SVP-09-028, Core Operating Limits Report Cycle 21
ML091470188 | |
Person / Time | |
---|---|
Site: | Quad Cities |
Issue date: | 05/20/2009 |
From: | Tulon T Exelon Generation Co, Exelon Nuclear |
To: | Document Control Desk, Office of Nuclear Reactor Regulation |
References | |
SVP-09-028 | |
Download: ML091470188 (44) | |
Text
Exeln.
Exelon Generation Company, LLC www.exeloncorp.com Nuclear Quad Cities Nuclear Power Station 22710 206th Avenue North Cordova, IL61242-9740 SVP-09-028 May 20, 2009 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D.C. 20555 Quad Cities Nuclear Power Station, Unit 1 Renewed Facility Operating License No. DPR-29 NRC Docket No. 50-254
Subject:
Core Operating Limits Report for Quad Cities Unit 1 Cycle 21 Quad Cities Nuclear Power Station Unit 1 was shutdown for Refuel Outage 20 (Q1 R20) on April 27, 2009. In accordance with Technical Specifications Section 5.6.5.d, enclosed is the Core Operating Limits Report (COLR) for Quad Cities Unit 1 Cycle 21.
Should you have any questions concerning this letter, please contact Mr. Wally J. Beck at (309) 227-2800.
Respectfully,
~9thy J.Tulon eVice President uad Cities Nuclear Power Station
Enclosure:
Core Operating Limits Report for Quad Cities Unit 1 Cycle 21 cc: Regional Administrator - NRC Region III NRC Senior Resident Inspector - Quad Cities Nuclear Power Station
.A)oC!
Enclosure Core Operating Limits Report for Quad Cities Unit I Cycle 21
COLR Quad Cities 1 Revision 0 Page 1 Quad Cities Unit 1 Cycle 21 Core Operating Limits Report Revision 0 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 2 Table of Contents
- 1. Terms and Definitions ................................................................ 5
- 2. General Information ................................................................... 6
- 3. Average Planar Linear Heat Generation Rate ........................... 7
- 4. Operating Limit Minimum Critical Power Ratio ........................ 17 4.1. Manual Flow Control MCPR Limits ....................................... 17 4.1.1. Power-Dependent MCPR ................................................. 17 4.1.2. Flow-Dependent MCPR ..................................................... 17 4.2. Automatic Flow Control MCPR Limits .................................. 17 4.3. S cram T im e ......................................................................... . 18 4.4. Recirculation Pump Motor Generator Settings ..................... 18
- 5. Linear Heat Generation Rate ................................................... 28
- 6. Rod Block Monitor ................................................................... 36
- 7. Stability Protection Setpoints .................................................. 37
- 8. Modes of Operation ................................................................ 38
- 9. Methodology .......................................................................... .. 40
- 10. R eferences .......................................................................... .. 41 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 3 List of Tables Table 3-1 MAPLHGR for bundle(s):
GE14-P1ODNAB409-17GZ-10OT-145-T6-2825 GE14-P1ODNAB408-15GZ-10OT-145-T6-2826 .............................................. 7 Table 3-2 MAPLHGR SLO m ultiplier for GE Fuel .......................................................... 7 Table 3-3 MAPLHGR for bundle/lattice:
OPT2-3.99-15GZ8.00-3G6.00/Lattices 101, 102,103, and 108 .......................... 8 Table 3-4 MAPLHGR for bundle/lattice:
OPT2-3.99-15GZ8.00-3G6.00/Lattice 104 ....................................................... 8 Table 3-5 MAPLHGR for bundle/lattice:
OPT2-3.99-15GZ8.00-3G6.00/Lattice 105 OPT2-4.00-13GZ8.00-3G6.00/Lattice 105 ........................................................ 9 Table 3-6 MAPLHGR for bundle/lattice:
OPT2-3.99-1 5GZ8.00-3G6.00 OPT2-4.00-13GZ8.00-3G6.00 Lattices 106 and 107 .................................... ............................................. 9 Table 3-7 MAPLHGR for bundle/lattice:
OPT2-4.00-13GZ8.00-3G6.00 Lattices 101,108, 109, and 110 ................................................................. 10 Table 3-8 MAPLHGR for bundle/lattice:
OPT2-4.00-13GZ8.00-3G6.00/Lattice 111 .................................................... 10 Table 3-9 MAPLHGR for bundle/lattice:
OPT2-4.05-12GZ7.00-2G6.00 Lattices 101,108, 112, and 113 ................................................................... 11 Table 3-10 MAPLHGR for bundle/lattice:
OPT2-4.05-12GZ7.00-2G6.00 Lattices 114 and 115 ............................................................................... 11 Table 3-11 MAPLHGR for bundle/lattice:
OPT2-4.05-12GZ7.00-2G6.00/Lattice 116 .................................................... 12 Table 3-12 MAPLHGR for bundle/lattice:
OPT2-3.98-18GZ8.00/Lattices 101,108, and 117 ......................................... 12 Table 3-13 MAPLHGR for bundle/lattice:
OPT2-3.98-18GZ8.00 Lattices 118 and 119 .............................................................................. 13 Table 3-14 MAPLHGR for bundle/lattice:
OPT2-3.98-18GZ8.00 Lattices 120, 121 and 122 ........................................................................ 13 Table 3-15 MAPLHGR for bundle/lattice:
OPT2-3.99-16GZ8.00/Lattices 101,108, and 123 ......................................... 14 Table 3-16 MAPLHGR for bundle/lattice:
OPT2-3.99-16GZ8.00 Lattices 124 and 125 ............................................................................... 14 Table 3-17 MAPLHGR for bundle/lattice:
OPT2-3.99-16GZ8.00 Lattices 126, 127 and 128 ............................................................................ 15 Table 3-18 MAPLHGR for bundle/lattice:
OPT2-4.01-14GZ6.00/Lattices 101, 108, and 129 ......................................... 15 Table 3-19 MAPLHGR for bundle/lattice:
OPT2-4.01-14GZ6.00 Lattices 130 and 131 ................................................................................ 16 Table 3-20 MAPLHGR for bundle/lattice:
