEX compared to the ABB Atom design.
A multiplier of 1.02 is applied to the MAPLHGR limit to account for POWERPLEX underestimating exposure compared to ABB Atom methods.
WASHINGTON NUCLEAR-UNIT 2 COLR 91-7 REV.
0
A power dependent MCPR is specified in.this report to define operating limits at other than;rated power conditions.
For this
- core, feedwater controller failure transients from reduced power are calculated to be more severe than from full power conditions, due to the greater change in feedwater flow.
A flow dependent MCPR is specified
-in this report to define operating limits at other than rated flow conditions.
The reduced flow MCPR operating limit provides bounding protection for the limiting recirculation flow increase transient.
At less than rated conditions, the MCPR is the maximum of the rated
This stipulation assures that the safety limit MCPR will not be violated throughout the WNP-2 operating regime.
Preparation, review and approval of this report were performed in accordance with applicable Supply System procedures.
The specific topical report revisions and supplements which describe the methodology utilized in this cycle specific analysis are referenced in Section 5.0.'
2;0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR) LIMIT FOR USE IN ECHNICAL SP CIFICA ION 3.2.1 The APLHGRs for use in Technical Specification 3.'2. 1 shall not exceed the limits shown "in Figures I, 3,
4, 6,
and 7
when in two-loop operation and Figures 2; 3, 5,
6, and 7
when in single loop operation.
The limits for 'each fuel type as a function of AVERAGE PLANAR EXPOSURE+ are provided for the.
General Electric init'ial core fuel; Advanced Nuclear Fuels fuel, including the ANF LFA's, SVEA-96 LFA fuel, and GE11 LFA fuel.
WASHINGTON NUCl EAR-UNIT 2 "2-COLR 91-7 REV.
0
13.0 12.5 12.0 Two Loop Operation C ~
11.5 0.
0) 11.0 o o 10.5 E eC ID 10.0 C
9.5 9.0 8.0 12.1 12.1 12.7 12.8 12.9 12.7 11.7 10.8 10.0 9.4 0.0 1,102 5,512 11,023 16,535 22,046 27>558 33,069 38,581 44,093 AVERAGE PLANAR Q~QQQ gxPoojLlQg 5,000 10,000 15,000 20,000 25,000 30,000 I
Average Planar Exposure (MWD/MT) 35,000 40,000 45,000 Maximum Average Planar Unear Heat Generation Rate (MAPLHGR)Versus Average Planar Exposure lnltlal Core Fuel Type BCR183 Figure 1 900541.1 (580
th (O
0 zL O
Q foal 11.0 10.5 10.0 5
m o 9.5 O
9.0 8.5 E a D (g E>>
'x e 8.0 7.5 7.0 6.5 10.16 10.16
'l0.66 10.75 10.84 10.66 9.83 9.07 8.40 7.90 0
1,102 5,512 11,023 161535 22,046 27,558 33,069 38,581 44,093 AVERAGE PLANAR MAEQfGB RXLQSUBR Single Loop Operation 5,000 10,000
~
15,000 20,000 25,000 30,000 35,000 40,000 45,000 Average Planar Exposure (MWO/MT)
Maximum Average Planar Linear Heat Generation Rate (MAPLHGR)Versus Average Planar Exposure InltlalCore Fuel Type 8CR183 Figure 2 90054 l.4 (5I90
Cl 0
COI 02 tO 14.0 13.5 13.0 12.5 12.0 t5 ~
