ML092330231: Difference between revisions
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
||
Line 2: | Line 2: | ||
| number = ML092330231 | | number = ML092330231 | ||
| issue date = 08/10/2009 | | issue date = 08/10/2009 | ||
| title = Rev. 0 to 0900530.306, Pilgrim, ASME Code, Section | | title = Rev. 0 to 0900530.306, Pilgrim, ASME Code, Section III Evaluation of N9A Jet Pump Instrument Nozzle with Weld Overlay Repair. | ||
| author name = | | author name = | ||
| author affiliation = Structural Integrity Associates, Inc | | author affiliation = Structural Integrity Associates, Inc | ||
Line 76: | Line 76: | ||
25 File No.: 0900530.306 Revision: | 25 File No.: 0900530.306 Revision: | ||
0 Page 3 of 25 F0306-01 Structural Integrity Associates, Inc.1.0 OBJECTIVE The objective of this calculation is to show that the ASME Code, Section III [1] design requirements are satisfied for a weld overlay repair of the jet pump instrument nozzle, N9A, at Pilgrim Nuclear PowerStation (PNPS). | 0 Page 3 of 25 F0306-01 Structural Integrity Associates, Inc.1.0 OBJECTIVE The objective of this calculation is to show that the ASME Code, Section III [1] design requirements are satisfied for a weld overlay repair of the jet pump instrument nozzle, N9A, at Pilgrim Nuclear PowerStation (PNPS). | ||
An as-built weld overlay repair is provided in Reference | An as-built weld overlay repair is provided in Reference | ||
[6].A finite element model has been built [2] to support the ASME Code evaluations. | [6].A finite element model has been built [2] to support the ASME Code evaluations. | ||
These analyses, together with the design requirements of the ASME Code | These analyses, together with the design requirements of the ASME Code | ||
[1], will be used to determine the adequacy ofthe repairs. | [1], will be used to determine the adequacy ofthe repairs. | ||
2.0 DESIGN CRITERIA In accordance with the requirements of Code Case N-504-3, it is necessary to demonstrate that theprimary stress requirements of the design Code continue to be met following repair. | |||
For the jet pump instrument nozzle, the requirements of the ASME Code, Section III for Class I components apply. Assuch, the rules of Article NB-3000 of Section III of the ASME Code, 2001 Edition with Addenda through 2003 [1], are used, and results will be reconciled with the original stress report.The weld overlay repair region affects the instrument nozzle and safe end. As a result, the instrument nozzle and safe end of the repair will be evaluated using the rules of Subarticle NB-3200.3.0 BOUNDARY CONDITIONS, STRESS PATH DEFINITIONS, AND UNIT PRESSURE 3.1 Boundary Conditions The jet pump instrument nozzle finite element model was built in Reference | |||
CRITERIA In accordance with the requirements of Code Case N-504-3, it is necessary to demonstrate that theprimary stress requirements of the design Code continue to be met following repair. | |||
For the jet pump instrument nozzle, the requirements of the ASME Code, Section III for Class I components apply. Assuch, the rules of Article NB-3000 of Section III of the ASME Code, 2001 Edition with Addenda through 2003 [1], are used, and results will be reconciled with the original stress report.The weld overlay repair region affects the instrument nozzle and safe end. As a result, the instrument nozzle and safe end of the repair will be evaluated using the rules of Subarticle NB-3200.3.0 BOUNDARY CONDITIONS, STRESS PATH DEFINITIONS, AND UNIT PRESSURE 3.1 Boundary Conditions The jet pump instrument nozzle finite element model was built in Reference | |||
[2] with ANSYS program Release 8.1 [12] which is also used for this calculation. | [2] with ANSYS program Release 8.1 [12] which is also used for this calculation. | ||
Two symmetric boundary conditions are applied at the two cross sections at the nozzle and penetration seal. To avoid rigid body movement, an axial direction restraint is applied at the inside corner of the nozzle cross section on the vessel side. Figure 1 shows the mechanical boundary condition.The heat transfer coefficients (HTC) and temperatures are applied to four regions. The nozzle HTC and temperature are applied to Region I and the vessel HTC and temperature are applied to Region 3. The HTC and temperature of Region 2 (nozzle inner blend radius) is linearly transitioned from the HTC value used in Region I to the HTC value used in Region 3. The Region 4 HTC and temperature are assumed to be 0.2 BTU/hr-ft 2-°F and I 00°F. Figure 2 shows the region definitions. | Two symmetric boundary conditions are applied at the two cross sections at the nozzle and penetration seal. To avoid rigid body movement, an axial direction restraint is applied at the inside corner of the nozzle cross section on the vessel side. Figure 1 shows the mechanical boundary condition.The heat transfer coefficients (HTC) and temperatures are applied to four regions. The nozzle HTC and temperature are applied to Region I and the vessel HTC and temperature are applied to Region 3. The HTC and temperature of Region 2 (nozzle inner blend radius) is linearly transitioned from the HTC value used in Region I to the HTC value used in Region 3. The Region 4 HTC and temperature are assumed to be 0.2 BTU/hr-ft 2-°F and I 00°F. Figure 2 shows the region definitions. | ||
3.2 Stress Path Definitions Four stress paths are defined and shown in Figure 3. | |||
Path Definitions Four stress paths are defined and shown in Figure 3. | |||
These paths are used for the ASME Code Section III analysis.File No.: 0900530.306 Page 4 of 25 Revision: | These paths are used for the ASME Code Section III analysis.File No.: 0900530.306 Page 4 of 25 Revision: | ||
0 F0306-01I Structural Integrity Associates,- | 0 F0306-01I Structural Integrity Associates,- | ||
Inc.3.3 Unit Pressure Load A uniform pressure of 1,000 psi was applied along the inside surface of the nozzle and the penetration seal. Figure 4 shows the applied pressure and Figure 5 shows the stress intensity distribution. | Inc.3.3 Unit Pressure Load A uniform pressure of 1,000 psi was applied along the inside surface of the nozzle and the penetration seal. Figure 4 shows the applied pressure and Figure 5 shows the stress intensity distribution. | ||
4.0 LOADSThis evaluation only considers Design Loadings, Normal (Service Level A) and Upset (Service Level B)operating conditions in regards to meeting ASME Code, Section III Design and Service Level A/B allowables and fatigue. As such, thermal stresses resulting from Emergency (Service Level C) and Faulted (Service Level D) thermal transients are not considered | |||
[1, NB-3224.1, NB-3224.4 and Appendix F- 1310].Primary stresses (such as mechanical loads due to deadweight, seismic effects and pressure) resultingfrom Design, Service Level A, B, C and D operating conditions are discussed in Section 5.0.Pressure Per References | |||
evaluation only considers Design Loadings, Normal (Service Level A) and Upset (Service Level B)operating conditions in regards to meeting ASME Code, Section III Design and Service Level A/B allowables and fatigue. As such, thermal stresses resulting from Emergency (Service Level C) and Faulted (Service Level D) thermal transients are not considered | [3] and [4], the design pressure is 1250 psig at 575 0 F and the operating pressure loadsrange from 0 psig to 1410 psig throughout the various thermal transients, whose temperatures range from 70'F to 556°F. The hydrostatic test (Transient | ||
[1, NB-3224.1, NB-3224.4 and Appendix F- 1310].Primary stresses (such as mechanical loads due to deadweight, seismic effects and pressure) resultingfrom Design, Service Level A, B, C and D operating conditions are discussed in Section 5.0.Pressure Per References | : 24) pressure ranges from 0 psig to 1565 psig. Thepressure variations for the various transients are summarized in Table 1.Thermal Transients Reference | ||
[3] and [4], the design pressure is 1250 psig at 575 0 F and the operating pressure loadsrange from 0 psig to 1410 psig throughout the various thermal transients, whose temperatures range from 70'F to 556°F. The hydrostatic test (Transient | [5] defines eight thermal transients which are shown in Table 1. Details of the thermal transients are provided in References | ||
: 24) pressure ranges from 0 psig to 1565 psig. Thepressure variations for the various transients are summarized in Table 1.Thermal Transients Reference | [3] and [4].Mechanical Pipin2 Loads The jet pump instrument nozzle is not subjected to mechanical piping loads per Reference | ||
[5] defines eight thermal transients which are shown in Table 1. Details of the thermal transients are provided in References | |||
[3] and [4].Mechanical Pipin2 Loads The jet pump instrument nozzle is not subjected to mechanical piping loads per Reference | |||
[5].5.0 LOAD COMBINATIONS The load combinations used in the repair design are: I. Design Load Combination | [5].5.0 LOAD COMBINATIONS The load combinations used in the repair design are: I. Design Load Combination | ||
: 2. Level A Load Combination | : 2. Level A Load Combination | ||
Line 106: | Line 100: | ||
: 5. Level D Load Combination | : 5. Level D Load Combination | ||
: 6. Test Load Combination File No.: 0900530.306 Page 5 of 25 Revision: | : 6. Test Load Combination File No.: 0900530.306 Page 5 of 25 Revision: | ||
0 F0306-01I Structural Integrity Associates, Inc.The weld overlay sizing evaluation | 0 F0306-01I Structural Integrity Associates, Inc.The weld overlay sizing evaluation | ||
[6] considered general primary membrane, Pm, and primary membrane-plus-bending, Pm + Pb, stress intensities resulting from design/normal/upset (Design and Levels A & B) operating conditions and emergency/faulted (Levels C and D) conditions. | [6] considered general primary membrane, Pm, and primary membrane-plus-bending, Pm + Pb, stress intensities resulting from design/normal/upset (Design and Levels A & B) operating conditions and emergency/faulted (Levels C and D) conditions. | ||
Localprimary membrane, PL, stress intensities were not specifically evaluated, because acceptability of the Pm and Pb stress intensities results in acceptable PL stress intensities. | Localprimary membrane, PL, stress intensities were not specifically evaluated, because acceptability of the Pm and Pb stress intensities results in acceptable PL stress intensities. | ||
The primary, Pm and primary membrane-plus-bending, Pm + Pb stress intensities (and as previously indicated, local primary membrane, PL, stress intensities) under design condition have to meet ASME Code Section II1, NB-3221. The specific load combinations are shown in Table 2. The allowable stress intensities for these load combinations are presented in Table 3 [1].The sizing calculation did not specifically evaluate loads resulting from the Test Load Combination (Hydrostatic). | The primary, Pm and primary membrane-plus-bending, Pm + Pb stress intensities (and as previously indicated, local primary membrane, PL, stress intensities) under design condition have to meet ASME Code Section II1, NB-3221. The specific load combinations are shown in Table 2. The allowable stress intensities for these load combinations are presented in Table 3 [1].The sizing calculation did not specifically evaluate loads resulting from the Test Load Combination (Hydrostatic). | ||
However, the Test Load Combination considers only primary stresses, which result from pressure and mechanical loads. The added thickness of the weld overlay will only serve to reduce the general primary, Pm, and primary membrane-plus-bending, Pm + Pb stress intensities (and as previously indicated, local primary membrane, PL, stress intensities) when compared to the original configuration. | However, the Test Load Combination considers only primary stresses, which result from pressure and mechanical loads. The added thickness of the weld overlay will only serve to reduce the general primary, Pm, and primary membrane-plus-bending, Pm + Pb stress intensities (and as previously indicated, local primary membrane, PL, stress intensities) when compared to the original configuration. | ||
Therefore, the only load combinations which will be considered herein are Service Levels A and B. The specific load combinations are shown in Table 2. The allowable stress intensities for these load combinations are presented in Table 3 [1]. Also, as indicated in Table 3, requirements for peak stresses and cyclic operation must also be met for Service Levels A and B.Per ASME Code Section III NB-3227.2, the average primary shear stress (including Design, Service Levels A, B and C) shall be limited to 0.6 Sm and the maximum primary shear stress (includingDesign, Service Levels A, B and C) shall be limited to 0.8 Smn. This requirement is only applied to the limiting Path 2 in Figure 3.It should be noted that in using the ASME Code, Section 1II, Class .1 rules in NB-3200, Service Levels A and B are combined together using bounding load combinations.Thus, this calculation, together with Reference | Therefore, the only load combinations which will be considered herein are Service Levels A and B. The specific load combinations are shown in Table 2. The allowable stress intensities for these load combinations are presented in Table 3 [1]. Also, as indicated in Table 3, requirements for peak stresses and cyclic operation must also be met for Service Levels A and B.Per ASME Code Section III NB-3227.2, the average primary shear stress (including Design, Service Levels A, B and C) shall be limited to 0.6 Sm and the maximum primary shear stress (includingDesign, Service Levels A, B and C) shall be limited to 0.8 Smn. This requirement is only applied to the limiting Path 2 in Figure 3.It should be noted that in using the ASME Code, Section 1II, Class .1 rules in NB-3200, Service Levels A and B are combined together using bounding load combinations.Thus, this calculation, together with Reference | ||
[6], contains the ASME Code qualification for the weld overlay repair for PNPS.6.0 ASME CODE STRESS LIMITS EVALUATIONStress intensities are calculated for the various load combinations shown in Table 2 and stress intensity ranges are compared to the allowable limits shown in Table 3. Linearized stresses wereevaluated through four paths (see Figure 3) throughout the transient time histories and the pressureanalyses. These calculated stress intensities are then evaluated in accordance' with ASME Code, Section II, Subarticle NB-3200 [1].File No.: 0900530.306 Page 6. of 25 Revision: | [6], contains the ASME Code qualification for the weld overlay repair for PNPS.6.0 ASME CODE STRESS LIMITS EVALUATIONStress intensities are calculated for the various load combinations shown in Table 2 and stress intensity ranges are compared to the allowable limits shown in Table 3. Linearized stresses wereevaluated through four paths (see Figure 3) throughout the transient time histories and the pressureanalyses. These calculated stress intensities are then evaluated in accordance' with ASME Code, Section II, Subarticle NB-3200 [1].File No.: 0900530.306 Page 6. of 25 Revision: | ||
0 F0306-01 Structural Integrity Associates, Inc.6.1 Design Load Combination The primary membrane (Pm) and membrane-plus-bending (PL+Qb) stress intensities due to pressure (1250 psig) are scaled from the 1000 psi unit pressure evaluation. | 0 F0306-01 Structural Integrity Associates, Inc.6.1 Design Load Combination The primary membrane (Pm) and membrane-plus-bending (PL+Qb) stress intensities due to pressure (1250 psig) are scaled from the 1000 psi unit pressure evaluation. | ||
Table 4 lists the materials at the corresponding locations. | Table 4 lists the materials at the corresponding locations. | ||
Material properties are listed in Table 5.Table 6 lists the evaluation of the primary stress intensities for the Design condition. | Material properties are listed in Table 5.Table 6 lists the evaluation of the primary stress intensities for the Design condition. | ||
6.2 Service Level A/B Load Combination Examination of the membrane-plus-bending stresses does not provide an obvious pairing of stresses resulting from the various thermal transients for determination of operating stress intensity ranges. Thus, the VESLFAT program [8], developed by Structural Integrity, is used to calculate primary-plus-secondary membrane-plus-bending (P+Q) and total (P+Q+F) stress intensity ranges. The same program will be used to perform the fatigue usage analysis described in Section 7.0.The primary-plus-secondary membrane-plus-bending (P+Q) and total (P+Q+F) component stress values are combined prior to use in the VESLFAT program [8]. The thermal component stresses resulting at each time increment from the various thermal transients are added to the componentstresses resulting from corresponding pressure. | |||
Level A/B Load Combination Examination of the membrane-plus-bending stresses does not provide an obvious pairing of stresses resulting from the various thermal transients for determination of operating stress intensity ranges. Thus, the VESLFAT program [8], developed by Structural Integrity, is used to calculate primary-plus-secondary membrane-plus-bending (P+Q) and total (P+Q+F) stress intensity ranges. The same program will be used to perform the fatigue usage analysis described in Section 7.0.The primary-plus-secondary membrane-plus-bending (P+Q) and total (P+Q+F) component stress values are combined prior to use in the VESLFAT program [8]. The thermal component stresses resulting at each time increment from the various thermal transients are added to the componentstresses resulting from corresponding pressure. | |||
The combination was performed in the Excelspreadsheets identified in Appendix B. Within the spreadsheets, the various component results are manipulated to produce the combined transient stress conditions, including: | The combination was performed in the Excelspreadsheets identified in Appendix B. Within the spreadsheets, the various component results are manipulated to produce the combined transient stress conditions, including: | ||
The primary-plus-secondary membrane-plus-bending (P+Q) and total (P+Q+F) stress components due to pressure are scaled from the 1000 psi unit pressure evaluation. | The primary-plus-secondary membrane-plus-bending (P+Q) and total (P+Q+F) stress components due to pressure are scaled from the 1000 psi unit pressure evaluation. | ||
Line 129: | Line 121: | ||
The results are shown in Table 7.6.3 Pure Shear Stress Evaluation for Path 2The maximum primary stress occurs due to the test load (1565 psig), the shear stress can be scaledbased on the 1000 psig results. | The results are shown in Table 7.6.3 Pure Shear Stress Evaluation for Path 2The maximum primary stress occurs due to the test load (1565 psig), the shear stress can be scaledbased on the 1000 psig results. | ||
Therefore, the maximum shear stress is 1.050 ksi which is below the allowable 0.6 Sm = 0.6 | Therefore, the maximum shear stress is 1.050 ksi which is below the allowable 0.6 Sm = 0.6 | ||
* 15.8 = 9.48 ksi, where Sm with 15.8 ksi is taken from Reference | * 15.8 = 9.48 ksi, where Sm with 15.8 ksi is taken from Reference | ||
[5, page 17].7.0 FATIGUE EVALUATIONThe fatigue evaluations are performed for Paths 1 through 4 of the weld overlay repair as shown in Figure 3. Both the inside and outside surfaces of the indicated paths will be evaluated. | [5, page 17].7.0 FATIGUE EVALUATIONThe fatigue evaluations are performed for Paths 1 through 4 of the weld overlay repair as shown in Figure 3. Both the inside and outside surfaces of the indicated paths will be evaluated. | ||
The evaluations are performed in accordance with ASME Code, Section III, Subparagraph NB-3222.4(e) | The evaluations are performed in accordance with ASME Code, Section III, Subparagraph NB-3222.4(e) | ||
Line 139: | Line 131: | ||
The *.PR file is a shortened version of the *.ALL file and lists only the significant (i.e., fatigue causing) pairs. The*.ORD file re-sequences the *.PR file such that the ordered pairs are arrayed in order of reducing alternating stress.File No.: 0900530.306 Page 8 of 25 Revision: | The *.PR file is a shortened version of the *.ALL file and lists only the significant (i.e., fatigue causing) pairs. The*.ORD file re-sequences the *.PR file such that the ordered pairs are arrayed in order of reducing alternating stress.File No.: 0900530.306 Page 8 of 25 Revision: | ||
0 F0306-01I Structural Integrity Associates, Inc.The final output file is labeled *.FAT. It echoes the input data, shows the significant cycle pairings, the cycle elimination, individual cycle pair fatigue contributions, and the final overall fatigue usage.See Section 7.1.4 for fatigue results. | 0 F0306-01I Structural Integrity Associates, Inc.The final output file is labeled *.FAT. It echoes the input data, shows the significant cycle pairings, the cycle elimination, individual cycle pair fatigue contributions, and the final overall fatigue usage.See Section 7.1.4 for fatigue results. | ||
7.1.1 Cyclic Data (*. CYC)Table I assigned a total number of cycles for each bounding event, which is listed in Table 8.See Appendix C for an example of a *.CYC file.7.1.2 Fatigue Data Input File (*.FDT)The materials at the surfaces of the stress paths indicated in Figure 3 are tabulated in Table 4.The fatigue curve for the austenitic and high nickel alloys is per Reference | |||
[1], Section III Appendices. The curve consists of two portions; the low cycle stress portion | |||
Data (*. CYC)Table I assigned a total number of cycles for each bounding event, which is listed in Table 8.See Appendix C for an example of a *.CYC file.7.1.2 Fatigue Data Input File (*.FDT)The materials at the surfaces of the stress paths indicated in Figure 3 are tabulated in Table 4.The fatigue curve for the austenitic and high nickel alloys is per Reference | (<106 cycles) that is covered by Figure 1-9.2.1, and a high cycle portion for which Curve C, Figure 1-9.2.2, is conservatively used.The fatigue curve for the SA-508 Class 2 material is also per Reference | ||
[1], Section III Appendices. The curve consists of two portions; the low cycle stress portion | |||
(<106 cycles) that is covered by Figure 1-9.2.1, and a high cycle portion for which Curve C, Figure 1-9.2.2, is conservatively used.The fatigue curve for the SA-508 Class 2 material is also per Reference | |||
[5], Section III Appendices. | [5], Section III Appendices. | ||
Both curves presented in Figure 1.9.1 are used, with the conservatively lower alternating stress, Sa, used throughout. | Both curves presented in Figure 1.9.1 are used, with the conservatively lower alternating stress, Sa, used throughout. | ||
Table 9 listed the fatigue curves.The modulus of elasticity correction factor from the fatigue curves will be based on Reference | Table 9 listed the fatigue curves.The modulus of elasticity correction factor from the fatigue curves will be based on Reference | ||
[9]temperature dependent modulus of elasticity values with a fatigue curve elastic modulus of 28.3e6 psi for the austenitic and high nickel materialsand 30.0e6 psi for low alloy material. | [9]temperature dependent modulus of elasticity values with a fatigue curve elastic modulus of 28.3e6 psi for the austenitic and high nickel materialsand 30.0e6 psi for low alloy material. | ||
Sm and Sy temperature dependent values are also obtained from Reference | Sm and Sy temperature dependent values are also obtained from Reference | ||
[9].Other material properties are input as follows: m = 1.7, n = 0.3, parameters used to calculate Ke for the austenitic and high nickel materials | [9].Other material properties are input as follows: m = 1.7, n = 0.3, parameters used to calculate Ke for the austenitic and high nickel materials | ||
[1, Table NB-3228.5(b)-l] | [1, Table NB-3228.5(b)-l] | ||
m = 2.0, n = 0.2, parameters used to calculate Ke for the low alloy material [1, Table NB-3228.5(b)-i] | m = 2.0, n = 0.2, parameters used to calculate Ke for the low alloy material [1, Table NB-3228.5(b)-i] | ||
See Appendix C for an example *.FDT file. | See Appendix C for an example *.FDT file. | ||
7.1.3 Stress Data Input File (*.STR)Linearized membrane-plus-bending (P+Q) and membrane-plus-bending-plus-peak (P+Q+F) stress components from the finite element stress analyses were extracted for pressure and thermal transient loads. Stresses are scaled in cases (pressure) where the applied load magnitude is not the same as that analyzed.File No.: | |||
Data Input File (*.STR)Linearized membrane-plus-bending (P+Q) and membrane-plus-bending-plus-peak (P+Q+F) stress components from the finite element stress analyses were extracted for pressure and thermal transient loads. Stresses are scaled in cases (pressure) where the applied load magnitude is not the same as that analyzed.File No.: | |||
0900530.306 Page 9 of 25 Revision: | 0900530.306 Page 9 of 25 Revision: | ||
0 F0306-01O Structural Integrity Associates, Inc.The resulting stress components are then added together to create the load combination for each thermal transient throughout the length of the event. Thus, thermal stresses are added to the scaledpressure stresses to create each membrane-plus-bending and membrane-plus-bending-plus-peak stress components entry. | 0 F0306-01O Structural Integrity Associates, Inc.The resulting stress components are then added together to create the load combination for each thermal transient throughout the length of the event. Thus, thermal stresses are added to the scaledpressure stresses to create each membrane-plus-bending and membrane-plus-bending-plus-peak stress components entry. | ||
Paths I and 4 terminate on the outside at geometric discontinuities. For these locations, fatiguestrength reduction factors have to be calculated based on Reference | Paths I and 4 terminate on the outside at geometric discontinuities. For these locations, fatiguestrength reduction factors have to be calculated based on Reference | ||
[11, pages 91 through 94].All of inside surfaces, as well as the outside surfaces of paths 2 and 3 do not have any geometric discontinuity and hence the fatigue strength reduction factor is unity.The equation for calculating the fatigue strength reduction factor is based on Reference | [11, pages 91 through 94].All of inside surfaces, as well as the outside surfaces of paths 2 and 3 do not have any geometric discontinuity and hence the fatigue strength reduction factor is unity.The equation for calculating the fatigue strength reduction factor is based on Reference | ||
[11, pages 91 through 94]. The equation is as following: | [11, pages 91 through 94]. The equation is as following: | ||
where: S = angle of contour= 36.50 for Path 1 outside [2]450 for Path 4 outside [2]r radius of curvature at contour interface= 0.25 inches (assumed)h = height difference between contours= 0.438 inches for Path I outside [2]= 0.41 inches for Path 4 outside [2]t = half thickness of thinner contour= 0.608 inches for Path I outside [2]= 0.880 inches for Path 4 outside (measured from inside node to outside node)r/t = 0.411 for Path I outside= 0.284 for Path 4 outside Ko = 1.95 for Path I outside, per page 92 of Reference | where: S = angle of contour= 36.50 for Path 1 outside [2]450 for Path 4 outside [2]r radius of curvature at contour interface= 0.25 inches (assumed)h = height difference between contours= 0.438 inches for Path I outside [2]= 0.41 inches for Path 4 outside [2]t = half thickness of thinner contour= 0.608 inches for Path I outside [2]= 0.880 inches for Path 4 outside (measured from inside node to outside node)r/t = 0.411 for Path I outside= 0.284 for Path 4 outside Ko = 1.95 for Path I outside, per page 92 of Reference | ||
[11]= 2.20 for Path 4 outside per page 92 of Reference | [11]= 2.20 for Path 4 outside per page 92 of Reference | ||
[11]Therefore K = 1.87 for Path I outside= 2.04 for Path 2 outside File No.: 0900530.306 Page 10 of 25 Revision: | [11]Therefore K = 1.87 for Path I outside= 2.04 for Path 2 outside File No.: 0900530.306 Page 10 of 25 Revision: | ||
0 F0306-01. | 0 F0306-01. | ||
Line 178: | Line 166: | ||
1 ]. Stress intensities were conservatively determined for pressure and bounding thermal transients, and compared against ASME Code allowables for primary-plus-secondary stress effects. In all cases, the reported values of stress intensity range are less than their corresponding allowable Values.File No.: 0900530.306 Page 11 of 25 Revision: | 1 ]. Stress intensities were conservatively determined for pressure and bounding thermal transients, and compared against ASME Code allowables for primary-plus-secondary stress effects. In all cases, the reported values of stress intensity range are less than their corresponding allowable Values.File No.: 0900530.306 Page 11 of 25 Revision: | ||
0 F0306-01 Structural Integrity Associates, Inc.A detailed fatigue analysis was also performed. | 0 F0306-01 Structural Integrity Associates, Inc.A detailed fatigue analysis was also performed. | ||
For the given number of expected cycles corresponding to a design period (see Table 1), the total usage at all locations evaluated is below the allowable value of I (see Table 10).In conclusion, the jet pump instrument nozzle weld overlay repair for PNPS, provided in Reference | For the given number of expected cycles corresponding to a design period (see Table 1), the total usage at all locations evaluated is below the allowable value of I (see Table 10).In conclusion, the jet pump instrument nozzle weld overlay repair for PNPS, provided in Reference | ||
[7], satisfies the requirements of ASME Code Section 111. | [7], satisfies the requirements of ASME Code Section 111. | ||
Line 192: | Line 180: | ||
1, 27 February, 1959.12. ANSYS/Mechanical, Release 8.1 (w/Service Pack 1), ANSYS Inc., June 2004. | 1, 27 February, 1959.12. ANSYS/Mechanical, Release 8.1 (w/Service Pack 1), ANSYS Inc., June 2004. | ||
File No.: 0900530.306 Page 12 of 25 Revision: | File No.: 0900530.306 Page 12 of 25 Revision: | ||
0 F0306-011 Structural Integrity Associates, Inc.Table 1: Bounding Transients to be Analyzed Trans.0 1) Cycles (1) t sec (3) Tves, IF (4) Tnoz, 'F ( P, psig(ý hv Btu/hr-ft'ZýF ( h., Btu/hr-ft-°F (8)2 130 0 100 100 0 500 94 Design I 100 100 1250 500 94 Pressure 2 100 100 25 500 94 ,3 120 0 100 100 0 500 94 Startup 16416 556 556 1035 500 438 11 30 0 532 532 1035 500 427, LFWP 3 532 532 1215 500 427 13 532 532 1160 500 427233 310 310 1160 500 297 2213 510 510 1160 500 4162393 310 310 910 500 297 67,73 510 510 1160 500 416 7193 310 310 700 500 297 7493 310 310 700 500 297 11093 410 410 240 500 363 16349 556 556 1035 500 438 26349 556 556 1035 500 438 26350 548 548 1035 500 434 36350 548 548 1035 500 43436351 532 532 1035 500 427 46351 532 532 1035 .500 427 13 1 0 532 532 1035 500 427 Reactor 2 532 532 1410 500 427 Overpressure 32 532 532 965 500 427 452 556 556 1035 500 438 10452 556 556 1035 500 438 10453 548 548 1035 500 434 20453 548 548 1035 500 434.20454 532 532 1035 500 427 30454 532 532 1035 500 427 14 2 0 532 532 1035 500 427 SRV 60 385 385 275 500 348 Blowdown 11400 70 70 25 500 0 17 5 0 532 532 1035 500 427 Improper 1 278 278 1035 500 272 Start 27 278 278 1035 500 27228 532 532 1035 500 427 21-23 118 0 556 556 1035 500 438 Shutdown 6156 385 385 0 500 348 6756 330 330 0 500 311 15036 100 100 0 500 94 24 3 0 100 100 0 500 94 Hydro 1 100 100 1565 500 94 Pressure 2 100 100 0 500 94 Notes: 1.2.3.4.5.6.7.8.These eight transients are selected based on Reference | 0 F0306-011 Structural Integrity Associates, Inc.Table 1: Bounding Transients to be Analyzed Trans.0 1) Cycles (1) t sec (3) Tves, IF (4) Tnoz, 'F ( P, psig(ý hv Btu/hr-ft'ZýF ( h., Btu/hr-ft-°F (8)2 130 0 100 100 0 500 94 Design I 100 100 1250 500 94 Pressure 2 100 100 25 500 94 ,3 120 0 100 100 0 500 94 Startup 16416 556 556 1035 500 438 11 30 0 532 532 1035 500 427, LFWP 3 532 532 1215 500 427 13 532 532 1160 500 427233 310 310 1160 500 297 2213 510 510 1160 500 4162393 310 310 910 500 297 67,73 510 510 1160 500 416 7193 310 310 700 500 297 7493 310 310 700 500 297 11093 410 410 240 500 363 16349 556 556 1035 500 438 26349 556 556 1035 500 438 26350 548 548 1035 500 434 36350 548 548 1035 500 43436351 532 532 1035 500 427 46351 532 532 1035 .500 427 13 1 0 532 532 1035 500 427 Reactor 2 532 532 1410 500 427 Overpressure 32 532 532 965 500 427 452 556 556 1035 500 438 10452 556 556 1035 500 438 10453 548 548 1035 500 434 20453 548 548 1035 500 434.20454 532 532 1035 500 427 30454 532 532 1035 500 427 14 2 0 532 532 1035 500 427 SRV 60 385 385 275 500 348 Blowdown 11400 70 70 25 500 0 17 5 0 532 532 1035 500 427 Improper 1 278 278 1035 500 272 Start 27 278 278 1035 500 27228 532 532 1035 500 427 21-23 118 0 556 556 1035 500 438 Shutdown 6156 385 385 0 500 348 6756 330 330 0 500 311 15036 100 100 0 500 94 24 3 0 100 100 0 500 94 Hydro 1 100 100 1565 500 94 Pressure 2 100 100 0 500 94 Notes: 1.2.3.4.5.6.7.8.These eight transients are selected based on Reference | ||
[5].The cycle numbers are based on design values [5].Time is based on the thermal cycle diagram | [5].The cycle numbers are based on design values [5].Time is based on the thermal cycle diagram | ||
[3]. Using 10,000 sec to simulate the steady state.The vessel temperature is taken from the thermal cycle diagram [3].The nozzle temperature is assumed as the same as the vessel temperature. | [3]. Using 10,000 sec to simulate the steady state.The vessel temperature is taken from the thermal cycle diagram [3].The nozzle temperature is assumed as the same as the vessel temperature. | ||
Pressure is taken from thermal cycle diagram [3].Heat transfer coefficient at the vessel is taken from Reference | Pressure is taken from thermal cycle diagram [3].Heat transfer coefficient at the vessel is taken from Reference | ||
[5].Heat transfer coefficient at the nozzle is calculated in Appendix A under natural convention condition. | [5].Heat transfer coefficient at the nozzle is calculated in Appendix A under natural convention condition. | ||
File No.: 0900530.306 Revision: | File No.: 0900530.306 Revision: | ||
0 Page 13 of 25 F0306-01: | 0 Page 13 of 25 F0306-01: | ||
Structural Integrity Associates, Inc.Table 2: Load Combinations LOADS Load Combinations Design Level A Level B Test Pressure (psig) (1) (2) (2) (4)Temperature (OF) (1) (3) I (3) ]] (4)Thermal Transients N/A X X(5)X Notes: 1.2.3.4.5.1250 psig and 575TF.Varies between 0 and 1410 psig depending on transient conditions summarized in Table 1.Varies between 70'F and 556'F depending on transient conditions summarized in Table 1.1565 psig and I 00°F.See Table 1.Table 3: Allowable Stress Intensity Ranges LoadL Combination Pm PL PL + Pb PL + Pb + Q Pure Shear (3) Note Design Condition Sm 1.5 Sm I 1.5 Sm -0.6 Sm I Level A/B --3.O Sm 0.6 Sm 2 Note: 1. The requirements of ASME Code, Section Ill, Subparagraph NB-3221 [1] must be met.2. The requirements of ASME Code, Section Il, Subparagraph NB-3222.4(e) | Structural Integrity Associates, Inc.Table 2: Load Combinations LOADS Load Combinations Design Level A Level B Test Pressure (psig) (1) (2) (2) (4)Temperature (OF) (1) (3) I (3) ]] (4)Thermal Transients N/A X X(5)X Notes: 1.2.3.4.5.1250 psig and 575TF.Varies between 0 and 1410 psig depending on transient conditions summarized in Table 1.Varies between 70'F and 556'F depending on transient conditions summarized in Table 1.1565 psig and I 00°F.See Table 1.Table 3: Allowable Stress Intensity Ranges LoadL Combination Pm PL PL + Pb PL + Pb + Q Pure Shear (3) Note Design Condition Sm 1.5 Sm I 1.5 Sm -0.6 Sm I Level A/B --3.O Sm 0.6 Sm 2 Note: 1. The requirements of ASME Code, Section Ill, Subparagraph NB-3221 [1] must be met.2. The requirements of ASME Code, Section Il, Subparagraph NB-3222.4(e) | ||
[1] for peak stresses and cyclic operation must be met.3. The requirements of ASME Code, Section 111, Subparagraph NB-3221 [1] must be met. Here, the maximum pure shear stress will be used.File No.: 0900530.306 Revision: | [1] for peak stresses and cyclic operation must be met.3. The requirements of ASME Code, Section 111, Subparagraph NB-3221 [1] must be met. Here, the maximum pure shear stress will be used.File No.: 0900530.306 Revision: | ||
0 Page 14 of 25 F0306-01 Structural Integrity Associates, Inc.Table 4: Materials at Each Path Inside and Outside Locations Path"'I J Surface Material(2) | 0 Page 14 of 25 F0306-01 Structural Integrity Associates, Inc.Table 4: Materials at Each Path Inside and Outside Locations Path"'I J Surface Material(2) | ||
Line 205: | Line 193: | ||
: 2. Identified in Reference 2.(File No.: 0900530.306 Revision: | : 2. Identified in Reference 2.(File No.: 0900530.306 Revision: | ||
0 Page 15 of 25 F0306-01O Structural Integrity Associates, Inc.Table 5: Material Properties(I) | 0 Page 15 of 25 F0306-01O Structural Integrity Associates, Inc.Table 5: Material Properties(I) | ||
Material T, -F E x 106, psi Sm,SA-508 Class 2 70 27.8 26.ksi 7 Alloy 52M 200 300 400 500 600 70 200 300 400 500 600 70 200 300 400 500 600 70 200 300 400 500 600 27.1 26.7 26.1 25.7 25.2 SA-204 304L 30.3 29.5 29.1 28.8 28.3 28.1 28.3 27.6 27.0 26.5 25.8 25.3 28.3 27.6 27.0 26.5 25.8 25.3 26.7 26.7 26.7 26.7 26.7 23.3 23.3 23.3 23.3 23.3 23.3 16.7 16.7 16.7 15.8 14.7 14.0 20.0 20.0 20.0 18.6 17.5 16.6 SY, ksi 50.0 47.0 45.5 44.2 43.2 42.1 35.0 31.7 29.8 28.6 27.9 27.6 25.0 21.4 19.2 17.5 16.4 15.5 30.0 25.0 22.4 20.7 19.4 18.4 SA!-182 F304 Notes: 1. All values are obtained from Reference | Material T, -F E x 106, psi Sm,SA-508 Class 2 70 27.8 26.ksi 7 Alloy 52M 200 300 400 500 600 70 200 300 400 500 600 70 200 300 400 500 600 70 200 300 400 500 600 27.1 26.7 26.1 25.7 25.2 SA-204 304L 30.3 29.5 29.1 28.8 28.3 28.1 28.3 27.6 27.0 26.5 25.8 25.3 28.3 27.6 27.0 26.5 25.8 25.3 26.7 26.7 26.7 26.7 26.7 23.3 23.3 23.3 23.3 23.3 23.3 16.7 16.7 16.7 15.8 14.7 14.0 20.0 20.0 20.0 18.6 17.5 16.6 SY, ksi 50.0 47.0 45.5 44.2 43.2 42.1 35.0 31.7 29.8 28.6 27.9 27.6 25.0 21.4 19.2 17.5 16.4 15.5 30.0 25.0 22.4 20.7 19.4 18.4 SA!-182 F304 Notes: 1. All values are obtained from Reference | ||
[9].File No.: 0900530.306 Revision: | [9].File No.: 0900530.306 Revision: | ||
0 Page 16 of 25 F0306-01I Structural Integrity Associates, Inc.Table 6: Design Load Combination, Stress Intensity Evaluation Path ( S Allowable P.L + Pb Allowable Number(S) | 0 Page 16 of 25 F0306-01I Structural Integrity Associates, Inc.Table 6: Design Load Combination, Stress Intensity Evaluation Path ( S Allowable P.L + Pb Allowable Number(S) | ||
Surface I ( Sm (ksi) (ksi) 1.5 Sm (ksi)Inside (1) 14.0 5.350 21.0 Yes Outside (2) 4.203 26.7 40.1 Yes Outside (3) 23.3 35.0 Yes Noz. side (1) 14.0 21.0 Yes Noz. side (3) 23.3 35.0 Yes'2 Sasie() 2.159 2. _____Seal side (4) 16.6 24.9 Yes Seal side (3) 23.3 35.0 Yes Inside (4) 16.6 3.404 24.9 Yes 3 Outside (4) 1.579 16.6 24.9 Yes Outside (3) 23.3 0.355 35.0 Yes 4Inside (4) 16.6 2.908 24.9 Yes Outsidet4) 16.6 1.151 24.9 Yes Notes: 1.2.3.4.5.Material at location is SA-204 304L equivalent | Surface I ( Sm (ksi) (ksi) 1.5 Sm (ksi)Inside (1) 14.0 5.350 21.0 Yes Outside (2) 4.203 26.7 40.1 Yes Outside (3) 23.3 35.0 Yes Noz. side (1) 14.0 21.0 Yes Noz. side (3) 23.3 35.0 Yes'2 Sasie() 2.159 2. _____Seal side (4) 16.6 24.9 Yes Seal side (3) 23.3 35.0 Yes Inside (4) 16.6 3.404 24.9 Yes 3 Outside (4) 1.579 16.6 24.9 Yes Outside (3) 23.3 0.355 35.0 Yes 4Inside (4) 16.6 2.908 24.9 Yes Outsidet4) 16.6 1.151 24.9 Yes Notes: 1.2.3.4.5.Material at location is SA-204 304L equivalent | ||
[2].Material at location is A-508 CL. | [2].Material at location is A-508 CL. | ||
2 [2].Material at location is Alloy 52M [2].Material at location is SA-182 F304 [2].See Figure 3 for illustration of indicated locations. | 2 [2].Material at location is Alloy 52M [2].Material at location is SA-182 F304 [2].See Figure 3 for illustration of indicated locations. | ||
File No.: 0900530.306 Revision: | File No.: 0900530.306 Revision: | ||
0 Page 17 of 25 F0306-01O Structural Integrity Associates, Inc.Table 7: Service Level A/B Load Combination, P+Q Stress Intensity Evaluation Path Maximum Stress Allowable Number(7) | 0 Page 17 of 25 F0306-01O Structural Integrity Associates, Inc.Table 7: Service Level A/B Load Combination, P+Q Stress Intensity Evaluation Path Maximum Stress Allowable Number(7) | ||
Surface Intensity Range Accept Nubr(S,,) (ksi) (5) 3Sin (ksi)(6)Inside (1) 35.314 42.924 Yes I Outside (2) 34.612 80.100 Yes Outside (3) 34.612 69.900 Yes Noz. side (1) 11.141 80.100 Yes Noz. side (3) 11.141 69.900 Yes 2 Seal side (4) 11.937 51.285 Yes Seal side (3) 12.138 69.900 Yes Inside (4) 24.849 51.015 Yes 3 Outside (4) 30.901 51.258 Yes Outside (3) 31.087 69.900 Yes Inside (4) 23.264 51.015 Yes 4 Outside(4) 28.055 52.041 Yes Notes: I.2.3.4.Material at location is SA-204 304L equivalent | Surface Intensity Range Accept Nubr(S,,) (ksi) (5) 3Sin (ksi)(6)Inside (1) 35.314 42.924 Yes I Outside (2) 34.612 80.100 Yes Outside (3) 34.612 69.900 Yes Noz. side (1) 11.141 80.100 Yes Noz. side (3) 11.141 69.900 Yes 2 Seal side (4) 11.937 51.285 Yes Seal side (3) 12.138 69.900 Yes Inside (4) 24.849 51.015 Yes 3 Outside (4) 30.901 51.258 Yes Outside (3) 31.087 69.900 Yes Inside (4) 23.264 51.015 Yes 4 Outside(4) 28.055 52.041 Yes Notes: I.2.3.4.Material at location is SA-204 304L equivalent | ||
[2].Material at location is A-508 CL. 2 [2].Material at location is Alloy 52M [2].Material at location is SA-182 F304 [2].5. Sn values shown are based on the maximum S,/3Sm ratio from VESLFAT output files ending in *.FAT (see Appendix C for example).6. All material stress allowable values shown [1, 9] are based on the maximum SnI3Sm ratio from VESLFAT output files ending in *.FAT (see Appendix C for example).7. See Figure 3 for illustration of indicated locations. | [2].Material at location is A-508 CL. 2 [2].Material at location is Alloy 52M [2].Material at location is SA-182 F304 [2].5. Sn values shown are based on the maximum S,/3Sm ratio from VESLFAT output files ending in *.FAT (see Appendix C for example).6. All material stress allowable values shown [1, 9] are based on the maximum SnI3Sm ratio from VESLFAT output files ending in *.FAT (see Appendix C for example).7. See Figure 3 for illustration of indicated locations. | ||
File No.: 0900530.306 Revision: | File No.: 0900530.306 Revision: | ||
Line 234: | Line 222: | ||
0 Page 25 of 25 F0306-01: | 0 Page 25 of 25 F0306-01: | ||
Structural Integrity Associates, Inc.Appendix A CALCULATION OF THE HEAT TRANSFER COEFFICIENTS File No.: 0900530.306 Revision: | Structural Integrity Associates, Inc.Appendix A CALCULATION OF THE HEAT TRANSFER COEFFICIENTS File No.: 0900530.306 Revision: | ||
0 Page A- I of A-3F0306-01 RO Structural Integrity Associates, Inc.An expression for the natural convection heat transfer coefficient can be developed by combining Equations 5-42 and 7-56 of Reference | 0 Page A- I of A-3F0306-01 RO Structural Integrity Associates, Inc.An expression for the natural convection heat transfer coefficient can be developed by combining Equations 5-42 and 7-56 of Reference | ||
[10], as follows: Nufree C. (Gr .Pr)n (l)hfree = C. (Gr. Pr)" .k (2)x At 0.75 < x/D < 2.0 Where: hfree = Natural-convection heat transfer coefficient, h = Nu | [10], as follows: Nufree C. (Gr .Pr)n (l)hfree = C. (Gr. Pr)" .k (2)x At 0.75 < x/D < 2.0 Where: hfree = Natural-convection heat transfer coefficient, h = Nu | ||
* k / x C = Linear coefficient representing the pipe geometry Gr = Grashof number for the flow n = Polynomial coefficient representing the pipe geometry x = Characteristic length (the pipe diameter for tube flow and difference of radius for annular flow), ft D = Pipe diameter, ft As shown in the accompanying text for Equation 7-56 of Reference | * k / x C = Linear coefficient representing the pipe geometry Gr = Grashof number for the flow n = Polynomial coefficient representing the pipe geometry x = Characteristic length (the pipe diameter for tube flow and difference of radius for annular flow), ft D = Pipe diameter, ft As shown in the accompanying text for Equation 7-56 of Reference | ||
[10], values of C = 0.55 and n 0.25 are reasonable for the pipe geometry under consideration. | [10], values of C = 0.55 and n 0.25 are reasonable for the pipe geometry under consideration. | ||
The Grashof number is adimensionless quantity representing the free convection state of a system, and it is calculated with thefollowing equation [ | The Grashof number is adimensionless quantity representing the free convection state of a system, and it is calculated with thefollowing equation [ | ||
Line 248: | Line 236: | ||
* 530.00 *F The above assumption is based on 000 16.67 72.22 127.78 183.33 238.89 C experience wth past RP-V heat transfer ianalyses. | * 530.00 *F The above assumption is based on 000 16.67 72.22 127.78 183.33 238.89 C experience wth past RP-V heat transfer ianalyses. | ||
T Value at Fluid Temperature, T [3] Units Conversion 70 100 T 200 1 300 1 400 500 600 'FWater Property Factor [1] 21.11 37.78 93.33 148.89 1204.44 260.00 315.56 'C k 1.7307 0.6006 0.6282 0.6767 0.6819 1 0.6611 06092 0.5175 W/m-*C(Thermal Conductivity) | T Value at Fluid Temperature, T [3] Units Conversion 70 100 T 200 1 300 1 400 500 600 'FWater Property Factor [1] 21.11 37.78 93.33 148.89 1204.44 260.00 315.56 'C k 1.7307 0.6006 0.6282 0.6767 0.6819 1 0.6611 06092 0.5175 W/m-*C(Thermal Conductivity) | ||
-0.3470 0.3630 o0.3910 03940 0.3820 0.3520 0.2990 Btu/hr-ft-*F CP4.1869 4.183 4.183 4.208 4.308 4.513 4.974 6.318 kJ/kg-'C (Specific Heat) 0.999 0.999 1.005 1.029 1.078 1.188 1.509 Btu/-bm-*F P 16.018 997.9 993.1 963.0 915.1 859.4 I 784.1 677.9 kg/in 3 (Desit) 6.3 2 60.11 57.1 53.7 f 49.0 42.3 Ib/f 3 (Dniy U. 23 1.8 2.07E-04 3.60E-04 i 7.11E-04 1.02E-03 1.39E-03 2.OOE-03 3.39E-03 m 3/m/-*C (Volumetric Rate of Expansion) | -0.3470 0.3630 o0.3910 03940 0.3820 0.3520 0.2990 Btu/hr-ft-*F CP4.1869 4.183 4.183 4.208 4.308 4.513 4.974 6.318 kJ/kg-'C (Specific Heat) 0.999 0.999 1.005 1.029 1.078 1.188 1.509 Btu/-bm-*F P 16.018 997.9 993.1 963.0 915.1 859.4 I 784.1 677.9 kg/in 3 (Desit) 6.3 2 60.11 57.1 53.7 f 49.0 42.3 Ib/f 3 (Dniy U. 23 1.8 2.07E-04 3.60E-04 i 7.11E-04 1.02E-03 1.39E-03 2.OOE-03 3.39E-03 m 3/m/-*C (Volumetric Rate of Expansion) | ||
: 1. 1S-0 2.OOE-04T 3.95E-04 5.66E-04 7.71 E-04 I1.1IE-03 1.89E-03 ft 5/ft'-*F....... .... .......... | : 1. 1S-0 2.OOE-04T 3.95E-04 5.66E-04 7.71 E-04 I1.1IE-03 1.89E-03 ft 5/ft'-*F....... .... .......... | ||
..... _v , e ,c r o ..E p ! n .. ...... ........... ...... ............ ...... ... ....... | ..... _v , e ,c r o ..E p ! n .. ...... ........... ...... ............ ...... ... ....... | ||
Line 254: | Line 242: | ||
........I.. ... ....... | ........I.. ... ....... | ||
2 .O _. _..9..... | 2 .O _. _..9..... | ||
-......... ... 5 6 E ...... I : .5 _ .. .2 y_ .j | -......... ... 5 6 E ...... I : .5 _ .. .2 y_ .j | ||
: :.. ................. ... .. .. | : :.. ................. ... .. .. | ||
....... ..-g .03048 9.806 9.806 9806 9806 98806 9806 9806 m/s 2 (Gravitational Constant) 32.17 32.17 T 32.17 32.17 32.17 I 32.17 32.17 ft/s t 1t.4881 ....E... ....04, 303-0iz- 4--04 1.84E-04 I .3E-0G-4_1 1 -E---0-4-- 0E-0 kgrs (Dynamic Viscosity) | ....... ..-g .03048 9.806 9.806 9806 9806 98806 9806 9806 m/s 2 (Gravitational Constant) 32.17 32.17 T 32.17 32.17 32.17 I 32.17 32.17 ft/s t 1t.4881 ....E... ....04, 303-0iz- 4--04 1.84E-04 I .3E-0G-4_1 1 -E---0-4-- 0E-0 kgrs (Dynamic Viscosity) | ||
Line 267: | Line 255: | ||
0 Page A-3 of A-3 F0306-01 RO Structural Integrity Associates, Inc.Appendix B SUPPORTING FILES File No.: 0900530.306 Revision: | 0 Page A-3 of A-3 F0306-01 RO Structural Integrity Associates, Inc.Appendix B SUPPORTING FILES File No.: 0900530.306 Revision: | ||
0 Page B- 1 of B-2 F0306-01 RO V Structural Integrity Associates, Inc.File Name Description N9 Loads.xls Excel Spreadsheet to Create HTCs. | 0 Page B- 1 of B-2 F0306-01 RO V Structural Integrity Associates, Inc.File Name Description N9 Loads.xls Excel Spreadsheet to Create HTCs. | ||
PNPS-N9.INP N9A Nozzle ANSYS Geometry Input File from Reference | PNPS-N9.INP N9A Nozzle ANSYS Geometry Input File from Reference | ||
[2].MPropLinear. | [2].MPropLinear. | ||
PNPS.INP N9A Nozzle ANSYS Material Input File from Reference | PNPS.INP N9A Nozzle ANSYS Material Input File from Reference | ||
[2].PNPS-N9-PRESS.INP N9A Nozzle ANSYS Pressure Load Input File.PNPS-N9-PRESS S3 P*.OUT ANSYS Pressure Linearized Stress Output Files.PNPS-N9-#-THM.INP N9A Nozzle ANSYS Thermal Load Input File.PNPS-N9-#-THM mntr.inp N9A Nozzle ANSYS Thermal Load mntr File Created from ANSYS Thermal Run.PNPS-N9-#-STR.inp N9A Nozzle ANSYS Thermal Load Stress Input File.PNPS-N9-#-STR S3 P*.OUT ANSYS Thermal Analysis Linearized Stress Output Files.StressResults.xis Excel Spreadsheet to Summary Linearized Stress. Each Path Has One File at corresponded Directory. | [2].PNPS-N9-PRESS.INP N9A Nozzle ANSYS Pressure Load Input File.PNPS-N9-PRESS S3 P*.OUT ANSYS Pressure Linearized Stress Output Files.PNPS-N9-#-THM.INP N9A Nozzle ANSYS Thermal Load Input File.PNPS-N9-#-THM mntr.inp N9A Nozzle ANSYS Thermal Load mntr File Created from ANSYS Thermal Run.PNPS-N9-#-STR.inp N9A Nozzle ANSYS Thermal Load Stress Input File.PNPS-N9-#-STR S3 P*.OUT ANSYS Thermal Analysis Linearized Stress Output Files.StressResults.xis Excel Spreadsheet to Summary Linearized Stress. Each Path Has One File at corresponded Directory. | ||
VFAT-*&.xls Excel Spreadsheet to Create .str File.VFAT-*o III.xls Excel Spreadsheet to Create .str File for Maximum Intensity Range only.p*-& @.CYC Cycle Input File for VESLFAT Program.p*-o Ill @.CYC Cycle Input File for Maximum Intensity Range only at Outside Surface Locations for-__ -_VESLFAT Program.p*-& @.FDT Material Input File for VESLFAT Program. | VFAT-*&.xls Excel Spreadsheet to Create .str File.VFAT-*o III.xls Excel Spreadsheet to Create .str File for Maximum Intensity Range only.p*-& @.CYC Cycle Input File for VESLFAT Program.p*-o Ill @.CYC Cycle Input File for Maximum Intensity Range only at Outside Surface Locations for-__ -_VESLFAT Program.p*-& @.FDT Material Input File for VESLFAT Program. | ||
Line 680: | Line 668: | ||
-1562 -378 3752 212 0 0 -1562 -160 3904 81 0 0 100 1565 29 24_Hydro22 | -1562 -378 3752 212 0 0 -1562 -160 3904 81 0 0 100 1565 29 24_Hydro22 | ||
-1562 -378 3752 212 0 0 -1562 -160 3904 81 0 0 100 1565 30 24_Hydro32 1596 -1383 119 0 0 1632 -1440 -51 0 0 100 0 File No.: 0900530.306 Page C-21 of C-40 Revision: | -1562 -378 3752 212 0 0 -1562 -160 3904 81 0 0 100 1565 30 24_Hydro32 1596 -1383 119 0 0 1632 -1440 -51 0 0 100 0 File No.: 0900530.306 Page C-21 of C-40 Revision: | ||
0 F0306-O1 RO Structural Integrity Associates, Inc.VESLFAT OUTPUT FILE pl-i_304L.FAT VESLFAT Version 1.42 12/29/2006 (VeslFatlp42) 06-23-2009 23:04:07 Page 1 VESLFAT Load Set Pair Module Version 1.42 -01/03/2007 | 0 F0306-O1 RO Structural Integrity Associates, Inc.VESLFAT OUTPUT FILE pl-i_304L.FAT VESLFAT Version 1.42 12/29/2006 (VeslFatlp42) 06-23-2009 23:04:07 Page 1 VESLFAT Load Set Pair Module Version 1.42 -01/03/2007 | ||
(&VeslFatPairlp42) | (&VeslFatPairlp42) | ||
Stress Pairing Analysis Elastic Plastic Properties m= 1.7 n= 0.3 Stresses Multiplied by 1 to convert to psi Max General Membrane Stress(ksi) per unit Pressure (psi) = 0.01 Upper Limit on Sy for large number of cycles NB-5222.5(b) (ksi) 40 Material Properties vs Temperature T,F E, ksi 3Sm, ksi Sy, ksi 70 28300 16.7 25.0 200 27600 16.7 21.4 300 27000 16.7 19.2 400 26500 15.8 17.5 500 25800 14.7 16.4 600 25300 14.0 15.5 Stress ranges < 13328 psi neglected Files: Input Stress File = pl-i 304L.STR Converted Stress File = pl-i 304L.STI All Stress Ranges File pl-i 304L.ALL Significant Ranges File = pl-i_304L.PR Thermal Ratchet Case File = pl-i 304L.TRC Max Ratio of Sn/3Sm = 0.822699 for Trans Pair 25 and 29 Max P+Q Stress, psi = 35313.51 <= 3Sm, psi = 42924 VESLPAT Load Pair Sort Module Version 1.42 -12/29/2006 | Stress Pairing Analysis Elastic Plastic Properties m= 1.7 n= 0.3 Stresses Multiplied by 1 to convert to psi Max General Membrane Stress(ksi) per unit Pressure (psi) = 0.01 Upper Limit on Sy for large number of cycles NB-5222.5(b) (ksi) 40 Material Properties vs Temperature T,F E, ksi 3Sm, ksi Sy, ksi 70 28300 16.7 25.0 200 27600 16.7 21.4 300 27000 16.7 19.2 400 26500 15.8 17.5 500 25800 14.7 16.4 600 25300 14.0 15.5 Stress ranges < 13328 psi neglected Files: Input Stress File = pl-i 304L.STR Converted Stress File = pl-i 304L.STI All Stress Ranges File pl-i 304L.ALL Significant Ranges File = pl-i_304L.PR Thermal Ratchet Case File = pl-i 304L.TRC Max Ratio of Sn/3Sm = 0.822699 for Trans Pair 25 and 29 Max P+Q Stress, psi = 35313.51 <= 3Sm, psi = 42924 VESLPAT Load Pair Sort Module Version 1.42 -12/29/2006 | ||
(&VeslFatSortlp42) | (&VeslFatSortlp42) | ||
Sorting Stress Ranges from File = pl-i_304L.PR Storing Output Ordered Ranges in File = pl-i 304L.ORD Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | Sorting Stress Ranges from File = pl-i_304L.PR Storing Output Ordered Ranges in File = pl-i 304L.ORD Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | ||