OPT2-4.01-14GZ6.00 Lattices 132 and 133 .............................................................................. 16 Table 4-1 Scram T im es ...................................................................................... 18 Table 4-2 MCPR TSSS Based Operating Limits - Nominal FWT ..................................... 19 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 4 Table 4-3 MCPR TSSS Based Operating Limits - FWTR ........................................... 20 Table 4-4 MCPR ISS Based Operating Limits - Nominal FWT ..................... 21 Table 4-5 MCPR ISS Based Operating Limits - FWTR ............................................. 22 Table 4-6 MCPR NSS Based Operating Limits -Nominal FWT .................................... 23 Table 4-7 MCPR NSS Based Operating Limits - FWTR ................................................. 24 Table 4-8 MCPR(P) for GE and Westinghouse Fuel - Nominal FWT ............................ 25 Table 4-9 MCPR(P) for GE and Westinghouse Fuel - FWTR ...................................... 26 Table 4-10 MCPR(F) Limits for GE Fuel, DLO Operation ........................................... 27 Table 4-11 MCPR(F) Limits for GE Fuel, SLO Operation ........................................... 27 Table 4-12 MCPR(F) Limits for Westinghouse Fuel, DLO Operation .............................. 27 Table 4-13 MCPR(F) Limits for Westinghouse Fuel, SLO Operation ............................. 27 Table 5-1: LHGR Limit for GE14-P1ODNAB409-17GZ-100T-145-T6-2825 ...................... 28 Table 5-2: LHGR Limit for GE1 4-P1ODNAB408-15GZ-100T-145-T6-2826 ..................... 29 Table 5-3: LHGR Limit for GE14-P10DNAB409-17GZ-100T-145-T6-2825, Lattice 6828 ....... 30 Table 5-4: LHGR Limit for GE14-P1ODNAB408-15GZ-100T-145-T6-2826, Lattice 6834 ....... 31 Table 5-5: LHGR Limit for Westinghouse Optima2 Fuel OPT2-3.99-15GZ8.00-3G6.00 OPT2-4.00-13GZ8.00-3G6.00 OPT2-4.05-12GZ7.00-2G6.00 OPT2-3.98-18GZ8.00 OPT2-3.99-16GZ8.00 O PT2-4.01-14G Z6.00 .............................................................................. 31 Table 5-6 LHGRFAC(P) for GE Fuel, DLO .............................................................. 32 Table 5-7 LHGRFAC(P) for GE Fuel, SLO ............................................................. 32 Table 5-8 LHGRFAC(P) for Westinghouse Fuel ........................................................ 33 Table 5-9 LHGRFAC(F) Multipliers, GE Fuel, DLO, All Cases except TCV Stuck Closed ..... 34 Table 5-10 LHGRFAC(F) Multipliers, GE Fuel, DLO, TCV Stuck Closed ....................... 34 Table 5-11 LHGRFAC(F) Multipliers, GE Fuel, SLO, All Cases except TCV Stuck Closed ... 35 Table 5-12 LHGRFAC(F) Multipliers, GE Fuel, SLO, TCV Stuck Closed ........................ 35 Table 5-13 LHGRFAC(F) Multipliers, Westinghouse Fuel .......................................... 35 Table 8-1 Core Thermal Power Restriction for TBVOOS ............................................ 39 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 5
- 1. Terms and Definitions APLHGR Average planar linear heat generation rate APRM Average power range monitor AOO Anticipated Operational Occurrence ASD Adjustable Speed Drive BOC Beginning of cycle DEHC Digital Electro-Hydraulic Control DLO Dual loop operation EFPH Effective full power hour ELLLA Extended load line limit analysis EOC End of cycle EOOS Equipment out of service EOFPL End of full power life FFWTR Final Feedwater Temperature Reduction FWTR Feedwater temperature reduction FWHOOS Feedwater heater out of service FWT Feedwater temperature GEl4 GE14C fuel GNF Global Nuclear Fuel ICF Increased core flow ISS Intermediate scram speed LHGR Linear heat generation rate LHGRFAC(F) Flow dependent LHGR multiplier LHGRFAC(P) Power dependent LHGR multiplier LPRM Local power range monitor MAPLHGR Maximum average planar linear heat generation rate MAPRAT Maximum average planar ratio MCPR Minimum critical power ratio MCPR(F) Flow dependent MCPR MCPR(P) Power dependent MCPR MELLLA Maximum extended load line limit analysis MSIV Main steam isolation valve NSS Nominal Scram Speed OLMCPR Operating limit minimum critical power ratio OPRM Oscillation power, range monitor PBDA Period based detection algorithm PLUOOS Power load unbalance out of service PCOOS Pressure controller out of service RBM Rod block monitor RPTOOS Recirculation pump trip out of service RWE Rod withdrawal error SLMCPR Safety limit minimum critical power ratio SLO Single loop operation SRVOOS Safety-relief valve out of service TBVOOS Turbine bypass valve out of service TCV Turbine control valve TCVOOS Turbine control valve out of service TIP Traversing incore probe TSSS Technical Specification scram speed TSV Turbine stop valve TSVOOS Turbine stop valve out of service Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 6
- 2. General Information Power and flow dependent limits are listed for various power and flow levels. Linear interpolation is to be used to find intermediate values.
Rated core flow is 98 Mlb/hr. Operation up to 108% rated flow is licensed for this cycle. Licensed rated thermal power is 2957 MWth. For allowed operating regions, see plant power/flow map.
Coastdown is defined as any cycle exposure beyond the full power, all rods out condition with plant power slowly lowering to a lesser value while core flow is held constant.
MCPR(P) and MCPR(F) values are independent of scram time.
LHGRFAC(P) and LHGRFAC(F) values are independent of scram speed.
All thermal limits are analyzed to either NSS, ISS, or TSSS. Only MCPR limits vary with scram speed.
For thermal limit monitoring above 100% rated power or 100% rated core flow, the 100% rated power and the 100% core flow values, respectively, can be used unless otherwise indicated in the applicable table.
The OPRM PBDA trip settings are based, in part, on the cycle specific OLMCPR and the power dependent MCPR limits. Any change to the OLMCPR values and/or the power dependent MCPR limits should be evaluated for potential impact on the OPRM PBDA trip settings.
Quad Cities Unit 1 Cycle 21
COLR Quad Cities,1 Revision 0 Page 7
- 3. Average Planar Linear Heat Generation Rate The MAPLHGR values for the most limiting lattice (excluding natural uranium) of the GE14 bundle types as a function of average planar exposure is given in Table 3-1. During single, loop operation, these limits are multiplied by the SLO multiplier listed in Table 3-2.
For Optima2 fuel, lattice-specific MAPLHGR values for DLO and SLO are provided in Tables 3-3 through 3-20. Table 3-5 is based on the combination of limits from Reference 3 for Lattice 105, which is part of two types of Optima2 fuel bundles. For Optima2 fuel, the MAPLHGR for natural U lattices 101: Opt2-B0.71 and 108: Opt2-TO.71 must be set equal to the most restrictive MAPLHGR limits from among the enriched lattice types in the bundle (References 3 and 13).
