ML12068A133: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
#REDIRECT [[RNP-RA/12-0010, Calculation RNP-M/MECH-1815, Revision 1, Evaluation of Emergency Diesel Generator Starting Capability at 150 PSIG]]
{{Adams
| number = ML12068A133
| issue date = 02/23/2012
| title = Calculation RNP-M/MECH-1815, Revision 1, Evaluation of Emergency Diesel Generator Starting Capability at 150 PSIG
| author name =
| author affiliation = Progress Energy Carolinas, Inc
| addressee name =
| addressee affiliation = NRC/NRR
| docket = 05000261
| license number = DPR-023, COC-1004
| contact person =
| case reference number = RNP-RA/12-0010, TAC ME5408
| document report number = RNP-M/MECH-1815, Rev 1
| document type = Report, Technical
| page count = 23
| project = TAC:ME5408
| stage = Other
}}
 
=Text=
{{#Wiki_filter:Attachment II to Serial: RNP-RA/12-0010 18 Pages (Including Cover Page)
H. B. ROBINSON STEAM ELECTRIC PLANT, UNIT NO. 2 Calculation RNP-M/MECH- 1815, Revision 1
 
SYSTEM#                              5095 CALC. SUB-TYPE                        MC PRIORITY CODE                          NA QUALITY CLASS                            A NUCLEAR GENERATION GROUP RNP-M/MECH-1815 (Calculation #)
EVALUATION OF EMERGENCY DIESEL GENERATOR STARTING CAPABILITY AT 150 PSIG (Title including structures, systems, components)
F-DBNP        UNIT
                        -- CR3    D    HNP    NZRNP        EZINCP      W((]ALL APPROVAL                                                  M    Electronically Approved REV      [PREPARED BY                          REVIEWED BY                  SUPERVISOR Signature                    Signature                    Signature Signed Electronically        Signed Electronically        Signed Electronically 0              Name                        Name                        Name Date                        Date                        Date Signature                    Signature                    Signature Signed Electronically        Signed Electronically        Signed Electronically Name                        Name                        Name Date                        Date                        Date (For Vendor Calculations)
Vendor        N/A                          Vendor Document No.              N/A Owner's Review By N/A                                        Date N/A
 
CALCULATION NO. RNP-M/MECH-1815 PAGE NO.                  i REVISION                  1 LIST OF EFFECTIVE PAGES PAGE  REV PAGE        REV            ATTACHMENTS ii  1                                    Number iii  1                      Number Rev of Pages 1
1    0 2    0 3    0                      1        1  4 4    0                      2        0  1 5    0                      3        1  1 6    0 7    0 AMENDMENTS Letter  Rev  Number of Pages None
 
CALCULATION NO. RNP-M/MECH-1815 PAGE NO.                                            ii REVISION                                            1 TABLE OF CONTENTS List of Effective Pages .....................................................................................................                      i Table of Contents ......................................................................................................                          ii Revision Summary .........................................................................................................                      iii Pu rp os e ..........................................................................................................................            1 R e fe re n c e s ....................................................................................................................            1 Body of Calculation ........................................................................................................                      1 Conclusions ............................................................................................................                        6 Document Indexing Table ...........................................................................................                              7 Attachments  ......................................................................................................                    (4 Pages)  .......................................................................................................                    (1 Page)  .......................................................................................................                    (1 Page)
Amendments N/A
 
CALCULATION NO. RNP-M/MECH-1815 PAGE NO.                    iii REVISION                    1 Revision Summary (list ECs incorporated)
Rev. #
0    Initial Revision 1    Corrected Reference 14 to Reference 11 on Attachment 1 Page 1 of 4.
Added Attachment 3 - Design Verification Form for Rev. 1.
 
CALCULATION NO. RNP-M/MECH-1815 PAGE NO.                            1 REVISION                            0 PURPOSE Reference 1 provides the following request:
      "Provide an analysis or calculation to justify the Fairbanks Morse recommendation that a minimum air pressure of 150 psig in the air start receiver will ensure a reliable start for each Robinson EDG."
This request was in response to information provided in Reference 2.
REFERENCES
: 1.        NRC Letter RRA-12-0005, H.B. ROBINSON STEAM ELECTRIC PLANT, UNIT NO.2 -REQUEST FOR ADDITIONAL INFORMATION RELATED TO REQUEST FOR TECHNICAL SPECIFICATIONS CHANGES TO SECTION 3.8.3, DIESEL FUEL OIL AND STARTING AIR, AND SECTION 3.8.5, DC SOURCES- SHUTDOWN (TAC NO. ME5408), January 24, 2012.
: 2.        Progress Energy Letter, REQUEST FOR TECHNICAL SPECIFICATIONS CHANGES TO SECTION 3.8.3, DIESEL FUEL OIL AND STARTING AIR, AND SECTION 3.8.5, DC SOURCES -
SHUTDOWN (ADAMS Accession No. ML110310012) January 20, 2011.
: 3.      Vendor Technical Manual VTMA 729-063-16, FAIRBANKS MORSE POWER SYSTEMS PRODUCTS, Rev. 76.
: 4.        Diesel Engine Engineering, Thermodynamics, Design, and Control, Andrei Makartchouk, 2002 Marcel Dekker.
: 5.        RNP UFSAR Section 8.3.1, AC Power Systems.
: 6.        Design Basis Document Emergency Diesel Generator System Document No.
DBD/R87038/SD05, Rev. 10.
: 7.        RNP Calculation 87-17, Rev. 0, DG AIR START SYSTEM.
: 8.        Introduction to Chemical Engineering Thermodynamics, Smith and Van Ness, McGraw Hill, Third Edition, 1975.
: 9.        Fairbanks Morse Publication E3440-1, August 1979.
: 10.      Fairbanks Morse Publication El102-1, August 1979.
: 11.      Pre-Operational Tests of Emergency Diesel Generator Robinson File No. PO-35.
: 12.      Matheson Gas Data Book, seventh edition, 2001.
: 13.      Mark's Standard Handbook for Mechanical Engineer's, Eighth Edition.
: 14.      RNP Technical Specifications 3.8.1, AC Sources - Operating.
BODY OF CALCULATION Diesel Generator Set Onsite emergency power is available from two emergency diesel generator sets. Each diesel generator set consists of a Fairbanks-Morse Model 38TD8-1/8 engine coupled to a Fairbanks-Morse generator.
The emergency diesels are automatically started by injecting compressed air into the cylinders. Each engine has compressed air storage sufficient for 8 cold diesel engine starts. However, the diesel engine will only consume enough air for one of these eight cold starts upon receiving an automatic start signal.
This is due to the engine control system which is designed to stop cranking within 10 sec. To ensure rapid start, each unit is equipped with heaters and pumps for circulation of lube oil and jacket water when the unit is not running (Ref. 5).
 
CALCULATION NO. RNP-M/MECH-1815 PAGE NO.                            2 REVISION                            0 Lube Oil Subsystem A motor-driven standby circulating pump circulates the oil through the lubricating oil heater and back to the engine sump to maintain the lube oil warm (130F minimum) to support rapid starting and loading. Lube oil used in the EDG lube oil Subsystem is controlled as a "Q-List consumable" or equivalent item. This guarantees that lube oil quality will not interfere with the safety-related function of the EDGS (Ref. 3 and 6).
Jacket Water Coolinq Subsystem This system, like the Lube Oil system, is used to maintain the diesel generators in a warm standby status. Jacket water is heated as needed (11 OF minimum) to facilitate fast engine starting. A motor driven standby pump circulates flow through an 18 KW heater (Ref. 3 and 6).
Diesel Starting (Ref. 4)
To start a diesel engine it is necessary to rotate its crankshaft at a speed such that the fuel oil that is injected into the cylinders during start mode can self-ignite. The forces of resistance that appear inside a diesel engine when the starting air rotates the crankshaft during startup are:
: 1.      The forces of friction of reciprocating and rotating parts.
: 2.      The forces of resistance to air and gas flow in the intake and exhaust systems.
: 3.      The force of resistance of the auxiliary mechanisms mounted on the engine.
Prior to the engine starting the force of cylinder charge compression is approximately equal to the force of cylinder charge expansion. Therefore, the work of cylinder charge compression does not contribute to the work of the resistant forces. Additionally, the starting system must impart sufficient kinetic energy to the engine rotating mass to achieve engine start.
Vendor Recommendation Fairbanks Morse (Ref. 9) states that reliable engine starting may be expected at starting air receiver pressures between 250 psig and 150 psig. The RNP EDG Fairbanks Morse Vendor manual states that air for the starting system is required at between 150 and 250 psig (Ref. 3, Pg. 446 of 1036). Fairbanks Morse (Ref. 10) states that the starting air receiver sizing basis is based on 45.0 ft3 of free air per start.
 
