ML17291A624: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
Line 2: Line 2:
| number = ML17291A624
| number = ML17291A624
| issue date = 12/31/1994
| issue date = 12/31/1994
| title = Rev 1, Cycle 10 Colr.
| title = Rev 1, Cycle 10 Colr
| author name =  
| author name =  
| author affiliation = WASHINGTON PUBLIC POWER SUPPLY SYSTEM
| author affiliation = WASHINGTON PUBLIC POWER SUPPLY SYSTEM
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:941229 1498 ContmHed Copy No CpLR 94 10 Remsion   1 WNP-2 Cycle 10
{{#Wiki_filter:941229 1498 CpLR 94 10 Remsion 1
          , Core Operating Lixnits Report December 1994 Washington Public Power Supply System 9502010200 950125 PDR ADOCK 05000397 P
ContmHed CopyNo WNP-2 Cycle 10
, Core Operating Lixnits Report December 1994 Washington Public Power Supply System 9502010200 950125 PDR ADOCK 05000397 P
PDR 4
PDR 4


941229 149$
941229 149$
WNP-2 Cycle 10 Coze Qperatiag Limits Repozt LIST F EFFECTlVE PA ES
WNP-2 Cycle 10 Coze Qperatiag Limits Repozt LIST F EFFECTlVE PA ES
                                  ~Revisi n 1                                   0 1                                     1 2                                    1 3                                    0 4                                    0 5                                    0 6                                    0 7                                    0 8                                    0 9                                    0 10                                    0 11                                    0 12                                    1 13                                    0 14                                    0 15                                    0 16                                    0 17                                    0 18                                    0 19                                    0 20                                    0 21                                    0 22                                    0 23                                    0 24                                    0 25                                    0 26                                    0 27                                    0 28                                    0 29                                    0 30                                    0 31                                    0 32                                    0 33                                    0 34                                    0
~Revisi n 1
1 2
3 4
5 6
7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 0
1 1
0 0
0 0
0 0
0 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0


WNP-2 Cycle 10 Coic OpeiatlIlg L1101~ Report ST   F EFFECTIVE PAGES
WNP-2 Cycle 10 Coic OpeiatlIlg L1101~ Report ST F EFFECTIVE PAGES
                                  $ Mvi~ig 35                                   1 35a                                  1 36                                    0 37                                    0 LEP-2
$Mvi~ig 35 35a 36 37 1
1 0
0 LEP-2


WNP-2 Cycle 10 Core Operating Limits Report B E       F 1.0         D       N AND               ARY        o ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~   ~ ~ ~ ~   ~ ~ ~ ~ ~ ~ ~ ~   1 2.0   AVERA EP ANAR                 AR                   ENERATI N                           TE AP H R R     EIN                 AL P IFI ATI N 21                                       ............                         2 3.0 L P           A       N 2         ~ ~   ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o   8 4.0         A     AT                   N                                                     R       E L  P                        2 4   ~ ~   ~ ~ ~ o ~, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ 29 I
WNP-2 Cycle 10 Core Operating Limits Report B E F
5.0                   ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~   ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 35 Washington Nuclear-Unit 2                                                                     COLR 94-10, Revision 0
1.0 D
N AND RY o
~
- ~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
1 A
2.0 AVERA EP ANAR AR ENERATI N TE AP H R R
EIN AL P IFI ATI N 21............
2 3.0 L
P A
N 2
~
~
~
~
~
~
o
~
~
~
~
~
~
~
~
o
~
~
~
~
~
~
~
~
~
~
o 8
4.0 A
AT L
P N
R E
4
~
~
~
~
~
o ~, ~
~
~
~
~
~
~
~
~
~
o
~
~
~
~
~
~
~
~
~ 29 2
5.0 I
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~ 35 Washington Nuclear-Unit 2 COLR 94-10, Revision 0


l
l
  ~ /
~ /
w'C'
w'C'


1.0     INTR D CTI N AND SUhQvfARY This report provides the Average Planar Linear Heat Generation Rate (APLHGR) limits, the Minimum Critical Power Ratio (MCPR) limits, and the Linear Heat Generatioa Rate (LHGR) limits for WNP-2, Cycle 10 as required by Technical Specificatioa 6.9.3.1. As zequized by Technical Specifications 6.9.3.2 and 6.9.3.3, these limits were determined using NRC-approved methodology and axe established so that all applicable limits of the plant safety analysis are met. The thexmal limits for SPC fuel given in this report are documented in the "Cycle 10 Plant Transient Analysis" (Refezcnce 5.1.1), the "Cycle 10 Reload Analysis" (Reference 5.1.2) and the "Impzoved Reduced Plow MCPR Oyexatiug Limits for WNP-2 Cycle 10" (Refezence 5.1.9). The thezmal limits detexmined thxough the approved methodology aze modified for the GE11 and SVEA-96 LPAs as discussed below.
1.0 INTR D CTI N AND SUhQvfARY This report provides the Average Planar Linear Heat Generation Rate (APLHGR) limits, the Minimum Critical Power Ratio (MCPR) limits, and the Linear Heat Generatioa Rate (LHGR) limits for WNP-2, Cycle 10 as required by Technical Specificatioa 6.9.3.1.
The WNP-2 Cycle 10 core includes four Siemens Power Corpoxation (SPC), four GE Nuclear Energy (GE), and four ABB Combustion Eugiaeexing Nuclear Ogexatioas (ABB CENO) Lead Puel Assemblies (LFAs). The SPC LFAs were inserted duziug the reload for Cycle 5. The GE and ABB CENO LPAs were inserted at the beginning of Cycle 6 and were designed to be compatible with the reload fuel utilized in Cycle 6. The LFAs are loaded in core locations which analysis has shown to have sufficient thermal margin such that the LFAs axe not expected       "
As zequized by Technical Specifications 6.9.3.2 and 6.9.3.3, these limits were determined using NRC-approved methodology and axe established so that all applicable limits of the plant safety analysis are met.
to be the most limiting fuel assemblies oa either a nodal or an assembly power basis. The GE Nuclear Energy GE11= LPAs aze described in the "GE11 Lead Fuel Assembly Report for Washington Public Power Supply System Nuclear Project No. 2, Reload 5, Cycle 6" (Refexence 5.3.1). This xefexence describes the design goals of the GE11 LPAs and provides support for monitozing the GE11 LPAs at thermal limits based on the SPC 8x8 reload fuel thezmal limits.
The thexmal limits for SPC fuel given in this report are documented in the "Cycle 10 Plant Transient Analysis" (Refezcnce 5.1.1), the "Cycle 10 Reload Analysis" (Reference 5.1.2) and the "Impzoved Reduced Plow MCPR Oyexatiug Limits for WNP-2 Cycle 10" (Refezence 5.1.9). The thezmal limitsdetexmined thxough the approved methodology aze modified for the GE11 and SVEA-96 LPAs as discussed below.
The ABB CENO SVEA-96 LPAs are described ia the "Supplemental Lead Fuel Assembly Licensing Report SVEA-96 LPAs for WNP-2 Summaxy" (Reference 5.3.2). The process for developing thermal limits for the SVEA-96 LPAs based upon the SPC 8x8 xeload fuel thermal limits is described in References 5.3.2 thxough 5.3.4 The MAPLEGR limits for the GE11 LFAs are the same as for the SPC 8x8 reload fuel, except that a ratio ([64-2]/I'81-7]) is applied to account for the different number of fuel pins in the two designs. The MAPLHGR limits for the SVEA-96 LPAs are the same as for the SPC 8x8 reload fuel, except that a ratio ([64-2]/f100-4]) is apylied to account for the diffezent number of fuel pins in the two designs. Fuzthexmoze, the MAPLHGR limits for the SVEA-96 LPAs are multiplied by the following constants: (a) 1.04 to account for a diffezent estimation of the local power in the output from POWEIU'LEX compaxed to ABB CENO methods aad (b) 1.02 to account for a different estimation of exposure ia the output from POWERPLEX compared to ABB CENO methods.
The WNP-2 Cycle 10 core includes four Siemens Power Corpoxation (SPC), four GE Nuclear Energy (GE), and four ABB Combustion Eugiaeexing Nuclear Ogexatioas (ABB CENO) Lead Puel Assemblies (LFAs). The SPC LFAs were inserted duziug the reload for Cycle 5. The GE and ABB CENO LPAs were inserted at the beginning of Cycle 6 and were designed to be compatible with the reload fuel utilized in Cycle 6.
The MCPR limit is the maximum of (a) the applicable exposure dependeat, full power and full flow MCPR limit, (b) the applicable exposure and power dependent MCPR limit, and (c) the flow dependent MCPR limit specified in this reyoxt. This stipulation assures that the safety limit MCPR will not be violated thzoughout the WNP-2 operating regime. Full power MCPR limits are specified to define oyexating limits at rated power and Qow. For the WNP-2 coze, the Turbine Trip without Bypass event is limiting for operation at xated power and fiow. Power dependent MCPR limits axe specified to define opexatiag limits at other thaa zated power Washington Nuclear-Unit 2                                                 COLR 94-10, Revision     1
The LFAs are loaded in core locations which analysis has shown to have sufficient thermal margin such that the LFAs axe not expected to be the most limitingfuel assemblies oa either a nodal or an assembly power basis.
The GE Nuclear Energy GE11= LPAs aze described in the "GE11 Lead Fuel Assembly Report for Washington Public Power Supply System Nuclear Project No. 2, Reload 5, Cycle 6" (Refexence 5.3.1).
This xefexence describes the design goals of the GE11 LPAs and provides support for monitozing the GE11 LPAs at thermal limits based on the SPC 8x8 reload fuel thezmal limits.
The ABB CENO SVEA-96 LPAs are described ia the "Supplemental Lead Fuel Assembly Licensing ReportSVEA-96 LPAs forWNP-2Summaxy" (Reference 5.3.2). The process for developing thermal limits for the SVEA-96 LPAs based upon the SPC 8x8 xeload fuel thermal limits is described in References 5.3.2 thxough 5.3.4 The MAPLEGRlimits for the GE11 LFAs are the same as for the SPC 8x8 reload fuel, except that a ratio ([64-2]/I'81-7])is applied to account for the different number of fuel pins in the two designs.
The MAPLHGRlimits forthe SVEA-96 LPAs are the same as for the SPC 8x8 reload fuel, except that a ratio ([64-2]/f100-4]) is apylied to account for the diffezent number of fuel pins in the two designs.
Fuzthexmoze, the MAPLHGR limits for the SVEA-96 LPAs are multiplied by the following constants:
(a) 1.04 to account for a diffezent estimation of the local power in the output from POWEIU'LEX compaxed to ABB CENO methods aad (b) 1.02 to account for a different estimation of exposure ia the output from POWERPLEX compared to ABB CENO methods.
The MCPR limitis the maximum of (a) the applicable exposure dependeat, fullpower and full flow MCPR limit, (b) the applicable exposure and power dependent MCPR limit, and (c) the flowdependent MCPR limitspecified in this reyoxt. This stipulation assures that the safety limit MCPR willnot be violated thzoughout the WNP-2 operating regime. Fullpower MCPR limits are specified to define oyexating limits at rated power and Qow.
For the WNP-2 coze, the Turbine Trip without Bypass event is limiting for operation at xated power and fiow. Power dependent MCPR limits axe specified to define opexatiag limits at other thaa zated power Washington Nuclear-Unit 2 COLR 94-10, Revision 1


941229 14QS conditions. For the WNP-2 core, the Feedwater Controller Failure event from zeduced power is calculated to be more severe than from full power conditions. A fiow dependent MCPR is slxeified to define operating limits at other than rated flow conditions. The reduced flow MCPR limit provides bounding protection for the limiting Recizculation Flow Increase event (Refezence 5.1.9).
941229 14QS conditions.
The LHGR limits for the GE11 LFAs are the same as for the SPC 8x8 zeload fuel, except that a ratio ([64-2]/[81-7J) is applied to account for the different number of fuel pins in the two designs. The LHGR limits for the SVEA-96 LFAs are taken dimply from Refezence 5.3.2.
For the WNP-2 core, the Feedwater Controller Failure event from zeduced power is calculated to be more severe than from fullpower conditions. A fiow dependent MCPR is slxeified to define operating limitsat other than rated flowconditions. The reduced flowMCPR limit provides bounding protection for the limiting Recizculation Flow Increase event (Refezence 5.1.9).
The reload licensing analyses for this cycle provide opezating limits for Extended Load Line (ELl~) operation which extends the power and flow operating regime for WNP-2 up to the 109% zod line which at fullpower cozzesponds to 87% of zated flow. The MCPR limits deflned in this zepozt aze applicable up to 100% of rated thermal power along and below the 109% zod line. The minimum low for operation at rated power is 87% of zated fiow; the maximum is 106%. Refezences 5.1.1 and 5.1.2 and the zefezences in Section 5.4 document the analyses in suppozt of ELLLAopezation.
The LHGR limits for the GE11 LFAs are the same as for the SPC 8x8 zeload fuel, except that a ratio ([64-2]/[81-7J) is applied to account for the different number of fuel pins in the two designs.
Preparation, zeview and approval of this report weze performed in accordance with applicable Supply'System pzoceduzes. The specific topical report revisions and supplements which describe the. methodology utilized in this cycle specific analysis aze zefezenced in Section 5.2.
The LHGR limits for the SVEA-96 LFAs are taken dimply from Refezence 5.3.2.
2.0     AVERA EPLANARLINEARHEATGENIHMTINRATE APLH R LIMITSFOR U E IN TE         CAL SPECIFICATI N 3 2.
The reload licensing analyses for this cycle provide opezating limits for Extended Load Line (ELl~) operation which extends the power and flow operating regime for WNP-2 up to the 109% zod line which at fullpower cozzesponds to 87% ofzated flow. The MCPR limits deflned in this zepozt aze applicable up to 100% of rated thermal power along and below the 109% zod line.
The APLHGRs for use in Technical Specification 3.2.1 shall not exceed the limits shown in Figures 2.1, 2.2, 2.4, and 2.5 when in two-loop opezation and in Figuzes 2.1, 2.3, 2.4, and 2.5 when in single loop operation. The limits for each fuel type as a function of Average Planar Exposure are provided for the SPC reload fuel, the SPC LFAs, the SVEA-96 LFAs, and the GE11 LFAs.
The minimum low for operation at rated power is 87% of zated fiow; the maximum is 106%.
Washington Nuclear-Unit 2                                             COLR 94-10, Revision     1
Refezences 5.1.1 and 5.1.2 and the zefezences in Section 5.4 document the analyses in suppozt of ELLLAopezation.
Preparation, zeview and approval of this report weze performed in accordance with applicable Supply'System pzoceduzes.
The specific topical report revisions and supplements which describe the. methodology utilized in this cycle specific analysis aze zefezenced in Section 5.2.
2.0 AVERA EPLANARLINEARHEATGENIHMTINRATE APLH R LIMITSFOR U E IN TE CAL SPECIFICATI N 3 2.
The APLHGRs for use in Technical Specification 3.2.1 shall not exceed the limits shown in Figures 2.1, 2.2, 2.4, and 2.5 when in two-loop opezation and in Figuzes 2.1, 2.3, 2.4, and 2.5 when in single loop operation.
The limits for each fuel type as a function of Average Planar Exposure are provided for the SPC reload fuel, the SPC LFAs, the SVEA-96 LFAs, and the GE11 LFAs.
Washington Nuclear-Unit 2 COLR 94-10, Revision 1