Table 3-1 MAPLHGR for bundle(s):
GE1 4-P1 ODNAB409-17GZ-1 OOT-1 45-T6-2825 GEl 4-P1 ODNAB408-15GZ-1 OOT-1 45-T6-2826 (References 19, 27, and 28)
Avg. Planar Exposure MAPLHGR (GWd/MT) (kW/ft) 0.00 10.86 25.14 10.86 44.09 9.16 55.12 8.09 63.50 6.97 70.00 4.36 Table 3-2 MAPLHGR SLO multiplier for GE Fuel (Reference 19)
Fuelype SLO Fuel Type Multiplier GE14 0.77 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 8 Table 3-3 MAPLHGR for bundle/lattice:
OPT2-3.99-15GZ8.00-3G6.00/Lattices 101, 102, 103, and 108 (References 3 and 20)
Lattices 101: Opt2-BO.71 102: Opt2-B4.38-15G8.00-3G6.00 103: Opt2-BE4.47-15G8.00-3G6.00 108: Opt2-TO.71 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MT) (kW/ft) (kW/ft) 0.0 9.26 7.96 7.5 9.11 7.83 17.5 9.11 7.83 24.0 9.45 8.13 58.0 9.45 8.13 70.0 8.08 6.95 Table 3-4 MAPLHGR for bundle/lattice:
OPT2-3.99-15GZ8.00-3G6.00/Lattice 104 (References 3 and 20)
Lattice 104: Opt2-M4.47-15G8.00-3G6.00 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MT) (kW/ft) (kW/ft) 0.0 9.37 8.06 7.5 9.17 7.89 17.5 9.17 7.89 24.0 9.57 8.23 58.0 9.57 8.23 70.0 8.20 7.05 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 9 Table 3-5 MAPLHGR for bundle/lattice:
OPT2-3.99-15GZ8.00-3G6.00/Lattice 105 OPT2-4.00-13GZ8.00-3G6.00/Lattice 105 (References 3 and 20)
Lattice 105: Opt2-ME4.46-1 1G8.00-3G6.00 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MT) (kW/ft) (kW/ft) 0.0 9.37 8.06 7.5 9.17 7.89 17.5 9.17 7.89 24.0 9.57 8.23 58.0 9.57 8.23 70.0 8.20 7.05 Table 3-6 MAPLHGR for bundle/lattice:
OPT2-3.99-15GZ8.00-3G6.00 OPT2-4.00-13GZ8.00-3G6.00 Lattices 106 and 107 (References 3 and 20)
Lattices 106: Opt2-T4.46-11G8.00-3G6.00 107: Opt2-T4.46-14G6.00 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MT) (kW/ft) (kW/ft) 0.0 10.15 8.73 10.0 9.68 8.32 20.0 9.68 8.32 24.0 9.85 8.47 58.0 9.85 8.47 70.0 8.48 7.29 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 10 Table 3-7 MAPLHGR for bundle/lattice:
OPT2-4.00-13GZ8.00-3G6.00 Lattices 101,108,109, and 110 (References 3 and 20)
Lattices 101: Opt2-B0.71 108: Opt2-TO.71 109: Opt2-B4.40-13G8.00-3G6.00 110: Opt2-BE4.48-13G8.00-3G6.00 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MT) (kW/ft) (kW/ft) 0.0 9.50 8.17 10.0 9.25 7.96 20.0 9.25 7.96 24.0 9.45 8.13 58.0 9.45 8.13 70.0 8.08 6.95 Table 3-8 MAPLHGR for bundle/lattice:
OPT2-4.00-13GZ8.00-3G6.00/Lattice 111 (References 3 and 20)
Lattice 111: Opt2-M4.48-13G8.00-3G6.00 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MT) (kW/ft) (kW/ft) 0.0 9.59 8.25 10.0 9.32 8.02 20.0 9.32 8.02 24.0 9.57 8.23 58.0 9.57 8.23 70.0 8.20 7.05 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 11 Table 3-9 MAPLHGR for bundle/lattice:
OPT2-4.05-12GZ7.00-2G6.00 Lattices 101, 108, 112, and 113 (References 3 and 20)
Lattices 101: Opt2-B0.71 108: Opt2-TO.71 112: Opt2-B4.44-12G7.00-2G6.00 11 3:Ont2-BE4.55-1 0G7.00-2G6.00 113 : .... ...... ..___.._..
Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MT) (kW/ft) (kW/ft) 0.0 9.90 8.51 10.0 9.52 8.19 58.0 9.52 8.19 70.0 8.15 7.01 Table 3-10 MAPLHGR for bundle/lattice:
OPT2-4.05-12GZ7.00-2G6.00 Lattices 114 and 115 (References 3 and 20)
Lattices 114: Opt2-M4.55-10G7.00-2G6.00 115: Opt2-ME4.51-10G7.00-2G6.00 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MT) (kW/ft) (kW/ft) 0.0 10.33 8.88 12.5 9.69 8.33 58.0 9.69 8.33 70.0 8.32 7.16 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 12 Table 3-11 MAPLHGR for bundle/lattice:
OPT2-4.05-12GZ7.00-2G6.00/Lattice 116 (References 3 and 20)
Lattice 116: Opt2-T4.51-10G7.00-2G6.00 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MT) (kW/ft) (kW/ft) 0.0 10.66 9.17 10.0 9.91 8.52 58.0 9.91 8.52 70.0 8.54 7.34 Table 3-12 MAPLHGR for bundle/lattice:
OPT2-3.98-18GZ8.00/Lattices 101, 108, and 117 (References 13 and 22)
Lattice 101: Opt2-BO.71 108: Opt2-TO.71 117: Opt2-B4.37-18G8.00 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MTU) (kW/ft) (kW/ft) 0 8.32 7.16 5.0 8.65 7.44 15.0 9.04 7.77 20.0 9.40 8.09 24.0 9.66 8.31 30.0 9.51 8.18 58.0 9.51 8.18 70.0 8.14 7.00 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 13 Table 3-13 MAPLHGR for bundle/lattice:
OPT2-3.98-18GZ8.00 Lattices 118 and 119 (References 13 and 22)
Lattices 118: Opt2-BE4.47-18G8.00 119: ODt2-M4.47-18G8.00 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MTU) (kW/ft) (kW/ft) 0 8.35 7.18 5.0 8.68 7.46 15.0 9.14 7.86 20.0 9.52 8.19 24.0 9.79 8.42 30.0 9.63 8.28 58.0 9.63 8.28 70.0 8.26 7.10 Table 3-14 MAPLHGR for bundle/lattice:
OPT2-3.98-18GZ8.00 Lattices 120, 121 and 122 (References 13 and 22)
Lattices 120: Opt2-ME4.42-18G8.00 121: Opt2-T4.42-18G8.00 122: Opt2-T4.44-16G5.00 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MTU) (kW/ft) (kW/ft) 0 8.46 7.27 5.0 8.80 7.57 10.0 9.03 7.77 15.0 9.29 7.99 20.0 9.90 8.51 24.0 10.02 8.62 30.0 9.85 8.47 58.0 9.75 8.38 70.0 8.38 7.20 Quad Cities Unit 1 Cycle 21
COLR Quad Cities.1 Revision 0 Page 14 Table 3-15 MAPLHGR for bundle/lattice:
OPT2-3.99-16GZ8.00/Lattices 101, 108, and 123 (References 13 and 22)
Lattices 101: Opt2-B0.71 108: Opt2-TO.71 123: Opt2-B4.39-16G8.00 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MTU) (kWIft) (kW/ft) 0 8.60 7.40 5.0 8.90 7.65 15.0 9.18 7.90 20.0 9.44 8.12 24.0 9.65 8.30 30.0 9.49 8.16 58.0 9.49 8.16 70.0 8.12 6.98 Table 3-16 MAPLHGR for bundle/lattice:
OPT2-3.99-16GZ8.00 Lattices 124 and 125 (References 13 and 22)
Lattices 124: Opt2-BE4.49-16G8.00 125: Opt2-M4.49-16G8.00 Avg. Planar. DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MTU) (kW/ft) (kW/ft) 0 8.63 7.42 5.0 8.93 7.68 15.0 9.29 7.99 20.0 9.56 8.22 24.0 9.78 8.41 30.0 9.63 8.28 58.0 9.63 8.28 70.0 8.25 7.10 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 15 Table 3-17 MAPLHGR for bundle/lattice:
OPT2-3.99-16GZ8.00 Lattices 126, 127 and 128 (References 13 and 22)
Lattices 126: Opt2-ME4.44-16G8.00 127: Opt2-T4.44-16G8.00 128: Opt2-T4.46-14G5.00 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MTU) (kW/ft) (kW/ft) 0 8.78 7.55 5.0 9.08 7.81 15.0 9.44 8.12 20.0 9.92 8.53 24.0 10.00 8.60 30.0 9.92 8.53 58.0 9.77 8.40 70.0 8.40 7.22 Table 3-18 MAPLHGR for bundle/lattice:
OPT2-4.01-14GZ6.00/Lattices 101, 108, and 129 (References 13 and 22)
Lattices 101: Opt2-B0.71 108: Opt2-TO.71 129: Opt2-B4.40-14G6.00 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MTU) (kW/ft) (kWlft) 0 9.01 7.75 5.0 9.26 7.97 10.0 9.32 8.02 15.0 9.44 8.12 20.0 9.62 8.28 24.0 9.67 8.32 30.0 9.46 8.14 58.0 9.46 8.14 70.0 8.09 6.96 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 16 Table 3-19 MAPLHGR for bundle/lattice:
OPT2-4.01-14GZ6.00 Lattices 130 and 131 (References 13 and 22)
Lattices 130: Opt2-BE4.50-14G6.00 I ol1 a f% *t3_MA Mn.1 A*r, nn Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MTU) (kW/ft) (kW/ft) 0 9.06 7.79 5.0 9.32 8.02 10.0 9.42 8.11 15.0 9.57 8.23 20.0 9.75 8.39 24.0 9.80 8.43 30.0 9.59 8.25 58.0 9.59 8.25 70.0 8.22 7.07 Table 3-20 MAPLHGR for bundle/lattice:
OPT2-4.01-14GZ6.00 Lattices 132 and 133 (References 13 and 22)
Lattices 132: Opt2-ME4.46-14G6.00 133: Opt2-T4.48-12G6.00 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MTU) (kW/ft) (kW/ft) 0 9.24 7.94 5.0 9.51 8.18 10.0 9.58 8.24 15.0 9.85 8.47 20.0 10.05 8.64 24.0 10.08 8.67 30.0 9.88 8.50 58.0 9.88 8.50 70.0 8.51 7.32 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 17
- 4. Operating Limit Minimum Critical Power Ratio The Operating Limit Minimum Critical Power Ratios (OLMCPRs) for Q1C21 were established to protect the Safety Limit Minimum Critical Power Ratio (SLMCPR) for the anticipated operational occurrences. The SLMCPR values for DLO and SLO for Q1 C21 were determined to be 1.11 and 1.13 (Reference 23), respectively, which are unchanged from the NRC-approved values for the previous operating cycle (i.e., Q1C20). Likewise, the conservative OLMCPR adder applied to the GEl 4 fuel for Q1 C21 remains unchanged at the NRC-approved value of 0.934 (Reference 13).
In determining the SLMCPR values for Q1C21, Westinghouse applied the methodologies from CENPD-300-P-A, consistent with the manner specified in Limitations 1 through 6 and 8 of the NRC Safety Evaluation Report (SER) approving CENPD-300-P-A (References 15 and 23). The application of these methodologies was previously approved by the NRC for Q1 C20 in license amendment 237 to Renewed Facility Operating License DPR-29 (Reference 5).
Similarly, in both the determination and justification of the conservative adder applied to the GE14 fuel for Q1C21, Westinghouse complied with Limitation 7 of the SER approving CENPD-300-P-A (References 23 and 24). The NRC previously approved Westinghouse and Exelon compliance with Limitation 7 (i.e., for determination and justification of the conservative adder) in Reference 5.
In that the conservative adder for Q1 C21, and its justification, have not changed from previously-approved operating cycles, the NRC has already approved this determination and justification, as stated in Reference 25.
4.1. Manual Flow Control MCPR Limits The OLMCPR is determined for a given power and flow condition by evaluating the power-dependent MCPR and the flow-dependent MCPR and selecting the greater of the two.
4.1.1. Power-Dependent MCPR For operation at less than 38.5% of rated core thermal power, the OLMCPR as a function of core thermal power (MCPR(P)) is shown in Tables 4-8 and 4-9. For operation at greater than 38.5% of rated core thermal power, the OLMCPR as a function of core thermal power is determined by multiplying the applicable rated condition OLMCPR limit shown in Table 4-2 through 4-7 by the applicable MCPR multiplier K(P) given in Table 4-8 and 4-9. For operation at exactly 38.5% of rated core thermal power, the OLMCPR as a function of core thermal power is the maximum of either of the two aforementioned methods evaluated at 38.5% of rated core thermal power.
4.1.2. Flow-Dependent MCPR Tables 4-10 through 4-13 give the MCPR(F) limit as a function of the flow based on the applicable plant condition. The MCPR(F) limit determined from these tables is the flow dependent OLMCPR.
4.2. Automatic Flow Control MCPR Limits Automatic Flow Control MCPR Limits are not provided.
Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 18 4.3. Scram Time TSSS, ISS, and NSS refer to scram speeds. TSSS is the Technical Specification Scram Speed, ISS is the Intermediate Scram Speed, and NSS is the Nominal Scram Speed.