CALCULATION NO. RNP-M/MECH-1815 PAGE NO.                              3 REVISION                              0 Historical Data Reference 11 documents a special test run on the "B"EDG to evaluate a proposed engine lockout after a 20 second overcrank with a failure to start. Inthis test the ability to start is determined after a simulated failure to auto start of the EDG. The data below is the recorded data from Ref. 11; the data is further analyzed in Attachment 1.
Start #              Crank Time    Start Air Pressure        End Air Pressure (sec)        (psig)                    (psig)
Did Not Start (1)    20            245                      120 1 (2)                2            120                      110 Notes:
: 1. Simulated failure to start. Fuel shut off for the 20 second over-crank.
: 2. Successful start.
Evaluation of Historical Data versus Vendor Recommendation The historical data tabulated above cannot be used directly to justify reliable starting of the Robinson EDG's at a minimum air pressure of 150 psig in the air start receiver. This is because the actual starting of the "B"EDG in the above test run occurred after a 20 second overcrank in which the EDG was not allowed to start. The differences between starting the EDG with a minimum air pressure of 150 psig in the air start receiver and after a 20 second overcrank in which the EDG was not allowed to start, will be examined.
The differences between starting the EDG with no prior start and the successful start after a 20 second overcrank are mainly due to differences in the static and dynamic coefficients of friction and differences in initial temperature of the EDG. Reference 13 discusses static and dynamic coefficients of friction and states that the coefficients of sliding (dynamic) friction are smaller than the coefficients of static friction.
Comparing starting the EDG with a minimum air pressure of 150 psig in the air start receiver and starting the EDG after a 20 second overcrank, it should be noted that both starting regimes have a static component and a dynamic component because both starts occur from rest.
There is expected to be little difference in the dynamic coefficients of friction between the two starts because the engine was not fired during the 20 second overcrank period and very little engine heatup would have occurred. Therefore the main difference between the 150 psig start under consideration and the start after the 20 second overcrank, lies in the reduction of the static coefficient of friction caused by the 20 second overcrank. The effect of this difference is minimized because each EDG is operated monthly for at least 60 minutes per RNP technical Specification Surveillance Requirements (Ref. 14).
Ability to Do Work To start the EDG, the starting air system must have the ability to do work. This work is divided between the work required to overcome the forces resisting the rotation of the engine and the kinetic energy imparted to the rotational mass.
Examining the historical data, the amount of work required to start the EDG can be determined, this is provided in Attachment 1.
 
CALCULATION NO. RNP-M/MECH-1815 PAGE NO.                              4 REVISION                              0 Calculate Startinq Air Receiver Stored Energy (a150 psig Fairbanks Morse recommends that 45.0 ft3 of free air (Ref. 10) be available to start the engine. The amount of available energy 45.0 ft3 of free air discharged from an initial air receiver pressure of 150 psig will be determined.
Given an initial receiver air pressure of 150 psig, determine the final receiver air pressure after a discharge of 45.0 ft3 :
PIV 1 = P2 V2 P1      = air start receiver initial pressure (psia)
P1      = 150 psig P1      = (14.7 + 150) (psia)
P1      = 164.7 (psia)
Vl      = 34.0 ft3 P2      = air start receiver final pressure (psia)
P2      = 0.0 psig P2      = (14.7 + 0.0) (psia)
P2      =14.7 (psia)
Determine V2:
V2 = (PRV)I 1    P2 V2 = [(164.7 psia)(34.0ft3)]/(14.7 psia)
V2 = 380.94 ft3 A discharge of 45.0 ft3 of free air would yield the following volume of free air left in the air receiver:
V2      = 380.94 ft3 - 45.0 ft3 V2      = 335.94 ft3
 
CALCULATION NO. RNP-M/MECH-1815 PAGE NO.                    5 REVISION                    0 This is equivalent to the following pressure in the air receiver:
P3      =  (P2V2)N3 P3 = [(14.7 psia)( 335.94 ft3)]/(34.0 ft3)
P3 = 145.25 psia or P3      = 130.55 psig Thus after a 45.0 ft3 discharge the expected air receiver pressure would be greater than 130.0 psig.
Calculate the amount of stored energy represented by the above discharge of 45.0 ft3 of free air stored in the air receiver:
Because the engine starts quickly and there is little time for heat transfer, it is reasonable to use an adiabatic expansion from the air start receiver initial pressure to the final pressure, to calculate the amount of energy this represents.
From Ref. 8, Page 71:
([-i P1      = air start receiver initial pressure (psia)
P1      = 150 psig P1      = (14.7 + 150) (psia)
P1      = 164.7 (psia)
P2      = air start receiver final pressure (psia)
P2      =145.25 (psia)
V1      = 34.0 ft3                                                            (Ref. 7, Page 5) y        = Ratio of Heat capacities Cp/Cv y        = 1.33                                                                (Ref. 12, Page 8)
(0.33)
(164.7 psia)(34.0 ft3)
(1 6. p*
                                    ~(0.33)
(145.25          1]ii2/t2 in2lft2) psia) 1.33-(144
 
CALCULATION NO. RNP-M/MECH-1815 PAGE NO.                            6 REVISION                            0 W        = 7.50 x 104 ft Ibf From Attachment 1, Start #1 consumed the following amount of air receiver energy:
W        = 3.80 x 104 ft lbf Calculate ratio between work available at 150 psig and work expended for actual start at 120 psig:
Ratio      7.50x10 4 ftlbf/3.80xl04ftlbf Ratio    = 1.97 CONCLUSION By examining the historical startup data, the amount of stored energy in the air receiver expended to start the diesel engine at a 120 psig initial receiver air pressure can be determined. As demonstrated above, the amount of stored energy in the air receiver that is available at 150 psig to start the diesel engine is approximately twice the value expended at 120 psig to actually start the diesel during the historical test.
With all initial parameters the same, there would be expected to be differences in the amount of energy required to start a diesel engine at 150 psig with no prior starts and that required to start a diesel engine following a 20 second overcrank. These differences lie mainly in the breakaway frictional forces required to start the cylinders and crankshaft moving and the frictional forces from heat up of the engine represented by the 20 second overcrank.
The difference in breakaway frictional forces present after the overcrank and the breakaway frictional forces present with no prior cranking is considered to have a relatively small impact to engine starting forces. This is primarily due to the benefit of the engine keep warm system and monthly operation of the diesel in minimizing the difference in breakaway friction and to the fact that the engine was not started during the overcrank reducing the effect of engine heatup.
Given that the amount of stored energy in the air receiver that is available at 150 psig to start the diesel engine is approximately twice the value expended starting the engine from a lower air pressure of 120 psig during the historical startup, and that the differences in work required to start the engine are not expected to be 100 % more between the two examined starting conditions, there is sufficient air at a minimum air pressure of 150 psig in the air start receiver to ensure a reliable start for each Robinson EDG.
 
CALCULATION NO. RNP-M/MECH-1815 PAGE NO.                          7 REVISION                          0 Document          ID Number            Function            Relationship to Calc.        Action Type        (e.g., Calc No.,      (i.e. IN for          (e.g. design input,    (specify if Doc.
(e.g. CALC,        Dwg. No.,        design inputs or        assumption basis,        Services or DWG, TAG,        Equip. Tag No.,    references; OUT          reference, document      Config. Mgt. to PROCEDURE          Procedure No.,        for affected          affected by results)    Add, Deleted or
,SOFTWARE)        Software name        documents)                                    Retain) (e.g., CM and version)                                                      Add, DS Delete)
VTMA              729-063-16          IN                    REFERENCE                CM ADD DRAW              5379-01161          IN                    REFERENCE                CM ADD CALC              87-17              IN                    REFERENCE                CM ADD
: 4.                          4 t                                        4.                        1 4
1-                          1
                                                        +                          4 t                                        *1~                        1 4                          4
                                                        *1*                        1
                                                        .1-                        4
                                                        +
I                    I                    +                          4 I                    I                    +                          I (For the purpose of creating cross references to documents in the Document Management System and equipment in the Equipment Data Base)
 
Attachment 1 CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 1 of 4 REVISION                  1 Analysis of Historical Data Reference 11 discusses a test run on the "B"EDG to determine the ability to start after a simulated failure to auto start the EDG. During the simulated failure to auto start the engine was cranked for 20 seconds. The data in the first four columns is the recorded data from Ref. 11; the fifth and sixth columns are calculated in this
 
==Attachment:==
 
20 Second Overcrank + 1 Engine Start Start #    Crank      Start Air        End Air          Volume of Free    Air Receiver Time        Pressure          Pressure        Air Consumed      Expended (sec)      (psig)            (psig)          (ft3)            Energy Did Not Start (1) 20          245              120              n/a              n/a 1(2)      2          120              110              23.13            38024.84 Notes:
: 1. Simulated failure to start. Fuel shut off for the 20 second over-crank.
: 2. Successful start.
Calculate Volume of Free Air Consumed Calculate Volume of Free Air Consumed used in the fifth column of the Table above:
Start #1 Since the beginning and ending air temperatures will be approximately equal, we can use:
P1 V1 = P2 V 2
 