(&VeslFatFatlp42) | (&VeslFatFatlp42) | ||
Page 2 06-23-2009 23:04:20 Input Echo: Fatigue Properties:m= 1.7 n= 0.3 E (Fatigue Curve), ksi = 28300 E (Analysis) chosen at the highest of transient pair temperatures Sm chosen at the highest of transient pair temperatures Fatigue Curve: Cycles Salt, ksi File No.: 0900530.306 Page C-22 of C-40 Revision: | Page 2 06-23-2009 23:04:20 Input Echo: Fatigue Properties:m= 1.7 n= 0.3 E (Fatigue Curve), ksi = 28300 E (Analysis) chosen at the highest of transient pair temperatures Sm chosen at the highest of transient pair temperatures Fatigue Curve: Cycles Salt, ksi File No.: 0900530.306 Page C-22 of C-40 Revision: | ||
0 F0306-01 RO Structural Integrity Associates, Inc.1.0E+01 2. OE+01 5. 0E+01 1. OE+02 2. 0E+02 5. OE+02 1. OE+03 2. OE+03 5. 0E+03 1. OE+04 2. OE+04 5. 0E+04 1. 0E+05 2. OE+05.5. 0E+05 1. 0E+06 2. 0E+06 5. 0E+06 1. 0E+07 2. 0E+07 5. OE+07 1. OE+08 1. OE+09 1. 0E+10 1. OE-+Name Num.DHydTl_DHydT2_DHydT3 Staupl Staup2 1LFWP1 I--LFWP2 1 LFWP3 1 LFWP4 I LFWP5 1 LFWP6 1_LFWP7 1_LFWP8 3 ROPI 708.00 512.00 345.00 261.00 201.00 148.00 119.00 97.00 76.00 64 .00 55.50 46.30 40.80 35.90 31.00 28.20 22.80 18.40 16.40 15.20 14.30 14.10 13.90 13.70 13.60 I Events: Index 1 2 2 2 3 2 4 3 5 3 6 i1 7 1 8 1 9 1 10 1 11 I1 12 1 13 1I 14 1: 1 I 1 I 1 1 1 1 3 Cycles 130 130 130 120 120 30 30 30 30 30 30 30 30 1 File No.: 0900530.306 Page C-23 of C-40 Revision: | 0 F0306-01 RO Structural Integrity Associates, Inc.1.0E+01 2. OE+01 5. 0E+01 1. OE+02 2. 0E+02 5. OE+02 1. OE+03 2. OE+03 5. 0E+03 1. OE+04 2. OE+04 5. 0E+04 1. 0E+05 2. OE+05.5. 0E+05 1. 0E+06 2. 0E+06 5. 0E+06 1. 0E+07 2. 0E+07 5. OE+07 1. OE+08 1. OE+09 1. 0E+10 1. OE-+Name Num.DHydTl_DHydT2_DHydT3 Staupl Staup2 1LFWP1 I--LFWP2 1 LFWP3 1 LFWP4 I LFWP5 1 LFWP6 1_LFWP7 1_LFWP8 3 ROPI 708.00 512.00 345.00 261.00 201.00 148.00 119.00 97.00 76.00 64 .00 55.50 46.30 40.80 35.90 31.00 28.20 22.80 18.40 16.40 15.20 14.30 14.10 13.90 13.70 13.60 I Events: Index 1 2 2 2 3 2 4 3 5 3 6 i1 7 1 8 1 9 1 10 1 11 I1 12 1 13 1I 14 1: 1 I 1 I 1 1 1 1 3 Cycles 130 130 130 120 120 30 30 30 30 30 30 30 30 1 File No.: 0900530.306 Page C-23 of C-40 Revision: | ||
0 F0306-OIRO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | 0 F0306-OIRO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | ||
(&VeslFatFatlp42) | (&VeslFatFatlp42) | ||
Page 3 06-23-2009 23:04:20 15 13_ROP2 116 13_ROP3 1 17 14 _SRVB 218 14 _SRVB2 2 19 14-SRVB3 2 20 140SRVB4 2 21 17_lImpSTl 5 22 17_ImpST2 5 23 17ImpST3 5 24 21_ShDwl 108 2521 ShDw2 118 26 21_ShDw3 11827 21_ShDw4 118 28 24NHydrol 3 29 24 Hydro2 3 30 24Hydro3 3 Stress input file: N Name Sxx Syy Szz Sxy Sxz Syz Sxx Syy Szz Sxy Sxz Syz Tmax Pmax 1 2_DHydTlO 1596 -1383 119 0 0 1632 -1440 -51 0 0 100 0 1 2_DHydT1O 1596 -1383 119 0 0 1632 -1440 -51 0 0 100 0 1 2DHydTlO 1596 .-1383 119 0 0 1632 -1440 -51 0 0 100 0 1 2_DHydTlO 1596 -1383 119 0 0 1632 -1440 -51 0 0 100 0 1 2DHydTIO 1596 -1383 119 0 0 1632 -1440 -51 0 0 100 0 1 2_DHydTlO 1596 -1383 119 0 0 1632 -1440 -51 0 0 100 0 1 2_DHydTlO 1596 -1383 119 0 0 1632 -1440 | Page 3 06-23-2009 23:04:20 15 13_ROP2 116 13_ROP3 1 17 14 _SRVB 218 14 _SRVB2 2 19 14-SRVB3 2 20 140SRVB4 2 21 17_lImpSTl 5 22 17_ImpST2 5 23 17ImpST3 5 24 21_ShDwl 108 2521 ShDw2 118 26 21_ShDw3 11827 21_ShDw4 118 28 24NHydrol 3 29 24 Hydro2 3 30 24Hydro3 3 Stress input file: N Name Sxx Syy Szz Sxy Sxz Syz Sxx Syy Szz Sxy Sxz Syz Tmax Pmax 1 2_DHydTlO 1596 -1383 119 0 0 1632 -1440 -51 0 0 100 0 1 2_DHydT1O 1596 -1383 119 0 0 1632 -1440 -51 0 0 100 0 1 2DHydTlO 1596 .-1383 119 0 0 1632 -1440 -51 0 0 100 0 1 2_DHydTlO 1596 -1383 119 0 0 1632 -1440 -51 0 0 100 0 1 2DHydTIO 1596 -1383 119 0 0 1632 -1440 -51 0 0 100 0 1 2_DHydTlO 1596 -1383 119 0 0 1632 -1440 -51 0 0 100 0 1 2_DHydTlO 1596 -1383 119 0 0 1632 -1440 | ||
Line 712: | Line 700: | ||
-12731 -449 0 0 345 559 5 3Staup29850 | -12731 -449 0 0 345 559 5 3Staup29850 | ||
-639 -19377 -14012 991 0 0 -639 -18926 -14259 -500 0 0 372 621 File No.: 0900530.306-Revision: | -639 -19377 -14012 991 0 0 -639 -18926 -14259 -500 0 0 372 621 File No.: 0900530.306-Revision: | ||
0 Page C-25 of C-40 F0306-01 RO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | 0 Page C-25 of C-40 F0306-01 RO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | ||
(&VeslFatFatlp42) | (&VeslFatFatlp42) | ||
Page 4 06-23-2009 23:04:20 5 3_Staup211491 5 3_Staup213133 5 3_Staup214774 5 3_Staup216416 5 3Staup216452 5 3Staup216488 5 38taup216596 5 3_Staup216784 5 3Staup217289 5 3Staup217973 5 3_Staup218693 5 3_Staup219413 5 3Staup220016 5 3_Staup220026 6 I LFWPIO 6 11 LFWPIO 6 11 LFWP10 6 11 LFWPIO 6 11 LFWP1I 6 11 LFWPlI 6 11-LFWP12 6 11 LFWP12 6 11 LFWP1I3 6 1i LFWPI3 6 11 LFWP13 6 11 LFWPI3 6 11 LFWP14 6 T1-LFWP15 6 11 LFWPO7 6 11 LFWPl9 6 11 LFWP111 6 T1-LFWP1I3 6 11LFWP117 6 11 LFWP122 6 11-LFWP126 6 11 LFWP131 6 11 LFWPI39 6 11 LFWP149 7 11-LFWP260 7 11 LFWP275 7 11 LFWP294 7 11 LFWP2117 7 11 LFWP2145 7 11 LFWP2198 7 11L-LFWP2233 7 11 LFWP2273 7 11 LFWP2312 7 11 LFWP2406 7 11 LFWP2522 7 11LLFWP2709 7 11 LFWP2896 8 1lOLFWP31029 | Page 4 06-23-2009 23:04:20 5 3_Staup211491 5 3_Staup213133 5 3_Staup214774 5 3_Staup216416 5 3Staup216452 5 3Staup216488 5 38taup216596 5 3_Staup216784 5 3Staup217289 5 3Staup217973 5 3_Staup218693 5 3_Staup219413 5 3Staup220016 5 3_Staup220026 6 I LFWPIO 6 11 LFWPIO 6 11 LFWP10 6 11 LFWPIO 6 11 LFWP1I 6 11 LFWPlI 6 11-LFWP12 6 11 LFWP12 6 11 LFWP1I3 6 1i LFWPI3 6 11 LFWP13 6 11 LFWPI3 6 11 LFWP14 6 T1-LFWP15 6 11 LFWPO7 6 11 LFWPl9 6 11 LFWP111 6 T1-LFWP1I3 6 11LFWP117 6 11 LFWP122 6 11-LFWP126 6 11 LFWP131 6 11 LFWPI39 6 11 LFWP149 7 11-LFWP260 7 11 LFWP275 7 11 LFWP294 7 11 LFWP2117 7 11 LFWP2145 7 11 LFWP2198 7 11L-LFWP2233 7 11 LFWP2273 7 11 LFWP2312 7 11 LFWP2406 7 11 LFWP2522 7 11LLFWP2709 7 11 LFWP2896 8 1lOLFWP31029 | ||
Line 722: | Line 710: | ||
-1219-1208-1197-1186-1185-1185-1184-1183-1182-1180-1179-1177-1175-1173-1171-1167-1164-1166-1168-1171-1173-1175-1177-1178-30067-30063-30060-30052-30036-30003-29969-29935-29908-29887-29888-29889-29892-29898-29908-29918-29929-29939-29449-28849-28239-27619-26409-25199-23749-22069-20209-18169-15839-11629-21965-21953-21941-21914-21856-21733-21610-21487-21388-21351-21355-21358-21370-21388-21426-21463-21501-21539-21069-20539-19989-19449-18399-17359-16119-14669-13059-11399-9539-6169-760-760-759-759-757-754-751-748-746-745 | -1219-1208-1197-1186-1185-1185-1184-1183-1182-1180-1179-1177-1175-1173-1171-1167-1164-1166-1168-1171-1173-1175-1177-1178-30067-30063-30060-30052-30036-30003-29969-29935-29908-29887-29888-29889-29892-29898-29908-29918-29929-29939-29449-28849-28239-27619-26409-25199-23749-22069-20209-18169-15839-11629-21965-21953-21941-21914-21856-21733-21610-21487-21388-21351-21355-21358-21370-21388-21426-21463-21501-21539-21069-20539-19989-19449-18399-17359-16119-14669-13059-11399-9539-6169-760-760-759-759-757-754-751-748-746-745 | ||
-745-745-745-746-746-747-748-749-734.-717-699-682-648-614-574-527-475-423-363-249 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0'0 0 0 0 0 O0 0 0 0 0 0 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 530 0 528 0 526 0 523 0 518 0 512 0 504 0 492 0 477 0 458 0 434 0 386 1035 1039 1042 1050 1067 1103 1139 1175 1204 1215 1214 1213 1210 1204 1193 1182 1171 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160-8890 -3774 -172 0 0 354 1160-10519 -5294 -222 0 0 341 1160.-11929 -6589 -263 0 0 335 1160-13999 -8369 -320 0 0 333 1160-15629 -9779 -367 0 0 339 1160-17419 -11369 -422 0 0 355 1160-19119 -12859 -470 0 0 373 1160-20299 -13869 -502 0 0 386 1160 0 0 0 0 File No.: 0900530.306 Revision: | -745-745-745-746-746-747-748-749-734.-717-699-682-648-614-574-527-475-423-363-249 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0'0 0 0 0 0 O0 0 0 0 0 0 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 530 0 528 0 526 0 523 0 518 0 512 0 504 0 492 0 477 0 458 0 434 0 386 1035 1039 1042 1050 1067 1103 1139 1175 1204 1215 1214 1213 1210 1204 1193 1182 1171 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160-8890 -3774 -172 0 0 354 1160-10519 -5294 -222 0 0 341 1160.-11929 -6589 -263 0 0 335 1160-13999 -8369 -320 0 0 333 1160-15629 -9779 -367 0 0 339 1160-17419 -11369 -422 0 0 355 1160-19119 -12859 -470 0 0 373 1160-20299 -13869 -502 0 0 386 1160 0 0 0 0 File No.: 0900530.306 Revision: | ||
0 Page C-26 of C-40 F0306-OIRO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | 0 Page C-26 of C-40 F0306-OIRO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | ||
(&VeslFatFatlp42) | (&VeslFatFatlp42) | ||
Page 5 06-23-2009 23:04:20 11 LFWP31108 1I-LFWP31188 11 LFWP31267 11 LFWP31346 IILFWP31465 11-LFWP31584 11 LFWP31702 11 LFWP31821 11 LFWP32019 11 LFWP32213 11 LFWP32217 11 LFWP32220 11 LFWP32224 11 LFWP32227 11 LFWP32235 11 LFWP42242 11LFWP42250 11 LFWP42259 11 LFWP42271 11 LFWP4 2286 11 LFWP42305 11 LFWP42342 11 LFWP42383 11LFWP42393 11 LFWP42481 11 LFWP42568 11-LFWP42675 11LFWP42808 11_LFWP43072 11 LFWP43337 11 LFWP43602 11 LFWP43777 11 LFWP43952 11 LFWP44127 11LFWP44302 11 LFWP44565 11 LFWP54828 11 LFWP55091 11 LFWP55354 11 LFWP55792 11 LFWP56230 11 LFWP56668 11 LFWP56773 11 LFWP56781 11 LFWP56790 11 LFWP56798 11 LFWP56807 11 LFWP56823 11 LFWP66840 11 LFWP66857 11 LFWP66877 11 LFWP66900-1178-1179-1180-1180-1181-1182-1182-1183-1184-1185-1180-1174-1168-1163-1151-1140 | Page 5 06-23-2009 23:04:20 11 LFWP31108 1I-LFWP31188 11 LFWP31267 11 LFWP31346 IILFWP31465 11-LFWP31584 11 LFWP31702 11 LFWP31821 11 LFWP32019 11 LFWP32213 11 LFWP32217 11 LFWP32220 11 LFWP32224 11 LFWP32227 11 LFWP32235 11 LFWP42242 11LFWP42250 11 LFWP42259 11 LFWP42271 11 LFWP4 2286 11 LFWP42305 11 LFWP42342 11 LFWP42383 11LFWP42393 11 LFWP42481 11 LFWP42568 11-LFWP42675 11LFWP42808 11_LFWP43072 11 LFWP43337 11 LFWP43602 11 LFWP43777 11 LFWP43952 11 LFWP44127 11LFWP44302 11 LFWP44565 11 LFWP54828 11 LFWP55091 11 LFWP55354 11 LFWP55792 11 LFWP56230 11 LFWP56668 11 LFWP56773 11 LFWP56781 11 LFWP56790 11 LFWP56798 11 LFWP56807 11 LFWP56823 11 LFWP66840 11 LFWP66857 11 LFWP66877 11 LFWP66900-1178-1179-1180-1180-1181-1182-1182-1183-1184-1185-1180-1174-1168-1163-1151-1140 | ||
Line 738: | Line 726: | ||
-14417-15097-15648-16199-16740-17696-18686-19694-20034-19804-19514-19205-18885-18285-17766-17276-16736-16120 1042 1046 1057 1077 1109 1143 1178 1201 1229 1254 1259 1268 1279 1290 1316 1339 1362 1385 1407 1426 1442 1454 1399 1387 1242 1144 1066 1013 976 982 994 1004 1016 1029 1043 1069 1107 1146 1186 1236 1268 1296 1310 1318 1328 1339 1348 1361 1373 1382 1390 1395 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0O 0 0 0 0 0 0 0 0O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-1178-1179-1180-1180-1181-1182-1182-1183-1184-1185-1180-1174-1168-1163-1151-1140-1128-1114-1095-1073-1045-991-930-915-924-931 | -14417-15097-15648-16199-16740-17696-18686-19694-20034-19804-19514-19205-18885-18285-17766-17276-16736-16120 1042 1046 1057 1077 1109 1143 1178 1201 1229 1254 1259 1268 1279 1290 1316 1339 1362 1385 1407 1426 1442 1454 1399 1387 1242 1144 1066 1013 976 982 994 1004 1016 1029 1043 1069 1107 1146 1186 1236 1268 1296 1310 1318 1328 1339 1348 1361 1373 1382 1390 1395 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0O 0 0 0 0 0 0 0 0O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-1178-1179-1180-1180-1181-1182-1182-1183-1184-1185-1180-1174-1168-1163-1151-1140-1128-1114-1095-1073-1045-991-930-915-924-931 | ||
-938-947-963-979-995-1006-1016-1027-1037-1053-1069-1084-1100-1126-1152-1178-1185-1175-1165-1155-1145-1126-1107-1087-1065-1039-20999-21659-22199-22689-23419-24139-24859-25659-27059-28499-28074-27548-26993-26428-25317-24277-23217-21979-20525-18855-16939-13587-9861-8971-11519-13205-14409-15242-16258-17023-17999-18670-19340-20021-20712-21588-22313-23029-23755-25032-26418-27845-28249-27758-27206-26655-26124-25151-24308-23516-22666-21730-14469 -521 0 0 394 1160-15019 -539 0 0 402 1160-15449 -553 0 0 410 1160-15869 -567 0 0 418 1160-16489 -588 0 0 430 1160-17109 -609 0 0 442 1160-17709 -629 0 0 454 1160-18339 -648 0 0 466 1160-19379 -682 0 0 486 1160-20449 -716 0 0 506 1160-20066 -704 0 0 505 1155-19593 -688 0 0 503 1150-19100 -672 0 0 502 1145-18617 -656 0 0 500 1140-17671 -625 0 0 495 1130-16805 -597 0 0 491 1120-15952 -569 0 0 485 1109-14958 -536 0 0 478 1096-13805 -498 0 0 468 1079-12497 -455 0 0 455 1058-11005 -406 0 0 439 1032-8479 -321 0 0 405 981-5416 -219 0 0 365 924-4681 -195 0 0 356 910-7035 -271 0 0 334 915-8498 -316 0 0 327 920-9467 -349 0 0 326 926-10172 -374 0 0 329 934-11060 -405 0 0 339 949-11728 -429 0 0 351 964-12537 -454 0 0 363 979-13063 -471 0 0 371 989-13588 -488 0 0 379 999-14114 -505 0 0 387 1009-14640 -522 0 0 395 1019-15299 -544 0 0 407 1034-15858 -563 0 0 419 1049-16406 -582 0 0 431 1064-16955 -601 0 0 443 1079-17890 -632 0 0 463 1104-18835 -663 0 0 483 1129-19819 -695 0 0 503 1154-20149 -706 0 0 508 1160-19720 -692 0 0 507 1151-19251 -676 0 0 505 1142-18803 -661 0 0 502 1132-18364 -647 0 0 500 1123-17577 -621 0 0 494 1105-16920 -599 0 0 488 1086-16323 -579 0 0 482 1068-15696 -559 0 0 474 1047-15013 -536 0 0 464 1021 File No.: 0900530.306 Page C-27 of C-40 Revision: | -938-947-963-979-995-1006-1016-1027-1037-1053-1069-1084-1100-1126-1152-1178-1185-1175-1165-1155-1145-1126-1107-1087-1065-1039-20999-21659-22199-22689-23419-24139-24859-25659-27059-28499-28074-27548-26993-26428-25317-24277-23217-21979-20525-18855-16939-13587-9861-8971-11519-13205-14409-15242-16258-17023-17999-18670-19340-20021-20712-21588-22313-23029-23755-25032-26418-27845-28249-27758-27206-26655-26124-25151-24308-23516-22666-21730-14469 -521 0 0 394 1160-15019 -539 0 0 402 1160-15449 -553 0 0 410 1160-15869 -567 0 0 418 1160-16489 -588 0 0 430 1160-17109 -609 0 0 442 1160-17709 -629 0 0 454 1160-18339 -648 0 0 466 1160-19379 -682 0 0 486 1160-20449 -716 0 0 506 1160-20066 -704 0 0 505 1155-19593 -688 0 0 503 1150-19100 -672 0 0 502 1145-18617 -656 0 0 500 1140-17671 -625 0 0 495 1130-16805 -597 0 0 491 1120-15952 -569 0 0 485 1109-14958 -536 0 0 478 1096-13805 -498 0 0 468 1079-12497 -455 0 0 455 1058-11005 -406 0 0 439 1032-8479 -321 0 0 405 981-5416 -219 0 0 365 924-4681 -195 0 0 356 910-7035 -271 0 0 334 915-8498 -316 0 0 327 920-9467 -349 0 0 326 926-10172 -374 0 0 329 934-11060 -405 0 0 339 949-11728 -429 0 0 351 964-12537 -454 0 0 363 979-13063 -471 0 0 371 989-13588 -488 0 0 379 999-14114 -505 0 0 387 1009-14640 -522 0 0 395 1019-15299 -544 0 0 407 1034-15858 -563 0 0 419 1049-16406 -582 0 0 431 1064-16955 -601 0 0 443 1079-17890 -632 0 0 463 1104-18835 -663 0 0 483 1129-19819 -695 0 0 503 1154-20149 -706 0 0 508 1160-19720 -692 0 0 507 1151-19251 -676 0 0 505 1142-18803 -661 0 0 502 1132-18364 -647 0 0 500 1123-17577 -621 0 0 494 1105-16920 -599 0 0 488 1086-16323 -579 0 0 482 1068-15696 -559 0 0 474 1047-15013 -536 0 0 464 1021 File No.: 0900530.306 Page C-27 of C-40 Revision: | ||
0 F0306-01RO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42.- 12/29/2006 | 0 F0306-01RO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42.- 12/29/2006 | ||
(&VeslFatFatlp42) | (&VeslFatFatlp42) | ||
Page 6 06-23-2009 23:04:20 11_LFWP66927 11_LFWP66959 11LFWP67015 11 -LFWP67083 11 LFWP67166 11 LFWP67193 11 LFWP67199 11 LFWP67205 11 LFWP67223 11 LFWP67253 11 LFWP6731311 LFWP67173 11 LFWP67433 11 LFWP67493 11 LFWP67565 11 LFWP67637 11 -LFWP67787 11 LFWP67902 11 -LFWP68065 11 LFWP68227 11 LFWP68390 11-LFWP68553 11 LFWP68716 11 LFWP68879 11 LFWP69032 11 LFWP69248 11 LFWP69464 11-LFWP69680 11-LFWP69896 11--LFWP710256 11 LFWP710616 11 LFWP710976 11-LFWP711093 11 LFWP711198 11 LFWP711303 11 LFWP711406 11 LFWP'711513 11 LFWP711724 11 LFWP711934 11 LFWP712144 11 LFWP712354 11 LFWP712565 11 LFWP712775 11-LFWP712985 11 LFWP713300 11 LFWP713616 11 LFWP713931 11 LFWP714247 11 LFWP714772 11 LFWP715298 11 LFWP715823 11 LFWP736349 | Page 6 06-23-2009 23:04:20 11_LFWP66927 11_LFWP66959 11LFWP67015 11 -LFWP67083 11 LFWP67166 11 LFWP67193 11 LFWP67199 11 LFWP67205 11 LFWP67223 11 LFWP67253 11 LFWP6731311 LFWP67173 11 LFWP67433 11 LFWP67493 11 LFWP67565 11 LFWP67637 11 -LFWP67787 11 LFWP67902 11 -LFWP68065 11 LFWP68227 11 LFWP68390 11-LFWP68553 11 LFWP68716 11 LFWP68879 11 LFWP69032 11 LFWP69248 11 LFWP69464 11-LFWP69680 11-LFWP69896 11--LFWP710256 11 LFWP710616 11 LFWP710976 11-LFWP711093 11 LFWP711198 11 LFWP711303 11 LFWP711406 11 LFWP'711513 11 LFWP711724 11 LFWP711934 11 LFWP712144 11 LFWP712354 11 LFWP712565 11 LFWP712775 11-LFWP712985 11 LFWP713300 11 LFWP713616 11 LFWP713931 11 LFWP714247 11 LFWP714772 11 LFWP715298 11 LFWP715823 11 LFWP736349 | ||
Line 756: | Line 744: | ||
-493 -17833-466 -18359-439 -18894-412 -19430 | -493 -17833-466 -18359-439 -18894-412 -19430 | ||
-367 -20334-322 -21247-276 -22050-262 -22264-278 -22429-294 -22594-310 -22759-326 -22925-358 -23255-190 -23585-422 -23905-454 -24235-486 -24565-518 -24915-550 -25295-598 -25860-646 -26435-694 -27011-742 -27596-822 -28711-903 -29876-983 -31071-14265 -510 0 0 453 991-13442 -483 0 0 439 957-12153 -435 0 0 414 895-10350 -374 0 0 383 820-8057 -300 0 0 345 730-7509 -281 0 0 333 700-7600 -284 0 0 331 700-7720 -288 0 0 329 700-8080 -298 0 0 326 700-8540 -312 0 0 322 700-9130 -331 0 0 317 700-9480 -343 0 0 314 700-9700 -350 0 0 313 700-9830 -355 0 0 312 700-10131 -365 0 0 313 691-10372 -374 0 0 314 682-10778 -387 0 .0 317 662-11048 -395 0 0 320 648-11399 -407 0 0 325 627-11730 -417 0 0 329 606-12051 -427 0 0 334 585-12352 -437 0 0 338 565-12663 -446 0 0 343 544-12954 -456 0 0 347 523-13261 -465 0 0 351 503-13755 -480 0 0 357 476-14250 -495 0 0 363 448-14754 -511 0 0 369 421-15258 -526 0 0 375 393-16105 -552 0 0 385 347-16962 -578 0 0 395 301-17709 -601 0 0 405 255-17930 -608 0 0 409 240-18026 -611 0 0 412 256-18112 -615 0 0 415 272-18208 -619 0 0 417 288-18303 -622 0 0 420 304-18484 -629 0 0 426 335-18676 -636 0 0 432 367-18858 -644 0 0 438 399-19039 -651 0 0 444 431-19220 -658 0 0 450 463-19412 -665 0 0 455 494-19603 -672 0 0 461 526-19900 -682 0 0 470 574-20187 -693 0 0 479 622-20474 -704 0 0 488 669-20761 -714 0 0 496 717-21460 -738 0 0 511 796-22258 -766 0 0 526 876-23087 -794 0 0 540 955-1063 -33424 -23654 1443 0 0 -1063 -32047-23705 -815 0 0 555 1035 File No.: 0900530.306 Revision: | -367 -20334-322 -21247-276 -22050-262 -22264-278 -22429-294 -22594-310 -22759-326 -22925-358 -23255-190 -23585-422 -23905-454 -24235-486 -24565-518 -24915-550 -25295-598 -25860-646 -26435-694 -27011-742 -27596-822 -28711-903 -29876-983 -31071-14265 -510 0 0 453 991-13442 -483 0 0 439 957-12153 -435 0 0 414 895-10350 -374 0 0 383 820-8057 -300 0 0 345 730-7509 -281 0 0 333 700-7600 -284 0 0 331 700-7720 -288 0 0 329 700-8080 -298 0 0 326 700-8540 -312 0 0 322 700-9130 -331 0 0 317 700-9480 -343 0 0 314 700-9700 -350 0 0 313 700-9830 -355 0 0 312 700-10131 -365 0 0 313 691-10372 -374 0 0 314 682-10778 -387 0 .0 317 662-11048 -395 0 0 320 648-11399 -407 0 0 325 627-11730 -417 0 0 329 606-12051 -427 0 0 334 585-12352 -437 0 0 338 565-12663 -446 0 0 343 544-12954 -456 0 0 347 523-13261 -465 0 0 351 503-13755 -480 0 0 357 476-14250 -495 0 0 363 448-14754 -511 0 0 369 421-15258 -526 0 0 375 393-16105 -552 0 0 385 347-16962 -578 0 0 395 301-17709 -601 0 0 405 255-17930 -608 0 0 409 240-18026 -611 0 0 412 256-18112 -615 0 0 415 272-18208 -619 0 0 417 288-18303 -622 0 0 420 304-18484 -629 0 0 426 335-18676 -636 0 0 432 367-18858 -644 0 0 438 399-19039 -651 0 0 444 431-19220 -658 0 0 450 463-19412 -665 0 0 455 494-19603 -672 0 0 461 526-19900 -682 0 0 470 574-20187 -693 0 0 479 622-20474 -704 0 0 488 669-20761 -714 0 0 496 717-21460 -738 0 0 511 796-22258 -766 0 0 526 876-23087 -794 0 0 540 955-1063 -33424 -23654 1443 0 0 -1063 -32047-23705 -815 0 0 555 1035 File No.: 0900530.306 Revision: | ||
0 Page C-28 of C-40 F0306-0IRO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | 0 Page C-28 of C-40 F0306-0IRO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | ||
(&VeslFatFatlp42) | (&VeslFatFatlp42) | ||
Page 7 06-23-2009 23:04:20 11 LFWP716549 1I-LFWP7T6749 11_LFWP716973 11 LFWP717242 11LFWP717934 11 LFWP718783 11 LFWP719688 11 LFWP721688 11 LFWP723688 11 LFWP725688 11 LFWP726349 11 LFWP726349 11 LFWP726349 11 LFWP726349 11LFWP726349 11-LFWP726349 11 LFWP726350 11 LFWP726350 11 LFW P726350, 11 LFWP726350 11 LFWP726550 11-LFWP726750 11 LFWP726950 11 LFWP727150 11 LFWP727564 11 LFWP728094 11 LFWP729429 11 LFWP731429 11 LFWP733429 11 LFWP735429 11 LFWP736350 11 LFWP736350 11-LFWP736350 11 LFWP736350 11 LFWP736350 11 LFW2736350 11 LFWP736351 11 LFWP736351 11 LFWP736351 11 LFWP736351 11 LFWP736551 | Page 7 06-23-2009 23:04:20 11 LFWP716549 1I-LFWP7T6749 11_LFWP716973 11 LFWP717242 11LFWP717934 11 LFWP718783 11 LFWP719688 11 LFWP721688 11 LFWP723688 11 LFWP725688 11 LFWP726349 11 LFWP726349 11 LFWP726349 11 LFWP726349 11LFWP726349 11-LFWP726349 11 LFWP726350 11 LFWP726350 11 LFW P726350, 11 LFWP726350 11 LFWP726550 11-LFWP726750 11 LFWP726950 11 LFWP727150 11 LFWP727564 11 LFWP728094 11 LFWP729429 11 LFWP731429 11 LFWP733429 11 LFWP735429 11 LFWP736350 11 LFWP736350 11-LFWP736350 11 LFWP736350 11 LFWP736350 11 LFW2736350 11 LFWP736351 11 LFWP736351 11 LFWP736351 11 LFWP736351 11 LFWP736551 | ||
Line 770: | Line 758: | ||
-23165 -798 0 0 548 1035 1448 0 0 -1063 -31447 -23165 -798 0 0 548 1035 1448 0 0 -1063 -31437 -23165 -798 0 0 548 1035 1448 0 0 -1063 -31437 -23165 -797 0 0 548 -1035 1448 0 0 -1063 -31417 -23145 -797 0 0 548 1035" 1448 0 0 -1063 -31357 -23085 -795 0 0 548 1035 1449 0 0 -1062 -31197 -22925 -790 0 0 547 1035 1449 0 0 -1062 -30987 -22715 -783 0 0 547 1035 1451 0 0 -1061 -30747 -22485 -776 0 0 546 1035 1452 0 0 -1061 -30547 -22285 -769 0 0 545 1035 1452 0 0 -1061 -30467 -22205 -767 0 0 545 1035 1443 0 0 -1061 -29757 -21685 -750 0 0 534 1035 1424 0 0 -1061 -29977 -21865 -756 0 0 532 1035 1416 0 0 -1061 -30037 -21925 -758 0 0 532 1035 1412 0 0 -1061 -30057 -21945 1759 0 0 532 1035 1408 0 0 -1061 -30057 -21955 -759 0 0 532 1035 1407 0 0 -1061 -30057 -21955 -760 0 0 532 1035 1406 0 0 -1061 -30057 -21955 -760 0 0 532 1035 1406 0 0 -1061 -30047 -21955 -760 0 0 532 1035 1406 0 0 -1061 -30047 -21955 -760 0 0 532 1035 1406 0 0 -1061 -30047 -21955 -760 0 0 532 1035 1406 0 0 -1061 -30047 -21955 -760 0 0 532 1035 1406 0 0 -1061 -30047 -21955 -760 0 0 532 1035File No.: | -23165 -798 0 0 548 1035 1448 0 0 -1063 -31447 -23165 -798 0 0 548 1035 1448 0 0 -1063 -31437 -23165 -798 0 0 548 1035 1448 0 0 -1063 -31437 -23165 -797 0 0 548 -1035 1448 0 0 -1063 -31417 -23145 -797 0 0 548 1035" 1448 0 0 -1063 -31357 -23085 -795 0 0 548 1035 1449 0 0 -1062 -31197 -22925 -790 0 0 547 1035 1449 0 0 -1062 -30987 -22715 -783 0 0 547 1035 1451 0 0 -1061 -30747 -22485 -776 0 0 546 1035 1452 0 0 -1061 -30547 -22285 -769 0 0 545 1035 1452 0 0 -1061 -30467 -22205 -767 0 0 545 1035 1443 0 0 -1061 -29757 -21685 -750 0 0 534 1035 1424 0 0 -1061 -29977 -21865 -756 0 0 532 1035 1416 0 0 -1061 -30037 -21925 -758 0 0 532 1035 1412 0 0 -1061 -30057 -21945 1759 0 0 532 1035 1408 0 0 -1061 -30057 -21955 -759 0 0 532 1035 1407 0 0 -1061 -30057 -21955 -760 0 0 532 1035 1406 0 0 -1061 -30057 -21955 -760 0 0 532 1035 1406 0 0 -1061 -30047 -21955 -760 0 0 532 1035 1406 0 0 -1061 -30047 -21955 -760 0 0 532 1035 1406 0 0 -1061 -30047 -21955 -760 0 0 532 1035 1406 0 0 -1061 -30047 -21955 -760 0 0 532 1035 1406 0 0 -1061 -30047 -21955 -760 0 0 532 1035File No.: | ||
0900530.306 Revision: | 0900530.306 Revision: | ||
0 Page C-29 of C-40 F0306-01 R0 Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | 0 Page C-29 of C-40 F0306-01 R0 Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | ||
(&VeslFatFatlp42) | (&VeslFatFatlp42) | ||
Page 8 06-23-2009 23:04:20 13 11 LFWP846387 | Page 8 06-23-2009 23:04:20 13 11 LFWP846387 | ||
Line 805: | Line 793: | ||
-23505 -809 0 0 556 1035-1063 -31837 -23495 -808 0 0 556 1035-1063 -31837 -23485 -808 0 0 556 1035-1063 -31837 -23485 -808 0 0 556 1035-1063 -31837 -23485 -808 0 0 556 1035-1063 -31837 -23485 -808 0 0 556 1035-1063 -31837 | -23505 -809 0 0 556 1035-1063 -31837 -23495 -808 0 0 556 1035-1063 -31837 -23485 -808 0 0 556 1035-1063 -31837 -23485 -808 0 0 556 1035-1063 -31837 -23485 -808 0 0 556 1035-1063 -31837 -23485 -808 0 0 556 1035-1063 -31837 | ||
-23485 -808 0 0 556 1035 File No.: 0900530.306 Revision: | -23485 -808 0 0 556 1035 File No.: 0900530.306 Revision: | ||
0 Page C-30 of C-40 F0306-OIRO Structural lntegrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | 0 Page C-30 of C-40 F0306-OIRO Structural lntegrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | ||
(&VeslFatFatlp42) | (&VeslFatFatlp42) | ||
Page 9 06-23-2009 15 13 ROP25971 -1063 -33274 | Page 9 06-23-2009 15 13 ROP25971 -1063 -33274 | ||
Line 861: | Line 849: | ||
-21984File No.: | -21984File No.: | ||
0900530.306 Revision: | 0900530.306 Revision: | ||
0 23:04:20 1473 0 0 -1063 -31837 1473 0 0 -1063 -31837 1473 0 0 -1063 -31837 1473 0 0 -1063 -31837 1473 0 0 -1063 -31837 1473 0 0 -1063 -31837 1473 0 0 -1063 -31827 1473 0 0 -1063 -31807 1473 0 0 -1063 -31727 1473 0 0 -1063 -31627 1474 0 0 -1063 -31517 1474 0 0 -1062 -31427 1474 0 0 -1062 -31387 1467 0 0 -1063 -31297 1457 0 0 -1063 -31407 1453 0 0 -1063 -31437 1451 0 0 -1063 -31447 1449 0 0 -1063 -31447 1448 0 0 -1063 -31447 1448 0 0 -1063 -31447 1448 0 0 -1063 -31447 1448 0 0 -1063 -31447 1448 0 0 -1063 -31447 1448 0 0 -1063 -31447 1448 0 0 -1063 -31447 1448 0 0 -1063 -31437 1448 0 0 -1063 -31437 1448 0, 0 -1063 -31417 1448 -0 0 -1063 -31357 1449 0 0 -1062 -31197 1449 0 0 -1062 -30987 1451 0 0 -1061 -30747 1452 0 0 -1061 -30547 1452 0 0 -1061 -30467 1443 0 0 -1061 -29757 1424 0 0 -1061 -29977 1416 0 0 -1061 -30037 1412 0 0 -1061 -30057 1408 0 0 -1061 -30057 1407 0 0 -1061 -30057 1406 0 0 -1061 -30057 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047-23485 -808 0 0-23485 -806 0 0-23485 -608 0 0-23485 -808 0 0-23485 -808 0 0-23475 -808 0 0-23475 -808 0 0-23445 -807 0 0-23365 -804 0 0-23275 -801 0 0-23165 -798 0 0-23075 -795 0 0-23035 -794 0 0-23035 -793 0 0-23125 -796 0 0-23155 -797 0 0-23155 -797 0 0-23165 -798 0 0-23165 -798 0 0-23165 -798 0 0-23165 -798 0 0-23165 -798 0 0-23165 -798 0 0-23165 -798 0 0-23165 -798 0 0-23165 -798 0 0-23165 -797 0 0-23145 -797 0 0-23085 -795 0 0-22925 -790 0 0-22715 -783 0 0-22485 -776 0 0-22285 -769 0 0-22205 -767 0 0-21685 -750 0 0-21865 -756 0 0-21925 -758 0 0-21945 -759 0 0-21955 -759 0 0-21955 -760 0 0-21955 -760 0 0-21955 -760 0 0-21955 -760 0 0-21955 -760 0 0-21955 -760 0 0-21955 -760 0 0-21955 -760 0 0-21955 -760 0 0-21955 -760 0 0-21955 -760 0 0 721955 -760 0 0-21955 -760 0 0 556 1035 556 1035 556 1035 556 1035556 1035556 1035 556 1035556 1035 555 1035 555 1035 555 1035555 1035 554 1035 549 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 547 1035 547 1035 546 1035545 1035545 1035 534 1035532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 Page C-31 of C-40 F0306-01RO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | 0 23:04:20 1473 0 0 -1063 -31837 1473 0 0 -1063 -31837 1473 0 0 -1063 -31837 1473 0 0 -1063 -31837 1473 0 0 -1063 -31837 1473 0 0 -1063 -31837 1473 0 0 -1063 -31827 1473 0 0 -1063 -31807 1473 0 0 -1063 -31727 1473 0 0 -1063 -31627 1474 0 0 -1063 -31517 1474 0 0 -1062 -31427 1474 0 0 -1062 -31387 1467 0 0 -1063 -31297 1457 0 0 -1063 -31407 1453 0 0 -1063 -31437 1451 0 0 -1063 -31447 1449 0 0 -1063 -31447 1448 0 0 -1063 -31447 1448 0 0 -1063 -31447 1448 0 0 -1063 -31447 1448 0 0 -1063 -31447 1448 0 0 -1063 -31447 1448 0 0 -1063 -31447 1448 0 0 -1063 -31447 1448 0 0 -1063 -31437 1448 0 0 -1063 -31437 1448 0, 0 -1063 -31417 1448 -0 0 -1063 -31357 1449 0 0 -1062 -31197 1449 0 0 -1062 -30987 1451 0 0 -1061 -30747 1452 0 0 -1061 -30547 1452 0 0 -1061 -30467 1443 0 0 -1061 -29757 1424 0 0 -1061 -29977 1416 0 0 -1061 -30037 1412 0 0 -1061 -30057 1408 0 0 -1061 -30057 1407 0 0 -1061 -30057 1406 0 0 -1061 -30057 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047-23485 -808 0 0-23485 -806 0 0-23485 -608 0 0-23485 -808 0 0-23485 -808 0 0-23475 -808 0 0-23475 -808 0 0-23445 -807 0 0-23365 -804 0 0-23275 -801 0 0-23165 -798 0 0-23075 -795 0 0-23035 -794 0 0-23035 -793 0 0-23125 -796 0 0-23155 -797 0 0-23155 -797 0 0-23165 -798 0 0-23165 -798 0 0-23165 -798 0 0-23165 -798 0 0-23165 -798 0 0-23165 -798 0 0-23165 -798 0 0-23165 -798 0 0-23165 -798 0 0-23165 -797 0 0-23145 -797 0 0-23085 -795 0 0-22925 -790 0 0-22715 -783 0 0-22485 -776 0 0-22285 -769 0 0-22205 -767 0 0-21685 -750 0 0-21865 -756 0 0-21925 -758 0 0-21945 -759 0 0-21955 -759 0 0-21955 -760 0 0-21955 -760 0 0-21955 -760 0 0-21955 -760 0 0-21955 -760 0 0-21955 -760 0 0-21955 -760 0 0-21955 -760 0 0-21955 -760 0 0-21955 -760 0 0-21955 -760 0 0 721955 -760 0 0-21955 -760 0 0 556 1035 556 1035 556 1035 556 1035556 1035556 1035 556 1035556 1035 555 1035 555 1035 555 1035555 1035 554 1035 549 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 547 1035 547 1035 546 1035545 1035545 1035 534 1035532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 Page C-31 of C-40 F0306-01RO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | ||
(&VeslFatFatlp42) | (&VeslFatFatlp42) | ||
Page 10 06-23-2009 23:04:20 16 13 ROP333118 -1061 -31394 | Page 10 06-23-2009 23:04:20 16 13 ROP333118 -1061 -31394 | ||
Line 904: | Line 892: | ||
-1055 -30784 -21424 1413 0 0 -1055 -27057 | -1055 -30784 -21424 1413 0 0 -1055 -27057 | ||
-18985 -663 0 0 524 1035 File No.: 0900530.306 Page C-32 of C-40 Revision: | -18985 -663 0 0 524 1035 File No.: 0900530.306 Page C-32 of C-40 Revision: | ||
0 F0306-OIRO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | 0 F0306-OIRO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | ||
(&VeslFatFatlp42) | (&VeslFatFatlp42) | ||
Page 11 06-23-2009 23:04:20 22 17_ImpST21 | Page 11 06-23-2009 23:04:20 22 17_ImpST21 | ||
Line 960: | Line 948: | ||
-822 0 0 556 874 0 -751 -32131 -24556 -834 0 0 556 722 0 -597 -32276 -25083 -847 0 0 556 567 0 -443 -32422 -25610 -860 0 0 556 413 0 -237 -32616 -26317 | -822 0 0 556 874 0 -751 -32131 -24556 -834 0 0 556 722 0 -597 -32276 -25083 -847 0 0 556 567 0 -443 -32422 -25610 -860 0 0 556 413 0 -237 -32616 -26317 | ||
-878 0 0 556 206 0 32810 -27020 -895 0 0 556 0 0 32310 -26570 -880 0 0 554 0 0 31800 -26130 -866 0 0 551 0 0 31260 -25670 -851 0 0 548 0 0 30710 -25210 -836 0 0 545 0 0 29670 -24290 -806 0 0 537 0 0 28670 -23430 -779 0 0 530 0 0 27730 -22610 -752 0 0 522 0 0 26710 -21710 -724 0 0 512 0 File No.: 0900530.306 Page C-33 of C-40 Revision: | -878 0 0 556 206 0 32810 -27020 -895 0 0 556 0 0 32310 -26570 -880 0 0 554 0 0 31800 -26130 -866 0 0 551 0 0 31260 -25670 -851 0 0 548 0 0 30710 -25210 -836 0 0 545 0 0 29670 -24290 -806 0 0 537 0 0 28670 -23430 -779 0 0 530 0 0 27730 -22610 -752 0 0 522 0 0 26710 -21710 -724 0 0 512 0 File No.: 0900530.306 Page C-33 of C-40 Revision: | ||
0 F0306-01 R0 Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | 0 F0306-01 R0 Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | ||
(&VeslFatFatlp42) | (&VeslFatFatlp42) | ||
Page 12 06-23-2009 23:04:20 25 21_ShDw26337 26 21_ShDw36373 26 21 ShDw36414 26 21 ShDw36485 26 21-ShDw36567 26 21 ShDw36661 26 21 ShDw36756 26 21 ShDw36922-26 21 ShDw37087 26 21 ShDw3 7 253 26 21 ShDw37418 26 21 ShDw37750 26 21 ShDw38081 26 21-ShDw38412 26 21 ShDw38743 26 21 ShDw39074 26 21 ShDw39406 26 21 ShDw39737 26 21 ShDw310234 26 21 ShDw310730 26 216ShDw31l227 26 21 ShDw3l1724 26 21 ShDw312552 26 21 ShDw313380 26 21 ShDw314208 27 21 ShDw415036 27 21-ShDw415072 | Page 12 06-23-2009 23:04:20 25 21_ShDw26337 26 21_ShDw36373 26 21 ShDw36414 26 21 ShDw36485 26 21-ShDw36567 26 21 ShDw36661 26 21 ShDw36756 26 21 ShDw36922-26 21 ShDw37087 26 21 ShDw3 7 253 26 21 ShDw37418 26 21 ShDw37750 26 21 ShDw38081 26 21-ShDw38412 26 21 ShDw38743 26 21 ShDw39074 26 21 ShDw39406 26 21 ShDw39737 26 21 ShDw310234 26 21 ShDw310730 26 216ShDw31l227 26 21 ShDw3l1724 26 21 ShDw312552 26 21 ShDw313380 26 21 ShDw314208 27 21 ShDw415036 27 21-ShDw415072 | ||
Line 1,000: | Line 988: | ||
-1562 -378 3752-1562 -378 3752-1562 -378 3752 119 119 119 119 119 119 119 119 119 212 212 212 212 212 212 212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0File No.: | -1562 -378 3752-1562 -378 3752-1562 -378 3752 119 119 119 119 119 119 119 119 119 212 212 212 212 212 212 212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0File No.: | ||
0900530.306 Page C-34 of C-40 Revision: | 0900530.306 Page C-34 of C-40 Revision: | ||
0 F0306-OIRO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | 0 F0306-OIRO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | ||
(&VeslFatFatlp42) | (&VeslFatFatlp42) | ||
Page 13 06-23-2009 23:04:20 29 29 30 2 4_Hydro22 | Page 13 06-23-2009 23:04:20 29 29 30 2 4_Hydro22 | ||
Line 1,006: | Line 994: | ||
-1562 -378 24Hydro32 1596 3752 3752-1383 212 212 119 0 0 0 0 0 0-1562 -160-1562 -160-2 -1632 3904 3904-1440 81 81-51 0 0 100 0 0 100 0 0 100 1565 1565 0 Ordered Input E-corrected Stress Intensities are from: Stress Input (psi. -Salt w/E-modulus correction): | -1562 -378 24Hydro32 1596 3752 3752-1383 212 212 119 0 0 0 0 0 0-1562 -160-1562 -160-2 -1632 3904 3904-1440 81 81-51 0 0 100 0 0 100 0 0 100 1565 1565 0 Ordered Input E-corrected Stress Intensities are from: Stress Input (psi. -Salt w/E-modulus correction): | ||
# Eventl # Event 2 Sn 25 21 ShDw2 and 29 24Hydro2 35314 2 2DHydT2 and 25 21 _ShDw2 34759 22 17ImpST2 and 25 21 ShDw2 26548 20 14 _SRVB4 and 25 21 ShDw2 34070 15 13-ROP2 and 29 24lHydro2 33811 5 3 Staup2 and 29 2414ydro2 33635 12 11 LFWP7 and 29 241Hydro2 33635 24 21 -ShDwI and 29 24 Hydro2 33652 23 17ImpST3 and 29 24IHydro2 32232 2 201HydT2 and 15 13 ROP2 33256 2. 2DHydT2 and 5 3_Staup2 33081 2 2DHydT2 and 12 11_LFWP7 33081 2 2DHydT2 and 24 21_ShDwl 33097 19 14 SRVB3 and 25 21 ShDw2 32993 2 2DHydT2 and 23 17iImpST3 31677 25 21 ShDw2 and 27 21_ShDw4 32587 3 2-lDHydT3 and 25 21_ShDw2 32600 4 3 Staupl and 25 21_ShDw2 32557 1 2DHydTl and 25 21_ShDw2 32557 25 21 ShDw2 and 28 24Hydrol 32557 25 21_ShDw2 and 30 241Hydro3 32557 15 13 ROP2 and 22 17ImpST2 25041 15 135ROP2 and 20 14 _SRVB4 32570 5 3Staup2 and 22 17_ImpST2 24860 12 I LFWP7 and 22 17ImpST2 24860 5 3 Staup2 and 20 14_SRVB4 32395 12 1Y LFWP7 and 20 14 SRVB4 32395 22 17ImpST2 and 24 21_ShDwl 24871 20 14 SRV34 and 24 21_ShDwl 32412 22 17ImpST2 and 23 17_ImpST3 23500 20 14 _SRV4 and 23 17ImpST3 30987 17 14 SRVBI and 29 24 Hydro2 31627 6 11 -LFWP1 and 29 24lHydro2 31627 14 135ROP1 and 29 24lHydro2 31627 21 17iImpSTI and 29 24_Hydro2 31627 13 11 LFWP8 and 29 24 Hydro2 31607 16 13 ROP3 and 29 24_Hydro2 31607 5 3_Staup2 and 25 21_ShDw2 31561 15 13 ROP2 and 19 145SRVB3 31492 25 21 ShDw2 and 26 21 ShDw3 31227 pl-i_304L.ORD Ke 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Salt 18983 18643 18152 18149 18110 17981 17981 17966 17831 17771 17642 17642 17627 17556 17494 17349 17323 17296 17296 17296 17296 17279 17277 17150 17150 17148 17148 17135 17133 17006 17004 16813 16807 16807 16807 16796 16796 16707 16684 16605 A File No.: 0900530.306 Revision: | # Eventl # Event 2 Sn 25 21 ShDw2 and 29 24Hydro2 35314 2 2DHydT2 and 25 21 _ShDw2 34759 22 17ImpST2 and 25 21 ShDw2 26548 20 14 _SRVB4 and 25 21 ShDw2 34070 15 13-ROP2 and 29 24lHydro2 33811 5 3 Staup2 and 29 2414ydro2 33635 12 11 LFWP7 and 29 241Hydro2 33635 24 21 -ShDwI and 29 24 Hydro2 33652 23 17ImpST3 and 29 24IHydro2 32232 2 201HydT2 and 15 13 ROP2 33256 2. 2DHydT2 and 5 3_Staup2 33081 2 2DHydT2 and 12 11_LFWP7 33081 2 2DHydT2 and 24 21_ShDwl 33097 19 14 SRVB3 and 25 21 ShDw2 32993 2 2DHydT2 and 23 17iImpST3 31677 25 21 ShDw2 and 27 21_ShDw4 32587 3 2-lDHydT3 and 25 21_ShDw2 32600 4 3 Staupl and 25 21_ShDw2 32557 1 2DHydTl and 25 21_ShDw2 32557 25 21 ShDw2 and 28 24Hydrol 32557 25 21_ShDw2 and 30 241Hydro3 32557 15 13 ROP2 and 22 17ImpST2 25041 15 135ROP2 and 20 14 _SRVB4 32570 5 3Staup2 and 22 17_ImpST2 24860 12 I LFWP7 and 22 17ImpST2 24860 5 3 Staup2 and 20 14_SRVB4 32395 12 1Y LFWP7 and 20 14 SRVB4 32395 22 17ImpST2 and 24 21_ShDwl 24871 20 14 SRV34 and 24 21_ShDwl 32412 22 17ImpST2 and 23 17_ImpST3 23500 20 14 _SRV4 and 23 17ImpST3 30987 17 14 SRVBI and 29 24 Hydro2 31627 6 11 -LFWP1 and 29 24lHydro2 31627 14 135ROP1 and 29 24lHydro2 31627 21 17iImpSTI and 29 24_Hydro2 31627 13 11 LFWP8 and 29 24 Hydro2 31607 16 13 ROP3 and 29 24_Hydro2 31607 5 3_Staup2 and 25 21_ShDw2 31561 15 13 ROP2 and 19 145SRVB3 31492 25 21 ShDw2 and 26 21 ShDw3 31227 pl-i_304L.ORD Ke 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Salt 18983 18643 18152 18149 18110 17981 17981 17966 17831 17771 17642 17642 17627 17556 17494 17349 17323 17296 17296 17296 17296 17279 17277 17150 17150 17148 17148 17135 17133 17006 17004 16813 16807 16807 16807 16796 16796 16707 16684 16605 A File No.: 0900530.306 Revision: | ||
0 Page C-35 of C-40 F0306-01 R0 Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12129/2006 | 0 Page C-35 of C-40 F0306-01 R0 Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12129/2006 | ||
(&VesIFatFatlp42I Page 14 06-23-2009 23:04:20 Stress Input (psi.8 Eventl 5 3Staup2 12 11_LFWP7 19 14 SRVB3 15 13-ROP2 2 2DHydT2 2 2DHydT2 2 2DHydT2 2 2DHydT2 2 2DHydT2 2 2DHydT2 3 2_DHydT3 4 3Staupl 15 13 ROP2 15 13ROP2 1 2DHydTl 19 14 SRVB3 5 3Staup2 12 11 LFWP7 24 21 ShDwl 3 2DHydT3 3 2DHydT3 3 2DHydT3 4 3Staupl 5 3Staup2 5 3Staup2 12 11 LFWP7 12 11-LFWP7 1 2DHydTl 4 3Staupl I 2DHydTl 4 3_Staupl 1 2DHydTI 24 21 ShDwl 24 21-ShDwl 23 17 ImpST3 3 2DHydT3 4 3Staupl 1 2DHydTl 23 17 ImpST3 23 17ImpST3 17 14 SRVB1 17 14 SRVBl 6 11-LFWPI 14 13 ROPI 21 17IImpSTl 14 13 ROP1 6 11 LFWPI 20 14 SRVB4 13 11 LFWP8-Salt and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and w/E-modulus correction): | (&VesIFatFatlp42I Page 14 06-23-2009 23:04:20 Stress Input (psi.8 Eventl 5 3Staup2 12 11_LFWP7 19 14 SRVB3 15 13-ROP2 2 2DHydT2 2 2DHydT2 2 2DHydT2 2 2DHydT2 2 2DHydT2 2 2DHydT2 3 2_DHydT3 4 3Staupl 15 13 ROP2 15 13ROP2 1 2DHydTl 19 14 SRVB3 5 3Staup2 12 11 LFWP7 24 21 ShDwl 3 2DHydT3 3 2DHydT3 3 2DHydT3 4 3Staupl 5 3Staup2 5 3Staup2 12 11 LFWP7 12 11-LFWP7 1 2DHydTl 4 3Staupl I 2DHydTl 4 3_Staupl 1 2DHydTI 24 21 ShDwl 24 21-ShDwl 23 17 ImpST3 3 2DHydT3 4 3Staupl 1 2DHydTl 23 17 ImpST3 23 17ImpST3 17 14 SRVB1 17 14 SRVBl 6 11-LFWPI 14 13 ROPI 21 17IImpSTl 14 13 ROP1 6 11 LFWPI 20 14 SRVB4 13 11 LFWP8-Salt and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and w/E-modulus correction): | ||
# Event 2 19 14 _SRVB3 3 19 14 _SRVB3 3 24 21_ShDwl 3 27 21 ShDw4 3 17 14 _SRVBI 3 21 17 ImpSTl 3 6 11 LFWPI 3 14 13 POI 316 13 ROP3 3 13 11 LFWP8 3 15 13 ROP2 315 13 ROP2 3 28 24Hydrol 3 30 24Hydro3 3 15 13 ROP2 3 23 17IImpST3 2 27 21 ShDw4 3 27 21 ShDw4 3 27 21 ShDw4 3 12 11 LFWP7 3 5 3_Staup2 3 24 21 ShDwl 3 5 3_Staup2 3 28 24lHydrol 3 30 24_Hydro3 3 28 24Hydrol 3 30 24Hydro3 3 12 ii1LFWP7 3 12 11_LFWP7 3 5 3_Staup2 '3 24 21 ShDwl 3 24 21_ShDwi 3 28 24 Hydrol 3 30 24 Hydro3 3 27 21 ShDw4 2 23 17IImpST3 2 23 17_ImpST3 2 23 17ImpST3 2 28 24IHydrol 2 30 24Hydro3 2 22 17ImpST2 2 20 14 _SRVB4 3 22 17_2mpST2 2 22 17ImpST2 2 22 17ImpST2 2 20 14 SRV54 3 20 14 SRVB4 3 21 17OmpSTl 3 22 17_ImpST2 2 Sn 1317 1317 1334 1085 1073 1073 1073 1073 1053 1053 1100 1056 1056 1056 1056 9911 0910 0910 0927 0924 0924 0942 0881 0881 0881 0881 0881 0881 0881 0881 0898 0898 0898 0898 9504 9518 9474 9474 9-474 9474 2858 0388 2858 2858 2858 0388 0388 0388 2837 Ke 1.0000 i.0ooo 1.0000 1.0000 1. 0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Salt 16555 16555 16540 16477 16475 16469 16469 16469 16458 16458 16451 16424 16424 16424 16424 16416 16347 16347 16332 16322 16322 16307 16295 16295 16295 16295 16295 16295 16295 16295 16280 16280 16280 16280 16210 16184 16157 16157 16157 16157 15985 15983 15980 15980 15980 15978 15978 15978 15969 File No.: 0900530.306 Revision: | # Event 2 19 14 _SRVB3 3 19 14 _SRVB3 3 24 21_ShDwl 3 27 21 ShDw4 3 17 14 _SRVBI 3 21 17 ImpSTl 3 6 11 LFWPI 3 14 13 POI 316 13 ROP3 3 13 11 LFWP8 3 15 13 ROP2 315 13 ROP2 3 28 24Hydrol 3 30 24Hydro3 3 15 13 ROP2 3 23 17IImpST3 2 27 21 ShDw4 3 27 21 ShDw4 3 27 21 ShDw4 3 12 11 LFWP7 3 5 3_Staup2 3 24 21 ShDwl 3 5 3_Staup2 3 28 24lHydrol 3 30 24_Hydro3 3 28 24Hydrol 3 30 24Hydro3 3 12 ii1LFWP7 3 12 11_LFWP7 3 5 3_Staup2 '3 24 21 ShDwl 3 24 21_ShDwi 3 28 24 Hydrol 3 30 24 Hydro3 3 27 21 ShDw4 2 23 17IImpST3 2 23 17_ImpST3 2 23 17ImpST3 2 28 24IHydrol 2 30 24Hydro3 2 22 17ImpST2 2 20 14 _SRVB4 3 22 17_2mpST2 2 22 17ImpST2 2 22 17ImpST2 2 20 14 SRV54 3 20 14 SRVB4 3 21 17OmpSTl 3 22 17_ImpST2 2 Sn 1317 1317 1334 1085 1073 1073 1073 1073 1053 1053 1100 1056 1056 1056 1056 9911 0910 0910 0927 0924 0924 0942 0881 0881 0881 0881 0881 0881 0881 0881 0898 0898 0898 0898 9504 9518 9474 9474 9-474 9474 2858 0388 2858 2858 2858 0388 0388 0388 2837 Ke 1.0000 i.0ooo 1.0000 1.0000 1. 0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Salt 16555 16555 16540 16477 16475 16469 16469 16469 16458 16458 16451 16424 16424 16424 16424 16416 16347 16347 16332 16322 16322 16307 16295 16295 16295 16295 16295 16295 16295 16295 16280 16280 16280 16280 16210 16184 16157 16157 16157 16157 15985 15983 15980 15980 15980 15978 15978 15978 15969 File No.: 0900530.306 Revision: | ||
0 Page C-36 of C-40 F0306-01 RO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | 0 Page C-36 of C-40 F0306-01 RO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | ||
(&VeslFatFatlp42) | (&VeslFatFatlp42) | ||
Page 15 06-23-2009 23:04:20 Stress Input (psi. -Salt# Eventl16 13 ROP3 and 13 II-LFWP8 and 16 13-ROP3 and5 3 Staup2 and 8 1i LFWP3 and 15 13 ROP2 and 5 3lStaup2 and 5 3Staup2 and 10 11 LFWP5 and 12 11 LFWP7 and 5 3_Staup2 and 24 21 ShDwl and 5 3_Staup2 and 23 17_ImpST3 and 2 2_HydT2 and17 14 SRVB1 and 14 13-ROPI and 6 11 LFWPI and19 14 SRVB3 and 13 T11LFWP8 and 16 13-ROP3 and 2 2DHydT2 and17 14 SRVBI and 14 13 ROPI and 6 11 LFWPI and 21 17tImpSTl and 13 11 LFWP8 and 16 13_ROP3 and 3 2DHydT3 and 3 2DHydT3 and 3 2DHydT3 and 3 2DHydT3 and 3 2DHydT3 and 3 2DHydT3 and 1 2DHydTl and17 14 SRVBI and 17 14 SRVB1 and 4 3Staupl and 14 13 ROPI and 14 13_ROPI and 4 3Staupl and 6 31 LFWPI and 4 3Staupl and 6 11 LFWP1 and 1 2DHydT1 and 21 17_ImpSTl and 21 17 ImpSTI and 1 2_DHydTl and 1 2DHydTl and File No.: 0900530.306 Revision: | Page 15 06-23-2009 23:04:20 Stress Input (psi. -Salt# Eventl16 13 ROP3 and 13 II-LFWP8 and 16 13-ROP3 and5 3 Staup2 and 8 1i LFWP3 and 15 13 ROP2 and 5 3lStaup2 and 5 3Staup2 and 10 11 LFWP5 and 12 11 LFWP7 and 5 3_Staup2 and 24 21 ShDwl and 5 3_Staup2 and 23 17_ImpST3 and 2 2_HydT2 and17 14 SRVB1 and 14 13-ROPI and 6 11 LFWPI and19 14 SRVB3 and 13 T11LFWP8 and 16 13-ROP3 and 2 2DHydT2 and17 14 SRVBI and 14 13 ROPI and 6 11 LFWPI and 21 17tImpSTl and 13 11 LFWP8 and 16 13_ROP3 and 3 2DHydT3 and 3 2DHydT3 and 3 2DHydT3 and 3 2DHydT3 and 3 2DHydT3 and 3 2DHydT3 and 1 2DHydTl and17 14 SRVBI and 17 14 SRVB1 and 4 3Staupl and 14 13 ROPI and 14 13_ROPI and 4 3Staupl and 6 31 LFWPI and 4 3Staupl and 6 11 LFWP1 and 1 2DHydT1 and 21 17_ImpSTl and 21 17 ImpSTI and 1 2_DHydTl and 1 2DHydTl and File No.: 0900530.306 Revision: | ||
0 w/E-22 20 20 15 29 26 12 24 29 26 26 26 23 26 8 19 19-19 21 19 19 10 27 27 27 27 27 27 17 6 21 14 13 16 17 28 30 17 28 30 14 28 21 30 14 28 30 6 21 modulus correction): | 0 w/E-22 20 20 15 29 26 12 24 29 26 26 26 23 26 8 19 19-19 21 19 19 10 27 27 27 27 27 27 17 6 21 14 13 16 17 28 30 17 28 30 14 28 21 30 14 28 30 6 21 modulus correction): | ||
Event 2 17ImpST2 14_SRVB4 14 SRVB4 13-ROP2 24_Hydro2 21 ShDw3 11LFWP7 21ShDwl 24Hydro2 21 ShDw3 21-ShDw3 21_ShDw3 170ImpST3 21 ShDw3 11 LFWP3 14-SRVB3 14-SRVB3 14 SRVB3 17ImpSTI 14 SRVB3 14-SRVB3 11 LFWP5 21 ShDw4 21_ShDw4 21_ShDw4 21 ShDw4 21 ShDw4 21_ShDw4 14 SRVBI 11_LFWPI 17ImpSTl 13 ROPI 11 LFWPS 13 ROP3 14 SRVBI 24Hydrol 24Hydro3 14_SRVBI 24Hydrol 24Hydro3 13_ROPI 24Hydrol 17ImpSTl" 24Hydro3 13_ROPI 24jydrol 24Hydro3 11 LFWP1 17 ImpSTl Sn 22837 30369 30369 30060 29550 29725 29885 29902 29468 29550 29550 29567 28478 28145 28995 29309 29309 29309 29309 29290 29290 28913 28903 28903 28903 28903 28883 28883 28917 28917 28917 28917 28988 28898 28874 28874 28874 28874 28874 28874 28874 28874 28874 28874 28874 28874 28874 28874 28874 Ke 1.0000 1.0000 1.0000 1.0000 1.0020 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 i.0000 Salt 15969 15967 15967 15836 15792 15734 15706 15691 15660 15604 15604 15589 15573 15472 15456 15393 15387 15387 15387 15376 15376 15324 15186 15181 15181 15181 15170 15170 15161 15155 15155 15155 15144 15144 15134 15134 15134 15134 15128 15128 15128 15128 15128 15128 15128 15128 15128 15128 15128 Page C-37 of C-40 F0306-OIRO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | Event 2 17ImpST2 14_SRVB4 14 SRVB4 13-ROP2 24_Hydro2 21 ShDw3 11LFWP7 21ShDwl 24Hydro2 21 ShDw3 21-ShDw3 21_ShDw3 170ImpST3 21 ShDw3 11 LFWP3 14-SRVB3 14-SRVB3 14 SRVB3 17ImpSTI 14 SRVB3 14-SRVB3 11 LFWP5 21 ShDw4 21_ShDw4 21_ShDw4 21 ShDw4 21 ShDw4 21_ShDw4 14 SRVBI 11_LFWPI 17ImpSTl 13 ROPI 11 LFWPS 13 ROP3 14 SRVBI 24Hydrol 24Hydro3 14_SRVBI 24Hydrol 24Hydro3 13_ROPI 24Hydrol 17ImpSTl" 24Hydro3 13_ROPI 24jydrol 24Hydro3 11 LFWP1 17 ImpSTl Sn 22837 30369 30369 30060 29550 29725 29885 29902 29468 29550 29550 29567 28478 28145 28995 29309 29309 29309 29309 29290 29290 28913 28903 28903 28903 28903 28883 28883 28917 28917 28917 28917 28988 28898 28874 28874 28874 28874 28874 28874 28874 28874 28874 28874 28874 28874 28874 28874 28874 Ke 1.0000 1.0000 1.0000 1.0000 1.0020 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 i.0000 Salt 15969 15967 15967 15836 15792 15734 15706 15691 15660 15604 15604 15589 15573 15472 15456 15393 15387 15387 15387 15376 15376 15324 15186 15181 15181 15181 15170 15170 15161 15155 15155 15155 15144 15144 15134 15134 15134 15134 15128 15128 15128 15128 15128 15128 15128 15128 15128 15128 15128 Page C-37 of C-40 F0306-OIRO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | ||
(&VeslFatFatlp42) | (&VeslFatFatlp42) | ||
Page 16 06-23-2009 23:04:20 Stress Input (psi. -Salt w/E-modulus correction): | Page 16 06-23-2009 23:04:20 Stress Input (psi. -Salt w/E-modulus correction): | ||
# Eventi # Event 2 Sn Ke Salt 4 3Staupl and 6 11LFWP1 28874 1.0000 15128 23 17_ImpST3 and 25 21 ShDw2 25702 1.0000 15118 4 3_Staupl and 16 13_ROP3 28854 1.0000 15117 16 13ROP3 and 28 24Hydrol 28854 1.0000 1511713 11 LFWP8 and 28 24 Hydrol 28854 1.0000 15117 16 13-ROP3 and 30 24Hydro3 28854 1.0000 15117 4 3Staupl and 13 11 LFWP8 28854 1.0000 15117 13 11 LFWP8 and 30 24fHydro3 28854 1.0000 15117 1 2DHydTl and 13 11 LFWP8 28854 1.0000 15117 1 2 DHydTI and 16 13_ROP3 28854 1.0000 15117 8 11 _LFWP3 and 22 17ImpST2 20817 1.0000 14969 8 11 LFWP3 and 20 14 SRVB4 28308 1.0000 14967 10 11-LFWP5 and 22 17 ImpST2 20720 1.0000 14837 10 11 LFWP5 and 20 14 SRVB4 28229 1.0000 14835 5 3Staup2 and 17 14 -SRVBI 27878 1.0000 14548 5 3 Staup2 and 21 170ImpSTl 27878 1.0000 145425 3 Staup2 and 14 13 ROPI 27878 1.0000 14542 5 3Staup2 and 6 11_LFWP1 27878 1.0000 14542 5 3Staup2 and 13 11 LFWP8 27858 1.0000 14531 5 3Staup2 and 16 13-ROP3 27858 1.0000 14531 17 14 SRVBI and 26 21-ShDw3 27543 1.0000 14446 21 17_ImpSTl and 26 21 ShDw3 27543 1.0000 14441 6 11 LFWPl and 26 21-ShDw3 27543 1.0000 14441 14 13 ROP1 and 26 21 ShDw3 27543 1.0000 14441 16 13 ROP3 and 26 21 ShDw3 27523 1.0000 14430 13 11-LFWP8 and 26 21 -ShDw3 27523 1.0000 14430 8 11-LFWP3 and 19 14 -SRVB3 27230 1.0000 14380 18 14 SRVB2 and 29 24 Hydro2 28755 1.0000 14345 10 11-LFWP5 and 19 14 SRVB3 27150 1.0000 1424715 13 ROP2 and 23 17IImpST3 24194 1.0000 14247 8 11 LFWP3 and 27 21 ShDw4 26824 1.0000 1417426 21 ShDw3 and 29 24_Hydro2 27615 1.0000 14160 3 2DHydT3 and 8 11_LFWP3 26838 1.0000 14149 8 I1 LFWP3 and 28 24EHydrol 26794 1.0000 14122 1 2DHydTl and 8 11_LFWP3 26794 1.0000 14122 8 I1 LFWP3 and 30 24_Hydro3 26794 1.0000 14122 4 3Staupl and 8 11_LFWP3 26794 1.0000 14122 12 I _LFWP7 and 23 17ImspST3 24014 1.0000 14117 23 17 ImpST3 and 24 21_ShDwl 24025 1.0000 14102 10 11 LFWP5 and 27 21 ShDw4 26743 1.0000 14042 3 20DHydT3 and 10 I1_LFWP5 26758 1.0000 14016 2 2DHydT2 and 18 14_SRVB2 28202 1.0000 14008 10 11 _LFWP5 and 28 24 Hydrol 26714 1.0000 1398910 11 LFWP5 and 30 241Hydro3 26714 1.0000 13989 4 3Staupl and 10 11 LFWP5 26714 1.0000 13989 1 2ODHydTl and 10 11TLFWP5 26714 1.0000 13989 7 I1 LFWP2 and 25 21 ShDw2 23235 1.0000 13914 2 2_DHydT2 and 26 21 ShDw3 27062 1.0000 13826 9 11 LFWP4 and 25 215ShDw2 22831 1.0000 13730 File No.: 0900530.306 Page C-38 of C-40 Revision: | # Eventi # Event 2 Sn Ke Salt 4 3Staupl and 6 11LFWP1 28874 1.0000 15128 23 17_ImpST3 and 25 21 ShDw2 25702 1.0000 15118 4 3_Staupl and 16 13_ROP3 28854 1.0000 15117 16 13ROP3 and 28 24Hydrol 28854 1.0000 1511713 11 LFWP8 and 28 24 Hydrol 28854 1.0000 15117 16 13-ROP3 and 30 24Hydro3 28854 1.0000 15117 4 3Staupl and 13 11 LFWP8 28854 1.0000 15117 13 11 LFWP8 and 30 24fHydro3 28854 1.0000 15117 1 2DHydTl and 13 11 LFWP8 28854 1.0000 15117 1 2 DHydTI and 16 13_ROP3 28854 1.0000 15117 8 11 _LFWP3 and 22 17ImpST2 20817 1.0000 14969 8 11 LFWP3 and 20 14 SRVB4 28308 1.0000 14967 10 11-LFWP5 and 22 17 ImpST2 20720 1.0000 14837 10 11 LFWP5 and 20 14 SRVB4 28229 1.0000 14835 5 3Staup2 and 17 14 -SRVBI 27878 1.0000 14548 5 3 Staup2 and 21 170ImpSTl 27878 1.0000 145425 3 Staup2 and 14 13 ROPI 27878 1.0000 14542 5 3Staup2 and 6 11_LFWP1 27878 1.0000 14542 5 3Staup2 and 13 11 LFWP8 27858 1.0000 14531 5 3Staup2 and 16 13-ROP3 27858 1.0000 14531 17 14 SRVBI and 26 21-ShDw3 27543 1.0000 14446 21 17_ImpSTl and 26 21 ShDw3 27543 1.0000 14441 6 11 LFWPl and 26 21-ShDw3 27543 1.0000 14441 14 13 ROP1 and 26 21 ShDw3 27543 1.0000 14441 16 13 ROP3 and 26 21 ShDw3 27523 1.0000 14430 13 11-LFWP8 and 26 21 -ShDw3 27523 1.0000 14430 8 11-LFWP3 and 19 14 -SRVB3 27230 1.0000 14380 18 14 SRVB2 and 29 24 Hydro2 28755 1.0000 14345 10 11-LFWP5 and 19 14 SRVB3 27150 1.0000 1424715 13 ROP2 and 23 17IImpST3 24194 1.0000 14247 8 11 LFWP3 and 27 21 ShDw4 26824 1.0000 1417426 21 ShDw3 and 29 24_Hydro2 27615 1.0000 14160 3 2DHydT3 and 8 11_LFWP3 26838 1.0000 14149 8 I1 LFWP3 and 28 24EHydrol 26794 1.0000 14122 1 2DHydTl and 8 11_LFWP3 26794 1.0000 14122 8 I1 LFWP3 and 30 24_Hydro3 26794 1.0000 14122 4 3Staupl and 8 11_LFWP3 26794 1.0000 14122 12 I _LFWP7 and 23 17ImspST3 24014 1.0000 14117 23 17 ImpST3 and 24 21_ShDwl 24025 1.0000 14102 10 11 LFWP5 and 27 21 ShDw4 26743 1.0000 14042 3 20DHydT3 and 10 I1_LFWP5 26758 1.0000 14016 2 2DHydT2 and 18 14_SRVB2 28202 1.0000 14008 10 11 _LFWP5 and 28 24 Hydrol 26714 1.0000 1398910 11 LFWP5 and 30 241Hydro3 26714 1.0000 13989 4 3Staupl and 10 11 LFWP5 26714 1.0000 13989 1 2ODHydTl and 10 11TLFWP5 26714 1.0000 13989 7 I1 LFWP2 and 25 21 ShDw2 23235 1.0000 13914 2 2_DHydT2 and 26 21 ShDw3 27062 1.0000 13826 9 11 LFWP4 and 25 215ShDw2 22831 1.0000 13730 File No.: 0900530.306 Page C-38 of C-40 Revision: | ||
0 F0306-OIR0 C Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | 0 F0306-OIR0 C Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006 | ||
(&VeslFatFatlp42) | (&VeslFatFatlp42) | ||
Page 17 06-23-2009 23:04:20 Stress Input (psi..A Eventi 22 17 ImpST2 5 3 Staup218 14 _SRVB2 18 14_SRVB2 11 11 LFWP6 9 31 LFWP4 8 11 LFWP3 5 3_Staup2 2 2_DHydT2 22 17_ImpST2 20 14 SRVB4-Salt and and and and and and and and and and and w/E-modulus correction): | Page 17 06-23-2009 23:04:20 Stress Input (psi..A Eventi 22 17 ImpST2 5 3 Staup218 14 _SRVB2 18 14_SRVB2 11 11 LFWP6 9 31 LFWP4 8 11 LFWP3 5 3_Staup2 2 2_DHydT2 22 17_ImpST2 20 14 SRVB4-Salt and and and and and and and and and and and w/E-modulus correction): | ||
# Event 2 Sn 29 .24_Hydro2 30274 8 11_LFWP3 25799 22 17_1mpST2 19963 20 14 _SRVB4 27523 29 24 Hydro2 26364 29 24_Hydro2 26518 26 21 ShDw3 25464 10 11 LFWP5 25719 22 17 ImpST2 29720 26 21 ShDw3 18838 26 21 ShDw3 26383 Ke 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Salt 13695 13539 13520 13518 13470 13446 13437 13406 13359 13341 13338File No.: | # Event 2 Sn 29 .24_Hydro2 30274 8 11_LFWP3 25799 22 17_1mpST2 19963 20 14 _SRVB4 27523 29 24 Hydro2 26364 29 24_Hydro2 26518 26 21 ShDw3 25464 10 11 LFWP5 25719 22 17 ImpST2 29720 26 21 ShDw3 18838 26 21 ShDw3 26383 Ke 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Salt 13695 13539 13520 13518 13470 13446 13437 13406 13359 13341 13338File No.: | ||
0900530.306 Page C-39 of C-40 Revision: | 0900530.306 Page C-39 of C-40 Revision: | ||
0 F0306-OIRO C Structural Integrity Associates, Inc.Fatigue Analysis using Page 18 I Load Sets 1 25 21 ShDw2 29 241Hydro22 2 2_DHydT2 25 21 ShDw23 2 20DHydT2 15 13 ROP2 4 2 2_OHydT2 5 3lStaup25 5 3 Staup2 22 17 ImpST2 6 5 3 Staup2 20 14 SRV94 7 5 3 Staup2 19 14 SRVB3 8 5 3 Staup2 27 21 ShDw4 9 12 31--LFWP7 27 21 ShDw4 10 3 2_DHydT3 12 11 LFWP7 11 3 2DHydT3 24 21 ShDwl 12 3 2 DHydT3 23 07ImpST3 13 4 3_Staupl 23 07IImpST3 14 1 2 DHydT3 17 14 SRVBI 15 14 13-OPI 28 24Hydrol 16 6 11_LFWP1 28 241Hydrol 17 4 3Staupl 21 17_ImpSTl 18 6 11iLFWP1 30 24Hydro3 19 1 2_DHydTl 6 13 LFWPI 20 4 3_Staupl 16 13 ROP3 21 4 3Staupl 13 ii LFWP8 22 1 2_OHydTT 8 11 LFWP3 23 4 3_Staupl 10 11 LFWP5 VESLFAT Fatigue Module Version 1.42 -12/29/2006 | 0 F0306-OIRO C Structural Integrity Associates, Inc.Fatigue Analysis using Page 18 I Load Sets 1 25 21 ShDw2 29 241Hydro22 2 2_DHydT2 25 21 ShDw23 2 20DHydT2 15 13 ROP2 4 2 2_OHydT2 5 3lStaup25 5 3 Staup2 22 17 ImpST2 6 5 3 Staup2 20 14 SRV94 7 5 3 Staup2 19 14 SRVB3 8 5 3 Staup2 27 21 ShDw4 9 12 31--LFWP7 27 21 ShDw4 10 3 2_DHydT3 12 11 LFWP7 11 3 2DHydT3 24 21 ShDwl 12 3 2 DHydT3 23 07ImpST3 13 4 3_Staupl 23 07IImpST3 14 1 2 DHydT3 17 14 SRVBI 15 14 13-OPI 28 24Hydrol 16 6 11_LFWP1 28 241Hydrol 17 4 3Staupl 21 17_ImpSTl 18 6 11iLFWP1 30 24Hydro3 19 1 2_DHydTl 6 13 LFWPI 20 4 3_Staupl 16 13 ROP3 21 4 3Staupl 13 ii LFWP8 22 1 2_OHydTT 8 11 LFWP3 23 4 3_Staupl 10 11 LFWP5 VESLFAT Fatigue Module Version 1.42 -12/29/2006 | ||