wwwwgwwwwgwwwwgwwww'gwwwwpg+'gwwgwwwwggwww Qwwgg a -as=a~-s=-saaaas~as~~as~-===-=====ass===
wwwwgwwwwgwwwwgwwww'gwwwwpg+'gwwgwwwwggwww Qwwgg a-as=a~-s=-saaaas~as~~as~-===-=====ass===
$ -HERE:===P=REElg ERR=-====hP~E wwwwwwwwgwwwww wwwwwwwwwww 1w
~@=ma
                                                            ~ ~ ~ ~ s;:   ~
$-HERE:===P=REElg ERR=-====hP~E I
                                                                              ~@=ma I
~
wwwwwwwgw gwwww wwwwwwwwwwwwwwgwwwwwwwwwwwwww PAYEE)EEEEgPgEgggEmEmEEggmmEEgmkmgPg+EggPgEg C
~
Iwwwwwwwwwww    -=-===h  
~
                  ~
~ s;:
          ~   ~
~
                    ~
wwwwwwwwgwwwww wwwwwwwwwww 1w wwwwwwwgw gwwww wwwwwwwwwwwwwwgwwwwwwwwwwwwww PAYEE)EEEEgPgEgggEmEmEEggmmEEgmkmgPg+EggPgEg C
mme                            asm- ea
II mme-=-===
                                                                      'wwwwwwww I wwwww wwwwwwwwwwwg%wwwwww'g       ~
h asm-ea
wwwww           wwwwwwwwwww 'www'www wwww                     I       wwwww wwwwwwwwwwww wwwww          wwwwwwwwwwwwgiCwwwwPii '%g&wwwg wwwwf                           PwwpgwwEwEPwwwwww&gEMEgg wwww Ji                        wwwwwwwwwwwwwwwwwwwww                         '%www wwwwwgwwwwwwwwwwwwwwg wwwww wwwwwwwwwwwwww 1www wwwwww                 o I
~
/Em5gE[                         )gmmmEEmsmmPmmmEmmm/Rmh~%g
~
  ~a           ~~ ~   ~~~~       ++ + a~
~
III   ~ III   III
~
                          ~
wwwwwwwwwww
I   III       III     ~ III     li I      i I I II
~'wwwwwwww wwwww wwwwwwwwwwwg%wwwwww'g wwwww wwwwwwwwwww 'www'www wwww I
                        ~             ~ ~
wwwww wwwwwwwwwwww'%g&wwwg wwwww wwwwwwwwwwwwgiCwwwwPii wwwwf J
                                              ~ I
PwwpgwwEwEPwwwwww&gEMEgg wwww i wwwwwwwwwwwwwwwwwwwww'%www wwwwwgwwwwwwwwwwwwwwg1www wwwww wwwwwwwwwwwwww wwwwww o I
                            ~     ~ ~
/Em5gE[
)gmmmEEmsmmPmmmEmmm/Rmh~%g
~a
~~ ~
~~~~ ++ + a~
III
~ III III I III III
~ III liI i I I II
~
~
~ ~
~
~
~
~ I


W WWW    W g   WAg     WWWQWWQW     gWP     PQWQAWWW gWW m   NREM fgggMg         mgml m mmWml gpss $
WWWW W g WAg WWWQWWQW gWP PQWQAWWW gWW gpss m
  ~
NREM fgggMg mgml m
gAWWAgWgWgmWWW             AAWAgrXrgWgagrrXWWXWWWPgXAWA RWNRWWWWQRWWW             WCWWWkliBWWQWWWWWWWWWWWWWRWWWgg WWggWWQWWWWWWWWWCWWWWWW WWWWWWWWWCWWWRgLWWWWWWWWQWWWWWWQWWWWWWWWggWWWWWm hii       ii>aLm l3VI<=-=:--           ="==:>i':=:=-==-==-s   ~H LR     Wki   WWR AWWgWt                         WWW LWWWWWWWWWWWWXeXWWWWW WWQW)
mmWml
WW                           WWW aWWWQWWWWWWWAAgrglr WWWW   g 1 W   W                     WWWWNWWWWWWWWWWWWW WWWWW
~ gAWWAgWgWgmWWW AAWAgrXrgWgagrrXWWXWWWPgXAWA RWNRWWWWQRWWW WCWWWkliBWWQWWWWWWWWWWWWWRWWWgg WWggWWQWWWWWWWWWCWWWWWW WWWWWWWWWCWWWRgLWWWWWWWWQWWWWWWQWWWWWWWWggWWWWWm hii ii>aLm l3VI<=-=:--
="==:>i':=:=-==-==-s ~H LR Wki WWR AWWgWt WWW LWWWWWWWWWWWWXeXWWWWW WWQW)
WW g WWW aWWWQWWWWWWWAAgrglr WWWW 1
W W
WWWWNWWWWWWWWWWWWW WWWWW
~ I WAWW W
WWWSWAWWWCWWWWWWWA AWWWQ gaea aealaaaaaagagama a a aagag aaaaaaaa eaaag gWW W
ggW Wg gWWgWWWW WWWAAW WWW WWW I
~ I I I
~ I I I I I I I I I I I I I I II I I I
~ I I I I
~
~
~
I WAWW W                          WWWSWAWWWCWWWWWWWA AWWWQ gaea aealaaaaaagagama            a a aagag        aaaaaaaa    eaaag gWW      W  ggW Wg gWWgWWWW WWWAAW WWW WWW I      ~ II    I ~II    III  I III    III  I I II    III ~
~ ~
I III    III
I I I
                          ~
                              ~        ~ ~


                                        ~K~NRMMN>>
I I
I I
RQR          g~g I   gism     g~~m m~~                 ERR           mJKm NRR=HRRHSR
~ I
~ I I
gism g~~m m~~
 
== Il===a=m=-
CMWC ggWM mHH I
gin MMR
~
~
~ I MMMM MgMM
~ III 5 a581hmsRmlmmm I
I I I I
I II I III I
~K~NRMMN>>
RQR g~g ERR mJKm NRR=HRRHSR
/gag KRl~gRQR~ggggg MMM MMM 'MMMO RON MMM MMMM&MMMMMMM MMM MMMMM&'MMM MMMM MMMMMMMMMMQMMMMMMMg MMMMMMMMMMkMME MMMM MMMMMMMMMM QWMMMMMMMM MMMMMMMMMMLMMMMMMMM MMMMMMML~
MMMMMMMMM%MMM LWMMMM MMM MMMMMMMMMMMMMMMM
@MM MMMMMMMMMMMMMMMMML%
~ I I ~ I
~ I ~
I III
~ II
~
0
~
~
~
~
~
~
                                        /gag            KRl~gRQR~ggggg
        == Il===a=m=-                  MMM MMM              MMM 'MMMO RON MMMM&MMMM        MMM MMM MMMMMMMMMM    MMMMM  &'MMM    MMMM QMMMMMMM MMMM MMMMMMMMMM    MMMMMMk      MME MMMMg QW MMMMMMMM CMWC                                MMMMMMMMMMLMMMMMMMM ggWM mHH                                                  MMMMMMML~
I                          I
~
~
gin MMR                    I          MMMMMMMMM%MMM LWMMMM MMMM
~
                      ~ ~ ~
~ I
MgMM I I I I          MMM I                                    MMMMMMMMMMMMMMMM                    @ MM
                      ~ III            MMMMMMMMMMMMMMMMML%
5 a581hmsRmlmmm I      I II    I III            I~ I            I~ I    ~ I~    I III    ~ II 0
                              ~            ~ ~
                                            ~  ~
                                          ~
                                ~
                                      ~          ~ I


g &%&wg&%&H&g&m g&% %&ggg                   %%%      gygmy amgmg   a Ig AAW ~WOW RjWW       WWW CSWAAW           W~WWW IIIIIII85IIRHI-=>Im=mgliKPim-=I:=Ii====my==-II WWWWWWWWA@WWW AWWW+WWWWg WAALLWWWWWAWWWWAAWg WWWWWWWCWWWWWAAWWWQWWWAR WAACWkLWW                        WWWAAAWWW WWQWWRW~WWRWWWWARWWAI WWW WWWWWW&~~~~~~~~~~~W QWWWAWS                        IWWW      I WA    WWWWRiWQWWWWIIAWWW WNWWWWWR.'WWWWWW       AWWW WWWA   R QgWWW           WWWWAWWWWWWgOA         AWW
g&%&wg&%&H&g&m g&% %&ggg gygmy amgmg a Ig AAW
  ~ gW                     W WWW WWWWW           WWWWA      WWWWWWkiW WWWWWRRWWWWWW     %
~WOW RjWW WWW CSWAAW W~WWW IIIIIII85IIRHI-=>Im=mgliKPim-=I:=Ii====my==-II WWWWWWWWA@WWW AWWW+WWWWg WAALLWWWWWAWWWWAAWg WWWWWWWCWWWWWAAWWWQWWWARWAACWkLWW WWWAAAWWW WWQWWRW~WWRWWWWARWWAIIWWW IWAWWWWRiWQWWWWIIAWWW WWWWWW&~~~~~~~~~~~W WWW WNWWWWWR.'WWWWWW AWWW QWWWAWS WWWA R
A WW AWW WWAWW WWWAW I     WWWWWA WWWWW WWWWWWWWA      WaaW&i WWWWWWWWWWWWAPQAWWlg    WWW
QgWWW WWWWAWWWWWWgOA AWW gW W
~ iRIH
WWW WWWWAWWWWWWkiW AWW WWWWW WWWWWRRWWWWWW%
~
AWW WWAWW
ACWAWWCCI AAWWWWS AWWWWQW WWWWWWWWAWWWWWWW                WWWWAWWW&&
~
W WWW W AWW W A5 W W WW W W W W W W W AWW Q~
I WWWWWAWWWWWWWWAWaaW&i WWW
AAWWWWQ AWWWAWWWLemmmmmwmmm                 WWAWWWWWWWWWWWWWWWWAWW HWWWWAWWWAWWWWWWWWWAAWWWWW AWWWSSWWWAAAWWWAAWWWW&WWAWWWAWWWWWWW AWWWWWWWWWWWWWAAWWWWWWWWWWWWWWWWWWWWWWWAWWWWW             WWWWAWWWWW AWWWA    WWWWAWWWWAAWWWWWWWWWWCWAWWWWWA                    WWWWAWWWWW I
~
AWWWAWWWAAWWWCAOWWWWWWWWWWAAWWWWWWWWWWAAWAWWW AWWWWWWWWAWWWWCAA'WWAWWWAWWAAWWWWWWWWWWAAWWWWW AWWWWWWWWWWWWWAAWWWRWWWAWWWWWWWWWWWWWWAAkf
WWWAW WWWWW WWWWWWWWWWWWAPQAWWlg iRIH
        ~ ll I Ill lil     I   ill I ~
~
Ill     I ll ~ ili ~ I III 'II AWWW
ACWAWWCCI AAWWWWS WWWWWWWWAWWWWWWWWWWWAWWW&&
                            ~   ~
AWWWWQW WWWWWAWWWA5WWWWWWWWWWWAWWQ~
y C
AAWWWWQ WWAWWWWWWWWWWWWWWWWAWW AWWWAWWWLemmmmmwmmm HWWWWAWWWAWWWWWWWWWAAWWWWW AWWWSSWWWAAAWWWAAWWWW&WWAWWWAWWWWWWW WWWWAWWWWW AWWWWWWWWWWWWWAAWWWWWWWWWWWWWWWWWWWWWWWAWWWWW AWWWAWWWWAWWWWAAWWWWWWWWWWCWAWWWWWA WWWWAWWWWW AWWWAWWWAAWWWCAOWWWWWWWWWWAAWWWWWWWWWWAAWAWWW AWWWWWWWWAWWWWCAA'WWAWWWAWWAAWWWWWWWWWWAAWWWWW AWWWWWWWWWWWWWAAWWWRWWWAWWWWWWWWWWWWWWAAkf AWWW I
                          ~
~ ll I Ill lil I ill Ill I ll~
                              ~   . I
ili
~ I III 'II I
~
~
~
y C '
~
~
. I


I  aawaaaa      aw      awaa aaa awa        wwaa wwaaa aawaawwa aaCg jlaaaa      aaa    aaaa a a        i  aa        ' '  ':  ~
I I
I I
g i
I I I
5 5 a
~ I
g g
~ I
                                =
~ I aawaaaa aw awaa aaa awa wwaa wwaaa aawaawwa aaCg jlaaaa aaa aaaa a a i aa
I       m j  wwg
                                                  - ~Z-wi e===
ROC      NN i=
Z I I gaawaaawwaagawggawa                awga gwawgaawagagawwaawwww m&w
    )Pm)/N, .,
~
I           g
                                      /gRggggm55gwm~g(XRm8/g~gmgg
~ I l~~i h
                                'h'=$ 5hliRNa==~~RE~a53h==-ih 3=-=l kl)                  'L3-5~iP=.:sl===.=='h====lssl~i5
    %Ill==i:=amms.=g=<liamllh=-li=-.ll*==:==-::-==-='5 a             Caaaa    a5    a a    wow      Cw wwwww I
~
~
I     I II     I ~ Ii   III    I III  III    ~ III   III  ~
g 5 5 g g I mj wwg ROC NN i a
I III ~ II
=
Z
- ~Z-wi e=== i=
gaawaaawwaagawggawa awga gwawgaawagagawwaawwww m&w g
)Pm)/N,.,
/gRggggm55gwm~g(XRm8/g~gmgg l~~i h
'h'=$ 5hliRNa==~~RE~a53h==-ih 3=-=l kl)
'L3-5~iP=.:sl===.=='h====lssl~i5
%Ill==i:=amms.=g=<liamllh=-li=-.ll*==:==-::-==-='5 a
Caaaa a5 a a wow Cw wwwww I
I II I
~ Ii I I I I I I I I I I
~ I I I III
~ I I I I
~ II


3.0 t
940610 13:46 SPECIFICATl N 3 2.3t t
MINXMUM RlTI AL P WER RATI                     CPR t
3.0 MINXMUM RlTI ALP WER RATI CPR LIMITFOR USE IN TECKVI AL'he MCPR limitfor use in Technical Specification 3.2.3 shall be:
LIMITFOR USE IN TECKVI 940610 13:46 SPECIFICATl N 3 2.3                                                                    AL'he MCPR limit for use in Technical Specification 3.2.3 shall be:
Greater than or equal to the greater of the limits determined from Tables 3. la and 3.1b and Figures 3.1 and 3.2a through 3.lib.
Greater than or equal to the greater of the limits determined from Tables 3. la and 3.1b and Figures 3.1 and 3.2a through 3.lib.
J Washington Nuclear-Unit 2                                         COLR 94-10, Revision 0
J Washington Nuclear-Unit 2 COLR 94-10, Revision 0


e                                                                 940614 l6:54 Table 3.1a WNP-2 Cycle 10 MCPR Operating Conditions Cycle Exposures s 4500 MWd/MTU SLMCPR = 1.07 SPC 8xS   SPC 9x9   SPC 9x9     SVBA-96 Condition Limit              GB11 LFA             LFA NM" I
e 940614 l6:54 Table 3.1a WNP-2 Cycle 10 MCPR Operating Conditions Cycle Exposures s 4500 MWd/MTU SLMCPR = 1.07 Condition Limit NM" How Depcndcnt Power Dependents SPC 8xS SPC 9x9 SPC 9x9 SVBA-96 GB11 LFA LFA I
L24       1M+       1.28       1A4 How Depcndcnt                    Figure 3.1 Power Dependents  Fig. 3.2a Fig. 33a Fig. 33a     Fig. 3.2a 1.26       1.24       135         1A8 Flow Dcpcndcnt                    Figure 3.1 Power Dependent'+ Fig. 3.4a Fig. 3.5a Fig. 3.5a   Fig. 3Aa Nssu~
L24 1M+
RFF       Full Power       1.2S       1.27       1.43       1.51 Inoperable Flow Dcpcndcnt                    Figure 3.1 Power Dcpcndcntro Fig. 3.10a Fig. 3.11a Fig. 3.11a Fig. 3.10a SLOP NSS 186       136       1.36       1.9S How Dcpcndcnt                        None Power Dependents  Fig. 3.2a Fig. 3.3a Fig. 3.3a   Fig. 3.2a SLO TSSS Full Power        1.56       1.36       1.36       1.98 Flow Dcpcndcnt                        None Power Dcpcndcn&#xc3; Fig. 3.4a   Fig. 3.5a Fig. 3.5a   Fig. 3.4a LO+ NSS RFI'ull Power                1.56       1.36       1.36       1.98 Inoperable Flow Dcpcndcnt                      None Power Dependent'+ Fig. 3.10a Fig. 3.11a Fig. 3.11a Fig. 3.10 Washington Nuclear-Unit 2                                                 COLR 94-10, Revision 0
1.28 1A4 Figure 3.1 Fig. 3.2a Fig. 33a Fig. 33a Fig. 3.2a Nssu~
Flow Dcpcndcnt Power Dependent'+
1.26 1.24 135 1A8 Figure 3.1 Fig. 3.4a Fig. 3.5a Fig. 3.5a Fig. 3Aa RFF Full Power Inoperable Flow Dcpcndcnt Power Dcpcndcntro SLOP NSS How Dcpcndcnt Power Dependents SLO TSSS Full Power Flow Dcpcndcnt Power Dcpcndcn&#xc3; LO+ NSS RFI'ull Power Inoperable Flow Dcpcndcnt Power Dependent'+
1.2S 1.27 1.43 1.51 Figure 3.1 Fig. 3.10a Fig. 3.11a Fig. 3.11a Fig. 3.10a 186 136 1.36 1.9S None Fig. 3.2a Fig. 3.3a Fig. 3.3a Fig. 3.2a 1.56 1.36 1.36 1.98 None Fig. 3.4a Fig. 3.5a Fig. 3.5a Fig. 3.4a 1.56 1.36 1.36 1.98 None Fig. 3.10a Fig. 3.11a Fig. 3.11a Fig. 3.10 Washington Nuclear-Unit 2 COLR 94-10, Revision 0


940614 16M Table 3.1b WNP-2 Cycle 10 MCPR, Operating Conditions Cyde Exposures       ) 4500 MWd/MTU SLMCPR = 1.07                             SLMCPR = 1.07 FFTR SPC 8xg   SPC 9x9       SPC 9x9     SVBA-96   SPC gxg SPC 9x9SPC 9x9 SVBA-9 Condition Limit            GEII LFA                  LFA                    GBII               LFA LFA NSS'o 1.30       1.27         1.44       '64         192     1.29     1.46   168 Flow Dcpcndcnt                       Figure 3.1                                 Figure 3.1 Power Dependent+ Fig. 3.2b   Fig. 3.3b     Fig. 3.3b   Fig. 3.2b Fig. 3.6 Fig. 3.7 Fig. 3.7 Fig. 3.6 co 1.33       1.30           1.49         1.60     1.35     1.32     1.51     1.63 Dcpcndcnt                       Figure 3.1                                 Figure 3.1 NSS"'low  Power Dependent  Fig. 3Ab   Fig. 3.5b     Fig. 3.5b   Fig. 3.4b Fig. 3.8 Fig. 3.9 Fig. 3.9 Fig. 3.8 RFI'ull Power               1.38       1.35           1.61         1.68                 Not Analyzed inoperable Flow Dcpcndent                        Figure 3.1 Power Dcpcndcn& Fig. 3.10b Fig. 3.11b       Fig. 3.11b Fig. 3.10b SLO NSS 1.56       1.36           1.36         1.98     1.56     1.36     1.36     1.98 Flow Dcpendcnt                         None                                      None Power Dcpcndcn&#xc3; Fig. 3.2b   Fig. 33b     Fig. 3.3b   Fig. 3.2b Fig. 3.6 Fig. 3.7 Fig. 3.7 Fig. 3.6 SLO TSSS Full Power       186       196           1.36       1.98       186     1.36     136     1.98 Flow Dcpendcnt                         None                                      None Power Dependent+ Fig. 3.4b   Fig. 3.5b     Fig. 3.5b   Fig. 3.4b Fig. 3.8 Fig. 3.9 Fig. 3.9 Fig. 3.8 SLO+ NSS RFF         Full Power       1.56       1.36           1.36       1.98                   Not Analyzed I
940614 16M Table 3.1b WNP-2 Cycle 10 MCPR, Operating Conditions Cyde Exposures ) 4500 MWd/MTU SLMCPR = 1.07 SLMCPR = 1.07 FFTR Condition Limit NSS'o SPC 8xg SPC 9x9 SPC 9x9 SVBA-96 GEII LFA LFA SPC gxg SPC 9x9SPC 9x9 SVBA-9 GBII LFA LFA 1.30 1.27 1.44
inoperable  Flow Dcpcndcnt                          None Power Dependent'+ Fig. 3.10b Fig. 3.11b   Fig. 3.11b   Fig. 3.10b Washington Nuclear-Unit 2                                                       COLR 94-10, Revision 0
'64 192 1.29 1.46 168 co Flow Dcpcndcnt Power Dependent+
Figure 3.1 Figure 3.1 Fig. 3.2b Fig. 3.3b Fig. 3.3b Fig. 3.2b Fig. 3.6 Fig. 3.7 Fig. 3.7 Fig. 3.6 1.33 1.30 1.49 1.60 1.35 1.32 1.51 1.63 NSS"'low Dcpcndcnt Power Dependent Figure 3.1 Figure 3.1 Fig. 3Ab Fig. 3.5b Fig. 3.5b Fig. 3.4b Fig. 3.8 Fig. 3.9 Fig. 3.9 Fig. 3.8 RFI'ullPower inoperable Flow Dcpcndent Power Dcpcndcn&
SLO NSS 1.38 1.35 1.61 1.68 Figure 3.1 Fig. 3.10b Fig. 3.11b Fig. 3.11b Fig. 3.10b Not Analyzed 1.56 1.36 1.36 1.98 1.56 1.36 1.36 1.98 Flow Dcpendcnt Power Dcpcndcn&#xc3; None Fig. 3.2b Fig. 33b Fig. 3.3b Fig. 3.2b None Fig. 3.6 Fig. 3.7 Fig. 3.7 Fig. 3.6 SLO TSSS Full Power 186 196 1.36 1.98 186 1.36 136 1.98 Flow Dcpendcnt Power Dependent+
SLO+ NSS None Fig. 3.4b Fig. 3.5b Fig. 3.5b None Fig. 3.4b Fig. 3.8 Fig. 3.9 Fig. 3.9 Fig. 3.8 RFF Full Power inoperable Flow Dcpcndcnt Power Dependent'+
1.56 1.36 1.36 None 1.98 I
Fig. 3.10b Fig. 3.11b Fig. 3.11b Fig. 3.10b Not Analyzed Washington Nuclear-Unit 2 COLR 94-10, Revision 0


NoM for Tables 3.1a     and 3.lb Note 1:           The scram insertion times must meet the requirements of Technical Specification 3.1.3.4. The NSS MCPR values are based on the SPC transient analysis performed using the control rod insertion times shown below (defined as normal scram speed: NSS). In the event that Surveillance 4.1.3.2 shows these scram insertion times have been exceeded, the MCPR limit shaQ be determined from the applicable Technical Specification Scram Speed (TSSS)
NoMfor Tables 3.1a and 3.lb Note 1:
The scram insertion times must meet the requirements of Technical Specification 3.1.3.4.
The NSS MCPR values are based on the SPC transient analysis performed using the control rod insertion times shown below (defined as normal scram speed: NSS).
In the event that Surveillance 4.1.3.2 shows these scram insertion times have been exceeded, the MCPR limit shaQ be determined from the applicable Technical Specification Scram Speed (TSSS)
MCPR limits in Tables 3. la and b.
MCPR limits in Tables 3. la and b.
Slowest measured average control rod insertion times Position Inserted        qmcified notches for all operable control rods for each grou From Fully Withdrawn        of four contxol rods arranged in a two-by-two array (seconds)
Position Inserted From Fully Withdrawn Notch 45 Notch 39 Notch 25 Notch 5 Slowest measured average control rod insertion times qmcified notches for all operable control rods for each grou of four contxol rods arranged in a two-by-two array (seconds) 0.380 0.720 1.600 2.950 Note 2:
Notch 45                                        0.380 Notch 39                                        0.720 Notch 25                                        1.600 Notch 5                                          2.950 Note 2:           For Single Loop Operation (SLO), the SLMCPR increases by 0.01.             The increase is included in the MCPR limits for SLO.
For Single Loop Operation (SLO), the SLMCPR increases by 0.01.
Note 3:           For the noted full power MCPR limits, the control rod withdrawal error (CRWE) event is limiting. The turbine trip without bypass {TI'NB) event is limiting for the remaining full power limits. CRWE analysis was performed with a nominal rod block monitor (RBM) setpoint of 1.06. Use of the nominal setpoint is in accordance with the methodology described in Reference 5.2.6, consistent with approved industry practice.
The increase is included in the MCPR limits for SLO.
Note 4:           Power dependent MCPR limits are provided for core thermal powers greater than or equal to 25% of rated power at all core flows. The power dependent MCPR limits for core thermal powers less than or equal to 30% of rated power are subdivided by core flow. Limits are provided for core flows greater than 50% of rated flow and less than or equal to 50% of rated flow, reslxctively. A step change in the power dependent MCPR limits occurs at 30% of rated power because direct scram on turbine throttle valve closure is automatically bypassed per Technical Specification 3.3.1.
Note 3:
Washington Nuclear-Unit 2                                               COLR 94-10, Revision 0
For the noted full power MCPR limits, the control rod withdrawal error (CRWE) event is limiting. The turbine trip without bypass {TI'NB)event is limiting for the remaining fullpower limits. CRWE analysis was performed with a nominal rod block monitor (RBM) setpoint of 1.06. Use ofthe nominal setpoint is in accordance with the methodology described in Reference 5.2.6, consistent with approved industry practice.
Note 4:
Power dependent MCPR limits are provided for core thermal powers greater than or equal to 25% of rated power at all core flows. The power dependent MCPR limits for core thermal powers less than or equal to 30% of rated power are subdivided by core flow. Limits are provided for core flows greater than 50% of rated flow and less than or equal to 50% of rated flow, reslxctively.
A step change in the power dependent MCPR limits occurs at 30% of rated power because direct scram on turbine throttle valve closure is automatically bypassed per Technical Specification 3.3.1.
Washington Nuclear-Unit 2 COLR 94-10, Revision 0


'XX k~aa
'XX ++~+~++++~+~~lkkkkkkkkkXWXkkkkkkkkkkk k~aa IWWWWWWWWR
        ++~+~++++~+~~lkkkkkkkkkXWXkkkkkkkkkkk IWWWWWWWWR                           'lkk 5%W                 WWWWWWWWQ " ~ ~   ~ ~ ~   '
'lkk 5%W WWWWWWWWQ
WQW                 kkkkkkkki5                     ... k WW&#xc3;                 kkkkkkkkS WWLkkkkkkkkkkkkkkkkkkkkkkS k
~
                                                            ~k WLlkWWWWRWWWWWkWkkkkkkkki WWLOWWWWQWWWWROWWWWWWWWWO
~
  ~ EASEL)ERRRIIRSRLSL55$ 55551 kkkR&#xc3;kkkkkkkkkkkkkkkkkkk5
~
                                                      'R  Rk Rk Rk WWWWWRg'%WWWWWWNWWWWWWWWWWA                               W WWWWRWRPQkkkkRQWWWWWWWWWQ       ''                      W kkk WWWWAVOWWWWWWWWWWWWWQ WWWW WWWWW555i5NWWWWWWWWS W
~
  ~ WWW kkkkkkkkh8SWWWWWWWWWWShaaaaaarrra W kWW~ kkkkkkkkkli~%kkkkkkkkkkkkkkkkk              Wkkkk Wkkk WWWWWWWWWWWSQHWkkkkkkkkkkkkkkkkkkk WWWW   WWWWWWWWWWWWWWRR50kkkkkkkkkkkkkkkk WSWWWWWWWWWWWWWWWWWWWWWNHQWWkkkkkkkkkkk SWWWSSWWWWSWWWWWWWWWkkkkkkh~~%kkkkkkkkkkk Wkkkkkkkkkkkkkkkkkkkkkkkkkkkkh&#xc3;QWWWAWWWW WWWWW WWWWWkkkkkkkkkkkkkkkkkWWWARSgkkkkk SWWWS   kkkWWWWWWWWWWSkkkkkkkkkkkkkkkPBOWW WWWWW WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWkk&#xc3;%
~
  ~ Wkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkh
WQW kkkkkkkki5 k
WW&#xc3; kkkkkkkkS k
WWLkkkkkkkkkkkkkkkkkkkkkkS
~k WLlkWWWWRWWWWWkWkkkkkkkki Rk WWLOWWWWQWWWWROWWWWWWWWWO Rk
~EASEL)ERRRIIRSRLSL55$55551
'R
, kkkR&#xc3;kkkkkkkkkkkkkkkkkkk5 Rk WWWWWRg'%WWWWWWNWWWWWWWWWWA W
WWWW WWWWW555i5NWWWWWWWWS WWWWRWRPQkkkkRQWWWWWWWWWQ W
kkk WWWWAVOWWWWWWWWWWWWWQ W
~WWW kkkkkkkkh8SWWWWWWWWWWShaaaaaarrra W
kWW~
kkkkkkkkkli~%kkkkkkkkkkkkkkkkkWkkkk Wkkk WWWWWWWWWWWSQHWkkkkkkkkkkkkkkkkkkk WWWW WWWWWWWWWWWWWWRR50kkkkkkkkkkkkkkkk WSWWWWWWWWWWWWWWWWWWWWWNHQWWkkkkkkkkkkk SWWWSSWWWWSWWWWWWWWWkkkkkkh~~%kkkkkkkkkkk Wkkkkkkkkkkkkkkkkkkkkkkkkkkkkh&#xc3;QWWWAWWWW WWWWW WWWWWkkkkkkkkkkkkkkkkkWWWARSgkkkkk SWWWS kkkWWWWWWWWWWSkkkkkkkkkkkkkkkPBOWW WWWWW WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWkk&#xc3;%
~Wkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkh


3.0 Core Flow > 50%
3.0 2.8 2.6 Power Core Flow > 50%
Power a 30%
Power a 30%
2.8                                                                        Two Loop and Single Loop Operation SPC 8x8 2.6            Power GE11 LFA      SVEA-96 LFA 26%      2.60            2.68                            All Core Flows
SPC 8x8 GE11 LFA SVEA-96 LFA Two Loop and Single Loop Operation
'E 2.4              30%       2AO             2.68                           Power  ) 30%
'E 2.4 0)
: 0)                      Core Flow   c 50%
.~ 2.2 o 2.0 K
.~ 2.2                      Power c 30%                                   SPC 8x8 Power       GE11 LFA     SVEA-96 LFA 2.0                    SPC 8x8                              30%         1.45             .1.63 K                Power GE11 LFA       SVEA-96 LFA                                             1.39 100%          1.21 0                  26%      2.10            2.28 g  1.8            30%      2.00            2.18 1.6                                                                       SVEA-96 LFA 1.4 SPC 8x8 GE11 LFA 1.2 20%   30%     40%         50%         60%         70%       80%          90%  .
0 g 1.8 26%
100%    110%
30%
Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power RPT Operable      'SS, SPC 8x8, GE11 LFA, SVEA-96 LFA Cycle Exposures x 4500 MWd/MT Figure 3.2a
2.60 2AO 2.68 2.68 Core Flow c 50%
Power c 30%
SPC 8x8 Power GE11 LFA SVEA-96 LFA 26%
2.10 2.28 30%
2.00 2.18 All Core Flows Power ) 30%
30%
1.45
.1.63 100%
1.21 1.39 SPC 8x8 Power GE11 LFA SVEA-96 LFA 1.6 SVEA-96 LFA 1.4 1.2 20%
SPC 8x8 GE11 LFA 30%
40%
50%
60%
70%
80%
Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power
'SS, RPT Operable SPC 8x8, GE11 LFA, SVEA-96 LFA Cycle Exposures x 4500 MWd/MT 90%
100%
110%
Figure 3.2a


3.0                   Core Flow ) 50%
3.0 2.8 Core Flow ) 50%
Power s 30%                                       Two Loop and Single 2.8                                                                          Loop Operation SPC SxS Power  GE11 LFA    SVEA-96 LFA 2.6                                                                 All Core Flows 25%       2.50           2.74 30%      2.40          2.64                         Power > 30%
Power s 30%
'E 2.4 Core Row  a 50%
Two Loop and Single Loop Operation 2.6 Power 25%
: 0)                         Power s  30%                                SPC 8x8
30%
-22                                                         Power      GE11 LFA      SVEA-96 LFA SPC SxS                            30%        1A5              1.69 o   2.0           Power   GE11 LFA    SVEA-96 LFA 100%       1.30             1.64 K                  25%       2.10           2.34 CL 30%-     2.00          2.24 1.8 SVEA-96 LFA 1.6 1.4 SPC SxS GE11 LFA 1.2 20%   30%       40%       50%         60%         70%       80%      S0%        100%    110%
SPC SxS GE11 LFA 2.50 2.40 SVEA-96 LFA 2.74 2.64 All Core Flows Power > 30%
Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, RPT Operable SPC Sx8, GE11 LFA, SVEA-96 LFA Cycle Exposures ) 4500 MWd/MT Figure 3.2b
'E 2.4 0)-22 o 2.0 K
CL g 1.8 Power 25%
30%-
SPC SxS GE11 LFA 2.10 2.00 SVEA-96 LFA 2.34 2.24 Core Row a 50%
Power s 30%
Power 30%
100%
SPC 8x8 GE11 LFA 1A5 1.30 SVEA-96 LFA SVEA-96 LFA 1.69 1.64 1.6 1.4 SPC SxS GE11 LFA 1.2 20%
30%
40%
50%
60%
70%
80%
Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, RPT Operable SPC Sx8, GE11 LFA, SVEA-96 LFA Cycle Exposures ) 4500 MWd/MT S0%
100%
110%
Figure 3.2b


                        ~        I          g 1
wwCCK Hmam
                                                            ~  ~~~~~~~~~~~~~~~~~~~~
                                                              ~~
MMMM%      ~ ~ ~ ~ ~~ ~ ~~ ~ ~ ~ ~~~
W4 I              I'                    Cs~~~                                            I 8                          ~      ~ ~ ~    ~
wwCCK                                                           ~~~~W III :: I~  ~
                                                                +~~~/
Hmam
-=Bi===
-=Bi===
gHHQ wHw'.0 WWW&~
gHHQ wHw'.0 WWW&~
C~~Ca MWMWW gWW   I I
C~~Ca MWMWW mi5 gR~
gag, I
gWW WWW WWW WWW WgW WMW WMW HaB Ei~i g-a=g R~mm=-
I       I 'i
8 5 =am
                                                ~ I w w MMLw w w w w w e w N www w
~
                                                                ===5 Fl~
I I
g 1
I'
~~~~~~~~~~~~~~~~~~~~~
~~~~ W4~~~~~~~~~~~~~
MMMM%
Cs~~~
8
~
~
~
~
~
I III ~
~ ::
I I
~ I I
I I 'i
~~~~W
+~~~/
wwMMLwwwwwwe wNwwwwg~
I I
~
~
. gag,
 
