SVP-10-023, Core Operating Limits Report for Cycle 21

From kanterella
Jump to navigation Jump to search
Core Operating Limits Report for Cycle 21
ML101050017
Person / Time
Site: Quad Cities Constellation icon.png
Issue date: 04/09/2010
From: Tulon T
Exelon Generation Co, Exelon Nuclear
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
SVP-10-023
Download: ML101050017 (49)


Text

Exekn.

Exelon Generation Company, LLC Quad Cities Nuclear Power Station www.exelonCOTP.COM Nuclear 22710 206th Avenue North Cordova, I L61242-9740 SVP-10-023 April 9, 2010 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D.C. 20555 Quad Cities Nuclear Power Station, Unit 2 Renewed Facility Operating License No. DPR-30 NRC Docket No. 50-265

Subject:

Core Operating Limits Report for Quad Cities Unit 2 Cycle 21 Quad Cities Nuclear Power Station Unit 2 was shutdown for Refuel Outage 20 (Q2R20) on March 15, 2010. In accordance with Technical Specifications Section 5.6.5.d, enclosed is the Core Operating Limits Report (COLR) for Quad Cities Unit 2 Cycle 21.

Should you have any questions concerning this letter, please contact Mr. Wally J. Beck at (309) 227-2800.

Respectfully, Ti ulon tJ.T N S' Vice President Quad Cities Nuclear Power Sta tion

Enclosure:

Core Operating Limits Report for Quad Cities Unit 2 Cycle 21 cc: Regional Administrator- NRC Region III NRC Senior Resident Inspector - Quad Cities Nuclear Power Station

,4oo xjzlJQ

Enclosure Core Operating Limits Report for Quad Cities Unit 2 Cycle 21

COLR Quad Cities 2 Cycle 21 Revision 0 Core Operating Limits Report For Quad Cities Unit 2 Cycle 21.

Page 1 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table of Contents

1. Term s and Definitions ................................................................................................................................ 4
2. General Inform ation ....................................................................................... ............................................ 5
3. Average Planar Linear Heat Generation Rate, ......................... ..................... 6
4. Operating Lim it Minim um Critical Power Ratio ........................ ......................................... 31 4.1. Manual Flow Control MCPR Limits ............ ................................
  • 31 4.1.1. Power - Dependent MCPR .......................................... ;........................................................ 31 4.1.2. Flow - Dependent MCPR ............. I....................................................................................... 31 4.2. Autom atic Flow Control MCPR Lim its ........................................................................................ 31 4.3. Scram Tim e ...................................................................................................................................... 32 4.4. Recirculation Pum p ASD Settings ............................................................................................ 32
5. Linear Heat Generation Rate ........ ............................................................ 39
6. Control Rod Block Setpoints ................................................... 42
7. Stability Protection Setpoints ................................................... . .. ......... ...43
8. Modes of Operation ................................................................ ............................................................... 44
9. Methodology............................................................................................................................................ 46
10. References ............................................................................................................................................ 47 Page 2 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 List of Tables Table 3-1 MA PLH G R SLO m ultiplier ....................... ........................................ ............................. ......... .... 6 Table 3-2 MAPLHGR for Lattices 91 and 98 ............................................. ..................

  • 6 Table 3-3 MAPLHGR for Lattices 92 and 93 ........................................................................................ .7 Table 3-4 MAPLHG R for Lattices 94 and 95 ................................................................................................ 7 Table 3-5 MAPLHGR for Lattices 96 and 97 ......................................................................................... 8 Table 3-6 MAPLHGR for Lattices 99 and 100 ......................................... 8 Table 3-7 MAPLHGR for Lattices 101 and 102 ......................................... 9 Table 3-8 MA PLH G R for Lattice 103 ............................................................................................................ 9 Table 3-9 MAPLHG R for Lattice 104 .................................................................................................... 10 Table 3-10 MAPLHGR for Lattice 105 .................  ;............................. 10 Table 3-11 MAPLHGR for Lattices 106 and 107 ................... ............... M ................................................ 11 Table 3-12 MAPLHGR for Lattices 108 and 109 ....................................... 11 Table 3-13 MA PLH G R for Lattice 110 ........................................................................................................ 12 Table 3-14 MA PLH G R for Lattice 111 ........................................................................................................ 12 Table 3-15 MAPLHG R for Lattices 112 and 113 ......................................................................................... 13 Table 3-16 MAPLHGR for Lattices 114 and 115 .......................................................... ..........
  • 13 Table 3-17 MAPLHGR for Lattice 116 ....................................................... 14 Table 3-18 MAPLHG R for Lattice 117 .................................................... .......................................... 15 Table 3-19 MAPLHG R for Lattice 118 ................................................................................................. 16 Table 3-20 MAPLHGR for Lattice 119 ............................. ................. 17 Table 3-21 MAPLHGR for Lattice 120 .............................................. 18 Table 3-22 MAPLHG R for Lattice 121 .................................................................................................. 19 Table 3-23 MAPLHGR for Lattice 122 ................ ............ I...................................................... 20 Table 3-24 MAPLHG R for Lattice 123 ................................................................................................. 21 Table 3-25 MAPLHGR for Lattice 124..............................................22 Table 3-26 M APLHG R for Lattice 125 .................................................................................................... 223 Table 3-27 MAPLHG R for Lattice 126 .................................................. ........................................ 24 Table 3-28 MAPLHG R for Lattice 127 ................................................................................................ 25 Table 3-29 MAPLHGR for Lattice 128 I ........................................... 26 Table 3-30 MAPLHG R for Lattice 129 ................................................................................................... 27 Table 3-31 MAPLHG R for Lattice 130 .................................................................................................. 28 Table 3-32 MAPLHGR for Lattice 131 .............................................. 29 Table 3-33 MAPLHGR for Lattice 132 .............................................. 30 T able 4-1 S cram Tim es ................................................................. . .............................. . ........................... 32 Table 4-2 MCPR TSSS Based Operating Limits - Nominal FWT and FWTR .................................... 33 Table 4-3 MCPR ISS Based Operating Limits - Nominal FWT and FWTR .......................................... 34 Table 4-4 MCPR NSS Based Operating Limits - Nominal FWT and FWTR ........................................ 35 Table 4-5 MCPR(P) - Nominal FWT ............................................................... 36 Table 4-6 MCPR(P) - FWTR ................................................................. .......................... 37 Table 4-7 MCPR(F) for DLO and SLO Operation ............................................................................... 38 Table 5-1 LHG R Lim it for All Bundles ................................................................................................ 39 T able 5-2 LH G R FA C (P ) .......................... I................................................................................................... 40 T able 5-3 LH G R FA C (F) .................................................. 41...........................