(&VeslFatFatlp42) 06-23-2009 23:04:20 Cycles 118 3 130 315 15 1 14 120 106 5 101 2 99 2 97 118 30 21 130 9 121 118 3 5 120'2 130 2 1 3 30 2 118 5 28 3 128 25 113 1 112 30 103 30 82 30 Sn 35314 34759 33256 33081 24860 32395 31317 30910 30910 309 24 30942 29518 29474 28874 28874 28874 28874 28874 28874 28854 28854 26794 26714 Ke Salt 1.000 18983 1.000 18643 1.000 17771 1.000 17642 1.000 17150 1.000 17148 1.000 16555 1.000 16347 1.000 16347 1.000 16322 1.000 16307 1.000 16184 1.000 16157 1.000 15134 1.000 15128 1.000 15128 1.000 15128 1.000 15128 1.000 15128 1.000 15117 1.000 15117 1.000 14122 1.000 13989 Nallowed 4.3764E+06 4.7272E+06 6.1657E+06 6.4429E+06 | (&VeslFatFatlp42) 06-23-2009 23:04:20 Cycles 118 3 130 315 15 1 14 120 106 5 101 2 99 2 97 118 30 21 130 9 121 118 3 5 120'2 130 2 1 3 30 2 118 5 28 3 128 25 113 1 112 30 103 30 82 30 Sn 35314 34759 33256 33081 24860 32395 31317 30910 30910 309 24 30942 29518 29474 28874 28874 28874 28874 28874 28874 28854 28854 26794 26714 Ke Salt 1.000 18983 1.000 18643 1.000 17771 1.000 17642 1.000 17150 1.000 17148 1.000 16555 1.000 16347 1.000 16347 1.000 16322 1.000 16307 1.000 16184 1.000 16157 1.000 15134 1.000 15128 1.000 15128 1.000 15128 1.000 15128 1.000 15128 1.000 15117 1.000 15117 1.000 14122 1.000 13989 Nallowed 4.3764E+06 4.7272E+06 6.1657E+06 6.4429E+06 | ||
Line 1,075: | Line 1,063: | ||
11 File No.: 0900530.307 Page 3 of 32 Revision: | 11 File No.: 0900530.307 Page 3 of 32 Revision: | ||
0 F0306-01E Structural Integrity Associates, Inc.1.0 OBJECTIVE The Pilgrim jel pump instrument nozzle N9A had a previous weld overlay repair applied in 1984. It was determined that the previous repair did not sufficiently cover all potentially IGSCC-susceptible weld locations at the nozzle to safe end joint. In addition, the overlay was too short to allow a qualified ultrasonic examination of the underlying material. | 0 F0306-01E Structural Integrity Associates, Inc.1.0 OBJECTIVE The Pilgrim jel pump instrument nozzle N9A had a previous weld overlay repair applied in 1984. It was determined that the previous repair did not sufficiently cover all potentially IGSCC-susceptible weld locations at the nozzle to safe end joint. In addition, the overlay was too short to allow a qualified ultrasonic examination of the underlying material. | ||
The Reference | The Reference | ||
[1] calculation designed an upgrade and extension to the repair to bring the entire repair up to current standards, and to allow ultrasonic examination of the weld overlay and underlying welds. This updated repair has been installed on the N9A nozzle.The objective Of this evaluation is to perform a weld residual stress analysis using ANSYS finite element software [2] on the jet pump instrumentation nozzle due to the new weld overlay (WOL) repair. The new WOL was applied in order to enlarge the original WOL in order for it to cover both the nozzle-to-safe end weld and the safe end-to-penetration seal welds and allow for inspection. | [1] calculation designed an upgrade and extension to the repair to bring the entire repair up to current standards, and to allow ultrasonic examination of the weld overlay and underlying welds. This updated repair has been installed on the N9A nozzle.The objective Of this evaluation is to perform a weld residual stress analysis using ANSYS finite element software [2] on the jet pump instrumentation nozzle due to the new weld overlay (WOL) repair. The new WOL was applied in order to enlarge the original WOL in order for it to cover both the nozzle-to-safe end weld and the safe end-to-penetration seal welds and allow for inspection. | ||
This analysis includes performing two weld repairs from the inner diameter (ID) surface for postulated flaws within the original nozzle-to-safe end weld and the safe end-to-penetration seal weld. The two ID weld repairs are simulated to provide an unfavorable stress condition (prior to applying the weld overlay) due to the original fabrication of these welds. The nozzle-to-safe end and safe end-to-penetration seal welds are not considered in this analysis. | This analysis includes performing two weld repairs from the inner diameter (ID) surface for postulated flaws within the original nozzle-to-safe end weld and the safe end-to-penetration seal weld. The two ID weld repairs are simulated to provide an unfavorable stress condition (prior to applying the weld overlay) due to the original fabrication of these welds. The nozzle-to-safe end and safe end-to-penetration seal welds are not considered in this analysis. | ||
The original WOL from 1984 is modeled and is performed in this analysis followed by the new WOL.The results will be evaluated to demonstrate that the weld overlay repair has indeed generated a favorable stress condition for the jet pump instrumentation nozzle, safe end, and penetration seal by inducing a compressive stress condition on the ID surface. | The original WOL from 1984 is modeled and is performed in this analysis followed by the new WOL.The results will be evaluated to demonstrate that the weld overlay repair has indeed generated a favorable stress condition for the jet pump instrumentation nozzle, safe end, and penetration seal by inducing a compressive stress condition on the ID surface. | ||
The favorable stress condition minimizes and/or arrests crack initiation/propagation caused by Inter Granular Stress Corrosion Cracking (IGSCC) in the susceptible DMW material.2.0 DESIGN INPUTS 2.1 Finite Element Model The finite element model of the jet pump instrumentation nozzle, including material properties, is obtained from Reference | The favorable stress condition minimizes and/or arrests crack initiation/propagation caused by Inter Granular Stress Corrosion Cracking (IGSCC) in the susceptible DMW material.2.0 DESIGN INPUTS 2.1 Finite Element Model The finite element model of the jet pump instrumentation nozzle, including material properties, is obtained from Reference | ||
[3]. The ID weld -epairs on the nozzle-to-safe end weld and the safe end-to-penetration seal weld are included in this analysis to show that the significant tensile stresses generated by these weld repairs are mitigated by the weld overlay repair.Section 4.2 of MRP-169 states that, to adequately demonstrate the favorable residual stress effects of a weld overlay, one must start with a highly unfavorable, pre overlay residual stress condition such as that which would result from an ID surface weld repair during construction. | [3]. The ID weld -epairs on the nozzle-to-safe end weld and the safe end-to-penetration seal weld are included in this analysis to show that the significant tensile stresses generated by these weld repairs are mitigated by the weld overlay repair.Section 4.2 of MRP-169 states that, to adequately demonstrate the favorable residual stress effects of a weld overlay, one must start with a highly unfavorable, pre overlay residual stress condition such as that which would result from an ID surface weld repair during construction. | ||
If the nozzle specific weld overlay design is shown to produce favorable residual stresses in this severe case, one can be assured that it will effectively mitigate against future Intergranular Stress Corrosion Cracking (IGSCC) in the File No.: 0900530.307 Page 4 of 32 Revision: | If the nozzle specific weld overlay design is shown to produce favorable residual stresses in this severe case, one can be assured that it will effectively mitigate against future Intergranular Stress Corrosion Cracking (IGSCC) in the File No.: 0900530.307 Page 4 of 32 Revision: | ||
Line 1,087: | Line 1,075: | ||
It is used such that elements that have no contribution to a particular phase of the weld simulation process are deactivated (via EKILL command)because they have not been deposited. | It is used such that elements that have no contribution to a particular phase of the weld simulation process are deactivated (via EKILL command)because they have not been deposited. | ||
The deactivated elements have near-zero conductivity and stiffness contribution to the structure. | The deactivated elements have near-zero conductivity and stiffness contribution to the structure. | ||
When those elements are required in a later phase, they are then reactivated (via EALIVE command).The analyses consist of a thermal pass to determine the temperature distribution due to the welding process, and an elastic-plastic stress pass to calculate the residual stresses through the thermal history.Appropriate weld heat efficiency along with sufficient cooling time are utilized in the thermal pass to ensure that the temperature between weld layer nuggets meets the required interpass temperature as well as obtain acceptable overall temperature distribution within the FEM (i.e., peak temperature, sufficient resolution of results, etc.). In the stress pass, symmetric boundary conditions are applied on the end of the penetration seal as well; as the vessel. A node on the vessel ID was also fixed in the y direction to prevent the entire model from moving due to the loading.2.2 Material Properties The materials of the various components of the model are listed below per Reference | When those elements are required in a later phase, they are then reactivated (via EALIVE command).The analyses consist of a thermal pass to determine the temperature distribution due to the welding process, and an elastic-plastic stress pass to calculate the residual stresses through the thermal history.Appropriate weld heat efficiency along with sufficient cooling time are utilized in the thermal pass to ensure that the temperature between weld layer nuggets meets the required interpass temperature as well as obtain acceptable overall temperature distribution within the FEM (i.e., peak temperature, sufficient resolution of results, etc.). In the stress pass, symmetric boundary conditions are applied on the end of the penetration seal as well; as the vessel. A node on the vessel ID was also fixed in the y direction to prevent the entire model from moving due to the loading.2.2 Material Properties The materials of the various components of the model are listed below per Reference | ||
[3].* Nozzle Body: A-508 Cl. 2* Old Safe End SA-182-F304 | [3].* Nozzle Body: A-508 Cl. 2* Old Safe End SA-182-F304 | ||
* Penetration Seal SA-182-F304 | * Penetration Seal SA-182-F304 | ||
* Nozzle to Old Safe-End Weld Inc. 182* Old Safe-End to Penetration Seal Weld Inc. 182* Weld Butters Inc. 182* Old Weld Overlay Inc. 182* Cladding SA-240 Type 304 File No.: 0900530.307 Page 5 of 32 Revision: | * Nozzle to Old Safe-End Weld Inc. 182* Old Safe-End to Penetration Seal Weld Inc. 182* Weld Butters Inc. 182* Old Weld Overlay Inc. 182* Cladding SA-240 Type 304 File No.: 0900530.307 Page 5 of 32 Revision: | ||
0 F0306-01f Structural Integrity Associates, Inc.* New Weld Overlay Alloy 52M* Vertical Pipe 304 Stainless Steel* ID Weld Repairs Inc. 182 The temperature dependent nonlinear material property values are obtained from Reference | 0 F0306-01f Structural Integrity Associates, Inc.* New Weld Overlay Alloy 52M* Vertical Pipe 304 Stainless Steel* ID Weld Repairs Inc. 182 The temperature dependent nonlinear material property values are obtained from Reference | ||
[3] (input file MPropMISO_NLinearPNPS.INP). | [3] (input file MPropMISO_NLinearPNPS.INP). | ||
This analysis applies the multi-linear isotropic hardening material behavior available within the ANSYS finite element program.3.0 ASSUMPTIONSThe following assumptions are used in the residual stress evaluation: | This analysis applies the multi-linear isotropic hardening material behavior available within the ANSYS finite element program.3.0 ASSUMPTIONSThe following assumptions are used in the residual stress evaluation: | ||
: 1. Assumptions from Reference | : 1. Assumptions from Reference | ||
[3] are applicable in this calculation. | [3] are applicable in this calculation. | ||
: 2. A convection heat transfer coefficient boundary condition of 5.0 Btuihr-ft 2-°F at 70'F bulk ambient temperature is applied to simulate the air condition at the inside surface of the nozzle during the application of the ID weld repair I and ID weld repair 2.3. The outside surface of the nozzle has a heat transfer coefficient of 5.0 Btu/hr-ftZ-°F at 70'F bulk temperature during the application of the ID weld repair 1 and ID weld repair 2.4. During both weld overlay processes, the nozzle is assumed to be filled with water. Therefore, the applied heat transfer boundary condition of 20.0 Btu/hr-ft 2-°F at 70'F bulk temperature was used on the inside surface of the nozzle to simulate water.5. The outside surface of the nozzle had a heat transfer coefficient of 5.0 Btu/hr-fte-°F at 70'F bulktemperature during both WOL processes. | : 2. A convection heat transfer coefficient boundary condition of 5.0 Btuihr-ft 2-°F at 70'F bulk ambient temperature is applied to simulate the air condition at the inside surface of the nozzle during the application of the ID weld repair I and ID weld repair 2.3. The outside surface of the nozzle has a heat transfer coefficient of 5.0 Btu/hr-ftZ-°F at 70'F bulk temperature during the application of the ID weld repair 1 and ID weld repair 2.4. During both weld overlay processes, the nozzle is assumed to be filled with water. Therefore, the applied heat transfer boundary condition of 20.0 Btu/hr-ft 2-°F at 70'F bulk temperature was used on the inside surface of the nozzle to simulate water.5. The outside surface of the nozzle had a heat transfer coefficient of 5.0 Btu/hr-fte-°F at 70'F bulktemperature during both WOL processes. | ||
This represents, an air environment. | This represents, an air environment. | ||
: 6. A maximum interpass temperature of 350'F between the depositions of weld nuggets is assumed for all welding processes | : 6. A maximum interpass temperature of 350'F between the depositions of weld nuggets is assumed for all welding processes | ||
[4]. This is confirmed by the welding procedure in Reference | [4]. This is confirmed by the welding procedure in Reference | ||
[12].7. Additional assumptions including details on the heat source and heat efficiency values can be obtained from Reference | [12].7. Additional assumptions including details on the heat source and heat efficiency values can be obtained from Reference | ||
[5].4.0 METHODOLOGY The residual stresses due to welding are controlled by various welding parameters, thermal transients due to application of the welding process, temperature dependent material properties, and elastic-plastic stress reversals. The analytical technique uses finite element analysis to simulate the multi-pass weld repair and weld overlay processes. | [5].4.0 METHODOLOGY The residual stresses due to welding are controlled by various welding parameters, thermal transients due to application of the welding process, temperature dependent material properties, and elastic-plastic stress reversals. The analytical technique uses finite element analysis to simulate the multi-pass weld repair and weld overlay processes. | ||
A residual stress evaluation process was previously developed in an internal SI project. Details of the process and its comparison to actual test data are provided in Reference | A residual stress evaluation process was previously developed in an internal SI project. Details of the process and its comparison to actual test data are provided in Reference | ||
[5]. The same process will be used herein. The finite element model of the jet pump instrumentation nozzle was developed in File No.: 0900530.307 Page 6 of 32 Revision-0 F0306-01: | [5]. The same process will be used herein. The finite element model of the jet pump instrumentation nozzle was developed in File No.: 0900530.307 Page 6 of 32 Revision-0 F0306-01: | ||
V Structural Integrity Associates, Inc.Reference | V Structural Integrity Associates, Inc.Reference | ||
[3]. The model includes the instrumentation nozzle, the original nozzle to safe end dissimilar metal weld (DMW), the left over piece of the original safe end, the DMW that attaches the old safe end to the penetration seal, a portion of the penetration seal, the original weld overlay repair (WOL), the new WOL, a postulated weld repair at each of the DMWs, and a portion of the attached piping.4.1 Weld Bead Simulation In order to reduce computational time, individual weld beads or passes are lumped together into weld nuggets. This methodology is based on the approach presented in References 6, 7, 8, and 9.The number of equivalent bead passes is estimated by dividing each nugget area by the area of an individual bead. The resulting number of equivalent bead passes per nugget is used as a multiplier to the heat generation rate. The progression of the overlay welding is from the nozzle end to the piping end.The welding direction was chosen based on communications with the client. A summary of nuggets for the welds is summarized as follows (see Figure 3): " The ID weld repair 1 (nozzle-to-safe end weld) is performed in two layers, with one nugget for each layer. A total of 2 nuggets are defined for the ID weld repair 1.* The ID weld repair 2 (safe end-to-penetration seal) is performed in 2 layers, with one nugget for each layer. A total of 2 nuggets are defined for ID weld repair 2.* The old weld overlay is performed in three layers. A total of twenty four nuggets are defined for this weld overlay.o Layer one is comprised of nine nuggets o Layer two is comprised of eight nuggets o Layer three is comprised of seven nuggets* The new weld overlay is performed in four layers, which are applied in 3 pieces. | [3]. The model includes the instrumentation nozzle, the original nozzle to safe end dissimilar metal weld (DMW), the left over piece of the original safe end, the DMW that attaches the old safe end to the penetration seal, a portion of the penetration seal, the original weld overlay repair (WOL), the new WOL, a postulated weld repair at each of the DMWs, and a portion of the attached piping.4.1 Weld Bead Simulation In order to reduce computational time, individual weld beads or passes are lumped together into weld nuggets. This methodology is based on the approach presented in References 6, 7, 8, and 9.The number of equivalent bead passes is estimated by dividing each nugget area by the area of an individual bead. The resulting number of equivalent bead passes per nugget is used as a multiplier to the heat generation rate. The progression of the overlay welding is from the nozzle end to the piping end.The welding direction was chosen based on communications with the client. A summary of nuggets for the welds is summarized as follows (see Figure 3): " The ID weld repair 1 (nozzle-to-safe end weld) is performed in two layers, with one nugget for each layer. A total of 2 nuggets are defined for the ID weld repair 1.* The ID weld repair 2 (safe end-to-penetration seal) is performed in 2 layers, with one nugget for each layer. A total of 2 nuggets are defined for ID weld repair 2.* The old weld overlay is performed in three layers. A total of twenty four nuggets are defined for this weld overlay.o Layer one is comprised of nine nuggets o Layer two is comprised of eight nuggets o Layer three is comprised of seven nuggets* The new weld overlay is performed in four layers, which are applied in 3 pieces. | ||
Thefirst piece has three layers and is on the nozzle side of the old WOL. The second piece consists of three layers and is on the piping side of the old WOL. The third and final piece is one layer and covers the previous two pieces as well as the old WOL. The necessity of a three piece weld overlay can be seen in Reference | Thefirst piece has three layers and is on the nozzle side of the old WOL. The second piece consists of three layers and is on the piping side of the old WOL. The third and final piece is one layer and covers the previous two pieces as well as the old WOL. The necessity of a three piece weld overlay can be seen in Reference | ||
[11]. A total of sixty six nuggets are defined for the new weld overlay: o Piece 1, Layer one is comprised of ten nuggets o Piece 1, Layer two is comprised of ten nuggets o Piece 1, Layer three is comprised of ten nuggets o Piece 2, Layer one is comprised of five nuggets o Piece 2, Layer two is comprised of five nuggets o Piece 2, Layer three is comprised of five nuggets o Piece 3, Layer one is comprised of twenty one nuggets File No.: 0900530.307 Page 7 of 32 Revision: | [11]. A total of sixty six nuggets are defined for the new weld overlay: o Piece 1, Layer one is comprised of ten nuggets o Piece 1, Layer two is comprised of ten nuggets o Piece 1, Layer three is comprised of ten nuggets o Piece 2, Layer one is comprised of five nuggets o Piece 2, Layer two is comprised of five nuggets o Piece 2, Layer three is comprised of five nuggets o Piece 3, Layer one is comprised of twenty one nuggets File No.: 0900530.307 Page 7 of 32 Revision: | ||
0 F0306-01O Structural Integrity Associates, Inc.4.2 Welding Simulation ID weld repair 1, on the nozzle-to-safe end weld, is applied first. | 0 F0306-01O Structural Integrity Associates, Inc.4.2 Welding Simulation ID weld repair 1, on the nozzle-to-safe end weld, is applied first. | ||
Line 1,133: | Line 1,121: | ||
File No.: 0900530.307 Page 10 of 32 Revision: | File No.: 0900530.307 Page 10 of 32 Revision: | ||
0 F0306-01 Structural Integrity Associates, Inc.Table 1: ANSYS Input and Output Files-IputFie -.>y*>'~.<- | 0 F0306-01 Structural Integrity Associates, Inc.Table 1: ANSYS Input and Output Files-IputFie -.>y*>'~.<- | ||
De'scrip'fioifCornmente'," PNPS-N9.INP Structural geometry for 2D axisymmetric geometry | De'scrip'fioifCornmente'," PNPS-N9.INP Structural geometry for 2D axisymmetric geometry | ||
[3]MProp MISO NLinear PNPS.INP Material Property data of E, alpha, conductivity, specific heat, and stress strain curves [3]BCNUGGET2D.INP Weld nuggets definition and boundary conditions file PICK2D.[NP Writes boundary conditions and nugget definitions into BCNUGGET2D.INP file THERMAL2D.INP Thermal pass for simulating weld processes STRESS2D.INP Stress pass for simulating weld processes WELD1 mntr.INP Contains LDREAD commands for ID weld repair 1 portion of the stress pass WELD2 mntr.INP Contains LDREAD commands for ID weld repair 2 portion of the stress pass WELD3 mntr.INP Contains LDREAD commands for WOL 1 portion of the stress passWELD4 mntr.INP Contains LDREAD commands for'WOL 2 portion of the stress passPOST2D PATH.INP Post-processing file to extract path stresses POST2D ID.INP Post-processing file to extract ID surface stresses File -, .Descrlptloii/omment PATH T70.OUT Path stress outputs for post-WOL 2 at 70TF PATH T550 P1035.OUT Path stress outputs for post-WOL 2 at 550TF and 1035 psia ID NLIST.OUT ID surface nodal coordinate outputs ID WELD1.OUT ID surface stress outputs for post-ID weld repair 1 at 70TF ID WELD2.OUT ID surface stress outputs for post-ID weld repair 2 at 70TF ID WELD3.OUT ID surface stress outputs for post-WOL 1 at 70TF ID T70.OUT ID surface stress outputs for post-WOL 2 at 70°F ID T550 P1035.OUT ID surface stress outputs for post-WOL 2 at 550TF and 1035 psia PNPS 0900530 307 RES.xls Excel spreadsheet containing all output data File No.: 0900530.307 Revision: | [3]MProp MISO NLinear PNPS.INP Material Property data of E, alpha, conductivity, specific heat, and stress strain curves [3]BCNUGGET2D.INP Weld nuggets definition and boundary conditions file PICK2D.[NP Writes boundary conditions and nugget definitions into BCNUGGET2D.INP file THERMAL2D.INP Thermal pass for simulating weld processes STRESS2D.INP Stress pass for simulating weld processes WELD1 mntr.INP Contains LDREAD commands for ID weld repair 1 portion of the stress pass WELD2 mntr.INP Contains LDREAD commands for ID weld repair 2 portion of the stress pass WELD3 mntr.INP Contains LDREAD commands for WOL 1 portion of the stress passWELD4 mntr.INP Contains LDREAD commands for'WOL 2 portion of the stress passPOST2D PATH.INP Post-processing file to extract path stresses POST2D ID.INP Post-processing file to extract ID surface stresses File -, .Descrlptloii/omment PATH T70.OUT Path stress outputs for post-WOL 2 at 70TF PATH T550 P1035.OUT Path stress outputs for post-WOL 2 at 550TF and 1035 psia ID NLIST.OUT ID surface nodal coordinate outputs ID WELD1.OUT ID surface stress outputs for post-ID weld repair 1 at 70TF ID WELD2.OUT ID surface stress outputs for post-ID weld repair 2 at 70TF ID WELD3.OUT ID surface stress outputs for post-WOL 1 at 70TF ID T70.OUT ID surface stress outputs for post-WOL 2 at 70°F ID T550 P1035.OUT ID surface stress outputs for post-WOL 2 at 550TF and 1035 psia PNPS 0900530 307 RES.xls Excel spreadsheet containing all output data File No.: 0900530.307 Revision: | ||
0 Page 11 of 32 F0306-01E V Structural Integrity Associates, Inc.Figure 1: Applied Boundary Conditions to the Finite Element Model File No.: 0900530.307 Revision: | 0 Page 11 of 32 F0306-01E V Structural Integrity Associates, Inc.Figure 1: Applied Boundary Conditions to the Finite Element Model File No.: 0900530.307 Revision: | ||
Line 1,192: | Line 1,180: | ||
A-1 APPENDIX B FCG CASE PC-CRACK OUTPUT FILES ............................................. | A-1 APPENDIX B FCG CASE PC-CRACK OUTPUT FILES ............................................. | ||
B-1 List of Tables Table 1: Results Sum m ary ................................................................................................ | B-1 List of Tables Table 1: Results Sum m ary ................................................................................................ | ||
12 List of Figures Figure 1. Path D efinitions | 12 List of Figures Figure 1. Path D efinitions | ||
[4] ........................................................................................... | [4] ........................................................................................... | ||
13 Figure 2. Fracture Mechanics Results, K-vs-a Curve (from pc-CRACK) | 13 Figure 2. Fracture Mechanics Results, K-vs-a Curve (from pc-CRACK) | ||
Line 1,203: | Line 1,191: | ||
The station has made commitments to perform analyses, including finite element stress analyses, of the 2009 weld overlay following startup.The purpose of this calculation package is to apply linear elastic fracture mechanics (LEFM) to calculate crack growth in the nozzle-to-safe end dissimilar metal weld (DMW) for the reactor pressure Vessel (RPV) jet pump instrumentation nozzle N9A at Pilgrim Nuclear Power Station.Loads considered are internal pressure and weld overlay (WOL) repair residual stresses. | The station has made commitments to perform analyses, including finite element stress analyses, of the 2009 weld overlay following startup.The purpose of this calculation package is to apply linear elastic fracture mechanics (LEFM) to calculate crack growth in the nozzle-to-safe end dissimilar metal weld (DMW) for the reactor pressure Vessel (RPV) jet pump instrumentation nozzle N9A at Pilgrim Nuclear Power Station.Loads considered are internal pressure and weld overlay (WOL) repair residual stresses. | ||
Bothfatigue crack growth (FCG) and Intergranular Stress Corrosion Cracking (IGSCC) are considered. | Bothfatigue crack growth (FCG) and Intergranular Stress Corrosion Cracking (IGSCC) are considered. | ||
2.0 METHODOLOGY The allowable end-of-evaluation period flaw depth to thickness ratio (a/t) was taken from TableIWB-3641-3, which is derived by the methodology of Appendix C of ASME Code, Section XI [2].The geometry and design pressure for the N9A nozzle is documented in a separate design input calculation | |||
[3]. The post-weld overlay (WOL) repair residual stresses are documented in a separate stress analysis calculation | |||
The allowable end-of-evaluation period flaw depth to thickness ratio (a/t) was taken from TableIWB-3641-3, which is derived by the methodology of Appendix C of ASME Code, Section XI [2].The geometry and design pressure for the N9A nozzle is documented in a separate design input calculation | |||
[3]. The post-weld overlay (WOL) repair residual stresses are documented in a separate stress analysis calculation | |||
[4].Crack growth is computed using linear elastic fracture mechanics (LEFM) techniques. | [4].Crack growth is computed using linear elastic fracture mechanics (LEFM) techniques. | ||
IGSCC growth is determined by computing the stress intensity factor versus flaw depth curve (K-vs.-a) at steady state normal operating conditions. Crack growth laws for Alloy 600 weld metals (Alloy 82/Alloy 182) are used at the susceptible DMW material region [2, 10]. The time for the observed flaw to grow to 75% of the weld thickness is determined, with and without the benefit of WOL residual stresses.*The crack growth analysis was performed using the LEFM analysis option in pc-CRACK for WindowsTM software [5]. This software includes options for the evaluation of FCG and IGSCC, and allows for defining load cases, material properties, crack models, and the selection of the applicable crack growth law. Appendix A contains pc-CRACK output of the IGSCC growth analysis and Appendix B contains pc-CRACK output of the FCG growth analysis.File No.: 0900530.308 Page 3 of 14 Revision: | IGSCC growth is determined by computing the stress intensity factor versus flaw depth curve (K-vs.-a) at steady state normal operating conditions. Crack growth laws for Alloy 600 weld metals (Alloy 82/Alloy 182) are used at the susceptible DMW material region [2, 10]. The time for the observed flaw to grow to 75% of the weld thickness is determined, with and without the benefit of WOL residual stresses.*The crack growth analysis was performed using the LEFM analysis option in pc-CRACK for WindowsTM software [5]. This software includes options for the evaluation of FCG and IGSCC, and allows for defining load cases, material properties, crack models, and the selection of the applicable crack growth law. Appendix A contains pc-CRACK output of the IGSCC growth analysis and Appendix B contains pc-CRACK output of the FCG growth analysis.File No.: 0900530.308 Page 3 of 14 Revision: | ||
0 F0306-01O Structural Integrity Associates, Inc.3.0 DESIGN INPUTS 3.1 Materials and GeometryThe section of the jet pump instrumentation nozzle evaluated for crack growth, and considered representative for the susceptible material region, is described below.Details of the jet pump instrumentation nozzle materials are provided in References | 0 F0306-01O Structural Integrity Associates, Inc.3.0 DESIGN INPUTS 3.1 Materials and GeometryThe section of the jet pump instrumentation nozzle evaluated for crack growth, and considered representative for the susceptible material region, is described below.Details of the jet pump instrumentation nozzle materials are provided in References | ||
[3], [6], [7], and[8].Material (Safe End): Material (Nozzle): Material (Weld): Material (Weld Overlay): Design Pressure (P): Normal Operating Pressure: SA-182 Type F304 SA-508 Class 2 Alloy 82/182 Alloy 52M 1250 psig 1035 psig (increased for Power Optimization, [9, sheet 8])Details of the nozzle geometry are provided in Reference | [3], [6], [7], and[8].Material (Safe End): Material (Nozzle): Material (Weld): Material (Weld Overlay): Design Pressure (P): Normal Operating Pressure: SA-182 Type F304 SA-508 Class 2 Alloy 82/182 Alloy 52M 1250 psig 1035 psig (increased for Power Optimization, [9, sheet 8])Details of the nozzle geometry are provided in Reference | ||
[7, sheet 8 of A-476 (PDF page 576)], with the as-built final dimensions of the 2009 weld overlay provided in Reference | [7, sheet 8 of A-476 (PDF page 576)], with the as-built final dimensions of the 2009 weld overlay provided in Reference | ||
[I I].Before 2009 weld overlay: Outside radius Inside radius Thickness' OR = 2.53125 inches IR= 1.89125 inches t = 0.608 inch Note 1: The nominal thickness prior to the 2009 weld overlay is assumed as 0.64 inch in this analysis, in order to be consistent with previous pc-CRACK analyses in PNPS-19Q-311 | [I I].Before 2009 weld overlay: Outside radius Inside radius Thickness' OR = 2.53125 inches IR= 1.89125 inches t = 0.608 inch Note 1: The nominal thickness prior to the 2009 weld overlay is assumed as 0.64 inch in this analysis, in order to be consistent with previous pc-CRACK analyses in PNPS-19Q-311 | ||
[12] and the weld overlay design basis in 0900530.301 | [12] and the weld overlay design basis in 0900530.301 | ||
[6].As-built including the 2009 weld overlay (with a thickness of 0.4 inch) [11]: Outside radius OR= 2.93125 inches.Inside radius IR=I1.89125 inches Thickness t= 1.04 inch Pipe Cross-Sectional Area A= 7r(OR 2-IR 2) = 15.76 in 2 Section Modulus Z= 7t/4(OR 4-IR 4)/OR= 16.35 in 2 3.2 Loading Loads considered in this evaluation are internal pressure and WOL residual stresses, as obtained from the finite element analysis [4]. Bending stresses are identified as negligible in the original stress report [7, sheets 5 of A-474 (PDF page 524), sheet 18 of A-485 (PDF page 535), and sheet 21 File No.: 0900530.308 Revision: | [6].As-built including the 2009 weld overlay (with a thickness of 0.4 inch) [11]: Outside radius OR= 2.93125 inches.Inside radius IR=I1.89125 inches Thickness t= 1.04 inch Pipe Cross-Sectional Area A= 7r(OR 2-IR 2) = 15.76 in 2 Section Modulus Z= 7t/4(OR 4-IR 4)/OR= 16.35 in 2 3.2 Loading Loads considered in this evaluation are internal pressure and WOL residual stresses, as obtained from the finite element analysis [4]. Bending stresses are identified as negligible in the original stress report [7, sheets 5 of A-474 (PDF page 524), sheet 18 of A-485 (PDF page 535), and sheet 21 File No.: 0900530.308 Revision: | ||
0 Page 4 of 14 F0306-01O Structural Integrity Associates, Inc.of A-488 (PDF page 538)], and are therefore not included in this analysis. | 0 Page 4 of 14 F0306-01O Structural Integrity Associates, Inc.of A-488 (PDF page 538)], and are therefore not included in this analysis. | ||
Line 1,219: | Line 1,205: | ||
Therefore, axial stresses due to internal pressure are the only stresses that could contribute to crack growth of a circumferential flaw. The axial pressure stresses will be treated as a membrane stress, which is constant across the entire thickness of the pipe.The through-wall residual stress distributions are curve fit with a third order polynomial in formshown below: | Therefore, axial stresses due to internal pressure are the only stresses that could contribute to crack growth of a circumferential flaw. The axial pressure stresses will be treated as a membrane stress, which is constant across the entire thickness of the pipe.The through-wall residual stress distributions are curve fit with a third order polynomial in formshown below: | ||
C(X) C 0 + ClX + C 2 x 2 +C 3 x 3 (1)where: cy = axial stress x = distance from inside surfaceResidual stress results were obtained for through-wall paths in the susceptible material regions. The paths used are as defined in Figure 1. Six paths were extracted, three paths for each dissimilar metal weld. One path was extracted on each weld through the center of the repair. | C(X) C 0 + ClX + C 2 x 2 +C 3 x 3 (1)where: cy = axial stress x = distance from inside surfaceResidual stress results were obtained for through-wall paths in the susceptible material regions. The paths used are as defined in Figure 1. Six paths were extracted, three paths for each dissimilar metal weld. One path was extracted on each weld through the center of the repair. | ||
Also, a path was extracted on each side of each dissimilar metal weld. On the nozzle end, the path (Path | Also, a path was extracted on each side of each dissimilar metal weld. On the nozzle end, the path (Path | ||
: 1) wastaken through the weld material since the nozzle material is not susceptible to cracking. | : 1) wastaken through the weld material since the nozzle material is not susceptible to cracking. | ||
In the three other cases, the path is taken through the stainless steel material, since this is the material morelikely to crack. Two sets of data are obtained, which are for post-WOL at 707F and for post-WOL at 550'F/1 035 psig. The intent for this approach is to characterize the residual stresses for each of the different loading conditions for six different locations associated with the DMW. Residual stresses have a strong effect on IGSCC growth. They have a much less significant effect on fatigue *crack growth, since they are steady state secondary stresses, and contribute to FCG only through a mean stress effect.Internal Pressure The pressure stress is evaluated at the normal operating pressure, 1035 psig, and as-built dimensions of the nozzle, which is appropriate for crack growth calculations. | In the three other cases, the path is taken through the stainless steel material, since this is the material morelikely to crack. Two sets of data are obtained, which are for post-WOL at 707F and for post-WOL at 550'F/1 035 psig. The intent for this approach is to characterize the residual stresses for each of the different loading conditions for six different locations associated with the DMW. Residual stresses have a strong effect on IGSCC growth. They have a much less significant effect on fatigue *crack growth, since they are steady state secondary stresses, and contribute to FCG only through a mean stress effect.Internal Pressure The pressure stress is evaluated at the normal operating pressure, 1035 psig, and as-built dimensions of the nozzle, which is appropriate for crack growth calculations. | ||
Line 1,233: | Line 1,219: | ||
2370 psi PAxial = Gendcap + apressure= 738 psi + 2370 psi = 3108 psiUsing the outside radius of the pipe to calculate the pressure stress is conservative, and accounts for effects due to pressure on the crack face. This pressure is treated as a membrane stress and is assumed to be constant through the thickness of the pipe.Note that the original design report reported a design primary membrane stress intensity of 9.6 ksi [7, sheet 18 of A-485], which was based on a hoop stress direction (as opposed to the present axial stress used for crack growth). The design report was also based on design pressure (1250 psi) design thickness. | 2370 psi PAxial = Gendcap + apressure= 738 psi + 2370 psi = 3108 psiUsing the outside radius of the pipe to calculate the pressure stress is conservative, and accounts for effects due to pressure on the crack face. This pressure is treated as a membrane stress and is assumed to be constant through the thickness of the pipe.Note that the original design report reported a design primary membrane stress intensity of 9.6 ksi [7, sheet 18 of A-485], which was based on a hoop stress direction (as opposed to the present axial stress used for crack growth). The design report was also based on design pressure (1250 psi) design thickness. | ||
The present calculation is based on operating pressure and as-measured wall thickness. | The present calculation is based on operating pressure and as-measured wall thickness. | ||
WOL Residual Stresses The residual stresses which result from implementing a weld repair are developed from the ANSYS model described in Reference | WOL Residual Stresses The residual stresses which result from implementing a weld repair are developed from the ANSYS model described in Reference | ||
[4]. The values of the stresses are given for 70'F and 550'F in [4].These stresses vary across the thickness and are represented by the curve fit Equation 1. These stresses are obtained using the ANSYS output files "PATHT70.OUT" and"PATHT550_PI035.OUT", and they are digitized using pc-CRACK to perform the curve fit. Sixpaths were investigated and these residual stresses are used for the crack growth analysis.File No.: 0900530.308 Revision: | [4]. The values of the stresses are given for 70'F and 550'F in [4].These stresses vary across the thickness and are represented by the curve fit Equation 1. These stresses are obtained using the ANSYS output files "PATHT70.OUT" and"PATHT550_PI035.OUT", and they are digitized using pc-CRACK to perform the curve fit. Sixpaths were investigated and these residual stresses are used for the crack growth analysis.File No.: 0900530.308 Revision: | ||
0 Page 6 of 14 F0306-011 Structural integrity Associates, Inc.4.0 ASSUMPTIONS Basic assumptions for the analysis are listed below:* A circumferential flaw is assumed for the purpose of analyzing crack growth over time due to fatigue and stress corrosion cracking.* The nominal pipe thickness prior to the 2009 weld overlay is assumed as 0.64 inch in this analysis, in order to be consistent with previous pc-CRACK analyses in PNPS-19Q-311 | 0 Page 6 of 14 F0306-011 Structural integrity Associates, Inc.4.0 ASSUMPTIONS Basic assumptions for the analysis are listed below:* A circumferential flaw is assumed for the purpose of analyzing crack growth over time due to fatigue and stress corrosion cracking.* The nominal pipe thickness prior to the 2009 weld overlay is assumed as 0.64 inch in this analysis, in order to be consistent with previous pc-CRACK analyses in PNPS-19Q-311 | ||
[12]and the weld overlay design basis in 0900530.301 | [12]and the weld overlay design basis in 0900530.301 | ||
[6].* The nozzle itself is not attached to a piping system, and therefore there are no piping-induced loads that need to be considered. | [6].* The nozzle itself is not attached to a piping system, and therefore there are no piping-induced loads that need to be considered. | ||
Also, bending stresses are identified as negligible in the original stress report | Also, bending stresses are identified as negligible in the original stress report | ||
[7, sheets 5 of A-474, sheet 18 of A-485, and sheet 21 of A-488].H loop stresses are oriented parallel to the assumed flaw, and therefore do not affect the circumferential assumed flaw or flaw growth.* Residual stress is considered in addition to the axial stress that was calculated above. | [7, sheets 5 of A-474, sheet 18 of A-485, and sheet 21 of A-488].H loop stresses are oriented parallel to the assumed flaw, and therefore do not affect the circumferential assumed flaw or flaw growth.* Residual stress is considered in addition to the axial stress that was calculated above. | ||
The through-wall residual stress distribution is sufficiently represented with a third order polynomial curve fit.* Residual stresses are steady state secondary stresses and therefore only act as a mean stress in regards to fatigue crack growth.* The axial stresses due to pressure are assumed to be membrane stresses and are constant throughout the thickness of the pipe." The primary membrane stress intensity is assumed to be 3.1 ksi, based on the operating pressure and the as-measured wall thickness.* The nozzle has no internal flow, and therefore it does not experience thermal transients other than startup and shutdown. | The through-wall residual stress distribution is sufficiently represented with a third order polynomial curve fit.* Residual stresses are steady state secondary stresses and therefore only act as a mean stress in regards to fatigue crack growth.* The axial stresses due to pressure are assumed to be membrane stresses and are constant throughout the thickness of the pipe." The primary membrane stress intensity is assumed to be 3.1 ksi, based on the operating pressure and the as-measured wall thickness.* The nozzle has no internal flow, and therefore it does not experience thermal transients other than startup and shutdown. | ||
The total number of startup and shutdown cycles that the plant will likely experience is estimated to be about 400 cycles, per | The total number of startup and shutdown cycles that the plant will likely experience is estimated to be about 400 cycles, per | ||
[13, page 4.3-5 (PDF page 819)]." Also, because the nozzle does not experience flow, credit cannot be taken for Hydrogen WaterChemistry. The Normal Water Chemistry case will be evaluated instead.File No.: 0900530.308 Page 7 of 14 Revision: | [13, page 4.3-5 (PDF page 819)]." Also, because the nozzle does not experience flow, credit cannot be taken for Hydrogen WaterChemistry. The Normal Water Chemistry case will be evaluated instead.File No.: 0900530.308 Page 7 of 14 Revision: | ||
0 F0306-01' Structural Integrity Associates, Inc.5.0 CRACK GROWTH CALCULATIONS | 0 F0306-01' Structural Integrity Associates, Inc.5.0 CRACK GROWTH CALCULATIONS 5.1 Fatigue Crack Growth (FCG)FCG is calculated using the loading described in Section 3.2 of this calculation. | ||
Crack Growth (FCG)FCG is calculated using the loading described in Section 3.2 of this calculation. | |||
The minimum stress intensity Kmin is taken as the weld repair residual axial stress distribution at 70'F, which is presentwhen the plant is shutdown. The maximum stress intensity Kmax is the combination of the pressure axial stress and the residual axial stress at 550'F. This stress intensity range represents the range seen from shutdown to startup. | The minimum stress intensity Kmin is taken as the weld repair residual axial stress distribution at 70'F, which is presentwhen the plant is shutdown. The maximum stress intensity Kmax is the combination of the pressure axial stress and the residual axial stress at 550'F. This stress intensity range represents the range seen from shutdown to startup. | ||
The FCG after 800 applied cycles is calculated using pc-CRACK software using the crack growth law for austenitic material in air, as described by Figure C-3210-1 in Section XI Appendix C of the ASME Code [2]. 800 cycles was chosen as a conservative estimate that nearly doubles the total number of startup and shutdown cycles the plant will likely experience over its lifetime [13, page 4.3-5 (PDF page 819)]. Appendix B contains output files for FCG with and without WOL residual stresses.The stress intensity components of Kmax and Kmin for the weld overlay case are shown below.Kmax Kmin Kresidual 550 Kresidual 70 Kpressure 5.2 Intergranular Stress Corrosion Cracking (IGSCC)For IGSCC, the applied K (Kmax above) is the crack driving force. The growth of the crack after 100,000 hours of service, or 11.4 years, is calculated. PVP2008-61299 | The FCG after 800 applied cycles is calculated using pc-CRACK software using the crack growth law for austenitic material in air, as described by Figure C-3210-1 in Section XI Appendix C of the ASME Code [2]. 800 cycles was chosen as a conservative estimate that nearly doubles the total number of startup and shutdown cycles the plant will likely experience over its lifetime [13, page 4.3-5 (PDF page 819)]. Appendix B contains output files for FCG with and without WOL residual stresses.The stress intensity components of Kmax and Kmin for the weld overlay case are shown below.Kmax Kmin Kresidual 550 Kresidual 70 Kpressure 5.2 Intergranular Stress Corrosion Cracking (IGSCC)For IGSCC, the applied K (Kmax above) is the crack driving force. The growth of the crack after 100,000 hours of service, or 11.4 years, is calculated. PVP2008-61299 | ||
[10] provides stresscorrosion crack growth laws for nickel-base austenitic alloys. The N9A nozzle-to-safe end weldlocation does not experience any internal flow, so Hydrogen Water Chemistry cannot be assured.Therefore, the normal water chemistry (NWC) case is evaluated. Specifically, the NWC below EPRI Guidelines Action Level I case is used.The SCC growth law is, taken from Reference | [10] provides stresscorrosion crack growth laws for nickel-base austenitic alloys. The N9A nozzle-to-safe end weldlocation does not experience any internal flow, so Hydrogen Water Chemistry cannot be assured.Therefore, the normal water chemistry (NWC) case is evaluated. Specifically, the NWC below EPRI Guidelines Action Level I case is used.The SCC growth law is, taken from Reference | ||
[II], equations 2 and 3: daC f in dt -CoK , in/hr for KI < 25 ks1iin (2)dt da =C in/hr for K, > 25 ksiin (3)dt File No.: 0900530.308 Page 8 of 14 Revision: | [II], equations 2 and 3: daC f in dt -CoK , in/hr for KI < 25 ks1iin (2)dt da =C in/hr for K, > 25 ksiin (3)dt File No.: 0900530.308 Page 8 of 14 Revision: | ||
0 F0306-01 V Structural Integrity Associates, Inc.where, Water Chemistry Co C 1 n Normal 1.6E-08 5.OE-05 2.5 K, = stress intensity factor at flaw tip (ksiVin)IThe K-dependent crack growth rates are calculated with pc-CRACK using the coefficients shown above and the K values developed within the software. | 0 F0306-01 V Structural Integrity Associates, Inc.where, Water Chemistry Co C 1 n Normal 1.6E-08 5.OE-05 2.5 K, = stress intensity factor at flaw tip (ksiVin)IThe K-dependent crack growth rates are calculated with pc-CRACK using the coefficients shown above and the K values developed within the software. | ||
Line 1,263: | Line 1,246: | ||
: 4. Structural Integrity Associates, Inc., "Residual Stress Analysis of Jet Pump Instrumentation Nozzle (N9A) with Weld Overlay Repair", Revision A, July 23, 2009, SI File No.0900530.307. | : 4. Structural Integrity Associates, Inc., "Residual Stress Analysis of Jet Pump Instrumentation Nozzle (N9A) with Weld Overlay Repair", Revision A, July 23, 2009, SI File No.0900530.307. | ||
: 5. pc-CRACK for Windows, Version 3.1-98348, Structural Integrity Associates, 1998.6. Structural Integrity Associates, Inc., "Weld Overlay Design for Jet Pump Instrumentation Nozzle N9A", Revision 1, April 30, 2009, SI File No. 0900530.301. | : 5. pc-CRACK for Windows, Version 3.1-98348, Structural Integrity Associates, 1998.6. Structural Integrity Associates, Inc., "Weld Overlay Design for Jet Pump Instrumentation Nozzle N9A", Revision 1, April 30, 2009, SI File No. 0900530.301. | ||
: 7. Combustion Engineering Inc., Pilgrim Document 1979-308-1, Stress Report 1139,"Analytical Report for Pilgrim Reactor Vessel", March 9, 1971, SI File No. PNPS-1OQ-21 | : 7. Combustion Engineering Inc., Pilgrim Document 1979-308-1, Stress Report 1139,"Analytical Report for Pilgrim Reactor Vessel", March 9, 1971, SI File No. PNPS-1OQ-21 1.8. General Electric Document No. 488 925-1687, "Pilgrim Jet Pump Instrumentation Nozzle Weld Overlay Design", Revision 1, October 3, 1984, Received from George Mileris, SI FileNo. 0900530.203. | ||
Electric Document No. 488 925-1687, "Pilgrim Jet Pump Instrumentation Nozzle Weld Overlay Design", Revision 1, October 3, 1984, Received from George Mileris, SI FileNo. 0900530.203. | |||
: 9. GE Nuclear Energy, Document No. 26A582 1, "Reactor Vessel- Thermal Power Optimization", Revision 0, March 5, 2002, SI File No. 0900530.205. | : 9. GE Nuclear Energy, Document No. 26A582 1, "Reactor Vessel- Thermal Power Optimization", Revision 0, March 5, 2002, SI File No. 0900530.205. | ||
: 10. ASME Paper PVP2008-61299, "Nickel Alloy Crack Growth Correlations in BWR Environment and Application to Core Support Structure Welds Evaluation", July 2008, SI File No. BWRVIP-01-259P. | : 10. ASME Paper PVP2008-61299, "Nickel Alloy Crack Growth Correlations in BWR Environment and Application to Core Support Structure Welds Evaluation", July 2008, SI File No. BWRVIP-01-259P. | ||
Line 1,277: | Line 1,257: | ||
= 0.75, per ASME Code [2]) is exceeded at approximately 33000 hours. Please see Section 6.0: Results and Conclusions. | = 0.75, per ASME Code [2]) is exceeded at approximately 33000 hours. Please see Section 6.0: Results and Conclusions. | ||
Note 2: Fatigue crack growth calculations are for 800 transient cycles.File No.: 0900530.308 Revision: | Note 2: Fatigue crack growth calculations are for 800 transient cycles.File No.: 0900530.308 Revision: | ||
0 Page 12 of 14 F0306-01 V Structural Integrity Associates, Inc.Figure 1. Path Definitions | 0 Page 12 of 14 F0306-01 V Structural Integrity Associates, Inc.Figure 1. Path Definitions | ||
[41 File No.: 0900530.308 Revision: | [41 File No.: 0900530.308 Revision: | ||
0 Page 13 of 14 F0306-01: | 0 Page 13 of 14 F0306-01: |
Revision as of 19:16, 11 July 2019
ML092330231 | |
Person / Time | |
---|---|
Site: | Pilgrim |
Issue date: | 08/10/2009 |
From: | Structural Integrity Associates |
To: | Office of Nuclear Reactor Regulation |
References | |
0900530.306, Rev 0 | |
Download: ML092330231 (159) | |
Text
Structural Integrity Associates, Inc. File No.: 0900530.306 CALCULATION PACKAGE Project No.: 0900530 Quality Program: Z Nuclear 0 Commercial PROJECT NAME: Pilgrim Top Head Flaw and N9 Weld Overlay CONTRACT NO.: 10235773-01 CLIENT: PLANT: Entergy Nuclear Pilgrim Nuclear Power Station CALCULATION TITLE: ASME Code,Section III Evaluation of N9A Jet Pump Instrument Nozzle with Weld Overlay Repair Document Affected Project Manager Preparer(s)
&Revision Pages Revision Description Approval Checker(s)
Signature
& Date Signatures & Date 0 1 -25 Initial Issue A- -A-3B-I -B-2 C-1 -C40 Minghao Qin Hal L. Gustin MQ 08/10/09 HLG 08/10/09 Karen K. Fujikawa KKF 08/10/09 Jennifer E. Smith JES 08/10/09 Page 1 of 25 F0306-01 RO Structural Integrity Associates, Inc.Table of Contents 1.0 O B JE C T IV E ..................................................................................................................