===5
':=
Fl~
5==
~
~
~
P=
I wag R~H.
i I
I '.
I I I I 8 ~~Igg~~+~~~
~a
+~ ~~~
~~~hLJ
~~~~
~IWg~ ~~~~
Sah~P%I~~~~~~~~~~~~
Q~~~~e ~~~~~~~~
PaL~~~~~~~~~
WWM WWWWWWa ~WWWWMWWWh&WWWMMMM H~~~~ ~~~~~ +~If'~~~~~~~~~~~
MWM WWMMW WMMMWM&aa M~WMMWWWMMM WWWW WWM WWWW'WWWWWWMMMMWa~W~WWWMMM
~e I
I 'I
~ I'
~ I '
~ ~
II',
I
~
I
~
~ I I I
I
I
                                                                                          ~            ~
~
                                                                                                            ':=        g~
~
WWW WWW                                                                                                            5==
~.: I I
WWW WgW WMW WMW                ~    ~  ~
I I
                                                                                    '        I P=
wag R~H.
i                  I HaB      I  '.        I I                I I Ei~i g-a=g mi5  R~mm=-            8 ~~Igg~~+~~~
                                ~a +~ ~~~                                                                              ~~~
                                                ~IWg~ ~~~hLJ  ~~~~              Sah~P%I~~~~~~~~~~~~                ~
gR~  8                      WWM Q~~~~e  H~~~~
WWWWWWa            ~~~~~~~~
                                                                    ~~~~~  ~WWWWMWWWh&WWWMMMM    PaL~~~~~~~~~
                                                                                      +~If'~~~~~~~~~~~
MWM WWMMW    WWWW'WWWWWWMMMMWa    WMMMWM&aa M~WMMWWWMMM            ~W~WWWMMM 5 =am WWWW            WWM                                                                      ~e I                          I 'I        ~
I'                                ~  I '      ~
                                                                                                ~              II ',
I      ~
I    ~                    ~ I  I I                I
                                                          ~  ~ .:    I
                                                                            ~
I                    I I


~ W~Wlg                                     I '
~ W~Wlg ate I '
ate                                    I '>>
I '>>
~
~
~
WWW
WWW
                                                                                          ~ os ~ s:
~ os
WWWg WWWg
~ s:
                                              ~      ~      ~
WWWg WWWg WWR~~~~~~~~~~~~~~HW gWWW WWWW WWW I
WWR~~~~~~~~~~~~~~HW gWWW I
I '>>
I '>>                                         ~   I I     ~
~ I I
I   '>>                                           ~ ~   ~     ~ ~   ~
~
WWWW WWW g
I '>>
WWWMWII III= I=-
g IL "
ggII I
~
W
~
            ~+
~
WWWWHaee WWWWWWWWaa a
~
                    ..xjgg
~
                          ++14 8
~
                                  ~ +WWWWWWWWWWWWWWWWWWWWWWWWWWWW WWWWW IL MWWWWM WWWWWWWWWWWWWWWWWWXMWWWW
WWWMWII III=
                                                                  ~ ~ QW WW WWWMWWWWWWW W WWW WW WWWWWWMa>>MW+WWWWWWWWWWWWWWW I-I=
ggII I-I=
CORK%
CORK%
WWC           ~     ~ ~
I MWWWWM W..
8 xjgg I=-
~+
WWWWHaee
++14 WWWWW WWWWWWWWWWWWWWWWWWXMWWWW WWWWWWWWaa ~ +WWWWWWWWWWWWWWWWWWWWWWWWWWWW a
~~ QWWWWWWMWWWWWWWWWWWWW WWWWWWMa>>MW+WWWWWWWWWWWWWWW WWC
~
~
~
WWWWWWWWWWWWW~>>
WWWWWWWWWWWWW~>>
WW&WWWWWCSWWWWWWW&Pe~ +Wgg WWWWW Wg WWWWWWWWWWWWWWWWWWWWWWWW~
WW&WWWWWCSWWWWWWW&Pe~ +WggWWWWW WgWWWWWWWWWWWWWWWWWWWWWWWW~
y>>               ~   I '>>             ~
y>>
II '
~ I '>>
                                                                      ~         )
~
                                      ~          I      ~
I I '
                                                                    ~ ~
~
)
~
I
I
                                                                    ~ II:S
~
                                                                  ~       ~     ~
~
                                                                      ~
~ I
~ II:S
~
~
~
~
I I
I I


3.0 Core Flow ) 50%
3.0 2.8 2.6 Power Core Flow ) 50%
Power a 30%                                 Two Loop and Single 2.8                                                                        Loop Operation SPC SxS Power    GE11 LFA       SVEA;96 LFA 2.6 25%       2.50             2.72 30%        2.40            2.62                      All Core Flows
Power a 30%
'E  2.4                                                                  Power > 30%
SPC SxS GE11 LFA SVEA;96 LFA Two Loop and Single Loop Operation 25%
Core Flow a 50%
2.50 2.72
Ol                          Power a 30%
'E 2.4 Ol 2 2 I
2 2 I
LQ o 2.0 K
L Q                                                              Power.
O.
SPC 8x8 GE11 LFA     SVEA-96 LFA SPC SxS o 2.0            Power  GE11 LFA       SVEA-96 LFA           30%      1.45            1.67 K                  25%      2.10              2.32            100%      1.26            1.48 O.
g 1.8
1.8            30%      2.00              2.22 g
-1.6 30%
SVEA-96 LFA
Power 25%
    -1 .6 1.4 SNP SxS GE11 LFA 1.2 20%   30%       40%       50%         6Q%         7Q%     8Q%       9Q%   'PQ%         1 1P%
30%
2.40 2.62 Core Flow a 50%
Power a 30%
2.10 2.00 2.32 2.22 SPC SxS GE11 LFA SVEA-96 LFA Power.
30%
100%
SPC 8x8 GE11 LFA 1.45 1.26 SVEA-96 LFA 1.67 1.48 SVEA-96 LFA All Core Flows Power > 30%
1.4 1.2 SNP SxS GE11 LFA 20%
30%
40%
50%
6Q%
7Q%
8Q%
9Q% 'PQ%
1 1P%
Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power TSSS, RPT Operable SPC SxS, GE11 LFA, SVEA-96 LFA Cycle Exposures w 4500 MWdIMT Figure 3.4a
Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power TSSS, RPT Operable SPC SxS, GE11 LFA, SVEA-96 LFA Cycle Exposures w 4500 MWdIMT Figure 3.4a


3.0 Core Flow > 609o Power a 309o                                   Two Loop and Single 2.8 Loop Operation SPC SxS 2.6           Power GE11 LFA     SVEA-96 LFA 26%      2.50            2.77                          All Core Flows 30%      2.40            2.67
3.0 2.8 Core Flow > 609o Power a 309o Two Loop and Single Loop Operation 2.6 Power SPC SxS GE11 LFA SVEA-96 LFA I
    'E 2.4                                                                   Power > 30%
OOI
Core Flow s  609o 0)
'E 2.4 0)~ 2.2 o 2.0 K
    ~ 2.2                     Power  a 309o                                SPC SxS Power GE11 LFA    SVEA-96 LFA SPC SxS                                  30%    1A6            1.72 o 2.0             Power  GE11 LFA      SVEA-96 LFA 100%    1.33 K                                                                                         1.60 I
Q.
Q.
26%     2.10           2.37 OO I
g 1.8 26%
1.8            30%      2.00            2.27 g                                                                          SVEA-96 LFA 1.6 1.4 SPC Sx8 GE11 LFA A
30%
0      1.2 20% 30%       40%       50%         60%       70%       80%      90%        100%    110%
Power 26%
Percent of Rated Power I
30%
C)                                    Reduced Power MCPR Operating Limit Versus Percent of Rated Power TSSS, RPT Operable SPC SxS, GE11 LFA, SVEA-96 LFA 0Wo                                      Cycle Exposures > 4600 MWd/IVIT C)
2.50 2.40 2.77 2.67 Core Flow s 609o Power a 309o 2.10 2.00 2.37 2.27 SPC SxS GE11 LFA SVEA-96 LFA Power 30%
Figure 3Ab
100%
SPC SxS GE11 LFA 1A6 1.33 SVEA-96 LFA 1.72 1.60 SVEA-96 LFA All Core Flows Power > 30%
1.6 A0 I
C)
Wo0 C) 1.4 1.2 20%
SPC Sx8 GE11 LFA 30%
40%
50%
60%
70%
80%
Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power TSSS, RPT Operable SPC SxS, GE11 LFA, SVEA-96 LFA Cycle Exposures > 4600 MWd/IVIT Figure 3Ab 90%
100%
110%


            ~
leg ggRgm m g>>
                '          ~ i'i i's              ~~8~~~~                           ~
R>>
~
%5
                                                                                        ~
~RSR
                                                                                          ~
~
                                                                                            ~ I
~
                                                                                              ~ I:  I
~ I I
                                                                                                      ~
I
~
~
~ I:
~
i
~
~
~ i'i i's
~~8~~~~
a g~
a g~
                                            ~ ~ ~ ~ ~ ~ K ~ ~ ~ ~ ~ ~~~ ~ ~~~ ~ ~~
~~~~~~KLese~~~~~~~~~~~~~~~
Lese leg
~
              ~     ~    ~
~
                                            //gal~;Rii=aiii==iiiii>g ggRgm g>>                                                                                            i ~
~
m R>> %5        ~         ~    ~ i '.
//gal~;Rii=aiii==iiiii>g
I                        wwgwm                        ~     ~     ~
~
e I I MM  W MMW MW MMW MW MMMMW W WW MM WMWWWWMMMMWMMMMWWWMWWMM
~
                            ~~~~IH5~~~~~~~~~~~~~~~~~~~~+~~~~
~ i '.
~RSR  ~H55%   CpR KH~~HR~~~a5~~~~~~~~~~~~~~~~~~~~
~
                                      ~ I'>>                         0 g
~
                                                                        ~   I
~
                                                                              ~
I wwgwm e
g
MMWMMWMWMMWMWMMMMWWWWMM I I WMWWWWMMMMWMMMMWWWMWWMM
                                                                                        ~
~~~~IH5~~~~~~~~~~~~~~~~~~~~+~~~~
II '
~H55%
I         ~
CpR KH~~HR~~~a5~~~~~~~~~~~~~~~~~~~~
                                    ~   I             ~   ~   I: I
~ I'>>
                                                ~   ~
0 g
                                                        . II
~
                                              ~     ~     ~
I~ g
                                        ~ I      ~      I I
~
I I '
I
~
~
I
~
~ I:
I
~ I
~
~. II
~
~
~
~
I I


I'i                  W       W>>>>>>WWWWWWWMWWWWWW
~
                      ~
~
                          ~               I                 W>> WWWW   WWWW
~
                                                                                                ~      ~  as  I  I      s WW WWWWWWW W>>>>WW>>W WWWW                      ~ ~  I  ~ ~  ;:  ~
~ I
BR                                                       WW         tm>>WWWWW>>WWWWWW>>>>>>>>WE WWWWWWWWWWWWWWWWWWWW W>>>>@ac>>>>m                                                           lW Ca>>WW I              I OWNED~>>>>m                     ~
~ ~ ;:
I;         ~
~
IW IW l~
W W>>>>>>WWWWWWWMWWWWWW I'i
p                                   I '
~
Im IW w~
~ as I
                                            ~
I s
W>>>>>>M                                 I'                 l>> W>>>>
I W>>
Ig>>>>>>>>W 8
WWWW WWWW WW WWWW WWWWWWW W>>>>WW>>W BR WW tm>>WWWWW>>WWWWWW>>>>>>>>WE WWWWWWWWWWWWWWWWWWWW lW I
R.-
I W>>>>@ac>>>>m IW Ca>>WW OWNED~>>>>m
~
I;
~
IW l~
p Im
~
s
~
I '
IW w~
W>>>>>>M I
I' l>>W>>>>
~
~
8 I Q
Ig>>>>>>>>W IWWWW5 R.-
l>>>>WW l>>W>>W Wgg>>
Wgg>>
Wgg>>
I    Q I
l>>WWWW>>W~
IWW WW5 l>>>>WW l>>W>>W l>>WWWW>>W~
WW l>>WWW>>>>W~
s
WWW I I '.
                                                                                                                    ~  ~    ~
I
WW                                                   l>>WWW>>>>W~
~ '
WWW           '                                                                    I I '.           I
I I
              ~                 I               I BI         I '              I I            I I        IWWWW~WWWQWWWW>>W>>>>W>>WW>>WW
BI IWWWW~WWWQWWWW>>W>>>>W>>WW>>WW I '
                                                          ~>>>>~>>WWWWWWWW>>                                                       t>>W
I I I I
                                                                                                            ~     ~ ~     ~ IW>>
~>>>>~>>WWWWWWWW>>
t>>W
~
~
~
~ IW>>
g>>W>>RW>>WW~WW>>W~M>>WWWWWQSIaaaja5~~~~~~>>>>WWW>>>>>>WW Wg>>W'WWW>>>>WWWWW>>>>g>>WW>>>>g>>>>WWWW>>WW>>aassaaLLLLRX:IW>>>>WW
g>>W>>RW>>WW~WW>>W~M>>WWWWWQSIaaaja5~~~~~~>>>>WWW>>>>>>WW Wg>>W'WWW>>>>WWWWW>>>>g>>WW>>>>g>>>>WWWW>>WW>>aassaaLLLLRX:IW>>>>WW
                              +%>>taaaaw>>>>>>>>>>ww>>>>H>>wwwww>>w>>>>w>>ww>>wwww W>>>>>>WW>>>> ~+iWWWWWWWWWWWWWWWW>>WWWWWWWWWWWW
~+%>>taaaaw>>>>>>>>>>ww>>>>H>>wwwww>>w>>>>w>>ww>>wwww W>>>>>>WW>>>>
                            ~
~+iWWWWWWWWWWWWWWWW>>WWWWWWWWWWWW WWW>>~WWW>>he%>>~
WWW>>~WWW>>he%>>~           WWW>>WW>>erne WQ>>       ~   ~     ~
WWW>>WW>>erne WQ>>
                                                          >>W>>W>>WWWWWM~>> +WWW>>>>WWWW WWWW                 WWWW WWWWWWWWWWWWWWWWWWW WWWQQPW>>WW s                               ~ I'             ~   's                   ~
~
~
~
                                                                  ~       ~
~
Is=     I s Is..
>>W>>W>>WWWWWM~>> +WWW>>>>WWWW WWWW WWWW WWWWWWWWWWWWWWWWWWW WWWQQPW>>WW s
                                                                ~
~ I'
                                                                              ~
~ 's
                                                              ~     ~    ~
~ f
                                                      ~ I                I I
~
~
~
~ I Is=
I s
~
Is..
~
~
~
~
I I