1 Table 6-1 RBM Upscale Setpoints ................. ...................................................................................

' 42 Table 7-1 OPRM PBDA Trip Settings .............................................. 43 Table 8-1 Core Thermal Power Restriction for OOS Conditions ............................................ 45 Table 8-2 Core Thermal Power Restriction for One TCV/TSV Stuck Closed Based on the Minimum Available Total Reactor Vessel Steam Flow Capability ................................... 45 Page 3 of 47

COLR Quad Cities 2 Cycle 21 Revision 0

1. Terms and Definitions APLHGR Average planar linear heat generation rate ASD Adjustable Speed Drive CTP Core Thermal Power DLO Dual loop operation EFPH Effective full power hours EOC End of cycle EOOS Equipment out of service FWHOOS Feedwater heater out of service FWT Feedwater temperature FWTR Feedwater temperature reduction ICF Increased core flow ISS Intermediate scram speed LHGR Linear heat generation rate LHGRFAC(F) Flow-dependent LHGR multiplier LHGRFAC(P) Power-dependent LHGR multiplier LPRM Local power range monitor MAPLHGR Maximum average planar linear heat generation rate MCFL Maximum Combined Flow Limiter MCPR Minimum critical power ratio MCPR(F) Flow-dependent MCPR MCPR(P) Power-dependent MCPR MELLLA Maximum Extended Load Line Limit Analysis MSIV Main steam isolation valve NSS Nominal scram speed OLMCPR. Operating limit'minimum critical power ratio OOS Out of Service OPRM Oscillation power range monitor PBDA Period based detection algorithm PCOOS Pressure Controller Out of Service PLUOOS Power load unbalance out of service RBM Rod block monitor RWE Rod withdrawal error SLO Single Loop Operation TBV Turbine bypass valve TBVOOS Turbine bypass valves out of service TCV Turbine control valve TIP Traversing incore probe TSSS Technical Specification scram speed TSV Turbine stop valve Page 4 of 47

COLR Quad Cities 2 Cycle 21 Revision 0

2. General Information Power and flow-dependent limits are listed for various power and flow levels. Linear interpolation is to be used to find intermediate values.

Rated core flow is 98 Mlb/hr. Operation up to 108% rated flow is licensed for this cycle. Licensed rated thermal power is 2957 MWth. For allowed operating regions, see plant power/flow map.

Coastdown operation is defined as cycle exposure beyond the full power, full flow, and all rods out condition with the plant power gradually reducing as available core reactivity diminishes.

MCPR(P) and MCPR(F) values are independent of scram time.

LHGRFAC(P) and LHGRFAC(F) values are independent of scram speed and feedwater temperature.

All thermal limits are analyzed to either NSS, ISS, or TSSS. Only MCPR limits vary with scram speed.

For thermal limit monitoring above 100% rated power or 100% rated core flow, the 100% rated power and the 100% core flow values, respectively, can be used unless otherwise indicated in the applicable table.

Page 5 of 47

COLR Quad Cities 2 Cycle 21 Revision 0

3. Average Planar Linear Heat Generation Rate Lattice-specific MAPLHGR values for DLO and all EOOS conditions except SLO are provided in Tables 3-2 through 3-33. During single loop operation, these limits are multiplied by the EOOS multiplier listed in Table 3-1.

Table 3-1 MAPLHGR SLO multiplier (Reference 3)

EOOS Condition Multiplier SLO 0.86 Table 3-2 MAPLHGR for Lattices 91 and 98 (Reference 3, 4, 6, and 8)

All Bundles Lattices 91 and 98 Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 7.50 72.0 7.50 Page 6 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 3-3 MAPLHGR for Lattices 92 and 93 (References 4 and 5)

Bundle Opt2-3.89-16GZ8.00-2G6.00 Lattices 92: Opt2-B4.27-16G8.00-2G6.00 93: Opt2-BE4.38-14G8.00-2G6.00 Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 9.43 7.5 9.10 17.5 9.10 24.0 9.55 58.0 9.55 70.0 8.18 Table 3-4 MAPLHGR for Lattices 94 and 95 (References 4 and 5)

Bundle Opt2-3.89-16GZ8.00-2G6.00 Lattices 94: Opt2-M4.38-14G8.00-2G6.00 95: Opt2-ME4.35-12G8.00-2G6.00 Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 '9.74 7.5 9.30 17.5 9.30 24.0 9.68 58.0 9.68 70.0 8.31 Page 7 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 3-5 MAPLHGR for Lattices 96 and 97 (References 4 and 5)

Bundle Opt2-3.89-16GZ8.00-2G6.00 Lattices 96: Opt2-T4.35-12G8.00-2G6.00 97: Opt2-T4.35-14G6.00 Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 10.31 7.5 9.64 17.5 9.64 24.0 9.96 58.0 9.96 70.0 8.59 Table 3-6 MAPLHGR for Lattices 99 and 100 (References 4 and 5)

Bundle Opt2-3.94-13GZ7.00-2G6.00 Lattices 99: Opt2-B4.33-13G7.00-2G6.00 100: Opt2-BE4.43-12G7.00-2G6.00 Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 9.82 10.0 9.50 58.0 9.50 70.0 8.12 Page 8 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 3-7 MAPLHGR for Lattices 101 and 102 (References 4 and 5)

Bundle Opt2-3.94-13GZ7.00-2G6.00 Lattices 101: Opt2-M4.43-12G7.00-2G6.00 102: ODt2-ME4.40-110G7.00-2G6.00 Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 10.22 10.0 9.64 58.0 9.64 70.0 8.27 Table 3-8 MAPLHGR for Lattice 103 (References 4 and 5)

Bundle Opt2-3.94-13GZ7.00-2G6.00 Lattice 103: Opt2-T4.40-10G7.00-2G6.00 Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 10.84 10.0 9.95 58.0 9.95 70.0 8.58 Page 9 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 3-9 MAPLHGR for Lattice 104 (References 6 and 7)

Bundle Opt2-3.99-15GZ8.00-3G6.00 Lattice 104: Oot2-B4.40-1 3G8.00-3G6.00 1 OJ-B . ....... .. .

Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 9.52 7.5 9.25 17.5 9.25 24.0 9.47 58.0 9.47 70.0 8.10 Table 3-10 MAPLHGR for Lattice 105 (References 6 and 7)

Bundle Opt2-3.99-15GZ8.00-3G6.00 Lattice 105: Opt2-B4.38-15G8.00-3G6.00 Avg. Planar DLO Exposure MAPLHGR (GWdIMT) (kW/ft) 0.0 9.28 7.5 9.12 17.5 9.12 24.0 9.48 58.0 9.48 70.0 8.11 Page 10 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 3-11 MAPLHGR for Lattices 106 and 107 (References 6 and 7)

Bundle Opt2-3.99-15GZ8.00-3G6.00 Lattices 106: Opt2-BE4.47-15G8.00-3G6.00 107: Opt2-M4.47-15G8.00-3G6.00 Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kWlft) 0.0 9.39 7.5 9.18 17.5 9.18 24.0 9.60 58.0 9.60 70.0 8.22 Table 3-12 MAPLHGR for Lattices 108 and 109 (References 6 and 7)

Bundle Opt2-3.99-15GZB.00-3G6.00 Lattices 108: Opt2-ME4.46-11G8.00-3G6.00 109: Opt2-T4.46-11G8.00-3G6.00 Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 10.17 7.5 9.68 17.5 9.68 24.0 9.87 58.0 9.87 70.0 8.50 Page 11 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 3-13 MAPLHGR for Lattice 110 (References 6 and 7)

Bundle Opt2-3.99-15GZ8.00-3G6.00 Lattice 110: Opt2-T4.46-14G6.00 Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 10.24 7.5 9.79 58.0 9.79 70.0 8.41 Table 3-14 MAPLHGR for Lattice 111 (References 6 and 7)

Bundle Opt2-4.05-12GZ7.00-2G6.00 Lattice 111: Opt2-B4.44-12G7.00-2G6.00 Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 9.92 10.0 9.54 58.0 9.54 70.0 8.16 Page 12 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 3-15 MAPLHGR for Lattices 112 and 113 (References 6 and 7)

Bundle Opt2-4.05-12GZ7.00-2G6.00 Lattices 112: Opt2-BE4.55-10G7.00-2G6.00 113: Opt2-M4.55-10G7.00-2G6.00 Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 10.35 10.0 9.71 58.0 9.71 70.0 8.33 Table 3-16 MAPLHGR for Lattices 114 and 115 (References 6 and 7)

Bundle Opt2-4.05-12GZ7.00-2G6.00 Lattice 114: Opt2-M E4.51-10G7.00-2G6.00 115: Opt2-T4.51-10G7.00-2G6.00 Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 10.69 10.0 9.92 58.0 9.92 70.0 8.55 Page 13 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 3-17 MAPLHGR for Lattice 116 (References 3 and 8)

Bundle Opt2-4.02-14GZ8.00-4GZ5.50-14GZ5.50 Lattice 116: Opt2-B4.43-14G8.00-4G5.50 Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 8.55 2.5 8.75 5.0 8.89 7.5 8.99 10.0 9.04 12.0 9.10 15.0 9.24 17.0 9.29 20.0 9.38 22.0 9.49 24.0 9.61 30.0 9.56 36.0 9.52 42.0 9.53 50.0 9.51 60.0 9.48 72.0 9.71 Page 14 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 3-18 MAPLHGR for Lattice 117 (References 3 and 8)

Bundle Opt2-4.02-14GZ8.00-4GZ5.50-14GZ5.50 Lattice 117: ODt2-BE4.52-14G8.00-4G5.50 Avg. Planar 1 DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 8.59 2.5 8.78 5.0 8.95 7.5 9.05 10.0 9.12 12.0 9.19 15.0 9.33 17.0 9.38 20.0 9.48 22.0 9.60 24.0 9.73 30.0 9.65 36.0 9.61 42.0 9.60 50.0 9.56 60.0 9.52 72.0 9.76 Page 15 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 3-19 MAPLHGR for Lattice 118 (References 3 and 8)

Bundle Opt2-4.02-14GZ8.00-4GZ5.50-14GZ5.50 Lattice 118: Opt2-M4.52-14G8.00-4G5.50 Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 8.57 2.5 8.76 5.0 8.94 7.5 9.06 10.0 9.12 12.0 9.21 15.0 9.34 17.0 9.39 20.0 9.49 22.0 9.61 24.0 9.72 30.0 9.65 36.0 9.60 42.0 9.58 50.0 9.54 60.0 9.51 72.0 9.76 Page 16 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 3-20 MAPLHGR for Lattice 119 (References 3 and 8)

Bundle Opt2-4.02-14GZ8.00-4GZ5.50-14GZ5.50 Lattice 119: Opt2-ME4.48-14G8.00-4G5.50 Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 8.69 2.5 8.89 5.0 9.07 7.5 9.22 10.0 9.28 12.0 9.37 15.0 9.53 17.0 9.59 20.0 9.80 22.0 9.93 24.0 9.93 30.0 9.87 36.0 9.81 42.0 9.73 50.0 9.67 60.0 9.68 72.0 10.03 Page 17 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 3-21 MAPLHGR for Lattice 120 (References 3 and 8)

Bundle Opt2-4.02-14GZ8.00-4GZ5.50-14GZ5.50 Lattice 120: Opt2-T4.48-14G8.00-4G5.50 Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft)

.0.0 8.73 2.5 8.93 5.0 9.09 7.5 9.19 10.0 9.23 12.0 9.31 15.0 9.47 17.0 9.57 20.0 9.83 22.0 9.90 24.0 9.91 30.0 9.85 36.0 9.79 42.0 9.69 50.0 9.64 60.0 9.66 72.0 10.03 Page 18 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 3-22 MAPLHGR for Lattice 121 (References 3 and 8)

Bundles Opt2-4.02-14GZ8.00-4GZ5.50-14GZ5.50 Opt2-4.04-14GZ8.00-2GZ5.50-14GZ5.50 Lattice 121: Opt2-T4.50-14G5.50 Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 9.48 2.5 9.61 5.0 9.65 7.5 9.58 10.0 9.50 12.0 9.53 15.0 9.81 17.0 9.98 20.0 10.00 22.0 9.98 24.0 9.96 30.0 9.88 36.0 9.82 42.0 9.80 50.0 9.74 60.0 9.74 72.0 10.10 Page 19 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 3-23 MAPLHGR for Lattice 122 (References 3 and 8)

Bundle Opt2-4.04-14GZ8.00-2GZ5.50-14GZ5.50 Lattice 122: O[t2-B4.44-1 4GS.QO-2GS50f 122:- - - - --. 4.-.. ... ... . ...

Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 8.82 2.5 8.98 5.0 9.08 7.5 9.12 10.0 9.12 12.0 9.15 15.0 9.26 17.0 9.30 20.0 9.38 22.0 9.48 24.0 9.60 30.0 9.54 36.0 9.50 42.0 9.50 50.0 9.51 60.0 9.48 72.0 9.71 Page 20 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 3-24 MAPLHGR for Lattice 123 (References 3 and 8)

Bundle Opt2-4.04-14GZ8.00-2GZ5.50-14GZ5.50 Lattice 123: Opt2-BE4.53-14G8.00-2G5.50 Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 8.87 2.5 9.02 5.0 9.14 7.5 9.19 10.0 9.20 12.0 9.23 15.0 9.34 17.0 9.38 20.0 9.47 22.0 9.59 24.0 9.70 30.0 9.63 36.0 9.59 42.0 9.59 50.0 9.56 60.0 9.52 72.0 9.76 Page 21 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 3-25 MAPLHGR for Lattice 124 (References 3 and 8)

Bundle Opt2-4.04-14GZ8.00-2GZ5.50-14GZ5.50 Lattice 124: Opt2-M4.53-14G8.00-2G5.50 Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 8.86 2.5 9.01 5.0 9.13 7.5 9.20 10.0 9.21 12.0 9.25 15.0 9.35 17.0 9.39 20.0 9.48 22.0 9.60 24.0 9.69 30.0 9.63 36.0 9.58 42.0 9.57 50.0 9.53 60.0 9.51 72.0 9.77 Page 22 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 3-26 MAPLHGR for Lattice 125 (References 3 and 8)

Bundle Opt2-4.04-14GZ8.00-2GZ5.50-14GZ5.50 Lattice 125: Opt2-ME4.49-14G8.00-2G5.50 Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 9.00 2.5 9.17 5.0 9.29 7.5 9.38 10.0 9.37 12.0 9.43 15.0 9.53 17.0 9.59 20.0 9.78 22.0 9.90 24.0 9.90 30.0 9.85 36.0 9.80 42.0 9.72 50.0 9.67 60.0 9.68 72.0 10.03 Page 23 of 47

(

COLR Quad Cities 2 Cycle 21 Revision 0 Table 3-27 MAPLHGR for Lattice 126 (References 3 and 8)

Bundle Opt2-4.04-14GZ8.00-2GZ5.50-14GZ5.50 Lattice 126: Opt2-T4.49-14G8.00-2G5.50 Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 9.04 2.5 9.21 5.0 9.31 7.5 9.35 10.0 9.32 12.0 9.37 15.0 9.48 17.0 9.56 20.0 9.80 22.0 9.87 24.0 9.89 30.0 9.83 36.0 9.78 42.0 9.68 50.0 9.64 60.0 9.66 72.0 10.03 Page 24 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 3-28 MAPLHGR for Lattice 127 (References 3 and 8)

Bundle Opt2-4.07-14G5.50-2GZ5.50 Lattice 127: Opt2-B4.48-16G5.50 Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 8.81 2.5 8.96 5.0 9.10 7.5 9.15 10.0 9.16

.12.0 9.18 15.0 9.34 17.0 9.48 20.0 9.64 22.0 9.68 24.0 9.67 30.0 9.58 36.0 9.52 42.0 9.53 50.0 9.59 60.0 9.56 72.0 9.76 Page 25 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 3-29 MAPLHGR for Lattice 128 (References 3 and 8)

Bundle Opt2-4.07-14G5.50-2GZ5.50 Lattice 128: Opt2-BE4.57-16G5.50 Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 8.86 2.5 9.01 5.0 9.16 7.5 9.21 10.0 9.22 12.0 9.26 15.0 9.44 17.0 9.59 20.0 9.76 22.0 9.78 24.0 9.76 30.0 9.67 36.0 9.62 42.0 9.61 50.0 9.66 60.0 9.60 72.0 9.81 Page 26 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 3-30 MAPLHGR for Lattice 129 (References 3 and 8)

Bundle Opt2-4.07-14G5.50-2GZ5.50 Lattice 129: Opt2-M4.57-16G5.50 Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 8.84 2.5 9.00 5.0 9.16 7.5 9.21 10.0 9.23 12.0 9.27 15.0 9.45 17.0 9.61 20.0 9.77 22.0 9.78 24.0 9.76 30.0 9.66 36.0 9.61 42.0 9.61 50.0 9.64 60.0 9.59 72.0 9.81 Page 27 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 3-31 MAPLHGR for Lattice 130 (References 3 and 8)

Bundle Opt2-4.07-14G5.50-2GZ5.50 Lattice 130: Opt2-ME4.54-16G5.50 Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 9.00 2.5 9.16 5.0 9.31 7.5 9.40 10.0 9.39 12.0 9.48 15.0 9.75 17.0 9.94 20.0 10.02 22.0 10.00 24.0 9.98 30.0 9.88 36.0 9.82 42.0 9.83 50.0 9.81 60.0 9.77 72.0 10.08 Page 28 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 3-32 MAPLHGR for Lattice 131 (References 3 and 8)

Bundle Opt2-4.07-14G5.50-2GZ5.50 Lattice 131: Opt2-T4.54-16G5.50 Avg. Planar T DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 9.03 2.5 9.19 5.0 9.33 7.5 9.35 10.0 9.35 12.0 9.41 15.0 9.75 17.0 9.95 20.0 10.00 22.0 9.99 24.0 9.97 30.0 9.87 36.0 9.81 42.0 9.82 50.0 9.79 60.0 9.75 72.0 10.08 Page 29 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 3-33 MAPLHGR for Lattice 132 (References 3 and 8)

Bundle Opt2-4.07-14G5.50-2GZ5.50 Lattice 132: Opt2-T4.55-14G5.50 Avg. Planar DLO Exposure MAPLHGR (GWd/MT) (kW/ft) 0.0 9.39 2.5 9.51 5.0 9.60 7.5 9.57 10.0 9.49 12.0 9.51 15.0 9.76 17.0 9.94 20.0 10.01 22.0 10.00 24.0 9.98 30.0 9.89 36.0 9.83 42.0 9.82 50.0 9.79 60.0 9.75 72.0 10.09 Page 30 of 47

COLR Quad Cities 2 Cycle 21 Revision 0

4. Operating Limit Minimum Critical Power Ratio 4.1. Manual Flow Control MCPR Limits The OLMCPR is determined for a given power and flow condition by evaluating the power-dependent MCPR and the flow-dependent MCPR and selecting the greater of the two.