11.5 P.o 110 E g 10.5 D Q E ~
g Pa 10.0 X
9.5 C
9.0 RXEQ 0
5,000 10,000 15,000 20,000 24,420 30,000 35,000 40,000 44,760 13.8 13.8 13.8 13.8 13.8 13.8 12.2 10.7 9.2 7.8 AVERAGE PLANAR 5lhKBQQ
'tUQg Two Loop and Single Loop Operation 8.5 8.0 7.5 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 Average Planar Exposure (MWD1MT)
Maximum Average Planar Linear Heat Generation Rate (MAPLHGR)Versus Average Planar Exposure ANF8x8 Reload Fuel 00054(.3 (58l)
Figure 3
12.5 12.0 Two Loop Operation 11.5 h Q mR m 8 l1.0 U) tt 10.5 E o 10.0 al m mol 95 9.0 8.0 12.5 12.5 12.5 12.5 12.0 11.5 10.9 10.4 9.8 9.3 0
5,000 10,000 15,500 20,000 25>000 30,000 35,000 40,000 45,000 AVERAGE PLANAR l8hP~
RXPoGLSR 5,000 10,000 -,
15,000 20,000 25,000 30>000 35,000 40,000 45,000 Average Planar Exposure (MWD/MT)
Maximum Average Planar Linear Heat Generation Rate (MAPLHGR)Versus Average Planar Exposure 9x9 - 9X Reload Fuel and ANF 9x9 LFA's Figure 4 Sok>41.2 (4I91)
11.0 10.5 Single Loop Operation
'l0.0 Cl Ul D O
o'.0 ct hC (g
8.5 E<<
x
~e
<x 80 7.5 7.0 l1.2 11.2 11.2 11.2 11.2 10.8 9.2 7.6 6.3 0
5>000 10,000 15,000 18,860 20,000 25,000 30,000 35,000 AVERAGE PLANAR 5'j=HQB RXLQRUfK 6.0 0
5,000 10,000 15,000 20,000 25,000 30,000 35,000 Average Planar Exposure (MWD/MT)
Maximum Average Planar Linear Heat Generation Rate (MAPLHGR)Versus Average Planar Exposure 9x9-9X Reload Fuel and ANF SxS LFA's Figure 5 000541.6 (490
10.0 9.5 9.0 8.5 O
Dl 01+
80 Ul C CD 0 7.5 7.0 E
X Q 6.5 C
6.0 5.5 5.0 9.5
-~ 9.5 9.5 9.5 9.5 9.5 8.9 8.3 7.7 7.3 0
5,000 10,000 15,000 20,000 24,420 27,280 30,150 33,050 35,000 AVERAGE PLANAR MhELkQB RXEQSUfK Tvto Loop and Single Loop Operation 4.5 5,000 10,000 15,000.
20,000 25,000 30,000 35,000 Average Planar Exposure (MWD/MT)
Maximum Average Planar Linear Heat Generation Rate (MAPLHGR)Versus Average Planar Exposure SVEA-96 Lead Fuel Assemblies Figure 6 S00541.7 (5/9n
12.0
/ ~
11.5 1'I.O 10.5 15 o-g 10.0 L c0 9.5
)
40 cf e 9.0 m~
85 I
8.0 7.5 7.0
'11.6 1 l.6 11.6 11.6 11.6 11.6 10.9 10.2 9.5 9.1 0
5,000 10,000 15,000 20,000 24,420 27,280 30,'150 33,050 35,000 AVERAGE PLANAR hlhELliGB E<~OMR Two Loop and Single Loop Operation 6.5 6.0 0
5,000 10,000 15,000 20,000 25,000 30,000 35,000 Average Planar Exposure (MWDIMT)
Maximum Average Planar Linear Heat Generation Rate (MAPLHGR)Versus Average Planar Exposure GE11 Lead Fuel Assemblies Figure 7 900541.8 (3/S1)
4 ~r
~I 3.0 MINIMUM CRITICAL POWER RATIO (MCPR)
LIMIT FOR USE IN TECHNICAL PECIFICA ION 3.2.3 The MCPR limit for use in Technical Specification 3.2.3 shall be:
a)
Greater than or equal to the greater of the limits determined from Table 1 and Figures 8 through 27.
The MCPR limit is valid up to 104 percent power and up to 106 percent core flow.
~
~
a
~
~
~
I E
C
-t + ~
1 V At AA II 5
(1
~
WASHINGTON NUCLEAR-UNIT 2 COLR 91-7 REV.