3.0 Core Flow > 50%
3.0 2.8 Core Flow > 50%
Power s 30%                                 Two Loop and Single 2.8                                                                    Loop Operation SPC 8x8, Power GE11 LFA     SVEA-96 LFA 2.6             25%     2.50         2.76 30%     2.40         2.66                           All Core Flows
Power s 30%
'E 2.4 Core Flow s 50%
Two Loop and Single Loop Operation Power SPC 8x8, GE11 LFA SVEA-96 LFA 2.6 25%
Power  ) 30%
2.50 2.76
'E 2.4 0)-22 o 2.0 K
0 g 1.8 30%
Power 25%
30%
2.40 2.66 SPC 8x8, GE11 LFA 2.10 2.00 SVEA-96 LFA 2.36 2.26 Core Flow s 50%
Power ~ 30%
Power ~ 30%
0)
AllCore Flows Power ) 30%
-22                      SPC 8x8, Power SPC 8x8, GE11 LFA    SVEA-96 LFA Power  GE11 LFA    SVEA-96 LFA                 30%                  1.80 25%    2.10          2.36 o 2.0                30%    2.00          2.26 100%   1.32           1.58 K
SVEA-96 LFA 1.80 100%
0 g    1.8 SVEA-96 LFA 1.6
1.32 1.58 SVEA-96 LFA SPC 8x8, Power GE11 LFA 30%
    ,1.4       SPC 8x8 GE11 LFA 1.2 20% 30%     40%         50%         60%         70%       80.%    90%        100%      1 10%
1.6
Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, RPT Operable SPC Bx8, GE11 LFA, SYEA-96 LFA FFTR Operation Figure 3.6
,1.4 1.2 20%
30%
SPC 8x8 GE11 LFA 40%
50%
60%
70%
80.%
Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, RPT Operable SPC Bx8, GE11 LFA, SYEA-96 LFA FFTR Operation Figure 3.6 90%
100%
1 10%


I       I ',             RMWWWMMWM
gfs~hN my=a 5:=RR.
                                                      ~ WWMWWWWW WMWWMWMM WMWWWMWW                          I       ~   ~ I       I gfs~hN                                                  WW WWWWW                           I    ~ I    ~ I  I:      I
~mR Rgga I
                      ~     ~    ~      ~
~ I
my=a                                                    M W Mg W WWW         MMMg MMMM WWWW     WMWWW       Wg W              MMW MMMMM WWWWWMWMW MWMWgMMWWMWWWWWWWW&W&WW&
~ I I:
MWWMMMM5                                           I MW MMMMM8                              ~    ~
I
WRIWWMWWWW&MMWkg WWWWCMW                                                     '      .                I ',
~
WMWWWMM
~
                  '                I ',
I I
I WWWWWMW MWWMWWW I '
I ',
5:=RR.                                                                                      ~       ~                 ~   ~ I
RMWWWMMWM
  ~mR            ~       ~   ~     ~      ~ ~
~WWMWWWWW WMWWMWMM I
RmmRR WWMWWWW I                   I       MWMMMMM MWMMMMMS W W MWW MMMNMMMMW ~ MMMMMMMMW I 'e       II                                M M WM W    WR W MMM MMMWW MMMM MW W MM    W HMMMMMMMM MW MMW WW MMW
~
                                        ~~~
~ I I
WWW sae~~~~~~~m                                          WM WMWWWMWMWWMMMMWWMMMWMMMW L.f  ggWWggg                    W gag       gWWWWWQWWWg WWWWWWWWg WWWWWWWa
WMWWWMWW WW WWWWW
                                                  ~
~
WW W M~ <% MW+WWWMMMWWMWMWWWWWWWMWWW MWW MMW W W MMMWW W MW Ss~ IMW MMM W MMW W MMMM            MMMMMW  W MMMM MMMM MMMW ~>>
~
W ~Mam    MMW MMMMMMMMMM ISED ~+%55/
~
MMMMW MMMMM MMMWMWMMMMMWMWMMMMWMMMMWMhaa MWWgHWWWQWMWWCgMWWCWMWWWWMWMWMWWWm                                                                    ~+IfMMMMM &MMMM Rgga    WMM       WWW MMMM StSMWggMMM          MMMM+                 MWMWMMMMWMMWMWMWWWMMMMMW MMWWWWMMMWMMMMMWWMMWMWMMM WWWMHWMWMMMWWMWWMWMWMMMMWWMMMWMMMWMMMMMM
~
                                                  ~ 0's                 ~ I 'a
MWMgWMMMgMMMMWg WMMWMMMMM WWW WWWW WMWWW WWWWWMWMW MWMWgMMWWMWWWWWWWW&W&WW&
                                                                                        ~
MWWMMMM5 MWMMMMM8 WRIWWMWWWW&MMWkg WWWWCMW I ',
g
WMWWWMM I
                                                                                              ~
I ',
                                                                                                                      ~ ~ 'e
WWWWWMW I '
                                                        ~       ~
MWWMWWW
                                                            ~ I.
~
~
~
~
I RmmRR
~
~
~
~
~
~
WWMWWWW I
I MWMMMMM MWMMMMMS WWMWWMMMNMMMMW~MMMMMMMMW I 'e I I MWMWRMMMWMMMMWHMMMMMMMM WWW MWWMWMMMWMWWMMMWMMWWWMMW sae~~~~~~~m
~~~
WMWWWMWMWWMMMMWWMMMWMMMW L.fggWWggg W
gag gWWWWWQWWWg WWWWWWWWg WWWM~~ <%MWMWWMMWWWMMMWWWMWSs~ IMWMMM WWWWWWWa
+WWWMMMWWMWMWWWWWWWMWWW WMMWMMMWMMMMW~>> ~ ISEDMMWMMMMMMMMMM MMMMWMMWMMMM MMMWMam ~+%55/MMMMWMMMMM MMMWMWMMMMMWMWMMMMWMMMMWMhaa~+IfMMMMM MWWgHWWWQWMWWCgMWWCWMWWWWMWMWMWWWm&MMMM WMM WWW MMMM+ MWMWMMMMWMMWMWMWWWMMMMMW MMMM StSMWggMMM MMWWWWMMMWMMMMMWWMMWMWMMM WWWMHWMWMMMWWMWWMWMWMMMMWWMMMWMMMWMMMMMM
~ 0's
~ I 'a
~ g
~
~ ~ 'e
~
~
~ I.


3.0 Core Flow ) 50%
3.0 2.8 Core Flow ) 50%
Power a 30%                                 Two Loop and Single 2.8                                                                    Loop Operation SPC 8x8, Power GE11 LFA     SVEA-96 LFA 2.6            25%    2.50          2.78 30%    2.40          2.68                         All Core Flows Power > 30%
Power a 30%
'E 2.4                 Core Flow  c 50%
Two Loop and Single Loop Operation 2.6 Power 25%
Power c  30%
30%
Ol                                                                  SPC Sx8,
SPC 8x8, GE11 LFA 2.50 2.40 SVEA-96 LFA 2.78 2.68 All Core Flows Power > 30%
~  22                                                          Power GE11 LFA     SVEA-96 LFA SPC 8x8, L
'E 2.4 Ol~ 22 L
rD                Power GE11 LFA    SVEA-96 LFA                30%   1.64           1.82 o 2.0              25%    2.10          2.38                  100%    1.35            1.63 30%    2.00          2.28 K
rD o 2.0 K
0 1.8                                                                      SVEA-96 LFA g
0 g 1.8 Power 25%
    .1.6 1.4       SPC SxS GE11 LFA 1.2 20% 30%     40%       50%         60%         70%       80%      90%        100%    110%
30%
Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power TSSS, RPT Operable SPC SxS, GE11 LFA, SVEA-96 LFA FFTR Operation Figure 3.8
SPC 8x8, GE11 LFA 2.10 2.00 SVEA-96 LFA 2.38 2.28 Core Flow c 50%
Power c 30%
Power 30%
100%
1.64 1.35 1.82 1.63 SVEA-96 LFA SPC Sx8, GE11 LFA SVEA-96 LFA
.1.6 1.4 SPC SxS GE11 LFA 1.2 20%
30%
40%
50%
60%
70%
80%
Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power TSSS, RPT Operable SPC SxS, GE11 LFA, SVEA-96 LFA FFTR Operation Figure 3.8 90%
100%
110%


              ~       ~     ~   I '
~
                                                                            ~~~>>85P5M~~>>~~~
~
I         I   '.                                 '+~~~+             ~     ~   ~ I   ~
~
                                                                                        ~ I ~     E ~:     ~
~
            ~     ~   ~         ~   ~   s       ~
~~~>>85P5M~~>>~~~
                                                                  >>>>>>>>LIII~~~~~~~~~~~~~+H>>
~
I                                   I          >>>> W>>>>>>>> I>>W>>>>WWW>>>>WMW>>
~
                                                        >>>>>>>>>>>>5                               I I
~ I '
g>>>>>>>>>>>>Q
I I '.
                                                                                                        ~
'+~~~+
WWWWWMWWW>>>>>>WAN>>M>>>>>>W
~
~
~ I
~
~ I
~
E ~:
~
~
~
~
~
~
s
~
>>>>>>>>LIII~~~~~~~~~~~~~+H>>
I W>>>>>>>> I>>W>>>>WWW>>>>WMW>>
I
>>>>>>>>>>>>5 I
~
I g>>>>>>>>>>>>Q WWWWWMWWW>>>>>>WAN>>M>>>>>>W
~~>>~~~>>~M &#xc3;6588~M~
~~>>~~~>>~M &#xc3;6588~M~
I         I
I I '
                              '.                                                    ~       ~       ~     ~   ~   ~
~
                                                        >>>>>>M>>>>
~
                                                        >>WW>>W>>
~
                                                        >>>>>>>>>>>>                (
~
                                                                                ~
~
I                               ~  ~
~
  ~    ~
>>>>>>M>>>>
c>>H>>>>w I I II                    II              >>>>WW>>>>>>>>W>>>>>>>>W>>>>>>>>>>>>>>M
>>WW>>W>>
                                                      >>~~~ I+&>>>>>>>>>>>>>>>>>>
(
      ~   ~ ~
~
ggg>>>>ggg>>gaCw>>C>>>>>>>>>>>>>>>>CC>>>>>>>>>>>>>>>>>>
I c>>H>>>>w
555>>>>mw                                ~>%+>>Wgg>>WW>>>>M>>>>W>>>>WW'W W>>>>>>WAN>>W>>>>>>           cl>>                         >>>>>>>>>>>>>>>>>>>>I%0~>>
>>>>WW>>>>>>>>W>>>>>>>>W>>>>>>>>>>>>>>M I
g W>>>>W>>>>>>W>>>>>>>>>>aaa~~~>>>>>>>>>>>>>>
I II II
>>~~~ I+&>>>>>>>>>>>>>>>>>>
~
~
~
555>>>>mw Cw>>C>>>>>>>>>>>>>>>>CC>>>>>>>>>>>>>>>>>>
ggg>>>>ggg>>ga
~>%+>>Wgg>>WW>>>>M>>>>W>>>>WW'W cl>>
g>>>>>>>>>>>>>>>>>>>>I%0~>>
W>>>>>>WAN>>W>>>>>>
W>>>>W>>>>>>W>>>>>>>>>>aaa~~~>>>>>>>>>>>>>>
>>>>>>>> W>>>>W>>>>W>>>>>>>>>>>>>>>>>>>>>>>>>>>>W>>W~~~M>>>>>>>>
>>>>gI w>>>>
g>>>>>>g>>>>>>g>>>>>>>>>>+>>>>>>Mw>>>>>>w
~ I 'I
~ g I
~ f I I I 'I I
I I
~
~
I
I
>>>>>>>> W>>>>W>>>>W>>>>>>>>>>>>>>>>>>>>>>>>>>>>W>>W~~~M>>>>>>>>
~
            >>>>g w>>>> g>>>>>>g>>>>>>g>>>>>>>>>>+>>>>>>Mw>>>>>>w
~
                                                ~  I 'I                  ~
g I        ~
fI                I I 'I I    I      I          ~  ~
I
I
                                                          ~       ~  I
~ S.
                                                              ~  S. IS
IS


3.0 Core Flow   > 509o Power   s 309o                                     Two Loop and Single 2.8                                                                          Loop Operation SPC Sx8 Power   GE11 LFA     SVEA-96 LFA 2.6 259o      2.50          2.?3 309o     2.40           2.63                                   All Core Rows
3.0 2.8 Core Flow > 509o Power s 309o Two Loop and Single Loop Operation 2.6 SPC Sx8 Power GE11 LFA 259o 2.50 SVEA-96 LFA 2.?3
'F 2.4                                                                            Power > 30%
'F 2.4 CD-22 Q
Core Flow w 509o Power a 309o
6) o 2.0 K
-22 CD Q                                                                        Power SPC 8x8 GE11 LFA SVEA-96 LFA
fL g 1.8
: 6)                        SPC Sx8                                         30%    1.45        1.68 Power  GE'I 'I LFA   SVEA-96 LFA o  2.0 2.'IO                                        100%     1.28         1.51 K                  259o                    2.33 fL                309o      2.00          2.23 g  1.8 SVEA-98 LFA
=1.6 309o Power 259o 309o 2.40 2.63 Core Flow w 509o Power a 309o 2.'IO 2.00 2.33 2.23 SPC Sx8 GE'I 'I LFA SVEA-96 LFA Power 30%
    =1.6 1.4 SPC Sx8 GE11 LFA
100%
      .2 20%   30%       40%           50%         60%         70%       80%      90%    '00%        1 10%
All Core Rows Power > 30%
Percent of Rated Power Reduced Power NICPR Operating Limit Versus Percent of Rated Power NSS, RPT Inoperable SPC Bx8, GE11 LFA, SVEA-S6 LFA Cycle Exposures w 4500 MWd/MT Figure 3.10a
1.45 1.28 1.68 1.51 SVEA-98 LFA SPC 8x8 GE11 LFA SVEA-96 LFA 1.4
.2 20%
SPC Sx8 GE11 LFA 30%
40%
50%
60%
70%
80%
Percent of Rated Power Reduced Power NICPR Operating Limit Versus Percent of Rated Power NSS, RPT Inoperable SPC Bx8, GE11 LFA, SVEA-S6 LFA Cycle Exposures w 4500 MWd/MT 90% '00%
1 10%
Figure 3.10a


3.0 Core Flow > 50%
00 O
Power a 30%                                     Two Loop and Single 00 O      2.8                                                                        Loop Operation SPC 8xS Power  GE11 LFA     SVEA-96 LFA 2.6          25%        2.50        2.80                          All Core Flows 30%       2.40        2.70                          Power > 30%
3.0 2.8 Core Flow > 50%
    'E  2.4 Core Flow s 50%
Power a 30%
Power a 30%                                   SPC 8x8 0)
Two Loop and Single Loop Operation 2.6 Power 25%
    ~                                                              Power  GE11 LFA     SVEA-96 LFA 22 SPC SxS                                30%     1.46           1.76 Power  GE11 LFA    SVEA-96 LFA 0 2.0                                                            =100%    1.38            1.68 25%        2.10        2AO K                30%      .2.00        2.30 0
30%
Ch      1.8                                                                                SVEA-96 LFA I g
SPC 8xS GE11 LFA 2.50 2.40 SVEA-96 LFA 2.80 2.70 All Core Flows Power > 30%
        .1 .6 1.4 SNP SxS GE11 LFA A      1.2 0          20% 30%       40%         50%         60%         70%       80%      90%  '00%          110%
ChI
Percent of Rated Power Reduced Power MCPR Operating Limit C)
'E 2.4 0)~ 22 0 2.0 K
Versus Percent of Rated Power NSS, APT inoperable SPC SxS, GE11 LFA, SYEA-96 LFA Cycle Exposures > 4500 MWd/MT C)
0 g 1.8 Power 25%
Figure 3.10b
30%
Core Flow s 50%
Power a 30%
2.10
.2.00 2AO 2.30 SPC SxS GE11 LFA SVEA-96 LFA Power 30%
=100%
1.46 1.38 1.76 1.68 SVEA-96 LFA SPC 8x8 GE11 LFA SVEA-96 LFA
.1.6 1.4 SNP SxS GE11 LFA A0 C)
C) 1.2 20%
30%
40%
50%
60%
70%
80%
Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, APT inoperable SPC SxS, GE11 LFA, SYEA-96 LFA Cycle Exposures > 4500 MWd/MT Figure 3.10b 90% '00%
110%


WWWWWWWWWMWWWWWWWWMWWWMMW W MMW W W W MM iI  'WWWQWWWW I
@5%
                                                                                    ~
I-=/I MMMM'511 1m==i IIRII am888 PgQ SBR HHHQ WWWWWWWWWMWWWWWWWWMWWWMMW WMMWWWWMM i I'WWWQWWWW I
I I I
~
                                                                                            ~
                                                                                              ~
                                                                                                ~
                                                                                                ~
                                                                                                  ~;:
                                                                                                      ~
I
I
                                                                                                            ~
~
~
~
~
8 MMMM/
8 MMMM/
@5%
I I
I             I g WMWW~MWWW1 I '             I             I                                                         I 's I-=/I     I I
I '
I I    ~        I
I I
                                                                          '                                      M
gWMWW~MWWW1 I 's I
        ~lI I
I I
                                                                                                              ~ ~
~
MMMM'511 I
I ',
I I    I '           I I           I I 555551:-55hmlliimmmllggilg 1m==i              MWWMWMWMWMW WWMWWWWWWWWWMWWWWWWCQWWMM WMWWWWMMMWMWM WWW                                    MMMMW WWMMMW MMMMWMMMHW WMMW IIRII      g WM+ + WWWW JK'g ggg+W MMWWMMMMMMMMM eked WgWHIWWCSWgWWWgWQCERg~~ggWFIMWMWWWMMWWWMWW am888 RRIRRK-=HIIII5558555555RHIRmKKRRIR'%5551 PgQ              ~     ~   ~     WWWW WMQWQWWSsP                         +IOQWWWWMWWWMWWg SBR        ~~~~a ~~               WWWW             MMMM MMMM+ MWWWW MMWQQMWMW HHHQ I I'           I 'I         ~ I'       I'                   ~
I I
I   ~
M
II 'I
~l I '.
                                                          ~      ~
I I
I   ~            I  I;: I I I       '
555551:-55hmlliimmmllggilg I
                                                              ~
I '
ll
I I I I WMWWWWMMMWMWMWWMWWWWWWWWWMWWWWWWCQWWMM WWWMWWMWMWMWMWMMMMWWWMMMWMMMMWMMMHWWMMW g WM++WWWWeked JK'gggg+W MMWWMMMMMMMMM WgWHIWWCSWgWWWgWQCERg~~ggWFIMWMWWWMMWWWMWW RRIRRK-=HIIII5558555555RHIRmKKRRIR'%5551
                                                                    ~
~
~
~
WWWW WMQWQWWSsP
+IOQWWWWMWWWMWWg
~~~~a ~~
WWWW MMMM MMMM+ MWWWW MMWQQMWMW I I
~
~ ~;:
I
~
~
I I' I 'I
~ I' I'
~
~
~ I
~
II'I I
~
I I;:
I I I
~
~
' ll


Wg<<W<<       ~~~~~~~~~~~~~~ W<<<<<<W<<<<&                        <<WWMM<<MWWWWWWWWWWWWWWW
~
    <<Cfg                                                         WMWWWW
I
    <<W
~ Ss
    << s'.%
~ S:
WWR>llg
Wg<<W<< ~~~~~~~~~~~~~~
                    ~
<<WWMM<<MWWWWWWWWWWWWWWW W<<<<<<W<<<<&
                      'I:   I '.
<<Cfg WMWWWW
                                                              <<'WWWWWWA WWWWWW<<%
<<W
<<'WWWWWWA WWWWWW<<%
~
~
~ I
~
'I:
I '.
WM<<WWW<<
WM<<WWW<<
                                                              <<<<W<<WWW
<<<< s'.%
                                                                                                ~    ~ ~  I    ~
<<<<W<<WWW WWR>llg WWWWWWWW
  <<W                                                         WWWWWWWW                            ~ Ss    ~ S:
<<W
                          ~   ~              ~  ~
~
g<<WMWW<<WW<<W<<WW<<MW<<WB WWW                                                                M<<W<<W<<<<M<<MW<<MW<<MW<<WW W<<WWWWWWW<<W<<M<<~<<<<M<<<<~<<Rg
~
                        ~   I                   ~   I         <<WW~W<<M<<g                                                 I
~
                                                              <<<<WB<<WMWH                                 ~       ~
~
<<<<<<W WWWW Q<<WW<<W<<<<WM WWWWWWW<<g WWW<<         'LWW&WWWWWWW&WW&<<WWMMWWW                         <<WWMMW<<W                                                   5 8 <<<<a~
g<<WMWW<<WW<<W<<WW<<MW<<WB M<<W<<W<<<<M<<MW<<MW<<MW<<WW WWW W<<WWWWWWW<<W<<M<<~<<<<M<<<<~<<Rg
W<<Sa.~             I
~ I
                            ~     iI    '
~ I
                                                              <<WWMMW<<W
<<WW~W<<M<<g I
                                                              <<W~<<<<W<<WC                '
<<<<WB<<WMWH
I '.
~
8--
~
WWW W<<W           I'       I I I
<<<<<<W Q<<WW<<W<<<<WM WWWW WWWWWWW<<g 5
WWW<<
'LWW&WWWWWWW&WW&<<WWMMW<<W
<<WWMMWWW W<<Sa.~
<<WWMMW<<W 8<<<<a~
I
~
i I '
<<W~<<<<W<<WC I '.
WWW 8--
I W<<W I '
I I I I
<<WWWWWWMM<<WWMWW M<<W
~~~~~~~~~~>>
W awe~~~~
WWWWWMWWW<<MW<<<<g i~eC<<w ggwaaatQQQCClaCKQ55RTKK&~~~~~~gfg~fg~pg~~~p<<www<<<<w<<ww W<<W
'WWM WMWWWWW<<W<<<<W<<WW <<WMWWWWW<<W<<WW<<WWW<<W WQW WWM gWWW<<WW<<W<<MWWWM <<WMWWWWW<<M<<W<<g<<WWWQ W<<<<WW<<MW<<QW<<~W<<~W<<<<W+MW<<W<<WWWWWW<<<<lg<<WWWW m<<W<<aa5<<WWW<<WW<<MWRW<<<<~W<<<<<<<<W<<<<WR<<<<<<W~
W<<g g<<M~~
~h&W~NIW<<W<<<<W<<W<<MWW<<WW<<WW<<W<<WW<<MWM<<g WWW<<g<<WWCQWWWWWWMaaa~~ +<<W~WWWWWWWW<<WWWWWW<<<<<<WAN
~
~
<<W<<<<W<<<<~~e
<<WWW<<WWW<<<<WWM~'~<<W<<<<WWWW
~
~
WWW WWW
<<WWWWWWW<<W<<<<WWWWWWWWWWWWW W<<W QSW<<<<WW<<W<<WWWMWMW<<MW<<<<WW<<WWWWWWW<<W<<<<WW
~ I'e
~ I '
~ 0'
~
~
~
I
~
S I; S
I
~
~ I I
~
~
I I
I I
                                                                                      <<WWWWWWMM<<WWMWW M<<W              ~~~~~~~~~~>>                                W  awe~~~~              WWWWWMWWW<<MW<<<<g i~eC<<w    ggwaaatQQQCClaCKQ55RTKK&~~~~~~gfg~fg~pg~~~p<<www<<<<w<<ww W<<W WQW
            'WWM  WMWWWWW<<W<<<<W<<WW <<WMWWWWW<<W<<WW<<WWW<<W WWM gWWW<<WW<<W<<MWWWM                                          <<WMWWWWW<<M<<W<<g<<WWWQ W<<<<WW<<MW<<QW<<~W<<~W<<<<W+MW<<W<<WWWWWW<<<<lg<<WWWW W<<g      g<<M~~ m<<W<<aa5<<WWW<<WW<<MWRW<<<<~W<<<<<<<<W<<<<WR<<<<<<W~
                      ~h&W~NIW<<W<<<<W<<W<<MWW<<WW<<WW<<W<<WW<<MWM<<g WWW<<g<<WWCQWWWWWWMaaa~~ +<<W~WWWWWWWW<<WWWWWW<<<<<<WAN
                                ~  ~      ~
                                                          <<W<<<<W<<<<~~e
                                                          <<WWW<<WWW<<<<WWM~                      '~<<W<<<<WWWW WWW        WWW                                          <<WWWWWWW<<W<<<<WWWWWWWWWWWWW W<<W        QSW<<<<WW<<W<<WWWMWMW<<MW<<<<WW<<WWWWWWW<<W<<<<WW
                                                        ~ I'e                      ~ I'                            ~ 0'
                                                                  ~      ~
                                            ~        I                ~  S  I;  S I ~
                                                                    ~ I        I
                                                                      ~    ~
I  I