4 2.0 DESIGN CRITERIA ..............................................
4 3.0 BOUNDARY CONDITIONS, STRESS PATH DEFINITIONS, AND UNIT PRESSURE ................................
..................................................
4 3.1 Boundary Conditions
...................................................................................
4 3.2 Stress Path D efinitions
.................................................................................
4 3.3 U nit Pressure L oad .............................................................................................
5 4 .0 L O A D S ..........................................................................................................................
5 5.0 LOAD COM BIN ATION S .......................................................................................
5 6.0 ASME CODE STRESS LIMITS EVALUATION
................................................
ý.6 6.1 Design Load Combination .....................................
7 6.2 Service Level A/B Load Combination
...............................
'-! .......................
7 6.3 Pure Shear Stress Evaluation for Path 2 ...........................
87.0 FA TIG U E EV A LUA TION ...............................................
I ...........................................
8 7.1 V ESLFA T Program ....................................................................................
8 7.1.1 Cyclic D ata (*. C YC) ..........................................................................................
9 7.1.2 Fatigue Data Input File (*.FDT) .................................................................
9 7.1.3. Stress D ata Input File (*.STR) ......................................................................
9 7.1.4 Fatigue Usage (*.FA T) .............................................................................. I l 8.0 C O N C LU SIO N S ....................................................................................................
11 9.0 REFER EN C E S ......................................................................................................
12 Appendix A CALCULATION OF THE HEAT TRANSFER COEFFICIENTS
................
A-I Appendix B SUPPORTING FILES .................................................................................
B-1 Appendix C EXAMPLE VESLFAT FILES ......................................................................
C-1 File No.: 0900530.306 Page 2 of 25 Revision:
0 F0306-01.
Structural Integrity Associates, Inc.List of Tables Table 1: Bounding Transients to be Analyzed ...................................................................
13 Table 2: Load Com binations
............................................................................................
14 Table 3: Allowable Stress Intensity Ranges .....................................................................
14 Table 4: Materials at Each Path Inside and Outside Locations
........................................
15 T able 5: M aterial Properties (1) ............................................................................................... 16 Table 6: Design Load Combination, Stress Intensity Evaluation
.......................................
17 Table 7: Service Level A/B Load Combination, P+Q Stress Intensity Evaluation
............
18 Table 8: Load Sets as Input to VESLFAT .......................................................................
19 Table 9: Carbon/Low Alloy Steel and Stainless Steel Fatigue Curves .............................
21 Table 10: Fatigue Usage Results ..........................................
.............................................
22 List of Figures, Figure 1: Boundary Conditions
.........................................................................................
23 Figure 2: Thermal Region Definitions
..............................................................................
23 Figure 3: Stress Path Definitions for ASME Code Evaluation
.........................................
24 Figure 4: Unit Internal Pressure .........................................................................................
24 Figure 5: Stress Intensity under Unit Pressure
................................................................
25 File No.: 0900530.306 Revision:
0 Page 3 of 25 F0306-01 Structural Integrity Associates, Inc.1.0 OBJECTIVE The objective of this calculation is to show that the ASME Code,Section III [1] design requirements are satisfied for a weld overlay repair of the jet pump instrument nozzle, N9A, at Pilgrim Nuclear PowerStation (PNPS).
An as-built weld overlay repair is provided in Reference
[6].A finite element model has been built [2] to support the ASME Code evaluations.
These analyses, together with the design requirements of the ASME Code
[1], will be used to determine the adequacy ofthe repairs.
2.0 DESIGN CRITERIA In accordance with the requirements of Code Case N-504-3, it is necessary to demonstrate that theprimary stress requirements of the design Code continue to be met following repair.
For the jet pump instrument nozzle, the requirements of the ASME Code,Section III for Class I components apply. Assuch, the rules of Article NB-3000 of Section III of the ASME Code, 2001 Edition with Addenda through 2003 [1], are used, and results will be reconciled with the original stress report.The weld overlay repair region affects the instrument nozzle and safe end. As a result, the instrument nozzle and safe end of the repair will be evaluated using the rules of Subarticle NB-3200.3.0 BOUNDARY CONDITIONS, STRESS PATH DEFINITIONS, AND UNIT PRESSURE 3.1 Boundary Conditions The jet pump instrument nozzle finite element model was built in Reference
[2] with ANSYS program Release 8.1 [12] which is also used for this calculation.
Two symmetric boundary conditions are applied at the two cross sections at the nozzle and penetration seal. To avoid rigid body movement, an axial direction restraint is applied at the inside corner of the nozzle cross section on the vessel side. Figure 1 shows the mechanical boundary condition.The heat transfer coefficients (HTC) and temperatures are applied to four regions. The nozzle HTC and temperature are applied to Region I and the vessel HTC and temperature are applied to Region 3. The HTC and temperature of Region 2 (nozzle inner blend radius) is linearly transitioned from the HTC value used in Region I to the HTC value used in Region 3. The Region 4 HTC and temperature are assumed to be 0.2 BTU/hr-ft 2-°F and I 00°F. Figure 2 shows the region definitions.
3.2 Stress Path Definitions Four stress paths are defined and shown in Figure 3.
These paths are used for the ASME Code Section III analysis.File No.: 0900530.306 Page 4 of 25 Revision:
0 F0306-01I Structural Integrity Associates,-
Inc.3.3 Unit Pressure Load A uniform pressure of 1,000 psi was applied along the inside surface of the nozzle and the penetration seal. Figure 4 shows the applied pressure and Figure 5 shows the stress intensity distribution.
4.0 LOADSThis evaluation only considers Design Loadings, Normal (Service Level A) and Upset (Service Level B)operating conditions in regards to meeting ASME Code,Section III Design and Service Level A/B allowables and fatigue. As such, thermal stresses resulting from Emergency (Service Level C) and Faulted (Service Level D) thermal transients are not considered
[1, NB-3224.1, NB-3224.4 and Appendix F- 1310].Primary stresses (such as mechanical loads due to deadweight, seismic effects and pressure) resultingfrom Design, Service Level A, B, C and D operating conditions are discussed in Section 5.0.Pressure Per References
[3] and [4], the design pressure is 1250 psig at 575 0 F and the operating pressure loadsrange from 0 psig to 1410 psig throughout the various thermal transients, whose temperatures range from 70'F to 556°F. The hydrostatic test (Transient
- 24) pressure ranges from 0 psig to 1565 psig. Thepressure variations for the various transients are summarized in Table 1.Thermal Transients Reference
[5] defines eight thermal transients which are shown in Table 1. Details of the thermal transients are provided in References
[3] and [4].Mechanical Pipin2 Loads The jet pump instrument nozzle is not subjected to mechanical piping loads per Reference
[5].5.0 LOAD COMBINATIONS The load combinations used in the repair design are: I. Design Load Combination
- 2. Level A Load Combination
- 3. Level B Load Combination
- 4. Level C Load Combination
- 5. Level D Load Combination
- 6. Test Load Combination File No.: 0900530.306 Page 5 of 25 Revision:
0 F0306-01I Structural Integrity Associates, Inc.The weld overlay sizing evaluation
[6] considered general primary membrane, Pm, and primary membrane-plus-bending, Pm + Pb, stress intensities resulting from design/normal/upset (Design and Levels A & B) operating conditions and emergency/faulted (Levels C and D) conditions.
Localprimary membrane, PL, stress intensities were not specifically evaluated, because acceptability of the Pm and Pb stress intensities results in acceptable PL stress intensities.
The primary, Pm and primary membrane-plus-bending, Pm + Pb stress intensities (and as previously indicated, local primary membrane, PL, stress intensities) under design condition have to meet ASME Code Section II1, NB-3221. The specific load combinations are shown in Table 2. The allowable stress intensities for these load combinations are presented in Table 3 [1].The sizing calculation did not specifically evaluate loads resulting from the Test Load Combination (Hydrostatic).
However, the Test Load Combination considers only primary stresses, which result from pressure and mechanical loads. The added thickness of the weld overlay will only serve to reduce the general primary, Pm, and primary membrane-plus-bending, Pm + Pb stress intensities (and as previously indicated, local primary membrane, PL, stress intensities) when compared to the original configuration.
Therefore, the only load combinations which will be considered herein are Service Levels A and B. The specific load combinations are shown in Table 2. The allowable stress intensities for these load combinations are presented in Table 3 [1]. Also, as indicated in Table 3, requirements for peak stresses and cyclic operation must also be met for Service Levels A and B.Per ASME Code Section III NB-3227.2, the average primary shear stress (including Design, Service Levels A, B and C) shall be limited to 0.6 Sm and the maximum primary shear stress (includingDesign, Service Levels A, B and C) shall be limited to 0.8 Smn. This requirement is only applied to the limiting Path 2 in Figure 3.It should be noted that in using the ASME Code, Section 1II, Class .1 rules in NB-3200, Service Levels A and B are combined together using bounding load combinations.Thus, this calculation, together with Reference
[6], contains the ASME Code qualification for the weld overlay repair for PNPS.6.0 ASME CODE STRESS LIMITS EVALUATIONStress intensities are calculated for the various load combinations shown in Table 2 and stress intensity ranges are compared to the allowable limits shown in Table 3. Linearized stresses wereevaluated through four paths (see Figure 3) throughout the transient time histories and the pressureanalyses. These calculated stress intensities are then evaluated in accordance' with ASME Code,Section II, Subarticle NB-3200 [1].File No.: 0900530.306 Page 6. of 25 Revision:
0 F0306-01 Structural Integrity Associates, Inc.6.1 Design Load Combination The primary membrane (Pm) and membrane-plus-bending (PL+Qb) stress intensities due to pressure (1250 psig) are scaled from the 1000 psi unit pressure evaluation.
Table 4 lists the materials at the corresponding locations.
Material properties are listed in Table 5.Table 6 lists the evaluation of the primary stress intensities for the Design condition.
6.2 Service Level A/B Load Combination Examination of the membrane-plus-bending stresses does not provide an obvious pairing of stresses resulting from the various thermal transients for determination of operating stress intensity ranges. Thus, the VESLFAT program [8], developed by Structural Integrity, is used to calculate primary-plus-secondary membrane-plus-bending (P+Q) and total (P+Q+F) stress intensity ranges. The same program will be used to perform the fatigue usage analysis described in Section 7.0.The primary-plus-secondary membrane-plus-bending (P+Q) and total (P+Q+F) component stress values are combined prior to use in the VESLFAT program [8]. The thermal component stresses resulting at each time increment from the various thermal transients are added to the componentstresses resulting from corresponding pressure.
The combination was performed in the Excelspreadsheets identified in Appendix B. Within the spreadsheets, the various component results are manipulated to produce the combined transient stress conditions, including:
The primary-plus-secondary membrane-plus-bending (P+Q) and total (P+Q+F) stress components due to pressure are scaled from the 1000 psi unit pressure evaluation.
The actual pressure at any given time for a given transient is defined in Table I of this calculation.
Pressure between any two specified time points is assumed to vary linearly throughout each of the thermal transients.
Cyclic information and material properties are also needed to complete the VESLFAT input,though they do not play a direct role in the determination of membrane-plus-bending stressintensity ranges.
This input will be needed to support the fatigue evaluations, and is discussed in detail in Section 7.0.Table 7 shows the evaluation of the primary-plus-secondary stress intensities for Service Level A and B. The stress ranges extracted from VESLFAT files, with the extension *.FAT, are the stressintensity ranges that produce the greatest ratio of stress intensity versus allowable stress.File No.: 0900530.306 Page 7 of 25 Revision:
0 F0306-01!
Structural Integrity Associates, Inc.Examination of the maximum primary-plus-secondary (P+Q) range load pairs and fatigue causing load pairs (in the *.FAT files), identified the controlling thermal transients.
The results are shown in Table 7.6.3 Pure Shear Stress Evaluation for Path 2The maximum primary stress occurs due to the test load (1565 psig), the shear stress can be scaledbased on the 1000 psig results.
Therefore, the maximum shear stress is 1.050 ksi which is below the allowable 0.6 Sm = 0.6
- 15.8 = 9.48 ksi, where Sm with 15.8 ksi is taken from Reference
[5, page 17].7.0 FATIGUE EVALUATIONThe fatigue evaluations are performed for Paths 1 through 4 of the weld overlay repair as shown in Figure 3. Both the inside and outside surfaces of the indicated paths will be evaluated.
The evaluations are performed in accordance with ASME Code,Section III, Subparagraph NB-3222.4(e)
[1] for Paths I through 4, and use of the VESLFAT program [8].7.1 VESLFAT Program The VESLFAT program requires three input files.
The first is the *.CYC file, which includes the number of cycles for each load combination.
The input used in the *.CYC file is discussed in detail in Section 7.1.1. The second file is the *.FDT file, which includes the fatigue curve data,appropriate temperature dependent material properties, and simplified elastic-plastic limits andfactors. These values are discussed in Section 7.1.2. The final input file is the *.STR file, which contains the component membrane-plus-bending and membrane-plus-bending-plus-peak, e.g. total, stress components for the various load conditions to be evaluated.
Additional details are provided in Section 7.1.3. As several load conditions occur within each load case, these load conditions will be identified by a number, which matches the load condition to the load case. This number is defined in the *.CYC file. Each of these three files must be identically named, with the exception of the file extension.
A number of intermediate files are generated which can be used to check the final results. The*.STI file is an echo output of the *.STR file but includes transformations to output the results in terms of psi. The *.ALL file reflects all of the stress range pairs that are calculated.
The *.PR file is a shortened version of the *.ALL file and lists only the significant (i.e., fatigue causing) pairs. The*.ORD file re-sequences the *.PR file such that the ordered pairs are arrayed in order of reducing alternating stress.File No.: 0900530.306 Page 8 of 25 Revision:
0 F0306-01I Structural Integrity Associates, Inc.The final output file is labeled *.FAT. It echoes the input data, shows the significant cycle pairings, the cycle elimination, individual cycle pair fatigue contributions, and the final overall fatigue usage.See Section 7.1.4 for fatigue results.
7.1.1 Cyclic Data (*. CYC)Table I assigned a total number of cycles for each bounding event, which is listed in Table 8.See Appendix C for an example of a *.CYC file.7.1.2 Fatigue Data Input File (*.FDT)The materials at the surfaces of the stress paths indicated in Figure 3 are tabulated in Table 4.The fatigue curve for the austenitic and high nickel alloys is per Reference
[1],Section III Appendices. The curve consists of two portions; the low cycle stress portion
(<106 cycles) that is covered by Figure 1-9.2.1, and a high cycle portion for which Curve C, Figure 1-9.2.2, is conservatively used.The fatigue curve for the SA-508 Class 2 material is also per Reference
[5],Section III Appendices.
Both curves presented in Figure 1.9.1 are used, with the conservatively lower alternating stress, Sa, used throughout.
Table 9 listed the fatigue curves.The modulus of elasticity correction factor from the fatigue curves will be based on Reference
[9]temperature dependent modulus of elasticity values with a fatigue curve elastic modulus of 28.3e6 psi for the austenitic and high nickel materialsand 30.0e6 psi for low alloy material.
Sm and Sy temperature dependent values are also obtained from Reference
[9].Other material properties are input as follows: m = 1.7, n = 0.3, parameters used to calculate Ke for the austenitic and high nickel materials
[1, Table NB-3228.5(b)-l]
m = 2.0, n = 0.2, parameters used to calculate Ke for the low alloy material [1, Table NB-3228.5(b)-i]
See Appendix C for an example *.FDT file.
7.1.3 Stress Data Input File (*.STR)Linearized membrane-plus-bending (P+Q) and membrane-plus-bending-plus-peak (P+Q+F) stress components from the finite element stress analyses were extracted for pressure and thermal transient loads. Stresses are scaled in cases (pressure) where the applied load magnitude is not the same as that analyzed.File No.:
0900530.306 Page 9 of 25 Revision:
0 F0306-01O Structural Integrity Associates, Inc.The resulting stress components are then added together to create the load combination for each thermal transient throughout the length of the event. Thus, thermal stresses are added to the scaledpressure stresses to create each membrane-plus-bending and membrane-plus-bending-plus-peak stress components entry.
Paths I and 4 terminate on the outside at geometric discontinuities. For these locations, fatiguestrength reduction factors have to be calculated based on Reference
[11, pages 91 through 94].All of inside surfaces, as well as the outside surfaces of paths 2 and 3 do not have any geometric discontinuity and hence the fatigue strength reduction factor is unity.The equation for calculating the fatigue strength reduction factor is based on Reference
[11, pages 91 through 94]. The equation is as following:
where: S = angle of contour= 36.50 for Path 1 outside [2]450 for Path 4 outside [2]r radius of curvature at contour interface= 0.25 inches (assumed)h = height difference between contours= 0.438 inches for Path I outside [2]= 0.41 inches for Path 4 outside [2]t = half thickness of thinner contour= 0.608 inches for Path I outside [2]= 0.880 inches for Path 4 outside (measured from inside node to outside node)r/t = 0.411 for Path I outside= 0.284 for Path 4 outside Ko = 1.95 for Path I outside, per page 92 of Reference
[11]= 2.20 for Path 4 outside per page 92 of Reference
[11]Therefore K = 1.87 for Path I outside= 2.04 for Path 2 outside File No.: 0900530.306 Page 10 of 25 Revision:
0 F0306-01.
Structural Integrity Associates, Inc.In addition, for those locations with fatigue strength reduction factors, the peak thermal stress components are added back into the total stress to capture the peak stress due to nonlinear radialtemperature gradient, as follows: P+Q+F = (ANSYS membrane plus bending)FSRF + ANSYS peak For those paths that do not occur at'a geometric discontinuity, no fatigue strength reduction factor is used. Instead, the membrane-plus-bending-plus-peak (P+Q+F) component stresses from the finite element stress analyses will be used directly.
The *.STR file includes the temperature of the location as it varies throughout the events and thepressure. The pressures vary as indicated in Section 3.0 and Table 1. The temperature at the location is the calculated metal temperature of the material rather than the fluid temperature.
These metal temperatures were extracted via the linearized stress results files, which include thetemperature data in the last field under "Total" stress.
The load combinations and the development of the *.STR file entries were performed in the Excel spreadsheets identified in Appendix B. An example of the *.STR file is shown in Appendix C.7.1.4 Fatigue Usage (*.FAT)The fatigue evaluation automatically selects the load pairs that create the greatest alternating stress, performs a Ke calculation, corrects for the modulus of elasticity, and performs the fatigue evaluation.
It repeats this process selecting the next highest stress range until the available cycles are used up or the remaining stress ranges fall below the endurance limit. An example
- .FAT file is included in Appendix C. The intermediate solution files
- .STI, *.ALL, *.PR, and *.ORD are included with computer files.Table 10 tabulates the total fatigue usage for each location.
In addition, the table includes information on the load pairing that produces the greatest alternating stress for each location, including the corresponding membrane-plus-bending stress intensity range, the calculated Ke elastic-plastic factor, and the alternating stress, Sa, for the specific load pair.
8.0 CONCLUSION
S An evaluation of the jet pump instrument nozzle weld overlay repair for PNPS has been performed inaccordance with the requirements of the ASME Boiler and Pressure Vessel Code,Section III, forClass 1 components [
1 ]. Stress intensities were conservatively determined for pressure and bounding thermal transients, and compared against ASME Code allowables for primary-plus-secondary stress effects. In all cases, the reported values of stress intensity range are less than their corresponding allowable Values.File No.: 0900530.306 Page 11 of 25 Revision:
0 F0306-01 Structural Integrity Associates, Inc.A detailed fatigue analysis was also performed.
For the given number of expected cycles corresponding to a design period (see Table 1), the total usage at all locations evaluated is below the allowable value of I (see Table 10).In conclusion, the jet pump instrument nozzle weld overlay repair for PNPS, provided in Reference
[7], satisfies the requirements of ASME Code Section 111.
9.0 REFERENCES
- 1. ASME Boiler and Pressure Vessel Code,Section III, Rules for Construction of Nuclear Facility Components, 2001 Edition with Addenda through 2003.2. SI Calculation No. 0900530.305, "Weld Overlay Finite Element Model (FEM) and Material Properties for Nozzle N9A," (for revision refer to SI Project Revision Log, latest revision).
- 3. Boston Edison Company Drawing No. MIA12-2, Revision E0, (GE Drawing No. 730E491)"Reactor Thermal Cycles," SI File No. PNPS-20Q-205.
- 4. Entergy Condition Report No.
CR-PNP-2001-08015, 11/09/2001, SI File No. PNPS-IOQ-214.
- 5. Combustion Engineering, Inc., "Analytical Report for Pilgrim Reactor Vessel," Report No.
CENC- 1139, Approved 3/9/71, SI File No. PNPS-1OQ-21 I.6. SI Calculation No. 0900530.301, Revision 1, "Weld Overlay Design for Jet Pump.
Instrumentation Nozzle N9A," April 30, 2009.7. Welding Services, Inc. Drawing. "Construction Drawing Pilgrim, N9A." (2 sheets), Drawing No. 409506, May 1, 2009, SI File No. 0900530.202.
- 8. VESLFAT, Version 1.42, Structural Integrity Associates, Inc., February 6, 2007.9. ASME Boiler and Pressure Vessel Code,Section II, Part D, 2001 Edition with Addenda through 2003.10. J. P. Holman, "Heat Transfer," 5 th Edition, McGraw-Hill, Inc., 1981.11. Office of Technical Services, United States Department of Commerce, "Tentative StructuralDesign Basis for Reactor Pressure Vessels and Directly Associated Components (Pressurized Water Cooled Systems)," December 1, 1958 with Addendum No.
1, 27 February, 1959.12. ANSYS/Mechanical, Release 8.1 (w/Service Pack 1), ANSYS Inc., June 2004.
File No.: 0900530.306 Page 12 of 25 Revision:
0 F0306-011 Structural Integrity Associates, Inc.Table 1: Bounding Transients to be Analyzed Trans.0 1) Cycles (1) t sec (3) Tves, IF (4) Tnoz, 'F ( P, psig(ý hv Btu/hr-ft'ZýF ( h., Btu/hr-ft-°F (8)2 130 0 100 100 0 500 94 Design I 100 100 1250 500 94 Pressure 2 100 100 25 500 94 ,3 120 0 100 100 0 500 94 Startup 16416 556 556 1035 500 438 11 30 0 532 532 1035 500 427, LFWP 3 532 532 1215 500 427 13 532 532 1160 500 427233 310 310 1160 500 297 2213 510 510 1160 500 4162393 310 310 910 500 297 67,73 510 510 1160 500 416 7193 310 310 700 500 297 7493 310 310 700 500 297 11093 410 410 240 500 363 16349 556 556 1035 500 438 26349 556 556 1035 500 438 26350 548 548 1035 500 434 36350 548 548 1035 500 43436351 532 532 1035 500 427 46351 532 532 1035 .500 427 13 1 0 532 532 1035 500 427 Reactor 2 532 532 1410 500 427 Overpressure 32 532 532 965 500 427 452 556 556 1035 500 438 10452 556 556 1035 500 438 10453 548 548 1035 500 434 20453 548 548 1035 500 434.20454 532 532 1035 500 427 30454 532 532 1035 500 427 14 2 0 532 532 1035 500 427 SRV 60 385 385 275 500 348 Blowdown 11400 70 70 25 500 0 17 5 0 532 532 1035 500 427 Improper 1 278 278 1035 500 272 Start 27 278 278 1035 500 27228 532 532 1035 500 427 21-23 118 0 556 556 1035 500 438 Shutdown 6156 385 385 0 500 348 6756 330 330 0 500 311 15036 100 100 0 500 94 24 3 0 100 100 0 500 94 Hydro 1 100 100 1565 500 94 Pressure 2 100 100 0 500 94 Notes: 1.2.3.4.5.6.7.8.These eight transients are selected based on Reference
[5].The cycle numbers are based on design values [5].Time is based on the thermal cycle diagram
[3]. Using 10,000 sec to simulate the steady state.The vessel temperature is taken from the thermal cycle diagram [3].The nozzle temperature is assumed as the same as the vessel temperature.
Pressure is taken from thermal cycle diagram [3].Heat transfer coefficient at the vessel is taken from Reference
[5].Heat transfer coefficient at the nozzle is calculated in Appendix A under natural convention condition.
File No.: 0900530.306 Revision:
0 Page 13 of 25 F0306-01:
Structural Integrity Associates, Inc.Table 2: Load Combinations LOADS Load Combinations Design Level A Level B Test Pressure (psig) (1) (2) (2) (4)Temperature (OF) (1) (3) I (3) ]] (4)Thermal Transients N/A X X(5)X Notes: 1.2.3.4.5.1250 psig and 575TF.Varies between 0 and 1410 psig depending on transient conditions summarized in Table 1.Varies between 70'F and 556'F depending on transient conditions summarized in Table 1.1565 psig and I 00°F.See Table 1.Table 3: Allowable Stress Intensity Ranges LoadL Combination Pm PL PL + Pb PL + Pb + Q Pure Shear (3) Note Design Condition Sm 1.5 Sm I 1.5 Sm -0.6 Sm I Level A/B --3.O Sm 0.6 Sm 2 Note: 1. The requirements of ASME Code, Section Ill, Subparagraph NB-3221 [1] must be met.2. The requirements of ASME Code, Section Il, Subparagraph NB-3222.4(e)
[1] for peak stresses and cyclic operation must be met.3. The requirements of ASME Code, Section 111, Subparagraph NB-3221 [1] must be met. Here, the maximum pure shear stress will be used.File No.: 0900530.306 Revision:
0 Page 14 of 25 F0306-01 Structural Integrity Associates, Inc.Table 4: Materials at Each Path Inside and Outside Locations Path"'I J Surface Material(2)
Inside SA-240 Type 304 1 OtA-508 C1.2 /Alloy 52M A-508 C1. 2 /Nozzle Side A ll 2 2 Alloy 52M 2 SA-182 F304 /Seal Side Alloy 52M Inside SA-182 F304 3 s SA- 182 F304/Alloy 52MInside SA-182 F304 4 Outside SA- 182 F304 Notes: 1. See Figure 3 for illustration of indicated locations.
- 2. Identified in Reference 2.(File No.: 0900530.306 Revision:
0 Page 15 of 25 F0306-01O Structural Integrity Associates, Inc.Table 5: Material Properties(I)
Material T, -F E x 106, psi Sm,SA-508 Class 2 70 27.8 26.ksi 7 Alloy 52M 200 300 400 500 600 70 200 300 400 500 600 70 200 300 400 500 600 70 200 300 400 500 600 27.1 26.7 26.1 25.7 25.2 SA-204 304L 30.3 29.5 29.1 28.8 28.3 28.1 28.3 27.6 27.0 26.5 25.8 25.3 28.3 27.6 27.0 26.5 25.8 25.3 26.7 26.7 26.7 26.7 26.7 23.3 23.3 23.3 23.3 23.3 23.3 16.7 16.7 16.7 15.8 14.7 14.0 20.0 20.0 20.0 18.6 17.5 16.6 SY, ksi 50.0 47.0 45.5 44.2 43.2 42.1 35.0 31.7 29.8 28.6 27.9 27.6 25.0 21.4 19.2 17.5 16.4 15.5 30.0 25.0 22.4 20.7 19.4 18.4 SA!-182 F304 Notes: 1. All values are obtained from Reference
[9].File No.: 0900530.306 Revision:
0 Page 16 of 25 F0306-01I Structural Integrity Associates, Inc.Table 6: Design Load Combination, Stress Intensity Evaluation Path ( S Allowable P.L + Pb Allowable Number(S)
Surface I ( Sm (ksi) (ksi) 1.5 Sm (ksi)Inside (1) 14.0 5.350 21.0 Yes Outside (2) 4.203 26.7 40.1 Yes Outside (3) 23.3 35.0 Yes Noz. side (1) 14.0 21.0 Yes Noz. side (3) 23.3 35.0 Yes'2 Sasie() 2.159 2. _____Seal side (4) 16.6 24.9 Yes Seal side (3) 23.3 35.0 Yes Inside (4) 16.6 3.404 24.9 Yes 3 Outside (4) 1.579 16.6 24.9 Yes Outside (3) 23.3 0.355 35.0 Yes 4Inside (4) 16.6 2.908 24.9 Yes Outsidet4) 16.6 1.151 24.9 Yes Notes: 1.2.3.4.5.Material at location is SA-204 304L equivalent
[2].Material at location is A-508 CL.
2 [2].Material at location is Alloy 52M [2].Material at location is SA-182 F304 [2].See Figure 3 for illustration of indicated locations.
File No.: 0900530.306 Revision:
0 Page 17 of 25 F0306-01O Structural Integrity Associates, Inc.Table 7: Service Level A/B Load Combination, P+Q Stress Intensity Evaluation Path Maximum Stress Allowable Number(7)
Surface Intensity Range Accept Nubr(S,,) (ksi) (5) 3Sin (ksi)(6)Inside (1) 35.314 42.924 Yes I Outside (2) 34.612 80.100 Yes Outside (3) 34.612 69.900 Yes Noz. side (1) 11.141 80.100 Yes Noz. side (3) 11.141 69.900 Yes 2 Seal side (4) 11.937 51.285 Yes Seal side (3) 12.138 69.900 Yes Inside (4) 24.849 51.015 Yes 3 Outside (4) 30.901 51.258 Yes Outside (3) 31.087 69.900 Yes Inside (4) 23.264 51.015 Yes 4 Outside(4) 28.055 52.041 Yes Notes: I.2.3.4.Material at location is SA-204 304L equivalent
[2].Material at location is A-508 CL. 2 [2].Material at location is Alloy 52M [2].Material at location is SA-182 F304 [2].5. Sn values shown are based on the maximum S,/3Sm ratio from VESLFAT output files ending in *.FAT (see Appendix C for example).6. All material stress allowable values shown [1, 9] are based on the maximum SnI3Sm ratio from VESLFAT output files ending in *.FAT (see Appendix C for example).7. See Figure 3 for illustration of indicated locations.
File No.: 0900530.306 Revision:
0 Page 18 of 25 F0306-01.
V Structural Integrity Associates, Inc.Table 8: Load Sets as Input to VESLFAT Path 1 Inside Path 2 Nozzle Side Path 3 Inside Path 4 Inside Trans Name cycles Trans Name cycles Trans Name cycles Trans Name cycles 1 2_DHydT1 130 2 2_DHydT2 130 3 2_DHydT3 130 4 3_Staupl 120 5 3_Staup2 120 6 11_LFWP1 30 7 11_LFWP2 30 8 11_LFWP3 30 9 11_LFWP4 30 10 11_LFWP5 3011 11_LFWP6 3012 11_LFWP7 30 13 11_LFWP8 30 14 13_ROP1 1 15 13_ROP2 1 16 13_ROP3 1 17 14_SRVB1 2 18 14_SRVB2 2 19 14_SRVB3 2 20 14_SRVB4 2 21 17_lmpST1 5 22 17_lmpST2 5 23 17_lmpST3 5 24 21_ShDwl 118 25 21_ShDw2 118 26 21_ShDw3 11827 21_ShDw4 118 28 24_Hydrol 3 29 24_Hydro2 330 24 Hydro3 3 1 2_DHydT1 2 2_DHydT2 3 2_DHydT3 4 3_Staupl 5 3_Staup2 6 11_LFWP1 7 11_LFWP2 8 11_LFWP3 9 11_LFWP4 10 11_LFWP5 11 11_LFWP6 12 11_LFWP7 13 11_LFWP8 14 11_LFWP915 13_ROP116 13_ROP217 13_ROP3 18 13_ROP4 19 13_ROPS 20 13_ROP6 21 13_ROP7 22 14_SRVB1 23 14_SRVB2 24 14_SRVB3 25 14_SRVB4 26 17_lmpST1 27 17_lmpST2 28 17_lmpST3 29 17_lmpST4 30 21_ShDwl 31 21_ShDw2 32 21_ShDw3 33 24_Hydrol 34 24_Hydro2 35 24_Hydro3 130 130 130 120 120 30 30 30 30 30 30 30 30 30 1 1 1 1 1 1 1 2 2 2 2 5 5 5 5 118 118 118 3 3 3 2_DHydTl 2_DHydT2 2_DHydT3 3_Staupl 3_Staup2 3_Staup3 11_LFWP1 11_LFWP2 11_LFWP3 11_LFWP4 11_LFWP5 11_LFWP6 11_LFWP7 11_LFWP8 11_LFWP9 11_LFWP1O 13_ROPI 13_ROP2 13_ROP3 13_ROP4 13_ROP5 13_ROP6 14_SRVB1 14_SRVB2 14_SRVB3 17_lmpST1 17_lmpST2 17_lmpST3 17_lmpST4 21_ShDwl 21_ShDw2 21_ShDw3 21_ShDw4 21_ShDw5 24_Hydrol 24_Hydro2 24_Hydro3 130 130 130 120 120 120 30 30 30 30 30 30 30 30 30 30 1 1 1 1 1 1 2 2 2 5 5 5 5 118 118 118 118 118 3 3 3 2_DHydT1 2_DHydT2 2_DHydT3 3_Staupl 3_Staup2 3_Staup3 11_LFWP1 11_LFWP2 11_LFWP3 11_LFWP4 11_LFWP5 11_LFWP6 11_LFWP7 11_LFWP8 11_LFWP9 11_LFWP1O 13_ROP1 13_ROP2 13_ROP3 13_ROP4 13_ROP5 14_SRVB1 14_SRVB2 14_SRVB3 17_lmpST1 17_lmpST2 17_lmpST3 17_lmpST4 21_ShDwl 21_ShDw2 21_ShDw3 21_ShDw4 21_ShDw5 21_ShDw6 24_Hydrol 24_Hydro2 24_Hydro3 130 130 130 120 120 120 30 30 30 30 30 30 30 30 30 30 1 1 1 1 1 2 2 2 5 5 5 S 118 118 118 118 118 118 3 3 3 File No.: 0900530.306 Revision:
0 Page 19 of 25 F0306-01I V Structural Integrity Associates, Inc.Table 8: Load Sets as Input to VESLFAT (continued)
Path 1 Outside Path 2 Seal Side Path 3 Outside Path 4 Outside Trans Name cycles Trans Name cycles Trans Name cycles Trans Name cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 2_DHydT1 2_DHydT2 2_DHydT3 3_Staupl 3_Staup2 11 LFWP1 11_LFWP2 11_LFWP3 11_LFWP4 11_LFWP5 11_LFWP6 11 LFWP7 11_LFWP8 11 LFWP9 13_ROP1 13_ROP2 13_ROP3 13_ROP4 13_ROP5 13_ROP6 14_SRVB1 14_SRVB2 14_SRVB3 14_SRVB4 17_lmpST1 17_lmpST2 17_lmpST3 17_lmpST4 21_ShDwl 21_ShDw2 21_ShDw3 21_ShDw4 24_Hydrol 24_Hydro2 24_Hydro3 130 130 130 120 120 30 30 30 30 30 30 30 30 30 1 1 1 1
1 1 2 2 2 2 5 5 5 5 118 118 118 118 3 3 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 2_DHydT1 2_DHydT2 2_DHydT3 3_Staupl 3_Staup2 11_LFWP1 11_LFWP2 11_LFWP3 11_LFWP4 11_LFWP5 11_LFWP6 11_LFWP7 11_LFWP8 13_ROP1 13_ROP2 13_ROP3 13_ROP4 13_ROPS 14_SRVB1 14_SRVB2 14_SRVB3 17_lmpST1 17_lmpST2 17_lmpST3 17_lmpST4 21_ShDwl 21_ShDw2 21_ShDw3 21_ShDw4 24_Hydrol 24_Hydro2 24_Hydro3 130 130 130 120 120 30 30 30 30 30 30 30 30 1 1 1 1 1 2 2 2 5 5 5 5 118 118 118 118 3 3 3 2_DHydT1 130 2_DHydT2 130 2_DHydT3 130 3_Staupl 120 3_Staup2 120 11_LFWP2 30 11_LFWP2 30 11_LFWP3 30 11_LFWP4 30 11_LFWP5 30 11_LFWP6 30 11_LFWP7 30 11_LFWP8 30 11_LFWP9 30 13_ROP1 1 13 ROP2 1 13_ROP3 1 13_ROP4 1 13_ROP5 1 14_SRVB1 2 14_SRVB2 2 14_SRVB3 2 14_SRVB4 2 17_lmpST1 5 17_lmpST2 5 17_lmpST3 5 17_lmpST4 5 21_ShDwi 118 21_ShDw2 118 21_ShDw3 118 21_ShDw4 118 24_Hydrol 324_Hydro2 324_Hydro3 3 1 2_DHydT1 2 2_DHydT2 3 2_DHydT3 4 3_Staupl 5 3_Staup2 6 3 Staup3 7 11 LFWP1 8 11 LFWP2 9 11 LFWP3 10 11_LFWP4 11 11 LFWP5 12 11 LFWP6 13 11 LFWP7 14 11 LFWP8 15 11_LFWP9 16 11 LFWP10 17 13 ROP1 18 13_ROP2 19 13 ROP3 20 13_ROP4 21 13_ROP5 22 13_ROP6 23 13_ROP7 24 14_SRVB1 25 14 SRVB2 26 14_SRVB3 27 14 SRVB4 28 17_lmpST1 29 17_lmpST2 30 17_lmpST3 31 17_lmpST4 32 21 ShDwl 33 21_ShDw2 34 21 ShDw3 35 21_ShDw4 36 21 ShDw5 37 24_Hydrol 38 24_Hydro2 39 24_Hydro3 130 130 130 120 120 120 30 30 30 30 30 30 30 30 30 30 1 1 1 1 1 1 1 2 2 2 2 5 5 5 5 118 118 ,118 118 118 3 3 3File No.:
0900530.306 Revision:
0Page 20 of 25 F0306-01.
Structural Integrity Associates, Inc.Table 9: Carbon/Low Alloy Steel and Stainless Steel Fatigue Curves Number of Cycles S., ksi Carbon/Low Alloy ~Sa, ksi Austenitic 10 20 50 100 200 500 1000 2000 5000 10000 20000 50000 100000 200000 500000 1000000 2.E+06 5.E+06 L.E+07 2.E+07 5.E+07 I.E+08 1.E+09 1.E+10 I.E+lI1 580 410 275 205 155 105 83 ,64 48 38 31 23 20 16.5 13.5 12.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A 708 512 345 261 201 148 119 97 76 64 55.5 46.3 40.8 35.9 31 28.2 22.8(2)18.4(2)16.4(2)15.2(2)14.3(2)14.1(2)13.9(2)13.7(2)13.6(2)Note: 1. Using UTS < 80 ksi curve.2. Using Curve C for austenitic steel.File No.: 0900530.306 Revision:
0 Page 21 of 25 F0306-01 Structural Integrity Associates, Inc.Table 10: Fatigue Usage Results Path Maximum Alternating Stress Load Pair Total Surface Load Pair ( K" Alternating Fatigue N o .__ _ _ _ _ L o a d_ P a i rS .( p s i)_K_ S t r e s s ( p s i) U s a g e (2 )Inside 25 & 29 35314 1 18983 0.0000560 Outside 16 & 24 36503 1 29574 0.0211011 Noz. side 27 & 28 8606 1 13890 0.0000114 Seal side 5 & 21 9154 1 19005 0.0000913 Inside 27 & 31 27835 1 29106 0.0000541_Outside 5 & 23 19927 1 19005 0.0000964 Inside 26 & 30 23250 1 28148 0.0000429 1 Outside 9 & 29 28043 1 28635 0.0002890 Notes: 1. See Figure 3 for illustration of indicated locations.
- 2. Cumulative fatigue usage from all contributing load pairs.
- 3. See Table 7 for transient.
File No.: 0900530.306 Revision:
0 Page 22 of 25 F0306-01I Structui ral Integrity Associates, Inc.AREAS MAT NUM PILGRIM N9A Nozzle Figure 1: Boundary Conditions PEA n1--rahr HUML~[PILIM NgA N::oi.: Figure 2: Thermal Region Definitions File No.: 0900530.306 Revision:
0 Page 23 of 25 F0306-01:
V Structural Integrity Associates, Inc.Figure 3: Stress Path Definitions for ASME Code Evaluation AREASMAT NUM P000 N PILGRIM N9A Nozzle Figure 4: Unit Internal Pressure File No.: 0900530.306 Revision:
0Page 24 of 25 F0306-01I V Structural Integrity Associates, Inc.NODAL SOLUTION-STEP=1 SUB =1 TIME=1 SINT (AVG)DMX =.745E-03 SMN =12.35 SMX =23053 12.35 10253 15373 20493 2572 23053 I 2.35 2572 PILGRIM N9A Nozzle 5133 10253 15373 20493 23053 7693 12813 17933 Figure 5: Stress Intensity under Unit Pressure File No.: 0900530.306 Revision:
0 Page 25 of 25 F0306-01:
Structural Integrity Associates, Inc.Appendix A CALCULATION OF THE HEAT TRANSFER COEFFICIENTS File No.: 0900530.306 Revision:
0 Page A- I of A-3F0306-01 RO Structural Integrity Associates, Inc.An expression for the natural convection heat transfer coefficient can be developed by combining Equations 5-42 and 7-56 of Reference
[10], as follows: Nufree C. (Gr .Pr)n (l)hfree = C. (Gr. Pr)" .k (2)x At 0.75 < x/D < 2.0 Where: hfree = Natural-convection heat transfer coefficient, h = Nu
- k / x C = Linear coefficient representing the pipe geometry Gr = Grashof number for the flow n = Polynomial coefficient representing the pipe geometry x = Characteristic length (the pipe diameter for tube flow and difference of radius for annular flow), ft D = Pipe diameter, ft As shown in the accompanying text for Equation 7-56 of Reference
[10], values of C = 0.55 and n 0.25 are reasonable for the pipe geometry under consideration.
The Grashof number is adimensionless quantity representing the free convection state of a system, and it is calculated with thefollowing equation [
10, Equation 7-21 ]: Gr _ g'f.(6. -T.)x 3 (3)Where: g = Acceleration due to gravity, 32.173 ft/sec 2 P3 = Volumetric rate of expansion of the fluid, ft'3/ft 3'-F T, = Temperature of the pipe wall (surface), 'F T.o = Temperature of the fluid, 'F x = Characteristic length (the pipe diameter for tube flow and difference of radius for annular flow), ft File No.: 0900530.306 Page A-2 of A-3 Revision:
0 F0306-01 RO r Structural Integrity Associates, Inc.Calculation of Heat Transfer Coefficients for Feedwater Nozzle Flow Path t I---- j____References" 1. P. Holman, "Heat Transfer '4th Edition, McGraw-Hill 1976_______________________.
i2JPHolmnan, "Heat Transfer, "'5th Edition, 1981. ___I__-43. Vunus A. Cengel, John M. Cinrbala, "Fluid Mechanics Fundamentals and Applications", McGraw Hill-, 2006.......... ......... .--. --. --
...... --.......... ..--
-...... ....Pipe Inside Diameter, D = 3847 inches 0.321 ft -Outer Pipe, Inside radius, r. 1.9233! inches = 0160 tit ,t i o0.049 'm, T_Flow, % of rated 0T..... ___0_/__I Fluid Velocity, V 0.000 ft/sec = 0.0 gpm =-Characteristic Length, L = D 0.321 ft = 0.098 im Tfti -Tuf., AT = Tfid - 0.00 30.00
-130.00 -230.00 330.00
' 430.00
- 530.00 *F The above assumption is based on 000 16.67 72.22 127.78 183.33 238.89 C experience wth past RP-V heat transfer ianalyses.
T Value at Fluid Temperature, T [3] Units Conversion 70 100 T 200 1 300 1 400 500 600 'FWater Property Factor [1] 21.11 37.78 93.33 148.89 1204.44 260.00 315.56 'C k 1.7307 0.6006 0.6282 0.6767 0.6819 1 0.6611 06092 0.5175 W/m-*C(Thermal Conductivity)
-0.3470 0.3630 o0.3910 03940 0.3820 0.3520 0.2990 Btu/hr-ft-*F CP4.1869 4.183 4.183 4.208 4.308 4.513 4.974 6.318 kJ/kg-'C (Specific Heat) 0.999 0.999 1.005 1.029 1.078 1.188 1.509 Btu/-bm-*F P 16.018 997.9 993.1 963.0 915.1 859.4 I 784.1 677.9 kg/in 3 (Desit) 6.3 2 60.11 57.1 53.7 f 49.0 42.3 Ib/f 3 (Dniy U. 23 1.8 2.07E-04 3.60E-04 i 7.11E-04 1.02E-03 1.39E-03 2.OOE-03 3.39E-03 m 3/m/-*C (Volumetric Rate of Expansion)
- 1. 1S-0 2.OOE-04T 3.95E-04 5.66E-04 7.71 E-04 I1.1IE-03 1.89E-03 ft 5/ft'-*F....... .... ..........
..... _v , e ,c r o ..E p ! n .. ...... ........... ...... ............ ...... ... .......
L .E.. 0
........I.. ... .......
2 .O _. _..9.....
-......... ... 5 6 E ...... I : .5 _ .. .2 y_ .j
- :.. ................. ... .. ..
....... ..-g .03048 9.806 9.806 9806 9806 98806 9806 9806 m/s 2 (Gravitational Constant) 32.17 32.17 T 32.17 32.17 32.17 I 32.17 32.17 ft/s t 1t.4881 ....E... ....04, 303-0iz- 4--04 1.84E-04 I .3E-0G-4_1 1 -E---0-4-- 0E-0 kgrs (Dynamic Viscosity)
.. 6.56E-04 4.58E.04 2.04E-04 1 .24E- .883E-05 6.83E-05.5.39E-05 Ibm/ft-s Pr 6.790 4.540 1.880 1.160 ) 0.893 0.830 0.979
-(Prandtl Number)
_ I Calculated Parameter Formula 70 100 200 300 400 500 [ 600 °FReynold's Number, Re pVD/p 0.OOOOE+00 0.0000E+00 0.OOOOE+00 I 0.OOOOE+00 I.OOOOE+00I 0.OOOOE+00 0.OOOOE+00
-Grashof Number, Gr gPAfl 3/TLl(p)2 0.000E+00 1.1662E+08 4 7446E+09 2.9472E+10 9.9465E+ +11 6.5289E+11
-Rayleigh Number, Ra GrPr 0.OOOOE+00 5.2944E+08; 8.9199E+09 3.4188E+10 EE11 7E.3918E11
-From ...I ....... .. ..............................
Inside urfacevtion Heat Transfer Coefficient:
.,_ --Case: Enclosed cylinder C = ....... n I., 02) .- ..H,_ C(GrPr)rk/L 0.00 536.46 1, 170.69', 1,650.59 2,031.74 2,336.94 2,604.66 W/m 2-*C0.00 94.48 206.17 290.69 357.82 411.57 458.72 Btu/hr-ft2-*F 0.O00E+00 1.822E-04 3.977E-04 5.607E-04 6.902E-04 7.939E-04 8.849E-04 Btu/sec-in 2-°F File No.: 0900530.306 Revision:
0 Page A-3 of A-3 F0306-01 RO Structural Integrity Associates, Inc.Appendix B SUPPORTING FILES File No.: 0900530.306 Revision:
0 Page B- 1 of B-2 F0306-01 RO V Structural Integrity Associates, Inc.File Name Description N9 Loads.xls Excel Spreadsheet to Create HTCs.
PNPS-N9.INP N9A Nozzle ANSYS Geometry Input File from Reference
[2].MPropLinear.
PNPS.INP N9A Nozzle ANSYS Material Input File from Reference
[2].PNPS-N9-PRESS.INP N9A Nozzle ANSYS Pressure Load Input File.PNPS-N9-PRESS S3 P*.OUT ANSYS Pressure Linearized Stress Output Files.PNPS-N9-#-THM.INP N9A Nozzle ANSYS Thermal Load Input File.PNPS-N9-#-THM mntr.inp N9A Nozzle ANSYS Thermal Load mntr File Created from ANSYS Thermal Run.PNPS-N9-#-STR.inp N9A Nozzle ANSYS Thermal Load Stress Input File.PNPS-N9-#-STR S3 P*.OUT ANSYS Thermal Analysis Linearized Stress Output Files.StressResults.xis Excel Spreadsheet to Summary Linearized Stress. Each Path Has One File at corresponded Directory.
VFAT-*&.xls Excel Spreadsheet to Create .str File.VFAT-*o III.xls Excel Spreadsheet to Create .str File for Maximum Intensity Range only.p*-& @.CYC Cycle Input File for VESLFAT Program.p*-o Ill @.CYC Cycle Input File for Maximum Intensity Range only at Outside Surface Locations for-__ -_VESLFAT Program.p*-& @.FDT Material Input File for VESLFAT Program.
p*-oiIII .FDT Material Input File for Maximum Intensity Range only at Outside Surface Locations for VESLFAT Program.p*-& @aý.str Stress Input File for VESLFAT Program Created by the spreadsheets.
p**-oIllI@.str Stress Input File for Maximum Intensity Range only at Outside Surface Locations for VESLFAT Program Created by the spreadsheets.
p*-&J@.ALL, p*-&_@.ORD, p*-&_ .PR, p*-&
@ RD.ST Intermediate Result File Created by VESLFAT Program where * = Paths I through 9.p**- o_IlI @.ALL p** o III _@.ORD, Intermediate Result File for Maximum Intensity Range only at Outside Surface Locations**- o III@.PR, p**- o III @.ST Created by VESLFAT Program.p*-& @.fat Fatigue Result File Created by VESLFAT Program p**- o_II_@.fat Fatigue Result File for Maximum Intensity Range only at Outside Surface Locations Created by VESLFAT Program.Pressure Summary.xls Summary of Pressure Results for Design Load and Pure Shear Evaluation Where:* = Paths I through 4,** = Paths 1 and 4,#= Thermal transients 2, 3, 11, 13, 14, 17, 21, 24 (transient 24 has the same time history as transient 2),& = i or o for inside surface (Nozzle side for path 2) or outside surface (seal side for Path 2), respectively,= 508, M52, F304, or 304L for material at locations, see Table 4 for corresponded materials.