The scram time values are shown in Table 4-1. Reference 13 indicates that TSSS control rod insertion time values used in the analysis are conservative in comparison to the values shown in Table 4-1.
The NSS scram times are based on a conservative interpretation of scram time surveillance measurements. In the event that plant surveillance shows these scram insertion times to be exceeded, the MCPR limits are to default to the values which correspond to the ISS scram time. The ISS times have been chosen to provide an intermediate value between the NSS and the TSSS, but the interpolation between these values is not supported by Westinghouse methodology. In the event that the ISS times are exceeded, MCPR limits for the TSSS apply.
Table 4-1 Scram Times (References 13 and 18)
Control Rod Insertion Fraction TSSS (seconds) ISS (seconds) NSS (seconds)
(M) 5 0.48 0.360 0.324 20 0.89 0.720 0.694 50 1.98 1.580 1.510 90 3.44 . 2.800 2.670 4.4. Recirculation Pump Motor Generator Settings Cycle 21 was analyzed with a maximum core flow runout of 110%; therefore the ASD must be set to maintain core flow less than 110% (107.8 Mlb/hr) for all runout events (Reference 26). This value is consistent with the analyses of Reference 13.
Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 19 Table 4-2 MCPR TSSS Based Operating Limits - Nominal FWT (Reference 13)
Cycle Ex posure
< 13275 MWd/MT > 13275 MWd/MT EOOS Combination Fuel Type BASE Optima2 1.62 1.81 GE14 1.67 1.74 BASE SLO Optima2 1.65 1.85 GE14 1.71 1.78 Optim a2 1.63 1.82 PLUOOS GE14 1.70 1.80 Optim a2 1.66 1.86 PLUOOS SLO GE14 1.74 1.84 Optima2 1.77 1.90 TBVOOS GE14 1.81 1.88 Optim a2 1.81 1.94 TBVOOS SLO GE14 1.85 1.92 Optim a2 1.68 1.88 TCV SLOW CLOSURE GE14 1.73 1.82 Optima2 1.72 1.92 TCV SLOW CLOSURE SLO GE14 1.77 1.86 Optima2 1.62 1.81 TCV STUCK CLOSED GE14 1.67 1.74 Optima2 1.65 1.85 TCV STUCK CLOSED SLO GE14 1.71 1.78 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 20 Table 4-3 MCPR TSSS Based Operating Limits - FWTR (Reference 13)
Cycle Exposure
< 13275 MWd/MT > 13275 MWd/MT EOOS Combination Fuel Type BASE Optim a2 1.62 1.81 GE14 1.67 1.74 BASE SLO Optima2 1.65 1.85 GE14 1.71 1.78 Optima2 1.63 1.82 PLUOOS GE14 1.70 1.80 Optim a2 1.66 1.86 PLUOOS SLO GE14 1.74 1.84 Optima2 1.77 1.90 TBVOOS GE14 1.81 1.88 Optima2 1.81 1.94 TBVOOS SLO GE14 1.85 1.92 Optim a2 1.68 1.88 TCVSLOWCLOSURE GE14 1.73 1.82 Optima2 1.72 1.92 TCV SLOW CLOSURE SLO GE14 1.77 1.86 Optim a2 1.62 1.81 TCV STUCK CLOSED GE14 1.67 1.74 Optima2 1.65 1.85 TCV STUCK CLOSED SLO GE14 1.71 1.78 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 21 Table 4-4 MCPR ISS Based Operating Limits - Nominal FWT (Reference 13)
Cycle Exposure
< 13275 MWd/MT > 13275 MWd/MT EOOS Combination Fuel Type BASE Optim a2 1.43 1.53 GE14 1.64 1.64 BASE SLO Optima2 1.46 1.56 GE14 1.67 1.67 Optim a2 1.43 1.59 PLUOOS GE14 1.64 1.64 Optima2 1.46 1.62 PLUOOS SLO GE14 1.67 1.67 Optima2 1.52 1.69 TBVOOS GE14 1.64 1.67 Optim a2 1.55 1.73 TBVOOS SLO GE14 1.67 1.71 Optima2 1.45 1.60 TCV SLOW CLOSURE ,GE14 1.64 1.64 Optim a2 1.48 1.63 TCV SLOW CLOSURE SLO GE14 1.67 1.67 Optima2 1.43 1.53 TCV STUCK CLOSED GE14 1.64 1.64 Optim a2 1.46 1.56 TCV STUCK CLOSED SLO GEl4 1.67 1.67 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 22 Table 4-5 MCPR ISS Based Operating Limits - FWTR (Reference 13)
Cycle Exposure
< 13275 MWd/MT > 13275 MWd/MT EOOS Combination Fuel Type BASE Optim a2 1.44 1.53 GE14 1.64 1.64 BASE .SLO Optima2 1.47 1.56 GE14 1.67 1.67 Optima2 1.44 1.59 PLUOOS GE14 1.64 1.64 Optim a2 1.47 1.62 PLUOOS SLO GE14 1.67 1.67 Optim a2 1.53 1.69 TBVOOS GE14 1.64 1.67 Optim a2 1.56 1.73 TBVOOS SLO GE14 1.67 1.71 Optima2 1.45 1.60 TCV SLOW CLOSURE GE14 1.64 1.64 Optima2 1.48 1.63 TCV SLOW CLOSURE SLO GE14 1.67 1.67 Optim a2 1.44 1.53 TCV STUCK CLOSED GE14 1.64 1.64 Optima2 1.47 1.56 TCV STUCK CLOSED SLO GE14 1.67 1.67 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 23 Table 4-6 MCPR NSS Based Operating Limits - Nominal FWT (Reference 13)
Cycle Exposure
< 13275 MWd/MT > 13275 MWd/MT EOOS Combination Fuel Type BASE Optima2 1.43 1.49 GE14 1.64 1.64 BASE SLO Optima2 1.46 1.52 GE14 1.67 1.67 Optima2 1.43 1.54 PLUOOS GE14 1.64 1.64 Optima2 1.46 1.57 PLUOOS SLO GE14 1.67 1.67 Optim a2 1.51 1.64 TBVOOS GE14 1.64 1.64 Optim a2 1.54 1.67 TBVOOS SLO GE14 1.67 1.67 Optima2 1.43 1.57 TCV SLOW CLOSURE GE14 1.64 1.64 Optim a2 1.46 1.60 TCV SLOW CLOSURE SLO GE14 1.67 1.67 Optim a2 1.43 1.49 TCV STUCK CLOSED GE14 1.64 1.64 Optima2 1.46 1.52 TCV STUCK CLOSED SLO GE14 1.67 1.67 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 24 Table 4-7 MCPR NSS Based Operating Limits - FWTR (Reference 13)