940610 l3:46
940610 l3:46
'4.0   ~ LINEAR HEAT GENERATION RATE               GR   LIMITFOR USE IN SPECIFICATION 3.2 4 The LHGR limit for use in Technical Specification 3.2.4 sha1l not exceed the values shown in Figures 4.1 through 4.5.
'4.0
Washington, Nuclear-Unit 2                                     COLR 94-10, Revision 0
~ LINEARHEAT GENERATION RATE GR LIMITFOR USE IN SPECIFICATION 3.2 4 The LHGR limitfor use in Technical Specification 3.2.4 sha1l not exceed the values shown in Figures 4.1 through 4.5.
Washington, Nuclear-Unit 2 COLR 94-10, Revision 0


    $ Esg $ 48       RERRssmS     Esp         Ess/Esg gs s             Ess     E Es
$Esg
    .,),m         L~     .L) IJ ILL~ H.:. LI . 8
$48 RERRssmS Esp Ess/Esg gs s Ess E Es
    'i--'Pllglll         /I~lb)I~)             Ill ll~) Ig Ill~i REsmsEEsmmsgkp'4EsgREssggENPgggggEFREsgmss                                   glRg sssE    EEX EPEE EPEE Rsvp            EWEEWlhhs 0 WEWE WEWRWEXEEWEEEW IEGER EsssssEshhi 1ELRLsERERREERRRE LRER EWE WEE WEEP       EWW WWEEEEEEEEOVWEW WEEWEEWEEWEEEWWEWEE EEX WXWE       EEE   WEE EEE WW$'OEO EEWXEXXEgEEEWRRW                             Eg WgEgmEEWggEWgggPEWEgPWPggWWEgWPXEPEENEEPEEXag                                   EPP RWERREXWF                               WEEEWLCWOERSEEESRE~EW                   WEX XEXXWXEES                               WEEEWWl~WEEEEXEXEXXP IEEEWWSilEEEEEWXCEEE EXEX             WEE EXXXEEXEO WWEEi PEEWEE                              EEEWWEE'.%XEEEWEEWEWWWEEWg EEWg W X. EPEE 8
.,),m L~.L) IJ ILL~H.:. LI. 8
                                    ~  ~
'i--'Pllglll /I~lb)I~) Illll~) Ig Ill~i REsmsEEsmmsgkp'4EsgREssggENPgggggEFREsgmss glRg EPEE EEX EPEE EWEEWlhhs 0
EEEWWEWk           PEEWEE 5 W EE
WEWE WEWRWEXEEWEEEW EWE sssE Rsvp IEGER EsssssEshhi 1ELRLsERERREERRRE LRER WEE WEEP EWW WWEEEEEEEEOVWEW WEEWEEWEEWEEEWWEWEE EEX WXWE EEE WEE EEE WW$'OEO EEWXEXXEgEEEWRRW Eg WgEgmEEWggEWgggPEWEgPWPggWWEgWPXEPEENEEPEEXag EPP RWERREXWF WEEEWLCWOERSEEESRE~EW WEX XEXXWXEES WEEEWWl~WEEEEXEXEXXP WEE EXXXEEXEO IEEEWWSilEEEEEWXCEEE EXEX EEWgWWEEi
                                                              %)5       gg             Qe EEECEEPEELOEPEEEQW                   PRCE gWEW   gXEXg                               gXWEEWEEggEgEEEEWmgEEgm II WWEW WEEWEEEEEa                                  EE E E 5 E P E P E E E E 8 REEEEEWEEX WEE WEWEWEERLi E E E E WW XE E E  EEE g               gg                 5 E5 EPEE gllgg
~
    ~ P WN PEEWEQEPX NWWW WCWW EEW XEEXPQEWEWXEWEQWEEXEEWP2'%EWXEE WWQ RWEaRWWWWaaWWWEWEWWEWWWW h~e5 EEXEEEEE EEEWX EEE PXW  XXEEgEEEW              WEEPS WEXEWEWE WEEXXEXOWEEah EEE EEEWagEEWEWEXWEEEEWWEaEE                              EEWE E I     I~~   I II ~   III   I III
~
                                  ~
EEEWWEE'.%XEEEWEEWEWWWEEWg W
III   I III       II ~ ~
X. EPEE 8 EEEWWEWk PEEWEE W
I ill ill
EE
                                                                                ~       I
%)5 gg 5 Qe EEECEEPEELOEPEEEQW PRCE gWEW gXEXg gXWEEWEEggEgEEEEWmgEEgm WWEW PEEWEE WEE WEWEWEERLi REEEEEWEEX II WEEWEEEEEa EEEE5EP EP EEEE8 EEEE WWXEE E
                              ~             I             I
EEE g
                                    ~   ~ ~
gg 5 E5 EPEE gllgg P
                                                ~
PEEWEQEPX EEW XEEXPQEWEWXEWEQWEEXEEWP2'%EWXEE
~WN NWWW WCWW WWQ RWEaRWWWWaaWWWEWEWWEWWWW h~e5 PXW XXEEgEEEW EEE EEEWagEEWEWEXWEEEEWWEaEE Eah E
EEXEEEEE EEEWX EEE WEEPS WEXEWEWE WEEXXEXOWE EEWE I
I ~ ~
I II~
III I III III I III II ~
~ I ill
~ ill I
~
~
I I
~
~
~
~


i "i N
i "i iii'
iii' kk kkkkkkligkg)kkkklgkk N
"''il i'mmmwwwmmwmwmwCa N
                                                "''il   N   N                   N i'mmmwwwmmwmwmwCa Ikk Ik                                   kkkkkkiI Igkkkklx       gPk                 I gA                 NN g     hj N gA     N N N     N   A NA   A                 A iII   ~ I iIIIIIIIIakl,sill LIIIIII.IIII .I Illl. i kklklkkkk llkIIkkkkI hPkkk Ikkkkkkkkgkkllkllk kkPglk
N N
                              ~
N N
Ill   II IIlk I I I L             ha% kl IIIIIillkklkII I iii lkliliIIkkIIHlili lANI   AA I IIIIlkhalk>0 IIIllilllllklklI Llil AAA AAAN        ANNA NA   AAA A   A A A IIAAA
Ikk Ik kk kkkkkkligkg)kkkklgkk kkkkkkiI Igkkkklx gPk I gA NN g hj N
            .                  11llllkll Ilklh5 IIIIIIIIIIIL II
gA N
                      '' 'AAAAAAAANAAAASliWAANAAAAAAAAAAAAANN r                              ~ kkkkkkkkkkkkkkkllEklkkkkllkkkkkkkk
N N
~   kk kksssssssssssssss         ILk lkkiklk kkllkkkk IIIILII      LllllklkLkhkkkk kkkkikkIIklkkkkkkikkkkk~kkk/
N A NA A
  ~
A iII
I    II    ~
~ I iIIIIIIIIakl,sill LIIIIII.IIII.I Illl.i kklklkkkk llkIIkkkkI~ hPkkk Ikkkkkkkkgkkllkllk kkPglk Ill II IIlk I I I L ha%
g i I',ilii';,g i i                 jjjliligiiI
kl IIIIIillkklkII I iii lkliliIIkkIIHliliI IIIIlkhalkIIIllilllllklklI Llil lANI AA AAA AAAN
          ~   I~ ~       I III       II ~     ~
>0 ANNA NA AAA A A A A I I 11llllkllIlklh5 IIIIIIIIIIILII rAAA
i lil     I III                  ~ ~ III
'AAAAAAAANAAAASliWAANAAAAAAAAAAAAANN
~kkkkkkkkkkkkkkkllEklkkkkllkkkkkkkk
~
kk kksssssssssssssss ILk IIIILIILllllklkLkhkkkk
~I II ~ lkkiklk kkllkkkk kkkkikkIIklkkkkkkikkkkk~kkk/
g i I',ilii';,g i i jjjliligiiI
~ I ~ ~
I III II ~
~ i lil I I I I
~ ~ III


14.0 Average Planar LHGR   Exposure 13.7           0 13.7   15,000 8.0        7.0    60,000 7.0 6.0 0 10,000       20,000           30,000         '0,000  60,000 Average Planar Exposure (IVIWd/MT)
14.0 8.0 LHGR 13.7 13.7 7.0 Average Planar Exposure 0
15,000 60,000 7.0 6.0 0
10,000 20,000 30,000
'0,000 Average Planar Exposure (IVIWd/MT)
Linear Heat Generation Rate (LHGR) Limit Versus Average Planar Exposure
Linear Heat Generation Rate (LHGR) Limit Versus Average Planar Exposure
                              , SPC 9x9-1X LFA Fuel Rgure 4.3
, SPC 9x9-1X LFA Fuel 60,000 Rgure 4.3


S ROSS S     SS           S 8%8 I e                         I8 0 %0 g pig gll     I   Igp5glgggp         5CgRQ p555gl5g gLISILSSRgREi5liRgSgg RRIIRgR IIILRSi+i+i+ii+S
I S
  ~5 5        LVRERSEI55555555LL5$
ROSS S
g 55555   55pQS   555 RSRSO aa5 ear             .:  55   8555555SWWQROWQS55 I
SS S
OSIS,...,,
8%8 I
      %55
e I8 0
  ~ 0 88RW OQSS55 888 QRRRQREQRRRQQSORQQQSOS
%0 g pig gll I Igp5glgggp 5CgRQ p555gl5g gLISILSSRgREi5liRgSgg RRIIRgR
                          > OSQQSSSSREOSA 0
~IIILRS LVRERSEI55555555LL5$ 555 5 5 i+i+i+ii+S g 55555 55pQS RSRSO aa ear
5   iSSSQASSOSWS55555S RQS55555555555558 50 OO ar ru SW WRR Weaaaewar 50  SiOiOQOQS 5   58555555%55SOSRSSR aeSSrarrrra sraaaarxeaaaaaaaaa Si RiSQOSRQSQSASSSOSOSOWRQREE555ASRIERSRES WOOWQQQS SS gag QS 5 fa j aggVgPg 555 55555585 fa55lgl~s~allapRFeaaVallag OS585 5 QSSQA   55 885 88   58   WQSOOS   5   5 S 8 88558888888
~5
%55 55 8555555SWWQROWQS55 0 88RW QRRRQREQRRRQQSORQQQSOS OSIS,...,,
OSQQSSSSREOSA OQSS55 0
iSSSQASSOSWS55555S OO 888 5
RQS55555555555558 SW WRR Weaaaewar 5 58555555%55SOSRSSR ar ru aeSSrarrrra sraaaarxeaaaaaaaaa RiSQOSRQSQSASSSOSOSOWRQREE555ASRIERSRES 50 50 SiOiOQOQS SiWOOWQQQS SS gag faj aggVgPg fa55lgl~s~allapRFeaaVallag QS 5 555 55555585 OS585 5 QSSQA 55 885 88 58 WQSOOS 5 5
S 8 88558888888


MM   MMM       M M           M     M     M M M M M 5)
MM MMM M
  ~ gg%$ 5)R~%4lggg51PI         RRE SE ia    PQIEI         ~
M M
,e:ia:aa.       I'.lsea'. -.a     a         aalaa.h       .
M M
'ace.aaa       aaaaeua         ma~qeamaa       emaaaae       aa~ea S i ii)                 ':      RSII   Hi pisa   iil Hp        A 5 MMMMMOSMMRaeaaraa aaaSMMMMMMMMMMMMMMMMMEIMMRMMS
M M
    ~ 551M Sggl18855$ ~ RSSSSSASSkpLRARSAARA4g%5555 RMMMMM M     MM     M M     M MOM       M MM MMM   5   MMMMMO
5)
ah era a     i:.ila   i la5s iiahi:ih.h ili belli
M M
            ~ II I        I ~ ~ I         I III     i I iil         ~ II '
~gg%$ 5)R~%4lggg51PI RRE SE i PQIEI
~
,e:ia:aa.
I'.lsea'. -.a a a
aalaa.h
'ace.aaa aaaaeua ma~qeamaa emaaaae aa~ea S
i ii)
RSII Hi pisa iilHp A 5 MMMMMOSMMRaeaaraa aaaSMMMMMMMMMMMMMMMMMEIMMRMMS
~551M Sggl18855$
~ RSSSSSASSkpLRARSAARA4g%5555 RMMMMM M MM M
M M
MOM M
MM MMM 5 MMMMMO ah era a i:.ila i la5s iiahi:ih.h ilibelli
~ III I
~ ~ I I III i I iil
~ II'


941229 14:38
941229 14:38
'5:0 'MFHR           HE 5.1   R     rts for Curient C cle 5.1.1     EMF-94-095, "WNP-2 Cycle 10 Plant Transient Analysis," Siemens Power Corporation, June 1994.
'5:0 'MFHR HE 5.1 R
5.1.2      EMF-94-096, "WNP-2'ycle 10 Reload               Analysis," Siemens   Power Corporation, June 1994.
rts for Curient C cle 5.1.1 5.1.2 5.1.3 5.1.4 EMF-94-095, "WNP-2 Cycle 10 Plant Transient Analysis," Siemens Power Corporation, June 1994.
5.1.3      SPCWP-94-041, "Licensing Results Supporting Section 3/4.2 of the WNP-2 Technical Specifications for Cycle 10," Letter from YU Fresk, Siemens Power Corporation, to RA Vopalensky, Supply System, April 1, 1994.
EMF-94-096, "WNP-2'ycle 10 Reload Analysis,"
5.1.4      SPCWP-94-062, "STAIF Stability Results in Support of WNP-2 Cycle 10,"
Siemens Power Corporation, June 1994.
SPCWP-94-041, "Licensing Results Supporting Section 3/4.2 of the WNP-2 Technical Specifications for Cycle 10," Letter from YUFresk, Siemens Power Corporation, to RA Vopalensky, Supply System, April 1, 1994.
SPCWP-94-062, "STAIF Stability Results in Support of WNP-2 Cycle 10,"
Letter from YU Fresk, Siemens Power Corporation, to RA Vopalensky, Supply System, June 14, 1994.
Letter from YU Fresk, Siemens Power Corporation, to RA Vopalensky, Supply System, June 14, 1994.
SPCWP-94-042, "Licensing Results Supporting Section 2.1 of the WNP-2 Technical Specifications for Cycle 10," Letter from YU Fresk, Siemens Power Corporation, to RA Vopalensky, Supply System, April 1, 1994.
SPCWP-94-042, "Licensing Results Supporting Section 2.1 of the WNP-2 Technical Specifications for Cycle 10," Letter from YUFresk, Siemens Power Corporation, to RA Vopalensky, Supply System, April 1, 1994.
SPCWP-94-068, "SPC Comments on WNP-2 Cycle 10 Draft COLR," Letter from YU Fresk, Siemens Power Corporation, to RA Vopalensky, Supply System, June 23, 1994.
SPCWP-94-068, "SPC Comments on WNP-2 Cycle 10 Draft COLR," Letter from YU Fresk, Siemens Power Corporation, to RA Vopalensky, Supply System, June 23, 1994.
RDW:94-092, "WNP-2 Cycle 9 Core Operating Limits Report - GE11 Lead Use Assemblies," Letter Born RD Williams, GE Nuclear Energy, to DL Whitcomb, Supply System, June 21, 1994.
RDW:94-092, "WNP-2 Cycle 9 Core Operating Limits Report - GE11 Lead Use Assemblies," Letter Born RD Williams, GE Nuclear Energy, to DL Whitcomb, Supply System, June 21, 1994.
ABBWP-94-040, "SVEA-96 Lead Fuel Assembly Treatment in WNP-2 Cycle 10 Core Operating Limits Report," Letter from CG Schon, ABB Combustion Engineering Nuclear Operations, to RA Vopalensky, Supply System, June 15, 1994.
ABBWP-94-040, "SVEA-96 Lead Fuel Assembly Treatment in WNP-2 Cycle 10 Core Operating Limits Report," Letter from CG Schon, ABB Combustion Engineering Nuclear Operations, to RA Vopalensky, Supply System, June 15, 1994.
SPCWP-94-108, "Improved Reduced Flow MCPR Operating Limits for WNP-2 Cycle 10," Letter from YU Fresk, Siemens Power Corporation, to RA Vopalensky, Supply System, December 12, 1994.
SPCWP-94-108, "Improved Reduced Flow MCPR Operating Limits for WNP-2 Cycle 10," Letter from YUFresk, Siemens Power Corporation, to RA Vopalensky, Supply System, December 12, 1994.
RDW:94-162, "WNP-2 Cycle 10 Core Operating Limits Report          Rev. 1,"
RDW:94-162, "WNP-2 Cycle 10 Core Operating Limits ReportRev. 1,"
Letter from RD Williams, GE Nuclear Energy, to DL Whitcomb, Supply System, December 14, 1994.
Letter from RD Williams, GE Nuclear Energy, to DL Whitcomb, Supply System, December 14, 1994.
NFBWR-94-055, "SVEA-96 LFA Flow-Dependent MCPR Limits," Letter from CG Schon, ABB CENO Fuel Operations, to R Vopalensky, Supply System, December 22, 1994.
NFBWR-94-055, "SVEA-96 LFA Flow-Dependent MCPR Limits," Letter from CG Schon, ABB CENO Fuel Operations, to R Vopalensky, Supply System, December 22, 1994.
"Washington Nuclear-Unit 2                                       COLR 94-10, Revision )
"Washington Nuclear-Unit 2 COLR 94-10, Revision )


5.2   Licen in T ical       rt in Technical S ification 6 .3 2 5.2.1   ANF-1125(P)(A) and Supplements 1 and 2, "ANFB Critical Power.
5.2 Licen in T ical rt in Technical S ification 6
.3 2 5.2.1 5.2.2 ANF-1125(P)(A) and Supplements 1
and 2,
"ANFB Critical Power.
Correlation," Advanced Nuclear Fuels Corporation, April 1990.
Correlation," Advanced Nuclear Fuels Corporation, April 1990.
5.2.2    "NRC Approval of ANFB Additive Constants for 9x9-9X BWR Fuel," Letter from RC Jones, NRC, to RA Copeland, Advanced Nuclear Fuels Corporation, November 14, 1990.
"NRC Approval of ANFB Additive Constants for 9x9-9X BWR Fuel," Letter from RC Jones, NRC, to RA Copeland, Advanced Nuclear Fuels Corporation, November 14, 1990.
Washington Nuclear-Unit 2                 -35a-                 COLR 94-10, Revision 1
Washington Nuclear-Unit 2
-35a-COLR 94-10, Revision 1