0
Table I WNP-2 Cycle 7 MCPR Operating Conditions
, SlJCPR e'L07
<4500 i%N$%
SlNCPR ~ 1.1I 8$N ~ IeEOC SLMCPR ~ 1.11 FFrR ANF8x8 ANF9x9 GE8xs G""11LFA ANF9x9 SVEA 96 lFA 'FA ANF 8x8 ANF4x9 ANF9x9 G=. 8x8 LFA GEI1LFA SVEA96 lFA ANF 8x8 ANF9x9 ANF9x9 SVEA96 GE8x8 LFA LFA GE11LFA Full Power Fhw Dependent Power Dependent 1.23@
1.23l" 1.ZP 1.36 Rgwe8 Fig.10 Rg.10 Fig.11 Fig. 10 1.29 123 1.35 1.45 Figure 9 Fig. 14 Fig. 14 Fig. 15 Fig. 14 1.31 1.31 1.37 I 48 Figure 9 Fg. 18 Fq. 18 Fig. 19 Rg, 18 i$$$i'ull Power Row Dependent Polver Dependent 1.23nl 1.23ni 1'.36 Figure 8 Fig. 12 Fig. 12 Rg. 13 Fig. 12 1.34 1.35 1.42 1.52 Figure 9 Fig. 16 Fig. 16 Fig. 17 Rg. 16 Not analyzed RPT inoperable; NSS Full Power Row Dependent Power Dependent I.ZP 1.ZP 1.23ni 1.3"6 Figure 8 Fg. 20 Fig. 20 Fig. 21 Fig. 20 1.37 1.38 1.48 1.57 Figure 9 Fig. 22 Fig. 22 Fig. 23 Fxl. 22 Not analyzed ass inoperable; NSS Full Power Rolv Dependent Power Dependent 1.2P 1.2P 1.23<"
1.36 Rgure 8 Rg. 24 Fig. 24 Fg. 25 Fig. 24 1.35 1.35 1.40 I.54 Failure 9 Fig. 26 Fig. 26 Fig. 27 Fig. 26 Not analyzed SLO; NSS Full Power Flow Dependent Power Dependent 1.56
].36 1.36 1.85 None Fig. 10 Fig. 10 Rg. 11 Rg. 10 1..6 1.36 1.36 1.85 None Fig. 14 Fig. 14 Fig. 15 Fig. 14 1.56 1.36 1.37 1.85 None Fig. 18 Fig. 18 Rg. 19 Fg. 18 SLO;TSSS Full Power rRow Dependent Power Dependent I.M 1.36 1.36 1.85 None Fxl. 12 Fxl. 12 Fig. 13 Fig. 12 I 36 1.36 1.85 None Fg. 16 Fq. I6 Rg. 17 'g.16 Not analyzed SLO;RPT fnop.; NSS Full Power Flow Dependent Power Dependent, 1.56 1.36 1.36 1.85 1.56 1.38 1.48 1.85 None None Fig. 20 Fig. 20 Fg. 21 Rg. 20 Fig. 22 Fig. 22 F@23 Fig. 22 Not analyzed
- Bypass Inoo.; NSS Fuil Power Flow Dependent Power Dependent 1.56 I.36 1.36 1.85 None Fig. 24 Fig. 24 Fig. 25 Rg. 24 1.56 1.36 1.40 1.85 None Fig. 26 Fxl. 26 Fg.27 Fig. 26 iilotanalyzed
'WASHINGTON NUCLEAR-UNIT 2 COLR 91-7 RFV.
0 SMSal.TI
NOTES FOR TABLE 1 Note 1:
hll j
p These MCPR values are ba'sed on the ANF Reload Safety Analysis performed using the control rod insertion times shown below (defined as normal scram time; NSS).
In the event that Surveillance
- 4. 1.3.2 shows these scram times have been
- exceeded, the plant thermal limits
'. associated with normal scram times default to the values, associated with Technical Specification scram times (3.1.3.4),
or Technical Specification Scram Speeds (TSSS),
and the scram insertion times must meet the requirements of Technical Specification 3.1.3.4.
'osition Inserted From Full Withdrawn Slowest measured average control rod insertion times to specified notches for all operable control rods for each group of. 4. control rods arran ed in a two-"b -two arra (seconds)
Note
~.
A'otch 45 0"404."
Notch 39
.t 0 660 Notch 25-<
1.504 Notch 5
- 2. 624 b
2:
The control rod withdrawal error anal ysi s, whi ch provi des the limiting MCPR full power values for exposures less than 4500 MWD/MTU, was performed with the nominal rod block monitor (RBM) setting value.of 1.06.
Use". of the nominal setpoint is in accordanc'e with the"-"methodology "described in Reference 11.0, consi stent with approved industry pr actice.
~
'ASHINGTON NUCLEAR-UNIT 2 COLR. 91-7 REV.