File No.: 0900530.306 Revision:
0 Page B-2 of B-2 F0306-OI RO Structural Integrity Associates, Inc.Appendix C EXAMPLE VESLFAT FILES VESLFAT INPUT FILE pl-i_304L.CYC File No.: 0900530.306 Revision:
0 Page C-I of C-40 F0306-01 RO Structural Integrity Associates, Inc.Trans Name cycles 1 2_DHydT1 130 2 2_DHydT2 130 3 2_DHydT3 130 4 3_Staupl 120 5 3_Staup2 120 6 11 LFWP1 30 7 11 LFWP2 30 8 11LFWP3 30 9 11 LFWP4 30 10 I1 LFWP5 30 11 I--LFWP6 30 12 II-LFWP7 30 13 1I-LFWP8 30 14 13 ROPI 1 15 13ROP2 1 16 13_ROP3 117 14 SRVB1 2 18 14_SRVB2 2 19 14-SRVB3 2 20 14 SRVB4 2 21 17_ImpSTl 5 22 17.ImpST2 5 23 17_ImpST3 5 24 21lShDwl 118 25 21-ShDw2 118 26 21-ShDw3 118 27 21 ShDw4 118 28 24_Hydrol 3 29 24_Hydro2 3 30 24_Hydro3 3 File No.: 0900530.306 Page C-2 of C-40 Revision:
0 F0306-01 RO Structural Integrity Associates, Inc.VESLFAT INPUT FILE pl-i_304L.FDT Fatigue Analysis Properties
-Note: All text must remain in the file -ksi 1.7 .3 m and n for elastic plastic analysis 28300 E fatigue Curve,ksi 1 Multiplying factor to convert *.STR file data to psi 0.010 Max Membrane Stress (ksi) per psi applied pressure 40 NB-3222.5 (b) limit on Sy if large number of cycles 25 Number of Points on Fatigue Curve 6 Number of points on Material Property Curve Fatigue Curve with Cycles (ascending) and Salt, ksi 10 70820 512 50 345 100 261 200 201 500 148 1000 119 2000 97 5000 76 10000 64 20000 55.5 50000 46.3 100000 40.8 200000 35.9 500000 31 1000000 28.2 2000000 22.8 5000000 18.4 10000000 16.4 20000000 15.2 50000000 14.3 100000000 14.1 1000000000 1J.9 10000000000 13.7 100000000000 13.6 Material Property Curve (SA-240 TP 304L equivalent ASME 2001)Temp E,ksi Sm, ksi Sy, ksi 70 28300 16.7 25.0 200 27600 16.7 21.4 300 27000 16.7 19.2 400 26500 15.8 17.5 500 25800 14.7 16.4 600 25300 14.0 15.5 File No.: 0900530.306 Page C-3 of C-40 Revision:
0 F0306-01 RO C Structural Integrity Associates, Inc.VESLFAT INPUT FILE pl-i_304L.STR Name 2_DHydT10 2_DHydT10 2DHydTIO 2DHydT10 2_DHydTI0 2DHydT10 2DHydTI0 2DHydTII 2DHydTI1 2DHydT21 2DHydT21 2DHydT21 2DHydT21 2_DHydT21 2DHydT21 2_DHydT21 2DHydT22 2DHydT22 2_DHydT32 3_StauplO 3_Staupl328 3_Staup2657 3_Staup2985 3_Staup21313 3_Staup21970
3_Staup22627 Sxx Syy Szz Sxy Sxz Syz Sxx Syy Szz Sxy Sxz Syz Tmax Pmax-2-2-2 2-2-2-2 1248-1248-1248-1248-1248-1248-1248-1248-1248-27-2-23-44-66 129-172-1596 -1383 119 0 0-1596 -1383 119 0 0-1596 -1383 119 0 0-1596 -1383 119 0 0-1596 -1383 119 0 0-1596 -1383 119 0 0-1596 -1383 119 0 0-1596 -1383 119 0 0-1596 -1383 119 0 0-623 2718 193 0 0-623 2718 193 0 0-623 2718 193 0 0-623 2718 193 0 0-623 2718 193 0 0-623 2718 193 0 0-623 2718 193 0 0-623 2718 19.3 0 0-623 2718 193 0 0-1577 -1301 120 0 0-1596 -1383 119 0 0-2092 -1731 133 0. 0-2631 -2126 157 0 0-3183 -2533 186 0 0-3745 -2950 217 0 0-4902 -3801 281 0 0-5925 -4554 351 0 0-2 2-2-2-2-2-2-2-1248-1248-1248-1248-1248-1248
-1248-1248-1248-27-2-23-44-66-87-129-172-1632 -1440-1632 -1440-1632 -1440-1632 -1440-1632 -1440-1632 -1440-1632 -1440-1632 -1440-1632 -1440-456 2829-456 2829-456 2829-456 2829-456 2829-456 2829-456 2829-456 2829-456 2829-1608 -1355-1632 -144b-2178 -1857-2734 -2287-3290 -2715-3850 -3145-4987 -4012-6009 -4787-51-51 51-51 51-51-51 54 54 54 54 54 54 54 54 54-49-51-65 96-112-143-171 0 0 100 0 00 00 0 0 00 00 00 0 0 ~0'0 00 00 0 0 0 0 00 0 0 00 0 0 0 0 00 00 0 0 00 00 00 0 0 0 100 100 100 100 1-00 100 100 100 100 100 100 100 100 100 100 100 100 100 100 107 115.124 133 151 170 0 0 0 0 0 0 0 0 0 1250 1250 1250 1250 1250 1250 1250 1250 1250 25 0 21 41 62 83 124 166 File No.: 0900530.306 Revision:
0 Page C-4 of C-40 F0306-O1 RO CStructural Integrity Associates, Inc.3_Staup23283
-214 -6937 -5297 423 0 3_Staup23940
-257 -8026 -6094 491 0 3_Staup24597
-299 -9325 -7031 550 0 3 Staup25253
-342 -10682 -8007 605 0 3 Staup25910
-384 -11960 -8897 660 0 3 Staup26895
-448 -13782 -10134 740 0 3_Staup27880
-511 -15523 -11320 826 0 3_Staup28865
-575 -17155 -12456 922 0 3_Staup29850
-639 -19377 -14012 991 0 3Staup211491
-745 -23076 -16543 1100 0 3Staup213133
-851 -26015 -18513 1236 0 3_Staup214774
-957 -29575 -20774 1316 0 3Staup216416
-1063 -33424 -23654 1443 0 3Staup216452
-1063 -33374 -23624 1448 0 3Staup216488
-1063 -33334 -23594 1452 0 3Staup216596
-1063 -33284 -23554 1458 0 3Staup216784
-1063 -33264 -23534 1464 0 3Staup217289
-1063 -33264 -23514 1470 0 3Staup217973
-1063 -33274 -23514 1472 0 3Staup218693
-1063 -33274 -23514 1473 0 3Staup219413
-1063 -33274 -23514 1473 0 3Staup220016
-1063 -33274 -23514 1473 0 3Staup220026
-1063 -33274 -23514 1473 0 11 LFWP10 -1061 -31414 -21984 1405 0 11_LFWP10
-1065 -31412 -21972 1405 0 11_LFWP10
-1069 -31409 -21961 1405 0 11_LFWP10
-1076 -31403 -21935 1406 0 11_LFWP11
-1093 -31389 -21879 1407 0 11 LFWP11 -1129 -31361 -21761 1409 0-214 -7020 -5552 -199-257 -8097 -6369 -228-299 -9347 -7308 -261-342 -10649 -8281 -294-384 -11850 -9158 -324-448 -13581 -10386 -366-511 -15253 -11573
-408-575 -16844 -12731 -449-639 -18926 -14259 -500-745 *-22369 -16736 -582-851 -25161 -18692 -650-957 -28424 -20859 -723-1063 -32047 -23705 -815-1063 -31977 -23645 -813-1063 -31927 -23595 -812-1063 -31857 -23535 -810-1063 -31837 -23505 -809-1063 -31837 -23485 -808-1063 -31837 -23485 -808-1063 -31837 -23485
-808-1063 -31837 -23485 -808-1063 -31837 -23485 -808-1063 -31837 -23485 -808-1061 -30067 -21965 -760-1065 -30063 -21953 -760-1069 -30060 -21941 -759-1076 -30052 -21914 -759-1093 -30036 -21856
-757-1129 -30003 -21733
-754 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0*188 207 225 244 262 290 317 345 372 4i8 463 509 555 555 555 556 556 556 556 556 556 556 556 532 532 532 532 532 532 207 248 290 331 373 435 497 559 621 724 828 931 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1039 1042 1050 1067 1103 File No.: 0900530.306 Revision:
0 Page C-5 of C-40 F0306-01 RO C Structural Integrity Associates, Inc.11 LFWP12 11 LFWP12 11_LFWP13 11_LFWP13 11 LFWP13 11 LFWP13 11 LFWP14 11 LFWP15 11 LFWP17 11 LFWP19 11_LFWP111 11 LFWP113 11 LFWP117 11_LFWP122 11_ LFWP126 11 LFWP131 11 LFWP139 11 LFWP149 11 LFWP260 11 LFWP275 11 LFWP294 11_LFWP2117 11_LFWP2145 11 LFWP2198 11_LFWP2233 11_LFWP2273 11_LFWP2312 11_LFWP2406 11 LFWP2522-1165 -31333 -21643 1411 0-1201 -31305 -21525 1413 0-1230 -31283 -21430 1415 0-1241 -31264 -21394 1416 0-1240 -31265 -21397 1416 0-1239 -31266 -21401 1416 0-1235 -31269 -21412 1416 0-1230 -31273 -21430 1415 0-1219 -31281 -21466 1415 0-1208 -31290 -21502 1415 0-1197 -31298 -21538 1414 0-1186 -31307 -21574 1414 0-1185 -31017 -21334 1420 0-1185 -30607 -21004 1429 0-1184 -30147 -20644 1440 0-1183 -29657 -20264 1451 0-1182 -28677 -19504 1472 0-1180 -27657 -18724 1490 0-1179 -26387 -17744 1506 0-1177 -24847 -16534 1517 0-1175 -23097 -15134 1518 0-1173 -21117 -13684 1529 0-1171 -18817 -12004 1539 0-1167 -14797 -9024 1517 0-1164 -11977 -6694 1464 0-1166, -12417 -6974 1371 0-1168 -13217 -7574 1302 0-1171 -14737 -8684 1197 0-1173 -16097 -9694 1117 0 0 -1165 -29969 -21610
-751 0 0 -1201 -29935 -21487 -748 0 0 -1230 -29908 -21388 -746 0 0 -1241 -29887 -21351 -745 0 0 -1240 -29888 -21355 -745 0 0 -1239 -29889 -21358
-745 0 0 -1235 -29892 -21370 -745 0 0 -1230 -29898 -21388
-746 0 0 -1219 -29908 -21426 -746 0 0 -1208 -29918 -21463
-747 0 0 -1197 -29929 -21501
-748 0 0 -1186 -29939 -21539 -749 0 0 -1185 -29449 -21069
-734 0 0 -1185 -28849 -20539 -717 0 0 -1184 -28239 -19989 -699 0 0 -1183 -27619 -19449 -682 0 0 -1182 -26409 -18399
-648 0 0 -1180 -25199 -17359 -614 0 0 -1179 -23749 -16119 -574 0 0 -1177 -22069 -14669 -527 0 0 -1175 -20209 -13059 -475 0 0 -1173 -18169 -11399
-423 0 0 -1171 -15839 -9539 -363 0 0 -1167 -11629 -6169 -249 0 0 -1164 -8890 -3774 -172 0 0 -1166 -10519 -5294 -222 0 0 -1168 -11929 -6589 -263 0 0 -1171 -13999 -8389 -320 0 0 -1173 -15629 -9779 -367 0 532 532 532 532 532 532 532 532 532 532 532 532 530 528 526 523 518 512 504 492 477 458 434 386 354 341 335 333 339 1139 1175 1204 1215 1214 1213 1210 1204 1193 1182 1171 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 File No.: 0900530.306 Revision:
0 Page C-6 of C-40 F0306-OIRO Structural Integrity Associates, Inc.11_LFWP2709
-1175 -17737 -11044 1063 0 l1_LFWP2896
-1177 -19487 -12484 1041 0 llLFWP31029
-1178 -20737 -13484 1040 0 11_LFWP31108
-1178 -21487 -14084 1042 0 11_LFWP31188
-1179 -22217 -14664 1046 0 11 LFWP31267
-1180 -22777 -15094 1057 0 11_LFWP31346
-1180 -23277 -15514 1077 0 11_LFWP31465
-1181 -24027 -16124 1109 0 11_LFWP31584
-1182 -24767 -16734 1143 0 llLFWP31702
-1182 -25507 -17324 1178 0 11_LFWP31821
-1183 -26387 -17974 1201 0 11 LFWP32019
-1184 -27917 -19054 1229 0 11_LFWP32213
-1185 -29477 -20154 1254 0 11_LFWP32217
-1180 -29251 -19980 1259 0 11_LFWP32220
-1174 -28915 -19717 1268 0 11_LFWP32224
-1168 -28519 -19423 1279 0 11_LFWP32227
-1163 -28103 -19110 1290 0 11 LFWP32235
-1151 -27240 -18472 1316 0 11_LFWP42242
-1140 -26378 -17855 1339 0 11_LFWP42250
-1128 -25487 -17230 1362 0 11_LFWP42259
-1114 -24417 -16485 1385 0 11_LFWP42271
-1095 -23130 -15580 1407 0 11_LFWP42286
-1073 -21596 -14519 1426 0 11 LFWP42305
-1045 -19797 -13264 1442 011_LFWP42342 -991
-16546 -11050 1454 011_LFWP42383 -930
-13031 -8368 1399 0 11_LFWP42393
-915 -12132 -7674 1387 0 11_LFWP42481
-924 -12958 -8208 1242 0-11 LFWP42568
-931 -14044 -8951 1144 0 0 -1175 -17419 -11369 -422 0 -1177 -19119 -12859
-470 0 -1178 -20299 -13869 -502 0 -1178 -20999 -14469 -521 0 -1179 -21659 -15019
-539 0 -1180 -22199 -15449
-553 0 -1180 -22689 -15869
-567 0 -1181 -23419 -16489
-588 0 -1182 -24139 -17109 -609 0 -1182 -24859 -17709 -629 0 -1183 -25659 -18339 -648 0 -1184 -27059 -19379 -682 0 -1185 -28499 -20449 -716 0 -1180 -28074 -20066 -704 0 -1174 -27548 -19593
-688 0 -1168 -26993 -19100
-672 0 -1163 -26428 -18617
-656 0 -1151 -25317 -17671 .625 0 -1140 -24277 -16805 -597 0 -1128 -23217 -15952 -569 0 -1114 -21979 -14958
-536 0 -1095 -20525 -13805
-498 0 -1073 -18855 -12497 -455 0 -1045 -16939 -11005 -406 0 -991 -13587 -8479 -321 0 -930 -9861 -5416 -219 0 -915 -8971 -4681 -195 0 -924 -11519 -7035 -271 0 -931 -13205 -8498 -316 355 373 386 394 402 410 418 4ý3 0 442 454 466 486 506 505 503 502 500 495 491 485 478 468 455 439 405 365 356 334 327 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1155 1150 1145 1140 1130 1120 1109 1096 1079 1058 1032 981 924 910 915 920 File No.: 0900530.306 Page C-7 of C-40 Revision:
0 F0306-O1 RO C Structural Integrity Associates, Inc.9 11_LFWP42675
-938 -14969 -9561 1066 0 9 llLFWP42808
-947 -15683 -10077 1013 0 9 11_LFWP43072
-963 -16611 -10837 976 0 9 11_LFWP43337
-979 -17380 -11468 982 0 9 11_LFWP43602
-995 -18408 -12268 994 0 9 11 LFWP43777
-1006 -19120 -12805 1004 0 9 11_LFWP43952
-1016 -19842 -13342 1016 0 9 11_LFWP44127
-1027 -20575 -13880 1029 0 9 l1_LFWP44302
-1037 -21317 -14417 1043 0 9 11 LFWP44565
-1053 -22275 -15097 1069 0 10 11_LFWP54828
-1069 -23023 -15648 1107 0 10 11 LFWP55091
-1084 -23762 -16199 1146 0 10 11_LFWP55354
-1100 -24510 -16740 1186 0 10 11_LFWP55792
-1126 -25871 -17698 1236 0 10 11_LFWP56230
-1152 -27391 -18686 1268 0 10 11_LFWP56668
-1178 -28952 -19694 1296 0 10 11 LFWP56773
-1185 -29387 -20034 1310 0 10 11_LFWP56781
-1175 -29074 -19804 1318 0 10 11_LFWP56790
-1165 -28661 -19514 1328 0 10 11_LFWP56798
-1155 -28229 -19205 1339 0 10 11_LFWP56807
-1145 -27786 -18885 1348 0 10 11_LFWP56823
-1126 -26950 -18285 1361 0 11 11 LFWP66840
-1107 -26184 -17766 1373 0 11 11_LFWP66857
-1087 -25439 -17276 1382 0 11 11_LFWP66877
-1065 -24625 -16736 1390 0 11 11_LFWP66900
-1039 -23695 -16120 1395 0 11 11_LFWP66927
-1008 -22638 -15437 1398 0 11 11_LFWP66959
-973 -21455 -14671 1398 0 11 11 LFWP67015
-909 -19583 -13443 1378 0 0 -938 -14409 -9467 -349 0 -947 -15242 -10172 -374 0 -963 -16258 -11060 -405 0 -979 -17023 -11728 -429 0 -995 -17999 -12537 -454 0 -1006 -18670 -13063 -471 0 -1016 -19340 -13588 -488 0 -1027 -20021 -14114 -505 0 -1037 -20712 -14640 -522 0 -1053 -21588 -15299 -544 0 -1069 -22313 -15858 -563 0 -1084 -23029 -16406 -582 0 -1100 -23755 -16955 -601 0 -1126 -25032 -17890 -632 0 -1152 -26418 -18835 -663 0 -1178 -27845 -19819 -695 0 -1185 -28249 -20149 -706 0 -1175 -27758 -19720 -692 0 -1165 -27206 -19251 -676 0 -1155 -26655 -18803 -661 0 -1145 -26124 -18364 -647 0 -1126 -25151 -17577 -621 0 -1107 -24308 -16920 -599 0 -1087 -23516 -16323 -579 0 -1065 -22666 -15696 -559 0 -1039 -21730 -15013 -536 0 -1008 -20688 -14265 -510 0 -973 -19530 -13442 -483 0 -909 -17688 -12153 -435 0 0 326 329 339 351 363 371 379 387 395 407 419 431 443 463 483 503 508 507 505 502 5oo 494 488 482 474 464 453 439 414 926 934 949 964 979 989 999 1009 1019 1034 1049 1064 1079 1104 1129 1154 1160 1151 1142 1132 1123 1105 1086 1068 1047 1021 991 957 895 File No.: 0900530.306 Revision:
0 Page C-8 of C-40 F0306-OIRO C Structural Integrity Associates, Inc.11 llLFWP67083
-832 -17332 -11769 1308 0 11 llLFWP67166
-739 -14022 -9395 1257 0 11 11 LFWP67193
-709 -13125 -8823 1241 0 11 llLFWP67199
-709 -13085 -8803 1233 0 11 11_LFWP67205
-709 -13105 -8823 1223 0 11 11 LFWP67223
-710 -13275 -8953 1195 0 11 11_LFWP67253
-711 -13585 -9143 1150 0 11 11_LFWP67313
-711 -14055 -9433 1083 0 11 l1_LFWP67373
-712 -14345 -9613 1035 0 11 llLFWP67433
-712 -14525 -9733 998 0 11 11iLFWP67493
-713 -14625 -9823 969 0 11 11 LFWP67565
-704 -14852 -10043 942 0 11 11_LFWP67637
-695 -15049 -10244 923 0 11 11_LFWP67787
-676 -15374 -10597 901 0 11 11_LFWP67902
-662 -15596 -10845 893 0 11 11_LFWP68065
-641 -15892 -11183 888 0 11 11_LFWP68227
-621 -16188 -11491 891 0 11 11 LFWP68390
-601 -16474 -11799 897 0 11 11_LFWP68553
-580 -16761 -12098 907 0 11 11_LFWP68716
-560 -17047 -12396 918 0 11 11_LFWP68879
-539 -17333 -12684 930 0 11 11_LFWP69032
-520 -17628 -12979 942 0 11 11_LFWP69248
-493 -18170 -13469 953 0 11 11 LFWP69464
-466 -18731 -13970 964 0 11 11_LFWP69680
-439 -19293 -14480 974 0 11 11_LFWP69896
-412 -19864 -14981 983 0 12 11_LFWP710256 -367
-20820 -15842 999 0 12 11_LFWP710616
-322 -21806 -16703 1014 0 12 11 LFWP710976
-276 -22652 -17464 1033 0 File No.: 0900530.306 Revision:
0-832 -15399, -10350
-374 0-739 -12364 -8057 -300 0-709 -11542 -7509 -281 0-709 -11612 -7600 -284 0-709 -11732 -7720 -288 0-710 -12102 -8080
-298 0-711 -12632 -8540
-312 0-711 -13362 -9130 -331 0-712 -13772 -9480 -343 0-712 -14022 -9700 -350 0-713 -14162 -9830 -355 0-704 -14450 -10131 -365 0-695 -14679 -10372 -374 0-676 -15037 -10778 -387 0-662 -15271 -11048 -395 0-641 -15580 -11399 -407 0-621 -15870 -11730 -417 0-601 -16159 -12051 -427 0-580 -16449 -12352
-437 0-560 -16739 -12663 -446 0-539 -17028 -12954 -456 0-520 -17317 .-13261 -465 0-493 -17833 -13755 -480 0-466 -18359 -14250 -495 0-439 -18894 -14754 -511 0-412 -19430 -15258 -526 0-367 -20334 -16105
-552 0-322 -21247 -16962
-578 0-276 .-22050 -17709
-601 0 383 820 345 730 333 700 331 700 329 700 326 700 322 700 317 700 314 700 313 700 312 700 313 691 314 682 317 662 320 648 325 627 329 606 334 585 338 565 343 544 347 523 351 503 357 476 363 448 369 421 375 393 385 347 395 301 405 255 Page C-9 of C-40 F0306-O1 RO C Structural Integrity Associates, Inc.12 l1_LFWP711093
-262 -22873 -17683 1042 0 12 llLFWP711198
-278 -23041 -17770 1052 0 12 l1_LFWP711303
-294 -23218 -17868 1063 0 12 11_LFWP711408
-310 -23386 -17956 1073 0 412 11_LFWP711513
-326 -23564 -18054 1084 0 12 11 LFWP711724
-358 -23909 -18239 1104 0 12 11_LFWP711934
-390 -24244 -18425 1125 0 12 11_LFWP712144
-422 -24589 -18611 1146 0 12 11_LFWP712354
-454 -24935 -18797 1166 0 12 11_LFWP712565
-486 -25270 -18982 1187 0 12 11_LFWP712775
-518 -25655 -19178 1203 0 12 11 LFWP712985
-550 -26080 -19384 1214 0 12 11_LFWP713300
-598 -26713 -19697 1230 0 12 11_LFWP713616
-646 -27356 -20010 1246 0 12 11 LFWP713931
-694 -27999 -20324 1261 0 12 11_LFWP714247
-742 -28642 -20627 1276 0 12 11 LFWP714772
-822 -29850 -21347 1314 0 12 l1_LFWP715298
-903 -31098 -22176 1357 0 12 l1_LFWP715823
-983 -32366 -23015 1399 0 12 11_LFWP716349
-1063 -33424 -23654 1443 0 12 11_LFWP716549
-1063 -33304 -23564 1457 0 12 11_LFWP716749
-1063 -33264 -23534 1464 0 12 11 LFWP716973
-1063 -33264 -23524 1468 0 12 11_LFWP717242
-1063 -33264 -23514 1470 0 12 11_LFWP717934
-1063 -33274 -23514 1472 0 12 11_LFWP718783
-1063 -33274 -23514 1473 0 12 11_LFWP719688
-1063 -33274 -23514 1473 0 12 11_LFWP721688
-1063 -33274 -23514 1473 0 12 11 LFWP723688
-1063 -33274 -23514 1473 0-262 -22264 -17930 -608-278 -22429 -18026 -611-294 -22594 -18112 -615-310 -22759 -18208 -619-326 -22925 -18303 -622-358 -23255 -18484 -629-390 -23585 -18676 -636-422 -23905 -18858 -644-454 -24235 -19039 -651-486 -24565 -19220 -658-518 -24915 -19412 -665-550 -25295 -19603 -672-598 -25860 -19900 -682-646 -26435 -20187 -693-694 -27011 -20474 -704-742 -27596 -20761 -714-822 -28711 -21460 -738-903 -29876 -22258 -766-983 -31071 -23087 -794-1063 -32047 -23705 -815-1063 -31887 -23555 -810-1063 -31837 -23515 -809-1063 -31827 -23495 -808-1063 -31837 -23485 -808-1063 -31837 -23485 -808-1063 -31837 -23485 -808-1063 -31837 -23485 -808-1063 -31837 -23485 -808-1063 -31837 -23485 -808 409 412 415 417 420 426 432 438 444 450 455 461 470 479 488 496 511 526 540 555 556 556 556 556 556 556 556 556 556 240 256 272 288 304 335 367 399 431 463 494 526 574 622 669 717 796 876 955 io35 1035 1035 1035 1035 1035 1035 1035 1035 1035 File No.: 0900530.306 Page C-10 of C-40 Revision:
0 F0306-01 RO Structural Integrity Associates, Inc.12 11 LFWP725688
-1063 -33274 -23514 14730 0 -1063 -31837 -23485 -808 0 0 556 1035 12 11_LFWP726349
-1063 -33274 -23514 1473 0 12 11_LFWP726349
-1063 -33274 -23514 1473 0 12 11_LFWP726349
-1063 -33274 -23514 1473 0 12 11_LFWP726349
-1063 -33274 -23514 1473 0 12 11_LFWP726349
-1063 -33274 -23504 P473 0 12 l1 LFWP726349
-1063 -33254 -23494 1473 0 12 l1_LFWP726350 -1063
-33224 -23464 1473 0 12 11_LFWP726350
-1063 -33194 -23434 1474 0 12 11_LFWP726350
-1062 -33154 -23404 1474 0 12 11_LFWP726350
-1062 -33144 -23394 1474 0 12 11_LFWP726550
-1063 -32804 -23154 1467 0 12 11 LFWP726750
-1063 -32844 -23174 1457 0O 12 11_LFWP726950
-1063 -32864 -23184 1453 0 12 11_LFWP727150
-1063 -32864 -23194 1451 0 12 l1_LFWP727564
-1063 -32864 -23194 1449 0 12 11_LFWP728094
-1063 -32864 -23194 1448 0 12 11_LFWP729429
-1063 -32864 -23194 1448 0 12 11 LFWP731429
-1063 -32864 -23194 1448 0 12 11_LFWP733429
-1063 -32864 -23194 1448 0 12 11_LFWP735429
-1063 -32864 -23194 1448 0 12 l1_LFWP736350 -1063
-32864 -23194 1448 0 12 11_LFWP736350
-1063 -32864 -23194 1448 0 12 11_LFWP736350
-1063 -32864 -23194 1448 0 12 11_LFWP736350
-1063 -32864 -23194 1448 0 12 11_LFWP736350
-1063 -32854 -23184 1448 0 12 11_LFWP736350
-1062 -32814 -23144 1449 0 12 11_LFWP736351
-1062 -32754 -23094 1449 0 12 11 LFWP736351
-1061 -32674 -23024 1451 0-1063 -31837 -23485 -808-1063 -31837 -23485 -808-1063 -31837 -23476 -808-1063 -31827 -23476 -808-1063 -31807 -23446 -807-1063 -31727
-23366 -804-1063 -31627 -23275 -801-1063 -31517 -23165 -798-1062 -31427 -23075 -795-1062 -31387 -23035 -794-1063 -31297 -23035 -793-1063 -31407 -23125 -796-1063 -31437 -23155 -797-1063 -31447 -23155 -797-1063 -31447 -23165 -798-1063 -31447 -23165 -798-1063 -31447 -23165 -798-1063 -31447 -23165 -798-1063 -31447 -23165 -798-1063 -31447 -23165 -798-1063 -31447 -23165 -798-1063 -31437 -23165 -798-1063 -31437 -23165 -797-1063 -31417 -23145 -797-1063 -31357 -23085 -795-1062 -31197 -22925 -790-1062 -30987 -22715 -783-1061 -30747 -22485 -776 556 556 556 556 556 555 555 555 555 554 549 548 548 548 548 548 548 548 548 548 548 548 548 548 548 547 547 546 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 File No.: 0900530.306 Revision:
0 Page C-1I of C-40 F0306-01RO C Structural Integrity Associates, Inc.12 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 11_LFWP736351
-1061 -32604 -22964 1452 0 11_LFWP736351
-1061 -32564 -22934 1452 0 11_LFWP736551
-1061 -31274 -21894 1443 0 11_LFWP736751
-1061 -31364 -21934 1424 0 11_LFWP736951 71061 -31394 -21964 1416 0 11_LFWP737151
-1061 -31404 -21974 1412 0 11_LFWP737565
-1061 -31404 -21974 1408 0 11_LFWP738096
-1061 -31404 --21974 1407 0 11_LFWP738820
-1061. -31404 -21984 1406 0 11_LFWP740244
-1061 -31394 -21984 1406 0 11_LFWP742244
-1061 -31394 -21984 1406 0 11 LFWP744244
-1061 -31394 -21984 1406 0 11_LFWP845798
-1061 -31394 -21984 1406 0 11_LFWP846351
-1061 -31394 -21984 1406 0 11_LFWP846387
-1061 -31394 -21984 1406 0 11_LFWP846423
-1061 -31394 -21984 1406 0 11_LFWP846531
-1061 -31394 -21984 1406 0 11 LFWP846855
-1061 -31394 -21984 1406 0 11_LFWP847575
-1061 -31394 -21984 1406 0 11_LFWP848295
-1061 -31394 -21984 1406 0 11_LFWP849015
-1061 -31394 -21984 1406 0 11_LFWP849735
-1061 -31394 -21984 1406 0 11_LFWP849951
-1061 -31394 -21984 1406 0 11 LFWP849961
-1061 -31394 -21984 1406 0 13 ROPl0 -1061 -31414 -21984 1405 0 13 ROP10 -1069 -31409 -21960 1406 0 13 ROPl0 -1076 -31403 -21935 1406 0 13 ROPl0 -1094 -31389 -21877 1407 0 13 ROP10 -1131 -31360 -21754 1409 0-1061 -30547 -22285 -769-1061 -30467 -22205 -767-1061 -29757 -21685
-750-1061. -29977 -21865 -756-1061 -30037 -21925 -758-1061 -30057 -21945 -759-1061 -30057 -21955 -759-1061 -30057 -21955 -760-1061 -30057 -21955 -760-1061 -30047 -21955 -760-1061 -30047 -21955 -760-1061 -30047 -21955 -760-1061 -30047 -21955 -760-1061 -30047 -21955 -760-1061 -30047 -21955 -760-1061 -30047 -21955 -760-1061 -30047 -21955 -760-1061 -30047 -21955 -760-1061 -30047 -21955 -760-1061 -30047 -21955 -760-1061 -30047 -21955 -760-1061 -30047 -21955 -760-1061 -30047 -21955 -760-1061 -30047 -21955 -760-1061 -30067 -21965 -760-1069 -30060 -21940 -759-1076 -30052 -21914 -759-1094 -30036 -21854
-757-1131 -30001 -21726 -754 545 1035 545 1035534 1035 532 1035532 1035 532 1035532 1035 532 1035 532 1035 532 1035532 1035532 1035532 1035 532 1035 532 1035 532 1035532 1035532 1035 532 1035 532 1035 532 1035 532 1035 532 1035532 1035 532 1035 532 1043532 1050 532 1068532 1105 Page C-12 of C-40 File No.: 0900530.306 Revision:
0 F0306-OIRO C Structural Integrity Associates, Inc.15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 13_ROP21 13_ROP21.13 ROP22 13 ROP22 13 ROP22 13 ROP23 13 ROP23 13 ROP25 13 ROP28 13 ROP214 13 ROP220 13_ROP226 13 ROP232 13 ROP240 13 ROP249 13 ROP257 13 ROP266 13 ROP282 13 ROP29913 ROP2117 13 ROP2139 13 ROP2164 13 ROP2193 13 ROP2225 13 ROP2280 13 ROP2343 13 ROP2413 13 ROP245213 ROP2652
-1206 -31301 -21508 1414 0-1281 -31243 -21262 1418 0-1356 -31185 -21016 1423 0-1414 -31139 -20823 1426 0-1435 -31122 -20754 1428 0-1426 -31129 -20783 1427 0-1417 -31126 -20812 1426 0-1391 -31147 -20900 1425 0-1346 -31182 -21046 1423 0-1258 -31251 -21338 1418 0-1169 -31320 -21630 1413 0-1080 -31390 -21922 1407 0-992 -31459 -22214 1402 0-993 -31498 -22239 1401 0-995 -31547 -22275 1400 0-996 -31596 -22310 1399 0-998 -31644 -22345 1398 0-1000 -31752 -22426 1397 0-1003 -31860 -22497 1397 0-1007 -31968 -22577 1397 0-1010 -32085 -22665 1397 0-1015 -32232 -22772 1398 0-1020 -32388
-22886 1399 0-1025 -32564
-23018 1402 0-1035 -32847 -23238 1406 0-1045 -33169 -23484 1412 0-1057 -33499 -23736 1420 0-1064 -33604 -23784 1424 0-1063 -33364 -23604 1448 0-1206 -29930 -21470 -748-1281 -29860 -21214 -741-1356 -29789 -20958 -735-1414 -29734 -20757 -730-1435 -29714 -20685
-728-1426 -29722 -20715 -729-1417 -29721 -20746 -730-1391 -29746 -20837 -732-1346 -29788 -20989 -736-1258 -29871 -21293 -743-1169 -29955 -21597
-751-1080 -30039 -21891 -758-992 -30122 -22195 -766-993 -30181 -22250 -767-995 -30240 -22305 -769-996 -30308 -22360 -771-998 -30367 -22405 -772-1000 -30495 -22506 -77.6-1003 -30602 -22596 -779-1007 -30719 -22686
-782-1010 -30846 -22784
-785-1015 -30992 -22899 -789-1020 -31147 -23023 -793-1025 -31312 -23165 -797-1035 -31594 -23383 -805-1045 -31904 -23638 -813-1057 -32193 -23858 -820-1064 -32287 -23915 -822-1063 -31957 -23615 -813 532 532 532 532 532 532 532 532 532 532 532 532 532 532 532 533 533 534 534 535 536 538 539 541 544 548 552 554 555 1180 1255 1330 1389 1410 1401 1392 1366 1321 1232 1143 1054 965 966 968 969 971 973 976 979 983 987 992 997 1006 1017 1028 1035 1035 File No.: 0900530.306 Page C-13 of C-40 Revision:
0 F0306-O1RO C Structural Integrity Associates, Inc.15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 13_ROP2852
-1063 -33284 -23544 1459 0 13_ROP21052
-1063 -33264 -23524 1465 0 13_ROP21252
-1063 -33264 -23524 1468 0 13_ROP21739
-1063 -33274 -23514 1471 0 13_ROP22404
-1063 -33274 -23514 1472 0 13 ROP23237 -1063 -33274 -23514 1473 0 13_ROP24138
-1063 -33274 -23514 1473 0 13_ROP25053
-1063 -33274 -23514 1473 0 13_ROP25971
-1063 -33274 -23514 1473 0 13_ROP27430
-1063 -33274 -23514 1473 0 13_ROP29941
-1063 -33274 -23514 1473 0 13 ROP210452
-1063 -33274 -23514 1473 0 13_ROP210452
-1063 -33274 -23514 1473 0 13_ROP210452
-1063 -33274 -23514 1473 0 13_ROP210452
-1063 -33274 -23514 1473 0 13_ROP210452
-1063 -33274 -23504 1473 0 13_ROP210452
-1063 -33254 -23494 1473 0 13_ROP210453
-1063 -33224 -23464 1473 0 13_ROP210453
-1063 -33194 -23434 1474 0 13_ROP210453
-1062 -33154 -23404 1474 0 13_ROP210453
-1062 -33144 -23394 1474 0 13_ROP210653
-1063 -32804 -23154 1467 0 13 ROP210853
-1063 -32844 -23174 1457 0 13_ROP211053
-1063 -32864 -23184 1453 0 13_ROP211253
-1063 -32864 -23194 1451 0 13_ROP211667
-1063 -32864 -23194 1449 0 13_ROP212197
-1063 -32864 -23194 1448 0 13_ROP212918
-1063 -32864 -23194 1448 0 13 ROP214339
-1063 -32864 -23194 1448 0-1063 -31857 -23535 -810.-1063 -31837 -23505 -809-1063 -31837 .-23495 -808-1063 -31837 -23485 -808-1063 -31837 -23485 -808-1063 -31837 -23485 -808-1063 -31837 -23485 -808-1063 -31837 -23485 -808-1063 -31837. -23485 -808-1063 -31837 -23485 -808-1063 -31837 -23485 -808-1063 -31837 -23485 -808.-1063 -31837 -23485 -808-1063 -31837 -23475 -808-1063 -31827 -23475 -808-1063 -31807 -23445 -807-1063 -31727 -23365 -804-1063 -31627 -23275 -801-1063 -31517 -23165 -798-1062 -31427 -23075 -795-1062 -31387 -23035 -794-1063 -31297 -23035 -793-1063 -31407 -23125 -796-1063 -31437 -23155 -797-1063 -31447 -23155 -797-1063 -31447 -23165 -798-1063 -31447 -23165 -798-1063 -31447 -23165 -798-1063 -31447 -23165 -798 556 556 556 556 556 556 556 556 556 556 556 556 556 556 556 556 555 555 555 555 554 549 548 548 548 548 548 548 548 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035File No.:
0900530.306 Page C-14 of C-40 Revision:
0 F0306-O1 RO Structural Integrity Associates, Inc.15 13_ROP216339
-1063 -32864 -23194 1448 0 15 13_ROP218339
-1063 -32864 -23194 1448 0 15 13_ROP219896
-1063 -32864 -23194 1448 0 15 13_ROP220453
-1063 -32864 -23194 1448 0 15 13_ROP220453
-1063 -32864 -23194 1448 0 15 13 ROP220453
-1063 -32864 -23194 1448 0 15 13_ROP220453
-1063 -32864 -23194 1448. 0 15 13_ROP220453
-1063 -32854 -23184 1448 0 15 13_ROP220453
-1062 -32814 -23144 1449 0 15 13_ROP220454
-1062 -32754 -23094 1449 0 15 13_ROP220454
-1061 -32674 -23024 1451 0 15 13 ROP220454
-1061 -32604 -22964 1452 0 15 13_ROP220454
-1061 -32564 -22934 1452 0 15 13_ROP220654
-1061 -31274 -21894 1443 0 15 13_ROP220854
-1061 -31364 -21934 1424 0 15 13_ROP221054
-1061 -31394 -21964 1416 0 15 13_ROP221254
-1061 -31404 -21974 1412 0 15 13 ROP221668
-1061 -31404 -21974 1408 0 15 13_ROP222199
-1061 -31404 -21974 1407 0 15 13_ROP222923
-1061 -31404 -21984 1406 0 15 13-_ROP224347
-1061 -31394 -21984 1406 0 15 13_ROP226347
-1061 -31394 -21984 1406 0 16 13_ROP328347
-1061 -31394 -21984 1406 0 16 13-ROP329901
-1061 -31394 -21984 1406 0 16 13_ROP330454
-1061 -31394 -21984 1406 0 16 13_ROP330490
-1061 -31394 -21984 1406 0 16 13_ROP330526
-1061 -31394 -21984 1406 0 16 13_ROP330634
-1061 -31394 -21984 1406 016 13 ROP330958
-1061 -31394 -21984 1406 0 0 -1063 -31447 -23165 -798 0 -1063 -31447 -23165 -798 0 -1063 -31447 -23165 -798 0 -1063 -31447 -23165 -798 0 -1063 -31437 -23165 -798 0 -1063 -31437
-23165 -797 0 -1063 -31417 -23145 -797 0 -1063 -31357 -23085 -795 0 -1062 -31197 -22925 -790 0 -1062 -30987 -22715 -783 0 -1061 -30747 -22485 -776 0 -1061 -30547 -22285 -769 0 -1061 -30467 -22205 -767 0 -1061 -29757 -21685 -750 0 -1061 -29977 -21865 -756 0 -1061 -30037 -21925
-758 0 -1061 -30057 -21945 -759 0 -1061 -30057 -21955 -759 0 -1061 -30057 -21955 -760 0 -1061 -30057 -21955 -760 0 -1061 -30047 -21955 -760 0 -1061 -30047 -21955 -760 0 -1061 -30047 -21955 -760 0 -1061 -30047 -21955 -760 0 -1061 -30047 -21955 -760 0 -1061 -30047 -21955
-760 0 -1061 -30047 -21955 -760 0 -1061 -30047 -21955 -760 0 -1061 -30047 -21955 -760 0 0 548 1035 548 548 548 548 548 548 548 547 547 546 54-5 545 534 532 532 532 532 532 532 532 532 532 532 532 532 532 532 532 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 File No.: 0900530.306 Revision:
0 Page C-1 5 of C-40 F0306-01 RO C Structural Integrity Associates, Inc.16 16 16 16 16 16 17 17 17 17 17 17 17 18 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 13_ROP331678 13_ROP332398 13_ROP333118 13_ROP333838 13_ROP334054 13 ROP334064 14 SRVB10 14 SRVB11 14 SRVB12 14 SRVB14 14 SRVB15 14 SRVB17 14 SRVB1I014 SRVB214 14 SRVB220 14 SRVB22714 SRVB23614 SRVB248 14 SRVB260 14_SRVB3287 14_SRVB3514 14_SRVB3740 14 SRVB3967 14 SRVB31421 14_SRVB31874 14 SRVB32328 14_SRVB32782 14_SRVB33235 14 SRVB33689-1061 -31394 -21984 1406 0-1061 -31394 -21984 1406 0-1061 -31394 -21984 1406 0-1061 -31394 -21984 1406 0-1061 -31394 -21984 1406 0-1061 -31394 -21984 1406 0-1061 -31414 -21984 1405 0-1046 -31326 -21944 1406 0-1030 -31168 -21854 1408 0-1015 -30960 -21714 1411 0-999 -30712 -21554 1415 0-967 -30166 -21194 1427 0-927 -29396 -20681 1443 0-875 -28336 -19989 1468 0-805 -26918 -19092 1500 0-713 -25078 -17927 1536 0-591 -22771 -16478 1570 0-439 -20148 -14859 1589 0-284 -17806 -13548 1605 0-290 -19216 -14649 1287 0-291 -19307 -14611 1144 0-291 -18887 -14343 1079 0-290 -18347 -13984 1037 0-288 -17248 -13218 984 0-287 -16479 -12641 934 0-285 -15700 -12034 8'89 0-283 -14931 -11427 846 0-281 -14151 -10811 804 0-280 -13282 -10154 771 0-1061 -30047 -21955 -760 0-1061 -30047 -21955 -760 0-1061 -30047 -21955 -760 0-1061 -30047 -21955 -760 0-1061 -30047 -21955 -760 0-1061 -30047 -21955 -760 0-1061 -30077 -21975 -760 0-1046 -29831 -21777 -753 0-1030 -29515 -21509 -745 0-1015 -29149 -21211 -735 0-999 -28764 -20893 -724 0-967 -27953 -20228 -702 0-927 -26899 -19380 -673 0-875. -25507 -18285 -637 0-805 -23731 -16917 -590 0-713 -21516 -15264 -534 0-591 -18848 -13290 -466 0-439 -15938 -11191 -395 0-284 "-13381 -9491 -337 0-290 -17672 -13683 -468 0-291 -18482 -14414 -495 0-291 -18273 -14346
-494 0-290 -17823 -14058 -485 0-288 -16824 -13341
-462 0-287 -16075 -12755
-441 0-285 -15316 -12138 -420 0-283 -14547 -11521 -399 0-281 -13788 -10895 -378 0-280 -12959 -10238 -357 0 532 532 532 532 532 532 532 531 530 529 528 525 521 516 508 498 483 463 443 393 377 369 362 349 336 323 311 298 286.1035 1035 1035 1035 1035 1035 1035 1020 1005 989 974 943 905 854 786 696 577 427-275 275 274 274 273 272 271 270 269 268 267 File No.: 0900530.306 Revision:
0 Page C-16 of C40 F0306-01 RO C Structural Integrity Associates, Inc.19 19 19 19 19 19 19 19 19 19 19 19 19 20 20 20 20 20 20 21 21 21 21 21 21 22 22 22 14_SRVB34142 14 SRVB34823 14_SRVB35503 14_SRVB36184 14 SRVB36864 14 SRVB37998 14 SRVB39132 14_SRVB310266 14_SRVB311400 14 SRVB311436 14 SRVB311472 14 SRVB311580 14_SRVB311904
14_SRVB412624.
14_SRVB413344 14 SRVB414064 14 SRVB414784 14_SRVB415000 14_SRVB415010 17_ImpSTl0 17_ImpSTl0 17 ImpSTI0 17_ImpSTl0 17_ImpSTl0 17_ImpSTl0 17_ImpST21 17 ImpST21.17 ImpST21-278 -12423 -9497 737-275 -11144 -8519 685-273 -9733
-7415 633-270 -8332 -6305 580-267 -7005 -5246 524-263 -5250 -3796 414-258 -3450 -2314 311-254 -1797 -971 221-251 -1401 -666 158-251 -1419 -682 157-251 -1435 -696 156-251 -1469 -725 150-251 -1503 -753 130-251 -1448 -711 95-251 -1330 -619 73-251 -1202 -520 60-27 -1262 -1165 39-27 -1230 -1138 37-25 -119 -55 5-1061 -31414 -21984 1405-1061 -31404 -21984 1405-1061 -31404 -21974 1405-1061 -31354 -21934 1405-1059 -31254
-21844 1407-1055 -30784 -21424 1413-1051 -30044 -20764 1423-1046 -29144 -19964 1436-1043 -28134 -19074 1451-1041 -27824 -18814 1456 0 -278 -12140 -9582 -335 0 -275 -10921 -86.06 -303 0 -273 -9566 -7497
-266 0 -270 -8217 -6381 -229 0 -267 -6931 -5315 -193 0 -263 -5169 -3818 -141 0 -258 -3372 -2294 -88 0 -254 -1739 -927 -40 0 -251 -1413 -697 -30 0 -251 -1430 -713 -30 0 -251 -1444
-727 -31 0 -251 -1476 -756 -32 0 -251 -1507 -783
-35 0 -251 -1449 -739 -36 0 -251 -1329 -644 -34 0 -251 -1200 -541 -30 0 1294 -1213 -46 0 1261 -1185 -45 0 119 3 0 -1061 -30067 -21965 -760 0 ,-1061 -30037 -21935 -759 0 -1061 -29967 -21865
-756 0 -1061 -29677 -21575 -747 0 -1059 -29127 -21035 -730 0 -1055 -27057 -18985
-663 0 -1051 -24507 -16495 -583 0 -1046 -21877 -13925 -500 0 -1043 -19327 -11455 -420 273 255 236 217 199 169 139 113 102 102 102 102 102 100 98 96 94 93 73 532 532 532 531 529 524 516 509 502 266 265 263 262 260 258 255.253 250 250 250 250 250 250 250 250 25 25 25 1035 1035 1035 1035 1035 1035 1035 1035 1035 22 17 ImpST210 0 -1041 -18627
-10775 -3980 0 500 1035 File No.: 0900530.306 Revision:
0 Page C- 17 of C-40 F0306-O1RO C Structural Integrity Associates, Inc.22 17_ImpST22
-1037 -25504 -16824 1494 -0 22 17_ImpST22
-1035 -23514 -15134 1530 0 22 17_ImpST24
-1031 -19514 -11894 1621 0 22 17 ImpST26 -1029 -15344 -8734 1745 0 22 17_ImpST211
-1027 -11074 -5836 1894 0 22 17_ImpST217
-1028 -9294 -4852 1951 0 22 17_ImpST222
-1028 -8550 -4572 1955 0 22 17 ImpST226 -1029 -8270 -4492 1935 0 22 17 ImpST227 -1025 -8204 -4475 1926 0 22 17_ImpST227
-1025 -8205 -4477 1925 0 22 17_ImpST227
-1025 -8209 -4480 1925 0 22 17_ImpST227
-1030 -8239 -4510 1925 0 22 17_ImpST227
-1031 -8346 -4609 1923 0 22 17 ImpST227 -1035 -8742 -4968 1916 0 23 17_ImpST328
-1039 -9404 -5565 1906 0 23 17 ImpST328 -1045 -10364 -6421 1892 0 23 17 ImpST328 -1052 -11644 -7554 1872 0 23 17 ImpST364 -1065 -30494 -21424 1271 0 23 17 ImpST3100
-1064 -32044 -22244 1257 0 23 17_ImpST3136
-1063 -32064 -22284 1308 0 23 17_ImpST3172
-1063 -31914 -22224 1342 0 23 17_ImpST3247
-1062 -31664 -22114 1372 0 23 17_ImpST3351
-1062 -31504 -22044 1386 0 23 17_ImpST3520
-1061 -31414 -22004 1396 0 23 17ImpST31004
-1061 -31394 -21984 1403 0 23 17_ImpST31724
-1061 -31394 -21984 1406 0 23 17_ImpST32444
-1061 -31394 -21984 1406 0 23 17_ImpST33164
-1061 ,-31394 -21984 1406 0 23 17 ImpST33628
-1061 -31394 -21984 1406 0 0 -1037 -15077 -7425 0 -1035 -12607 -5138 0 -1031 -8570 -1593 0 -1029 -4980 1281 0 -1027 -1907 3302 0 -1028 -1128 3438 0 -1028 -1124 3052 0 -1029 -1330 2676 0 -1025 -1411 2552 0 -1025 -1431 2533 0 -1025 -1467 2496 0 -1030 -1688 2274 0 -1031 -2278 1690 0 -1035 -4061 -69 0 -1039 -6594 -2560 0 -1045 -9847 -5751 0 -1052 -13807 -9615 0 -1065 -31797 -24005 0 -1064 -32017 -23635 0 -1063 -31447 -23075 0 -1063 -30997 -22695-291-219-107-15 54 63 52 40 35 34 33 27 8-49-129-232-356-826-816-797-784 489 481 467 451 431 418 407 400 398 398 398 398 400 404 411 420 431 502 517 523 526 530 531 532 532 532 532 532 532 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 0 -1062 -30477 -22285 -771 0 -1062 -30207 -22085 -764 0 -1061 -30077 -21995 -761 0 -1061 -30047 -21965 -760 0 -1061 -30047 -21955 -760 0 -1061 -30047 -21955 -760 0 -1061 -30047 -21955 -760 0 -1061 -30047 -21955 -760 File No.: 0900530.306 Revision:
0 Page C-18 of C-40 F0306-01 RO C Structural Integrity Associates, Inc.23 17_ImpST33638
-1061 -31394 -21984 1406 0 24 21_ShDwlO
-1063 -33294 -23514 1471 0 24 21_ShDwl123
-1042 -33300 -23582 1471 0 24 21_ShDw1246
-1022 -33307 -23650 1471 0 24 21_ShDw1544
-972 -33346 -23814 1468 0 25 21 ShDw2960 -902 -33400 -24044 1463 0 25 21_ShDw21865
-751 -33518 -24543 1454 0 25 21_ShDw22782
-597 -33638 -25049 1445 0 25 21_ShDw23700
-443 -33759 -25555 1436 0 25 21_ShDw24931
-237 -33920 -26234 1423 0 25 21_ShDw26156 34080 -26910 1411 0 25 21_ShDw26168 33730 -26640 1419 0 25 21 ShDw26180 33340 -26340 1429 0 25 21_ShDw26192 32930 -26040 -1438 0 25 21_ShDw26204 32470 -25700 1445 0 25 21_ShDw26228 31520 -24930 1447 0 25 21_ShDw26252 30580 -24170 1447 0 25 21 ShDw26277 29660 -23420 1444 0 25 21_ShDw26304 28640 -22590 1436 0 25 21_ShDw26337 27520 -21650 1425 0 26 21_ShDw36373 26350 -20680 1406 0 26 21_ShDw36414 25160. -19800 1400 0 26 21 ShDw36485 23150 -18340 1393 0 26 21_ShDw36567 21000 -16750 1361 0 26 21_ShDw36661 18530 -14710 1272 0 26 21_ShDw36756 15380 -12280 1215 0 26 21_ShDw36922 15620 -12510 1081 0 26 21_ShDw37087 15690 -12550 989 026 21 ShDw37253 15530 -12450 929 0 0 -1061 -30047 -21955 -760 0 0 -1063 -31867 -23495 -809 0 0 -1042 -31866 -23556
-810 0 0 -1022 -31886 -23627 -812 0 0 -972 -31923 -23798 -816 0 0 -902 -31988 -24037 -822 0 0 -751 -32131 -24556 -834 0 0 -597 -32276 -25083 -847 0 0 -443 -32422 -25610 -860 0 0 -237 -32616 -26317
-878 0 0 32810 -27020 -895 0 0 32310 -26570
-880 0 0 31800 -26130 -866 0 0 31260 -25670 -851 0 0 30710 -25210 -836 0 0 29670 -24290 -806 0 0 28670 -23430 -779 0 0 27730 -22610 -752 0 0 26710 -21710
-724 0 0 25590 -20730 -692 0 0 24480 -19740 -660 0 0 23360 -18860
-633 0 0 21480 -17400 -586 0 0 19410 -15790 -530 0 0 16950 -13650 -460 0 0 14030 -11280 -386 0 0 14980 -12280 -417 0 0 15230 -12540 -426 0 0 15130 -12520 -425 0 532 556 556 556 556 556 556 556 556 556 556 554 551 548 545 537 530 522 512 501 488 473 447 417 382 348 332 324 319 1035 1035 1014 994 944 874 722 567 413 206 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0File No.:
0900530.306 Page C-19 of C-40 Revision:
0 F0306-01 RO C Structural Integrity Associates, Inc.26 21_ShDw37418
-15 26 '21_ShDw37750
-15 26 21_ShDw38081
-14 26 21_ShDw38412
-14 26 21_ShDw38743
-13 26 21 ShDw39074
-13 26 21_ShDw39406
-1226 21_ShDw39737
-11 26 21_ShDw310234
-10 26 21_ShDw310730
-9 26 21 ShDw311227
-9 26 21_ShDw311724
-8 26 21_ShDw312552
-6 26 21_ShDw313380
-5 26 21_ShDw314208
-3 27 21_ShDw415036
-2 27 21 ShDw415072
-2 27 21_ShDw415108
-2 27 21_ShDw415216
-2 27 21_ShDw415467
-2 27 21_ShDw416132
-2 27 21_ShDw416852
-227 21 ShDw417572
-2 27 21_ShDw418292
-2 27 21_ShDw418636
-2 27 21_ShDw418646
-2 28 24 HydrolO -2 28 24 HydrolO -2 28 24_Hydrol0 15280 -12300 886 0 0-14720 -11910 827 0 0-14120 -11480 787 0 0-13480 -11010 757 0 0-12840 -10530 730 0 0-12220 -10050 704 0 0-11590 -9572 678 0 0-10960 -9083 652 0 0-9893 -8239 614 0 0-8860 -7417 575 0 0-7861 -6617 534 0 0-6962 -5890 490 0 0-5663 -4806 406 0 0-4355 -3711 324 0 0-2911 -2519 247 0 0-1575 -1404 168 0 0-1559 -1388 164 0 0-1552 -1379 160 0 0-1549 -1369 153 0 0-1559 -1369 141 0 0-1581 -1380 127 0 0-1590 -1384 122 0 0.1593 -1385 120 0 0-1595 -1384 119 0 0-1595 -1384 119 0 0-1596 -1383 119 0 0-1596 -1383 119 0 0-1596 -1383 119 0 0-1596 -1383 119 0 0-15-15-14-14 13-12-11-10-9-9-8-6-5-3-2-2-2-2-2-2-2-2-2-2-2-2-2-2-14920 -12390 -421-14390 -12020 -408-13810 -11590 -394-13200 -11130 -378-12600 -10650 -363-12000 -10170 -347-11400 -9694 -331-10790 -9201 -315-9770 -8356 -287-8775 -7531 -260-7809 -6725 -233-6929 -5988 -208-5623 -4868 -169-4306 -3736 -130-2877 -2518 1541 -1371 1537 -1368 1539 -1370 1553 -1380 1579 -1402 1614 -1430 1626 -1439 1629 -1441 1631 -1441 1631 -1441 1632 -1440 1632 -1440 1632 -1440 1632 -1440 -51 314 304 295 286 276 267 258 249 235 222 208 194 172 149 127 105 104 103 102 101 100 100 100 100 100 100 100 100 100 File No.: 0900530.306 Page C-20 of C-40 Revision:
0 F0306-O1RO Structural Integrity Associates, Inc.28 24_HydrolO 1596 -1383 119 0 0 1632 -1440 -51 0 0 100 0 28 24 -HydrolO 1596 -1383 119 0 0 1632 -1440 -51 0 0 100 0 28 24-HydrolO 1596 -1383 119 0 0 1632 -1440 -51 0 0 100 0 28 24_HydrolO 1596 -1383 119 0 0 1632 -1440
-51 0 0 100 0 28 24_Hydroll 1596 -1383 119 0 0 1632 -1440 -51 0 0 100 .0 28 24 Hydroll 1596 -1383 119 0 0 1632 -1440 -51 0 0 100 0 29 24 _Hydro2l -1562 -378 3752 212 0 0 -1562 -160 3904 81 0 0 I00 1565 29 24 Hydro2l -1562 -378 3752 212 0 0 -1562 -160 3904 81 0 0 100 1565 29 24 Hydro2l -1562 -378 3752 212 0 0 -1562 -160 3904 81 0 0 100 1565 29 24_Hydro2l
-1562 -378 3752 212 0 0 -1562 -160 3904 81 0 0 100 1565 29 24_Hydro2l
-1562 -378 3752 212 0 0 -1562 -160 3904 81 0 0 100 1565 29 24_Hydro2l
-1562 -378 3752 212 0 0 -1562 -160 3904 81 0 0 100 1565 29 24 Hydro2l -1562 -378 3752 212 0 0 -1562 -160 3904 81 0 0 100 1565 29 24_Hydro22
-1562 -378 3752 212 0 0 -1562 -160 3904 81 0 0 100 1565 29 24_Hydro22
-1562 -378 3752 212 0 0 -1562 -160 3904 81 0 0 100 1565 30 24_Hydro32 1596 -1383 119 0 0 1632 -1440 -51 0 0 100 0 File No.: 0900530.306 Page C-21 of C-40 Revision:
0 F0306-O1 RO Structural Integrity Associates, Inc.VESLFAT OUTPUT FILE pl-i_304L.FAT VESLFAT Version 1.42 12/29/2006 (VeslFatlp42) 06-23-2009 23:04:07 Page 1 VESLFAT Load Set Pair Module Version 1.42 -01/03/2007
(&VeslFatPairlp42)
Stress Pairing Analysis Elastic Plastic Properties m= 1.7 n= 0.3 Stresses Multiplied by 1 to convert to psi Max General Membrane Stress(ksi) per unit Pressure (psi) = 0.01 Upper Limit on Sy for large number of cycles NB-5222.5(b) (ksi) 40 Material Properties vs Temperature T,F E, ksi 3Sm, ksi Sy, ksi 70 28300 16.7 25.0 200 27600 16.7 21.4 300 27000 16.7 19.2 400 26500 15.8 17.5 500 25800 14.7 16.4 600 25300 14.0 15.5 Stress ranges < 13328 psi neglected Files: Input Stress File = pl-i 304L.STR Converted Stress File = pl-i 304L.STI All Stress Ranges File pl-i 304L.ALL Significant Ranges File = pl-i_304L.PR Thermal Ratchet Case File = pl-i 304L.TRC Max Ratio of Sn/3Sm = 0.822699 for Trans Pair 25 and 29 Max P+Q Stress, psi = 35313.51 <= 3Sm, psi = 42924 VESLPAT Load Pair Sort Module Version 1.42 -12/29/2006
(&VeslFatSortlp42)
Sorting Stress Ranges from File = pl-i_304L.PR Storing Output Ordered Ranges in File = pl-i 304L.ORD Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006
(&VeslFatFatlp42)
Page 2 06-23-2009 23:04:20 Input Echo: Fatigue Properties:m= 1.7 n= 0.3 E (Fatigue Curve), ksi = 28300 E (Analysis) chosen at the highest of transient pair temperatures Sm chosen at the highest of transient pair temperatures Fatigue Curve: Cycles Salt, ksi File No.: 0900530.306 Page C-22 of C-40 Revision:
0 F0306-01 RO Structural Integrity Associates, Inc.1.0E+01 2. OE+01 5. 0E+01 1. OE+02 2. 0E+02 5. OE+02 1. OE+03 2. OE+03 5. 0E+03 1. OE+04 2. OE+04 5. 0E+04 1. 0E+05 2. OE+05.5. 0E+05 1. 0E+06 2. 0E+06 5. 0E+06 1. 0E+07 2. 0E+07 5. OE+07 1. OE+08 1. OE+09 1. 0E+10 1. OE-+Name Num.DHydTl_DHydT2_DHydT3 Staupl Staup2 1LFWP1 I--LFWP2 1 LFWP3 1 LFWP4 I LFWP5 1 LFWP6 1_LFWP7 1_LFWP8 3 ROPI 708.00 512.00 345.00 261.00 201.00 148.00 119.00 97.00 76.00 64 .00 55.50 46.30 40.80 35.90 31.00 28.20 22.80 18.40 16.40 15.20 14.30 14.10 13.90 13.70 13.60 I Events: Index 1 2 2 2 3 2 4 3 5 3 6 i1 7 1 8 1 9 1 10 1 11 I1 12 1 13 1I 14 1: 1 I 1 I 1 1 1 1 3 Cycles 130 130 130 120 120 30 30 30 30 30 30 30 30 1 File No.: 0900530.306 Page C-23 of C-40 Revision:
0 F0306-OIRO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006
(&VeslFatFatlp42)
Page 3 06-23-2009 23:04:20 15 13_ROP2 116 13_ROP3 1 17 14 _SRVB 218 14 _SRVB2 2 19 14-SRVB3 2 20 140SRVB4 2 21 17_lImpSTl 5 22 17_ImpST2 5 23 17ImpST3 5 24 21_ShDwl 108 2521 ShDw2 118 26 21_ShDw3 11827 21_ShDw4 118 28 24NHydrol 3 29 24 Hydro2 3 30 24Hydro3 3 Stress input file: N Name Sxx Syy Szz Sxy Sxz Syz Sxx Syy Szz Sxy Sxz Syz Tmax Pmax 1 2_DHydTlO 1596 -1383 119 0 0 1632 -1440 -51 0 0 100 0 1 2_DHydT1O 1596 -1383 119 0 0 1632 -1440 -51 0 0 100 0 1 2DHydTlO 1596 .-1383 119 0 0 1632 -1440 -51 0 0 100 0 1 2_DHydTlO 1596 -1383 119 0 0 1632 -1440 -51 0 0 100 0 1 2DHydTIO 1596 -1383 119 0 0 1632 -1440 -51 0 0 100 0 1 2_DHydTlO 1596 -1383 119 0 0 1632 -1440 -51 0 0 100 0 1 2_DHydTlO 1596 -1383 119 0 0 1632 -1440
-51 0 0 100 0 1 2_DHydTll 1596 -1383 119 0 0. 1632 -1440
-51 0 0 100 0 1 2_DHydTIl 1596 -1383 119 0 0 1632 -1440 -51 0 0 100 0 2 2_DHydT21
-1248 -623 2718 193 0 0 -1248 -456 2829 54 0 0 100 1250 2 2_DHydT21
-1248 -623 2718 193 0 0 -1248 -456 2829 54 0 0 100 1250 2 2_DHydT21
-1248 -623 2718 193 0 0 -1248 -456 2829 54 0 0 100 1250 2 2DHydT21 -1248 -623 2718 193 0 0 -1248 -456 2829 54 0 0 100 1250 2 2 DHydT21 -1248 -623 2718 193 0 0 -1248 -456 2829 54 0 0 100 12502 2 DHydT21 -1248 -623 2718 193 0 0 -1248 -456 2829 54 0 0 100 1250 2 2DHydT21 -1248 -623 2718 193 0 0 -1248 -456 2829 54 0 0 100 1250 2 2DHydT22 -1248 -623 2718 193 0 0 -1248 -456 2829 54 0 0 100 1250 2 2DHydT22 -1248 -623 2718 193 0 0 -1248 -456 2829 54 0 0 100 1250 3 2 DHydT32 1577 -1301 120 0 0 1608 -1355
-49 0 0 100 25 4 3StauplO 1596 -1383 119 0 0 1632 -1440 -51 0 0 100 0 4 3_Staup1328 2092 -1731 133 0 0 2178 -1857 -65 0 0 107 21 5 35Staup2657 2631 -2126 157 0 0 2734 ,-2287 -81 0 0 115 41 5 35Staup2985 3183 -2533 186 0 0 3290 -2715 -96 0 0 124 62 5 3Staup21313 3745 -2950 217 0 0 3850 -3145 -112 0 0 133 83 5 39Staup21970
-129 -4902 -3801 281 0 0 -129 -4987 -4012 -143 0 0 151 124 5 3_Staup22627
-172 -5925 -4554 351 0 0 --172 -6009 -4787 -171 0 0 170 166 5 3_Staup23283
-214 -6937 -5297 423 0 0 -214 -7020 -5552 -199 0 0 188 207 5 3_Staup23940
-257 -8026 -6094 491 0 0 -257 -8097
-6369 -228 0 0 207 248 5 3_Staup24597 -299 -9325
-7031 550 0 0 -299 -9347 -7308 -261 0 0 225 290 5 3_Staup25253
-342 -10682 -8007 605 0 0 -342 -10649 -8281 -294 0 0 244 331 5 3_Staup25910
-384 -11960 -8897 660 0 0 -384 -11850 -9158 -324 0 0 262 373 5 3Staup26895
-448 -13782 -10134 740 0 0 -448 -13581 -10386
-366 0 0 290 435 File No.: 0900530.306 Page C-24 of C-40 Revision:
0 F0306-O1RO Structural Integrity Associates, Inc.5 3Staup27880
-511 -15523 -11320 826 0 0 -511 -15253 -11573 -408 0 0 317 497 5 3_Staup28865
-575 -17155 -12456 922 0 0 -575 -16844
-12731 -449 0 0 345 559 5 3Staup29850
-639 -19377 -14012 991 0 0 -639 -18926 -14259 -500 0 0 372 621 File No.: 0900530.306-Revision:
0 Page C-25 of C-40 F0306-01 RO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006
(&VeslFatFatlp42)
Page 4 06-23-2009 23:04:20 5 3_Staup211491 5 3_Staup213133 5 3_Staup214774 5 3_Staup216416 5 3Staup216452 5 3Staup216488 5 38taup216596 5 3_Staup216784 5 3Staup217289 5 3Staup217973 5 3_Staup218693 5 3_Staup219413 5 3Staup220016 5 3_Staup220026 6 I LFWPIO 6 11 LFWPIO 6 11 LFWP10 6 11 LFWPIO 6 11 LFWP1I 6 11 LFWPlI 6 11-LFWP12 6 11 LFWP12 6 11 LFWP1I3 6 1i LFWPI3 6 11 LFWP13 6 11 LFWPI3 6 11 LFWP14 6 T1-LFWP15 6 11 LFWPO7 6 11 LFWPl9 6 11 LFWP111 6 T1-LFWP1I3 6 11LFWP117 6 11 LFWP122 6 11-LFWP126 6 11 LFWP131 6 11 LFWPI39 6 11 LFWP149 7 11-LFWP260 7 11 LFWP275 7 11 LFWP294 7 11 LFWP2117 7 11 LFWP2145 7 11 LFWP2198 7 11L-LFWP2233 7 11 LFWP2273 7 11 LFWP2312 7 11 LFWP2406 7 11 LFWP2522 7 11LLFWP2709 7 11 LFWP2896 8 1lOLFWP31029
-745 -23076 -16543 1100 0 0 -745 -22369 -16736 -582 0 0 418 724-851 -26015 -18513 0236 0 0 -851 -25161 -18692 -650 0 0 463 828-957 -29575 -20774 1316 0 0 -957 -28424 -20859 -723 0 0 509 931-1063 -33424 -23654 1443 0 0 -1063 -32047 -23705 -815 0 0 555 1035-1063 -33374 -23624 1448 0 0 -1063 -31977 -23645 -813 0 0 555 1035-1063 -33334 -23594 1452 0 0 -1063 -31927 -23595 -812 0 0 555 1035-1063 -33284 -23554 1458 0 0 -1063 -31857 -23535 -810 0 0 556 1035-1063 -33264 -23534 1464 0 0 -1063 -31837 -23505 -809 0 0 556 1035-1063 -33264 -23514 1470 0 0 -1063 -31837 -23485 -808 0 0 556 1035-1063 -33274 -23514 1472 0 0 -1063 -31837 -23485 -808 0 0 556 1035-1063 -33274 -23514 1473 0 0 -1063 -31837 -23485 -808 0 0 556 1035-1063 -33274 -23514 1473 0 0 -1063 -31837 -23485 -808 0 0 556 1035-1063 -33274 -23514 1473 0 0 -1063 -31837 -23485 -808 0 0 556 1035-1063 -33274 -23514 1473 0 0 -1063 -31837 -23485 -808 0 0 556 1035-1061-1065-1069-1076-1093-1129-1165-1201-1230-1241-1240-1239-1235-1230-1219-1208-1197-1186-1185-1185-1184-1183-1182-1180-1179-1177-1175-1173-1171-1167-1164-1166-1168-1171