Attachment 1 CALCULATION NO. RNP-M/MECH-1 815 PAGE NO. 2 of 4 REVISION                  1 Volume of Free Air Consumed          = Volume of Free Air @ Higher Pressure
                    - Volume of Free Air @ Lower Pressure Volume of Free Air
@ Higher Pressure  = (PHigher VHigher)/14.7 psia Volume of Free Air
@ Higher Pressure  = [(120 + 14.7)psia 34 ft3]/14.7 psia Volume of Free Air
@ Higher Pressure  = 311.55 ft3 Volume of Free Air
@ Lower Pressure  = (P Lower V Lower)/14.7 psia Volume of Free Air
@ Lower Pressure  = [(110 + 14.7)psia 34 ft3]/14.7 psia Volume of Free Air
@ Lower Pressure  = 288.42 ft3 Volume of Free Air Consumed          = 378.63 ft3 - 364.75.3 ft3 Volume of Free Air Consumed          = 23.13 ft3
 
Attachment 1 CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 3 of 4 REVISION                        1 Calculate Startinq Air Receiver Stored Energy Expended Because the engine starts quickly and there is little time for heat transfer, it is reasonable to use an adiabatic expansion from the air start receiver initial pressure to the final pressure for Start #1, to calculate amount of energy this represents.
From Ref. 8, Page 71:
P1        air start receiver initial pressure (psia)
P1      =120 psig P1        (14.7 + 120) (psia)
P1        134.7 (psia)
P2        air start receiver final pressure (psia)
P2      =110 psig P2        (14.7 + 110) (psia)
P2      =124.7 (psia)
V1      = 34.0 ft3                                                              (Ref. 7, Page 5) y        = Ratio of Heat capacities Cp/Cv Y      z 1.33                                                                  (Ref. 12, Page 8)
 
Attachment 1 CALCULATION NO. RNP-M/MECH-1 815 PAGE NO. 4 of 4 REVISION                  1 (0.33)
W  (134.7 (0.33) " ft3)
      -- psia)(34.0      (134.7 psia)) 133
(_124.7              (144 1n2/ft2)
                                              "I  n2f2 W = 3.80 x 104 ft Ibf
 
RNP-M/MECH-1815 Attachment 2
: p. 1 Rev. 0 ATTACHMENT 2 Sheet 1 of 1 Record of Lead Review F                                                                                                            *1 Document RNP-M/MECH-1815                                                              Revision 0 The signature below of the Lead Reviewer records that:
      - the review indicated below has been performed by the Lead Reviewer;
      - appropriate reviews were performed and errors/deficiencies (for all reviews performed) have been resolved and these records are included in the design package;
      - the review was performed in accordance with EGR-NGGC-0003.
Design Verification Review              r-  Engine ering Review          -" Owner's Review E Design Review
[- Alternate Calculation F-- Qualification Testing I Special Engineering Review F-1 YES      F-1 N/A Other Records are attached.
Don Phillips (signed electronically)                      mechanical          2/14/12 Lead Reviewer                      (print/sign)              Discipline          Date Item                                Deficiency                                      Resolution No.
1        The best argument that the engine will start is a test.        Revised to include 20 second Think a much better argument can be made using the 20          overcrank test.
second no start cranking test results. There are 2 tests that show the engine will start cold with the starting air pressure less than that being evaluated. The only difference between the test and the condition of interest is the prior cranking without start. That should only make a difference in the static friction that needs to be overcome. Static friction does increase over time. Based on references, the difference between oiled steel static and dynamic friction is only the difference between 0.10 and 0.08. Considering the friction load is a small part of the overall load in cranking the engine, the change is small, and the engine was in fact stopped for a period of time before cranking, the affect on the engine would be very small.
2        The historical data section should include the 20 second        Revised to include 20 second no start tests.                                                overcrank test.
FORM EGR-NGGC-0003-2-10 This form is a QA Record when completed and included with a completed design package.
Owner's Reviews may be processed as stand alone QA records when Owner's Review is completed.
EGR-NGGC-0003                                          Rev. 11
 
RNP-M/MECH-1815 Attachment 3 P. 1 Rev. 1 ATTACHMENT 2 Sheet 1 of 1 Record of Lead, Review Document RNP-M/MECH-1815                                                    Revision I The signature below of the Lead Reviewer records that:
      - the review indicated below has been performed by the Lead Reviewer;
      - appropriate reviews were performed and errors/deficiencies (for all reviews performed) have been resolved and these records are included in the design package;
      - the review was performed in accordance with EGR-NGGC-0003.
Design Verification Review        II  Engineiering Review      I-]   Owner's Review E Design Review F-D Alternate Calculation F-- Qualification Testing
[-- Special Engineering Review I- YES    F-] N/A Other Records are attached.
Dave Markle (sianed electronically)                Mechanical        2/21/12 Lead Reviewer                (print/sign)            Discipline        Date Item                          Deficiency                                    Resolution No.
1        None                                                    NA FORM EGR-NGGC-0003-2-10 This form is a QA Record when completed and included with a completed design package.
Owner's Reviews may be processed as stand alone QA records when Owner's Review is completed.
EGR-NGGC-0003                                  Rev. 11
 
Attachment III to Serial: RNP-RA/12-0010 5 Pages (Including Cover Page)
H. B. ROBINSON STEAM ELECTRIC PLANT, UNIT NO. 2 References for Calculation RNP-M/MECH- 1815, Revision 1 Page  1            Air Start System Information from Vendor Manual 729-063-16 Page  2            Vendor Document E3440-1 Page  3            Vendor Document E 1102-11 Page  4            Historical Startup Test Data
 
From Vendor Manual 729-063-16                  3800TD8-118 - Page Ri Fairbanks Morse Opposed Piston Engines R. AIR START SYSTEM General                                                  This is explained and illustrated Ln Sec. J.
With the air start control valve open, com-The air starting system consists of the            pressed air passes into the header. Illus. RI, starting air piping and the engine starting mech-        which leads to the individual cylinder air start anism.                                                  check valves. Air also passes into the pilot air Air for the starting system is required at        supplypipe connected to the air startdistributor.
between 150 and 250 psi (250 psi preferred) at                The air start distributor includes one pilot the engine and is stored In suitable air tanks.          air valve for each air start check valve. The Engine starting is accomplished by the ac-        valves are    arranged radially and in cylinder tion of compressed air on the pistons In their          firing order around the air start distributor proper firing order.                                    camshaft, Illus. RZ. A spring holds each valve The engine starting mechanism includes            normally out of contact with the cam. as shown the air start control valve, air start distributor.      in Illus. R3. Air enters the distributor from the air header, the pilot air tubing and the air        the air start control valve, air pressure over-start check valves at the individual cylinders.        comes the spring tension and forces each valve Illus. RI. The air start control valve and the          plunger down into contact with the cam.
distributor are amply lubricated by the splash                Regardless of where the camshaft stopped, of engine oil. The air start check valves re-            one valve will be on the low point of the cam ceive lubricating oil with the air from the dis-        and will therefore be open, as shown in Illus.
tributor.                                                R4. Two other valves, one on each side of the open valve, will be partially open. Each of the NOTE: The distributor on the 6-9 cylinder          pilot air valves, when open, admits air through engines is driven from the control end of          a connecting tube. Illus. RI. to an air        start the upper crankshaft. On 12 cylinder en-          check valve. The air, under pressure, opens gines. the distributor is mounted opposite          the air start check valve. The actual starting the governor drive on the pump mounting            air then rushes into the cylinder from the air plate and is driven from the lower crank-          header. The starting air forces          the pistons shaft.                                            apart and thus causes the crankshafts to rotate.
The air start distributor camshaft rotates Starting Mechanism                                      with the upper crankshaft on 6- 9 cylinder en-gines and with the lower crankshafton 1Z cylinder The air start control valve is mounted near      engines. The can opens and closes the valves the control or governor end of the engine on the        in sequence to the engine firing order. Soon the side opposite the controls. When the control            engine begins to fire. The control shaft lever shaft lever is moved to "START" position, a            should then be moved to "RUN" position. This lever linkage opens the air start control valve.        actuates linkage on the control shaft which AM! START CCONTRC VALNI AS! STARTKEASM  AS START04CX VAtY!              As! STARTOCm1CVAvEs-CO#CT,",4 TO SASTAWO ADV WKSN FVN&
Illus. RL    Air Start System - 6 Cyl. Engines
 