0
2.1 2.0 1.9 Two Loop Operation 1.8 E
1j 1.6 0
1.5 0O 1.4 1.3 1.2 1.0 20 30 OTAL CORE YLBEK 103 90 80 70 60 50 39.7 30 204 40 MCPR T
OPERATING llbQI KO 1.070 1.162 1.241 1.320 1.402 1.488 1.583 1.721 1.915 50 60 jo 80 90 100 Total Core Flow (% Rated)
Reduced Flow MCPR Operating Llrnlt Versus Total Core Flow AllFuel In NNP-2 Cycle 7
<4500 MWDIMTU Figure 8 90054LD (58))
2.1 2.0 Two Loop Operation 1.8 E
1.7 1.6 0
1.5 O
1.4 1.3 1.2 MCPR OPERATING LIHK 1.110 1.207 1.289 1.374 1.460 1.551 1.649 1.790 1.984 TOTAL CORE ElQKfRK 103 90 80 70 60
'~ 50 39.7 30
.20 1.0 20 30 40 50 60 70 80 90 100 Total Core Flow (% Rated)
Reduced Flow MCPR Operating Llmlt Versus Total Core Flow AllFuel ln WNP-2 Cycle 7 24500 MWD/MTU Applicable to FFTR operation Figure 9 900541.20 (581)
Ol D
1C1 0
R OI Ol C:
1.60 C
L 1.50 Two Loop and
'ingle Loop Operation E
g 1AO 0
K Q.O 1.30 1.20 MCPA Opssulnp llCPA lhat OpocaUnp ANF pal, AISLE ps9 llnE GE 9a4. GE lllEA EVEA99lfA 25 1.50 1.53 47 1 40 1.43 65, 1.32 1.35 85
=
1.26 1.29 104 1.20 1.23 n
ED XI 20 30 40 50 60 70 80 Percent of Rated Power
" Reduced Power MCPR Operating Limit Versus Percent of Ratod Power NSS, RPT Operable, Bypass Operable
- ANF 8x8, ANF gx9, GE 8x8, GE 11 LFA, SVEA 96 LFA
<4500 MWD/MTU 90 100 110 Figure 10 900541.15 (581)
tJ Ql (Q
O x
O rD 4
M 1.60 1.50 7
7 E
4 Two Loop and Single Loop Operation g
7 E
1.40 0K lL 1.30 LICPA Operating Powar Llmll 25 1.53 47 1.43 65 1.35 85 1.29 104 1.22 1.20 n
C)
Kl 20 30 40 50 60 70 80 90 100 110 Percent of Rated Power Reduced Power MCPR Operating Llmlt Versus Percent of Rated Power NSS, RPT Operable, Bypass Operable ANF 9x9 LFA
<<45OO MWOIMTu Figure 11 90054 l.2l (58')
Ih D
Kl O
z O
III ID D
M 1.60*
1.50
's V
Two Loop and Single Loop Operation E
g 1AO Q0 K
IL O
1.30 1.20 ilCFK LlCPA OPO(allhy Llall 0$4fAllAQ AllFls9, AllF9@9 LID Fowet GE 9@9. CEll LFA SVEA 99 LFA 25 1.52 l.57 47 1.42 1.47 65 1.34 1.39 85 1.29 1.34 104 1.24 1.29 Fx, N
8-8, W
n CD 20 30 40 50 60 70 80 100 110 LD I
Percent of Rated Power Reduced Power MCPR Operating LIInlt Versus Percent of Rated Power TSSS, RPT Operable, Bypass Operable ANF 8x8, ANF 9x9, GE 8x8, GE11 LFA, SVEA 96 LFA
<4500 MWDIMTU Figure 12 90054 I.22 (5ISI)
1.60 1.50 Two Loop and Single Loop Operation E
1.40 5
I Cl.0 00 K
fL 1.30 1.20 LICPA Oporsllng powys I.lmll 25
.1.54 47 1.45 65 1.38 85 1.33 104 1.28 20 30 40 50 60
.70 80
90 100'10 Percent of Rated Power Reduced Power MCPR Operating Llmlt Versus Percent of Rated Power TSSS, RPT Operable, Bypass Operable ANF 9x9 LFA
<4500 MWD/MTU Figure 13'005+.23'(581l
EG Cl O
x O
Glhl D
1.60 1.50 Two Loop and Single Loop Operation E
g 1AO 0K 0
1.30 1.20 25 47 65 85 104 1.54 1.59 1 44 1A9 1.36 l.41 1.30 1.35 1.24 1.29 IlCPA 41CPA Oprrrarrrr4 LErr4 Gprrarlrr4 AlrF4r4, ArlF 4r4 Lbrrrr POrrrr GE4r4,GEll LFA SVEA44LFA n
C)r 20 30 40 '0 60 70 80 90 100 110 Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, RPT Operable, Bypass Operable ANF 8x8, ANF 9x9, GE 8x8, GE11 LFA, SVEA 96 LFA 24500 MWD/MTU Figure 14 00054 l.24 (580
Ih Cl CI 2:
Cn ED 0I M
'l.10 1.50 Two Loop and Single Loop Operation
.0 E
g 140 ID ru 0
O gfL O
1.30 1.20 LICPA Operating Power Llmlr 25 1.57 47 1.47 65 1;39 85 1.33 104 1.26 nO Kl 20 30 40 50 60 70 80 go 100
'10 P
Percent of Rated Power Reduced Power MCPR Operating Llrnlt Versus Percent of Rated Power NSS, RPT Operable, Bypass Operable ANF 9x9 LFA 04500 MWD/MTU
~ Figure 15 0005rrI.25 (58l) 0-
1.70 Two Loop and Single Loop Operation E>
150 0
1.40 lL O
1.30
@CPA
@CPA Oprrarlrrrr Uml oprrrrrrr4 ANF4r4.ANF4r4 4lm4 Po>>rr CE4r4,GErrlFA SVEA444FA 25 1.56 1.63 47 1.46 1.53 65 1.38 1.45 85 1.33 1.40 104 1.28 1.35 20 30 50 60 70 80 90 100 110 Percent of Rated Power Reduced Power MCPR Operating Llrnlt Versus Percent of Rated Power TSSS, RPT Operable, Bypass Operable ANF 8x8, ANF 9x9, GE 8x8, GE11 LFA, SVEA 96 LFA 24500 MWD/MTU Figure 16 90054 l.26 (5r91)
4 ~
1.60 1.50 Two Loop and Single Loop Operation E
1AO R.