-1173-1175-1177-1178-31414-31412-31409-31403-31389-31361-31333-31305-31283-31264-31265-31266-31269-31273
-31281-31290-31298-31307
-31017-30607-30147-29657-28677-27657-26387-24847-23097-21117-18817-14797-11977-12417-13217-14737-16097-17737-19487-20737-21984 1405-21972 1405-21961 1405-21935 1406-21879 1407-21761 1409-21643 1411-21525 1413-21430 1415-21394 1416-21397 1416-21401 1416-21412 1416-21430 1415-21466 1415-21502 1415-21538 1414-21574 1414-21334 1420-21004 1429-20644 1440-20264 1451-19504 .1472-18724 1490-17744 1506-16534 1517-15134 1518-13684 1529-12004 1539-9024 1517-6694 1464-6974 1371-7574 1302-8684 1197-9694 1117-11044 1063-12484 1041-13484 1040 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-1061-1065*-1069-1076-1093-1129-1165-1201-1230-1241
-1240-1239-1235-1230
-1219-1208-1197-1186-1185-1185-1184-1183-1182-1180-1179-1177-1175-1173-1171-1167-1164-1166-1168-1171-1173-1175-1177-1178-30067-30063-30060-30052-30036-30003-29969-29935-29908-29887-29888-29889-29892-29898-29908-29918-29929-29939-29449-28849-28239-27619-26409-25199-23749-22069-20209-18169-15839-11629-21965-21953-21941-21914-21856-21733-21610-21487-21388-21351-21355-21358-21370-21388-21426-21463-21501-21539-21069-20539-19989-19449-18399-17359-16119-14669-13059-11399-9539-6169-760-760-759-759-757-754-751-748-746-745
-745-745-745-746-746-747-748-749-734.-717-699-682-648-614-574-527-475-423-363-249 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0'0 0 0 0 0 O0 0 0 0 0 0 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 532 0 530 0 528 0 526 0 523 0 518 0 512 0 504 0 492 0 477 0 458 0 434 0 386 1035 1039 1042 1050 1067 1103 1139 1175 1204 1215 1214 1213 1210 1204 1193 1182 1171 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160-8890 -3774 -172 0 0 354 1160-10519 -5294 -222 0 0 341 1160.-11929 -6589 -263 0 0 335 1160-13999 -8369 -320 0 0 333 1160-15629 -9779 -367 0 0 339 1160-17419 -11369 -422 0 0 355 1160-19119 -12859 -470 0 0 373 1160-20299 -13869 -502 0 0 386 1160 0 0 0 0 File No.: 0900530.306 Revision:
0 Page C-26 of C-40 F0306-OIRO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006
(&VeslFatFatlp42)
Page 5 06-23-2009 23:04:20 11 LFWP31108 1I-LFWP31188 11 LFWP31267 11 LFWP31346 IILFWP31465 11-LFWP31584 11 LFWP31702 11 LFWP31821 11 LFWP32019 11 LFWP32213 11 LFWP32217 11 LFWP32220 11 LFWP32224 11 LFWP32227 11 LFWP32235 11 LFWP42242 11LFWP42250 11 LFWP42259 11 LFWP42271 11 LFWP4 2286 11 LFWP42305 11 LFWP42342 11 LFWP42383 11LFWP42393 11 LFWP42481 11 LFWP42568 11-LFWP42675 11LFWP42808 11_LFWP43072 11 LFWP43337 11 LFWP43602 11 LFWP43777 11 LFWP43952 11 LFWP44127 11LFWP44302 11 LFWP44565 11 LFWP54828 11 LFWP55091 11 LFWP55354 11 LFWP55792 11 LFWP56230 11 LFWP56668 11 LFWP56773 11 LFWP56781 11 LFWP56790 11 LFWP56798 11 LFWP56807 11 LFWP56823 11 LFWP66840 11 LFWP66857 11 LFWP66877 11 LFWP66900-1178-1179-1180-1180-1181-1182-1182-1183-1184-1185-1180-1174-1168-1163-1151-1140
-1128-1114-1095-1073-1045-991-930-915-924-931-938-947-963-979-995-1006-1016-1027-1037-1053-1069-1084-1100-1126-1152-1178-1185-1175
-1165-1155-1145-1126-1107-1087-1065-1039-21487-22217-22777-23277-24027-24767-25507-26387-27917-29477-29251-28915-28519-28303* -27240-26378
-25487-24417-23130-21596-19797-16546-13031-12132-12958-14044-14969-15683-16611-17380-18408-19120-19842-20575-21317-22275-23023-23762-24510
-25871-27391-28952-29387-29074-28661-28229-27786-26950-26184-25439-24625-23695-14084-14664
-15094-15514-16124-16734
-17324-17974-19054-20154-19980-19717
-19423-19110-18472-17855-17230-16485-15580
-14519-13264-11050-8368-7674-8208
-8951-9561-10077
-10837-11468
-12268-12805-13342-13880
-14417-15097-15648-16199-16740-17696-18686-19694-20034-19804-19514-19205-18885-18285-17766-17276-16736-16120 1042 1046 1057 1077 1109 1143 1178 1201 1229 1254 1259 1268 1279 1290 1316 1339 1362 1385 1407 1426 1442 1454 1399 1387 1242 1144 1066 1013 976 982 994 1004 1016 1029 1043 1069 1107 1146 1186 1236 1268 1296 1310 1318 1328 1339 1348 1361 1373 1382 1390 1395 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0O 0 0 0 0 0 0 0 0O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-1178-1179-1180-1180-1181-1182-1182-1183-1184-1185-1180-1174-1168-1163-1151-1140-1128-1114-1095-1073-1045-991-930-915-924-931
-938-947-963-979-995-1006-1016-1027-1037-1053-1069-1084-1100-1126-1152-1178-1185-1175-1165-1155-1145-1126-1107-1087-1065-1039-20999-21659-22199-22689-23419-24139-24859-25659-27059-28499-28074-27548-26993-26428-25317-24277-23217-21979-20525-18855-16939-13587-9861-8971-11519-13205-14409-15242-16258-17023-17999-18670-19340-20021-20712-21588-22313-23029-23755-25032-26418-27845-28249-27758-27206-26655-26124-25151-24308-23516-22666-21730-14469 -521 0 0 394 1160-15019 -539 0 0 402 1160-15449 -553 0 0 410 1160-15869 -567 0 0 418 1160-16489 -588 0 0 430 1160-17109 -609 0 0 442 1160-17709 -629 0 0 454 1160-18339 -648 0 0 466 1160-19379 -682 0 0 486 1160-20449 -716 0 0 506 1160-20066 -704 0 0 505 1155-19593 -688 0 0 503 1150-19100 -672 0 0 502 1145-18617 -656 0 0 500 1140-17671 -625 0 0 495 1130-16805 -597 0 0 491 1120-15952 -569 0 0 485 1109-14958 -536 0 0 478 1096-13805 -498 0 0 468 1079-12497 -455 0 0 455 1058-11005 -406 0 0 439 1032-8479 -321 0 0 405 981-5416 -219 0 0 365 924-4681 -195 0 0 356 910-7035 -271 0 0 334 915-8498 -316 0 0 327 920-9467 -349 0 0 326 926-10172 -374 0 0 329 934-11060 -405 0 0 339 949-11728 -429 0 0 351 964-12537 -454 0 0 363 979-13063 -471 0 0 371 989-13588 -488 0 0 379 999-14114 -505 0 0 387 1009-14640 -522 0 0 395 1019-15299 -544 0 0 407 1034-15858 -563 0 0 419 1049-16406 -582 0 0 431 1064-16955 -601 0 0 443 1079-17890 -632 0 0 463 1104-18835 -663 0 0 483 1129-19819 -695 0 0 503 1154-20149 -706 0 0 508 1160-19720 -692 0 0 507 1151-19251 -676 0 0 505 1142-18803 -661 0 0 502 1132-18364 -647 0 0 500 1123-17577 -621 0 0 494 1105-16920 -599 0 0 488 1086-16323 -579 0 0 482 1068-15696 -559 0 0 474 1047-15013 -536 0 0 464 1021 File No.: 0900530.306 Page C-27 of C-40 Revision:
0 F0306-01RO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42.- 12/29/2006
(&VeslFatFatlp42)
Page 6 06-23-2009 23:04:20 11_LFWP66927 11_LFWP66959 11LFWP67015 11 -LFWP67083 11 LFWP67166 11 LFWP67193 11 LFWP67199 11 LFWP67205 11 LFWP67223 11 LFWP67253 11 LFWP6731311 LFWP67173 11 LFWP67433 11 LFWP67493 11 LFWP67565 11 LFWP67637 11 -LFWP67787 11 LFWP67902 11 -LFWP68065 11 LFWP68227 11 LFWP68390 11-LFWP68553 11 LFWP68716 11 LFWP68879 11 LFWP69032 11 LFWP69248 11 LFWP69464 11-LFWP69680 11-LFWP69896 11--LFWP710256 11 LFWP710616 11 LFWP710976 11-LFWP711093 11 LFWP711198 11 LFWP711303 11 LFWP711406 11 LFWP'711513 11 LFWP711724 11 LFWP711934 11 LFWP712144 11 LFWP712354 11 LFWP712565 11 LFWP712775 11-LFWP712985 11 LFWP713300 11 LFWP713616 11 LFWP713931 11 LFWP714247 11 LFWP714772 11 LFWP715298 11 LFWP715823 11 LFWP736349
-1008,-973-909-832-739-709-709-709-710-711-711-712
-712-713-704
-695-676-662-641-621-601-580-560-539-520-493-466-439-412-367-322-276-262-278-294-310
-326-358-390-422-454-486-518-550-598-646-694-742-822-903-983-22638-21455-19583-17332-14022-13125-13085-13105-13275-13585-14055-14345-14525-14625-14852-15049-15374-15596-15892
-16188-16474-16761-17047-17333-17628-18170-18731-19293-19864-20820-21806-22652-22873-23041-23218-23386-23564-23909-24244-24589
-24935-25210-25655
-26080-26713-27356-27999-28642-29850-31098-32366-15437-14671-13443-11769-9395-8823-8803
-8823-8953-9143-9433-9613-9733-9823-10043-10244-10597-10845-11183-11491-11799-12098-12396-12684-12979-13469-13970-14480-14981-15842-16703-17464-17683-17770
-17868-17956-18054-18239-18425-18611-18797-18982-19178-19384-19697-20010-20324
-20627-21347-22176-23015 1398 1398 1378 1308 1257 1241 1233 1223 1195 1150 1083 1035 998 969 942 923 901 893 888 891 897 907 918 930 942 953 964 974 983 999 1014 1033 1042 1052 1063 1073 1084 1104 1125 1146 1166 1187 1203 1214 1230 1246 1261 1276 1314 1357 1399 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 a 0 0 0 0 0 0-1008 -20688
-973 -19530-909 -17688-832 -15399-739 -12364-709 -11542-709 -11612-109 -11732-710 -12102-711 -12632-711 -13362-712 -13772
-712 -14022-713 -14162-704 -14450-695 -14679-676 -15037-662 -15271-641 -15580-621 -15870-601 -16159-580 -16449-560 -16739-539 -17028
-520 -17317
-493 -17833-466 -18359-439 -18894-412 -19430
-367 -20334-322 -21247-276 -22050-262 -22264-278 -22429-294 -22594-310 -22759-326 -22925-358 -23255-190 -23585-422 -23905-454 -24235-486 -24565-518 -24915-550 -25295-598 -25860-646 -26435-694 -27011-742 -27596-822 -28711-903 -29876-983 -31071-14265 -510 0 0 453 991-13442 -483 0 0 439 957-12153 -435 0 0 414 895-10350 -374 0 0 383 820-8057 -300 0 0 345 730-7509 -281 0 0 333 700-7600 -284 0 0 331 700-7720 -288 0 0 329 700-8080 -298 0 0 326 700-8540 -312 0 0 322 700-9130 -331 0 0 317 700-9480 -343 0 0 314 700-9700 -350 0 0 313 700-9830 -355 0 0 312 700-10131 -365 0 0 313 691-10372 -374 0 0 314 682-10778 -387 0 .0 317 662-11048 -395 0 0 320 648-11399 -407 0 0 325 627-11730 -417 0 0 329 606-12051 -427 0 0 334 585-12352 -437 0 0 338 565-12663 -446 0 0 343 544-12954 -456 0 0 347 523-13261 -465 0 0 351 503-13755 -480 0 0 357 476-14250 -495 0 0 363 448-14754 -511 0 0 369 421-15258 -526 0 0 375 393-16105 -552 0 0 385 347-16962 -578 0 0 395 301-17709 -601 0 0 405 255-17930 -608 0 0 409 240-18026 -611 0 0 412 256-18112 -615 0 0 415 272-18208 -619 0 0 417 288-18303 -622 0 0 420 304-18484 -629 0 0 426 335-18676 -636 0 0 432 367-18858 -644 0 0 438 399-19039 -651 0 0 444 431-19220 -658 0 0 450 463-19412 -665 0 0 455 494-19603 -672 0 0 461 526-19900 -682 0 0 470 574-20187 -693 0 0 479 622-20474 -704 0 0 488 669-20761 -714 0 0 496 717-21460 -738 0 0 511 796-22258 -766 0 0 526 876-23087 -794 0 0 540 955-1063 -33424 -23654 1443 0 0 -1063 -32047-23705 -815 0 0 555 1035 File No.: 0900530.306 Revision:
0 Page C-28 of C-40 F0306-0IRO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006
(&VeslFatFatlp42)
Page 7 06-23-2009 23:04:20 11 LFWP716549 1I-LFWP7T6749 11_LFWP716973 11 LFWP717242 11LFWP717934 11 LFWP718783 11 LFWP719688 11 LFWP721688 11 LFWP723688 11 LFWP725688 11 LFWP726349 11 LFWP726349 11 LFWP726349 11 LFWP726349 11LFWP726349 11-LFWP726349 11 LFWP726350 11 LFWP726350 11 LFW P726350, 11 LFWP726350 11 LFWP726550 11-LFWP726750 11 LFWP726950 11 LFWP727150 11 LFWP727564 11 LFWP728094 11 LFWP729429 11 LFWP731429 11 LFWP733429 11 LFWP735429 11 LFWP736350 11 LFWP736350 11-LFWP736350 11 LFWP736350 11 LFWP736350 11 LFW2736350 11 LFWP736351 11 LFWP736351 11 LFWP736351 11 LFWP736351 11 LFWP736551
.11 LFWP736751 11 LFWP736951 I1 LFWP737151 11 LFWP737565 31 LFWP738096 11 LFWP738820 11 LFWP740244 11-LFWP742244 11 LFWP744244 11 LFWP845798 11 LFWP846351
-1063 -33304 -23564-1063 -33264 -23534-1063 -33264 -23524
-1063 -33264 -23534-1063 -33274 -23514
-1063 -33274 -23514-1063 -33274 -23514
-1063 -33274 -23514-1063 -33274 -23514
-1063 -33274 -23514-1063 -33274 -23514
-1063 -33274 -23514-1063 -33274 -23504-1063 -33274 -23514-1063 -33274 -23504-1063 -33254 -23494-1063 -33224 -23464-1063 -33194 -23434-1062 -33154 -23404-1062 -33144 -23394-1063 -32804 -23154-1063 -32844 -23174
-1063 -32864 -23184-1063 -32864 -23194-1063 -32864 -23194-1063 -32864 -23194-1063 -32864 -23094-1063 -32864 -23194-1063 -32864 -23194-1063 -32864 -23194-1063 -32864 -23194-1063 -32864 -23194-1063 -32864 -23194-1063- -32864 -23194-1063 -32854 -23184-1062 -32814 -23144-1062 -32754 -23094-1061 -32674 -23024-3063 -32604 -22964-1061 -32564 -22934-1061 -31274 -21894-1061 -31364 -21934-1061 -31394 -21964-1061 -31404 -23974-1061 -31404 -21974-1061 -31404 -21974-1061 -31404 -21984-1061 -31394 -21984-1061 -31394 -21984-1061 -31394 -21984-1061 -31394 -21984-1061 -31394 -21984 1457 0 0 -1063 -31887
-23555 -810 0 0 556 1035 1464 0 0 -1063 -31837 -23515 -809 0 0 556 1035 1468 0 0 -1063 -31827 -23495 -808 0 0 556 1035 1470 0 0 -1063 -31837 -23485 -808 0 0 556 1035 1472 0 0 -1063 -31837 -23485 -808 0 0 556 1035 1473 0 0 -1063 -31837 -23485 -808 0 0 556 1035 1473 0 0 -1063 -31837 -23485 -808 0 0 556 1035 1473 0 0 -1063 -31837 -23485 -903 0 0 556 1035 1473 0 0 -1063 -31837 -23485 -808 0 0 556 1035 1473 0 0 -1063 -31837 -23485 -808 0 0 556 1035 1473 0 0 -1063 -31837 -23485 -808 0 0 556 1035 1473 0 0 -1063 -31837 -23485 -808 0 0 556 1035 1473 0 0 -1063 -31837 -23476 -808 0 0 556 1035 1473 0 0 -1063 -31827 -23476 -808 0 0 556 1035 1473 0 0 -1063 -31807 -23446 -807 0 0 556 1035 1473 0 0 -1063 -31727 -23366 -804 0 0 555 1035 1473 0 0 -1063 -31627 -23275 -801 0 0 555 1035 1474 0 0 -1063 -31517 -23165 -798 0 0 555 1035 1474 0 0 -1062 -31427 -23075 -795 0 0 555 1035 1474 0 0 -1062 -31387 -23035 -794 0 0 554 1035 1467 0 0 -1063 -31297 -23035 -793 0 0 549 1035 1457 0 0 -1063 -31407 -23125 -796 0 0 548 1035 1453 0 0 -1063 -31437 -23155 -797 0 0 548 1035 1451 0 0 -1063 -31447 -23155 -797 0 0 548 1035 1449 0 0 -1063 -31447 -23165 -798 0 0 548 1035 1448 0 0 -1063 -31447 -23165 -798 0 0 548 1035 1448 0 0 --1063 -31447 -23165 -798 0 0 548 1035 1448 0 0 -1063 -31447 -23165 -798 0 0 548 1035 1448 0 0 -1063 -31447 -23165 -798 0 0 548 1035 1448 0 0 -1063 -31447
-23165 -798 0 0 548 1035 1448 0 0 -1063 -31447 -23165 -798 0 0 548 1035 1448 0 0 -1063 -31437 -23165 -798 0 0 548 1035 1448 0 0 -1063 -31437 -23165 -797 0 0 548 -1035 1448 0 0 -1063 -31417 -23145 -797 0 0 548 1035" 1448 0 0 -1063 -31357 -23085 -795 0 0 548 1035 1449 0 0 -1062 -31197 -22925 -790 0 0 547 1035 1449 0 0 -1062 -30987 -22715 -783 0 0 547 1035 1451 0 0 -1061 -30747 -22485 -776 0 0 546 1035 1452 0 0 -1061 -30547 -22285 -769 0 0 545 1035 1452 0 0 -1061 -30467 -22205 -767 0 0 545 1035 1443 0 0 -1061 -29757 -21685 -750 0 0 534 1035 1424 0 0 -1061 -29977 -21865 -756 0 0 532 1035 1416 0 0 -1061 -30037 -21925 -758 0 0 532 1035 1412 0 0 -1061 -30057 -21945 1759 0 0 532 1035 1408 0 0 -1061 -30057 -21955 -759 0 0 532 1035 1407 0 0 -1061 -30057 -21955 -760 0 0 532 1035 1406 0 0 -1061 -30057 -21955 -760 0 0 532 1035 1406 0 0 -1061 -30047 -21955 -760 0 0 532 1035 1406 0 0 -1061 -30047 -21955 -760 0 0 532 1035 1406 0 0 -1061 -30047 -21955 -760 0 0 532 1035 1406 0 0 -1061 -30047 -21955 -760 0 0 532 1035 1406 0 0 -1061 -30047 -21955 -760 0 0 532 1035File No.:
0900530.306 Revision:
0 Page C-29 of C-40 F0306-01 R0 Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006
(&VeslFatFatlp42)
Page 8 06-23-2009 23:04:20 13 11 LFWP846387
-1061 -31394 -21984 1406. 0 0 -1061 -30047 -21955 -760 0 0 532 1035 13 11_LFWP846423
-1061 -31394 -21984 1406 0 0 -1061 -30047 -21955 -760 0 0 532 1035 13 11 _LFWP846531
-1061 -31394 -21984 1406 0 0 -1061 -30047 -21955 -760 0 0 532 1035 13 11LFWP846855
-1061 -31394 -21984 1406 0 0 -1061 -30047
-21955 -760 0 0 532 1035 13 11 LFWP847575
-1061 -31394 -21984 1406 0 0 -1061 -30047 -21955 -760 0 0 532 1035 13 11-LFWP848295
-1061 -31394 -21984 1406 0 0 -1061 -30047 -21955 -760 0 0 532 1035 13 11 LFWP849015 -1061 -31394
-21984 1406 0 0 -1061 -30047 -21955 -760 0 0 532 1035 13 11 LFWP849735
-1061 -31394 -21984 1406 0 0 -1061 -30047 -21955 -760 0 0 532 1035 13 11 LFW2849951
-1061 -31394 -21984 1406 0 0 -1061 -30047 -21955 -760 0 0 532 1035 13 11 LFWP849961
-1061 -31394 -21984 1406 0 0 -1061 -30047 -21955 -760 0 0 532 1035 14 13 ROPl0 14 13 ROPIO 14 13 ROPIO 14 13-ROPIO 14 13-ROPIO 15 13 ROP21 15 13 ROP21 15 13 ROP22 15 13 ROP22 15 13-ROP22 15 13-ROP23 15 13 ROP2315 13 ROP25 15 13 ROP28 15 13 ROP214 15 13-ROP220 15 13 ROP226 15 13 ROP232 15 13 ROP240 15 13-ROP249 15 13 ROP257 15 13 ROP266 15 13-ROP28215 13 ROP299 15 13 ROP2117 15 13 ROP2139 15 13 ROP2164 15 13 ROP2193 15 13 ROP2225 15 13 ROP2280 15 13 ROP2343 15 13 ROP241315 13 ROP2452 15 13 ROP2652 15 13 ROP2852 15 13 ROP21052 15 13 ROP21252 15 13 ROP21739 15 13 ROP22404 15 13 ROP23237 15 13 ROP24138 15 13 ROP25053-1061-1069-1076-1094-1131-1206-1281-1356-1414-1435-1426
-1417-1391-1346-1258
-1169-1080-992-993-995-996-998-1000-1003-1007-1010-1015-1020-1025-1035-1045-1057-1064-1063
-1063-1063-1063-1063-1063
-1063-1063-1063-31414 -21984
-31409 -21960-31403 -21935
-31389 -21877-31360 -21754-31301 -21508-31243 -21262
-31185 -21016-31139 -20823-31122 -20754-31129 -20783-31126 -20812-31147 -20900-31182 -21046-31251 -21338-31320 -21630-31390 .-21922-31459 -22214-31498 -22239-31547 -22275-31596 -22310-31644 -22345
-31752 -22426-31860 -22497
-31968 -22577-32095 -22665-32232 -22772
-32388 -22886-32564 -23018
-32847 -23238-33169 -23484-33499 -23736-33604 -23784
-33364 -23604-33284 -23544-33264 -23524-33264 -23524-33274 -23514
-33274 -23514-33274 -23514
-33274 -23514-33274 -23514 1405 1406 1406 1407 1409 1414 1418 1423 1426 1428 1427 1426 1425 1423 1418 1413 1,407 1402 1401 1400 1399 1398 1397 1397 1397 1397 1398 1399 1402 1406 1412 1420 1424 1448 1459 1465 1468 1471 1472 1473 1473 1473 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-1061 -30067 -21965 -760 0 0 532 1035-1069 -30060 -21940 -759 0 0 532 1043-1076 -30052
-21914 -759 0 0 532 1050-1094 -30036 -21854 -757 0 0 532 1068-1131 -30001 -21726 -754 0 0 532 1105-1206 -29930 -21470 -748 0 0 532 1180-1281 -29860 -21214 -741 0 0 532 1255-1356 -29789 -20958 -735 0 0 532 1330-1414 -29734 -20757 -730 0 0 532 1389-1435 -29714 -20685 -728 0 0 532 1410-1426 -29722 -20715 -729 0 0 532 1401-1417 -29721 -20746 -730 0 0 532 1392-1391 -29746 -- -20837 -732 0 0 532 1366-1346 -29788
-20989 -736 0 0 532 1321-1258 -29871 -21293 -743 0 0 532 1232-1169 -29955 -21597 -751 0 0 532 1143-1080 -30039 -21891 -758 0 0 532 1054-992 -30122 -22195 -766 0 0 532 965-993 -30181 -22250 -767 0 0 532 966-995 -30240 -22305 -769 0 0 532 968-996 -30308 -22360 -771 0 0 533 969-998 -30367 -22405 -772 0 0 533 971-1000 -30495 -22506 -776 0 0 534 973-1003 -30602 -22596 -779 0 0 534 976-1007 -30719 -22686 -782 0 0 535 979-1010 -30846 -22784 -785 0 0 536 983-1015 -30992 -22899 -789 0 0 538 987-1020 -31147 -23023 -793 0 0 539 992-1025 -31312 -23165 -797 0 0 541 997-1035 -31594 -23383 -805 0 0 544 1006-1045 -31904 -23638 -813 0 0 548 1017-1057 -32193 -23858 -820 0 0 552 1028-1064 -32287 -23915 -822 0 0 554 1035-1063 -31957
-23615 -813 0 0 555 1035-1063 -31857
-23535 -810 0 0 .556 1035-1063 -31837
-23505 -809 0 0 556 1035-1063 -31837 -23495 -808 0 0 556 1035-1063 -31837 -23485 -808 0 0 556 1035-1063 -31837 -23485 -808 0 0 556 1035-1063 -31837 -23485 -808 0 0 556 1035-1063 -31837 -23485 -808 0 0 556 1035-1063 -31837
-23485 -808 0 0 556 1035 File No.: 0900530.306 Revision:
0 Page C-30 of C-40 F0306-OIRO Structural lntegrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006
(&VeslFatFatlp42)
Page 9 06-23-2009 15 13 ROP25971 -1063 -33274
-23514 15 139ROP27430
-1063 -33274 -23514 15 13 ROP29941 -1063 -33274
-23514 15 13 ROP210452
-1063 -33274 -23514 15 13 ROP210452
-1063 -33274 -23514 15 130RP210452
-1063 -33274 -23514 15 13 ROP210452
-1063 -33274 -23514 15 13 ROP210452
-1063 -33274 -23504 15 13 ROP210452
-1063 -33254 -23494 15 13 ROP210453
-1063 -33224 -23464 15 13 ROP210453
-1063 -33194 -23434 15 13 ROP210453 -1062 -33354
-23404 15 13 ROP210453
-1062 -33144 -23394 15 13 ROP210653
-1063 -32804 -23154 15 13 ROP210853
-1063 -32844 -23174 15 13 RO9211053
-1063 -32864 -23184 15 13 ROP211253
-1063 -32864 -23194 15 13 ROP211667
-1063 -32664 -23194 15 13 ROP212197
-1063 -32864 -23194 15 13 ROP212918
-1063 -32864 -23194 15 13 ROP214339
-1063 -32864 -23194 15 13 ROP216339
-1063 -32864 -23194 15 13 ROP218339 -1063 -32864
-23194 35 13-ROP219896
-1063 -32864 -23194 15 13 ROP220453
-1063 -32864 -23194 15 13 ROP220453
-1063 -32864 -23194 15 13 ROP220453
-1063 -32864 -23194 15 13 ROP220453
-1063 -32864 -23194 15 13 ROP220453
-1063 -32854 -23184 15 13-ROP220453 -1062 -32814
-23144 15 13 ROP220454 -1062 -32754
-23094 15 13 ROP220454 -1061 -32674
-23024 15 13 ROP220454
-1061 -32604 -22964 15 13 ROP220454
-1061 -32564 -22934 15 13 ROP220654
-1061 -31274 -21894 15 13 R0P220854 -1061 -31364
-21934 15 13 ROP221054
-1061 -31394 -21964 15 13 ROP221254
-1061 -31404 -21974 15 13 ROP221668
-1061 -31404 -21974 15 13 ROP222199
-1061 -31404 -21974 15 13 ROP222923
-1061 -31404 -21984 15 13 ROP224347
-1061 -31394 -21984 15 13 ROP226347
-1061 -31394 -21984 16 13 ROP328347
-1061 -31394 -21984 16 13 ROP329901
-1061 -31394 -21984 16 13 ROP330454
-1061 -31394 -21984 16 13 ROP330490
-1061 -31394 -21984 16 13 ROP330526
-1061 -31394 -21984 16 13 ROP330634
-1061 -31394 -21984 16 13 ROP330958 -1061 -31394
-21984 16 13 ROP331678
-1061 -31394 -21984 16 13 ROP332398 -1061 -31394
-21984File No.:
0900530.306 Revision:
0 23:04:20 1473 0 0 -1063 -31837 1473 0 0 -1063 -31837 1473 0 0 -1063 -31837 1473 0 0 -1063 -31837 1473 0 0 -1063 -31837 1473 0 0 -1063 -31837 1473 0 0 -1063 -31827 1473 0 0 -1063 -31807 1473 0 0 -1063 -31727 1473 0 0 -1063 -31627 1474 0 0 -1063 -31517 1474 0 0 -1062 -31427 1474 0 0 -1062 -31387 1467 0 0 -1063 -31297 1457 0 0 -1063 -31407 1453 0 0 -1063 -31437 1451 0 0 -1063 -31447 1449 0 0 -1063 -31447 1448 0 0 -1063 -31447 1448 0 0 -1063 -31447 1448 0 0 -1063 -31447 1448 0 0 -1063 -31447 1448 0 0 -1063 -31447 1448 0 0 -1063 -31447 1448 0 0 -1063 -31447 1448 0 0 -1063 -31437 1448 0 0 -1063 -31437 1448 0, 0 -1063 -31417 1448 -0 0 -1063 -31357 1449 0 0 -1062 -31197 1449 0 0 -1062 -30987 1451 0 0 -1061 -30747 1452 0 0 -1061 -30547 1452 0 0 -1061 -30467 1443 0 0 -1061 -29757 1424 0 0 -1061 -29977 1416 0 0 -1061 -30037 1412 0 0 -1061 -30057 1408 0 0 -1061 -30057 1407 0 0 -1061 -30057 1406 0 0 -1061 -30057 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047 1406 0 0 -1061 -30047-23485 -808 0 0-23485 -806 0 0-23485 -608 0 0-23485 -808 0 0-23485 -808 0 0-23475 -808 0 0-23475 -808 0 0-23445 -807 0 0-23365 -804 0 0-23275 -801 0 0-23165 -798 0 0-23075 -795 0 0-23035 -794 0 0-23035 -793 0 0-23125 -796 0 0-23155 -797 0 0-23155 -797 0 0-23165 -798 0 0-23165 -798 0 0-23165 -798 0 0-23165 -798 0 0-23165 -798 0 0-23165 -798 0 0-23165 -798 0 0-23165 -798 0 0-23165 -798 0 0-23165 -797 0 0-23145 -797 0 0-23085 -795 0 0-22925 -790 0 0-22715 -783 0 0-22485 -776 0 0-22285 -769 0 0-22205 -767 0 0-21685 -750 0 0-21865 -756 0 0-21925 -758 0 0-21945 -759 0 0-21955 -759 0 0-21955 -760 0 0-21955 -760 0 0-21955 -760 0 0-21955 -760 0 0-21955 -760 0 0-21955 -760 0 0-21955 -760 0 0-21955 -760 0 0-21955 -760 0 0-21955 -760 0 0-21955 -760 0 0 721955 -760 0 0-21955 -760 0 0 556 1035 556 1035 556 1035 556 1035556 1035556 1035 556 1035556 1035 555 1035 555 1035 555 1035555 1035 554 1035 549 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 548 1035 547 1035 547 1035 546 1035545 1035545 1035 534 1035532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 532 1035 Page C-31 of C-40 F0306-01RO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006
(&VeslFatFatlp42)
Page 10 06-23-2009 23:04:20 16 13 ROP333118 -1061 -31394
-21984 1406 0 0 -1061 -30047 -21955 -760 0 0 532 1035 16 13 ROP333838
-1061 -31394 -21984 1406 0 0 -1063 -30047 -21955 -760 0 0 532 1035 16 13 ROP334054
-1061 -31394 -21984 1406 0 0 -1063 -30047 -21955 -760 0 0 532 1035 16 13 ROP334064 -1061 -31394
-21984 1406 0 0 -1061 -30047 -21955 -760 0 0 532 1035 17 14 SRVB10 -1061 -31414 -21984 3405 0 0 -1061 -30077 -21975 -760 0 0 532 1035 17 14 SRVB11 -1046 -31326 -21944 1406 0 0 -1046 -29831 -21777 -753 0 0 531 1020 17 14 -SRVB12 -1030 -31168 -21854 1408 0 0 -1030 -29515 -21509 -745 0 0 530 1005 17 14 SRVB14 -1015 -30960 -21714 1411 0 0 -1015 -29149 -21211 -735 0 0 529 989 17 14 SRV915 -999 -30712 -21554 1415 0 0 -999 -28764 -20893 -724 0 0 528 974 17 14 SRVB17 -967 -30166 -21194 1427 0 0 -967 -27953 -20228 -702 0 0 525 943 17 14--SRVB110
-927 -29396 -20681 1443 0 0 -927 -26899 -19380 -673 0 -0 521 905 18 14 -SRVB214 -875 -28336 -19989 1468 0 0 -875 -25507 -18285
-637 0 0. 516 854 18 14 SRVB220 -805 -26918 -19092 1500 0 0 -805 -23731 -16917 -590 0 0 508 786 18 14 SRVB227 -713 -25078 -17927 1536 0 0 -713 -21516 -15264 -534 0 0 498 696 18 14-SRVB236
-591 -22771 -16478 1570 0 0 -591 -18848 -13290 -466 0 0 483 577 18 14 SRVB248 -439 -20148 -14859 1589 0 0 -439 -15938 -11191 -395 -0 0 463 427 18 14 SRVB260 -284 -17806 -13548 1605 0 0 -284 -13381 -9491 -337 0 0 443 275 19 14-SRVB3287
-290 -19216 -14649 1287 0 0 -290 -17672 -13683 -468 0 0 393 275 19 14 SRVB3514 -291 -19307 -14611 1144 0 0 -291 -18482 -14414 -495 0 0 377 274 19 14-SRVB3740
-291 -18887 -14343 1079 0 0 -291 -18273 -14346 -494 0 0 369 274 19 14-SRVB3967
-290 -18347 .-13984 1037 0 0 -290 -17823 -14058 -485 0 0 362 273 19 14 -SRVB31421
-288 -17248 -13218 984 0 0 -288 -16824 -13341 -462 0 0 349 272 19 14 SRVB31874
-287 -16479 -12641 934 0 0 -287 "-16075 -12755 -441 0 0 336 271 19 14 SRVB32328 -285 -15700
-12034 889 0 0 -285 -15316 -12138 -420 0 0 323 270 19 14-SRVB32782
-283 -14931 -11427 846 0 0 -283 -14547 -11521 -399 0 0 311 269 19 14 SRVB33235
-281 -14151 -10811 804 0 0 -281 -13788 -10895 -378 0 0 298 268 19 14-SRVB33689
-280 -13282 -10154 771 0 0 -280 -12959 -10238 -357 0 0 286 267 19 14-SRVB34142
-278 -12423 -9497 737 0 0 -278 -12140 -9582 -335 0 0 273 266 19 14 SRVB34823
-275 -11144 -8519 685 0 0 -275 -10921 -8606 -303 0 0 255 265 19 14 SRVB35503
-273 -9733 -7415 633 0 0 -273 -9566 -7497 -266 0 0 236 263 19 14 SRVB36184
-270 -8332 -6305 580 0 0 -270 -8217 -6381 -229 0 0 217 262 19 14 SRVB36864
-267 -7005 -5246 524 0 0 -267 -6931 -5315 -193 0 0 199 260 19 14-SRVB37998
-263 -5250 -3796 414 0 0 -263 -5169 -3818 -141 0 0 169 258 19 14 SRVB39132
-258 -3450 -2314 311 0 0 -258 -3372 -2294 -88 0 0 139 255 19 14-SRVB310266
-254 -1797 -971 221 0 0 -254 -1739 -927 -40 0 0 113 253 19 14 SRVB311400 -251 -1401
-666 158 0 0 -251 -1413
-697 -30 0 0 102 250 19 14 SRVB311436
-251 -1419 -682 157 0 0 -251 -1430 -713 -30 0 0 102 250 19 14 SRVB311472
-251 -1435 -696 156 0 0 -251 -1444
-727 :31 0 0 102 250 19 14 SRVB311580
-251 -1469 -725 150 0 0 -251 -1476 -756 -32 0 0 102 250 19 14 SRVB311904
-251 -1503 -753 130 0 0 -251 -1507
-783 -35 0 0 102 250 20 14-SRV9412624
-251 -1448 -711 95 0 0 -251 -1449 -739 -36 0 0 100 250 20 14 SRVB413344
-251 -1330 -619 73 0 0 -251 -1329 -644 -34 0 0 98 250 20 14 SRVB414064
-251 -1202 -520 60 0 0 -251 -1200 -541 -30 0 0 96 250 20 14 SRVB414784 1262 -1165 39 0 0 1294 -1213 -46 0 0 94 25 20 14 SRVB415000 1230 -1138 37 0 0 1261 -1185 -45 0 0 93 25 20 14 SRVB415010 119 -55 5 0 0 119 3 0 0 73 25 21 17IImpSTlO
-1061 -31414 -21984 1405 0 0 -1061 -30067 -21965 -760 0 0 532 1035 21 17ImpSTlO
-1061 -31404 -21984 1405 0 0 -1061 -30037 -21935 -759 0 0 532 1035 21 17IImpSTlO
-1061 -31404 -21974 1405 0 0 -1061 -29967 -21865 -756 0 0 532 1035 21 17 ImpSTlO -1061 -31354 -21934 1405 0 0 -1061 -29677 -21575 -747 0 0 531 1035 21 17 ImpSTlO -1059 -31254 -21844 1407 0 0 -1059 -29127 -21035 -730 0 0 529 103521 17OImpSTlO
-1055 -30784 -21424 1413 0 0 -1055 -27057
-18985 -663 0 0 524 1035 File No.: 0900530.306 Page C-32 of C-40 Revision:
0 F0306-OIRO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006
(&VeslFatFatlp42)
Page 11 06-23-2009 23:04:20 22 17_ImpST21
-1051 -30044 -20764 1423 0 22 17_ImpST21
-1046 -29144 -19964 1436 0 22 17_1mpST26
-1043 -29134 -19074 1451 0 22 17ImpST2l
-1041 -27824 -18814 1456 0 22 17 ImpST22 -1037 -25504 -16824 1494 0 22 17_ImpST22
-1035 -23514 -15134 0530 0 22 17IImpST24
-1031 -19514 -11894 1621 0 22 171ImpST26
-1029 -15344 -8734 1745 0 22 17ImpST211
-1027 -11074 -5836 1894 0 22 17_ImpST217
-1028 -9294 -4852 1951 0 22 17_ImpST222
-1028 -8550 -4572 1955 0 22 17 ImpST226 -1029 -8270 -4492 1935 0 22 171ImpST227 -1025
-8204 -4475 1926 0 22 17ImpST227
-1025 -8205 -4477 1925 0 22 17_ImpST227 -1025 -8209 -4480 1925 0 22 170ImpST227 -1030 -8239 -4510 1925 0 22 171ImpST227
-1031 -8346 -4609 1923 0 22 17ImpST227
-1035 -8742 -4968 1916 0 23 17ImpST328
-1039 -9404 -5565 1906 0 23 17_ImpST328
-1045 -10364 -6421 1892 0 23 17_ImpST328
-1052 -11644 -7554 1872 0 23 17ImpST364
<-1065 -30494 -21424 1271 0 23 17ImpST3100
-1064 -32044 -22244 1257 23 17_ImpST3136
-1063 -32064 -22284 1308 23 17ImpST3172
-1063 -31914 -22224 1342 23 171ImpST3247
-1062 -31664 -22114 1372 23 17_ImpST3351
-1062 -31504 -22044 1386 23 17 ImpST3520
-1061 -31414 -22004 1396 23 17_ImpST31004 -1061 -31394
-21984 1403 23 17_ImpST31724 -1061 -31394
-21984 1406 23 171ImpST32444
-1061 -31394 -21984 1406 23 17ImpST33164 -1061 -31394
-21984 1406 23 17ImpST33628
-1061 -31394 -21984 1406 23 17 ImpST33638 -1061 -31394
-21984 1406 24 21 ShDwlO -1063 -33294 -23514 1471 0 24 21--ShDw123
-1042 -33300 -23582 1471 0 24 21 ShDw1246 -1022 -33307 -23650 1471 0 24 21 ShDw1544 -972 -33346 -23814 1468 025 21 ShDw2960
-902 -33400 -24044 1463 025 21 ShDw21865
-751 -33518 -24543 1454 0 25 21-ShDw22782
-597 -33638 -25049 1445 0 25 21--hDw23700
-443 -33759 -25555 1436 0 25 21 ShDw24931
-237 -33920 -26234 1423 0 25 21-ShDw26156 34080 -26910 1411 025 21 ShDw26168 33730 -26640 1419 025 21 ShDw26180 33340 -26340 1429 0 25 21 ShDw26192 32930 -26040 1438 0 25 21 ShDw26204 32470 -25700 1445 0 25 21 ShDw26228 31520 -24930 1447 0 25 21 ShDw26252 30580 -24170 1447 0 25 21 ShDw26277 29660 -23420 1444 0 25 21 ShDw26304 28640 -22590 1436 0 0 0 0 0 0 0 0 -1051 -24507 -16495
--583 0 0 516 1035 0 -1046 -21877 -13925
-500 0 0 509 1035 0 -1043 -19327 -11455
-420 0 0 502 1035 0 -1041 -18627 -10775 -398 0 0 500 1035'0 -1031 -15077 -7425 -291 0 0 489 1035 0 -1035 -12607 -5138 -219 0 0 481 1035 0 -1031 -8570 -1593
-107 0 0 467 1035 0 -1029 -4980 1281 -15 0 0 451 1035 0 -1027 -1907 3302 54 0 0 431 1035 0 -1028 -1128 3438 63 0 0 418 1035 0 -1028 -1124 3052 52 0 0 407 1035 0 -1029 -1330 2676 40 0 0 400 1035 0 -1025 -1411 2552 35 0 0 398 1035 0 -1025 -1431 2533 34 0 0 398 1035 0 -1025 -1467 2496 33 0 0 398 1035 0 -1030 -1688 2274 27 0 0 398 1035 0 -1031 -2278 1690 8 0 0 400 1035 0 -1035 -4061 49 0 0 404 1035 0 -1039 -6594 -2560 -129 0 0 411 1035 0 -1045 -9847 -5751 -232 0 0 420 1035 0 -1052 -13807 -9615
-356 0 0 431 1035 0 -1065 -31797
-24005 -826 0 0 502 1035 0 -1064 -32017 -23635 -816 0 0 517 1035 0 -1063 -31447 -23075
-797 0 0 523 1035 0 -1063 -30997
-22695 -784 0 0 526 1035 0 -1062 -30477 -22285
-771 0 0 530 1035 0 -1062 -30207 -22085
-764 0 0 531 1035 0 -1061 -30077 -21995 -761 0 0 532 1035 0 -1061 -30047 -21965 -760 0 0 532 1035 0 -1061 -30047 -21955 -760 0 0 532 1035 0 -1061 -30047 -21955 -760 0 0 532 1035 0 -1061 -30047
-21955 -760 0 0 532 1035 0 -1061 -30047 -21955 -760 0 0 532 1035 0 -1061 -30047 -21955
-760 0 0 532 1035 0 -1063 -31867 -23495 -809 0 0 556 1035 0 -1042 -31866 -23556
-810 0 0 556 1014 0 -1022 -31886 -23627
-812 0 0 556 994 0 -972 -31923 -23798
-816 0 0 556 944 0 -902 -31988 -24037
-822 0 0 556 874 0 -751 -32131 -24556 -834 0 0 556 722 0 -597 -32276 -25083 -847 0 0 556 567 0 -443 -32422 -25610 -860 0 0 556 413 0 -237 -32616 -26317
-878 0 0 556 206 0 32810 -27020 -895 0 0 556 0 0 32310 -26570 -880 0 0 554 0 0 31800 -26130 -866 0 0 551 0 0 31260 -25670 -851 0 0 548 0 0 30710 -25210 -836 0 0 545 0 0 29670 -24290 -806 0 0 537 0 0 28670 -23430 -779 0 0 530 0 0 27730 -22610 -752 0 0 522 0 0 26710 -21710 -724 0 0 512 0 File No.: 0900530.306 Page C-33 of C-40 Revision:
0 F0306-01 R0 Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006
(&VeslFatFatlp42)
Page 12 06-23-2009 23:04:20 25 21_ShDw26337 26 21_ShDw36373 26 21 ShDw36414 26 21 ShDw36485 26 21-ShDw36567 26 21 ShDw36661 26 21 ShDw36756 26 21 ShDw36922-26 21 ShDw37087 26 21 ShDw3 7 253 26 21 ShDw37418 26 21 ShDw37750 26 21 ShDw38081 26 21-ShDw38412 26 21 ShDw38743 26 21 ShDw39074 26 21 ShDw39406 26 21 ShDw39737 26 21 ShDw310234 26 21 ShDw310730 26 216ShDw31l227 26 21 ShDw3l1724 26 21 ShDw312552 26 21 ShDw313380 26 21 ShDw314208 27 21 ShDw415036 27 21-ShDw415072
.27 21-ShDw4l5108 27 21-ShDw41521627 21 ShDw41546727 21 ShDw416132 27 21-ShDw416852 27 21-ShDw41757227 21 ShDw418292 27 21 ShDw418636 27 21 ShDw418646 28 24HydrolO 28 24_HydrolO 28 24HydrolO 28 24HydrolO 26 24_HydrolO 28 24_HydrolO 28 24_Hydrol0 28 24Hydroll 28 24 Hydroll 29 24_Hydro2l 29 24Hydro2l 29 24_Hydro2l 29 24Hydro2l 29 24 Hydro21 29 24Hydro2l 29 24 Hydro2l-24-22-21-20-18-16-13-15-15-15-15-15-14-14-13 12-11-10-9-9-8-6-5-3-2-2-2-2-2-2-2 2-2-2-27520-26350
-25160-23150-21000-18530-15380-15620
-15690-15530-15280-14720-14120-13480-12840-12220-11590-10960-9893-8860
-7861-6962-5663-4355-2911-1575-1559
-1552-1549-1559-1581-1590
-1593-1595-1595-1596-21650-20680-19800-18340-16750-14710-12280-12510-12550-12450-12300-11910-'11480-11010-10530-10050-9572-9083-8239-7417-6617-5890-4806-3711-2519-1404-1388-1379-1369-1369-1380-1384-1385-1384-1384-1383 1425 1406 1400 1393 1361 1272 1215 1081 989 929 886 827 787 757 730 704 678 652 614 575 534 490 406 324 247 168 164 160 153 141 127 122 120 119 119 119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25590 -20730
-692 0 0 501 0 0 24480 -19740
-660 0 0 488 0 0 23360 -18860
-633 0 0 473 0 0 21480 -17400 -586 0 0 447 0 0 19410 -15790
-530 0 0 417 0 0 16950 -13650
-460 0 0 382 0 0 14030 -11280
-386 0 0 348 0 0 14980 -12280
-417 0 0 332 0 0 15230 -12540
-426 0 0 324 0-15 -15130 -12520
-425 0 0 319 0 0 14920 -12390
-421 0 0 314 0 0 14390 -12020
-408 0 0 304 0 0 13810 -11590 -394 0 0 295 0 0 13200 -11130
-378 0 0 286 0 0 12600 -10650
-363 0 0 276 0 0 12000 -10170
-347 0 0 267 0-12 -11400 -9694 -331 0 0 258 0-11 -10790 -9201 -315 0 0 249 0-10 -9770 -8356 -287 0 0 235 0-9 -8775 -7531 -260 0 0 222 0-9 -7809 -6725 -233 0 0 208 0-8 -6929 -5988 -208 0 0 194 .0-6 -5623 -4868
-169 0 0 172 0-5 -4306 -3736 -130 0 0 149 0-3 -2877 -2516 -88 0 0 -127 0-2 -1541 -1371
-48 0 0 105 0-2 -1537 -1368
-48 0 0 104 0-2 -1539 -1370
-48 0 0 103 0-2 -1553 -1380
-48 0 -0 102 0-2 -1579 -1402 -49 0 0 101 0-2 -1614 -1430 -50 0 0 100 0-2 -1626 -1439
-50 0 0 100 0-2 -1629 -1441 -51 0 0 100 0-2 -1631 -1441
-51 0 0 100 0-2 -1631 -1441 -51 0 0 100 0-2 -1632 -1440 -51 0 0 100 0-2 -1632 -1440
-51 0 0 100 0-2 -1632 -1440
-51 0 0 100 0-2 -1632 -1440
-51 0 0 100 0-2 -1632 -1440 -51 0 0 100 0ý2 -1632 -1440
-51 0 0 100 0-2 -1632 -1440
-51 0 0 100 0-2 -1632 -1440
-51 0 -0 100 0-2 -1632 -1440
-51 0 0 100 0-2 -1632 -1440
-51 0 0 100 0-1562 -160 3904 81 0 0 100 1565-1562 -160 3904 81 0 0 100 1565-1562 -160 3904 81 0 0 100 1565-1562 -160 3904 61 0 0 100 1565-1562 -160 3904 81 0 0 100 1565-1562 -160 3904 81 0 0 100 1565-1562 -160 3904 81 0 0 100 1565-2 -1596 -1383-2 -1596 -1383-2 -1596 -1383-2 -1596 -1383-2 -1596 -1383-2 -1596 -1383-2 -1596 -1383-2 -1596 -1383-2 -1596 -1383-1562 -378 3752-1562 -378 3752-1562 -378 3752-1562 -378 3752
-1562 -378 3752-1562 -378 3752-1562 -378 3752 119 119 119 119 119 119 119 119 119 212 212 212 212 212 212 212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0File No.:
0900530.306 Page C-34 of C-40 Revision:
0 F0306-OIRO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006
(&VeslFatFatlp42)
Page 13 06-23-2009 23:04:20 29 29 30 2 4_Hydro22
-1562 -378 24Hydro22
-1562 -378 24Hydro32 1596 3752 3752-1383 212 212 119 0 0 0 0 0 0-1562 -160-1562 -160-2 -1632 3904 3904-1440 81 81-51 0 0 100 0 0 100 0 0 100 1565 1565 0 Ordered Input E-corrected Stress Intensities are from: Stress Input (psi. -Salt w/E-modulus correction):
- Eventl # Event 2 Sn 25 21 ShDw2 and 29 24Hydro2 35314 2 2DHydT2 and 25 21 _ShDw2 34759 22 17ImpST2 and 25 21 ShDw2 26548 20 14 _SRVB4 and 25 21 ShDw2 34070 15 13-ROP2 and 29 24lHydro2 33811 5 3 Staup2 and 29 2414ydro2 33635 12 11 LFWP7 and 29 241Hydro2 33635 24 21 -ShDwI and 29 24 Hydro2 33652 23 17ImpST3 and 29 24IHydro2 32232 2 201HydT2 and 15 13 ROP2 33256 2. 2DHydT2 and 5 3_Staup2 33081 2 2DHydT2 and 12 11_LFWP7 33081 2 2DHydT2 and 24 21_ShDwl 33097 19 14 SRVB3 and 25 21 ShDw2 32993 2 2DHydT2 and 23 17iImpST3 31677 25 21 ShDw2 and 27 21_ShDw4 32587 3 2-lDHydT3 and 25 21_ShDw2 32600 4 3 Staupl and 25 21_ShDw2 32557 1 2DHydTl and 25 21_ShDw2 32557 25 21 ShDw2 and 28 24Hydrol 32557 25 21_ShDw2 and 30 241Hydro3 32557 15 13 ROP2 and 22 17ImpST2 25041 15 135ROP2 and 20 14 _SRVB4 32570 5 3Staup2 and 22 17_ImpST2 24860 12 I LFWP7 and 22 17ImpST2 24860 5 3 Staup2 and 20 14_SRVB4 32395 12 1Y LFWP7 and 20 14 SRVB4 32395 22 17ImpST2 and 24 21_ShDwl 24871 20 14 SRV34 and 24 21_ShDwl 32412 22 17ImpST2 and 23 17_ImpST3 23500 20 14 _SRV4 and 23 17ImpST3 30987 17 14 SRVBI and 29 24 Hydro2 31627 6 11 -LFWP1 and 29 24lHydro2 31627 14 135ROP1 and 29 24lHydro2 31627 21 17iImpSTI and 29 24_Hydro2 31627 13 11 LFWP8 and 29 24 Hydro2 31607 16 13 ROP3 and 29 24_Hydro2 31607 5 3_Staup2 and 25 21_ShDw2 31561 15 13 ROP2 and 19 145SRVB3 31492 25 21 ShDw2 and 26 21 ShDw3 31227 pl-i_304L.ORD Ke 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Salt 18983 18643 18152 18149 18110 17981 17981 17966 17831 17771 17642 17642 17627 17556 17494 17349 17323 17296 17296 17296 17296 17279 17277 17150 17150 17148 17148 17135 17133 17006 17004 16813 16807 16807 16807 16796 16796 16707 16684 16605 A File No.: 0900530.306 Revision:
0 Page C-35 of C-40 F0306-01 R0 Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12129/2006
(&VesIFatFatlp42I Page 14 06-23-2009 23:04:20 Stress Input (psi.8 Eventl 5 3Staup2 12 11_LFWP7 19 14 SRVB3 15 13-ROP2 2 2DHydT2 2 2DHydT2 2 2DHydT2 2 2DHydT2 2 2DHydT2 2 2DHydT2 3 2_DHydT3 4 3Staupl 15 13 ROP2 15 13ROP2 1 2DHydTl 19 14 SRVB3 5 3Staup2 12 11 LFWP7 24 21 ShDwl 3 2DHydT3 3 2DHydT3 3 2DHydT3 4 3Staupl 5 3Staup2 5 3Staup2 12 11 LFWP7 12 11-LFWP7 1 2DHydTl 4 3Staupl I 2DHydTl 4 3_Staupl 1 2DHydTI 24 21 ShDwl 24 21-ShDwl 23 17 ImpST3 3 2DHydT3 4 3Staupl 1 2DHydTl 23 17 ImpST3 23 17ImpST3 17 14 SRVB1 17 14 SRVBl 6 11-LFWPI 14 13 ROPI 21 17IImpSTl 14 13 ROP1 6 11 LFWPI 20 14 SRVB4 13 11 LFWP8-Salt and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and w/E-modulus correction):
- Event 2 19 14 _SRVB3 3 19 14 _SRVB3 3 24 21_ShDwl 3 27 21 ShDw4 3 17 14 _SRVBI 3 21 17 ImpSTl 3 6 11 LFWPI 3 14 13 POI 316 13 ROP3 3 13 11 LFWP8 3 15 13 ROP2 315 13 ROP2 3 28 24Hydrol 3 30 24Hydro3 3 15 13 ROP2 3 23 17IImpST3 2 27 21 ShDw4 3 27 21 ShDw4 3 27 21 ShDw4 3 12 11 LFWP7 3 5 3_Staup2 3 24 21 ShDwl 3 5 3_Staup2 3 28 24lHydrol 3 30 24_Hydro3 3 28 24Hydrol 3 30 24Hydro3 3 12 ii1LFWP7 3 12 11_LFWP7 3 5 3_Staup2 '3 24 21 ShDwl 3 24 21_ShDwi 3 28 24 Hydrol 3 30 24 Hydro3 3 27 21 ShDw4 2 23 17IImpST3 2 23 17_ImpST3 2 23 17ImpST3 2 28 24IHydrol 2 30 24Hydro3 2 22 17ImpST2 2 20 14 _SRVB4 3 22 17_2mpST2 2 22 17ImpST2 2 22 17ImpST2 2 20 14 SRV54 3 20 14 SRVB4 3 21 17OmpSTl 3 22 17_ImpST2 2 Sn 1317 1317 1334 1085 1073 1073 1073 1073 1053 1053 1100 1056 1056 1056 1056 9911 0910 0910 0927 0924 0924 0942 0881 0881 0881 0881 0881 0881 0881 0881 0898 0898 0898 0898 9504 9518 9474 9474 9-474 9474 2858 0388 2858 2858 2858 0388 0388 0388 2837 Ke 1.0000 i.0ooo 1.0000 1.0000 1. 0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Salt 16555 16555 16540 16477 16475 16469 16469 16469 16458 16458 16451 16424 16424 16424 16424 16416 16347 16347 16332 16322 16322 16307 16295 16295 16295 16295 16295 16295 16295 16295 16280 16280 16280 16280 16210 16184 16157 16157 16157 16157 15985 15983 15980 15980 15980 15978 15978 15978 15969 File No.: 0900530.306 Revision:
0 Page C-36 of C-40 F0306-01 RO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006
(&VeslFatFatlp42)
Page 15 06-23-2009 23:04:20 Stress Input (psi. -Salt# Eventl16 13 ROP3 and 13 II-LFWP8 and 16 13-ROP3 and5 3 Staup2 and 8 1i LFWP3 and 15 13 ROP2 and 5 3lStaup2 and 5 3Staup2 and 10 11 LFWP5 and 12 11 LFWP7 and 5 3_Staup2 and 24 21 ShDwl and 5 3_Staup2 and 23 17_ImpST3 and 2 2_HydT2 and17 14 SRVB1 and 14 13-ROPI and 6 11 LFWPI and19 14 SRVB3 and 13 T11LFWP8 and 16 13-ROP3 and 2 2DHydT2 and17 14 SRVBI and 14 13 ROPI and 6 11 LFWPI and 21 17tImpSTl and 13 11 LFWP8 and 16 13_ROP3 and 3 2DHydT3 and 3 2DHydT3 and 3 2DHydT3 and 3 2DHydT3 and 3 2DHydT3 and 3 2DHydT3 and 1 2DHydTl and17 14 SRVBI and 17 14 SRVB1 and 4 3Staupl and 14 13 ROPI and 14 13_ROPI and 4 3Staupl and 6 31 LFWPI and 4 3Staupl and 6 11 LFWP1 and 1 2DHydT1 and 21 17_ImpSTl and 21 17 ImpSTI and 1 2_DHydTl and 1 2DHydTl and File No.: 0900530.306 Revision:
0 w/E-22 20 20 15 29 26 12 24 29 26 26 26 23 26 8 19 19-19 21 19 19 10 27 27 27 27 27 27 17 6 21 14 13 16 17 28 30 17 28 30 14 28 21 30 14 28 30 6 21 modulus correction):
Event 2 17ImpST2 14_SRVB4 14 SRVB4 13-ROP2 24_Hydro2 21 ShDw3 11LFWP7 21ShDwl 24Hydro2 21 ShDw3 21-ShDw3 21_ShDw3 170ImpST3 21 ShDw3 11 LFWP3 14-SRVB3 14-SRVB3 14 SRVB3 17ImpSTI 14 SRVB3 14-SRVB3 11 LFWP5 21 ShDw4 21_ShDw4 21_ShDw4 21 ShDw4 21 ShDw4 21_ShDw4 14 SRVBI 11_LFWPI 17ImpSTl 13 ROPI 11 LFWPS 13 ROP3 14 SRVBI 24Hydrol 24Hydro3 14_SRVBI 24Hydrol 24Hydro3 13_ROPI 24Hydrol 17ImpSTl" 24Hydro3 13_ROPI 24jydrol 24Hydro3 11 LFWP1 17 ImpSTl Sn 22837 30369 30369 30060 29550 29725 29885 29902 29468 29550 29550 29567 28478 28145 28995 29309 29309 29309 29309 29290 29290 28913 28903 28903 28903 28903 28883 28883 28917 28917 28917 28917 28988 28898 28874 28874 28874 28874 28874 28874 28874 28874 28874 28874 28874 28874 28874 28874 28874 Ke 1.0000 1.0000 1.0000 1.0000 1.0020 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 i.0000 Salt 15969 15967 15967 15836 15792 15734 15706 15691 15660 15604 15604 15589 15573 15472 15456 15393 15387 15387 15387 15376 15376 15324 15186 15181 15181 15181 15170 15170 15161 15155 15155 15155 15144 15144 15134 15134 15134 15134 15128 15128 15128 15128 15128 15128 15128 15128 15128 15128 15128 Page C-37 of C-40 F0306-OIRO Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006
(&VeslFatFatlp42)
Page 16 06-23-2009 23:04:20 Stress Input (psi. -Salt w/E-modulus correction):
- Eventi # Event 2 Sn Ke Salt 4 3Staupl and 6 11LFWP1 28874 1.0000 15128 23 17_ImpST3 and 25 21 ShDw2 25702 1.0000 15118 4 3_Staupl and 16 13_ROP3 28854 1.0000 15117 16 13ROP3 and 28 24Hydrol 28854 1.0000 1511713 11 LFWP8 and 28 24 Hydrol 28854 1.0000 15117 16 13-ROP3 and 30 24Hydro3 28854 1.0000 15117 4 3Staupl and 13 11 LFWP8 28854 1.0000 15117 13 11 LFWP8 and 30 24fHydro3 28854 1.0000 15117 1 2DHydTl and 13 11 LFWP8 28854 1.0000 15117 1 2 DHydTI and 16 13_ROP3 28854 1.0000 15117 8 11 _LFWP3 and 22 17ImpST2 20817 1.0000 14969 8 11 LFWP3 and 20 14 SRVB4 28308 1.0000 14967 10 11-LFWP5 and 22 17 ImpST2 20720 1.0000 14837 10 11 LFWP5 and 20 14 SRVB4 28229 1.0000 14835 5 3Staup2 and 17 14 -SRVBI 27878 1.0000 14548 5 3 Staup2 and 21 170ImpSTl 27878 1.0000 145425 3 Staup2 and 14 13 ROPI 27878 1.0000 14542 5 3Staup2 and 6 11_LFWP1 27878 1.0000 14542 5 3Staup2 and 13 11 LFWP8 27858 1.0000 14531 5 3Staup2 and 16 13-ROP3 27858 1.0000 14531 17 14 SRVBI and 26 21-ShDw3 27543 1.0000 14446 21 17_ImpSTl and 26 21 ShDw3 27543 1.0000 14441 6 11 LFWPl and 26 21-ShDw3 27543 1.0000 14441 14 13 ROP1 and 26 21 ShDw3 27543 1.0000 14441 16 13 ROP3 and 26 21 ShDw3 27523 1.0000 14430 13 11-LFWP8 and 26 21 -ShDw3 27523 1.0000 14430 8 11-LFWP3 and 19 14 -SRVB3 27230 1.0000 14380 18 14 SRVB2 and 29 24 Hydro2 28755 1.0000 14345 10 11-LFWP5 and 19 14 SRVB3 27150 1.0000 1424715 13 ROP2 and 23 17IImpST3 24194 1.0000 14247 8 11 LFWP3 and 27 21 ShDw4 26824 1.0000 1417426 21 ShDw3 and 29 24_Hydro2 27615 1.0000 14160 3 2DHydT3 and 8 11_LFWP3 26838 1.0000 14149 8 I1 LFWP3 and 28 24EHydrol 26794 1.0000 14122 1 2DHydTl and 8 11_LFWP3 26794 1.0000 14122 8 I1 LFWP3 and 30 24_Hydro3 26794 1.0000 14122 4 3Staupl and 8 11_LFWP3 26794 1.0000 14122 12 I _LFWP7 and 23 17ImspST3 24014 1.0000 14117 23 17 ImpST3 and 24 21_ShDwl 24025 1.0000 14102 10 11 LFWP5 and 27 21 ShDw4 26743 1.0000 14042 3 20DHydT3 and 10 I1_LFWP5 26758 1.0000 14016 2 2DHydT2 and 18 14_SRVB2 28202 1.0000 14008 10 11 _LFWP5 and 28 24 Hydrol 26714 1.0000 1398910 11 LFWP5 and 30 241Hydro3 26714 1.0000 13989 4 3Staupl and 10 11 LFWP5 26714 1.0000 13989 1 2ODHydTl and 10 11TLFWP5 26714 1.0000 13989 7 I1 LFWP2 and 25 21 ShDw2 23235 1.0000 13914 2 2_DHydT2 and 26 21 ShDw3 27062 1.0000 13826 9 11 LFWP4 and 25 215ShDw2 22831 1.0000 13730 File No.: 0900530.306 Page C-38 of C-40 Revision:
0 F0306-OIR0 C Structural Integrity Associates, Inc.Fatigue Analysis using VESLFAT Fatigue Module Version 1.42 -12/29/2006
(&VeslFatFatlp42)
Page 17 06-23-2009 23:04:20 Stress Input (psi..A Eventi 22 17 ImpST2 5 3 Staup218 14 _SRVB2 18 14_SRVB2 11 11 LFWP6 9 31 LFWP4 8 11 LFWP3 5 3_Staup2 2 2_DHydT2 22 17_ImpST2 20 14 SRVB4-Salt and and and and and and and and and and and w/E-modulus correction):
- Event 2 Sn 29 .24_Hydro2 30274 8 11_LFWP3 25799 22 17_1mpST2 19963 20 14 _SRVB4 27523 29 24 Hydro2 26364 29 24_Hydro2 26518 26 21 ShDw3 25464 10 11 LFWP5 25719 22 17 ImpST2 29720 26 21 ShDw3 18838 26 21 ShDw3 26383 Ke 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Salt 13695 13539 13520 13518 13470 13446 13437 13406 13359 13341 13338File No.:
0900530.306 Page C-39 of C-40 Revision:
0 F0306-OIRO C Structural Integrity Associates, Inc.Fatigue Analysis using Page 18 I Load Sets 1 25 21 ShDw2 29 241Hydro22 2 2_DHydT2 25 21 ShDw23 2 20DHydT2 15 13 ROP2 4 2 2_OHydT2 5 3lStaup25 5 3 Staup2 22 17 ImpST2 6 5 3 Staup2 20 14 SRV94 7 5 3 Staup2 19 14 SRVB3 8 5 3 Staup2 27 21 ShDw4 9 12 31--LFWP7 27 21 ShDw4 10 3 2_DHydT3 12 11 LFWP7 11 3 2DHydT3 24 21 ShDwl 12 3 2 DHydT3 23 07ImpST3 13 4 3_Staupl 23 07IImpST3 14 1 2 DHydT3 17 14 SRVBI 15 14 13-OPI 28 24Hydrol 16 6 11_LFWP1 28 241Hydrol 17 4 3Staupl 21 17_ImpSTl 18 6 11iLFWP1 30 24Hydro3 19 1 2_DHydTl 6 13 LFWPI 20 4 3_Staupl 16 13 ROP3 21 4 3Staupl 13 ii LFWP8 22 1 2_OHydTT 8 11 LFWP3 23 4 3_Staupl 10 11 LFWP5 VESLFAT Fatigue Module Version 1.42 -12/29/2006
(&VeslFatFatlp42) 06-23-2009 23:04:20 Cycles 118 3 130 315 15 1 14 120 106 5 101 2 99 2 97 118 30 21 130 9 121 118 3 5 120'2 130 2 1 3 30 2 118 5 28 3 128 25 113 1 112 30 103 30 82 30 Sn 35314 34759 33256 33081 24860 32395 31317 30910 30910 309 24 30942 29518 29474 28874 28874 28874 28874 28874 28874 28854 28854 26794 26714 Ke Salt 1.000 18983 1.000 18643 1.000 17771 1.000 17642 1.000 17150 1.000 17148 1.000 16555 1.000 16347 1.000 16347 1.000 16322 1.000 16307 1.000 16184 1.000 16157 1.000 15134 1.000 15128 1.000 15128 1.000 15128 1.000 15128 1.000 15128 1.000 15117 1.000 15117 1.000 14122 1.000 13989 Nallowed 4.3764E+06 4.7272E+06 6.1657E+06 6.4429E+06
7.6387E+06 7.6446E+06
- 9. 4491E+06 1.0297E+07 1.0297E+07 1.0445E+07 1.0533E+07
- 1. 1284E+07 1. 1457E+07 2.1354E+07 2.1471E+07
- 2. 1471E+07 2.1471E+07
- 2. 1471E+07 2.1471E+07 2 1707E+07 2.1707E+07 9.2711E+07 3.5582E+08 Usage.0000007.0000243.0000002.0000022.0000007.0000003.0000002.0000094.0000020.0000009.0000112.0000003.0000002.0000001.0000000.0000001.0000002.0000001.0000012.0000000.0000014.00o0003.0000001 Total Usage = 0.0000560 File No.: 0900530.306 Revision:
0 Page C-40 of C-40 F0306-01 RO ATTACHMENT 3 To Enterciy Letter No. 2.09.050 Structural Integrity Associates, Inc. File No. 0900530.307,"Residual Stress Analysis of Jet Pump Instrument Nozzle (N9A) with Weld Overlay Repair", dated August 10, 2009 (32 pages)
Structural Integrity Associates, Inc. File No.: 0900530.307 CALCULATION PACKAGE Project No.: 0900530 Quality Program: 0 Nuclear 0 Commercial PROJECT NAME: Pilgrim Top Head Flaw and N9 Weld Overlay CONTRACT NO.: 10235773-01 CLIENT: PLANT: Entergy Nuclear Pilgrim Nuclear Power Station CALCULATION TITLE: Residual Stress Analysis of Jet Pump Instrumentation Nozzle (N9A) with Weld Overlay Repair Project Manager Preparer(s)
&Document Affected Revision Description Approval Checker(s)
Revision Pages Signature
& Date Signatures
& Date 0 1 -32 Initial Issue.