U1XILIARY EQUIPMENT AND      SYSTEMS FAIRBANKS MORSE                                                                                  E3440-1 OPPOSED PISTON ENGINES                                                                                    Aug. 1979 STARTING AIR SYSTEM
                                                -- Stationary Engines The basic starting airsystem is shown in Fig. 1.                    N    = Number of starts desired without The air compressor charges the :air tanks to nearly                              recharging air tanks.
250 psi, storing sufficient .energy for several starts.
On starting, air flows from the tanks to the engine          The number of starts to be expected from a given where it is admitted into the cylinders with required        available tank volume may be calculated by trans-timing to rapidly turn the engine (and ýattached              posedformula:
generator or other driven equipment). Rate of air                              (PH - PL)
N    VTX flow during starting is very high but it is of short                        Vf*X PA' duration (usually 3 or 4 seconds). Reliable starting may be expected at pressures between 250 and 150              Standard FM air tanks are vertically mounted with a psi,                                                          base ring to support the bottom head 6" off the A filter and 250/70 psi regulator is required as a      foundation to allow for drain piping. Sizes are as 70 psi air source for the pneumatic remote shutdown          follows:
system, which is controlled by a solenoid valve in the line. This source also supplies control air for dual                                    Length Over fuel engine fuel/air ratio control and, on the                  FM No. O.D. - In.        Heads - In. Vol. -  Cu. Ft.
turbocharged dual fuel engine, for controlof switch-          16109954        30            84              31.7 back to diesel on overspeed trip.                              16111127        30            96              36 2 A 250/20 psi filter-regulator is required for the        Special tanks of different size or for horizontal turbocharged dual fuel engine as a20 psi source for          mounting can be provided if required.
the pneumatic air receiver temperature control in the air cooler water system.                                  The volume of free air required per start given on If theengine has been ordered with a worm gear          Data Pages Ell02-2 and El102-11 is based on the barring device (hand ratchet device is standard), a          engine being at keep-warm temperature and being larger filter and250/70 psi regulator will be required        directly connected to an average alternator. An as a 70 psi airsource for the portable air barring            initialstart at lower temperature and/or with greater motor which is used with it.                                  connected rotating mass may require as much as If the engine is installed in-an existingplant with    twice that volume of free air.
adequate starting air pressure and tankage~avaitable          Examples (assuming keep-warm systems are or-and with piping essentially- as shown in Fig. 1 so            dered):
water does notget into.,theair lie to the engine, the plant system may be used.                                      1.., A 12-cylinder turbochargedengine is to be in-stalled with a'new starting air system. Ten starts STARTING AIR STORAGE TANKS:                                          are desired without recharging air tanks. How Required storage tank volume may be'calculated by.                  much air tankage is required?
the formula:
Vf = 45cu. ft. (Pg. Et102-11)          N  = 10 VT      PA          x Vf x N (PH  PL)                                                                        x 45 x 10 = 69.7 cu. ft.
VT = 14.7 VT= Required total tank volume, cu. ft.                                (245-1.50)
PA    Atmospheric pressure, PSIA                              Twoair tanks 30" OD x 96' OTHwith a vol-(14.7 nominally)                                        umeof 72..4 cu, ft. would meet the require-PH    Highest pressure for starting, PSIG                      ment.
(245 PSIG)
PL = Lowest pressure for starting, PSIG              2. A 12-cylinder turbocharged engine is to be in-(150 PSiG)                                        stalled in a plant with existing 35.7 cu. ft. air Vi    Volume of free air required per start,              tankage, How many starts may be expected cu. ft, (from Data Page E1102-2 for                without recharging air tanks?
blower scavenged engines or                            N 35.7 x (245-150) = 5 starts 45 x .14.7 E1102- 1 for turbocharged engines)
 
FAIRBANKS MORSE                                      .                                                    E1102-11 OPPOSED PISTON ENGINES                                                                                                Aug. 1979 GENERAL DATA.- (cont.)
                                                    --  Turbocharged Diesel and Dual Fuel Engines Applicable to Continuous Ratings GENERAL DATA Number of Cylinders ..................................                                          6            9          12 Bore and stroke - inches .................                                        ..... 8-1/8x10    8-1/8x10    8-1/8x10 Compression Ratio (Total swept volume) ..................                                      13,8        13:8        13.8 Hot Engine Compression at Rated Speed -
max, variation between cylinders -psi                          .................                50          50          50 Firing Pressure (epprox,) - maximum psi ..............                                          1340        1340        1340 Total Piston Displacement - cu, in.....................                                        6221        9332      12443 Piston Speed - ipm At 720'rpm ........................................                                          1200        1200        1200 At 750 rpm .......................................                                            1250        1250        1250 At 900 rpm .............                ............................                        1500        1500        1500 Firing Order Note: For complete firing orderdata, with engine diagram, refer to page E1222-1.
BLOWER Stationary Engines:
Air Delivery (Turbocharger) - approx. cfm At 720 rpm .......                  ...............................                          5960        8950      11930 A1900 rpm ............................................                                      6930;      10400      13860 Marine Engines:
Air Delivery"(Turbocharger) ;-approx. cfM At 750 rpm .............            .............................                            8210        9320      12430 At 900 rpm ............................                                            .        6530        9800      13070 Scavenging Pressure - approx, psi ...........                                ,......,
At 720 rpm .........................................                                        . 17            17          17 At 760 rpm .....          .................................                                    18          18          18 At 00 rpm          ................ ...........                                                23          23          23 BEARINGS Number of MainBearings (upper andilower crankshaft) as.                                          7          10          13 Main Bearing Size (upper and lower, crankshaft) -'in                                  ... 8x3          8x3        8x3
  ,Number of'Thrust Bearings (upper and'lower crankshaft) ea. .......................                                    1            1          1 Thrust Bearing Size (upper and lower) - in...... ........                                    8x4          8x4        8x4 Crankpin Bearing Size - inn                    ......................... 6-3/4x3.3/4                6-3/4x3-3/4 6-3/4x3-3/4 Piston Pin Bearing Size - in ..........................                                    3x3-3/16    3x3-3/16    3x3-3/16 EXHAUST Exhaust Temperature at individual Cylinder Exhaust Poris at Full Load - Max; F ..................                                    1000        1000        1000 Stationary Engines: Exhaust Gas at Full Load - ibs. per hr.
At 720 rpm ......                ................                    ...........        27360      41080      54760 At 900 rpm .. .....................................                                      31810      47740      83620 Marine Engines:. Exhaust Gas at Full Load - lbs. per hr.
At 750 rpm ........................                                  ... .... .....      28500      42780      57050 At.900 rpm ......................................                                        29970      44980      60000 STARTING AIR (Air Cylinder Start)
Stationary - Diesel & Dual Fuel Cu. Ft. of free air per.start ............................                                    30          35          46 Starting Air to 1/2 the cylinders on 6 & 12 cyl.
engines and to 5 cylinders on the 9 cyl ,engine.
Marine -
Cu. Ft. of free air per start ............................                                    40          45          55 Starting air to all cylinders.
For Tank Sizing See: Marine - Page E3,740 Stationary - PageE3440
 
4<
4                                                                            ~      '~>                      ~
t4 '4,          ~
            ~                                          .4,4' 4
                                                                              ~,
4                                                    '4444 44 s 4                                                                                                                                            L 4~2 y'44;      ~                                                      ~                                                    ~
                                                                                                                                                                                                                                            ~                              44,    *~
44~4~'~}~''4~                '4~
j1'4~4            .44,~T                  444          ~                              44''444~f)4 4,4~4~)
                                                                                        '4'4'44                          ~                          '''4                                      ..                    4~,    444
                                                                                  't
                                                                                                                                                    .4444~ 4444                                        ~'        ~    A                                              ~94.44...,.4.44    444
                                                                                                                      .44
                                                                                                                                                                                  '4"
                                                                                                                                                                                            '~.'.
                                                                                                                                                                                                  .4            '41"4~5~ '~'
44.
                                                                                                                                                            -                                                                                .4
                                                                                                                                                                                                                    ~'4
* 4
                                                                                                                                                                                            .4  .'444'4'                4'-  ~                                      ~~4.~444 4.; 4.4.~44j4*
    $1                                                    '~                                                                                                                                                                                                                      .44~4444<
                                                                                                                                                                                                                    ~                                              4*,                            4Q
                                                                                                        ~,
,4  y    .                3          4 s4*Q~.4      ,.4~          ~        ~                        44.'      44    ~                                                        ,          44'*4                      .. 4..'444~4.4.4.44444~9
                                                                                                                                                                                                                ,.'.              ~                                '4
                                                                                                                                                                                                                                                                                    ~
p6~h) r.(                '4>'4,                        4
                                                                                                                                  / 99
                                                                                                                                    ,      .          .4~    -'''4                                  4,        4,,      4.44
                                                                                                                                                                                                                                          .4'~4~'~4'44''
                                            .4
                                                                                                                                                                                                                                    '4/4444, 4-'
444 4;                                                                    4~'~ 4 '4A~A~                      4.44, ~      '444 4        44'                ~*44~.~                        .                4 4
                                                                                                                                                                                                                ''4''        4'      .g~          "~j,'~~t                      44,4~~        4,> ~      I
                                                                                                                                  / 3 ~'                                                                    4'              ~                                  4444~4                      444;4
                                                                                                                                                                                                                                                                                                      ~>
4      4    4'        '44'~4.~4              44'~~74,4          .4          9'
                                                                                                          /            ~    4      '4      44 4 4~
i'.'                                                          ?                Nf .                "4 t4                II                                                                          ~444,                                                                                                                                  '4~~444                          4    4,,..44444'4~444~4.
: 4.                                                        44~            4.4444444..4,444      "4    ~      '~  1/2 4                                                                4 44,                ,      44,4 144    '4'4'4.4~4/        ~'              *4          4'        ,
44..,.            4~4.'4,,.;44~44,4          ~4~,4'      '. V''~"'          ~.'
4'      .4                            ...
4    .
4'44      44.4                                4.
                          *'                        44444
                                                                                                                                                                                                                            ~
44'44~4~4.44~:'4444.4.
                                                                                                                                                                                                                                          ~                                        4 ~                  .4'
                      '-'.4.        4              '4                                                                                                                                                                                                                      44 44      4    .4.
f(~,,
'4
                                                                                                                                                                                                                      ~
7                ~
4
                                                                                                                                                                          ,4
                                                                                                                                                                              .44 .44        ~          4~'
                                                                                                                                                                                                              ,~
                                                                                                                                                                                                                  .4          4'4    'I          ~4~4424 ~                                      ~
                                              .4'    '~.4444." 4    44
                                                                                                                                    /o6                                                                                      4
:5,2                                                                                                                                                                          '4'4'4~                    4  4 4444'~
                                                                                                                                                          '~                  .
                                                                                                                                                                                                                                ""T'4        ~            4'    4444444~4
                                                                                                                                                                                                                                                                                          .;'4~            '1
                                                                                                                                  '                                                      44              4'4' 4
                      ,ap                                                                                        4                                                            Z                                    '4<444'44              444 44~444,,44                              ~44~'.
                                                                                                                                                                          ~444      j'4'~            44'~4 444f 4      ., 4      '444        '44'1~-;44 44'        44.                                                                    '4'4.>~.:~~L4.~A                                                ~                                '4'
                                                                                                '4"'~                ,                                                        ~4~4'.4.4
                                                              .44.          , ,'~
                          ~>'~~'~'"4      '44~,                4'4            i> 4 ~ 4
                                                                                                  ~4~4'
                                                                                                                                        ~-
                                                                                                                                          '7              ~.'
                                                                                                                                                                                      '44444 4'          44
              .4                                                        44 v'''                .4,,44~444444&sect;44              ~'4~~144~'
                                                                                                                            ~
i/      ~                                              '444,44      .44      4444          ~,
                                            ~ A/or Sra/?r                                                                      '4  ~~ve~wf~~'                                                        (
4      44~      :o"~.4'4.~~~'44".                                          .44 44/                                                                                                                                                                  j4 4 444 44~44.4'4'4~444~4
                                                                                                                                                                                                                                                      '4.4    .4~ 44 444444
: 4.                                1''4
                                                                                  '~"4"          ~
                                                                                                            '.4  ~'''
                                                                                                                  /,A              ~
* Sr  ~                          4          44        '244~' s                  ~                        #r.4\.;~,'44 4 > ~
444.            4.4}}