K fL 1.30 1.20 MCPR
'parasnCr Pa~or Lhalr 25 1.59 47 1.49 65 1.42 85 1.37 104 1.32 20 30 40 50 60
- 70 80 90 100 110 1
Percent of Rated Power Reduced Power MCPR Operating Llrnlt Versus Percent of Rated Power TSSS, RPT Operabla, Bypass Operable ANF 9x9 LFA 24500 MWD/MTU Figure 17 900541.27 j5/91)
II)
Cl O
R nI Ill 4
a M
1.7 1.6 Two Loop and Single Loop Operation E
g 1.5 CL0 1.4 MCPR MCPA OPERATIIIG LIMIT OPEAATIIIG A!IF Qa8, AIIF949 LINT POPOVER GEQx8 GE11LFA SVEA96LFA 1.3 25 47 104 1.61 1.67 1.51 1.57 1.27 1.33 n
C)
IXl 20 30 40 50 60, 70 80 90 100 Percent of Rated Power Kl rn(
C)
Reduced Power MCPR Operating Limit Versus Percent of Rated Power FFTR Operation NSS, RPT Operable, Bypass Operable
- ANF 8x8, ANF 9x9, GE 8x8, GE11 LFA, SVEA 96 LFA Figure 18 90054 I.80 (4591)
1.6 Two Loop and Single Loop Operation 1.5 E
C n.
1.4 0
K Q.O 1.3 MCPR OPERATING eumaa umz '-.
25 1.63 47 1.53 104 1.29 1.2 20 30 40 50 60 70.
80 90 100 Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power FFTR Operation NSS, RPT Operable, Bypass Operable ANF 9x9 LFA Figure 19 0
QIII az n
lY GI M
1.7 Two Loop and Single Loop Operation 1.5 0K o.O 1.4 MCPN MCPA OPENATNIG LIMI'r OPEAATING ANF 8r8, ANF Qr9 LIMIT POWER GE 848. GEII LFA SVEA 96 LFA 1.3 25 47 104 1.50 1.56 1.43 1.49 1.27 1.33 n
CD IXI 20 30 40 50 60 70 80 90 100 Percent of Rated Power XI 4
4D Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, RPT Inoperable, Bypass Operable ANF 8x8, ANF 9x9, GE 8x8, GE11 LFA, SVEA 96 LFA c4500 MWD/MTU Figure 20 900541.32 (581)
1.6 Two Loop and-Single Loop Operation 1.5 C
Ol C
III n.
1.4 0-0O 1.3 MCPR OPERATING RQNRB IJhlK 25 1.57 47 1.50 104 1.33 1.2 20 30 40 50 60 70 80 90 100 Percent of Rated Power Reduced Power MCPR Operating Llmlt Versus Percent of Rated Power NSS, RPT Inoperable, Bypass Operable ANF Gx9 LFA (4500 MWD/MTU Figure 21 80054 I.Ll
{591)
~
O.
a.
1.7 Two Loop and Single Loop Operation 1.6 E
n 0
o.
't.4 O
1.3 LICPR LICPR OPERATING LllllT OPERATING ANF SxS, ANF Sx9 LIIUT POSYER GE SxS, GEI T LFA SVEA 96 LFA 25 1.54
't.62 47 1.47 1.55 104 1.31 1.39 20 30 40'0 70 80 90 100 Percent of Rated Power Reduced Power MCPR Operating Llmlt Versus Percent of Rated Power NSS, RPT Inoperable, Bypass Operable ANF BxB, ANF 9x9, GE BxB, GE11 LFA, SVEA 96 LFA
@4500 MWD/MTU Figure 22 90054 I.34 (5tSI)
1.6 Two Loop and Single Loo Operation 1.5 E
a.