4.1.1. Power - Dependent MCPR For operation at less than 38.5% of rated core thermal power, the OLMCPR as a function of core thermal power is shown in Tables 4-5 and 4-6. For operation at greater than 38.5% of rated core thermal power, the OLMCPR as a function of core thermal power is determined by multiplying the applicable rated condition OLMCPR limit shown in Tables 4-2 through 4-4 by the applicable MCPR multiplier K(P) given in Tables 4-5 and 4-6. For operation at exactly 38.5% of rated core thermal power, the OLMCPR as a function of core thermal power is the higher of either of the two methods evaluated at 38.5% of rated core thermal power.

4.1.2. Flow - Dependent MCPR Table 4-7 gives the MCPR(F) limit as a function of the flow based on the applicable plant condition. The MCPR(F) limit determined from this table is the flow-dependent OLMCPR.

4.2. Automatic Flow Control MCPR Limits Automatic flow control MCPR limits are not provided.

Page 31 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 4.3. Scram Time TSSS, ISS, and NSS refer to scram speeds. The scram time values are shown in Table 4-1. The TSSS scram times shown in Table 4-1 are the same as those specified in the Technical Specifications (Reference 12). Reference 3 indicates that the TSSS control rod insertion times that were actually used in the transient analysis are conservative with respect to the scram times specified in the Technical Specifications.

To utilize the MCPR limits for Nominal Scram Speed in Table 4-4, the average control rod insertion time at each control rod insertion fraction must be equal to or less than the NSS time shown on Table 4-1 below.

To utilize the MCPR limits for Intermediate Scram Speed in Table 4-3, the average control rod insertion time at each control rod insertion fraction must be equal to or less than the ISS time shown on Table 4-1 below.

To utilize the MCPR limits for Technical Specification Scram Speed in Table 4-2, the average control rod insertion time at each control rod insertion fraction must be equal to or less than the TSSS time shown on Table 4-1 below.

The average control rod insertion time is defined as the average control rod insertion time of all operable control rods based on the sum of the most recent scram time data divided by the number of operable drives. The time for inoperable drives (notch 00) can be conservatively included for calculation of core average scram speed.

Table 4-1 Scram Times (References 3, 12, and 14)

Control Rod TSSS (seconds) ISS(seconds) NSS (seconds)

Insertion Fraction (%) T 5 0.480 0.360 0.324 20 0.890 0.720 0.694 50 1.980 1.580 1.510 90 3.440 2.800 2.670 4.4. Recirculation Pump ASD Settings Cycle 21 was analyzed with a maximum core flow runout of 110%; therefore the recirculation pump ASD must be set to maintain core flow less than 110% (107.8 Mlb/hr) for all runout events (Reference 9). This value is consistent with the analyses of Reference 3.

Page 32 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 4-2 MCPR TSSS Based Operating Limits - Nominal FWT and FWTR (Reference 3)

Nominal FWT FWTR EOOS Combination Cycle Exposure (MWd/MTU) Cycle Exposure (MWd/MTU)

<14,000 >1 4,000 :514,000 [ >1 4,000 Base 1.68 1.74 1.68 1.74 Base SLO 1.72 *1.78 1.72 1.78 PLUOOS 1.72 1.77 1.72 . 1.77 PLUOOS SLO 1.76 1.81 1.76 1.81 TBVOOS 1.85 1.87 1.86 1.87 TBVOOS SLO 1.89 1.91 1.90 1.91 TCV Slow Closure 1.77 1.80 1.77 1.80 TCV Slow Closure SLO 1.81 1.84 1.81 1.84 TCV Stuck Closed 1.68 1.74 1.68 1.74 TCV Stuck Closed SLO 1.72 1.78 1.72 1.78 Page 33 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 4-3 MCPR ISS Based Operating Limits - Nominal FWT and FWTR (Reference 3)

Nominal FWT FWTR EOOS Combination Cycle Exposure (MWd/MTU) Cycle Exposure (MWd/MTU)

<14,000 >14,000 <14,000 J >14,000 Base 1.44 1.48 1.48 1.50 Base SLO 1.47 1.51 1.51 1.53 PLUOOS 1.48 1.54 1.48 1.54 PLUOOS SLO 1.51 1.57 1.51 1.57 TBVOOS 1.56 1.61 1.60 .1.64 TBVOOS SLO 1.59 1.64 1.63 1.67 TCV Slow Closure 1.50 1.55 1.50 1.55 TCV Slow Closure SLO 1.53 1.58 1.53 1.58 TCV Stuck Closed 1.44 1.48 1.48 1.50 TCV Stuck Closed SLO 1.47 1.51 1.51 1.53 Page 34 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 4-4 MCPR NSS Based Operating Limits - Nominal FWT and FWTR (Reference 3)

Nominal FWT FWTR EOOS Combination Cycle Exposure (MWd/MTU) Cycle Exposure (MWd/MTU)

<14,000 >14,000 <14,000 >14,000 Base 1.43 1.45 1.47 1.49 Base SLO 1.46 1.48 1.50 1.52 PLUOOS 1.47 1.51 1.47. 1.51 PLUOOS SLO 1.50 1.54 1.50 1.54 TBVOOS 1.55 1.58 1.58 1.61 TBVOOS SLO 1.58 1.61 1.61 1.64 TCV Slow Closure 1.47 1.53 1.47 1.53 TCV Slow Closure SLO 1.50 1.56 1.50 1.56 TCV Stuck Closed 1.43 1.45 1.47 1.49 TCV Stuck Closed SLO 1.46 1.48 1.50 1.52 Page 35 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 4-5 MCPR(P) - Nominal FWT (Reference 3)