Latest revision as of 17:19, 20 March 2020

Calculation RNP-M/MECH-1815, Revision 1, Evaluation of Emergency Diesel Generator Starting Capability at 150 PSIG
ML12068A133
Person / Time
Site: Robinson Duke Energy icon.png
Issue date: 02/23/2012
From:
Progress Energy Carolinas
To:
Office of Nuclear Reactor Regulation
References
RNP-RA/12-0010, TAC ME5408 RNP-M/MECH-1815, Rev 1
Download: ML12068A133 (23)


Text

Attachment II to Serial: RNP-RA/12-0010 18 Pages (Including Cover Page)

H. B. ROBINSON STEAM ELECTRIC PLANT, UNIT NO. 2 Calculation RNP-M/MECH- 1815, Revision 1

SYSTEM# 5095 CALC. SUB-TYPE MC PRIORITY CODE NA QUALITY CLASS A NUCLEAR GENERATION GROUP RNP-M/MECH-1815 (Calculation #)

EVALUATION OF EMERGENCY DIESEL GENERATOR STARTING CAPABILITY AT 150 PSIG (Title including structures, systems, components)

F-DBNP UNIT

-- CR3 D HNP NZRNP EZINCP W((]ALL APPROVAL M Electronically Approved REV [PREPARED BY REVIEWED BY SUPERVISOR Signature Signature Signature Signed Electronically Signed Electronically Signed Electronically 0 Name Name Name Date Date Date Signature Signature Signature Signed Electronically Signed Electronically Signed Electronically Name Name Name Date Date Date (For Vendor Calculations)

Vendor N/A Vendor Document No. N/A Owner's Review By N/A Date N/A

CALCULATION NO. RNP-M/MECH-1815 PAGE NO. i REVISION 1 LIST OF EFFECTIVE PAGES PAGE REV PAGE REV ATTACHMENTS ii 1 Number iii 1 Number Rev of Pages 1

1 0 2 0 3 0 1 1 4 4 0 2 0 1 5 0 3 1 1 6 0 7 0 AMENDMENTS Letter Rev Number of Pages None

CALCULATION NO. RNP-M/MECH-1815 PAGE NO. ii REVISION 1 TABLE OF CONTENTS List of Effective Pages ..................................................................................................... i Table of Contents ...................................................................................................... ii Revision Summary ......................................................................................................... iii Pu rp os e .......................................................................................................................... 1 R e fe re n c e s .................................................................................................................... 1 Body of Calculation ........................................................................................................ 1 Conclusions ............................................................................................................ 6 Document Indexing Table ........................................................................................... 7 Attachments ...................................................................................................... (4 Pages) ....................................................................................................... (1 Page) ....................................................................................................... (1 Page)

Amendments N/A

CALCULATION NO. RNP-M/MECH-1815 PAGE NO. iii REVISION 1 Revision Summary (list ECs incorporated)

Rev. #

0 Initial Revision 1 Corrected Reference 14 to Reference 11 on Attachment 1 Page 1 of 4.

Added Attachment 3 - Design Verification Form for Rev. 1.

CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 1 REVISION 0 PURPOSE Reference 1 provides the following request:

"Provide an analysis or calculation to justify the Fairbanks Morse recommendation that a minimum air pressure of 150 psig in the air start receiver will ensure a reliable start for each Robinson EDG."

This request was in response to information provided in Reference 2.

REFERENCES

1. NRC Letter RRA-12-0005, H.B. ROBINSON STEAM ELECTRIC PLANT, UNIT NO.2 -REQUEST FOR ADDITIONAL INFORMATION RELATED TO REQUEST FOR TECHNICAL SPECIFICATIONS CHANGES TO SECTION 3.8.3, DIESEL FUEL OIL AND STARTING AIR, AND SECTION 3.8.5, DC SOURCES- SHUTDOWN (TAC NO. ME5408), January 24, 2012.
2. Progress Energy Letter, REQUEST FOR TECHNICAL SPECIFICATIONS CHANGES TO SECTION 3.8.3, DIESEL FUEL OIL AND STARTING AIR, AND SECTION 3.8.5, DC SOURCES -

SHUTDOWN (ADAMS Accession No. ML110310012) January 20, 2011.

3. Vendor Technical Manual VTMA 729-063-16, FAIRBANKS MORSE POWER SYSTEMS PRODUCTS, Rev. 76.
4. Diesel Engine Engineering, Thermodynamics, Design, and Control, Andrei Makartchouk, 2002 Marcel Dekker.
5. RNP UFSAR Section 8.3.1, AC Power Systems.
6. Design Basis Document Emergency Diesel Generator System Document No.

DBD/R87038/SD05, Rev. 10.

7. RNP Calculation 87-17, Rev. 0, DG AIR START SYSTEM.
8. Introduction to Chemical Engineering Thermodynamics, Smith and Van Ness, McGraw Hill, Third Edition, 1975.
9. Fairbanks Morse Publication E3440-1, August 1979.
10. Fairbanks Morse Publication El102-1, August 1979.
11. Pre-Operational Tests of Emergency Diesel Generator Robinson File No. PO-35.
12. Matheson Gas Data Book, seventh edition, 2001.
13. Mark's Standard Handbook for Mechanical Engineer's, Eighth Edition.
14. RNP Technical Specifications 3.8.1, AC Sources - Operating.

BODY OF CALCULATION Diesel Generator Set Onsite emergency power is available from two emergency diesel generator sets. Each diesel generator set consists of a Fairbanks-Morse Model 38TD8-1/8 engine coupled to a Fairbanks-Morse generator.

The emergency diesels are automatically started by injecting compressed air into the cylinders. Each engine has compressed air storage sufficient for 8 cold diesel engine starts. However, the diesel engine will only consume enough air for one of these eight cold starts upon receiving an automatic start signal.

This is due to the engine control system which is designed to stop cranking within 10 sec. To ensure rapid start, each unit is equipped with heaters and pumps for circulation of lube oil and jacket water when the unit is not running (Ref. 5).

CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 2 REVISION 0 Lube Oil Subsystem A motor-driven standby circulating pump circulates the oil through the lubricating oil heater and back to the engine sump to maintain the lube oil warm (130F minimum) to support rapid starting and loading. Lube oil used in the EDG lube oil Subsystem is controlled as a "Q-List consumable" or equivalent item. This guarantees that lube oil quality will not interfere with the safety-related function of the EDGS (Ref. 3 and 6).

Jacket Water Coolinq Subsystem This system, like the Lube Oil system, is used to maintain the diesel generators in a warm standby status. Jacket water is heated as needed (11 OF minimum) to facilitate fast engine starting. A motor driven standby pump circulates flow through an 18 KW heater (Ref. 3 and 6).

Diesel Starting (Ref. 4)

To start a diesel engine it is necessary to rotate its crankshaft at a speed such that the fuel oil that is injected into the cylinders during start mode can self-ignite. The forces of resistance that appear inside a diesel engine when the starting air rotates the crankshaft during startup are:

1. The forces of friction of reciprocating and rotating parts.
2. The forces of resistance to air and gas flow in the intake and exhaust systems.
3. The force of resistance of the auxiliary mechanisms mounted on the engine.