1.4 0K fL O
1.3 MCPR OPERATING EOOEB LlhuI 25 1.61 47 1.54 104 1.3T 1.2 20 30 40 50
-'0 70 80.;-
90 100 Percent of Rated Power I
Reduced Power MCPR Operating Limit
,Versus Percent of Rated Power NSS, RPT Inoperable, Bypass Operable ANF Sx9 LFA 24500 MWD/MTU Figure 23 90054 l.35 (bS I)
1.7 Two Loop and Single Loop Operation E
GI 1.5 0
K O
1.4 LICPII LICPII OPERATING LILIIT OPERATING ANF SrS, ANF SrS LIAUT PO'LVEII GE SrS, GE11 LFA SVEA 88 LFA 1.3 25 47 104 1.54 1.62 1.47 1.55 1.31 1.39 20 30 40 50 60 70 80 90 100 Percent of Rated Power Reduced Power MCPR Operating Llmlt Versus Percent of Rated Power NSS, RPT Operable, Bypass Inoperable ANF 8x8, ANF 9x9, GE 8x8, GE11 LFA, SVEA 96 LFA c4500 MWD/MTU Figure 24 80054 &8 (58l)
Two Loop and Single Loop Operation 1.5 E
a.
1.4 0
K IL O
I.3 MCPR OPERATING HNRB L5llI 25 1.59 47 1.52 104 136 1.2 20 30 40 50 60 70 80 90 100 Percent of Rated Power Reduced Power MCPR Operating Llrnlt Versus Percent of Rated Power NSS, RPT Operable, Bypass Inoperable ANF 9x9 LFA
<4500 MWD/MTU Figure 25
~ i 500541.37
III z
Cn ID Gl C
D FO 1.7 1.6 C
I IE Two Loop and Single Loop Operation E
g 15 0
K o.O 1.4 1.3 MCPA MCPR OPERATING LIMIT OPEIIATING ANF 848, ANF 949 LIMIT POWEA GE 8x8, GEII LFA SVEA 98 LFA 25 1.58 1.68 47 1.51 1.61 104 1.35 1.45 n
C) 20 30 40 50 60 70 80 90 100 Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, RPT Operable, Bypass Inoperable ANF BxB, ANF 9x9, GE BxB, GE11 LFA, SVEA 96 LFA
@4500 MWO/MTU Figure 26 9MS41.3&
(58 I)
1.6 Two Loop and Single Loop Operation 1.5 E
C a.
1.4 0K n.O 1.3 MCPR OPERATING
~ORB LSHX 25 1.63 47 1.56 104 1 40 1.2 20 30 40 50 60 70 80 90 100 Percent of Rated Power Reduced Power MCPR Operating Llrnlt Versus Percent of Rated Power NSS, RPT Operable, Bypass Inoperable ANF 9x9 LFA
~4500 MWDIMTU Figure 27 9005cras
$991)
O.
4.0 LINEAR 'EAT GENERATION RATE
( LHGR)
LIMIT FOR USE IN TECHNICAL SPECIFICATION 3.2.4 The LHGR limit for use in Technical Specification 3.2.4 for GE initial core fuel shall not exceed 13.4 kw/ft.
The LHGR limit for use in Technical Specification 3.2.4 for reload fuel shall not exceed the values shown in Figures 28, 29, 30, 31 and 32.
WASHINGTON NUCLEAR-UNIT 2 COLR 91" 7 REV.
0
Ih Ct O
2'.