940523 11:03
940523 11:03
    '.2.3       ANF-524(P)(A), Revision 2 and Supplements 1 and 2, "Advanced Nuclear Fuels Critical Power Methodology for Boiling Water Reactors," Advanced Nuclear Fuels Corporation, November 1990.
'.2.3 ANF-524(P)(A), Revision 2 and Supplements 1 and 2, "Advanced Nuclear Fuels Critical Power Methodology for Boiling Water Reactors,"
5.2.4     ANF-913(P)(A), Volume 1, Revision 1 and Volume 1, Supplements 2, 3, and 4, "COTRANSA2: A Computer Program for BoiTing Water Reactor Transient Analyses," Advanced Nuclear Fuels Corporation, August 1990.
Advanced Nuclear Fuels Corporation, November 1990.
                                        'I 5.2.5    ANF-CC-33(P)(A), Supplement 2, "EGDPZ: A Generalized Multirod Heatup Code with 10 CFR 50, Appendix K, Heatup Option,," Advanced Nuclear Fuels Corporation, January 1991.
5.2.4 5.2.5 5.2.6 ANF-913(P)(A), Volume 1, Revision 1 and Volume 1, Supplements 2, 3, and 4, "COTRANSA2: A Computer Program for BoiTing Water Reactor Transient Analyses," Advanced Nuclear Fuels Corporation, August 1990.
5.2.6    XN-NF-80-19(P)(A), Volume 1, Supplements 3 and 4, "Advanced Nuclear Fuels Methodology for Boiling Water Reactors: Benchmark Results for the CASMO-3G/MICROBURN-B Calculation Methodology," Advanced Nuclear Fuels Corporation, November 1990.
'I ANF-CC-33(P)(A), Supplement 2, "EGDPZ: A Generalized Multirod Heatup Code with 10 CFR 50, Appendix K, Heatup Option,," Advanced Nuclear Fuels Corporation, January 1991.
5.2.7   XN-NF-80-19(P)(A), Volume 4, Revision 1, "Exxon Nuclear Methodology for Boiling Water Reactors: Application of the ENC Methodology to BWR Reloads," Exxon Nuclear Company, Inc., June 1986.
XN-NF-80-19(P)(A), Volume 1, Supplements 3 and 4, "Advanced Nuclear Fuels Methodology for Boiling Water Reactors:
5.2.8   XN-NF-80-19(P)(A), Volume 3; Revision 2, "Exxon Nuclear Methodology for Boiling Water Reactors THERhiEX: Thermal Limits Methodology Summary Description," Exxon Nuclear Company, Inc., January 1987.
Benchmark Results for the CASMO-3G/MICROBURN-B Calculation Methodology," Advanced Nuclear Fuels Corporation, November 1990.
5.2.9   XN-NF-85-67(P)(A), Revision 1, "Generic Mechanical Design for Exxon Nuclear Jet Pump BWR.Reload Fuel," Exxon Nuclear Company, Inc.,
5.2.7 XN-NF-80-19(P)(A), Volume 4, Revision 1, "Exxon Nuclear Methodology for Boiling Water Reactors:
Application of the ENC Methodology to BWR Reloads," Exxon Nuclear Company, Inc., June 1986.
5.2.8 XN-NF-80-19(P)(A), Volume 3; Revision 2, "Exxon Nuclear Methodology for Boiling Water Reactors THERhiEX: Thermal Limits Methodology Summary Description," Exxon Nuclear Company, Inc., January 1987.
5.2.9 XN-NF-85-67(P)(A), Revision 1, "Generic Mechanical Design for Exxon Nuclear Jet Pump BWR.Reload Fuel," Exxon Nuclear Company, Inc.,
September 1986.
September 1986.
5.2.10   ANF-89-014(P)(A), Revision 1 and Supplements 1 and 2", "Generic Mechanical Design for Advanced Nuclear Fuels 9x9-IX and 9x9-9X Reload Fuel,"
5.2.10 ANF-89-014(P)(A), Revision 1 and Supplements 1 and 2", "Generic Mechanical Design for Advanced Nuclear Fuels 9x9-IX and 9x9-9X Reload Fuel,"
Advanced Nuclear Fuels Corporation, October 1991.
Advanced Nuclear Fuels Corporation, October 1991.
5.2.11   XN-NF-81-22(P)(A), "Generic Statistical Uncertainty Analysis Methodology,"
5.2.11 XN-NF-81-22(P)(A), "Generic Statistical Uncertainty Analysis Methodology,"
Exxon Nuclear Company, Inc., November 1983.
Exxon Nuclear Company, Inc., November 1983.
5.2.12   NEDE-24011-P-A-6, "General Electric Standard Application for Reactor Fuel," GE Nuclear Energy, April 1983.
5.2.12 NEDE-24011-P-A-6, "General Electric Standard Application for Reactor Fuel," GE Nuclear Energy, April 1983.
5.3     E Nuclear En r       d ABB C m u tion En ineerin   Nuclear     e tion Lead Fuel A sembl 5.3.1     "GEll   Lead Fuel Assembly Report for Washington Public Power Supply System Nuclear Project No. 2, Reload 5, Cycle 6," GE Nuclear Energy, December 1989.
5.3 E Nuclear En r d ABB C m u tion En ineerin Nuclear e
Washington Nuclear-Unit 2                                     COLR 94-10, Revision 0
tion Lead Fuel A sembl 5.3.1 "GEll Lead Fuel Assembly Report for Washington Public Power Supply System Nuclear Project No. 2, Reload 5, Cycle 6," GE Nuclear Energy, December 1989.
Washington Nuclear-Unit 2 COLR 94-10, Revision 0


5.3.2   UK 90-126, "Supplemental Lead Fuel Assembly Licensing Report  SVEA. 9$ .
5.4 5.3.2 5.3.3 5.3.4 UK 90-126, "Supplemental Lead Fuel Assembly Licensing ReportSVEA.9$.
LFAs for WNP-2    Summary,." ABB Atom', January 1990.
LFAs for WNP-2Summary,." ABB Atom', January 1990.
5.3.3  ATOF-91-120, "Assembly Treatment in WNP-2 Cycle 7 Core Operating Limits Report," Letter from WR Harris, ABB Atom, to DL Whitcomb, Supply System, May 1, 1991.
ATOF-91-120, "Assembly Treatment in WNP-2 Cycle 7 Core Operating LimitsReport," Letter from WR Harris, ABBAtom, to DLWhitcomb, Supply System, May 1, 1991.
5.3.4    ABBWP-94-039, "WNP-2 SVEA-96 Lead Fuel Assembly Operating Limit MCPR," Letter &om CG Schon, ABB Combustion'Engineering Nuclear Operations, to RA Vopalensky, Supply System, June 15, 1994.
ABBWP-94-039, "WNP-2 SVEA-96 Lead Fuel Assembly Operating Limit MCPR," Letter &om CG Schon, ABB Combustion'Engineering Nuclear Operations, to RA Vopalensky, Supply System, June 15, 1994.
5.4          fr      xten         Li     imi An           L 5.4.1   "Reactor Vessel Internals Evaluation Task Report for WNP-2 Power Uprate Project," GE Nuclear Energy, April 1993 (DRAFT).
f r xten Li imi An L
5.4.2    "WNP-2 Power Uprate Containment Response Evaluation Input to Engineering Report," GE Nuclear Energy, January 19, 1993 (DRAFT).
5.4.1 5.4.2 5.4.3 "Reactor Vessel Internals Evaluation Task Report for WNP-2 Power Uprate Project," GE Nuclear Energy, April 1993 (DRAFT).
5.4.3  GE-NE-189-69-1092, "Effects of Adjustable Speed Drive on Reactor Internal Vibration at the WNP-2 Nuclear Power Plant," GE Nuclear Energy, October 1992.
"WNP-2 Power Uprate Containment Response Evaluation Input to Engineering Report," GE Nuclear Energy, January 19, 1993 (DRAFT).
5.4.4   GE-NE-189-34-0392, "Jet Pump Sensing Line Vibration Test for Washington Nuclear Project 2," GE Nuclear Energy, March 1992.
GE-NE-189-69-1092, "Effects ofAdjustable Speed Drive on Reactor Internal Vibration at the WNP-2 Nuclear Power Plant," GE Nuclear Energy, October 1992.
5.4.5    NEDE-24222, "Assessment of BWR Mitigation of ATWS, Vol. II (MlREG 0460, Alternate No. 3)," General Electric Company, December 1979.
5.4.4 5.4.5 5.4.6 GE-NE-189-34-0392, "Jet Pump Sensing Line Vibration Test for Washington Nuclear Project 2," GE Nuclear Energy, March 1992.
5.4.6    "Washington Nuclear Project Unit 2 System Evaluation Report for Power Uprate  Reactor Recirculation Control System," GE Nuclear Energy, February 1, 1993.
NEDE-24222, "Assessment ofBWR Mitigation of ATWS, Vol. II (MlREG 0460, Alternate No. 3)," General Electric Company, December 1979.
      .5.4.7   GE Report 22A7104, Revision 0, "Dynamic Load Report      Fuel  Vertical Support," GE Nuclear Energy, June 30, 1982.
"Washington Nuclear Project Unit 2 System Evaluation Report for Power UprateReactor Recirculation Control System,"
5.4.8  "Fuel Lift Non-Proprietary Letter," Letter from DM Kelly, GE Nuclear Energy, to WC Wolkenhauer, Supply System, February 15, 1993.
GE Nuclear
5.4.9  93-PU-0054, "ELLLA Related Power Uprate Task Reports," Letter from DM Kelly, GE Nuclear Energy, to WC Wolkenhauer, Supply System, June 3, 1993.
: Energy, February 1, 1993.
Washington Nuclear-Unit 2                                   COLR 94-10, Revision 0}}
.5.4.7 5.4.8 5.4.9 GE Report 22A7104, Revision 0, "Dynamic Load ReportFuel Vertical Support," GE Nuclear Energy, June 30, 1982.
"Fuel Lift Non-Proprietary Letter," Letter from DM Kelly, GE Nuclear Energy, to WC Wolkenhauer, Supply System, February 15, 1993.
93-PU-0054, "ELLLA Related Power Uprate Task Reports," Letter from DM Kelly, GE Nuclear Energy, to WC Wolkenhauer, Supply System, June 3, 1993.
Washington Nuclear-Unit 2 COLR 94-10, Revision 0}}

Latest revision as of 04:47, 8 January 2025

Rev 1, Cycle 10 Colr
ML17291A624
Person / Time
Site: Columbia Energy Northwest icon.png
Issue date: 12/31/1994
From:
WASHINGTON PUBLIC POWER SUPPLY SYSTEM
To:
Shared Package
ML17291A623 List:
References
COLR-94-10, COLR-94-10-R01, COLR-94-10-R1, NUDOCS 9502010200
Download: ML17291A624 (43)


Text

941229 1498 CpLR 94 10 Remsion 1

ContmHed CopyNo WNP-2 Cycle 10

, Core Operating Lixnits Report December 1994 Washington Public Power Supply System 9502010200 950125 PDR ADOCK 05000397 P

PDR 4

941229 149$

WNP-2 Cycle 10 Coze Qperatiag Limits Repozt LIST F EFFECTlVE PA ES

~Revisi n 1

1 2

3 4

5 6

7 8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 0

1 1

0 0

0 0

0 0

0 0

0 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

WNP-2 Cycle 10 Coic OpeiatlIlg L1101~ Report ST F EFFECTIVE PAGES

$Mvi~ig 35 35a 36 37 1

1 0

0 LEP-2

WNP-2 Cycle 10 Core Operating Limits Report B E F

1.0 D

N AND RY o

~

- ~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

1 A

2.0 AVERA EP ANAR AR ENERATI N TE AP H R R

EIN AL P IFI ATI N 21............

2 3.0 L

P A

N 2

~

~

~

~

~

~

o

~

~

~

~

~

~

~

~

o

~

~

~

~

~

~

~

~

~

~

o 8

4.0 A

AT L

P N

R E

4

~

~

~

~

~

o ~, ~

~

~

~

~

~

~

~

~

~

o

~

~

~

~

~

~

~

~

~ 29 2

5.0 I

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~ 35 Washington Nuclear-Unit 2 COLR 94-10, Revision 0

l

~ /

w'C'

1.0 INTR D CTI N AND SUhQvfARY This report provides the Average Planar Linear Heat Generation Rate (APLHGR) limits, the Minimum Critical Power Ratio (MCPR) limits, and the Linear Heat Generatioa Rate (LHGR) limits for WNP-2, Cycle 10 as required by Technical Specificatioa 6.9.3.1.

As zequized by Technical Specifications 6.9.3.2 and 6.9.3.3, these limits were determined using NRC-approved methodology and axe established so that all applicable limits of the plant safety analysis are met.

The thexmal limits for SPC fuel given in this report are documented in the "Cycle 10 Plant Transient Analysis" (Refezcnce 5.1.1), the "Cycle 10 Reload Analysis" (Reference 5.1.2) and the "Impzoved Reduced Plow MCPR Oyexatiug Limits for WNP-2 Cycle 10" (Refezence 5.1.9). The thezmal limitsdetexmined thxough the approved methodology aze modified for the GE11 and SVEA-96 LPAs as discussed below.

The WNP-2 Cycle 10 core includes four Siemens Power Corpoxation (SPC), four GE Nuclear Energy (GE), and four ABB Combustion Eugiaeexing Nuclear Ogexatioas (ABB CENO) Lead Puel Assemblies (LFAs). The SPC LFAs were inserted duziug the reload for Cycle 5. The GE and ABB CENO LPAs were inserted at the beginning of Cycle 6 and were designed to be compatible with the reload fuel utilized in Cycle 6.

The LFAs are loaded in core locations which analysis has shown to have sufficient thermal margin such that the LFAs axe not expected to be the most limitingfuel assemblies oa either a nodal or an assembly power basis.

The GE Nuclear Energy GE11= LPAs aze described in the "GE11 Lead Fuel Assembly Report for Washington Public Power Supply System Nuclear Project No. 2, Reload 5, Cycle 6" (Refexence 5.3.1).

This xefexence describes the design goals of the GE11 LPAs and provides support for monitozing the GE11 LPAs at thermal limits based on the SPC 8x8 reload fuel thezmal limits.

The ABB CENO SVEA-96 LPAs are described ia the "Supplemental Lead Fuel Assembly Licensing ReportSVEA-96 LPAs forWNP-2Summaxy" (Reference 5.3.2). The process for developing thermal limits for the SVEA-96 LPAs based upon the SPC 8x8 xeload fuel thermal limits is described in References 5.3.2 thxough 5.3.4 The MAPLEGRlimits for the GE11 LFAs are the same as for the SPC 8x8 reload fuel, except that a ratio ([64-2]/I'81-7])is applied to account for the different number of fuel pins in the two designs.

The MAPLHGRlimits forthe SVEA-96 LPAs are the same as for the SPC 8x8 reload fuel, except that a ratio ([64-2]/f100-4]) is apylied to account for the diffezent number of fuel pins in the two designs.

Fuzthexmoze, the MAPLHGR limits for the SVEA-96 LPAs are multiplied by the following constants:

(a) 1.04 to account for a diffezent estimation of the local power in the output from POWEIU'LEX compaxed to ABB CENO methods aad (b) 1.02 to account for a different estimation of exposure ia the output from POWERPLEX compared to ABB CENO methods.

The MCPR limitis the maximum of (a) the applicable exposure dependeat, fullpower and full flow MCPR limit, (b) the applicable exposure and power dependent MCPR limit, and (c) the flowdependent MCPR limitspecified in this reyoxt. This stipulation assures that the safety limit MCPR willnot be violated thzoughout the WNP-2 operating regime. Fullpower MCPR limits are specified to define oyexating limits at rated power and Qow.

For the WNP-2 coze, the Turbine Trip without Bypass event is limiting for operation at xated power and fiow. Power dependent MCPR limits axe specified to define opexatiag limits at other thaa zated power Washington Nuclear-Unit 2 COLR 94-10, Revision 1

941229 14QS conditions.

For the WNP-2 core, the Feedwater Controller Failure event from zeduced power is calculated to be more severe than from fullpower conditions. A fiow dependent MCPR is slxeified to define operating limitsat other than rated flowconditions. The reduced flowMCPR limit provides bounding protection for the limiting Recizculation Flow Increase event (Refezence 5.1.9).

The LHGR limits for the GE11 LFAs are the same as for the SPC 8x8 zeload fuel, except that a ratio ([64-2]/[81-7J) is applied to account for the different number of fuel pins in the two designs.

The LHGR limits for the SVEA-96 LFAs are taken dimply from Refezence 5.3.2.

The reload licensing analyses for this cycle provide opezating limits for Extended Load Line (ELl~) operation which extends the power and flow operating regime for WNP-2 up to the 109% zod line which at fullpower cozzesponds to 87% ofzated flow. The MCPR limits deflned in this zepozt aze applicable up to 100% of rated thermal power along and below the 109% zod line.

The minimum low for operation at rated power is 87% of zated fiow; the maximum is 106%.

Refezences 5.1.1 and 5.1.2 and the zefezences in Section 5.4 document the analyses in suppozt of ELLLAopezation.

Preparation, zeview and approval of this report weze performed in accordance with applicable Supply'System pzoceduzes.

The specific topical report revisions and supplements which describe the. methodology utilized in this cycle specific analysis aze zefezenced in Section 5.2.

2.0 AVERA EPLANARLINEARHEATGENIHMTINRATE APLH R LIMITSFOR U E IN TE CAL SPECIFICATI N 3 2.

The APLHGRs for use in Technical Specification 3.2.1 shall not exceed the limits shown in Figures 2.1, 2.2, 2.4, and 2.5 when in two-loop opezation and in Figuzes 2.1, 2.3, 2.4, and 2.5 when in single loop operation.

The limits for each fuel type as a function of Average Planar Exposure are provided for the SPC reload fuel, the SPC LFAs, the SVEA-96 LFAs, and the GE11 LFAs.

Washington Nuclear-Unit 2 COLR 94-10, Revision 1

wwwwgwwwwgwwwwgwwww'gwwwwpg+'gwwgwwwwggwww Qwwgg a-as=a~-s=-saaaas~as~~as~-===-=====ass===

~@=ma

$-HERE:===P=REElg ERR=-====hP~E I

~

~

~

~ s;:

~

wwwwwwwwgwwwww wwwwwwwwwww 1w wwwwwwwgw gwwww wwwwwwwwwwwwwwgwwwwwwwwwwwwww PAYEE)EEEEgPgEgggEmEmEEggmmEEgmkmgPg+EggPgEg C

II mme-=-===

h asm-ea

~

~

~

~

wwwwwwwwwww

~'wwwwwwww wwwww wwwwwwwwwwwg%wwwwww'g wwwww wwwwwwwwwww 'www'www wwww I

wwwww wwwwwwwwwwww'%g&wwwg wwwww wwwwwwwwwwwwgiCwwwwPii wwwwf J

PwwpgwwEwEPwwwwww&gEMEgg wwww i wwwwwwwwwwwwwwwwwwwww'%www wwwwwgwwwwwwwwwwwwwwg1www wwwww wwwwwwwwwwwwww wwwwww o I