Core Flow Core Thermal Power (% of rated)

EOOS Combination (% of 0 25 1 38.5 38.5 41 60 80 100 102 Rated) Operating Limit MCPR Operating Limit MCPR Multiplier, Kp

<60 2.71 2.30 2.08 Base

>60 2.77 2.49 2.34 1.33 1.29 1.13 1.05 1.00 1.00

_<60 2.76 2.35 2.12 Base SLO

>60 2.82 2.54 2.39

<60 2.71 2.30 2.08 PLUOOS

>60 2.77 2.49 2.34 1.57 1.55 1.33 1.06 1.00 1.00

<60 2.76 2.35 2.12 PLUOOS SLO

>60 2.82 2.54 2.39

_<60 3.94 2.97 2.45 TBVOOS

>60 4.07 3.21 2.75 1.33 1.29 1.13 1.05 1.00 1.00

_<60 4.02 3.03 2.50 TBVOOS SLO

>60 4.15 3.27 2.80

<60 2.71 2.30 2.08 TCV Slow Closure

>60 2.77 2.49 2.34 1.58 1.55 1.34 1.08 1.00 1.00

<60 2.76 2.35 2.12 TCV Slow Closure SLO

>60 2.82 2.54 2.39

<60 2.71 2.30 2.08 TCV Stuck Closed

>60 2.77. 2.49 2.34 1.33 1.29 1.14 1.06 1.00 1.00

_<60 2.76 2.35 2.12 TCV Stuck Closed SLO

>60 2.82 2.54 2.39 Page 36 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 4-6 MCPR(P) - FWTR (Reference 3)

Core Flow Core Thermal Power (% of rated)

EOOS Combination (% of 0 125 18 38.5 1 41 1 60 1 80 100 102 Rated) Operating Limit MCPR Operating Limit MCPR Multiplier, Kp

<60 2.71 2.30 2.08 Base

>60 2.77 2.49 2.34 1.39 1.35 1.15 1.05 1.00 1.00

_<60 2.76 2.35 2.12 Base SLO

>60 2.82 2.54 2.39

_<60 2.71 2.30 2.08 PLUOOS

>60 2.77 2.49 2.34 1.57 1.55 1.33 1.06 1.00 1.00

<60 2.76 2.35 2.12 PLUOOS SLO

>60 2.82 2.54 2.39

<60 4.37 3.16 2.51 TBVOOS

>60 4.37 3.31 2.86 1.39 1.35 1.15 1.05 1.00 1.00

_<60 4.45 3.22 2.56 TBVOOS SLO

>60 4.45 3.37 2.92

<60 2.71 2.30 2.08 TCV Slow Closure

>60 2.77 2.49 2.34 1.58 1.55 1.34 ,1.08 1.00 1.00

<60 2.76 2.35 2.12 TCV Slow Closure SLO

>60 2.82 2.54 2.39

<60 2.71 2.30 2.08 TCV Stuck Closed

>60 2.77 2.49 2.34 1.39 1.35 1.15 1.06 1.00 1.00

<60 2.76 2.35 2.12 TCV Stuck Closed SLO

>60 2.82 2.54 2.39 Page 37 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 4-7 MCPR(F) for DLO and SLO Operation (Reference 3)

Core Flow j 1 1

(% of rated) 0.0 1.98 2.02 100.0 1.38 1.41 110.0 1.38 1.41 Page 38 of 47

COLR Quad Cities 2 Cycle 21 Revision 0

5. Linear Heat Generation Rate The thermal mechanical operating limit at rated conditions for the Optima2 fuel is established in terms of the maximum LHGR given in Table 5-1 as a function of rod nodal exposure. The limit applies to all Optima2 bundle designs.

The linear heat generation rate (LHGR) limit is the product of the exposure dependent LHGR limit from Table 5-1 and the minimum of: the power-dependent LHGR multiplier, LHGRFAC(P) or the flow-dependent LHGR multiplier, LHGRFAC(F) as applicable. The LHGRFAC(P) is determined from Table 5-2.

For operation at exactly 38.5% of rated core thermal power, the LHGRFAC(P) as a function of core thermal power is the lower of either of the two multipliers evaluated at 38.5% of rated core thermal power.

The LHGRFAC(F) is determined from Table 5-3, and is applicable for all EOOS conditions.

Table 5-1 LHGR Limit for All Bundles (Reference 3)

Rod Nodal Exposure LHGR Limit (GWd/MTU) (kW/ft) 0.0 13.11 14.0 13.11 72.0 6.48 Page 39 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 5-2 LHGRFAC(P)

(Reference 3)

[Core Thermal Power (% of rated)

EOOS Combination 0 25 38.5 38.5 41 60 80 100 102 LHGRFAC(P) Multiplier Base 0.49 0.62 0.69 0.72 0.74 0.83 0.88 1.00 1.00 Base SLO 0.49 0.62 0.69 0.72 0.74 0.83 0.88 1.00 1.00 PLUOOS 0.49 0.62 0.69 0.69 0.69 0.82 0.88 1.00 1.00 PLUOOS SLO 0.49 0.62 0.69 0.69 0.69 0.82 0.88 1.00 1.00 TBVOOS 0.31 0.44 0.51 0.69 0.70 0.78 0.78 1.00 1.00 TBVOOS SLO 0.31 0.44 0.51 0.69 0.70 0.78 0.78 1.00 1.00 TCV Slow Closure 0.49 0.62 0.69 0.69 0.69 0.82 0.87 1.00 1.00 CV Slow Closure 0.49 0.62 0.69 0.69 0.69 0.82 0.87 1.00 1.00 SLO TCV Stuck Closed 0.49 0.62 0.69 0.72 0.74 0.83 0.88 1.00 1.00 rCV Stuck Closed SLO 0.49 0.62 0.69 0.72 0.74 0.83 0.88 1.00 1.00 Page 40 of 47

COLR Quad Cities 2 Cycle 21 Revision 0 Table 5-3 LHGRFAC(F)

(Reference 3)

Flow LHGRFAC(F)

(% of rated) Multiplier 0.0 0.27 20.0 0.43 40.0 0.60 60.0 0.80 80.0 1.00 100.0 1.00 110.0 1.00 Page 41 of 47

COLR Quad Cities 2 Cycle 21 Revision 0

6. Control Rod Block Setpoints The rod block monitor upscale instrumentation setpoints are determined from the relationships shown in Table 6-1:

Table 6-1 RBM Upscale Setpoints (Reference 10)

ROD BLOCK MONITOR UPSCALE TRIP FUNCTION ALLOWABLE VALUE Two Recirculation Loop 065Wd+56.1%

Operation 0.65_W__+_56.1%

Single Recirculation Loop 065 Wd + 51.4%

Operation The setpoint may be lower/higher and will still comply with the rod withdrawal error (RWE) analysis because RWE is analyzed unblocked.