Jennifer E. Smith Hal L. Gustin Preparer 08/10/2009 08/10/2009 Aparna Chintapalli Independent Verifier 08/10/2009 Page 1 of 32 F0306-OIRI Structural Integrity Associates, Inc.Table of Contents 1.0 O BJECTIV E .........................................................................................................
4 2.0 D ESIGN IN PU TS ....................................................................................................
4 2.1 Finite Elem ent M odel ..................................................................................
4 2.2 M aterial Properties
........................................................................................
5 3.0 A SSUM PTION S .................................................................................................. .64.0 M ETH O D O LO G Y ..................................................................................................
6 4.1 W eld Bead Sim ulation ...................................................................................
74.2 W elding Sim ulation ....................................................................................
8 4.2.1 Internal Pressure Loading ............................................................................
8 5.0 WELDMENT TEMPERATURE GUIDELINE
......................................................
8 6.0 RESULTS O F A N A LY SIS ....................................................................................
9 7.0 REFEREN CES ............................................................................................................
10 I File No.: 0900530.307 Revision:
0 Page 2 of 32 F0306-0l Structural Integrity Associates, Inc.List of Figures Figure 1: Applied Boundary Conditions to the Finite Element Model .............................
12 Figure 2: As-M odeled Com ponents ...................................................................................
13 Figure 3: As-Modeled Nuggets for ID Weld Repair 1 (2), ID Weld Repair 2 (2), Old WOL (24), and N ew W O L (66) .........................................................................................
14 Figure 4: Internal Pressure Loading ........................................
15 Figure 5: Predicted Fusion Boundary for ID Weld Repair 1 .......................
16 Figure 6: Predicted Fusion Boundary for ID Weld Repair 2 .............................................
17 Figure 7: Predicted Fusion Boundary for Weld Overlay 1 ........................
18 Figure 8: Predicted Fusion Boundary for Weld Overlay 2 ........................
19 Figure 9: Post-ID Weld Repair 1 Axial Stress at 70'F ......................................................
20 Figure 10: Post-ID Weld Repair 1 Hoop Stress at 70'F ....................................................
21 Figure 11: Post-ID Weld Repair 2 Axial Stress at 70'F ....................................................
22 Figure 12: Post-ID Weld Repair 2 Hoop Stress at 70'F ....................................................
23 Figure 13: Post Weld Overlay 1 Axial Stress at 70'F .....................................................
24 Figure 14: Post Weld Overlay 1 Hoop Stress at 70'F ......................................................
25 Figure 15: Post Weld Overlay 2 Axial Stress at 70'F .....................................................
26 Figure 16: Post Weld Overlay 2 Hoop Stress at 70'F .....................................................
27 Figure 17: Post Weld Overlay Axial Stress at 550'F and 1035 psia ......................................
28 Figure 18: Post Weld Overlay Hoop Stress at 550'F and 1035 psia ................................
29 Figure 19: ID Surface Axial Residual Stress .....................................................................
30 Figure 20: ID Surface Hoop Residual Stress .....................................................................
31 Figure 21: Path D efinitions
.................................................................................................
32 List of Tables Table 1: AN SY S Input and Output Files ............................................................................
11 File No.: 0900530.307 Page 3 of 32 Revision:
0 F0306-01E Structural Integrity Associates, Inc.1.0 OBJECTIVE The Pilgrim jel pump instrument nozzle N9A had a previous weld overlay repair applied in 1984. It was determined that the previous repair did not sufficiently cover all potentially IGSCC-susceptible weld locations at the nozzle to safe end joint. In addition, the overlay was too short to allow a qualified ultrasonic examination of the underlying material.
The Reference
[1] calculation designed an upgrade and extension to the repair to bring the entire repair up to current standards, and to allow ultrasonic examination of the weld overlay and underlying welds. This updated repair has been installed on the N9A nozzle.The objective Of this evaluation is to perform a weld residual stress analysis using ANSYS finite element software [2] on the jet pump instrumentation nozzle due to the new weld overlay (WOL) repair. The new WOL was applied in order to enlarge the original WOL in order for it to cover both the nozzle-to-safe end weld and the safe end-to-penetration seal welds and allow for inspection.
This analysis includes performing two weld repairs from the inner diameter (ID) surface for postulated flaws within the original nozzle-to-safe end weld and the safe end-to-penetration seal weld. The two ID weld repairs are simulated to provide an unfavorable stress condition (prior to applying the weld overlay) due to the original fabrication of these welds. The nozzle-to-safe end and safe end-to-penetration seal welds are not considered in this analysis.
The original WOL from 1984 is modeled and is performed in this analysis followed by the new WOL.The results will be evaluated to demonstrate that the weld overlay repair has indeed generated a favorable stress condition for the jet pump instrumentation nozzle, safe end, and penetration seal by inducing a compressive stress condition on the ID surface.
The favorable stress condition minimizes and/or arrests crack initiation/propagation caused by Inter Granular Stress Corrosion Cracking (IGSCC) in the susceptible DMW material.2.0 DESIGN INPUTS 2.1 Finite Element Model The finite element model of the jet pump instrumentation nozzle, including material properties, is obtained from Reference
[3]. The ID weld -epairs on the nozzle-to-safe end weld and the safe end-to-penetration seal weld are included in this analysis to show that the significant tensile stresses generated by these weld repairs are mitigated by the weld overlay repair.Section 4.2 of MRP-169 states that, to adequately demonstrate the favorable residual stress effects of a weld overlay, one must start with a highly unfavorable, pre overlay residual stress condition such as that which would result from an ID surface weld repair during construction.
If the nozzle specific weld overlay design is shown to produce favorable residual stresses in this severe case, one can be assured that it will effectively mitigate against future Intergranular Stress Corrosion Cracking (IGSCC) in the File No.: 0900530.307 Page 4 of 32 Revision:
0 F0306-011 Structural Integrity Associates, Inc.DMW. While MRP-169 applies to PWR's, the same methodology is used here in order to insure the WOL will produce favorable residual stresses.Figure 1 shows the applied structural boundary conditions on the axisymmetric finite element model,while Figure 2 shows the different components in the finite element model. The weld overlay nugget layout used for the residual stress evaluation is shown in Figure 3.
The progression of the overlay welding is from the nozzle end to the piping end. The welding direction was chosen based on communications with the client.Axisynmmetric PLANE55 elements are used in the thermal analysis, while axisymmetric PLANE182 elements are used in the stress analysis.
The weld bead depositions are simulated using the element"birth and death" feature in ANSYS. A node on the vessel ID was fixed in all directions for the stress run in order to constrain the model against infinite motion in the y-direction.The element "birth and death" feature in ANSYS allows for the deactivation (death) and reactivation (birth) of the elements' stiffness contribution when necessary.
It is used such that elements that have no contribution to a particular phase of the weld simulation process are deactivated (via EKILL command)because they have not been deposited.
The deactivated elements have near-zero conductivity and stiffness contribution to the structure.
When those elements are required in a later phase, they are then reactivated (via EALIVE command).The analyses consist of a thermal pass to determine the temperature distribution due to the welding process, and an elastic-plastic stress pass to calculate the residual stresses through the thermal history.Appropriate weld heat efficiency along with sufficient cooling time are utilized in the thermal pass to ensure that the temperature between weld layer nuggets meets the required interpass temperature as well as obtain acceptable overall temperature distribution within the FEM (i.e., peak temperature, sufficient resolution of results, etc.). In the stress pass, symmetric boundary conditions are applied on the end of the penetration seal as well; as the vessel. A node on the vessel ID was also fixed in the y direction to prevent the entire model from moving due to the loading.2.2 Material Properties The materials of the various components of the model are listed below per Reference
[3].* Nozzle Body: A-508 Cl. 2* Old Safe End SA-182-F304
- Penetration Seal SA-182-F304
- Nozzle to Old Safe-End Weld Inc. 182* Old Safe-End to Penetration Seal Weld Inc. 182* Weld Butters Inc. 182* Old Weld Overlay Inc. 182* Cladding SA-240 Type 304 File No.: 0900530.307 Page 5 of 32 Revision:
0 F0306-01f Structural Integrity Associates, Inc.* New Weld Overlay Alloy 52M* Vertical Pipe 304 Stainless Steel* ID Weld Repairs Inc. 182 The temperature dependent nonlinear material property values are obtained from Reference
[3] (input file MPropMISO_NLinearPNPS.INP).
This analysis applies the multi-linear isotropic hardening material behavior available within the ANSYS finite element program.3.0 ASSUMPTIONSThe following assumptions are used in the residual stress evaluation:
- 1. Assumptions from Reference
[3] are applicable in this calculation.
- 2. A convection heat transfer coefficient boundary condition of 5.0 Btuihr-ft 2-°F at 70'F bulk ambient temperature is applied to simulate the air condition at the inside surface of the nozzle during the application of the ID weld repair I and ID weld repair 2.3. The outside surface of the nozzle has a heat transfer coefficient of 5.0 Btu/hr-ftZ-°F at 70'F bulk temperature during the application of the ID weld repair 1 and ID weld repair 2.4. During both weld overlay processes, the nozzle is assumed to be filled with water. Therefore, the applied heat transfer boundary condition of 20.0 Btu/hr-ft 2-°F at 70'F bulk temperature was used on the inside surface of the nozzle to simulate water.5. The outside surface of the nozzle had a heat transfer coefficient of 5.0 Btu/hr-fte-°F at 70'F bulktemperature during both WOL processes.
This represents, an air environment.
- 6. A maximum interpass temperature of 350'F between the depositions of weld nuggets is assumed for all welding processes
[4]. This is confirmed by the welding procedure in Reference
[12].7. Additional assumptions including details on the heat source and heat efficiency values can be obtained from Reference
[5].4.0 METHODOLOGY The residual stresses due to welding are controlled by various welding parameters, thermal transients due to application of the welding process, temperature dependent material properties, and elastic-plastic stress reversals. The analytical technique uses finite element analysis to simulate the multi-pass weld repair and weld overlay processes.
A residual stress evaluation process was previously developed in an internal SI project. Details of the process and its comparison to actual test data are provided in Reference
[5]. The same process will be used herein. The finite element model of the jet pump instrumentation nozzle was developed in File No.: 0900530.307 Page 6 of 32 Revision-0 F0306-01:
V Structural Integrity Associates, Inc.Reference
[3]. The model includes the instrumentation nozzle, the original nozzle to safe end dissimilar metal weld (DMW), the left over piece of the original safe end, the DMW that attaches the old safe end to the penetration seal, a portion of the penetration seal, the original weld overlay repair (WOL), the new WOL, a postulated weld repair at each of the DMWs, and a portion of the attached piping.4.1 Weld Bead Simulation In order to reduce computational time, individual weld beads or passes are lumped together into weld nuggets. This methodology is based on the approach presented in References 6, 7, 8, and 9.The number of equivalent bead passes is estimated by dividing each nugget area by the area of an individual bead. The resulting number of equivalent bead passes per nugget is used as a multiplier to the heat generation rate. The progression of the overlay welding is from the nozzle end to the piping end.The welding direction was chosen based on communications with the client. A summary of nuggets for the welds is summarized as follows (see Figure 3): " The ID weld repair 1 (nozzle-to-safe end weld) is performed in two layers, with one nugget for each layer. A total of 2 nuggets are defined for the ID weld repair 1.* The ID weld repair 2 (safe end-to-penetration seal) is performed in 2 layers, with one nugget for each layer. A total of 2 nuggets are defined for ID weld repair 2.* The old weld overlay is performed in three layers. A total of twenty four nuggets are defined for this weld overlay.o Layer one is comprised of nine nuggets o Layer two is comprised of eight nuggets o Layer three is comprised of seven nuggets* The new weld overlay is performed in four layers, which are applied in 3 pieces.
Thefirst piece has three layers and is on the nozzle side of the old WOL. The second piece consists of three layers and is on the piping side of the old WOL. The third and final piece is one layer and covers the previous two pieces as well as the old WOL. The necessity of a three piece weld overlay can be seen in Reference
[11]. A total of sixty six nuggets are defined for the new weld overlay: o Piece 1, Layer one is comprised of ten nuggets o Piece 1, Layer two is comprised of ten nuggets o Piece 1, Layer three is comprised of ten nuggets o Piece 2, Layer one is comprised of five nuggets o Piece 2, Layer two is comprised of five nuggets o Piece 2, Layer three is comprised of five nuggets o Piece 3, Layer one is comprised of twenty one nuggets File No.: 0900530.307 Page 7 of 32 Revision:
0 F0306-01O Structural Integrity Associates, Inc.4.2 Welding Simulation ID weld repair 1, on the nozzle-to-safe end weld, is applied first.
After ID weld repair 1 is completed, the model is cooled down to a uniform ambient temperature of 70'F. Next, ID weld repair 2, on the safe end-to-penetration seal weld, is applied. After ID repair 2 is completed, the model is again cooled to a uniform ambient temperature of 70'F. This is followed by the application of the old WOL, cooling it to an ambient temperature of 70'F and finally followed by the new weld overlay simulation.
After the weld overlay is completed, the model is cooled to a uniform ambient temperature of 70'F to obtain the combined residual thermal stresses at room temperature.
Then it is heated to a uniformoperating temperature of 550'F [10] and operating pressure of 1035 psia [10] in order to obtain thecombined residual thermal stresses at operating temperature and pressure.4.2.1 Internal Pressure Loading The internal operating pressure of 1035 psia[10] is applied to the model. Due to the closed piping end of the model, this pressure is applied on the inside surfaces of the Nozzle, DMW welds, Old Safe End, ID Repairs, and Penetration Seal. See Figure 4 for applied pressure loadings.
The same boundary conditions are used for the pressure loading as were applied for the stress runs and described in section 2.1.The ANSYS input and output files for the analysis are listed in Table 1.5.0 WELDMENT TEMPERATURE GUIDELINEThe analytical procedure described in Section 4.0 has provided reasonable results as seen in previous"similar analyses when compared to results from test data. This can be demonstrated by observing thefusion boundary prediction of the welds. Figures 5 through 8 show the predicted fusion boundaries forall the welding processes as generated by ANSYS for this specific overlay. The fusion boundaries represent the predicted maximum temperature contour mapping that the weld nugget elements will reach during each welding process. Note that the figures are composites showing the maximum temperature among all nuggets of each weld. This is made possible by an ANSYS macro (MapTemp.MAC) that reads in the maximum predicted temperatures across the different weld nugget elements during the welding process and displays it as a temperature contour plot.The figures show that all weld elements have reached temperatures between 2,024°F and 3,000 0 F. It also shows that the heat penetration depth, where temperatures are above 1,300'F, is similar in size to the heat affected zone (HAZ) of roughly between 1/8" and 1/4".File No.: 0900530.307 Page 8 of 32 Revision:
0 F0306-011 J VStructural Integrity Associates, Inc.6.0 RESULTS OF ANALYSIS Figures 9 and 10 depict the axial and hoop residual stress distributions for the post-ID weld repair 1 condition, on the nozzle-to-safe end weld, at 70'F, respectively. The axial direction and the hoop direction are with respect to the global coordinate system, the axial stress is SY and the hoop stress is SZ. Once again, it is shown that extensive tensile axial and hoop residual stresses occur along the inside surface of the nozzle in the vicinity of the ID weld repair 1.
Figures 11 and 12 depict the axial and hoop residual stress distributions for post-ID weld repair 2 condition, on the safe end-to-penetration seal weld, at 70'F, respectively. Figures 13 and 14 depict the axial and hoop residual stress distributions for the post-WOL 1 condition at 70'F, respectively. Figures 15 and 16 depict the axial and hoop residual stress distributions for the post-WOL 1 condition at 70°F, respectively.
Figures 17 and 18 depict the resultant residual and operating stress distributions for the post-WOL 2 configuration at the maximum operating temperature of 550'F and operating pressure of 1035 psia in the axial and hoop directions, respectively.
Figures 19 and 20 are ID surface stress plots for the axial and hoop directions as a function of distance from the ID weld repair 1 centerline, respectively. The results are plotted for post-ID weld repair 1, post ID weld repair 2, post-WOL 1 at 70'F, and post-WOL 2 at 70'F, and post-WOL 2 at 550'F and 1035 psia.Furthermore, Figures 19 and 20 show that post-overlay compressive stresses for both the 70'F andoperating conditions (550'F/1035 psia) are present on most of the ID surface of the susceptible material.This would indicate that at any intermediate steady-state operating condition (i.e., temperature and pressure) that the residual stresses would remain compressive. Any additive loads (i.e., thermal transients) are short term in nature and are not relevant to IGSCC concerns. The results suggest that the weld overlay has indeed mitigated the susceptible material against inter granular stress corrosioncracking (IGSCC).
In addition, through-wall axial and hoop stress results are extracted for various paths defined in Figure 21. Six paths were extracted, three paths for each dissimilar metal weld. One path was extracted on each weld through the center of the ID repair. Also, a path was extracted on each side of each dissimilar metal weld. On the nozzle end, the path was taken through the weld material since the nozzle material isnot susceptible to cracking.
In the three other cases, the path is taken through the stainless steel material, since this is the material more likely to crack. The objective is to get stress estimates in the materials which are susceptible to IGSCC. The results obtained will be used for a subsequent crack growth analysis in a separate calculation package. Two sets of data are obtained, which are for post-WOL at 70'F and for post-WOL at 550'F/1035 psia.The post-processing outputs are listed in Table 1. They are further processed in Excel spreadsheet PNPS_0900530_307_RES.xls.
File No.: 0900530.307 Page 9 of 32 Revision:
0 F0306-01 Structural Integrity Associates, Inc.
7.0 REFERENCES
- 1. SI Calculation, Revision 1, "Weld Overlay Design for Jet Pump Instrumentation Nozzle N9A." April 30, 2009, SI File No. 0900530.301.
- 2. ANSYS/Mechanical, Release 8.1 (w/Service Pack 1), ANSYS Inc., June 2004.3. SI Calculation, Revision A DRAFT, "Weld Overlay Finite Element Model (FEM) and Material Properties for Nozzle N9A." June, 2009, SI File No. 0900530.305.
- 4. ASME Boiler and Pressure Vessel Code Case N-740-2, "Full Structural Dissimilar Metal Weld Overlay for Repair or Mitigation of Class 1, 2, and 3 items,Section XI, Division 1." 5. SI Calculation No. 0800777.304, Revision 0, "Residual Stress Methodology Development and Benchmarking of a Small Diameter Pipe Weld Overlay Using MISO Properties." 6. P. Dong, "Residual Stress Analysis of a Multi-Pass Girth Weld: 3-D Special Shell Versus Axisymmetric Models," Journal of Pressure-Vessel Technology, Vol. 123, May 2001.7. Rybicki, E. F., et al., "Residual Stresses at Girth-Butt Welds in Pipes and Pressure Vessels," U.S. Nuclear Regulatory Commission Report NUREG-0376, R5, November 1977.8. Rybicki, E. F., and Stonesifer, R. B., "Computation of Residual Stresses Due to Multipass Welds in Piping Systems," Journal of Pressure Vessel Technology, Vol. 101, May 1979.9. Materials Reliability Program: Technical Basis for Preemptive Weld Overlays for Alloy 82/182 Butt Welds in PWRs (MRP-169), EPRI, Palo Alto, CA, and Structural Integrity Associates, Inc., San Jose, CA: 2005. 1012843.10. Nuclear Energy, Document No. 26A5821, "Reactor Vessel- Thermal Power Optimization," Rev. 0, March 5, 2002. SI File No. 0900530.205.
- 11. Welding Services, Inc. Drawing. "Construction Drawing Pilgrim, N9A." (2 sheets), Drawing No. 409506, May 1, 2009, SI File No. 0900530.202.
- 12. Pilgrim Nuclear Power Station. Temporary Procedure No. TP09-029.
Welding Procedure Specification No. WPS 03-43-T-80410759.
Revision 0. April 2009.
SI File No.0900530.206.
File No.: 0900530.307 Page 10 of 32 Revision:
0 F0306-01 Structural Integrity Associates, Inc.Table 1: ANSYS Input and Output Files-IputFie -.>y*>'~.<-
De'scrip'fioifCornmente'," PNPS-N9.INP Structural geometry for 2D axisymmetric geometry
[3]MProp MISO NLinear PNPS.INP Material Property data of E, alpha, conductivity, specific heat, and stress strain curves [3]BCNUGGET2D.INP Weld nuggets definition and boundary conditions file PICK2D.[NP Writes boundary conditions and nugget definitions into BCNUGGET2D.INP file THERMAL2D.INP Thermal pass for simulating weld processes STRESS2D.INP Stress pass for simulating weld processes WELD1 mntr.INP Contains LDREAD commands for ID weld repair 1 portion of the stress pass WELD2 mntr.INP Contains LDREAD commands for ID weld repair 2 portion of the stress pass WELD3 mntr.INP Contains LDREAD commands for WOL 1 portion of the stress passWELD4 mntr.INP Contains LDREAD commands for'WOL 2 portion of the stress passPOST2D PATH.INP Post-processing file to extract path stresses POST2D ID.INP Post-processing file to extract ID surface stresses File -, .Descrlptloii/omment PATH T70.OUT Path stress outputs for post-WOL 2 at 70TF PATH T550 P1035.OUT Path stress outputs for post-WOL 2 at 550TF and 1035 psia ID NLIST.OUT ID surface nodal coordinate outputs ID WELD1.OUT ID surface stress outputs for post-ID weld repair 1 at 70TF ID WELD2.OUT ID surface stress outputs for post-ID weld repair 2 at 70TF ID WELD3.OUT ID surface stress outputs for post-WOL 1 at 70TF ID T70.OUT ID surface stress outputs for post-WOL 2 at 70°F ID T550 P1035.OUT ID surface stress outputs for post-WOL 2 at 550TF and 1035 psia PNPS 0900530 307 RES.xls Excel spreadsheet containing all output data File No.: 0900530.307 Revision:
0 Page 11 of 32 F0306-01E V Structural Integrity Associates, Inc.Figure 1: Applied Boundary Conditions to the Finite Element Model File No.: 0900530.307 Revision:
0 Page 12 of 32 F0306-01f V Structural Integrity Associates, Inc.AREAS MAT NUM AREAS' jW --MAT NUM 14 :13 b New WOL Old WOL ID Weld Repair 1/Safe End-to-Penetration Seal ID Weld Repair 2 Weld Weld Jet Pump Instrumentation Nozzle \Piping Nozzle Cladding Nozzle-to-Old Old ýafe End Safe End Weld Seal PILGRIM NYA Nozzle Figure 2: As-Modeled Components File No.: 0900530.307 Revision:
0 Page 13 of 32 F0306-01 V Structural Integrity Associates, Inc.ELEMENTS------- ------..... .-----------
........ : --....... .... .... .... .... .<--i ...- .% .L."... ,..... ...........-....PILGRIM N9A Nozzle Figure 3: As-Modeled Nuggets for ID Weld Repair 1 (2), ID Weld Repair 2 (2), Old WOL (24), and New WOL (66)File No.: 0900530.307 Revision:
0 Page 14 of 32 F0306-01O Structurai Integrity Associates, Inc.ELEMENTS_____ A-0 230 460 690 920 115 345 575 805 1035 PILGRIM N9A Nozzle Figure 4: Internal Pressure Loading File No.: 0900530.307 Revision:
0 Page 15 of 32 F0306-01 Structural Integrity Associates, Inc.NODAL SOLUTION STEP=137 SUB =1 TIME=41 TEMP SMN =72.32 SMX =3000... ..i"h ... ......r -,, ,1 72 32 722.915 1374 2024 2675397 618 1048 1699 2349 3000 Predicted fusion boundary plot Figure 5: Predicted Fusion Boundary for ID Weld Repair 1 File No.: 0900530.307 Revision:
0 Page 16 of 32 F0306-01:
V Structural Integrity Associates, Inc.NODAL SOLUTION STEP=146 SUB =1 TIME=83 TEMP SMN =70.985 SMX =3000 70.985 721.877 1373 2024 2675 396.431 1047 1698 2349 3000 Predicted fusion boundary plot Figure 6: Predicted Fusion Boundary for ID Weld Repair 2 File No.: 0900530.307 Revision:
0 Page 17 of 32 F0306-01 r Structural Integrity Associates, Inc.NODAL SOLUTION STE2=1204 SUB =1 TIME=178 TEMP SMN =74.312 SMX =3000-HE H I4r~ I;iI ,11611 E ,1 , -,1 1'1
- 11E F FH9 Fi F F 1 'i 74.312 724.465 1375 2025 2675 399.389 1050 1700 2350 3000Predicted fusion boundary plot Figure 7
- Predicted Fusion Boundary for Weld Overlay 1 File No.: 0900530.307 Revision:
0 Page 18 of 32 F0306-01 V Structural Integrity Associates, Inc.Figure 8: Predicted Fusion Boundary for Weld Overlay 2 File No.: 0900530.307 Revision:
0 Page 19 of 32 F0306-01.
V Structural Integrity Associates, Inc.Figure 9: Post-ID Weld Repair 1 Axial Stress at 70'F File No.: 0900530.307 Revision:
0 Page 20 of 32 F0306-01I V Structural Integrity Associates, Inc.NODAL SOLUTION STEP=62 SUB =1 TIME=41 Sz (AVG)RSYS=0 DMX =.01928 SMN =-45220 SMX =136800 Figure 10: Post-ID Weld Repair 1 Hoop Stress at 70°F File No.: 0900530.307 Revision:
0 Page 21 of 32 F0306-01 r Structural Integrity Associates, Inc.Figure 11: Post-ID Weld Repair 2 Axial Stress at 70°F File No.: 0900530.307 Revision:
0 Page 22 of 32 F0306-011 V Structural Integrity Associates, Inc.Figure 12: Post-ID Weld Repair 2 Hoop Stress at 70'F File No.: 0900530.307 Revision:
0 Page 23 of 32 F0306-01I V Structural Integrity Associates, Inc.Figure 13: Post Weld Overlay 1 Axial Stress at 70°F File No.: 0900530.307 Revision:
0 Page 24 of 32 F0306-01.
Structural Integrity Associates, Inc.Figure 14: Post Weld Overlay 1 Hoop Stress at 70'F File No.: 0900530.307 Revision:
0 Page 25 of 32 F0306-01:
Structural Integrity Associates, Inc.Figure 15: Post Weld Overlay 2 Axial Stress at 70'F File No.: 0900530.307 Revision:
0 Page 26 of 32 F0306-01 V Structural Integrity Associates, Inc.Figure 16: Post Weld Overlay 2 Hoop Stress at 70°FFile No.:
0900530.307 Revision:
0 Page 27 of 32 F0306-0L V Structural Integrity Associates, Inc.Figure 17: Post Weld Overlay Axial Stress at 5501F and 1035 psia File No.: 0900530.307 Revision:
0 Page 28 of 32 F0306-O1 V Structural Integrity Associates, Inc.Figure 18: Post Weld Overlay Hoop Stress at 550'F and 1035 psiaFile No.:
0900530.307 Revision:
0 Page 29 of 32 F0306-01:
V Structural Integrity Associates, Inc.ID Surface Axial Residual Stress e Post ID weld repair 1 70OF --3-Post. ID wPost weld ov erl ay 2 70°F Post weldPostweld overlay 1 70°F H-- Hea tA ff e 140-- Nozzle -:afe End 120.100 80 g ,, 260 W 8 ...44A (0 0 /ýt'R 1/2.~-20 -1_ __ _ __ _ _-60-80 eld repair 2 70°F overlay 550'F/1035 psiaZo nes Distance from ID Weld Repair Centerline (in)Figure 19: ID Surface Axial Residual Stress File No.: 0900530.307 Revision:
0 Page 30 of 32 F0306-01l Structural Integrity Associates, Inc.Figure 20: ID Surface Hoop Residual Stress File No.: 0900530.307 Revision:
0 Page 31 of 32 F0306-01.
V Structural Integrity Associates, Inc.Figure 21: Path Definitions File No.: 0900530.307 Revision:
0 Page 32 of 32 F0306-OIRI ATTACHMENT 4 To Entergy Letter No. 2.09.050 Structural Intelrity Associates, Inc. File No. 0900530.308, "Crack Growth Analysis for Jet Pump Instrument Nozzle (N9A)". dated August 10, 2009 (55 pages)
V Structural Integrity Associates, Inc. File No.: 0900530.308 CALCULATION PACKAGE Project No.: 0900530 Quality Program: Z Nuclear 0 Commercial PROJECT NAME:Pilgrim Top Head Flaw and N9 Weld Overlay CONTRACT NO.: 10235773-01 CLIENT: PLANT: Entergy Nuclear Operations, Inc. Pilgrim Nuclear Power Station CALCULATION TITLE: Crack Growth Analysis for Jet Pump Instrumentation Nozzle (N9A)Document Affected Project Manager Preparer(s)
&Revision Pages Revision Description Approval Checker(s)
Signature
& Date Signatures
& Date 0 1 -4' Initial Issue A- I- A-20 B1- -B-21 H. L. Gustin Charlotte J. Herhold 08/10/09 Preparer 08/10/09 H. L. Gustin Preparer 08/10/09 Terry J. Herrmann Independent Verifier 08/10/09 Page 1 of 14 F0306-01 RO Structural Integrity Associates, Inc.Table of Contents
1.0 INTRODUCTION
/OBJECTIVE
...............................................................................
3 2.0 M ETH O D O LO G Y ..................................................................................................
3 3.0 DESIGN INPUTS ................................................
4 3.1 M aterials and G eom etry ..............................................................................
4 3.2 Loading .......................................................................................................
4 4.0 A SSU M PTION S ...................................................................................................
7 5.0 CRACK GROWTH CALCULATIONS
..................
.................................................
8 5.1 Fatigue Crack Growth (FCG) .......................................................................
8 5.2 Intergranular Stress Corrosion Cracking (IGSCC) ....................
8 6.0 RESULTS AND CONCLUSIONS
.......................................................................
10 7.0 REFEREN C ES ....................................................................................................
II APPENDIX A IGSCC CASE PC-CRACK OUTPUT FILES ........................................
A-1 APPENDIX B FCG CASE PC-CRACK OUTPUT FILES .............................................
B-1 List of Tables Table 1: Results Sum m ary ................................................................................................
12 List of Figures Figure 1. Path D efinitions
[4] ...........................................................................................
13 Figure 2. Fracture Mechanics Results, K-vs-a Curve (from pc-CRACK)
.........................
14 File No.: 0900530.308 Page 2 of 14 Revision:
0 F0306-01O Structural Integrity Associates, Inc.
1.0 INTRODUCTION
/OBJECTIVE A weld overlay was applied to the N9A Jet Pump Instrumentation nozzle at Pilgrim Nuclear Power Station during the Spring 2009 refueling outage [6]. This weld overlay was applied over a preexisting 1984 weld overlay that was applied to mitigate a flaw found in the original Type 304 safe end between the nozzle and penetration seal [1]. The original 1984 weld overlay did notsufficiently cover all potentially IGSCC-susceptible weld locations at the nozzle to safe end joint,thus necessitating the application of the 2009 weld overlay.
The station has made commitments to perform analyses, including finite element stress analyses, of the 2009 weld overlay following startup.The purpose of this calculation package is to apply linear elastic fracture mechanics (LEFM) to calculate crack growth in the nozzle-to-safe end dissimilar metal weld (DMW) for the reactor pressure Vessel (RPV) jet pump instrumentation nozzle N9A at Pilgrim Nuclear Power Station.Loads considered are internal pressure and weld overlay (WOL) repair residual stresses.
Bothfatigue crack growth (FCG) and Intergranular Stress Corrosion Cracking (IGSCC) are considered.
2.0 METHODOLOGY The allowable end-of-evaluation period flaw depth to thickness ratio (a/t) was taken from TableIWB-3641-3, which is derived by the methodology of Appendix C of ASME Code,Section XI [2].The geometry and design pressure for the N9A nozzle is documented in a separate design input calculation
[3]. The post-weld overlay (WOL) repair residual stresses are documented in a separate stress analysis calculation
[4].Crack growth is computed using linear elastic fracture mechanics (LEFM) techniques.
IGSCC growth is determined by computing the stress intensity factor versus flaw depth curve (K-vs.-a) at steady state normal operating conditions. Crack growth laws for Alloy 600 weld metals (Alloy 82/Alloy 182) are used at the susceptible DMW material region [2, 10]. The time for the observed flaw to grow to 75% of the weld thickness is determined, with and without the benefit of WOL residual stresses.*The crack growth analysis was performed using the LEFM analysis option in pc-CRACK for WindowsTM software [5]. This software includes options for the evaluation of FCG and IGSCC, and allows for defining load cases, material properties, crack models, and the selection of the applicable crack growth law. Appendix A contains pc-CRACK output of the IGSCC growth analysis and Appendix B contains pc-CRACK output of the FCG growth analysis.File No.: 0900530.308 Page 3 of 14 Revision:
0 F0306-01O Structural Integrity Associates, Inc.3.0 DESIGN INPUTS 3.1 Materials and GeometryThe section of the jet pump instrumentation nozzle evaluated for crack growth, and considered representative for the susceptible material region, is described below.Details of the jet pump instrumentation nozzle materials are provided in References
[3], [6], [7], and[8].Material (Safe End): Material (Nozzle): Material (Weld): Material (Weld Overlay): Design Pressure (P): Normal Operating Pressure: SA-182 Type F304 SA-508 Class 2 Alloy 82/182 Alloy 52M 1250 psig 1035 psig (increased for Power Optimization, [9, sheet 8])Details of the nozzle geometry are provided in Reference
[7, sheet 8 of A-476 (PDF page 576)], with the as-built final dimensions of the 2009 weld overlay provided in Reference
[I I].Before 2009 weld overlay: Outside radius Inside radius Thickness' OR = 2.53125 inches IR= 1.89125 inches t = 0.608 inch Note 1: The nominal thickness prior to the 2009 weld overlay is assumed as 0.64 inch in this analysis, in order to be consistent with previous pc-CRACK analyses in PNPS-19Q-311
[12] and the weld overlay design basis in 0900530.301
[6].As-built including the 2009 weld overlay (with a thickness of 0.4 inch) [11]: Outside radius OR= 2.93125 inches.Inside radius IR=I1.89125 inches Thickness t= 1.04 inch Pipe Cross-Sectional Area A= 7r(OR 2-IR 2) = 15.76 in 2 Section Modulus Z= 7t/4(OR 4-IR 4)/OR= 16.35 in 2 3.2 Loading Loads considered in this evaluation are internal pressure and WOL residual stresses, as obtained from the finite element analysis [4]. Bending stresses are identified as negligible in the original stress report [7, sheets 5 of A-474 (PDF page 524), sheet 18 of A-485 (PDF page 535), and sheet 21 File No.: 0900530.308 Revision:
0 Page 4 of 14 F0306-01O Structural Integrity Associates, Inc.of A-488 (PDF page 538)], and are therefore not included in this analysis.
The flaw is assumed to be a circumferential flaw, and thus is unaffected by hoop stresses.
Therefore, axial stresses due to internal pressure are the only stresses that could contribute to crack growth of a circumferential flaw. The axial pressure stresses will be treated as a membrane stress, which is constant across the entire thickness of the pipe.The through-wall residual stress distributions are curve fit with a third order polynomial in formshown below:
C(X) C 0 + ClX + C 2 x 2 +C 3 x 3 (1)where: cy = axial stress x = distance from inside surfaceResidual stress results were obtained for through-wall paths in the susceptible material regions. The paths used are as defined in Figure 1. Six paths were extracted, three paths for each dissimilar metal weld. One path was extracted on each weld through the center of the repair.
Also, a path was extracted on each side of each dissimilar metal weld. On the nozzle end, the path (Path
- 1) wastaken through the weld material since the nozzle material is not susceptible to cracking.
In the three other cases, the path is taken through the stainless steel material, since this is the material morelikely to crack. Two sets of data are obtained, which are for post-WOL at 707F and for post-WOL at 550'F/1 035 psig. The intent for this approach is to characterize the residual stresses for each of the different loading conditions for six different locations associated with the DMW. Residual stresses have a strong effect on IGSCC growth. They have a much less significant effect on fatigue *crack growth, since they are steady state secondary stresses, and contribute to FCG only through a mean stress effect.Internal Pressure The pressure stress is evaluated at the normal operating pressure, 1035 psig, and as-built dimensions of the nozzle, which is appropriate for crack growth calculations.
The primary axial stress (PAxial) is a combination of the stress of the end cap (Gendcap) and the pressure stress (Gpressure).
P(Q
- IR 2)endcap= r(OR 2 -I R 2)1035(Qr
- 1.891252)aendcap= Zr(2.93125 2 -1.891252)Gendcap- 738 psi P*OR apressure=
2 2t File No.: 0900530.308 Page 5 of 14 Revision:
0 F0306-01,
-Structural Integrity Associates, Inc.1035
- 2.93125 G7pressure 2
- 0.64 Cypressure=
2370 psi PAxial = Gendcap + apressure= 738 psi + 2370 psi = 3108 psiUsing the outside radius of the pipe to calculate the pressure stress is conservative, and accounts for effects due to pressure on the crack face. This pressure is treated as a membrane stress and is assumed to be constant through the thickness of the pipe.Note that the original design report reported a design primary membrane stress intensity of 9.6 ksi [7, sheet 18 of A-485], which was based on a hoop stress direction (as opposed to the present axial stress used for crack growth). The design report was also based on design pressure (1250 psi) design thickness.
The present calculation is based on operating pressure and as-measured wall thickness.
WOL Residual Stresses The residual stresses which result from implementing a weld repair are developed from the ANSYS model described in Reference
[4]. The values of the stresses are given for 70'F and 550'F in [4].These stresses vary across the thickness and are represented by the curve fit Equation 1. These stresses are obtained using the ANSYS output files "PATHT70.OUT" and"PATHT550_PI035.OUT", and they are digitized using pc-CRACK to perform the curve fit. Sixpaths were investigated and these residual stresses are used for the crack growth analysis.File No.: 0900530.308 Revision:
0 Page 6 of 14 F0306-011 Structural integrity Associates, Inc.4.0 ASSUMPTIONS Basic assumptions for the analysis are listed below:* A circumferential flaw is assumed for the purpose of analyzing crack growth over time due to fatigue and stress corrosion cracking.* The nominal pipe thickness prior to the 2009 weld overlay is assumed as 0.64 inch in this analysis, in order to be consistent with previous pc-CRACK analyses in PNPS-19Q-311
[12]and the weld overlay design basis in 0900530.301
[6].* The nozzle itself is not attached to a piping system, and therefore there are no piping-induced loads that need to be considered.
Also, bending stresses are identified as negligible in the original stress report
[7, sheets 5 of A-474, sheet 18 of A-485, and sheet 21 of A-488].H loop stresses are oriented parallel to the assumed flaw, and therefore do not affect the circumferential assumed flaw or flaw growth.* Residual stress is considered in addition to the axial stress that was calculated above.
The through-wall residual stress distribution is sufficiently represented with a third order polynomial curve fit.* Residual stresses are steady state secondary stresses and therefore only act as a mean stress in regards to fatigue crack growth.* The axial stresses due to pressure are assumed to be membrane stresses and are constant throughout the thickness of the pipe." The primary membrane stress intensity is assumed to be 3.1 ksi, based on the operating pressure and the as-measured wall thickness.* The nozzle has no internal flow, and therefore it does not experience thermal transients other than startup and shutdown.
The total number of startup and shutdown cycles that the plant will likely experience is estimated to be about 400 cycles, per
[13, page 4.3-5 (PDF page 819)]." Also, because the nozzle does not experience flow, credit cannot be taken for Hydrogen WaterChemistry. The Normal Water Chemistry case will be evaluated instead.File No.: 0900530.308 Page 7 of 14 Revision:
0 F0306-01' Structural Integrity Associates, Inc.5.0 CRACK GROWTH CALCULATIONS 5.1 Fatigue Crack Growth (FCG)FCG is calculated using the loading described in Section 3.2 of this calculation.
The minimum stress intensity Kmin is taken as the weld repair residual axial stress distribution at 70'F, which is presentwhen the plant is shutdown. The maximum stress intensity Kmax is the combination of the pressure axial stress and the residual axial stress at 550'F. This stress intensity range represents the range seen from shutdown to startup.
The FCG after 800 applied cycles is calculated using pc-CRACK software using the crack growth law for austenitic material in air, as described by Figure C-3210-1 in Section XI Appendix C of the ASME Code [2]. 800 cycles was chosen as a conservative estimate that nearly doubles the total number of startup and shutdown cycles the plant will likely experience over its lifetime [13, page 4.3-5 (PDF page 819)]. Appendix B contains output files for FCG with and without WOL residual stresses.The stress intensity components of Kmax and Kmin for the weld overlay case are shown below.Kmax Kmin Kresidual 550 Kresidual 70 Kpressure 5.2 Intergranular Stress Corrosion Cracking (IGSCC)For IGSCC, the applied K (Kmax above) is the crack driving force. The growth of the crack after 100,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> of service, or 11.4 years, is calculated. PVP2008-61299
[10] provides stresscorrosion crack growth laws for nickel-base austenitic alloys. The N9A nozzle-to-safe end weldlocation does not experience any internal flow, so Hydrogen Water Chemistry cannot be assured.Therefore, the normal water chemistry (NWC) case is evaluated. Specifically, the NWC below EPRI Guidelines Action Level I case is used.The SCC growth law is, taken from Reference
[II], equations 2 and 3: daC f in dt -CoK , in/hr for KI < 25 ks1iin (2)dt da =C in/hr for K, > 25 ksiin (3)dt File No.: 0900530.308 Page 8 of 14 Revision:
0 F0306-01 V Structural Integrity Associates, Inc.where, Water Chemistry Co C 1 n Normal 1.6E-08 5.OE-05 2.5 K, = stress intensity factor at flaw tip (ksiVin)IThe K-dependent crack growth rates are calculated with pc-CRACK using the coefficients shown above and the K values developed within the software.
For this evaluation the'K-independent crack growth rates were not used since the combined stress intensity factor was never greater than +25 ksWin, as seen in Figure 2.Appendix A contains pc-CRACK output files for the following cases: " IGSCC case without residual stresses.* IGSCC case with WOL residual stresses.Appendix B contains pc-CRACK output files for the following cases:* FCG case without residual stresses.* FCG case with WOL residual stresses.File No.: 0900530.308 Revision:
0 Page 9 of 14 F0306-011 Structural Integrity Associates, Inc.The pc-CRACK and ANSYS computer files used in this evaluation are listed below.File Name, Description PATH T70.OUT ANSYS Residual Stress Output at 70'FPATH T550 P1035.OUT ANSYS Residual Stress Output at 550'F JPINSCC.OUT pc-CRACK Output File for IGSCC with Weld Overlay, Normal Water Chemistry, and without Residual Stresses JPINSCCR.OUT pc-CRACK Output File for IGSCC with Weld Overlay, Normal Water Chemistry, and considering Residual Stresses JPINFCG.OUT pc-CRACK Output File for Fatigue Crack Growth with Weld Overlay and without Residual Stresses JPINFCGR.OUT pc-CRACK Output File for Fatigue Crack Growth with WeldOverlay and considering Residual Stresses 6.0 RESULTS AND CONCLUSIONS Although no known indication is present in the N9-A nozzle at Pilgrim Nuclear Power Station, for the purpose of this analysis, a starting flaw was assumed to extend entirely through the original wall, andcompletely around the circumference. Results show that such an indication would not grow by a Fatigue Crack Growth mechanism even without the beneficial effects of residual stress. Themaximum allowed crack size is exceeded due to lntergranular Stress Corrosion Cracking at approximately 33,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> (3.8 years) when the beneficial effects of residual stresses are ignored;this is overly conservative.
However, there is also no crack growth due to an Intergranular Stress Corrosion Cracking mechanism into the 2009 Inconel weld overlay when residual stresses are considered.
Therefore, the structural integrity of the 2009 weld overlay repair will not degrade with time due to ongoing crack growth. Results are presented in Table 1.File No.: 0900530.308 Revision:
0 Page 10 of 14 F0306-01I Structural Integrity Associates, Inc.
7.0 REFERENCES
- 1. General Electric Document No. HKI-336, "Field Deviation Disposition Request and RepairPlan", Revision 1, October 11, 1984, SI File No. 0900530.203.
- 2. ASME Boiler & Pressure Vessel Code,Section XI, 1998 Edition, with Addenda through 2000.3. Structural Integrity Associates, Inc., "Design Input for Jet Pump Instrumentation Nozzle Finite Element Analyses", Revision A, July 23, 2009, SI File No. 0900530.304.
- 4. Structural Integrity Associates, Inc., "Residual Stress Analysis of Jet Pump Instrumentation Nozzle (N9A) with Weld Overlay Repair", Revision A, July 23, 2009, SI File No.0900530.307.
- 5. pc-CRACK for Windows, Version 3.1-98348, Structural Integrity Associates, 1998.6. Structural Integrity Associates, Inc., "Weld Overlay Design for Jet Pump Instrumentation Nozzle N9A", Revision 1, April 30, 2009, SI File No. 0900530.301.
- 7. Combustion Engineering Inc., Pilgrim Document 1979-308-1, Stress Report 1139,"Analytical Report for Pilgrim Reactor Vessel", March 9, 1971, SI File No. PNPS-1OQ-21 1.8. General Electric Document No. 488 925-1687, "Pilgrim Jet Pump Instrumentation Nozzle Weld Overlay Design", Revision 1, October 3, 1984, Received from George Mileris, SI FileNo. 0900530.203.
- 9. GE Nuclear Energy, Document No. 26A582 1, "Reactor Vessel- Thermal Power Optimization", Revision 0, March 5, 2002, SI File No. 0900530.205.
- 10. ASME Paper PVP2008-61299, "Nickel Alloy Crack Growth Correlations in BWR Environment and Application to Core Support Structure Welds Evaluation", July 2008, SI File No. BWRVIP-01-259P.
- 11. Entergy Nuclear Operations, Inc., Document No. ECO000014631, "SKM-N9A-I N9A Weld Overlay Design", Received from George Mileris, SI File No. 0900530.207.
- 12. Structural Integrity Associates, Inc,, "Weld Overlay Design for Jet Pump Instrumentation Nozzles N9A, B", January 31, 2005, SI File No. PNPS-19Q-311.
- 13. Entergy Nuclear Operations, Inc., "License Renewal Application: Pilgrim Nuclear Power Station", taken from the Nuclear Regulatory Commission's website, <www.nrc.gov>.
File No.: 0900530.308 Page 11 of 14 Revision:
0 F0306-01.
Structural Integrity Associates, Inc.Table 1: Results Summary IGSCC Water Time Crack Chemistry Hours Years Growth Without Residual Normal 33000 3.8 0.1443 in 1 Stresses With Residual Normal 100000 11.4 No Growth Stresses FCG 2 Without Residual Stresses 0.0002 in With Residual Stresses No Growth Note 1: The maximum allowed crack size of 0.78 inches (a/t
= 0.75, per ASME Code [2]) is exceeded at approximately 33000 hours. Please see Section 6.0: Results and Conclusions.