/Em5gE[

)gmmmEEmsmmPmmmEmmm/Rmh~%g

~a

~~ ~

~~~~ ++ + a~

III

~ III III I III III

~ III liI i I I II

~

~

~ ~

~

~

~

~ I

WWWW W g WAg WWWQWWQW gWP PQWQAWWW gWW gpss m

NREM fgggMg mgml m

mmWml

~ gAWWAgWgWgmWWW AAWAgrXrgWgagrrXWWXWWWPgXAWA RWNRWWWWQRWWW WCWWWkliBWWQWWWWWWWWWWWWWRWWWgg WWggWWQWWWWWWWWWCWWWWWW WWWWWWWWWCWWWRgLWWWWWWWWQWWWWWWQWWWWWWWWggWWWWWm hii ii>aLm l3VI<=-=:--

="==:>i':=:=-==-==-s ~H LR Wki WWR AWWgWt WWW LWWWWWWWWWWWWXeXWWWWW WWQW)

WW g WWW aWWWQWWWWWWWAAgrglr WWWW 1

W W

WWWWNWWWWWWWWWWWWW WWWWW

~ I WAWW W

WWWSWAWWWCWWWWWWWA AWWWQ gaea aealaaaaaagagama a a aagag aaaaaaaa eaaag gWW W

ggW Wg gWWgWWWW WWWAAW WWW WWW I

~ I I I

~ I I I I I I I I I I I I I I II I I I

~ I I I I

~

~

~ ~

I I I

I I

~ I

~ I I

gism g~~m m~~

== Il===a=m=-

CMWC ggWM mHH I

gin MMR

~

~

~ I MMMM MgMM

~ III 5 a581hmsRmlmmm I

I I I I

I II I III I

~K~NRMMN>>

RQR g~g ERR mJKm NRR=HRRHSR

/gag KRl~gRQR~ggggg MMM MMM 'MMMO RON MMM MMMM&MMMMMMM MMM MMMMM&'MMM MMMM MMMMMMMMMMQMMMMMMMg MMMMMMMMMMkMME MMMM MMMMMMMMMM QWMMMMMMMM MMMMMMMMMMLMMMMMMMM MMMMMMML~

MMMMMMMMM%MMM LWMMMM MMM MMMMMMMMMMMMMMMM

@MM MMMMMMMMMMMMMMMMML%

~ I I ~ I

~ I ~

I III

~ II

~

0

~

~

~

~

~

~

~

~ I

g&%&wg&%&H&g&m g&% %&ggg gygmy amgmg a Ig AAW

~WOW RjWW WWW CSWAAW W~WWW IIIIIII85IIRHI-=>Im=mgliKPim-=I:=Ii====my==-II WWWWWWWWA@WWW AWWW+WWWWg WAALLWWWWWAWWWWAAWg WWWWWWWCWWWWWAAWWWQWWWARWAACWkLWW WWWAAAWWW WWQWWRW~WWRWWWWARWWAIIWWW IWAWWWWRiWQWWWWIIAWWW WWWWWW&~~~~~~~~~~~W WWW WNWWWWWR.'WWWWWW AWWW QWWWAWS WWWA R

QgWWW WWWWAWWWWWWgOA AWW gW W

WWW WWWWAWWWWWWkiW AWW WWWWW WWWWWRRWWWWWW%

AWW WWAWW

~

I WWWWWAWWWWWWWWAWaaW&i WWW

~

WWWAW WWWWW WWWWWWWWWWWWAPQAWWlg iRIH

~

ACWAWWCCI AAWWWWS WWWWWWWWAWWWWWWWWWWWAWWW&&

AWWWWQW WWWWWAWWWA5WWWWWWWWWWWAWWQ~

AAWWWWQ WWAWWWWWWWWWWWWWWWWAWW AWWWAWWWLemmmmmwmmm HWWWWAWWWAWWWWWWWWWAAWWWWW AWWWSSWWWAAAWWWAAWWWW&WWAWWWAWWWWWWW WWWWAWWWWW AWWWWWWWWWWWWWAAWWWWWWWWWWWWWWWWWWWWWWWAWWWWW AWWWAWWWWAWWWWAAWWWWWWWWWWCWAWWWWWA WWWWAWWWWW AWWWAWWWAAWWWCAOWWWWWWWWWWAAWWWWWWWWWWAAWAWWW AWWWWWWWWAWWWWCAA'WWAWWWAWWAAWWWWWWWWWWAAWWWWW AWWWWWWWWWWWWWAAWWWRWWWAWWWWWWWWWWWWWWAAkf AWWW I

~ ll I Ill lil I ill Ill I ll~

ili

~ I III 'II I

~

~

~

y C '

~

~

. I

I I

I I I

~ I

~ I

~ I aawaaaa aw awaa aaa awa wwaa wwaaa aawaawwa aaCg jlaaaa aaa aaaa a a i aa

~

g 5 5 g g I mj wwg ROC NN i a

=

Z

- ~Z-wi e=== i=

gaawaaawwaagawggawa awga gwawgaawagagawwaawwww m&w g

)Pm)/N,.,

/gRggggm55gwm~g(XRm8/g~gmgg l~~i h

'h'=$ 5hliRNa==~~RE~a53h==-ih 3=-=l kl)

'L3-5~iP=.:sl===.=='h====lssl~i5

%Ill==i:=amms.=g=<liamllh=-li=-.ll*==:==-::-==-='5 a

Caaaa a5 a a wow Cw wwwww I

I II I

~ Ii I I I I I I I I I I

~ I I I III

~ I I I I

~ II

940610 13:46 SPECIFICATl N 3 2.3t t

3.0 MINXMUM RlTI ALP WER RATI CPR LIMITFOR USE IN TECKVI AL'he MCPR limitfor use in Technical Specification 3.2.3 shall be:

Greater than or equal to the greater of the limits determined from Tables 3. la and 3.1b and Figures 3.1 and 3.2a through 3.lib.

J Washington Nuclear-Unit 2 COLR 94-10, Revision 0

e 940614 l6:54 Table 3.1a WNP-2 Cycle 10 MCPR Operating Conditions Cycle Exposures s 4500 MWd/MTU SLMCPR = 1.07 Condition Limit NM" How Depcndcnt Power Dependents SPC 8xS SPC 9x9 SPC 9x9 SVBA-96 GB11 LFA LFA I

L24 1M+

1.28 1A4 Figure 3.1 Fig. 3.2a Fig. 33a Fig. 33a Fig. 3.2a Nssu~

Flow Dcpcndcnt Power Dependent'+

1.26 1.24 135 1A8 Figure 3.1 Fig. 3.4a Fig. 3.5a Fig. 3.5a Fig. 3Aa RFF Full Power Inoperable Flow Dcpcndcnt Power Dcpcndcntro SLOP NSS How Dcpcndcnt Power Dependents SLO TSSS Full Power Flow Dcpcndcnt Power Dcpcndcnà LO+ NSS RFI'ull Power Inoperable Flow Dcpcndcnt Power Dependent'+

1.2S 1.27 1.43 1.51 Figure 3.1 Fig. 3.10a Fig. 3.11a Fig. 3.11a Fig. 3.10a 186 136 1.36 1.9S None Fig. 3.2a Fig. 3.3a Fig. 3.3a Fig. 3.2a 1.56 1.36 1.36 1.98 None Fig. 3.4a Fig. 3.5a Fig. 3.5a Fig. 3.4a 1.56 1.36 1.36 1.98 None Fig. 3.10a Fig. 3.11a Fig. 3.11a Fig. 3.10 Washington Nuclear-Unit 2 COLR 94-10, Revision 0

940614 16M Table 3.1b WNP-2 Cycle 10 MCPR, Operating Conditions Cyde Exposures ) 4500 MWd/MTU SLMCPR = 1.07 SLMCPR = 1.07 FFTR Condition Limit NSS'o SPC 8xg SPC 9x9 SPC 9x9 SVBA-96 GEII LFA LFA SPC gxg SPC 9x9SPC 9x9 SVBA-9 GBII LFA LFA 1.30 1.27 1.44

'64 192 1.29 1.46 168 co Flow Dcpcndcnt Power Dependent+

Figure 3.1 Figure 3.1 Fig. 3.2b Fig. 3.3b Fig. 3.3b Fig. 3.2b Fig. 3.6 Fig. 3.7 Fig. 3.7 Fig. 3.6 1.33 1.30 1.49 1.60 1.35 1.32 1.51 1.63 NSS"'low Dcpcndcnt Power Dependent Figure 3.1 Figure 3.1 Fig. 3Ab Fig. 3.5b Fig. 3.5b Fig. 3.4b Fig. 3.8 Fig. 3.9 Fig. 3.9 Fig. 3.8 RFI'ullPower inoperable Flow Dcpcndent Power Dcpcndcn&

SLO NSS 1.38 1.35 1.61 1.68 Figure 3.1 Fig. 3.10b Fig. 3.11b Fig. 3.11b Fig. 3.10b Not Analyzed 1.56 1.36 1.36 1.98 1.56 1.36 1.36 1.98 Flow Dcpendcnt Power Dcpcndcnà None Fig. 3.2b Fig. 33b Fig. 3.3b Fig. 3.2b None Fig. 3.6 Fig. 3.7 Fig. 3.7 Fig. 3.6 SLO TSSS Full Power 186 196 1.36 1.98 186 1.36 136 1.98 Flow Dcpendcnt Power Dependent+

SLO+ NSS None Fig. 3.4b Fig. 3.5b Fig. 3.5b None Fig. 3.4b Fig. 3.8 Fig. 3.9 Fig. 3.9 Fig. 3.8 RFF Full Power inoperable Flow Dcpcndcnt Power Dependent'+

1.56 1.36 1.36 None 1.98 I

Fig. 3.10b Fig. 3.11b Fig. 3.11b Fig. 3.10b Not Analyzed Washington Nuclear-Unit 2 COLR 94-10, Revision 0

NoMfor Tables 3.1a and 3.lb Note 1:

The scram insertion times must meet the requirements of Technical Specification 3.1.3.4.

The NSS MCPR values are based on the SPC transient analysis performed using the control rod insertion times shown below (defined as normal scram speed: NSS).

In the event that Surveillance 4.1.3.2 shows these scram insertion times have been exceeded, the MCPR limit shaQ be determined from the applicable Technical Specification Scram Speed (TSSS)

MCPR limits in Tables 3. la and b.

Position Inserted From Fully Withdrawn Notch 45 Notch 39 Notch 25 Notch 5 Slowest measured average control rod insertion times qmcified notches for all operable control rods for each grou of four contxol rods arranged in a two-by-two array (seconds) 0.380 0.720 1.600 2.950 Note 2:

For Single Loop Operation (SLO), the SLMCPR increases by 0.01.

The increase is included in the MCPR limits for SLO.

Note 3:

For the noted full power MCPR limits, the control rod withdrawal error (CRWE) event is limiting. The turbine trip without bypass {TI'NB)event is limiting for the remaining fullpower limits. CRWE analysis was performed with a nominal rod block monitor (RBM) setpoint of 1.06. Use ofthe nominal setpoint is in accordance with the methodology described in Reference 5.2.6, consistent with approved industry practice.

Note 4:

Power dependent MCPR limits are provided for core thermal powers greater than or equal to 25% of rated power at all core flows. The power dependent MCPR limits for core thermal powers less than or equal to 30% of rated power are subdivided by core flow. Limits are provided for core flows greater than 50% of rated flow and less than or equal to 50% of rated flow, reslxctively.

A step change in the power dependent MCPR limits occurs at 30% of rated power because direct scram on turbine throttle valve closure is automatically bypassed per Technical Specification 3.3.1.

Washington Nuclear-Unit 2 COLR 94-10, Revision 0

'XX ++~+~++++~+~~lkkkkkkkkkXWXkkkkkkkkkkk k~aa IWWWWWWWWR

'lkk 5%W WWWWWWWWQ

~

~

~

~

~

WQW kkkkkkkki5 k

WWÃ kkkkkkkkS k

WWLkkkkkkkkkkkkkkkkkkkkkkS

~k WLlkWWWWRWWWWWkWkkkkkkkki Rk WWLOWWWWQWWWWROWWWWWWWWWO Rk

~EASEL)ERRRIIRSRLSL55$55551

'R

, kkkRÃkkkkkkkkkkkkkkkkkkk5 Rk WWWWWRg'%WWWWWWNWWWWWWWWWWA W

WWWW WWWWW555i5NWWWWWWWWS WWWWRWRPQkkkkRQWWWWWWWWWQ W

kkk WWWWAVOWWWWWWWWWWWWWQ W

~WWW kkkkkkkkh8SWWWWWWWWWWShaaaaaarrra W

kWW~

kkkkkkkkkli~%kkkkkkkkkkkkkkkkkWkkkk Wkkk WWWWWWWWWWWSQHWkkkkkkkkkkkkkkkkkkk WWWW WWWWWWWWWWWWWWRR50kkkkkkkkkkkkkkkk WSWWWWWWWWWWWWWWWWWWWWWNHQWWkkkkkkkkkkk SWWWSSWWWWSWWWWWWWWWkkkkkkh~~%kkkkkkkkkkk WkkkkkkkkkkkkkkkkkkkkkkkkkkkkhÃQWWWAWWWW WWWWW WWWWWkkkkkkkkkkkkkkkkkWWWARSgkkkkk SWWWS kkkWWWWWWWWWWSkkkkkkkkkkkkkkkPBOWW WWWWW WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWkkÃ%

~Wkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkh

3.0 2.8 2.6 Power Core Flow > 50%

Power a 30%

SPC 8x8 GE11 LFA SVEA-96 LFA Two Loop and Single Loop Operation

'E 2.4 0)

.~ 2.2 o 2.0 K

0 g 1.8 26%

30%

2.60 2AO 2.68 2.68 Core Flow c 50%

Power c 30%

SPC 8x8 Power GE11 LFA SVEA-96 LFA 26%

2.10 2.28 30%

2.00 2.18 All Core Flows Power ) 30%

30%

1.45

.1.63 100%

1.21 1.39 SPC 8x8 Power GE11 LFA SVEA-96 LFA 1.6 SVEA-96 LFA 1.4 1.2 20%

SPC 8x8 GE11 LFA 30%

40%

50%

60%

70%

80%

Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power

'SS, RPT Operable SPC 8x8, GE11 LFA, SVEA-96 LFA Cycle Exposures x 4500 MWd/MT 90%

100%

110%

Figure 3.2a

3.0 2.8 Core Flow ) 50%

Power s 30%

Two Loop and Single Loop Operation 2.6 Power 25%

30%

SPC SxS GE11 LFA 2.50 2.40 SVEA-96 LFA 2.74 2.64 All Core Flows Power > 30%

'E 2.4 0)-22 o 2.0 K

CL g 1.8 Power 25%

30%-

SPC SxS GE11 LFA 2.10 2.00 SVEA-96 LFA 2.34 2.24 Core Row a 50%

Power s 30%

Power 30%

100%

SPC 8x8 GE11 LFA 1A5 1.30 SVEA-96 LFA SVEA-96 LFA 1.69 1.64 1.6 1.4 SPC SxS GE11 LFA 1.2 20%

30%

40%

50%

60%

70%

80%

Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, RPT Operable SPC Sx8, GE11 LFA, SVEA-96 LFA Cycle Exposures ) 4500 MWd/MT S0%

100%

110%

Figure 3.2b

wwCCK Hmam

-=Bi===

gHHQ wHw'.0 WWW&~

C~~Ca MWMWW mi5 gR~

gWW WWW WWW WWW WgW WMW WMW HaB Ei~i g-a=g R~mm=-

8 5 =am

~

I I

g 1

I'

~~~~~~~~~~~~~~~~~~~~~

~~~~ W4~~~~~~~~~~~~~

MMMM%

Cs~~~

8

~

~

~

~

~

I III ~

~ ::

I I

~ I I

I I 'i

~~~~W

+~~~/

wwMMLwwwwwwe wNwwwwg~

I I

~

~

. gag,

===5

':=

Fl~

5==

~

~

~

P=

I wag R~H.

i I

I '.

I I I I 8 ~~Igg~~+~~~

~a

+~ ~~~

~~~hLJ

~~~~

~IWg~ ~~~~

Sah~P%I~~~~~~~~~~~~

Q~~~~e ~~~~~~~~

PaL~~~~~~~~~

WWM WWWWWWa ~WWWWMWWWh&WWWMMMM H~~~~ ~~~~~ +~If'~~~~~~~~~~~

MWM WWMMW WMMMWM&aa M~WMMWWWMMM WWWW WWM WWWW'WWWWWWMMMMWa~W~WWWMMM

~e I

I 'I

~ I'

~ I '

~ ~

II',

I

~

I

~

~ I I I

I

~

~

~.: I I

I I

~ W~Wlg ate I '

I '>>

~

~

~

WWW

~ os

~ s:

WWWg WWWg WWR~~~~~~~~~~~~~~HW gWWW WWWW WWW I

I '>>

~ I I

~

I '>>

g IL "

~

~

~

~

~

~

WWWMWII III=

ggII I-I=

CORK%

I MWWWWM W..

8 xjgg I=-

~+

WWWWHaee

++14 WWWWW WWWWWWWWWWWWWWWWWWXMWWWW WWWWWWWWaa ~ +WWWWWWWWWWWWWWWWWWWWWWWWWWWW a

~~ QWWWWWWMWWWWWWWWWWWWW WWWWWWMa>>MW+WWWWWWWWWWWWWWW WWC

~

~

~

WWWWWWWWWWWWW~>>

WW&WWWWWCSWWWWWWW&Pe~ +WggWWWWW WgWWWWWWWWWWWWWWWWWWWWWWWW~

y>>

~ I '>>

~

I I '

~

)

~

I

~

~

~ I

~ II:S

~

~

~

~

I I

3.0 2.8 2.6 Power Core Flow ) 50%

Power a 30%

SPC SxS GE11 LFA SVEA;96 LFA Two Loop and Single Loop Operation 25%

2.50 2.72

'E 2.4 Ol 2 2 I

LQ o 2.0 K

O.

g 1.8

-1.6 30%

Power 25%

30%

2.40 2.62 Core Flow a 50%

Power a 30%

2.10 2.00 2.32 2.22 SPC SxS GE11 LFA SVEA-96 LFA Power.

30%

100%

SPC 8x8 GE11 LFA 1.45 1.26 SVEA-96 LFA 1.67 1.48 SVEA-96 LFA All Core Flows Power > 30%

1.4 1.2 SNP SxS GE11 LFA 20%

30%

40%

50%

6Q%

7Q%

8Q%

9Q% 'PQ%

1 1P%

Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power TSSS, RPT Operable SPC SxS, GE11 LFA, SVEA-96 LFA Cycle Exposures w 4500 MWdIMT Figure 3.4a

3.0 2.8 Core Flow > 609o Power a 309o Two Loop and Single Loop Operation 2.6 Power SPC SxS GE11 LFA SVEA-96 LFA I

OOI

'E 2.4 0)~ 2.2 o 2.0 K

Q.

g 1.8 26%

30%

Power 26%

30%

2.50 2.40 2.77 2.67 Core Flow s 609o Power a 309o 2.10 2.00 2.37 2.27 SPC SxS GE11 LFA SVEA-96 LFA Power 30%

100%

SPC SxS GE11 LFA 1A6 1.33 SVEA-96 LFA 1.72 1.60 SVEA-96 LFA All Core Flows Power > 30%

1.6 A0 I

C)

Wo0 C) 1.4 1.2 20%

SPC Sx8 GE11 LFA 30%

40%

50%

60%

70%

80%

Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power TSSS, RPT Operable SPC SxS, GE11 LFA, SVEA-96 LFA Cycle Exposures > 4600 MWd/IVIT Figure 3Ab 90%

100%

110%

leg ggRgm m g>>

R>>

%5

~RSR

~

~

~ I I

I

~

~

~ I:

~

i

~

~

~ i'i i's

~~8~~~~

a g~

~~~~~~KLese~~~~~~~~~~~~~~~

~

~

~

//gal~;Rii=aiii==iiiii>g

~

~

~ i '.

~

~

~

I wwgwm e

MMWMMWMWMMWMWMMMMWWWWMM I I WMWWWWMMMMWMMMMWWWMWWMM

~~~~IH5~~~~~~~~~~~~~~~~~~~~+~~~~

~H55%

CpR KH~~HR~~~a5~~~~~~~~~~~~~~~~~~~~

~ I'>>

0 g

~

I~ g

~

I I '

I

~

~

I

~

~ I:

I

~ I

~

~. II

~

~

~

~

I I

~

~

~

~ I

~ ~ ;:

~

W W>>>>>>WWWWWWWMWWWWWW I'i

~

~ as I

I s

I W>>

WWWW WWWW WW WWWW WWWWWWW W>>>>WW>>W BR WW tm>>WWWWW>>WWWWWW>>>>>>>>WE WWWWWWWWWWWWWWWWWWWW lW I

I W>>>>@ac>>>>m IW Ca>>WW OWNED~>>>>m

~

I;

~

IW l~

p Im

~

s

~

I '

IW w~

W>>>>>>M I

I' l>>W>>>>

~

~

8 I Q

Ig>>>>>>>>W IWWWW5 R.-

l>>>>WW l>>W>>W Wgg>>

Wgg>>

l>>WWWW>>W~

WW l>>WWW>>>>W~

WWW I I '.

I

~ '

I I

BI IWWWW~WWWQWWWW>>W>>>>W>>WW>>WW I '

I I I I

~>>>>~>>WWWWWWWW>>

t>>W

~

~

~

~ IW>>

g>>W>>RW>>WW~WW>>W~M>>WWWWWQSIaaaja5~~~~~~>>>>WWW>>>>>>WW Wg>>W'WWW>>>>WWWWW>>>>g>>WW>>>>g>>>>WWWW>>WW>>aassaaLLLLRX:IW>>>>WW

~+%>>taaaaw>>>>>>>>>>ww>>>>H>>wwwww>>w>>>>w>>ww>>wwww W>>>>>>WW>>>>

~+iWWWWWWWWWWWWWWWW>>WWWWWWWWWWWW WWW>>~WWW>>he%>>~

WWW>>WW>>erne WQ>>

~

~

~

>>W>>W>>WWWWWM~>> +WWW>>>>WWWW WWWW WWWW WWWWWWWWWWWWWWWWWWW WWWQQPW>>WW s

~ I'

~ 's

~ f

~

~

~

~ I Is=

I s

~

Is..

~

~

~

~

I I

3.0 2.8 Core Flow > 50%

Power s 30%

Two Loop and Single Loop Operation Power SPC 8x8, GE11 LFA SVEA-96 LFA 2.6 25%

2.50 2.76

'E 2.4 0)-22 o 2.0 K

0 g 1.8 30%

Power 25%

30%

2.40 2.66 SPC 8x8, GE11 LFA 2.10 2.00 SVEA-96 LFA 2.36 2.26 Core Flow s 50%

Power ~ 30%

AllCore Flows Power ) 30%

SVEA-96 LFA 1.80 100%

1.32 1.58 SVEA-96 LFA SPC 8x8, Power GE11 LFA 30%

1.6

,1.4 1.2 20%

30%

SPC 8x8 GE11 LFA 40%

50%

60%

70%

80.%

Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, RPT Operable SPC Bx8, GE11 LFA, SYEA-96 LFA FFTR Operation Figure 3.6 90%

100%

1 10%

gfs~hN my=a 5:=RR.

~mR Rgga I

~ I

~ I I:

I

~

~

I I

I ',

RMWWWMMWM

~WWMWWWWW WMWWMWMM I

~

~ I I

WMWWWMWW WW WWWWW

~

~

~

~

MWMgWMMMgMMMMWg WMMWMMMMM WWW WWWW WMWWW WWWWWMWMW MWMWgMMWWMWWWWWWWW&W&WW&

MWWMMMM5 MWMMMMM8 WRIWWMWWWW&MMWkg WWWWCMW I ',

WMWWWMM I

I ',

WWWWWMW I '

MWWMWWW

~

~

~

~

I RmmRR

~

~

~

~

~

~

WWMWWWW I

I MWMMMMM MWMMMMMS WWMWWMMMNMMMMW~MMMMMMMMW I 'e I I MWMWRMMMWMMMMWHMMMMMMMM WWW MWWMWMMMWMWWMMMWMMWWWMMW sae~~~~~~~m

~~~

WMWWWMWMWWMMMMWWMMMWMMMW L.fggWWggg W

gag gWWWWWQWWWg WWWWWWWWg WWWM~~ <%MWMWWMMWWWMMMWWWMWSs~ IMWMMM WWWWWWWa

+WWWMMMWWMWMWWWWWWWMWWW WMMWMMMWMMMMW~>> ~ ISEDMMWMMMMMMMMMM MMMMWMMWMMMM MMMWMam ~+%55/MMMMWMMMMM MMMWMWMMMMMWMWMMMMWMMMMWMhaa~+IfMMMMM MWWgHWWWQWMWWCgMWWCWMWWWWMWMWMWWWm&MMMM WMM WWW MMMM+ MWMWMMMMWMMWMWMWWWMMMMMW MMMM StSMWggMMM MMWWWWMMMWMMMMMWWMMWMWMMM WWWMHWMWMMMWWMWWMWMWMMMMWWMMMWMMMWMMMMMM

~ 0's

~ I 'a

~ g

~

~ ~ 'e

~

~

~ I.

3.0 2.8 Core Flow ) 50%

Power a 30%

Two Loop and Single Loop Operation 2.6 Power 25%

30%

SPC 8x8, GE11 LFA 2.50 2.40 SVEA-96 LFA 2.78 2.68 All Core Flows Power > 30%

'E 2.4 Ol~ 22 L

rD o 2.0 K

0 g 1.8 Power 25%

30%

SPC 8x8, GE11 LFA 2.10 2.00 SVEA-96 LFA 2.38 2.28 Core Flow c 50%

Power c 30%

Power 30%

100%

1.64 1.35 1.82 1.63 SVEA-96 LFA SPC Sx8, GE11 LFA SVEA-96 LFA

.1.6 1.4 SPC SxS GE11 LFA 1.2 20%

30%

40%

50%

60%

70%

80%

Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power TSSS, RPT Operable SPC SxS, GE11 LFA, SVEA-96 LFA FFTR Operation Figure 3.8 90%

100%

110%

~

~

~

~

~~~>>85P5M~~>>~~~

~

~

~ I '

I I '.