Cn tD bI M
17.0 16.0 15.0 f
14.0 13.0 E
12.0 11.0 O
10.0 8.0 x
8.0 7.0 LUQB 15.62 15 62 15.10 14.71 14.19 14.13 14.06 14 06 14.00 13.93*
13.93 13 08 12.24 11.40 10 47 9.55 8 65 7.77 AVERAOE PLAIIAR CXRQSIIIK 0
510 2,580 5,230 7,940 10,470 13,220 15,990 18,780 21,590 24,420 27,280 30,150 33,050 35,960 38,900 41,S30 44.760 n
C)
Kl 6.0 0
10,000 20,000 30,000 40,000 Average Planar Exposure (MWD/MT) 50,000 60,000 70,000 Linear Heat Generation Rate (LHGR) Llmlt Versus Average Planar Exposure ANF Bx8 Reload Fuel Figure 28 90054 1. IO (5l91)
Ul CO O
2:
O CD CD 1
14 13 R
hC E
11 Pt-10 C=
O 9
8 CD 7
C 6
LHQB 13.1 13.1 13.1 13.1 7.3 AVERAGE PLANAR RXLQS~U 0
5,000 10,000 15,500 60,000 n
CO l
0 5,000 10,000 201000 30,000 40,000 50,000 60,000 70,000 80,000 Average Planar Exposure (MWD/MT)
Linear Heat Generation Rale (LHGR) Llmlt Versus Average Planar Exposure ANF 9x9-9X Reload and ANF Sx9-9X LFA Fuel Figure 29 00054 l.12
{519I)
4 14 5
E 0)
K C0 CDC 0)
(9 C$
CDx I
CD CDC 13 12 11 10 9
8 7
6
~G 13.7 13.7 13.7 13.7 13.0 11.5 10.0 8.5 7.0 AVERAGE PLANAR g}j~o'jUQg 0
5,000 10,000 15,000 20,000 30,000 40,000 50,000
'0,000 0
5,000 10,000
- 20,000
'0>000 40,000 50,000 60,000 70,000 80,000 Average Planar Exposure (MWD/MT)
Linear Heat Generallon Rata (LHGR) Llrnlt Versus Average Planar Exposure ANF 9x9 - IX LFAFuel Figure 30 000541.$ 1 (581)
QN tQ O
z A
EDhl D
M 12 10 9
AVERAGE PLANAR LtiGB E~OVBR 11.6 0 to 40,000 C) 0 10,000 20,000 301000 40>000 Average Planar Exposure (MNDIMT)
Linear Heat Generation Rata (LHGR) Llmlt Versus Average Planar Exposure SVEA-96 Lead Fuel Assemblies Figure 31 900541.13 (581)
01 ID (O
0 R
CA ID 01I I
D IO 14 13 hC 12 11 10 0
m 9
L't 8
I 6
Ltiaa 13.1 13.1 12.7 12.3 11.9 11.8 11.8 11.8 11.7 11.7 11.7 11.0 10.3 9.6 8.9 8.0 7.3 6.5 AVERAGE PI.AIIAA QZOSUIK 0
510 2,580 5,230 7,940 10,470 13,220 15,990 18,780 21,590 24,420 27,280 30,150 33,150 35,960 38,900 41,830 44,760 0
5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 Average Planar Exposure (MWD/MT)
Linear Heat Generation Rate (LHGR) Llmlt Versus Average Planar Exposure GE11 Lead Fuel Assemblies Figure 32 900541.14 iwii
'ye
5.0 REFERENCES
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 h
10.0 11.".0 12.0 13.0 ANF-91'-01," Revision 1, "'MNP-2 Cycle 7 Plant Transient Analysis Report"
, Advanced'Huclear Fuels Corporation, April 1991 ANF-91-02, Revision 1,
"WNP-2 Cycle 7 Reload Analysis Report",
Advanced Nuclear Fuels Corporation, April 1991 "GE11 Lead Fuel Assembly Report for Washington Public Power Supply System Nuclear Project No.
2 Reload 5 Cycle 6", General Electric Company, December 1989 (Proprietary)
UK 90-126, "Supplemental Lead Fuel Assembly Licensing Report-SVEA-96 LFA's for MNP-2",
ABB Atom, January 1990 (Proprietary)
ANFMP-91-0074, Y.U. Fresk, ANF to Manager, Central Contracts, Supply System, "Core Operating Limits", May 20, 1991 JTM:91-086, J.T.
Worthington to D.L. Whitcomb, Supply System, "MNP-2 Cycl e 7
Core Operating Limits
- Report, Contract NO.
C-21099, GE Lead Fuel Assemblies",
May 15, 1991 ATOF-91-120, M.R. Harris, ABB to D.L. Larkin, Supply
- System, "Assembly Treatment in WNP-2 Cycle 7
Core Operating Limits Report",
Nay 30,1991 ANF-89-014(P),
"Generic Mechanical Design for Advanced Nuclear Fuels 9x9-1X and 9x9-9X Reload Fuel",
Advanced Nuclear Fuels Corporation,
- Richland, WA, May 1989 f,
AHF-89-014(P),
Supplement 1,
"Generic Mechanical Design for Advanced Nuclear Fuels 9x9-IX and 9x9-9X Reload Fuel",
Advanced Nuclear Fuels Corporation, Richland,,
MA, June 1991 XN-NF-79-71(P), Revision 2, including Supplements 1,2 8 3(A),
"Exxon Nuclear Plant Transient Methodology for Boiling Mater Reactors",
Exxon Nuclear Company, Inc., Richland, WA, November 1981 XN-HF-80-19(P)(A),
Volume 1,
Supplements 1
and 2,
"Exxon Nuclear I'lethodology for Boiling Water Reactors Neutronic Methods for Design Analysis", blarch 1983 XN-NF-80-19(P)(A),
Volume 1
Supplement 3,
"Exxon Nuclear Methodology for Boiling Water Reactors:
Neutronics Methods for Design and Analysis",
Advanced Nuclear Fuels Corporation,
- Richland, MA, Hovember 1990 XN-NF-80-19(P ) (A),
Volume 3,
Revi si on 2,
"Exxon Nuc1 ear Methodology for Boiling Mater Reactors THERNEX: Thermal Limits Methodology Summary Description",
Exxon Nuclear
- Company, Inc.,
- Richland, WA, January 1987 WASHINGTON NUCLEAR-UNIT 2 COLR 91-7 REV.