Cycle Exposure
< 13275 MWd/MT > 13275 MWd/MT EOOS Combination Fuel Type BASE Optim a2 1.43 1.52 GE14 1.64 1.64 BASE SLO Optima2 1.46 1.55 GE14 1.67 1.67 Optima2 1.43 1.54 PLUOOS GE14 1.64 1.64 Optim a2 1.46 1.57 PLUOOS SLO GE14 1.67 1.67 Optima2 1.52 1.64 TBVOOS GE14 1.64 1.65 Optim a2 1.55 1.67 TBVOOS SLO GE14 1.67 1.68 Optima2 1.43 1.57 TCV SLOW CLOSURE GE14 1.64 1.64 Optim a2 1.46 1.60 TCV SLOW CLOSURE SLO GE14 1.67 1.67 Optima2 1.43 1.52 TCV STUCK CLOSED GE14 1.64 1.64 Optim a2 1.46 1.55 TCV STUCK CLOSED SLO GE14 1.67 1.67 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 25 Table 4-8 MCPR(P) for GE and Westinghouse Fuel - Nominal FWT (Reference 13)
EQOS Core Core Thermal Power (% of rated)
Com o Flow (% 0 25 <38.5 -38.5 41 60 80 100 102 of Rated) Operating Limit MCPR Operating Limit MCPR Multiplier, Kp Base <60 2.95 2.41 2.12 1.40 1.35 1.17 1.07 1.00 1.00
>60 3.39 2.74 2.39 Base<60 3.01 2.46 2.16 1.40 1.35 1.17 1.07 1.00 1.00
>60 3.46 2.79 2.44
<_60 2.95 2.41 2.12 PLUOOS 1.69 1.65 1.37 1.07 1.00 1.00
>60 3.39 2.74 2.39 PLUOOS<60 3.01 2.46 2.16 1.69 1.65 1.37 1.07 1.00 1.00
>60 3.46 2.79 2.44
<60 4.45 3.19 2.51 1.40 1.35 1.17 1.07 1.00 1.00 TBVOOS
>60 4.82 3.54 2.85 TBVOOS<60 4.54 3.25 2.56 1.40 1.35 1.17 1.07 1.00 1.00
>60 4.91 3.61 2.91 TCV SLOW <60 2.95 2.41 2.12 1.69 1.65 1.37 1.08 1.00 1.00 CLOSURE
>60 3.39 2.74 2.39 TCV SLOW <60 3.01 2.46 2.16 1.69 1.65 1.37 1.08 1.00 1.00 CLOSURE SLO
>60 3.46 2.79 2.44
<_60 2.95 2.41 2.12 TCV STUCK 1.40 1.35 1.17 1.09 1.00 1.00 CLOSED
>60 3.39 2.74 2.39
<_60 3.01 2.46 2.16 TCV STUCK 1.40 1.35 1.17 1.09 1.00 1.00 CLOSED SLO
>60 3.46 2.79 2.44 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 26 Table 4-9 MCPR(P) for GE and Westinghouse Fuel - FWTR (Reference 13)
Core Core Thermal Power (% of rated)
EOOS Flow (%
Combination of 0 125 <38.5 Ž 38.5 41 60 80 100 1102 Rated) IM Operating Limit MCPR Operating Limit MCPR Multiplier, Kp
<60 2.95 2.41 2.12 Base 1.49 1.43 1.20 1.07 1.00 1.00
>60 3.39 2.74 2.39
_<60 3.01 2.46 2.16 Base SLO 1.49 1.43 1.20 1.07 1.00 1.00
>60 3.46 2.79 2.44
<60 2.95 2.41 2.12 PLUOOS 1.69 1.65 1.37 1.07 1.00 1.00
>60 3.39 2.74 2.39 PLUOOS<60 3.01 2.46 2.16 1.69 1.65 1.37 1.07 1.00 1.00
>60 3.46 2.79 2.44 TBVOOS <60 4.77 3.36 2.60 1.49 1.43 1.20 1.07 1.00 1.00
>60 4.88 3.63 2.96 TBVOOS<60 4.86 3.43 2.65 1.49 1.43 1.20 1.07 1.00 1.00
>60 4.97 3.70 3.02
_<60 2.95 2.41 2.12 TCV SLOW 6 1.69 1.65 1.37 1.08 1.00 1.00 CLOSURE
>60 3.39 2.74 2.39
_<60 3.01 2.46 2.16 TCV SLOW S 1.69 1.65 1.37 1.08 1.00 1.00 CLOSURE SLO
>60 3.46 2.79 2.44
<60 2.95 2.41 2.12 TCV STUCK - 1.49 1.43 1.20 1.09 1.00 1.00 CLOSED
>60 3.39 2.74 2.39
_<60 3.01 2.46 2.16 TCV STUCK _S6_ 1.49 1.43 1.20 1.09 1.00 1.00 CLOSED SLO >60 3.46 2.79 2.44 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 27 Table 4-10 MCPR(F) Limits for GE Fuel, DLO Operation (Reference 13)
Flow MCPR(F)
(% rated) Limit 110.0 1.26 100.0 1.26 80.0 1.44 60.0 1.63 40.0 1.80 20.0 2.00 0.0 2.21 Table 4-11 MCPR(F) Limits for GE Fuel, SLO Operation (Heterence 13)
Flow MCPR(F)
(% rated) Limit 110.0 1.29 100.0 1.29 80.0 1.46 60.0 1.66 40.0 1.84 20.0 2.03 0.0 2.24 Table 4-12 MCPR(F) Limits for Westinghouse Fuel, DLO Operation (Heterence 13)
Flow MCPR(F)
(% rated) Limit 110.0 1.17 100.0 1.17 80.0 1.34 60.0 1.49 40.0 1.55 20.0 1.59 0.0 1.63 Table 4-13 MCPR(F) Limits for Westinghouse Fuel, SLO Operation (Heterence 13)
Flow MCPR(F)
(% rated) Limit 110.0 1.20 100.0 1.20 80.0 1.36 60.0 1.52 40.0 1.57 20.0 1.62 0.0 1.67 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 28
- 5. Linear Heat Generation Rate The maximum LHGR shall not exceed the zero exposure limit of 12.46 kW/ft for the following fuel bundles.
This limit is based on a 13.40 kW/ft peak LHGR from Reference 7 thermal mechanical limit reduced to 12.46 kW/ft based on References 27 and 28 which require a 7% reduction in peak LHGR. The maximum LHGR in Tables 5-1 and 5-2 is limited to 12.46 kW/ft, while the LHGR in Tables 5-3 and 5-4 was conservatively reduced by 7% for all burnup values.