The allowable value is clamped with a maximum value not to exceed the allowable value for a recirculation loop drive flow (Wd) of 100%.

Wd - percent of recirculation loop drive flow required to produce a rated core flow of 98 Mlb/hr.

Page 42 of 47

COLR Quad Cities 2 Cycle 21 Revision 0

7. Stability Protection Setpoints The OPRM PBDA trip settings are given in Table 7-1.

Table 7-1 OPRM PBDA Trip Settings (Reference 3)

PBDA Trip Amplitude Setpoint (Sp) Corresponding Maximum Confirmation Count Setpoint (Np) 1.14 16 The PBDA is the only OPRM setting credited in the safety analysis as documented in the licensing basis for the OPRM system.

The OPRM PBDA trip settings are based, in part, on the cycle specific OLMCPR and the power-dependent MCPR limits. Any change to the OLMCPR values and/or the power-dependent MCPR limits should be evaluated for potential impact on the OPRM PBDA trip settings.

The OPRM PBDA trip settings are applicable when the OPRM system is declared operable, and the associated Technical Specifications are implemented.

Page 43 of 47

COLR Quad Cities 2 Cycle 21 Revision 0

8. Modes of Operation The allowed modes of operation with combinations of equipment out-of-service are as described below:

EOOS Options Thermal Limit Sets Base Base (DLO or SLO)

PLUOOS PLUOOS (DLO or SLO)

TBVOOS TBVOOS (DLO or SLO)

> See Table 8-1 for power restrictions TCV Slow Closure TCV Slow Closure (DLO or SLO)

TCV Stuck Closed TCV Stuck Closed (DLO or SLO)

> Not applicable to combination of one TCV and one TSV Stuck Closed

> See Table 8-2 for power restrictions TSV Stuck Closed TCV Stuck Closed (DLO or SLO)

> Not applicable to combination of one TCV and one TSV Stuck Closed

> See Table 8-2 for power restrictions PCOOS TCV Slow Closure (DLO or SLO)

PCOOS and PLUOOS PLUOOS (DLO or SLO)

PCOOS and TCV Slow Closure TCV Slow Closure (DLO or SLO)

PCOOS and one TCV/TSV Stuck > Operation is only allowed at or below thermal power as Closed specified in Table 8-2 and

> The more restrictive of the flow-dependent limits (established by one TCV/TSV Stuck Closed) and power-dependent limits (established by one TCV/TSV Stuck Closed, TCV Slow Closure and PLUOOS limits) apply.

PLUOOS and one TCV/TSV > Operation is only allowed at or below thermal power as Stuck Closed specified in Table 8-2 and

> The more restrictive of the flow-dependent limits (established by one TCV/TSV Stuck Closed) and power-dependent limits (established by one TCV/TSV Stuck Closed, TCV Slow Closure and PLUOOS limits) apply.

Common Notes - Applicable to all EQOS Combinations

1. All modes are allowed for operation at MELLLA, ICF (up to 108%), and full power operation up to 16,188 MWd/MTU cycle exposure (Reference 3), subject to the restrictions in Tables 8-1 and 8-2. Each OOS Option may be combined with each of the following conditions:

0 A maximum of 18 TIP channels OOS provided the requirements (as clarified in Reference 13) for utilizing SUBTIP methodology are met.

0 Up to 50% LPRMs OOS 0 An LPRM calibration frequency of up to 2500 EFPH (2000 EFPH + 25%)

2. All analyses support the fastest Turbine Bypass Valve (assumed to be #1) OOS, with the remaining 8 Turbine Bypass Valves meeting the assumed opening profile in Reference 14 (Reference 3). The analyses also support Turbine Bypass flow of 29.6% of vessel rated steam flow, equivalent to one Turbine Bypass Valve OOS (or partially closed Turbine Bypass Valves equivalent to one closed Turbine Bypass Valve), ifthe assumed opening profile for the remaining Turbine Bypass Valves is met. If the opening profile is NOT met, or ifthe Turbine Bypass Valve system cannot pass an equivalent of 29.6% of vessel rated steam flow, utilize the TBVOOS condition.

Page 44 of 47

COLR Quad Cities 2 Cycle 21 Revision 0

3. For both Base and EOOS DLO/SLO conditions, for operation at Nominal FWT, the OLMCPR limit is applicable to a variation of +10°F/-30°F in feedwater temperature and an operating steam dome pressure region bounded by the maximum value of 1020 psia and the minimum pressure curve (Reference 9).
4. For operation outside of Nominal FWT, a feedwater temperature reduction of up to 120OF is supported for Base and EOOS DLO/SLO conditions for cycle operation through EOC subject to the restriction in Reference 11 for feedwater temperature reductions of greater than 100'F. The restriction is to maintain less than 100% rod line with a feedwater temperature reduction of greater than 100 0F. This includes, but is not limited to, FWHOOS and final FWTR. For a feedwater temperature reduction of between 30°F and 120 0 F, the FWTR limits should be applied.
5. For all cases including TBVOOS, equivalent of 2 of the first 3.4 Turbine Bypass Valves must be capable of opening via the pressure control system while Turbine Bypass Valves #5-9 are allowed to be out of service. For all cases except TBVOOS, the equivalent of 8 of 9 Turbine Bypass Valves (as stated in Note 2 above) are required to trip open on Turbine Control Valve fast closure or on Turbine Stop Valve closure. The TBVOOS condition assumes that all of the Turbine Bypass Valves do not trip open on Turbine Control Valve fast closure or on Turbine Stop Valve closure.
6. A single MSIV may be taken OOS (shut) under all OOS Options, as long as core thermal power is maintained 5 75% of 2957 MWth (Reference 3).