0
, ~
14.0 15.0 ANF-913(P)(A), Volume 1, Revision 1,
and Volume 1, Supplements 2,
3 and 4,- "COTRANSA2:
A Computer Program for Boiling Mater Reactor Transient Analyses",
Advanced Nuclear Fuels Corporation,
- Richland, MA, August 1990 ANF-524(P)(A); Revision 2,
and Supplements, "Advanced Nuclear Fuels Critical Power Methodology for Boiling Hater Reactors",
Advanced Nuclear Fuels Corporation,
- Richland, MA, November 1990 V<
16.0 ANF-1125(P)(A) and Supplements 1
and 2,
"ANFB Critical Power Correlation",
Advanced Nuclear Fuels Corporation,
- Richland, WA, April 1990 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0
- Letter, R.
C.
Jones (NRC) to R.
A.
Copeland (ANF),
"NRC Approval of ANFB Additive Constants for 9x9-9X BHR Fuel",
November 14, 1990 Letter ENMB-86-0067, J.. B.
Edgar (ANF) to Supply
- System, "Supplemental Licensing Analysis Results", April 15, 1986 ANF-90-01, "HNP-2 Cycle 6 Plant Transient Analysis", Advanced Nuclear Fuels. Corporation,
- Richland, WA, January 1990 XN-NF-84-105(P)(A),
Volume 1
and Supplements 1,
2 8
4, "XCOBRA-T:
A Computer Code for BMR Transient Thermal Hydraulic Core Analysis",
Exxon Nuclear
- Company, Inc.,
- Richland, MA, February 1987 XN-NF-81-21(P)(A), Revision 1,
"Generic Mechanical Oesign for Exxon Nuclear Jet Pump BWR Reload Fuel",
Exxon Nuclear
- Company, Inc.,
- Richland, WA, January
- 1982, and Supplement 1,
March 1985 XN-NF-85-67(A),
Revision 1,
"Generic Mechanical Oesign for Exxon Nuclear Jet Pump BWR Reload Fuel",
Exxon Nuclear Company, Inc., Richland, WA, September 1986 XN-NF-81-58(A),
Revi si on 2,
"ROOEX2:
Fuel Rod Mechanical
Response
Evaluation i<odel",
Exxon Nuclear Company Inc.,
- Richland, MA, March, 1984 XN-NF-87-92 and Supplement 1,
"WNP-2 Plant Transient Analysis With Final Feedwater Temperature Reduction",
Advanced Nuclear Fuels Corporation,
- Richland, MA, June 1987 and Nay 1988 ANF-87-119, "MNP-2 Single Loop Operation Analysis",
Advanced Nuclear Fuels corporation,
- Richland, MA, September 1987 ANF-87-118, "HNP-2 LOCA Analysis For Single Loop Operation",
Advanced Nuclear Fuels Corporation,
- Richland, HA, September 1987 WASHINGTON NUCLEAR-UNIT 2 COLR 91-7 REV.
0
27.0
- Letter, R.
B.
- Samworth, USNRC, to G.
C.
- Sorensen, Supply
- System,
" issuance of Amendment No.
62 to Facility Operating License No.
NPF-21-WPPSS Nuclear Project 2
.: August 5, 1988 28.0 XN-NF-85-138(P).=',>>
"LOCA Break Spectrum for a
BWR 5",
Exxon Nuclear Company, Inc., Richland, MA, December 1985 29.0 XN-NF-85-139, "MNP-2 LOCA-ECCS
- Analysis, NPLHGR Results",
Exxon Nuclear
- Company, Inc., Richland, MA, December 1984 30.0 ANF-CC-33(P)(A),
Supplement 2,
"HUXY:
A Generalized Multirod Heatup Code with 10 CFR 50 Appendix K Heatup Option", Advanced Nuclear Fuels Corporation,
- Richland, WA, January 1991 31.0 NEDE-24011-P-A-6, "General Electric Standard Application for Reactor Fuel"; General Electric Company, April 1983 WASHINGTON NUCLEAR-UN1T 2 COLR 91-7 REV.
0