Prior to the engine starting the force of cylinder charge compression is approximately equal to the force of cylinder charge expansion. Therefore, the work of cylinder charge compression does not contribute to the work of the resistant forces. Additionally, the starting system must impart sufficient kinetic energy to the engine rotating mass to achieve engine start.

Vendor Recommendation Fairbanks Morse (Ref. 9) states that reliable engine starting may be expected at starting air receiver pressures between 250 psig and 150 psig. The RNP EDG Fairbanks Morse Vendor manual states that air for the starting system is required at between 150 and 250 psig (Ref. 3, Pg. 446 of 1036). Fairbanks Morse (Ref. 10) states that the starting air receiver sizing basis is based on 45.0 ft3 of free air per start.

CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 3 REVISION 0 Historical Data Reference 11 documents a special test run on the "B"EDG to evaluate a proposed engine lockout after a 20 second overcrank with a failure to start. Inthis test the ability to start is determined after a simulated failure to auto start of the EDG. The data below is the recorded data from Ref. 11; the data is further analyzed in Attachment 1.

Start # Crank Time Start Air Pressure End Air Pressure (sec) (psig) (psig)

Did Not Start (1) 20 245 120 1 (2) 2 120 110 Notes:

1. Simulated failure to start. Fuel shut off for the 20 second over-crank.
2. Successful start.

Evaluation of Historical Data versus Vendor Recommendation The historical data tabulated above cannot be used directly to justify reliable starting of the Robinson EDG's at a minimum air pressure of 150 psig in the air start receiver. This is because the actual starting of the "B"EDG in the above test run occurred after a 20 second overcrank in which the EDG was not allowed to start. The differences between starting the EDG with a minimum air pressure of 150 psig in the air start receiver and after a 20 second overcrank in which the EDG was not allowed to start, will be examined.

The differences between starting the EDG with no prior start and the successful start after a 20 second overcrank are mainly due to differences in the static and dynamic coefficients of friction and differences in initial temperature of the EDG. Reference 13 discusses static and dynamic coefficients of friction and states that the coefficients of sliding (dynamic) friction are smaller than the coefficients of static friction.

Comparing starting the EDG with a minimum air pressure of 150 psig in the air start receiver and starting the EDG after a 20 second overcrank, it should be noted that both starting regimes have a static component and a dynamic component because both starts occur from rest.

There is expected to be little difference in the dynamic coefficients of friction between the two starts because the engine was not fired during the 20 second overcrank period and very little engine heatup would have occurred. Therefore the main difference between the 150 psig start under consideration and the start after the 20 second overcrank, lies in the reduction of the static coefficient of friction caused by the 20 second overcrank. The effect of this difference is minimized because each EDG is operated monthly for at least 60 minutes per RNP technical Specification Surveillance Requirements (Ref. 14).

Ability to Do Work To start the EDG, the starting air system must have the ability to do work. This work is divided between the work required to overcome the forces resisting the rotation of the engine and the kinetic energy imparted to the rotational mass.

Examining the historical data, the amount of work required to start the EDG can be determined, this is provided in Attachment 1.

CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 4 REVISION 0 Calculate Startinq Air Receiver Stored Energy (a150 psig Fairbanks Morse recommends that 45.0 ft3 of free air (Ref. 10) be available to start the engine. The amount of available energy 45.0 ft3 of free air discharged from an initial air receiver pressure of 150 psig will be determined.

Given an initial receiver air pressure of 150 psig, determine the final receiver air pressure after a discharge of 45.0 ft3 :

PIV 1 = P2 V2 P1 = air start receiver initial pressure (psia)

P1 = 150 psig P1 = (14.7 + 150) (psia)

P1 = 164.7 (psia)

Vl = 34.0 ft3 P2 = air start receiver final pressure (psia)

P2 = 0.0 psig P2 = (14.7 + 0.0) (psia)

P2 =14.7 (psia)

Determine V2:

V2 = (PRV)I 1 P2 V2 = [(164.7 psia)(34.0ft3)]/(14.7 psia)

V2 = 380.94 ft3 A discharge of 45.0 ft3 of free air would yield the following volume of free air left in the air receiver:

V2 = 380.94 ft3 - 45.0 ft3 V2 = 335.94 ft3

CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 5 REVISION 0 This is equivalent to the following pressure in the air receiver:

P3 = (P2V2)N3 P3 = [(14.7 psia)( 335.94 ft3)]/(34.0 ft3)

P3 = 145.25 psia or P3 = 130.55 psig Thus after a 45.0 ft3 discharge the expected air receiver pressure would be greater than 130.0 psig.

Calculate the amount of stored energy represented by the above discharge of 45.0 ft3 of free air stored in the air receiver:

Because the engine starts quickly and there is little time for heat transfer, it is reasonable to use an adiabatic expansion from the air start receiver initial pressure to the final pressure, to calculate the amount of energy this represents.

From Ref. 8, Page 71:

([-i P1 = air start receiver initial pressure (psia)

P1 = 150 psig P1 = (14.7 + 150) (psia)

P1 = 164.7 (psia)

P2 = air start receiver final pressure (psia)

P2 =145.25 (psia)

V1 = 34.0 ft3 (Ref. 7, Page 5) y = Ratio of Heat capacities Cp/Cv y = 1.33 (Ref. 12, Page 8)

(0.33)

(164.7 psia)(34.0 ft3)

(1 6. p*

~(0.33)

(145.25 1]ii2/t2 in2lft2) psia) 1.33-(144

CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 6 REVISION 0 W = 7.50 x 104 ft Ibf From Attachment 1, Start #1 consumed the following amount of air receiver energy:

W = 3.80 x 104 ft lbf Calculate ratio between work available at 150 psig and work expended for actual start at 120 psig:

Ratio 7.50x10 4 ftlbf/3.80xl04ftlbf Ratio = 1.97 CONCLUSION By examining the historical startup data, the amount of stored energy in the air receiver expended to start the diesel engine at a 120 psig initial receiver air pressure can be determined. As demonstrated above, the amount of stored energy in the air receiver that is available at 150 psig to start the diesel engine is approximately twice the value expended at 120 psig to actually start the diesel during the historical test.

With all initial parameters the same, there would be expected to be differences in the amount of energy required to start a diesel engine at 150 psig with no prior starts and that required to start a diesel engine following a 20 second overcrank. These differences lie mainly in the breakaway frictional forces required to start the cylinders and crankshaft moving and the frictional forces from heat up of the engine represented by the 20 second overcrank.

The difference in breakaway frictional forces present after the overcrank and the breakaway frictional forces present with no prior cranking is considered to have a relatively small impact to engine starting forces. This is primarily due to the benefit of the engine keep warm system and monthly operation of the diesel in minimizing the difference in breakaway friction and to the fact that the engine was not started during the overcrank reducing the effect of engine heatup.

Given that the amount of stored energy in the air receiver that is available at 150 psig to start the diesel engine is approximately twice the value expended starting the engine from a lower air pressure of 120 psig during the historical startup, and that the differences in work required to start the engine are not expected to be 100 % more between the two examined starting conditions, there is sufficient air at a minimum air pressure of 150 psig in the air start receiver to ensure a reliable start for each Robinson EDG.

CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 7 REVISION 0 Document ID Number Function Relationship to Calc. Action Type (e.g., Calc No., (i.e. IN for (e.g. design input, (specify if Doc.

(e.g. CALC, Dwg. No., design inputs or assumption basis, Services or DWG, TAG, Equip. Tag No., references; OUT reference, document Config. Mgt. to PROCEDURE Procedure No., for affected affected by results) Add, Deleted or

,SOFTWARE) Software name documents) Retain) (e.g., CM and version) Add, DS Delete)

VTMA 729-063-16 IN REFERENCE CM ADD DRAW 5379-01161 IN REFERENCE CM ADD CALC 87-17 IN REFERENCE CM ADD

4. 4 t 4. 1 4

1- 1

+ 4 t *1~ 1 4 4

  • 1* 1

.1- 4

+

I I + 4 I I + I (For the purpose of creating cross references to documents in the Document Management System and equipment in the Equipment Data Base)

Attachment 1 CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 1 of 4 REVISION 1 Analysis of Historical Data Reference 11 discusses a test run on the "B"EDG to determine the ability to start after a simulated failure to auto start the EDG. During the simulated failure to auto start the engine was cranked for 20 seconds. The data in the first four columns is the recorded data from Ref. 11; the fifth and sixth columns are calculated in this

Attachment:

20 Second Overcrank + 1 Engine Start Start # Crank Start Air End Air Volume of Free Air Receiver Time Pressure Pressure Air Consumed Expended (sec) (psig) (psig) (ft3) Energy Did Not Start (1) 20 245 120 n/a n/a 1(2) 2 120 110 23.13 38024.84 Notes:

1. Simulated failure to start. Fuel shut off for the 20 second over-crank.
2. Successful start.

Calculate Volume of Free Air Consumed Calculate Volume of Free Air Consumed used in the fifth column of the Table above:

Start #1 Since the beginning and ending air temperatures will be approximately equal, we can use:

P1 V1 = P2 V 2

Attachment 1 CALCULATION NO. RNP-M/MECH-1 815 PAGE NO. 2 of 4 REVISION 1 Volume of Free Air Consumed = Volume of Free Air @ Higher Pressure

- Volume of Free Air @ Lower Pressure Volume of Free Air

@ Higher Pressure = (PHigher VHigher)/14.7 psia Volume of Free Air

@ Higher Pressure = [(120 + 14.7)psia 34 ft3]/14.7 psia Volume of Free Air

@ Higher Pressure = 311.55 ft3 Volume of Free Air

@ Lower Pressure = (P Lower V Lower)/14.7 psia Volume of Free Air

@ Lower Pressure = [(110 + 14.7)psia 34 ft3]/14.7 psia Volume of Free Air

@ Lower Pressure = 288.42 ft3 Volume of Free Air Consumed = 378.63 ft3 - 364.75.3 ft3 Volume of Free Air Consumed = 23.13 ft3

Attachment 1 CALCULATION NO. RNP-M/MECH-1815 PAGE NO. 3 of 4 REVISION 1 Calculate Startinq Air Receiver Stored Energy Expended Because the engine starts quickly and there is little time for heat transfer, it is reasonable to use an adiabatic expansion from the air start receiver initial pressure to the final pressure for Start #1, to calculate amount of energy this represents.

From Ref. 8, Page 71:

P1 air start receiver initial pressure (psia)

P1 =120 psig P1 (14.7 + 120) (psia)

P1 134.7 (psia)

P2 air start receiver final pressure (psia)

P2 =110 psig P2 (14.7 + 110) (psia)

P2 =124.7 (psia)

V1 = 34.0 ft3 (Ref. 7, Page 5) y = Ratio of Heat capacities Cp/Cv Y z 1.33 (Ref. 12, Page 8)

Attachment 1 CALCULATION NO. RNP-M/MECH-1 815 PAGE NO. 4 of 4 REVISION 1 (0.33)

W (134.7 (0.33) " ft3)

-- psia)(34.0 (134.7 psia)) 133

(_124.7 (144 1n2/ft2)

"I n2f2 W = 3.80 x 104 ft Ibf

RNP-M/MECH-1815 Attachment 2

p. 1 Rev. 0 ATTACHMENT 2 Sheet 1 of 1 Record of Lead Review F *1 Document RNP-M/MECH-1815 Revision 0 The signature below of the Lead Reviewer records that:

- the review indicated below has been performed by the Lead Reviewer;

- appropriate reviews were performed and errors/deficiencies (for all reviews performed) have been resolved and these records are included in the design package;

- the review was performed in accordance with EGR-NGGC-0003.

Design Verification Review r- Engine ering Review -" Owner's Review E Design Review

[- Alternate Calculation F-- Qualification Testing I Special Engineering Review F-1 YES F-1 N/A Other Records are attached.

Don Phillips (signed electronically) mechanical 2/14/12 Lead Reviewer (print/sign) Discipline Date Item Deficiency Resolution No.

1 The best argument that the engine will start is a test. Revised to include 20 second Think a much better argument can be made using the 20 overcrank test.

second no start cranking test results. There are 2 tests that show the engine will start cold with the starting air pressure less than that being evaluated. The only difference between the test and the condition of interest is the prior cranking without start. That should only make a difference in the static friction that needs to be overcome. Static friction does increase over time. Based on references, the difference between oiled steel static and dynamic friction is only the difference between 0.10 and 0.08. Considering the friction load is a small part of the overall load in cranking the engine, the change is small, and the engine was in fact stopped for a period of time before cranking, the affect on the engine would be very small.

2 The historical data section should include the 20 second Revised to include 20 second no start tests. overcrank test.

FORM EGR-NGGC-0003-2-10 This form is a QA Record when completed and included with a completed design package.

Owner's Reviews may be processed as stand alone QA records when Owner's Review is completed.

EGR-NGGC-0003 Rev. 11

RNP-M/MECH-1815 Attachment 3 P. 1 Rev. 1 ATTACHMENT 2 Sheet 1 of 1 Record of Lead, Review Document RNP-M/MECH-1815 Revision I The signature below of the Lead Reviewer records that:

- the review indicated below has been performed by the Lead Reviewer;

- appropriate reviews were performed and errors/deficiencies (for all reviews performed) have been resolved and these records are included in the design package;

- the review was performed in accordance with EGR-NGGC-0003.

Design Verification Review II Engineiering Review I-] Owner's Review E Design Review F-D Alternate Calculation F-- Qualification Testing

[-- Special Engineering Review I- YES F-] N/A Other Records are attached.

Dave Markle (sianed electronically) Mechanical 2/21/12 Lead Reviewer (print/sign) Discipline Date Item Deficiency Resolution No.

1 None NA FORM EGR-NGGC-0003-2-10 This form is a QA Record when completed and included with a completed design package.

Owner's Reviews may be processed as stand alone QA records when Owner's Review is completed.

EGR-NGGC-0003 Rev. 11

Attachment III to Serial: RNP-RA/12-0010 5 Pages (Including Cover Page)

H. B. ROBINSON STEAM ELECTRIC PLANT, UNIT NO. 2 References for Calculation RNP-M/MECH- 1815, Revision 1 Page 1 Air Start System Information from Vendor Manual 729-063-16 Page 2 Vendor Document E3440-1 Page 3 Vendor Document E 1102-11 Page 4 Historical Startup Test Data

From Vendor Manual 729-063-16 3800TD8-118 - Page Ri Fairbanks Morse Opposed Piston Engines R. AIR START SYSTEM General This is explained and illustrated Ln Sec. J.

With the air start control valve open, com-The air starting system consists of the pressed air passes into the header. Illus. RI, starting air piping and the engine starting mech- which leads to the individual cylinder air start anism. check valves. Air also passes into the pilot air Air for the starting system is required at supplypipe connected to the air startdistributor.

between 150 and 250 psi (250 psi preferred) at The air start distributor includes one pilot the engine and is stored In suitable air tanks. air valve for each air start check valve. The Engine starting is accomplished by the ac- valves are arranged radially and in cylinder tion of compressed air on the pistons In their firing order around the air start distributor proper firing order. camshaft, Illus. RZ. A spring holds each valve The engine starting mechanism includes normally out of contact with the cam. as shown the air start control valve, air start distributor. in Illus. R3. Air enters the distributor from the air header, the pilot air tubing and the air the air start control valve, air pressure over-start check valves at the individual cylinders. comes the spring tension and forces each valve Illus. RI. The air start control valve and the plunger down into contact with the cam.

distributor are amply lubricated by the splash Regardless of where the camshaft stopped, of engine oil. The air start check valves re- one valve will be on the low point of the cam ceive lubricating oil with the air from the dis- and will therefore be open, as shown in Illus.

tributor. R4. Two other valves, one on each side of the open valve, will be partially open. Each of the NOTE: The distributor on the 6-9 cylinder pilot air valves, when open, admits air through engines is driven from the control end of a connecting tube. Illus. RI. to an air start the upper crankshaft. On 12 cylinder en- check valve. The air, under pressure, opens gines. the distributor is mounted opposite the air start check valve. The actual starting the governor drive on the pump mounting air then rushes into the cylinder from the air plate and is driven from the lower crank- header. The starting air forces the pistons shaft. apart and thus causes the crankshafts to rotate.

The air start distributor camshaft rotates Starting Mechanism with the upper crankshaft on 6- 9 cylinder en-gines and with the lower crankshafton 1Z cylinder The air start control valve is mounted near engines. The can opens and closes the valves the control or governor end of the engine on the in sequence to the engine firing order. Soon the side opposite the controls. When the control engine begins to fire. The control shaft lever shaft lever is moved to "START" position, a should then be moved to "RUN" position. This lever linkage opens the air start control valve. actuates linkage on the control shaft which AM! START CCONTRC VALNI AS! STARTKEASM AS START04CX VAtY! As! STARTOCm1CVAvEs-CO#CT,",4 TO SASTAWO ADV WKSN FVN&

Illus. RL Air Start System - 6 Cyl. Engines

U1XILIARY EQUIPMENT AND SYSTEMS FAIRBANKS MORSE E3440-1 OPPOSED PISTON ENGINES Aug. 1979 STARTING AIR SYSTEM

-- Stationary Engines The basic starting airsystem is shown in Fig. 1. N = Number of starts desired without The air compressor charges the :air tanks to nearly recharging air tanks.

250 psi, storing sufficient .energy for several starts.