Note 2: Fatigue crack growth calculations are for 800 transient cycles.File No.: 0900530.308 Revision:
0 Page 12 of 14 F0306-01 V Structural Integrity Associates, Inc.Figure 1. Path Definitions
[41 File No.: 0900530.308 Revision:
0 Page 13 of 14 F0306-01:
Structural Integrity Associates, Inc.Stress Intensity Factor-20000 S-4mm0-500m-Primary Axial Stress-P l_rsdi_70F Axial-P2_rsdl_70F_Axial
-P3_rsdl_70F_Axial
-P4_rsdl7SF AMia-P5_rsdl_70FAxial-PB_rsdl_70F_Axial P1_rsdl_550FAxial
-P2_rsdl_50F Axial-P3_rsdl50F Axial-P4_rsdl.5SOFAxial-P5rsdl_55OF Axial-P6-rsdl_550FAxial
-70000-80000 Crack Size/Figure 2. Fracture Mechanics Results, K-vs-a Curve (from pc-CRACK)File No.: 0900530.308 Revision:
0 Page 14 of 14 F0306-01 Structural Integrity Associates, Inc.APPENDIX A IGSCC CASE PC-CRACK OUTPUT FILES File No.: 0900530.308 Revision:
0 F0306-01 RO Page A-I of A-20 Structural Integrity Associates, Inc.IGSCC Case without Residual Stresses Considered tm pc-CRACK for Windows Version 3.1-98348 (C) Copyright
'84 -'98 Structural Integrity Associates, Inc.3315 Almaden Expressway, Suite 24 San Jose, CA 95118-1557 Voice: 408-978-8200 Fax: 408-978-8964 E-mail: pccrack@structint.com Linear Elastic Fracture Mechanics Date: Thu Jul 23 09:31:12 2009 Input Data and Results File: JPINSCC.LFM Title: Pilgrim N9A JPIN IGSCC Analysis without Residual Stresses Load Cases: Stress Coefficients CO C1 Case ID C2 C3 Type Primary Axial S 3108 0 0 0 Coeff------ Through Wall Stresses for Load Cases With Stress Coeff.Wall Case Depth Primary Ax 0.0000 0.0780 0.1560 0.2340 0.3120 0.3900 0.4680 0.5460 0.6240 3108 3108 3108 3108 3108 3108 3108-3108 3108 File No.: 0900530.308 Revision:
0 Page A-2 of A-20 F0306-01 RO Structural Integrity Associates, Inc.0.7020 0.7800 3108 3108 Crack Model: Circumferential Crack in Cylinder (t/R=0.2)Crack Parameters:
Wall thickness:
1.0400Max. crack size: 0.7800---------Stress Intensity Factor ........Crack Case Size Primary.Ax 0.0156 759.948 0.0312 1079.11 0.0468 1326.99 0.0624 1538.47 0.0780 1726.99 0.0936 1899.41 0.1092 2063.43 0.1248 2226.33 0.1404 2383.05 0.1560 2534.8 0.1716 2682.48 0.1872 2826.79 0.2028 2968.26 0.2184 3120.22 0.2340 3277.7 0.2496 3434.73 0.2652 3591.5 0.2808 3748.17 0.2964 3904.87 0.3120 4061.69 0.3276 4232.94 0.3432 4405.17 0.3588 4578.42 0.3744 4752.73 0.3900 4928.14 0.4056 5104.67 0.4212 5285.93 0.4368 5475.77 0.4524 5667.18 0.4680 5860.16 File No.:'0900530.308 Revision:
0 Page A-3 of A-20 F0306-01 RO V Structural Integrity Associates, Inc.0.4836 0.4992 0.5148 0.5304 0.5460 0.5616 0.5772 0.5928 0.6084 0.6240 0.6396 0.6552 0.6708 0.6864 0.7020 0.7176 0.7332 0.7488 0.7644 0.7800 6054.71 6250.85 6448.55 6663.88 6889.39 7117.16 7347.17 7579.4 7813.83 8050.45 8309.06 8570.31 8834.16 9100.59 9369.59 9641.12 9924.6 10229.8 10538.1 10849.5 Crack Growth Laws: Law ID: Overlay Type: Corrosion Model: Parisda/dN = c * (dK)^n where dK = Kmax -Kmin dK > Kthres Kmax < KIc Material parameters:
c = 1.6000e-008 n = 2.5000 Kthres = 0.0000 Material Fracture Toughness KIc: Material ID: Weld Overlay Depth KIc File No.: 0900530.308 Revision:
0 Page A-4 of A-20 F0306-01 RO Structural Integrity Associates, Inc.0.2500 1.0000 2.0000 200.0000 200.0000 200.0000 Initial crack size=Max. crack size=0.6400 0.7800 Number of blocks= 1 Print increment of block= I Cycles CaIc. Print Crk. Grw.Subblock /Time incre. incre. Law Mat.KIc Overlay 100000 1000 1000 Overlay Weld Overlay Kmax Kmin Subblock Case ID Scale Factor Case ID Scale Factor Overlay Primary Axial Stress 0.0010Crack growth results:Total Subblock Cycles Cycles/Time /Time DaDn Kmax Kmin DeltaK R/DaDt Da a a/thk Block: 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 I 1000 8.32e+000 0.00e+000 8.32e+000 0.00 3.19e-006 3.19e-003 0.6432 0.62 2000 8.37e+000 0.00e+000 3000 8.42e+000 0.00e+000 4000 8.48e+000 0.00e+000 5000 8.53e+000 0.00e+000 6000 8.59e+000 0.00e+000 7000 8.65e+000 0.00e+000 8000 8.71e+000 0.00e+0008.37e+000 0.00 3.24e-006 3.24e-003 0.6464 0.62 8.42e+000 0.00 3.29e-006 3.29e-003 0.6497 0.62 8.48e+000 0.00 3.35e-006 3.35e-003 0.6531 0.63 8.53e+000 0.00 3.40e-006 3.40e-003 0.6565 0.63 8.59e+000 0.00 3.46e-006 3.46e-003 0.6599 0.63 8.65e+000 0.00 3.52e-006 3.52e-003 0.6635 0.64 8.71e+000 0.00 3.58e-006 3.58e-003 0.667 0.64 9000 8.77e+000 0.00e+000 8.77e+000 0.00 3.65e-006 3.65e-003 0.6707 0.64 10000 8.83e+000 0.00e+000 8.83e+000 0.00 3.7le-006 3.7le-003 0.6744 0.65 11000 8.90e+000 0.00e+000 8.90e+000 0.00 3.78e-006 3.78e-003 0.6782 0.65 12000 8.96e+000 0.00e+000 8.96e+000 0.00 3.85e-006 3.85e-003 0.682 0.66 13000 9.03e+000 0.00e+000 9.03e+000 0.00 3.92e-006 3.92e-003 0.6859 0.66 File No.: 0900530.308 Revision:
0 Page A-5 of A-20 F0306-01 RO C Structural Integrity Associates, Inc.14000 15000 16000 17000 18000 19000 20000 21000 22000 23000 24000 25000 26000 27000 28000 29000 30000 31000 32000 33000 14000 9.09e+000 0.00e+000 9.09e+000 0.00 3.99e-006 3.99e-003 0.6899 0.66 15000 9.16e+000 0.00e+000 9.16e+000 0.00 4.06e-006 4.06e-003 0.694 0.67 16000 9.23e+000 0.00e+000 9.23e+000 0.00 4.14e-006 4.14e-003 0.6981 0.67 17000 9.30e+000 0.00e+000 9.30e+000 0.00 4.22e-006 4.22e-003 0.7024 0.68 18000 9.38e+000 0.00e+000 9.38e+000 0.00 4.3 le-006 4.3 le-003 0.7067 0.68 19000 9.45e+000 0.00e+000 9.45e+000 0.00 4.39e-006 4.39e-003 0.7111 0.68 20000 9.53e+000 0.0Oe+000 9.53e+000 0.00 4.48e-006 4.48e-003 0.7155 0.69 21000 9.61e+000 0.00e+000 9.61e+000 0.00 4.58e-006 4.58e-003 0.7201 0.69 22000 9.69e+000 0.00e+000 9.69e+000 0.00 4.67e-006 4.67e-003 0.7248 0.7023000 9.77e+000 0.00e+000 9.77e+000 0.00 4.78e-006 4.78e-003 0.7296 0.70 24000 9.86e+000 0.00e+000 9.86e+000 0.00 4.88e-006 4.88e-003 0.7344 0.71 25000 9.95e+000 0.00e+000 9.95e+000 0.00 5.00e-006 5.00e-003 0.7394 0.71 26000 1.00e+001 27000 1.01e+001 28000 1.02e+001 29000 1.04e+001 30000 1.05e+001 31000 1.06e+001 32000 1.07e+001 33000 1.08e+001 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 1.00e+001 0.00 5.12e-006 5.12e-003 0.7446 0.72 1.01e+001 0.00 5.25e-006 5.25e-003 0.7498 0.72 1.02e+001 0.00 5.38e-006 5.38e-003 0.7552 0.73 1.04e+001 0.00 5.52e-006 5.52e-003 0.7607 0.73 1.05e+001 0.00 5.67e-006 5.67e-003 0.7664 0.74 1.06e+001 0.00 5.82e-006 5.82e-003 0.7722 0.74 1.07e+001 0.00 5.98e-006 5.98e-003 0.7782 0.75 1.08e+001 0.00 6.15e-006 6.15e-003 0.7843 0.75 Crack size exceeded 0.7800 at cycle/time 33000 End of pc-CRACK Output File No.: 0900530.308 Revision:
0 Page A-6 of A-20 F0306-01 RO Structural Integrity Associates, Inc.]GSCC Case with Residual Stresses Considered tm pc-CRACK for WindowsVersion 3.1-98348 (C) Copyright '84 -'98Structural Integrity Associates, Inc.3315 Almaden Expressway, Suite 24 San Jose, CA 95118-1557 Voice: 408-978-8200 Fax: 408-978-8964 E-mail: pccrack@structint.comLinear Elastic Fracture Mechanics Date: Tue Jul 21 11:16:05 2009Input Data and Results File: JPINSCCR.LFM Title: Pilgrim N9A JPIN IGSCC Analysis with Residual Stresses Load Cases: Case ID: P1_rsdl_70FAxial
--- Stress DistributionDepth Stress0.0000 -2706.0000 0.0563 -13254.0000 0.1127 -19160.00000.1690 -23077.00000.2254 -31868.0000 0.2817 -51968.00000.3380 -63785.00000.3944 -54357.0000
0.4507 -44784.00000.5070 -39731.0000 0.5634 -19705.0000 0.6197 -4105.7002 0.6761 8184.1001 0.7324 19524.0000 0.7887 17780.0000 0.8451 17251.0000 0.9014 22486.0000 File No.: 0900530.308 Page A-7 of A-20 Revision:
0 F0306-O1 RO Structural Integrity Associates, Inc.0.9577 36904.0000 1.0141 47132.0000 1.0704 66681.0000 1.1268 76587.0000 Case ID: P2_rsdl_70FAxial
--- Stress Distribution Depth Stress 0.0000 -15358.0000 0.0523 -19223.0000 0.1046 -25101.0000 0.1569 -29725.0000 0.2092 -32260.0000 0.2615 -36466.0000 0.3138 -42170.0000 0.3661 -43463.0000 0.4184 -38617.0000 0.4707 -25977.0000 0.5230 -10235.0000 0.5753 10778.0000 0.6276 8643.0996 0.6799 2881.7000 0.7322 -1006.4000 0.7845 20303.0000 0.8368 24785.0000 0.8891 32769.0000 0.9414 44502.0000 0.9938 63483.0000 1.0460 76944.0000 Case ID: P3_rsdl_70FAxial
--- Stress DistributionDepth Stress 0.0000 -28088.0000 0.0547 -25470.0000 0.1093 -24553.0000 0.1640 -23860.0000 0.2187 -23108.0000 0.2733 -23068.0000 0.3280 -25974.0000 0.3826 -30169.0000 0.4373 -31442.0000 0.4920 -26786.0000 File No.: 0900530.308 Page A-8 of A-20 Revision:
0 F0306-01 RO Structural Integrity Associates, Inc.0.5466 -16923.0000 0.6013 876.7800 0.6559 -7463.1001 0.7106 10757.0000 0.7653 4197.2998 0.8199 9730.2002 0.8746 8700.4004 0.9292 26349.0000 0.9839 42410.0000 1.0386 59758.0000 1.0932 69767.0000 Case ID: P4_rsdl_70FAxial
--- Stress Distribution Depth Stress 0.0000 -3281.0000 0.0579 -5048.2002 0.1158 -8148.1001 0.1737 -11551.0000 0.2316 -14631.0000 0.2895 -17622.0000 0.3474 -21975.0000 0.4053 -26882.0000 0.4632 -31775.0000 0.5211 -33323.0000 0.5790 -22262.0000 0.6370 1515.5000 0.6949 -9935.4004 0.7528 1211.8000 0.8107 1405.7000 0.8686 13106.0000 0.9265 16245.0000 0.9844 25417.0000 1.0423 41034.0000 1.1002 58041.0000 1.1581 69767.0000 Case ID: P5 rsdl_70FAxial
--- Stress Distribution Depth Stress 0.0000 5531.2998 0.0523 3583.8999 0.1046 -1635.9000 File No.: 0900530.308 Page A-9 of A-20 Revision:
0 F0306-01 RO Structural Integrity Associates, Inc.0.1569 -5833.7002 0.2092 -13755.0000 0.2615 -21502.0000 0.3138 -31547.0000 0.3661 -35499.0000 0.4184 -43808.0000 0.4707 -43321.00000.5230 -29471.0000 0.5753 -12445.00000.6276 -7875.0000 0.6799 14412.0000 0.7322 14364.0000 0.7845 7326.5000 0.8368 15584.0000 0.8891 26384.0000 0.9414 36435.00000.9937 53063.0000 1.0460 66263.0000 Case ID: P6_rsdl_70FAxial
--- Stress Distribution Depth Stress 0.0000 15237.0000 0.0578 13824.0000 0.1156 9049.5996 0.1734 3724.6001 0.2311 -1101.8000 0.2889 -6785.2002 0.3467 -14316.0000 0.4045 -20867.0000 0.4623 -22738.0000 0.5201 -17319.0000 0.5778 -16816.0000 0.6356 -15223.0000 0.6934 -24384.0000 0.7512 -18228.00000.8090 7268.0000 0.8668 -291.4900 0.9245 6025.0000 0.9823 9106.2998 1.0401 3584.8000 1.0979 8781.2998 1.1557 21056.0000 File No.: 0900530.308 Page A-10 of A'20 Revision:
0 F0306-01 RO Structural Integrity Associates, Inc.Case ID: P1 rsdl_550FAxial
--- Stress Distribution Depth Stress0.0000 -37423.0000 0.0563 -30666.00000.1127 -30371.0000 0.1690 -29966.0000 0.2254 -30253.00000.2817 -39782.0000 0.3380 -49528.0000 0.3944 -40497.00000.4507 -31440.00000.5070 -26593.00000.5634 -7998.7002 0.6197 5466.5000 0.6761 8603.5996 0.7324 17911.0000 0.7887 16327.0000 0.8451 15865.00000.9014 20738.0000 0.9577 34114.0000 1.0141 43571.0000 1.0704 61619.0000 1.1268 70638.0000 Case ID: P2_rsdl_550FAxial
--- Stress Distribution Depth Stress0.0000 -28342.0000 0.0523 -33121.00000.1046 -35067.0000 0.1569 -34809.0000 0.2092 -33286.0000 0.2615 -34479.0000 0.3138 -37713.0000 0.3661 -37277.00000.4184 -31583.0000 0.4707 -18984.0000 0.5230 -3771.5000 0.5753 16109.0000 0.6276 14282.0000 0.6799 8925.0996 0.7322 5161.7998 File No.: 0900530.308 Page A-1I1 of A-20 Revision:
0 F0306-01 RO Structural Integrity Associates, Inc.0.7845 24625.0000 0.8368 28148.0000 0.8891 30056.0000 0.9414 40041.0000 0.9938 57475.0000 1.0460 69873.0000 Case ID: P3_rsdl_550FAxial
-- Stress Distribution Depth Stress0.0000 -34046.0000 0.0547 -34208.0000 0.1093 -33623.00000.1640 -32502.0000 0.2187 -31245.0000 0.2733 -30681.0000 0.3280 -32849.0000 0.3826 -36206.0000 0.4373 -36877.0000 0.4920 -32049.0000 0.5466 -22250.0000 0.6013 -3054.5000 0.6559 10338.0000 0.7106 26693.0000 0.7653 18601.0000 0.8199 22315.0000 0.8746 20287.0000 0.9292 34714.0000 0.9839 41014.0000 1.0386 56687.0000 1.0932 66000.0000 Case ID: P4_rsdl_550FAxial
--- Stress Distribution Depth Stress 0.0000 -17246.0000 0.0579 -18986.0000 0.1158 -20712.0000 0.1737 -22641.00000.2316 -24508.0000 0.2895 -26478.00000.3474 -29810.0000 0.4053 -33677.0000 File No.: 0900530.308 Page A-12 of A-20 Revision:
0 F0306-01 RO Structural Integrity Associates, Inc.0.4632 -37487.0000 0.5211 -38129.0000 0.5790 -27106.0000 0.6370 -2506.39990.6949 8712.0000 0.7528 18573.0000 0.8107 16621.0000 0.8686 25919.0000 0.9265 27604.0000 0.9844 34020.0000 1.0423 39826.0000 1.1002 55151.0000 1.1581 66000.0000 Case ID: P5_rsdl_550FAxial
--- Stress Distribution Depth Stress 0.0000 -9860.5996 0.0523 -12023.0000 0.1046 -13281.0000 0.1569 -12536.0000 0.2092 -15937.0000 0.2615 -20404.0000 0.3138 -27645.0000 0.3661 -29658.0000 0.4184 -36181.0000 0.4707 -34869.0000 0.5230 -21384.0000 0.5753 -5155.2998 0.6276 -680.5100 0.6799 20099.0000 0.7322 19979.0000 0.7845 13215.0000 0.8368 20522.0000 0.8891 28901.0000 0.9414 29654.0000 0.9937 44123.0000 1.0460 55627.0000 Case ID: P6_rsdl_550FAxial
--- Stress Distribution Depth Stress 0,0000 -4153.3999 File No.: 0900530.308 Page A-13 of A-20 Revision:
0 F0306-O1 RO Structural Integrity Associates, Inc.0.0578 -3844.7000 0.1156 -5437.7002 0.1734 -7985.3999 0.2311 -10562.0000 0.2889 -14188.0000 0.3467 -19675.0000 0.4045 -24334.0000 0.4623 -24692.0000 0.5201 -18159.0000 0.5778 -15576.0000 0.6356 -7235.2998 0.6934 -8139.7998 0.7512 -4439.8999 0.8090 17203.0000 0.8668 8686.5996 0.9245 13425.00000.9823 15405.0000 1.0401 9661.2002 1.0979 14122.0000 1.1557 25381.0000 Stress Coefficients Case ID CO Cl C2 C3 Type Primary Axial S P1 rsdl 70F Axi P2 rsdl 70F Axi P3 rsdl 70F Axi P4 rsdl 70F Axi P5 rsdl 70F Axi P6 rsdl 70F Axi PI rsdl 550F Ax P2 rsdl 550F Ax P3 rsdl 550F Ax P4 rsdl 550F Ax P5 rsdl 550F Ax P6_rsdl_550FAx 3108 3885.37-13893.9-25590 899.913 15914.8 22229.9-30101.6-29975.6-29271.3-9900.14-2123.08 3166.730 0 0 Coeff-340174-170320-6482.04-114302-269042-168601-84939.3-79766.8-93075.8-166413-180397-139838 671398 375369-2191.35 127279 441695 206743 247674 278772 280055 342253 374942 258349-282654-129810 80004.7 19565.5-134813-54358.7-86072.5-113600-108485-124837-146624-106937 StressDist StressDist StressDist StressDist StressDist StressDist StressDist StressDist StressDist StressDist StressDist StressDist
Through Wall Stresses for Load Cases With Stress Coeff-------
Wall Case Depth Primary Ax File No.: 0900530.308 Revision:
0 Page A-14 of A-20 F0306-01 RO U Structural Integrity Associates, Inc.0.0000 0.0780 0.1560 0.2340 0.3120 0.3900 0.4680 0.5460 0.6240 0.7020 0.7800 3108 3108 3108 3108 3108 3108 3108 3108 3108 3108 3108 Crack Model: Circumferential Crack in Cylinder (t/R=0.2)Crack Parameters:
Wall thickness:
Max. crack size: 1.0400 0.7800-Stress Intensity Factor --------------------
Crack Case Size Primary AxCase Case Case Case P1_rsdl_70 P2_rsdl_70 P3_rsdl_70 P4_rsdl_70 0.0156 0.0312 0.0468 0.0624 0.0780 0.0936 0.1092 0.1248 0.1404 0.1560 0.1716 0.1872 0.2028 0.2184 0.2340 0.2496 0.2652 0.2808 0.2964 0.3120 0.3276 759.948 1079.11 1326.99 1538.47 1726.99 1899.41 2063.43 2226.33 2383.05 2534.8 2682.48 2826.79 2968.26 3120.22 3277.7 3434.73 3591.5 3748.17 3904.87 4061.69 4232.94 209.446-704.379-2038.64-3655.95-5481.91-7467.14-9588.18-11841.3-14184.5-16598.8-19067.9-21577.6-24115-26705.5-29328.5-31957.1-34581.7-37193.4-39783.7-42344.3-44920.7-3766.98-5846.04-7766.64-9636.32-11485.1-13322.3-15174.2-17074.4-18975.5-20873.1-22762.6-24639.5-26499.1-28419.3-30363.8-32288-34187.2-36056.3-37890.8-39685.9-41525.5-6271.6-8926.02-11001.3-12782.6-14379.1
-15846.1-17246.3-18639-19980.7-21280.3-22543.8-23775.7-24979.2-26263.6-27586.3-28896.1-30192.8-31476.2-32745.4-33999.7-35354-31.4349-392.173-897.952-1509.53-2205.36-2970.97-3800.85-4696.58-5643.35-6635.49-7667.98-8736.28-9836.24-10981.5-12164.1-13372.8-14604.1-15854.9-17122-18402.1-19728.2 File No.: 0900530.308 Page A-15 of A-20 Revision:
0 F0306-01 RO C Structural Integrity Associates, Inc.0.3432 0.3588 0.3744 0.3900 0.4056 0.4212 0.4368 0.4524 0.4680 0.4836 0.4992 0.5148 0.5304 0.5460 0.5616 0.5772 0.5928 0.6084 0.6240 0.6396 0.6552 0.6708 0.6864 0.7020 0.7176 0.7332 0.7488 0.7644 0.7800 4405.17 4578.42 4752.73 4928.14 5104.67 5285.93 5475.77 5667.18 5860.16 6054.71 6250.85 6448.55 6663.88 6889.39 7117.16 7347.17 7579.4 7813.83 8050.45 8309.06 8570.31 8834.16 9100.59 9369.59 9641.12 9924.6 10229.8 10538.1 10849.5-47449.1-49920.4-52326.1-54657.4-56906.2-59180.2-61619.1-64001.3-66322.2-68577.3-70762.6-72874.3-74819.8-76604-78257.4-79773-81143.7-82362.8-83424-84434.6-85268.6-85919.4-86380.4-86645.4-86708.5-86848.7-87383.4-87759.2-87973.1-43315.8-45051.1-46725.7-48334-49870.3-51404.8-53024.5-54582.1-56073.6-57494.9-58842.5-60112.3-61316.8-62425.2-63420.1-64295.6-65045.8-65664.9-66147.2-66605.4-66909.8-67054-67031.8-66837.1-66463.8-66085.6-65894.9-65536.5-65005.5-36695.4-38021.9-39331.4-40621.8-41890.8
-43162.9-44462.8-45733.4-46971.3-48172.8-49334.2-50451.7-51660.1-52891.6-54073.4-55200.8-56269.3-57273.9-58209.7-59210.2-60129.8-60962.4-61701.7-62341.5-62874.9-63359.9-63852.4-64214-64436.6-21063.4-22404.-23746.5-25087.2-26422.4-27781.5-29201.2-30615.1-32019.4-33410.5-34784.5-36137.5-37491.2-38826.7-40125.8-41383.6-42595.1-43755.2-44858.7-45972.3-47017.6-47988.4-48878.3-49681.1-50390.1-51086.5-51859.8-52531.5-53094.3-Stress Intensity Factor --------------------
Crack Case Size P5 rsdl_70 Case P6_rsdl_70 Case Case P1_rsdl_55 P2 Case rsdl_55 P3_rsdl_55 0.0156 0.0312 0.0468 0.0624 0.0780 0.0936 0.1092 0.1248 0.1404 0.1560 3303.26 3888.26 3834.23 3391.63 2673.18 1745.01 656.096-562.451-1898.45-3332.65 5065.06 6681.52 7606.67 8132.88 8382.15 8421.62 8310.76 8095.83 7763.81 7330.44-7543-10951.8-13741.8-16224.6-18513.9-20664.5-22745.3-24825.7-26843.6-28804.9-7499.82-10870.6-13614.8-16042.9-18268.1-20344.8-22341.1-24325.1-26235.3-28077.3-7357.26-10710.2-13469.1-15933.5-18212.1-20356.3-22432.5-24508.1-26520.9-28476 File No.: 0900530.308 Page A-16 of A-20 Revision:
0 F0306-01 RO V Structural Integrity Associates, Inc.0.1716 0.1872 0.2028 0.2184 0.2340 0.2496 0.2652 0.2808 0.2964 0.3120 0.3276 0.3432 0.3588 0.3744 0.3900 0.4056 0.4212 0.4368 0.4524 0.4680 0.4836 0.4992 0.5148 0.5304 0.5460 0.5616 0.5772 0.5928 0.6084 0.6240 0.6396 0.6552 0.6708 0.6864 0.7020 0.7176 0.7332 0.7488 0.7644 0.7800-4848.98-6433.68-8074.7-9740.51-11435.2-13161.1-14910.1-16674.4-18447-20220.8-21988.4-23742.1
-25474.6-27178.7-28847.2-30473.2-32121.9-33879.6-35607.6-37300.9-38954.7-40564.2
-42124.9-43544-44839.1-46043.3-47149.4-48150.6
-49039.9-49810.4-50499.2-51051-51458.2-51713.2-51808.6-51736.9-51672.6-51815.7-51809.1-51646.4 6808.33 6207.88 5537.9 4867.13 4172.78 3429.94 2643.51 1817.96 957.448 65.8688-811.731-1712.82-2633.71-3570.85-4520.73-5479.93-6474.51-7541.95-8626.6-9726.13-10838.3-11960.8-13091.5-14147.8-15158.9-16160-17148.1
-18119.8-19072.1-20001.7-20901.4-21772.4-22611-23413.7-24177.1
-24897.6-25655-26544.4-27403.7-28229.7-30713-32569.9-34376.6-36268-38188.3-40070.8-41913.6-43714.5-45471.3-47181.5-48979.3-50727-52421.1-54058-55633.8-57145.1-58653.6-60232.3-61752.5-63211.3-64605.8-65933.4-67191.3-68471.4-69712.6-70861-71912.4-72862.5-73706.9-74441.6-75226.8-75889.9-76426.2-76831.3-77100.4-77229.3-77366.4-77671.7-77840.9-77870-29854.6-31568.8-33220.7-34942.5-36678.7-38363.8-39995.6-41571.9-43090.4-44548.5-46070.7-47527.3-48914.6-50228.7-51466-52622.8-53760.8-54952.9-56071.5-57113.8-58077.4-58959.6-59758.3-60543.7-61262.2-61870.7-62365-62741.3-62995.5-63123.9-63263.2-63263.5-63120.6-62830.4-62389-61792.5-61185.1-60722.2-60110.8-59348.2-30376.1-32222.7-34016.1-35888.1-37783.7-39637.1-41446.1-43208.1-44920.6-46581.1-48318.5-49999.1-51619.1-53174.7-54661.9-56077-57484.5-58961-60373.1-61717.7-62992.4-64194.3-65321.1-66450.1-67524.9-68498.8-69367.5-70126.8-70772.6-71300.8-71863.1-72295.2-72592.7-72751.3-72766.6-72634.7-72509.6-72558.2-72467-72232.7---------
Stress Intensity Factor --------------------
Crack Case Case Case Size P4 rsdl_55 P5 rsdl_55 P6_rsdl_55 File No.: 0900530.308 Revision:
0 Page A-17 of A-20 F0306-01 RO V Structural Integrity Associates, Inc.0.0156 0.0312 0.0468 0.0624 0.0780 0.0936 0.1092 0.1248 0. 1404 0.1560 0.1716 0.1872 0.2028 0.2184 0.2340 0.2496 0.2652 0.2808 0.2964 0.3120 0.3276 0.3432 0.3588 0.3744 0.3900 0.4056 0.4212 0.4368 0.4524 0.4680 0.4836 0.4992 0.5148 0.5304 0.5460 0.5616 0.5772 0.5928 0.6084 0.6240 0.6396 0.6552 0.6708 0.6864-2782.63.-4439.7-6029.73-7617.33-9216.66-10829.2-12472.1-14170.6-15884.5-17608.7-19338.1-21067.9-22793.3-24576.3-26387.4-28190.5-29981-31754.4-33506.6-35233.4-37006.1-38745.2-40445.5-42102.2-43710.3-45265-46831.2-48489.7-50105.9-51676.3-53197.9-54667.6-56082.4-57449.2-58743.5-59952.3-61070.6-62093.6-63016.7-63835.1-64656.8-65361-65942.5-66396.4-911.342-1823.15-2859.24-3993.04-5202.64-6470.62-7794.35-9180.99-10601.1-12045.7-13507.1-14978.1-16452.3-17959.8-19482.6-20998.3-22501.5-23987.2-25450.6-26886.9-28334.2-29743.5-31109.7-32427.4-33691.4-34896.9-36104.9-37393.7-38635.9-39828.4-40968.2-42052.2-43077.8-44006.3-44832.8-45566.7-46203.2-46737.6-47165.3-47481.9-47752.1-47897.6-47913.6-47795.6 469.397 252.718-175.233-740.887-1407.27-2150.95-2958.77-3826.01-4738.06-5686.81-6665.33-7667.6-8688.31-9731.99-10792.8-11862.7-12937.8-14014.6-15089.6-16159.7-17240.2-18308.9-19362.4-20397.3-21410.2-22398-23402.9-24479.8-25542.1-26588-27615.8-28624.1-29611.2-30540.8-31415.7-32248.2-33035.4-33774.9-34463.9-35100.1-35728.7-36297.9-36805.2-37248.1 File No.: 0900530.308 Revision:
0 Page A-18 of A-20 F0306-01 RD Structural Integrity Associates, Inc.0.7020 0.7176'0.7332 0.7488 0.7644 0.7800-66717.8-66901.8-67112.6-67533-67830.9-68002.4-47538.8-47139.1-46750.9-46549-46222-45767-37624.2-37931.2-38280.3-38798.6-39265.5-39679.8 Crack Growth Laws: Law ID: Overlay Type: Corrosion Model: Paris da/dN -c * (dK)An where dK = Kmax -Kmin dK > Kthres Kmax < KIc Material parameters:
c = 1.6000e-008 n = 2.5000 Kthres 0.0000 Material Fracture Toughness KIc: Material ID: Weld Overlay Depth Kic 0.2500 1.0000 2.0000 200.0000 200.0000 200.0000 Initial crack size=Max. crack size=0.6400 0.7800 Number of blocks= I Print increment of block= I Cycles Calc. Print Crk. Grw.Subblock /Time incre. incre. Law Mat.KIc File No.: 0900530.308 Revision:
0 Page A-19 of A-20 F0306-01 RO V Structural Integrity Associates, Inc.Overlay 100000 10000 10000 Overlay Weld Overlay Kmax Kmin Subblock Case ID Scale Factor Case ID Scale FactorOverlay Primary Axial Stress 0.0010 Plrsdl_550FAxial 0.0010 P2_rsdl_550FAxial 0.0010 P3_rsdl_5501FAxial 0.0010 P4_rsdl_550FAxial 0.0010 P5 rsdl_550FAxial 0.0010 P6_rsdl_550FAxial 0.0010 Crack growth results:Total Subblock Cycles Cycles/Time /Time DaDn Kmax Kmin DeltaK R/DaDtDa a a/thk Block: 110000 10000
-3.50e+002 0.00e+000
-3.50e+002 0.00 0.00e+000 0.00e+000 0.64 0.62 20000 20000 -3.50e+002 0.00e+000
-3.50e+002 0.00 0.00e+000 0.00e+000 0.64 0.62 30000 30000 -3.50e+002 0.00e+000
-3.50e+002 0.00 0.00e+000 0.00e+000 0.64 0.6240000 40000 -3.50e+002 0.00e+000
-3.50e+002 0.00 0.00e+000 0.00e+000 0.64 0.62 50000 50000 -3.50e+002 0.00e+000
-3.50e+002 0.00 0.00e+000 0.00e+000 0.64 0.62 60000 60000 -3.50e+002 0.00e+000
-3.50e+002 0.00 0.00e+000 0.00e+000 0.64 0.62 70000 70000 -3.50e+002 0.00e+000
-3.50e+002 0.00 0.00e+000 0.00e+000 0.64 0.62 80000 80000 -3.50e+002 0.00e+000
-3.50e+002 0.00 0.00e+000 0.00e+000 0.64 0.6290000 90000 -3.50e+002 0.00e+000
-3.50e+002 0.00 0.00e+000 0.00e+000 0.64 0.62100000 100000
-3.50e+002 0.00e+000
-3.50e+002 0.00 0.00e+000 0.00e+000 0.64 0.62 End of pc-CRACK Output File No.: 0900530.308 Revision:
0 Page A-20 of A-20 F0306-01RO Structural Integrity Associates, Inc.APPENDIX B FCG CASE PC-CRACK OUTPUT FILES File No.: 0900530.308 Revision:
0 F0306-01 RO Page B- I of B-21 Structural Integrity Associates, Inc.FCG Case without Residual Stresses Considered tm pc-CRACK for Windows Version 3.1-98348 (C) Copyright
'84 -'98 Structural Integrity Associates, Inc.3315 Almaden Expressway, Suite 24 San Jose, CA 95118-1557 Voice: 408-978-8200 Fax: 408-978-8964 E-mail: pccrack@structint.com Linear Elastic Fracture Mechanics Date: Thu Jul 23 09:32:54 2009 InputData and Results File: JPINFCG.LFMTitle: Pilgrim N9A JPIN FCG Analysis without Residual Stresses Load Cases: Stress Coefficients CO CI Case ID C2 C3 TypePrimary Axial S 31080 0 0 Coeff------ Through Wall Stresses for Load Cases With Stress Coeff-------
Wall Case Depth Primary Ax 0.0000 3108 0.0780 3108 0.1560 3108 0.2340 3108 0.3120 3108 0.3900 3108 0.4680 3108 0.5460 3108 0.6240 3108 File No.: 0900530.308 Revision:
0 Page B-2 of B-21 F0306-01 RO V Structural Integrity Associates, Inc.0.7020 0.7800 3108 3108 Crack Model: Circumferential Crack in Cylinder (t/R=0.2)Crack Parameters:
Wall thickness:
Max. crack size: 1.0400 0.7800-Stress Intensity Factor--------------------
Crack Case Size Primary Ax 0.0156 759.948 0.0312 1079.11 0.0468 1326.99 0.0624 1538.47 0.0780 1726.99 0.0936 1899.410.1092 2063.43 0.1248 2226.330.1404 2383.05 0.1560 2534.8 0.1716 2682.48 0.1872 2826.79 0.2028 2968.26 0.2184 3120.22 0.2340 3277.70.2496 3434.73 0.2652 3591.5 0.2808 3748.17 0.2964 3904.870.3120 4061.69 0.3276 4232.94 0.3432 4405.17 0.3588 4578.420.3744 4752.73 0.3900 4928.14 0.4056 5104.670.4212 5285.93 0.4368 5475.77 0.4524 5667.18 0.4680 5860.16 File No.: 0900530.308 Revision:
0 Page B-3 ofB-21F0306-01 RO V Structural Integrity Associates, Inc.0.4836 0.4992 0.5148 0.5304 0.5460 0.5616 0.5772 0.5928 0.6084 0.6240 0.6396 0.6552 0.6708 0.6864 0.7020 0.7176 0.7332 0.7488 0.7644 0.7800 6054.71 6250.85 6448.55 6663.88 6889.39 7117.16 7347.17 7579.4 7813.83 8050.45 8309.06 8570.31 8834.16 9100.59 9369.59 9641.12 9924.6 10229.8 10538.1 10849.5 Crack Growth Laws: Law ID: Overlay Model: ASME Section XI -austenitic stainless steel in air environment da/dN -C
- 10/F
- S
- dKA3.3 where S= 1.0 for R < 0=1.0+1.8*R for 0 < R < 0.79-43.5 + 57.97
- R for 0.79 < R < I F.= code specified function of temperature dK Kmax -Kmin R = Kmin / Kmax where: C
- 10AF= 1.8403e-010 is for the currently selected units of: force: kip length: inch temperature:
550.0000 Fahrenheit File No.: 0900530.308 Revision:
0 Page B-4 of B-21 F0306-01 RO Structural Integrity Associates, Inc.Material Fracture Toughness KIc: Material ID: Overlay Depth KIc 0.2500 200.0000 1.0000 200.0000 2.0000 200.0000 Initial crack size=Max. crack size=0.6400 0.7800 Number of blocks= I Print increment of block= I Cycles Caic. Print Crk. Grw.Subblock /Time incre. incre. Law Mat.Klc Overlay 800 20 20 Overlay Overlay Kmax. Kmin Subblock Case ID Scale Factor Case ID Scale Factor Overlay Primary Axial Stress 0.0010Crack growth results:Total Subblock Cycles Cycles/Time /Time DaDn DeltaK R /DaDt Kmax Kmin Da a a/thk Block: 20 40 60 80 100 120 140 160 I 20 8.32e+000 0.00e+000 10 8.32e+000 0.00e+000 50 8.32e+000 0.00e+000 80 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 8.32e+000 0.00 2.00e-007 4.00e-006 8.32e+000 0.00 2.00e-007 4.00e-006 8.32e+000 0.00 2.00e-007 4.00e-006 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 100 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 120 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 140 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 160 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 File No.: 0900530.308 Revision:
0 Page B-5 of B-21 F0306-01 RO Structural Integrity Associates, Inc.180 180 8.32e+000 0.00e+000 8.32e+000 0.00-2.00e-007 4.00e-006 0.64 0.62 200 200 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.64 0.62220 220 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.64 0.62240 240 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.64 0.62260 260 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.6401 0.62 280 280 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.6401 0.62 300 300 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.6401 0.62 320 320 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.6401 0.62340 340 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.6401 0.62 360 360 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.6401 0.62380 380 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.6401 0.62400 400 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.6401 0.62420 420 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.6401 0.62 440 440 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.6401 0.62 460 460 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.6401 0.62 480 480 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.6401 0.62500 500 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.6401 0.62 520 520 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.6401 0.62540 540 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.6401 0.62560 560 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.6401 0.62580 580 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.6401 0.62600 600 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.6401 0.62620 620 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.6401 0.62 640 640 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.6401 0.62 660 660 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.6401 0.62 680 680 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.6401 0.62 700 700 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.6401 0.62 720 720 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.6401 0.62 740 740 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.6401 0.62760 760 8.32e+000 0.00e+000 8.32e-+000 0.00 2.00e-007 4.00e-006 0.6402 0.62780 780 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.6402 0.62800 800 8.32e+000 0.00e+000 8.32e+000 0.00 2.00e-007 4.00e-006 0.6402 0.62 End of pc-CRACK File No.: 0900530.308 Page B-6 of B-21 Revision:
0 F0306-OiRO Structural Integrity Associates, Inc.FCG Case with Residual Stresses Considered tm pc-CRACK for Windows Version 3.1-98348 (C) Copyright
'84 -'98 Structural Integrity Associates, Inc.3315 Almaden Expressway, Suite 24 San Jose, CA 95118-1557 Voice: 408-978-8200 Fax: 408-978-8964 E-mail: pccrack@structint.com Linear Elastic Fracture Mechanics Date: Thu Jul 23 09:40:18 2009 Input Data and Results File: JP1NFCGR.LFM Title: Pilgrim N9A JPIN FCG Analysis with Residual Stresses Load Cases: Case ID: P1_rsdl_70FAxial
--- Stress Distribution Depth Stress0.0000 -2706.00000.0563 -13254.0000 0.1127 -19160.00000.1690 -23077.00000.2254 -31868.0000 0.28 17 -51968.00000.3380 -63785.0000 0.3944 -54357.0000 0.4507 -44784.0000 0.5070 -39731.0000 0.5634 -19705.00000.6197 -4105.7002 0.6761 8184.1001 0.7324 19524.0000 0.7887 17780.0000 0.8451 17251.0000 0.9014 22486.0000 File No.: 0900530.308 Page B-7 of B-21 Revision:
0 F0306-01 RO Structural Integrity Associates, Inc.0.9577 36904.0000 1.0141 47132.0000 1.0704 66681.0000 1.1268 76587.0000 Case ID: P2_rsdl_70FAxial
--- Stress Distribution Depth Stress 0.0000 -15358.00000.0523 -19223.0000 0.1046 -25101.0000 0.1569 -29725.0000 0.2092 -32260.0000 0.2615 -36466.0000 0.3138 -42170.0000 0.3661 -43463.0000 0.4184 -38617.0000 0.4707 -25977.0000 0.5230 -10235.0000 0.5753 10778.0000 0.62ý76 8643.0996 0.6799 2881.7000 0.7322 -1006.4000 0.7845 20303.0000 0.8368 24785.0000 0.8891 32769.0000 0.9414 44502.0000 0.9938 63483.0000 1.0460 76944.0000 Case ID: P3_rsdl_70FAxial
--- Stress Distribution Depth Stress 0.0000 -28088.00000.0547 -25470.0000 0.1093 -24553.0000 0.1640 -23860.00000.2187 -23108.0000 0.2733 -23068.0000 0.3280 -25974.0000 0.3826 -30169.0000 0.4373 -31442.0000 0.4920 -26786.0000 File No.: 0900530.308 Page B-8 of B-21 Revision:
0 F0306-01 RO V Structural Integrity Associates, Inc.0.5466 -16923.0000 0.6013 876.7800 0.6559 -7463.1001 0.7106 10757.0000 0.7653 4197.2998 0.8199 9730.2002 0.8746 8700.4004 0.9292 26349.0000 0.9839 42410.0000 1.0386 59758.0000 1.0932 69767.0000 Case ID: P4_rsdl_70FAxial
--- Stress Distribution Depth Stress 0.0000 -3281.0000 0U0579 -5048.2002 0,1158 -8148.1001 0.1737 -11551.0000 0,2316 -14631.0000 0U2895 -17622.0000 0,3474 -21975.0000 0,4053 -26882.0000 0,4632 -31775.0000 0.5211 -33323.0000 0.5790 -22262.0000 0.6370 1515.5000 0,6949 -9935.4004 0.7528 1211.8000 0.8107 1405.7000 0.8686 13106.0000 0.9265 16245.0000 0.9844 25417.0000 1.0423 41034.0000 1.1002 58041.0000 1.1581 69767.0000 Case ID: P5 rsdl_70FAxial
--- Stress Distribution Depth Stress 0.0000 5531.2998 0.0523 3583.8999 0.1046 -1635.9000 File No.: 0900530.308 Page B-9 of B-21 Revision:
0 F0306-01 RO Structural Integrity Associates, Inc.0.1569 -5833.7002 0.2092 -13755.0000 0.2615 -21502.0000 0.3138 -31547.0000 0.3661 -35499.0000 0.4184 -43808.0000 0.4707 -43321.0000 0.5230 -29471.0000 0.5753 -12445.0000 0.6276 -7875.0000 0.6799 14412.0000 0.7322 14364.0000 0.7845 7326.5000 0.8368 15584.0000 0.8891 26384.0000 0.9414 36435.0000 0.9937 53063.0000 1.0460 66263.0000 Case ID: P6_rsdl_70FAxial
--- Stress Distribution Depth Stress 0.0000 15237.0000 0.0578 13824.0000 0.1156 9049.5996 0.1734 3724.6001 0.2311 -1101.8000 0.2889 -6785.2002 0.3467 -14316.0000 0.4045 -20867.0000 0.4623 -22738.0000 0.5201 -17319.0000 0.5778 -16816.0000 0.6356 -15223.0000 0.6934 -24384.0000 0.7512 -18228.0000 0.8090 7268.0000 0.8668 -291.4900 0.9245 6025.0000 0.9823 9106.2998 1.0401 3584.8000 1.0979 8781.2998 1.1557 21056.0000 File No.: 0900530.308 Page B-10 of B-21 Revision:
0 F0306-01 RO Structural Integrity Associates, Inc.Case ID: Plrsdl_550FAxial
--- Stress Distribution Depth Stress 0.0000 -37423.0000 0.0563 -30666.0000 0.1127 -30371.0000 0.1690 -29966.0000 0.2254 -30253.0000 0.2817 -39782.0000 0.3380 -49528.0000 0.3944 -40497.0000 0.4507 -31440.0000 0.5070 -26593.0000 0.5634 -7998.7002 0.6197 5466.5000 0.6761 8603.5996 0.7324 17911.0000 0.7887 16327.0000 0.8451 15865.0000 0.9014 20738.0000 0.9577 34114.0000 1.0141 43571.0000 1.0704 61619.0000 1.1268 70638.0000 Case ID: P2_rsdl_550FAxial
--- Stress Distribution Depth Stress 0.0000 -28342.0000 0.0523 -33121.0000 0.1046 -35067.0000 0.1569 -34809.0000 0.2092 -33286.0000 0.2615 -34479.0000 0.3138 -37713.0000 0.3661 -37277.0000 0.4184 -31583.0000 0.4707 -18984.0000 0.5230 -3771.5000 0.5753 16109.0000 0.6276 14282.0000 0.6799 8925.0996 0.7322 5161.7998 File No.: 0900530.308 Page B-11 of B-21 Revision:
0 F0306-01 RO Structural Integrity Associates, Inc.0.7845 24625.0000 0.8368 28148.0000 0.8891 30056.0000 0.9414 40041.0000 0.9938 57475.0000 1.0460 69873.0000 Case ID: P3_rsdl_550FAxial
--- Stress Distribution Depth Stress0.0000 -34046.00000.0547 -34208.0000 0.1093 -33623.00000.1640 -32502.00000.2187 -31245.0000 0.2733 -30681.0000 0.3280 -32849.00000.3826 -36206.0000 0.4373 -36877.00000.4920 -32049.0000 0.5466 -22250.0000 0.6013 -3054.5000 0.6559 10338.00000.7106 26693.0000 0.7653 18601.00000.8199 22315.0000 0.8746 20287.0000 0.9292 34714.0000 0.9839 41014.0000 1.0386 56687.0000 1.0932 66000.0000 Case ID: P4_rsdl_550FAxial
--- Stress Distribution Depth Stress 0.0000 -17246.0000 0.0579 -18986.0000 0.1158 -20712.0000 0.1737 -22641.0000 0.2316 -24508.0000 0.2895 -26478.00000.3474 -29810.0000 0.4053 -33677.0000 File No.: 0900530.308 Page B-12 of B-21 Revision:
0 F0306-01 RO Structural Integrity Associates, Inc.0.4632 -37487.0000 0.5211 -38129.00000.5790 -27106.00000.6370 -2506.3999 0.6949 8712.0000 0.7528 18573.0000 0.8107 16621.00000.8686 25919.0000 0.9265 27604.00000.9844 34020.0000 1.0423 39826.0000 1.1002 55151.0000 1.1581 66000.0000 Case ID: P5_rsdi550FAxial
--- Stress Distribution Depth Stress0.0000 -9860.5996 0.0523 -12023.0000 0.1046 -13281.0000 0.1569 -12536.0000 0.2092 -15937.0000 0.2615 -20404.0000 0.3138 -27645.0000 0.3661 -29658.0000 0.4184 -36181.00000.4707 -34869.0000 0.5230 -21384.0000 0.5753 -5155.2998 0.6276 -680.51000.6799 20099.0000
0.7322 19979.0000 0.7845 13215.00000.8368 20522.0000 0.8891 28901.00000.9414 29654.00000.9937 44123.0000 1.0460 55627.0000 Case ID: P6_rsdl_55OFAxial
--- Stress Distribution Depth Stress0.0000 -4153.3999 File No.: 0900530.308 Page B-13 of B-21 Revision:
0 F0306-01 RO V Structural Integrity Associates, Inc.0.0578 -3844.7000 0.1156 -5437.7002 0.1734 -7985.3999 0.2311 -10562.0000 0.2889 -14188.0000 0.3467 -19675.0000 0.4045 -24334.0000 0.4623 -24692.0000 0.5201 -18159.0000 0.5778 -15576.0000 0.6356 -7235.2998 0.6934 -8139.7998 0.7512 -4439.8999 0.8090 17203.00000.8668 8686.5996 0.9245 13425.0000 0.9823 15405.0000 1.0401 9661.2002 1.0979 14122.0000 1.1557 25381.0000 Stress Coefficients Case ID CO Cl C2 C3 Type Primary Axial S PI rsdl 70F Axi P2 rsdl 70F Axi P3 rsdl 70F Axi P4 rsdl 70F Axi P5 rsdl 70F Axi P6 rsdl 70F Axi P1 rsdl 550F Ax P2 rsdl 550F Ax P3 rsdl 550F Ax P4 rsdl 550F Ax P5 rsdl 550F Ax P6_rsdl_550FAx 3108 3885.37-13893.9-25590 899.913 15914.8 22229.9-30101.6-29975.6-29271.3-9900.14-2123.08 3166.73 0-340174-170320-6482.04-114302-269042-168601-84939.3-79766.8-93075.8-166413-180397-139838 0 0 671398 375369-2191.35 127279 441695 206743 247674 278772 280055 342253 374942 258349 Coeff-282654-129810 80004.7 19565.5-134813-54358.7-86072.5-113600-108485-124837-146624-106937 StressDist StressDist StressDist StressDist StressDist StressDist StressDist StressDist StressDist StressDist StressDist StressDist
Through Wall Stresses for Load Cases With Stress Coeff-------
Wall Case Depth Primary Ax File No.: 0900530.308 Revision:
0 Page B-14 of B-21 F0306-01 RO Structural Integrity Associates, Inc.0.0000 0.0780 0.1560 0.2340 0.3120 0.3900 0.4680 0.5460 0.6240 0.7020 0.7800 3108 3108 3108 3108 3108 3108 3108 3108 3108 3108 3108 Crack Model: Circumferential Crack in Cylinder (t/R=0.2)Crack Parameters:
Wall thickness:
1.0400Max. crack size: 0.7800-Stress Intensity Factor --------------------
Crack Case Size Primary AxCase Case Case Case Plrsdl_70 P2_rsdl_70 P3_rsdl_70 P4_rsdl_70 0.0156 0.0312 0.0468 0.0624 0.0780 0.0936 0.1092 0.1248 0.1404 0.1560 0.1716 0.1872 0.2028 0.2184 0.2340 0.2496 0.2652 0.2808 0.2964 0.3120 0.3276 759.948 1079.11 1326.99 1538.47 1726.99 1899.41 2063.43 2226.33 2383.05 2534.8 2682.48 2826.79 2968.26 3120.22 3277.7 3434.73 3591.5 3748 17 3904.87 4061.69 4232.94 209.446-704.379-2038.64
-3655.95-5481.91-7467.14
-9588.18-11841.3-14184.5-16598.8-19067.9-21577.6-24115-26705.5-29328.5-31957.1-34581.7-37193.4-39783.7-42344.3-44920.7-3766.98-5846.04-7766.64-9636.32-11485.1-13322.3-15174.2-17074.4-18975.5-20873.1-22762.6-24639.5-26499.1-28419.3-30363.8-32288-34187.2-36056.3-37890.8-39685.9-41525.5-6271.6-8926.02-11001.3-12782.6
-14379.1-15846.1-17246.3-18639-19980.7-21280.3-22543.8-23775.7-24979.2-26263.6-27586.3-28896.1-30192.8-31476.2-32745.4.33999.7-35354-31.4349-392.173-897.952-1509.53-2205.36-2970.97-3800.85-4696.58-5643.35-6635.49-7667.98-8736.28-9836.24-10981.5-12164.1-13372.8-14604.1-15854.9-17122-18402.1-19728.2 File No.: 0900530.308 Revision:
0 Page B- 15 of B-21 F0306-01 RO V Structural Integrity Associates, Inc.0.3432 0.3588 0.3744 0.3900 0.4056 0.4212 0.4368 0.4524 0.4680 0.4836 0.4992 0.5148 0.5304 0.5460 0.5616 0.5772 0.5928 0.6084 0.6240 0.6396 0.6552 0.6708 0.6864 0.7020 0.7176 0.7332 0.7488 0.7644 0.7800 4405.17 4578.42 4752.73 4928.14 5104.67 5285.93 5475.77 5667.18 5860.16 6054.71 6250.85 6448.55 6663.88 6889.39 7117.16 7347.17 7579.4 7813.83 8050.45 8309.06 8570.31 8834.16 9100.59 9369.59 9641.12 9924.6 10229.8 10538.1 10849.5-47449.1-49920.4-52326.1.-54657.4-56906.2-59180.2
-61619.1-64001.3-66322.2-68577.3-70762.6-72874.3
-74819.8-76604-78257.4-79773-81143.7-82362.8-83424-84434.6
-85268.6-85919.4-86380.4-86645.4-86708.5-86848.7-87383.4-87759.2-87973.1-43315.8-45051.1-46725.7-48334-49870.3-51404.8-53024.5-54582.1-56073.6-57494.9-58842.5-60112.3-61316.8-62425.2-63420.1-64295.6-65045.8-65664.9-66147.2-66605.4-66909.8-67054-67031.8-66837.1-66463.8-66085.6-65894.9-65536.5-65005.5-36695.4-38021.9-39331.4-40621.8-41890.8-43162.9-44462.8-45733.4-46971.3-48172.8-49334.2-50451.7-51660.1-52891.6-54073.4-55200.8-56269.3-57273.9-58209.7-59210.2-60129.8-60962.4-61701.7-62341.5-62874.9-63359.9-63852.4-64214-64436.6-21063.4-22404-23746.5-25087.2-26422.4-27781.5-29201.2-30615.1-32019.4-33410.5-34784.5-36137.5-37491.2-38826.7-40125.8-41383.6-42595.1-43755.2-44858.7-45972.3-47017.6-47988.4-48878.3-49681.1-50390.1-51086.5-51859.8-52531.5-53094.3----------
Stress Intensity Factor ------------Crack Case Case Case Case Case Size P5 rsdl_70 P6_rsdl_70 P1_rsdl_55 P2_rsdl_55 P3_rsdl_55 0.0156 0.0312 0.0468 0.0624 0.0780 0.0936 0.1092 0.1248 0.1404 0.1560 3303.26 3888.26 3834.23 3391.63 2673.18 1745.01 656.096-562.451-1898.45-3332.65 5065.06 6681.52 7606.67 8132.88 8382.15 8421.62 8310.76 8095.83 7763.81 7330.44-7543-10951.8-13741.8-16224.6-18513.9-20664.5-22745.3-24825.7-26843.6-28804.9-7499.82-10870.6-13614.8-16042.9-18268.1-20344.8-22341.1-24325.1
-26235.3-28077.3-7357.26-10710.2-13469.1-15933.5-18212.1-20356.3-22432.5-24508.1-26520.9-28476 File No.: 0900530.308 Revision:
0Page B-16 of B-21 F0306-01 R0 r Structural Integrity Associates, Inc.0.1716 0.1872 0.2028 0.2184 0.2340 0.2496 0.2652 0.2808 0.2964 0.3120 0.3276 0.3432 0.3588 0.3744 0.3900 0.4056 0.4212 0.4368 0.4524 0.4680 0.4836 0.4992 0.5148 0.5304 0.5460 0.5616 0.5772 0.5928 0.6084 0.6240 0.6396 0.6552 0.6708 0.6864 0.7020 0.7176 0.7332 0.7488 0.7644 0.7800-4848.98-6433.68-8074.7-9740.51-11435.2-13161.1-14910.1-16674.4-18447-20220.8-21988.4
-23742.1-25474.6-27178.7-28847.2-30473.2-32121.9,-33879.6-35607.6
-37300.9-38954.7-40564.2-42124.9-43544-44839.1-46043.3-47149.4-48150.6
-49039.9-49810.4-50499.2-51051-51458.2-51713.2-51808.6-51736.9-51672.6-51815.7-51809.1-51646.4 6808.33 6207.88 5537.9 4867.13 4172.78 3429.94 2643.51 1817.96 957.448 65.8688-811.731-1712.82-2633.71-3570.85-4520.73-5479.93-6474.51-7541.95-8626.6-9726.13-10838.3-11960.8-13091.5-14147.8-15158.9-16i60-17148.1-18119.8-19072.1-20001.7-20901.4-21772.4-22611-23413.7-24177.1-24897.6-25655-26544.4-27403.7-28229.7-30713-32569.9-34376.6-36268-38188.3-40070.8-41913.6.-43714.5-45471.3-47181.5-48979.3-50727-52421.1-54058-55633.8
-57145.1-58653.6-60232.3-61752.5-63211.3-64605.8-65933.4-67191.3-68471.4-69712.6-70861-71912.4-72862.5-73706.9-74441.6-75226.8-75889.9-76426.2-76831.3-77100.4-77229.3-77366.4-77671.7-77840.9-77870-29854.6-31568.8-33220.7-34942.5-36678.7-38363.8-39995.6-41571.9-43090.4-44548.5-46070.7-47527.3-48914.6-50228.7-51466-52622.8-53760.8-54952.9-56071.5-57113.8-58077.4-58959.6-59758.3-60543.7-61262.2-61870.7-62365-62741.3-62995.5-63123.9-63263.2-63263.5-63120.6-62830.4-62389-61792.5-61185.1-60722.2-60110.8-59348.2-30376.1-32222.7-34016.1-35888.1-37783.7-39637.1-41446.1-43208.1-44920.6-46581.1-48318.5-49999.1-51619.1-53174.7-54661.9-56077-57484.5-58961-60373.1-61717.7-62992.4-64194.3-65321.1-66450.1-67524.9-68498.8-69367.5-70126.8-70772.6-71300.8-71863.1-72295.2-72592.7-72751.3-72766.6-72634.7-72509.6-72558.2-72467-72232.7---------Stress Intensity Factor ....Crack Case Case Case Size P4_rsdl_55 P5_rsdl_55 P6_rsdl_55 File No.: 0900530.308 Revision:
0 Page B-17 of B-21 F0306-01 RO V Structural Integrity Associates, Inc.0.0156 0.0312 0.0468 0.0624 0.0780 0.0936 0.1092 0.1248 0.1404 0.1560 0.1716 0.1872 0.2028 0.2184 0.2340 0.2496 0.2652 0.2808 0.2964 0.3120 0.3276 0.3432 0.3588 0.3744 0.3900 0.4056 0.4212 0.4368 0.4524 0.4680 0.4836 0.4992 0.5148 0.5304 0.5460 0.5616 0.5772 0.5928 0.6084 0.6240 0.6396 0.6552 0.6708 0.6864-2782.63-4439.7-6029.73-7617.33-9216.66-10829.2-12472.1-14170.6-15884.5-17608.7-19338.1-21067.9-22793.3-24576.3-26387.4-28190.5-29981-31754.4-33506.6-35233.4-37006.1-38745.2-40445.5-42102.2-43710.3-45265-46831.2-48489.7-50105.9-51676.3-53197.9-54667.6-56082.4-57449.2-58743.5-59952.3-61070.6-62093.6-63016.7-63835.1-64656.8-65361-65942.5-66396.4-911.342-1823.15-2859.24-3993.04-5202.64-6470.62-7794.35-9180.99-10601.1-12045.7-13507.1-14978.1-16452.3-17959.8-19482.6-20998.3-22501.5-23987.2-25450.6-26886.9-28334.2-29743.5-31109.7-32427.4-33691.4-34896.9-36104.9-37393.7-38635.9-39828.4-40968.2-42052.2-43077.8-44006.3
-44832.8-45566.7-46203.2-46737.6-47165.3-47481.9-47752.1-47897.6-47913.6-47795.6 469.397 252.718-175.233-740.887-1407.27-2150.95-2958.77-3826.01-4738.06-5686.81-6665.33-7667.6-8688.31-9731.99-10792.8-11862.7-12937.8-14014.6-15089.6-16159.7-17240.2-18308.9-19362.4-20397.3-21410.2-22398-23402.9-24479.8-25542.1-26588-27615.8-28624.1-29611.2-30540.8-32248.2-33035.4-33774.9-34463.9-35100.1-35728.7-36297.9-36805.2-37248.1 File No.: 0900530.308 Revision:
0 Page B-18 of B-21 F0306-01 R0 V Structural Integrity Associates, Inc.0.7020 0.7176 0.7332 0.7488 0.7644 0.7800-66717.8-66901.8-67112.6-67533-67830.9-68002.4-47538.8-47139.1-46750.9-46549-46222-45767-37624.2-37931.2-38280.3-38798.6-39265.5-39679.8 Crack Growth Laws: Law ID: Overlay Model: ASME Section XI -austenitic stainless steel in air environment da/dN r C
- 10AF
- S
- dKA3.3 where S= 1.0 for R< 0=1.0+l.8*R for 0 < R < 0.79=-43.5+57.97*
R for 0.79<R<I F code specified function of temperature dK = Kmax -Kmin R = Kmin / Kmax where: C
- 10AF= 1.8403e-010 is for the currently selected units of: force: kip length: inch temperature:
550.0000 Fahrenheit Material Fracture Toughness Kic: Material ID: Overlay Depth Kic 0.2500 1.0000 2.0000 200.0000 200.0000 200.0000 Initial crack size=Max. crack size=0.6400 0.7800 File No.: 0900530.308 Revision:
0 Page 13-19 of B-21 F0306-01 RO Structural Integrity Associates, Inc.Number of blocks=Print increment of block= 1 Cycles Calc. Print Crk. Grw. Mat.Subblock /Time incre. incre. Law KIc Overlay 800 20 20 Overlay Overlay Kmax Kmin Subblock Case ID Scale Factor Case ID Scale Factor Overlay Primary Axial Stress 0.0010 PI rsdi 550F Axial 0.0010 P1_rsdl_70FAxial P2 rsdl 550F Axial 0.0010 P2 rsdl 70F Axial P3 rsdl 550F Axial 0.0010 P3 rsdl 70F Axial P4 rsdl 550F Axial 0.0010 P4_rsdl_70FAxial P5 rsdl 550F Axial 0.0010 P5 rsdl 70F Axial P6_rsdl_550FAxial 0.0010 P6_rsdl_70FAxial 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 Crack growth results: Total Subblock Cycles Cycles/Time /Time DaDn Kmax Kmin DeltaK R/DaDt Da a a/thk Block: 20 40 60 80 1 20 -3.28e+002
-3.50e+002 2.25e+001 40 -3.28e+002 -3.50e+002 2.25e+001 60 -3.28e+002 -3.50e+002 2.25e+001 80 -3.28e+002
-3.50e+002 2.25e+001100 100 -3.28e+002 -3.50e+002 2.25e+001120 120 -3.28e+002 -3.50e+002 2.25e+001 140 140 -3.28e+002
-3.50e+002 2.25e+001160 160 -3.28e+002 -3.50e+002 2.25e+001 180 180 -3.28e+002
-3.50e+002 2.25e+001 200 200 -3.28e+002
-3.50e+002 2.25e+001 220 220 -3.28e+002 -3.50e+002 2.25e+001240 240 -3.28e+002 -3.50e+002 2.25e+001260 260 -3.28e+002 -3.50e+002 2.25e+001 280 280 -3.28e+002
-3.50e+002 2.25e+001300 300 -3.28e+002 -3.50e+002 2.25e+001 320 320 -3.28e+002 -3.50e+002 2.25e+001 File No.: 0900530.308 Revision:
0 1.07 0.00e+000 0.00e+000
[.07 0.00e+000 0.00e+000 1.07 0.00e+000 0.00e+000
[.07 0.00e+000 0.00e+000 1.07 0.00e+000 0.00e+000 1.07 0.00e+000 0.00e+000 1.07 0.00e+000 0.00e+000 1.07 0.00e+000 0.00e+000 1.07 0.00e+000 0.00e+000 1.07.0.00e+000 0.00e+000 1.07 0.00e+000 0.00e+000 1.07 0.00e+000 0.00e+000 1.07 0.00e+000 0.00e+000 1.07 0.00e+000 0.00e+000 1.07 0.00e+000 0.00e+000 1.07 0.00e+000 0.00e+000 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 Page B-20 of B-21 F0306-01 RO V Structural Integrity Associates, Inc.340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800 340 -3.28e+002
-3.50e+002 2.25e+001 360 -3.28e+002
-3.50e+002 2.25e+001 380 -3.28e+002 -3.50e+002 2.25e+001 400 -3.28e+002
-3.50e+002 2.25e+001 420 -3.28e+002
-3.50e+002 2.25e+001 440 -3.28e+002
-3.50e+002 2.25e+001 460 -3.28e+002
-3.50e+002 2.25e+001 480 -3.28e+002
-3.50e+002 2.25e+001 500 -3.28e+002
-3.50e+002 2.25e+001 520 -3.28e+002 -3.50e+002 2.25e+001 540 -3.28e+002
-3.50e+002 2.25e+001 560 -3.28e+002
-3.50e+002 2.25e+001 580 -3.28e+002
-3.50e+002 2.25e+001 600 -3.28e+002
-3.50e+002 2.25e+001 620 -3.28e+002
-3.50e+002 2.25e+00l 640 -3.28e+002
-3.50e+002 2.25e+001 660 -3.28e+002 -3.50e+002 2.25e+001 680 -3.28e+002
-3.50e+002 2.25e+001 700 -3.28e+002
-3.50e+002 2.25e+001 720 -3.28e+002
-3.50e+002 2.25e+001 740 -3.28e+002
-3.50e+002 2.25e+001 760 -3.28e+002
-3.50e+002 2.25e+001 780 -3.28e+002
-3.50e+002 2.25e+001 800 -3.28e+002
-3.50e+002 2.25e+001 1.07 0.00e+000 0.00e+000 1.07 0.00e+000 0.00e+000 1.07 0.00e+000 0.00e+000 1.07 0.00e+000 0.00e+000 1.07 0.00e+000 0.00e+000 1.07 0.00e+000 0.00e+000 1.07 0.00e+000 0.00e+000 1.07 0.00e+000 0.00e+000 1.07 0.00e+000 0.00e+000 1.07 0.00e+000 0.00e+000 1.07 0.00e+000 0.00e+000 1.07 0.00e+000 0.00e+000 1.07 0.00e+000 0.00e+000 1.07 0.00e+000 0.00e+000 1.07 0.00e+000 0.00e+000 1.07 0.00e+000 0.00e+000 1.07 0.OOe+000 0.OOe+000 1.07 0.OOe+000 0.OOe+000 1.07 0.OOe+000 0.OOe+000 1.07 0.OOe+000 0.OOe+000 1.07 0.OOe+000 0.OOe+000 1.07 0.OOe+000 0.OOe+000 1.07 0.OOe+000 0.OOe+000 1.07 0.OOe+000 0.OOe+000 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 0.64 0.62 End of pc-CRACK Output File No.: 0900530.308 Revision:
0 Page B-21 of B-21 F0306-01 RO