'+~~~+

~

~

~ I

~

~ I

~

E ~:

~

~

~

~

~

~

s

~

>>>>>>>>LIII~~~~~~~~~~~~~+H>>

I W>>>>>>>> I>>W>>>>WWW>>>>WMW>>

I

>>>>>>>>>>>>5 I

~

I g>>>>>>>>>>>>Q WWWWWMWWW>>>>>>WAN>>M>>>>>>W

~~>>~~~>>~M Ã6588~M~

I I '

~

~

~

~

~

~

>>>>>>M>>>>

>>WW>>W>>

(

~

I c>>H>>>>w

>>>>WW>>>>>>>>W>>>>>>>>W>>>>>>>>>>>>>>M I

I II II

>>~~~ I+&>>>>>>>>>>>>>>>>>>

~

~

~

555>>>>mw Cw>>C>>>>>>>>>>>>>>>>CC>>>>>>>>>>>>>>>>>>

ggg>>>>ggg>>ga

~>%+>>Wgg>>WW>>>>M>>>>W>>>>WW'W cl>>

g>>>>>>>>>>>>>>>>>>>>I%0~>>

W>>>>>>WAN>>W>>>>>>

W>>>>W>>>>>>W>>>>>>>>>>aaa~~~>>>>>>>>>>>>>>

>>>>>>>> W>>>>W>>>>W>>>>>>>>>>>>>>>>>>>>>>>>>>>>W>>W~~~M>>>>>>>>

>>>>gI w>>>>

g>>>>>>g>>>>>>g>>>>>>>>>>+>>>>>>Mw>>>>>>w

~ I 'I

~ g I

~ f I I I 'I I

I I

~

~

I

~

~

I

~ S.

IS

3.0 2.8 Core Flow > 509o Power s 309o Two Loop and Single Loop Operation 2.6 SPC Sx8 Power GE11 LFA 259o 2.50 SVEA-96 LFA 2.?3

'F 2.4 CD-22 Q

6) o 2.0 K

fL g 1.8

=1.6 309o Power 259o 309o 2.40 2.63 Core Flow w 509o Power a 309o 2.'IO 2.00 2.33 2.23 SPC Sx8 GE'I 'I LFA SVEA-96 LFA Power 30%

100%

All Core Rows Power > 30%

1.45 1.28 1.68 1.51 SVEA-98 LFA SPC 8x8 GE11 LFA SVEA-96 LFA 1.4

.2 20%

SPC Sx8 GE11 LFA 30%

40%

50%

60%

70%

80%

Percent of Rated Power Reduced Power NICPR Operating Limit Versus Percent of Rated Power NSS, RPT Inoperable SPC Bx8, GE11 LFA, SVEA-S6 LFA Cycle Exposures w 4500 MWd/MT 90% '00%

1 10%

Figure 3.10a

00 O

3.0 2.8 Core Flow > 50%

Power a 30%

Two Loop and Single Loop Operation 2.6 Power 25%

30%

SPC 8xS GE11 LFA 2.50 2.40 SVEA-96 LFA 2.80 2.70 All Core Flows Power > 30%

ChI

'E 2.4 0)~ 22 0 2.0 K

0 g 1.8 Power 25%

30%

Core Flow s 50%

Power a 30%

2.10

.2.00 2AO 2.30 SPC SxS GE11 LFA SVEA-96 LFA Power 30%

=100%

1.46 1.38 1.76 1.68 SVEA-96 LFA SPC 8x8 GE11 LFA SVEA-96 LFA

.1.6 1.4 SNP SxS GE11 LFA A0 C)

C) 1.2 20%

30%

40%

50%

60%

70%

80%

Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, APT inoperable SPC SxS, GE11 LFA, SYEA-96 LFA Cycle Exposures > 4500 MWd/MT Figure 3.10b 90% '00%

110%

@5%

I-=/I MMMM'511 1m==i IIRII am888 PgQ SBR HHHQ WWWWWWWWWMWWWWWWWWMWWWMMW WMMWWWWMM i I'WWWQWWWW I

~

I

~

~

~

~

8 MMMM/

I I

I '

I I

gWMWW~MWWW1 I 's I

I I

~

I ',

I I

M

~l I '.

I I

555551:-55hmlliimmmllggilg I

I '

I I I I WMWWWWMMMWMWMWWMWWWWWWWWWMWWWWWWCQWWMM WWWMWWMWMWMWMWMMMMWWWMMMWMMMMWMMMHWWMMW g WM++WWWWeked JK'gggg+W MMWWMMMMMMMMM WgWHIWWCSWgWWWgWQCERg~~ggWFIMWMWWWMMWWWMWW RRIRRK-=HIIII5558555555RHIRmKKRRIR'%5551

~

~

~

WWWW WMQWQWWSsP

+IOQWWWWMWWWMWWg

~~~~a ~~

WWWW MMMM MMMM+ MWWWW MMWQQMWMW I I

~

~ ~;:

I

~

~

I I' I 'I

~ I' I'

~

~

~ I

~

II'I I

~

I I;:

I I I

~

~

' ll

~

I

~ Ss

~ S:

Wg<<W<< ~~~~~~~~~~~~~~

<<WWMM<<MWWWWWWWWWWWWWWW W<<<<<<W<<<<&

<<Cfg WMWWWW

<<W

<<'WWWWWWA WWWWWW<<%

~

~

~ I

~

'I:

I '.

WM<<WWW<<

<<<< s'.%

<<<<W<<WWW WWR>llg WWWWWWWW

<<W

~

~

~

~

g<<WMWW<<WW<<W<<WW<<MW<<WB M<<W<<W<<<<M<<MW<<MW<<MW<<WW WWW W<<WWWWWWW<<W<<M<<~<<<<M<<<<~<<Rg

~ I

~ I

<<WW~W<<M<<g I

<<<<WB<<WMWH

~

~

<<<<<<W Q<<WW<<W<<<<WM WWWW WWWWWWW<<g 5

WWW<<

'LWW&WWWWWWW&WW&<<WWMMW<<W

<<WWMMWWW W<<Sa.~

<<WWMMW<<W 8<<<<a~

I

~

i I '

<<W~<<<<W<<WC I '.

WWW 8--

I W<<W I '

I I I I

<<WWWWWWMM<<WWMWW M<<W

~~~~~~~~~~>>

W awe~~~~

WWWWWMWWW<<MW<<<<g i~eC<<w ggwaaatQQQCClaCKQ55RTKK&~~~~~~gfg~fg~pg~~~p<<www<<<<w<<ww W<<W

'WWM WMWWWWW<<W<<<<W<<WW <<WMWWWWW<<W<<WW<<WWW<<W WQW WWM gWWW<<WW<<W<<MWWWM <<WMWWWWW<<M<<W<<g<<WWWQ W<<<<WW<<MW<<QW<<~W<<~W<<<<W+MW<<W<<WWWWWW<<<<lg<<WWWW m<<W<<aa5<<WWW<<WW<<MWRW<<<<~W<<<<<<<<W<<<<WR<<<<<<W~

W<<g g<<M~~

~h&W~NIW<<W<<<<W<<W<<MWW<<WW<<WW<<W<<WW<<MWM<<g WWW<<g<<WWCQWWWWWWMaaa~~ +<<W~WWWWWWWW<<WWWWWW<<<<<<WAN

~

~

<<W<<<<W<<<<~~e

<<WWW<<WWW<<<<WWM~'~<<W<<<<WWWW

~

~

WWW WWW

<<WWWWWWW<<W<<<<WWWWWWWWWWWWW W<<W QSW<<<<WW<<W<<WWWMWMW<<MW<<<<WW<<WWWWWWW<<W<<<<WW

~ I'e

~ I '

~ 0'

~

~

~

I

~

S I; S

I

~

~ I I

~

~

I I

940610 l3:46

'4.0

~ LINEARHEAT GENERATION RATE GR LIMITFOR USE IN SPECIFICATION 3.2 4 The LHGR limitfor use in Technical Specification 3.2.4 sha1l not exceed the values shown in Figures 4.1 through 4.5.

Washington, Nuclear-Unit 2 COLR 94-10, Revision 0

$Esg

$48 RERRssmS Esp Ess/Esg gs s Ess E Es

.,),m L~.L) IJ ILL~H.:. LI. 8

'i--'Pllglll /I~lb)I~) Illll~) Ig Ill~i REsmsEEsmmsgkp'4EsgREssggENPgggggEFREsgmss glRg EPEE EEX EPEE EWEEWlhhs 0

WEWE WEWRWEXEEWEEEW EWE sssE Rsvp IEGER EsssssEshhi 1ELRLsERERREERRRE LRER WEE WEEP EWW WWEEEEEEEEOVWEW WEEWEEWEEWEEEWWEWEE EEX WXWE EEE WEE EEE WW$'OEO EEWXEXXEgEEEWRRW Eg WgEgmEEWggEWgggPEWEgPWPggWWEgWPXEPEENEEPEEXag EPP RWERREXWF WEEEWLCWOERSEEESRE~EW WEX XEXXWXEES WEEEWWl~WEEEEXEXEXXP WEE EXXXEEXEO IEEEWWSilEEEEEWXCEEE EXEX EEWgWWEEi

~

~

EEEWWEE'.%XEEEWEEWEWWWEEWg W

X. EPEE 8 EEEWWEWk PEEWEE W

EE

%)5 gg 5 Qe EEECEEPEELOEPEEEQW PRCE gWEW gXEXg gXWEEWEEggEgEEEEWmgEEgm WWEW PEEWEE WEE WEWEWEERLi REEEEEWEEX II WEEWEEEEEa EEEE5EP EP EEEE8 EEEE WWXEE E

EEE g

gg 5 E5 EPEE gllgg P

PEEWEQEPX EEW XEEXPQEWEWXEWEQWEEXEEWP2'%EWXEE

~WN NWWW WCWW WWQ RWEaRWWWWaaWWWEWEWWEWWWW h~e5 PXW XXEEgEEEW EEE EEEWagEEWEWEXWEEEEWWEaEE Eah E

EEXEEEEE EEEWX EEE WEEPS WEXEWEWE WEEXXEXOWE EEWE I

I ~ ~

I II~

III I III III I III II ~

~ I ill

~ ill I

~

~

I I

~

~

~

~

i "i iii'

"il i'mmmwwwmmwmwmwCa N

N N

N N

Ikk Ik kk kkkkkkligkg)kkkklgkk kkkkkkiI Igkkkklx gPk I gA NN g hj N

gA N

N N

N A NA A

A iII

~ I iIIIIIIIIakl,sill LIIIIII.IIII.I Illl.i kklklkkkk llkIIkkkkI~ hPkkk Ikkkkkkkkgkkllkllk kkPglk Ill II IIlk I I I L ha%

kl IIIIIillkklkII I iii lkliliIIkkIIHliliI IIIIlkhalkIIIllilllllklklI Llil lANI AA AAA AAAN

>0 ANNA NA AAA A A A A I I 11llllkllIlklh5 IIIIIIIIIIILII rAAA

'AAAAAAAANAAAASliWAANAAAAAAAAAAAAANN

~kkkkkkkkkkkkkkkllEklkkkkllkkkkkkkk

~

kk kksssssssssssssss ILk IIIILIILllllklkLkhkkkk

~I II ~ lkkiklk kkllkkkk kkkkikkIIklkkkkkkikkkkk~kkk/

g i I',ilii';,g i i jjjliligiiI

~ I ~ ~

I III II ~

~ i lil I I I I

~ ~ III

14.0 8.0 LHGR 13.7 13.7 7.0 Average Planar Exposure 0

15,000 60,000 7.0 6.0 0

10,000 20,000 30,000

'0,000 Average Planar Exposure (IVIWd/MT)

Linear Heat Generation Rate (LHGR) Limit Versus Average Planar Exposure

, SPC 9x9-1X LFA Fuel 60,000 Rgure 4.3

I S

ROSS S

SS S

8%8 I

e I8 0

%0 g pig gll I Igp5glgggp 5CgRQ p555gl5g gLISILSSRgREi5liRgSgg RRIIRgR

~IIILRS LVRERSEI55555555LL5$ 555 5 5 i+i+i+ii+S g 55555 55pQS RSRSO aa ear

~5

%55 55 8555555SWWQROWQS55 0 88RW QRRRQREQRRRQQSORQQQSOS OSIS,...,,

OSQQSSSSREOSA OQSS55 0

iSSSQASSOSWS55555S OO 888 5

RQS55555555555558 SW WRR Weaaaewar 5 58555555%55SOSRSSR ar ru aeSSrarrrra sraaaarxeaaaaaaaaa RiSQOSRQSQSASSSOSOSOWRQREE555ASRIERSRES 50 50 SiOiOQOQS SiWOOWQQQS SS gag faj aggVgPg fa55lgl~s~allapRFeaaVallag QS 5 555 55555585 OS585 5 QSSQA 55 885 88 58 WQSOOS 5 5

S 8 88558888888

MM MMM M

M M

M M

M M

5)

M M

~gg%$ 5)R~%4lggg51PI RRE SE i PQIEI

~

,e:ia:aa.

I'.lsea'. -.a a a

aalaa.h

'ace.aaa aaaaeua ma~qeamaa emaaaae aa~ea S

i ii)

RSII Hi pisa iilHp A 5 MMMMMOSMMRaeaaraa aaaSMMMMMMMMMMMMMMMMMEIMMRMMS

~551M Sggl18855$

~ RSSSSSASSkpLRARSAARA4g%5555 RMMMMM M MM M

M M

MOM M

MM MMM 5 MMMMMO ah era a i:.ila i la5s iiahi:ih.h ilibelli

~ III I

~ ~ I I III i I iil

~ II'

941229 14:38

'5:0 'MFHR HE 5.1 R

rts for Curient C cle 5.1.1 5.1.2 5.1.3 5.1.4 EMF-94-095, "WNP-2 Cycle 10 Plant Transient Analysis," Siemens Power Corporation, June 1994.

EMF-94-096, "WNP-2'ycle 10 Reload Analysis,"

Siemens Power Corporation, June 1994.

SPCWP-94-041, "Licensing Results Supporting Section 3/4.2 of the WNP-2 Technical Specifications for Cycle 10," Letter from YUFresk, Siemens Power Corporation, to RA Vopalensky, Supply System, April 1, 1994.

SPCWP-94-062, "STAIF Stability Results in Support of WNP-2 Cycle 10,"

Letter from YU Fresk, Siemens Power Corporation, to RA Vopalensky, Supply System, June 14, 1994.

SPCWP-94-042, "Licensing Results Supporting Section 2.1 of the WNP-2 Technical Specifications for Cycle 10," Letter from YUFresk, Siemens Power Corporation, to RA Vopalensky, Supply System, April 1, 1994.

SPCWP-94-068, "SPC Comments on WNP-2 Cycle 10 Draft COLR," Letter from YU Fresk, Siemens Power Corporation, to RA Vopalensky, Supply System, June 23, 1994.

RDW:94-092, "WNP-2 Cycle 9 Core Operating Limits Report - GE11 Lead Use Assemblies," Letter Born RD Williams, GE Nuclear Energy, to DL Whitcomb, Supply System, June 21, 1994.

ABBWP-94-040, "SVEA-96 Lead Fuel Assembly Treatment in WNP-2 Cycle 10 Core Operating Limits Report," Letter from CG Schon, ABB Combustion Engineering Nuclear Operations, to RA Vopalensky, Supply System, June 15, 1994.

SPCWP-94-108, "Improved Reduced Flow MCPR Operating Limits for WNP-2 Cycle 10," Letter from YUFresk, Siemens Power Corporation, to RA Vopalensky, Supply System, December 12, 1994.

RDW:94-162, "WNP-2 Cycle 10 Core Operating Limits ReportRev. 1,"

Letter from RD Williams, GE Nuclear Energy, to DL Whitcomb, Supply System, December 14, 1994.

NFBWR-94-055, "SVEA-96 LFA Flow-Dependent MCPR Limits," Letter from CG Schon, ABB CENO Fuel Operations, to R Vopalensky, Supply System, December 22, 1994.

"Washington Nuclear-Unit 2 COLR 94-10, Revision )

5.2 Licen in T ical rt in Technical S ification 6

.3 2 5.2.1 5.2.2 ANF-1125(P)(A) and Supplements 1

and 2,

"ANFB Critical Power.

Correlation," Advanced Nuclear Fuels Corporation, April 1990.

"NRC Approval of ANFB Additive Constants for 9x9-9X BWR Fuel," Letter from RC Jones, NRC, to RA Copeland, Advanced Nuclear Fuels Corporation, November 14, 1990.

Washington Nuclear-Unit 2

-35a-COLR 94-10, Revision 1

940523 11:03

'.2.3 ANF-524(P)(A), Revision 2 and Supplements 1 and 2, "Advanced Nuclear Fuels Critical Power Methodology for Boiling Water Reactors,"

Advanced Nuclear Fuels Corporation, November 1990.

5.2.4 5.2.5 5.2.6 ANF-913(P)(A), Volume 1, Revision 1 and Volume 1, Supplements 2, 3, and 4, "COTRANSA2: A Computer Program for BoiTing Water Reactor Transient Analyses," Advanced Nuclear Fuels Corporation, August 1990.

'I ANF-CC-33(P)(A), Supplement 2, "EGDPZ: A Generalized Multirod Heatup Code with 10 CFR 50, Appendix K, Heatup Option,," Advanced Nuclear Fuels Corporation, January 1991.

XN-NF-80-19(P)(A), Volume 1, Supplements 3 and 4, "Advanced Nuclear Fuels Methodology for Boiling Water Reactors:

Benchmark Results for the CASMO-3G/MICROBURN-B Calculation Methodology," Advanced Nuclear Fuels Corporation, November 1990.

5.2.7 XN-NF-80-19(P)(A), Volume 4, Revision 1, "Exxon Nuclear Methodology for Boiling Water Reactors:

Application of the ENC Methodology to BWR Reloads," Exxon Nuclear Company, Inc., June 1986.

5.2.8 XN-NF-80-19(P)(A), Volume 3; Revision 2, "Exxon Nuclear Methodology for Boiling Water Reactors THERhiEX: Thermal Limits Methodology Summary Description," Exxon Nuclear Company, Inc., January 1987.

5.2.9 XN-NF-85-67(P)(A), Revision 1, "Generic Mechanical Design for Exxon Nuclear Jet Pump BWR.Reload Fuel," Exxon Nuclear Company, Inc.,

September 1986.

5.2.10 ANF-89-014(P)(A), Revision 1 and Supplements 1 and 2", "Generic Mechanical Design for Advanced Nuclear Fuels 9x9-IX and 9x9-9X Reload Fuel,"

Advanced Nuclear Fuels Corporation, October 1991.

5.2.11 XN-NF-81-22(P)(A), "Generic Statistical Uncertainty Analysis Methodology,"

Exxon Nuclear Company, Inc., November 1983.

5.2.12 NEDE-24011-P-A-6, "General Electric Standard Application for Reactor Fuel," GE Nuclear Energy, April 1983.

5.3 E Nuclear En r d ABB C m u tion En ineerin Nuclear e

tion Lead Fuel A sembl 5.3.1 "GEll Lead Fuel Assembly Report for Washington Public Power Supply System Nuclear Project No. 2, Reload 5, Cycle 6," GE Nuclear Energy, December 1989.

Washington Nuclear-Unit 2 COLR 94-10, Revision 0

5.4 5.3.2 5.3.3 5.3.4 UK 90-126, "Supplemental Lead Fuel Assembly Licensing ReportSVEA.9$.

LFAs for WNP-2Summary,." ABB Atom', January 1990.

ATOF-91-120, "Assembly Treatment in WNP-2 Cycle 7 Core Operating LimitsReport," Letter from WR Harris, ABBAtom, to DLWhitcomb, Supply System, May 1, 1991.

ABBWP-94-039, "WNP-2 SVEA-96 Lead Fuel Assembly Operating Limit MCPR," Letter &om CG Schon, ABB Combustion'Engineering Nuclear Operations, to RA Vopalensky, Supply System, June 15, 1994.

f r xten Li imi An L

5.4.1 5.4.2 5.4.3 "Reactor Vessel Internals Evaluation Task Report for WNP-2 Power Uprate Project," GE Nuclear Energy, April 1993 (DRAFT).

"WNP-2 Power Uprate Containment Response Evaluation Input to Engineering Report," GE Nuclear Energy, January 19, 1993 (DRAFT).

GE-NE-189-69-1092, "Effects ofAdjustable Speed Drive on Reactor Internal Vibration at the WNP-2 Nuclear Power Plant," GE Nuclear Energy, October 1992.

5.4.4 5.4.5 5.4.6 GE-NE-189-34-0392, "Jet Pump Sensing Line Vibration Test for Washington Nuclear Project 2," GE Nuclear Energy, March 1992.

NEDE-24222, "Assessment ofBWR Mitigation of ATWS, Vol. II (MlREG 0460, Alternate No. 3)," General Electric Company, December 1979.

"Washington Nuclear Project Unit 2 System Evaluation Report for Power UprateReactor Recirculation Control System,"

GE Nuclear

Energy, February 1, 1993.

.5.4.7 5.4.8 5.4.9 GE Report 22A7104, Revision 0, "Dynamic Load ReportFuel Vertical Support," GE Nuclear Energy, June 30, 1982.

"Fuel Lift Non-Proprietary Letter," Letter from DM Kelly, GE Nuclear Energy, to WC Wolkenhauer, Supply System, February 15, 1993.

93-PU-0054, "ELLLA Related Power Uprate Task Reports," Letter from DM Kelly, GE Nuclear Energy, to WC Wolkenhauer, Supply System, June 3, 1993.

Washington Nuclear-Unit 2 COLR 94-10, Revision 0