On starting, air flows from the tanks to the engine The number of starts to be expected from a given where it is admitted into the cylinders with required available tank volume may be calculated by trans-timing to rapidly turn the engine (and ýattached posedformula:

generator or other driven equipment). Rate of air (PH - PL)

N VTX flow during starting is very high but it is of short Vf*X PA' duration (usually 3 or 4 seconds). Reliable starting may be expected at pressures between 250 and 150 Standard FM air tanks are vertically mounted with a psi, base ring to support the bottom head 6" off the A filter and 250/70 psi regulator is required as a foundation to allow for drain piping. Sizes are as 70 psi air source for the pneumatic remote shutdown follows:

system, which is controlled by a solenoid valve in the line. This source also supplies control air for dual Length Over fuel engine fuel/air ratio control and, on the FM No. O.D. - In. Heads - In. Vol. - Cu. Ft.

turbocharged dual fuel engine, for controlof switch- 16109954 30 84 31.7 back to diesel on overspeed trip. 16111127 30 96 36 2 A 250/20 psi filter-regulator is required for the Special tanks of different size or for horizontal turbocharged dual fuel engine as a20 psi source for mounting can be provided if required.

the pneumatic air receiver temperature control in the air cooler water system. The volume of free air required per start given on If theengine has been ordered with a worm gear Data Pages Ell02-2 and El102-11 is based on the barring device (hand ratchet device is standard), a engine being at keep-warm temperature and being larger filter and250/70 psi regulator will be required directly connected to an average alternator. An as a 70 psi airsource for the portable air barring initialstart at lower temperature and/or with greater motor which is used with it. connected rotating mass may require as much as If the engine is installed in-an existingplant with twice that volume of free air.

adequate starting air pressure and tankage~avaitable Examples (assuming keep-warm systems are or-and with piping essentially- as shown in Fig. 1 so dered):

water does notget into.,theair lie to the engine, the plant system may be used. 1.., A 12-cylinder turbochargedengine is to be in-stalled with a'new starting air system. Ten starts STARTING AIR STORAGE TANKS: are desired without recharging air tanks. How Required storage tank volume may be'calculated by. much air tankage is required?

the formula:

Vf = 45cu. ft. (Pg. Et102-11) N = 10 VT PA x Vf x N (PH PL) x 45 x 10 = 69.7 cu. ft.

VT = 14.7 VT= Required total tank volume, cu. ft. (245-1.50)

PA Atmospheric pressure, PSIA Twoair tanks 30" OD x 96' OTHwith a vol-(14.7 nominally) umeof 72..4 cu, ft. would meet the require-PH Highest pressure for starting, PSIG ment.

(245 PSIG)

PL = Lowest pressure for starting, PSIG 2. A 12-cylinder turbocharged engine is to be in-(150 PSiG) stalled in a plant with existing 35.7 cu. ft. air Vi Volume of free air required per start, tankage, How many starts may be expected cu. ft, (from Data Page E1102-2 for without recharging air tanks?

blower scavenged engines or N 35.7 x (245-150) = 5 starts 45 x .14.7 E1102- 1 for turbocharged engines)

FAIRBANKS MORSE . E1102-11 OPPOSED PISTON ENGINES Aug. 1979 GENERAL DATA.- (cont.)

-- Turbocharged Diesel and Dual Fuel Engines Applicable to Continuous Ratings GENERAL DATA Number of Cylinders .................................. 6 9 12 Bore and stroke - inches ................. ..... 8-1/8x10 8-1/8x10 8-1/8x10 Compression Ratio (Total swept volume) .................. 13,8 13:8 13.8 Hot Engine Compression at Rated Speed -

max, variation between cylinders -psi ................. 50 50 50 Firing Pressure (epprox,) - maximum psi .............. 1340 1340 1340 Total Piston Displacement - cu, in..................... 6221 9332 12443 Piston Speed - ipm At 720'rpm ........................................ 1200 1200 1200 At 750 rpm ....................................... 1250 1250 1250 At 900 rpm ............. ............................ 1500 1500 1500 Firing Order Note: For complete firing orderdata, with engine diagram, refer to page E1222-1.

BLOWER Stationary Engines:

Air Delivery (Turbocharger) - approx. cfm At 720 rpm ....... ............................... 5960 8950 11930 A1900 rpm ............................................ 6930; 10400 13860 Marine Engines:

Air Delivery"(Turbocharger) ;-approx. cfM At 750 rpm ............. ............................. 8210 9320 12430 At 900 rpm ............................ . 6530 9800 13070 Scavenging Pressure - approx, psi ........... ,......,

At 720 rpm ......................................... . 17 17 17 At 760 rpm ..... ................................. 18 18 18 At 00 rpm ................ ........... 23 23 23 BEARINGS Number of MainBearings (upper andilower crankshaft) as. 7 10 13 Main Bearing Size (upper and lower, crankshaft) -'in ... 8x3 8x3 8x3

,Number of'Thrust Bearings (upper and'lower crankshaft) ea. ....................... 1 1 1 Thrust Bearing Size (upper and lower) - in...... ........ 8x4 8x4 8x4 Crankpin Bearing Size - inn ......................... 6-3/4x3.3/4 6-3/4x3-3/4 6-3/4x3-3/4 Piston Pin Bearing Size - in .......................... 3x3-3/16 3x3-3/16 3x3-3/16 EXHAUST Exhaust Temperature at individual Cylinder Exhaust Poris at Full Load - Max; F .................. 1000 1000 1000 Stationary Engines: Exhaust Gas at Full Load - ibs. per hr.

At 720 rpm ...... ................ ........... 27360 41080 54760 At 900 rpm .. ..................................... 31810 47740 83620 Marine Engines:. Exhaust Gas at Full Load - lbs. per hr.

At 750 rpm ........................ ... .... ..... 28500 42780 57050 At.900 rpm ...................................... 29970 44980 60000 STARTING AIR (Air Cylinder Start)

Stationary - Diesel & Dual Fuel Cu. Ft. of free air per.start ............................ 30 35 46 Starting Air to 1/2 the cylinders on 6 & 12 cyl.

engines and to 5 cylinders on the 9 cyl ,engine.

Marine -

Cu. Ft. of free air per start ............................ 40 45 55 Starting air to all cylinders.

For Tank Sizing See: Marine - Page E3,740 Stationary - PageE3440

4<

4 ~ '~> ~

t4 '4, ~

~ .4,4' 4

~,

4 '4444 44 s 4 L 4~2 y'44; ~ ~ ~

~ 44, *~

44~4~'~}~4~ '4~

j1'4~4 .44,~T 444 ~ 44444~f)4 4,4~4~)

'4'4'44 ~ 4 .. 4~, 444

't

.4444~ 4444 ~' ~ A ~94.44...,.4.44 444

.44

'4"

'~.'.

.4 '41"4~5~ '~'

44.

- .4

~'4

  • 4

.4 .'444'4' 4'- ~ ~~4.~444 4.; 4.4.~44j4*

$1 '~ .44~4444<

~ 4*, 4Q

~,

,4 y . 3 4 s4*Q~.4 ,.4~ ~ ~ 44.' 44 ~ , 44'*4 .. 4..'444~4.4.4.44444~9

,.'. ~ '4

~

p6~h) r.( '4>'4, 4

/ 99

, . .4~ -4 4, 4,, 4.44

.4'~4~'~4'44

.4

'4/4444, 4-'

444 4; 4~'~ 4 '4A~A~ 4.44, ~ '444 4 44' ~*44~.~ . 4 4

4 4' .g~ "~j,'~~t 44,4~~ 4,> ~ I

/ 3 ~' 4' ~ 4444~4 444;4

~>

4 4 4' '44'~4.~4 44'~~74,4 .4 9'

/ ~ 4 '4 44 4 4~

i'.'  ? Nf . "4 t4 II ~444, '4~~444 4 4,,..44444'4~444~4.

4. 44~ 4.4444444..4,444 "4 ~ '~ 1/2 4 4 44, , 44,4 144 '4'4'4.4~4/ ~' *4 4' ,

44..,. 4~4.'4,,.;44~44,4 ~4~,4' '. V~"' ~.'

4' .4 ...

4 .

4'44 44.4 4.

  • ' 44444

~

44'44~4~4.44~:'4444.4.

~ 4 ~ .4'

'-'.4. 4 '4 44 44 4 .4.

f(~,,

'4

~

7 ~

4

,4

.44 .44 ~ 4~'

,~

.4 4'4 'I ~4~4424 ~ ~

.4' '~.4444." 4 44

/o6 4

5,2 '4'4'4~ 4 4 4444'~

'~ .

""T'4 ~ 4' 4444444~4

.;'4~ '1

' 44 4'4' 4

,ap 4 Z '4<444'44 444 44~444,,44 ~44~'.

~444 j'4'~ 44'~4 444f 4 ., 4 '444 '44'1~-;44 44' 44. '4'4.>~.:~~L4.~A ~ '4'

'4"'~ , ~4~4'.4.4

.44. , ,'~

~>'~~'~'"4 '44~, 4'4 i> 4 ~ 4

~4~4'

~-

'7 ~.'

'44444 4' 44

.4 44 v .4,,44~444444§44 ~'4~~144~'

~

i/ ~ '444,44 .44 4444 ~,

~ A/or Sra/?r '4 ~~ve~wf~~' (

4 44~ :o"~.4'4.~~~'44". .44 44/ j4 4 444 44~44.4'4'4~444~4

'4.4 .4~ 44 444444

4. 14

'~"4" ~

'.4 ~

/,A ~

  • Sr ~ 4 44 '244~' s ~ #r.4\.;~,'44 4 > ~

444. 4.4