Table 8-1 Core Thermal Power Restriction for OOS Conditions (Reference 3)

Core Thermal Power Restriction Cycle Exposure Number of Safety EOOS Condition (% of Rated Power) (MWd/MTU) Valves Available (Reference 9)

Base, PLUOOS, TCV Slow Closure <100 Entire Cycle 8 of 9 TBVOOS < 100 Entire Cycle 8 of 9 One TCVlTSV Stuck See Table 8-2 Entire Cycle 8 of 9 Closed________________ ______ __

Table 8-2 Core Thermal Power Restriction for One TCV/TSV Stuck Closed Based on the Minimum Available Total Reactor Vessel Steam Flow Capability (Reference 3)

Core Thermal Power Minimum Available Total Number of Available TBV's Required Restriction Reactor Vessel Steam Flow to Prevent System Pressurizationt

(% of Rated Power) Capacity (% of 11.713 Mlb/hr)

<75 82.5 1.9

< 80 88.1 3.4

<85 94.7 5.2

< 90 100.6 6.8 fBased on a nominal capacity of 3.7% of rated steam flow for each turbine bypass valve. The maximum power level assumed for operation with 3 TCVs and one TBVOOS is 75% of rated power with 2 TBVs available to limit system pressurization. Operation above the 75% of rated core thermal power requires raising the MCFL setpoint and/or increasing TBV availability to increase the available total reactor vessel steam flow capability.

Page 45 of 47

COLR Quad Cities 2 Cycle 21 Revision 0

9. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documents:
1. Westinghouse Topical Report CENPD-300-P-A, "Reference Safety Report for Boiling Water Reactor Reload Fuel," July 1996.
2. Westinghouse Topical Report CENPD-390-P-A, 'The Advanced PHOENIX and POLCA Codes for Nuclear Design of Boiling Water Reactors," December 2000.
3. Westinghouse Report WCAP-1 6081 -P-A, "1 0x1 0 SVEA Fuel Critical Power Experiments and CPR Correlation: SVEA-96 Optima2," March 2005.
4. Westinghouse Report WCAP-1 6081-P-A Addendum 1-A, Revision 0, "SVEA-96 Optima2 CPR Correlation (D4): High and Low Flow Applications", March 2009.
5. Westinghouse Report WCAP-16081 -P-A Addendum 2-A, Revision 0, "SVEA-96 Optima2 CPR Correlation (D4): Modified R-factors for Part-Length Rods", February 2009.
6. Westinghouse Report WCAP-1 5682-P-A, 'Westinghouse BWR ECCS Evaluation Model:

Supplement 2 to Code Description, Qualification and Application," April 2003.

7. Westinghouse Report WCAP-16078-P-A, 'Westinghouse BWR ECCS Evaluation Model:

Supplement 3 to Code Description, Qualification and Application to SVEA-96 Optima2 Fuel,"

November 2004.

8. Westinghouse Topical Report WCAP-15836-P-A, "Fuel Rod Design Methods for Boiling Water Reactors -. Supplement 1," April 2006.
9. Westinghouse Topical Report WCAP-15942-P-A, "Fuel Assembly Mechanical Design Methodology for Boiling Water Reactors, Supplement 1 to CENPD-287-P-A," March 2006.
10. NEDO-32465-A, "BWR Owners' Group Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology for Reload Applications", August 1996.

Page 46 of 47

COLR Quad Cities 2 Cycle 21 Revision 0

10. References
1. Exelon Generation Company, LLC and MidAmerican Energy Company, Docket No. 50-265, Quad Cities Nuclear Power Station, Unit 2, Renewed Facility Operating License, License No. DPR-30.
2. NRC Letter from D. M. Crutchfield to All Power Reactor Licensees and Applicants, Generic Letter 88-16; Concerning the Removal of Cycle-Specific Parameter Limits from Tech Specs, October 3, 1988.
3. Westinghouse Document, NF-BEX-09-188, Revision 0, "Quad Cities Nuclear Power Station Unit 2 Cycle 21 Reload Licensing Report", January 2010.
4. Westinghouse Document, NF-BEX-05-151, Revision 0, "Final Report Quad Cities 2 Cycle 19 Bundle Designs", October 12, 2005. (Attachment 3 to EC/FCP 354483-02)
5. Westinghouse Document, NF-BEX-07-95-NP, Revision 1, "Quad Cities Nuclear Power Station Unit 2 Cycle 19 MAPLHGR Report", July 2007. (Attachment 15 to EC/FCP 360358-05)
6. Westinghouse Document, NF-BEX-07-177, Revision 0, "Final Report for Quad Cities 2 Cycle 20 Bundle Designs", September 7, 2007. (Attachment 3 to EC/FCP 364632-00)
7. Westinghouse Document, NF-BEX-08-1, Revision 0, "Quad Cities Nuclear Power Station Unit 2 Cycle 20 Reload Licensing Report", January 2008. (Attachment 15 to EC/FCP 364632-00)
8. Westinghouse Letter NF-BEX-09-133, "Bundle Design Report for Quad Cities 2 Cycle 21", August 27, 2009.
9. Westinghouse Document, NF-BEX-09-187, Revision 0, "Quad Cities Nuclear Power Station Unit 2 Cycle 21 Reload Engineering Report", January 2010.
10. GE Document, GE DRF C51-00217-01, "Instrument Setpoint Calculation Nuclear Instrumentation, Rod Block Monitor, Commonwealth Edison Company, Quad Cities 1 & 2,"

December 14,1999. (Attachment A to Exelon Design Analysis, QDC-0700-1-1419, Revision 0)

11. Exelon Letter, NF-MW:02-0081, "Approval of GE Evaluation of Dresden and Quad Cities Extended Final Feedwater Temperature Reduction," Carlos de la Hoz to Doug Wise and Alex Misak, August 27, 2002.
12. Technical Specifications for Quad Cities 1 and 2, Table 3.1.4-1, "Control Rod Scram Times".
13. FANP Letter, NJC:04:031/FAB04-496, "Startup with TIP Equipment Out of Service," April 20, 2004 (EC 348897-00).
14. Exelon TODI QDC-09-023, Revision 0, "OPL-W Parameters for Quad Unit 2 Cycle 21 Transient Analysis," July 20, 2009. (Attachment 13 to EC/FCP 375564-00)

Page 47 of 47