GE1 4-P1 ODNAB409-17GZ-1 OOT-1 45-T6-2825 GE1 4-P1 ODNAB408-15GZ-1 OOT-1 45-T6-2826 The thermal mechanical operating limit at rated conditions for the Optima2 fuel is established in terms of the maximum LHGR given in Table 5-5 as a function of rod nodal exposure. The limit applies to all Optima2 bundle designs.
The linear heat generation rate (LHGR) limit is the product of the exposure dependent LHGR limit from Tables 5-1 through 5-5 and the minimum of: the power dependent LHGR Factor, LHGRFAC(P), the flow dependent LHGR Factor, LHGRFAC(F), or the single loop operation (SLO) multiplication factor where applicable. The LHGRFAC(P) is determined from Tables 5-6, 5-7, and 5-8. The LHGRFAC(F) is determined from Table 5-9 through 5-13.
Table 5-1: LHGR Limit for GE14-P1ODNAB409-17GZ-100T-145-T6-2825 (References 14, 27, and 28)
Lattice 6824, 6825, 6826, 6827, 6829, and 6830 LHGR Limit kW/ft 6824: P1ODNAL071-NOG-10OT-T6-6824 6825: P1ODNAL456-4G7.0/11G6.0/2G3.0-10OT-T6-6825 6826: P1ODNAL456-4G7.0/10G6.0/2G3.0-10OT-T6-6826 6827: P1ODNAL448-14G6.0/2G3.0-10OT-E-T6-6827 6829: P1ODNAL071-NOG-100T-V-T6-6829 6830: P1ODNAL071-17GE-10OT-V-T6-6830 U02 Pellet Burnup LHGR Limit (GWd/MTU) (kW/ft) 0.0000 12.46 24.2600 12.46 63.5000 8.0000 70.0000 5.0000 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 29 Table 5-2: LHGR Limit for GE14-P1ODNAB408-15GZ-100T-145-T6-2826 (References 14, 27, and 28)
Lattice 6824, 6832, 6833, 6835, and 6836 LHGR Limit kW/ft 6824: P1ODNAL071-NOG-10OT-T6-6824 6832: P1ODNAL455-14G6.O/lG3.0-10OT-T6-6832 6833: P1ODNAL448-13G6.01 G3.0-10OT-E-T6-6833 6835: P1ODNAL071-NOG-10OT-V-T6-6835 6836: P1ODNAL071-15GE-10OT-V-T6-6836 U02 Pellet Burnup LHGR Limit (GWd/MTU) (kW/ft) 0.0000 12.46 24.2600 12.46 63.5000 8.0000 70.0000 5.0000 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 30 Table 5-3: LHGR Limit for GE14-P1ODNAB409-17GZ-100T-145-T6-2825, Lattice 6828 (References 14, 27, and 28)
Lattice 6828 LHGR Limit kW/ft 6828: P1ODNAL448-14G6.0/2G3.0-10OT-V-T6-6828 U02 Pellet Burnup LHGR Limit (GWd/MTU) j(kW/ft) 0.0 12.4600 15.0498 12.4600 16.3328 12.4268 17.6026 12.2925 18.8592 12.1597 20.1044 12.0280 22.5708 11.7672 26.2373 11.3796 32.2831 10.7404 38.2384 10.1107 44.0904 9.4921 49.8351 8.8735 55.4794 8.2595 61.0422 7.6971 66.5524 6.1298 70.0 4.6500 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 31 Table 5-4: LHGR Limit for GE14-P1ODNAB408-15GZ-100T-145-T6-2826, Lattice 6834 (References 14, 27, and 28)
Lattice 6834 LHGR Limit kW/ft 6834: P1ODNAL448-13G6.O/1 G3.0-10OT-V-T6-6834 U02 Pellet Burnup LHGR Limit (GWd/MTU) (kW/ft) 0.0 12.4600 14.7557 12.4600 16.0380 12.4580 17.3111 12.3234 18.5741 12.1898 19.8276 12.0573 22.3110 11.7947 25.9974 11.4050 32.0720 10.7627 38.0552 10.1302 43.9337 9.5086 49.7028 8.8987 55.3685 8.2950 60.9492 7.7083 66.4736 6.1636 70.0 4.6500 Table 5-5: LHGR Limit for Westinghouse Optima2 Fuel OPT2-3.99-15GZ8.00-3G6.00 OPT2-4.00-13GZ8.00-3G6.00 OPT2-4.05-12GZ7.00-2G6.00 OPT2-3.98-18GZ8.00 OPT2-3.99-16GZ8.00 OPT2-4.01-14GZ6.00 (Reference 13)
Rod Nodal Exposure LHGR Limit (GWd/MTU) (kW/ft) 0.00 13.11 14.00 13.11 72.00 6.48 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 32 Table 5-6 LHGRFAC(P) for GE14 Fuel, DLO (Reference 13)
Core Core Thermal Power (% of rated)
EOOS Combination Flow 0 25 -38.5 1 >38.5 70 70.01 1 80 100 1 102
(% of rated) LHGRFAC(P) Multiplier
< 60 Base 0.50 0.56 0.59 0.68 0.86 1.00 1.00
> 60
< 60 PLUOOS 0.54 0.54 0.54 0.54 1.00 1.00
> 60
< 60 0.22 0.48 TBVOOS 0.39 0.54 1.00 1.00
> 60 0.33 0.42
< 60 TCV Slow Closure 0.54 0.54 0.54 0.54 1.00 1.00
> 60
<60 TCV Stuck Closed 0.50 0 0.56 0.59 0.68 0.86 1.00 1.00
> 60 Table 5-7 LHGRFAC(P) for GE14 Fuel, SLO (Reference 13)
Core Core Thermal Power (% of rated)
EOOS Combination Flow
(% of 0 1 25 -538.5 1 > 38.5 1 70 1 CP* 100 102 rated) LHGRFAC(P) Multiplier
_<60 * .707 Base SLO 0.50 0.56 0.59 0.68 0.77 0.77 0.77
> 60
< 60 PLUOOS SLO 0.54 0.54 0.54 0.54 0.73 0.77 0.77 0.77
> 60 TBVOOS SLO <60 0.22 0.39 0.48 0.54 0.77 0.77 0.77
> 60 0.33 0.42
< 60 TCV Slow Closure SLO - 0.54 0.54 0.54 0.54 0.73 0.77 0.77 0.77
> 60
< 60 TCV Stuck Closed SLO -- 0.50 0.56 0.59 0.68 0.77 0.77 0.77
> 60
- CP is the cutoff power level and is equal to 59.25% for Base Case SLO and TCV Stuck Closed SLO, 70.01% for PLUOOS SLO, 69.25% for TBVOOS SLO, and 70.01% for TCV Slow Closure SLO.
Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 33 Table 5-8 LHGRFAC(P) for Westinghouse Fuel (Reference 13)
Core Thermal Power (% of rated)
EOOS Combination 0 125 ~38.5 1>38.5 41 1 60 801 1001 1021 LHGRFAC(P) Multiplier Base 0.54 0.63 0.68 0.72 0.73 0.81 0.86 1.00 1.00 Base SLO 0.54 0.63 0.68 0.72 0.73 0.81 0.86 1.00 1.00 PLUOOS 0.54 0.63 0.68 0.68 0.68 0.79 0.86 1.00 1.00 PLUOOS SLO 0.54 0.63 0.68 0.68 0.68 0.79 0.86 1.00 1.00 TBVOOS 0.26 0.44 0.54 0.67 0.68 0.75 0.81 1.00 1.00 TBVOOS SLO 0.26 0.44 0.54 0.67 0.68 0.75 0.81 1.00 1.00 TCV Slow Closure 0.54 0.63 0.68 0.68 0.68 0.79 0.86 1.00 1.00 TCV Slow Closure SLO' 0.54 0.63 0.68 0.68 0.68 0.79 0.86 1.00 1.00 TCV Stuck Closed 0.54 0.63 0.68 0.72 0.73 0.81 0.86 1.00 1.00 TCV Stuck Closed SLO 0.54 0.63 0.68 0.72 0.73 0.81 0.86 1.00 1.00 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 34 Table 5-9 LHGRFAC(F) Multipliers, GE Fuel, DLO, All Cases except TCV Stuck Closed (Reference 13)
Flow LHGRFAC(F)
(% rated) Multiplier 100.0 1.00 80.0 1.00 50.0 0.77 40.0 0.64 30.0 0.55 0.0 0.28 Table 5-10 LHGRFAC(F) Multipliers, GE Fuel, DLO, TCV Stuck Closed (Reference 13)
Flow LHGRFAC(F)'1
(% rated) Multiplier 100.0 1.00 98.3 1.00 80.0 0.86 50.0 0.63 40.0 0.50 30.0 0.41 0.0 0.14 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 35 Table 5-11 LHGRFAC(F) Multipliers, GE Fuel, SLO, All Cases except TCV Stuck Closed (Reference 13)
Flow LHGRFAC(F)
(% rated) Multiplier 100.0 0.77 50.0 0.77 40.0 0.64 30.0 0.55 0.0 0.28 Table 5-12 LHGRFAC(F) Multipliers, GE Fuel, SLO, TCV Stuck Closed (Reference 13)
Flow LHGRFAC(F)
(% rated) Multiplier 100.0 0.77 68.3 0.77 50.0 0.63 40.0 0.50 30.0 0.41 0.0 0.14 Table 5-13 LHGRFAC(F) Multipliers, Westinghouse Fuel (Reference 13)
Flow LHGRFAC(F)
(% rated) Multiplier 110.00 1.00 100.00 1.00 80.00 1.00 60.00 0.79 40.00 0.59 20.00 0.43 0.00 0.27 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 36
- 6. Rod Block Monitor The Rod Block Monitor Upscale Instrumentation Setpoints are determined from the relationships shown below (Reference 6):
ROD BLOCK MONITOR UPSCALE TRIP FUNCTION ALLOWABLE VALUE Two Recirculation Loop 0.65 Wd + 56.1%
Operation Single Recirculation Loop 0.65 Wd + 51.4%
Operation 0.65_W__+_51.4%
The setpoint may be lower/higher and will still comply with the rod withdrawal error (RWE) analysis because RWE is analyzed unblocked. (Reference 26)
The allowable value is clamped with a maximum value not to exceed the allowable value for a recirculation loop drive flow (Wd) of 100%
Wd - percent of recirculation loop drive flow required to produce a rated core flow of 98.0 Mlb/hr.
Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 37
- 7. Stability Protection Setpoints The OPRM PBDA Trip Settings (Reference 13):
PBDA Trip Amplitude Setpoint (Sp) Corresponding Maximum PD TConfirmation Count Setpoint (Np) 1.16 17 The PBDA is the only OPRM setting credited in the safety analysis as documented in the licensing basis for the OPRM system.
The OPRM PBDA trip settings are based, in part, on the cycle specific OLMCPR and the power dependent MCPR limits. Any change to the OLMCPR values and/or the power dependent MCPR limits should be evaluated for potential impact on the OPRM PBDA trip settings.
The OPRM PBDA trip settings are applicable when the OPRM system is declared operable, and the associated Technical Specifications are implemented.
Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 38
- 8. Modes of Operation The allowed Modes of Operation with the combinations of equipment out-of-service are as described below:
EOOS Options Thermal Limit Sets Base Base (DLO or SLO)
) See Table 8-1 for power restrictions TCV Slow Closure TCV Slow Closure (DLO or SLO)
TCV Stuck Closed TCV Stuck Closed (DLO or SLO)
Not applicable to combination of one TCV and one TSV stuck closed Operation is only allowed at or below 80%
rated thermal power TSV Stuck Closed TCV Stuck Closed (DLO or SLO)
> Not applicable to combination of one TCV and one TSV stuck closed Operation is only allowed at or below 80%
rated thermal power PCOOS TCV Slow Closure (DLO or SLO)
PCOOS and PLUOOS PLUOOS (DLO or SLO)
PCOOS and TCV Slow Closure TCV Slow Closure (DLO or SLO)
PCOOS and one TCV Stuck Closed > Operation is only allowed at or below 80%
rated thermal power and
> the more restrictive of the flow-dependent limits (established by one TCV stuck closed) and power dependent limits (established by TCV/TSV Stuck Closed, TCV slow closure, and PLUOOS limits) apply.
PLUOOS and one TCV Stuck Closed > Operation is only allowed at or below 80%
rated thermal power and
> The more restrictive of the flow-dependent limits (established by one TCV Stuck Closed) and power-dependent limits (established by TCV/TSV Stuck Closed, TCV.Slow Closure and PLUOOS limits) apply Common Notes - Applicable to all EOOS Combination
- 1. All modes are allowed for operation at MELLLA, ICF (up to 108%), full power operation to End of Full Power Life (EOFPL = 16556 MWd/MTU) + 25 Effective Full Power Days (EFPD) and a coastdown period to End of Cycle (EOC = 17211 MWd/MTU) (Reference 13), subject to the restrictions in Table 8-1). Each OOS Option may be combined with up to 18 TIP channels OOS provided the requirements (as clarified in Reference 16) for utilizing SUBTIP methodology are met and up to 50%
of the LPRMs OOS with an LPRM calibration frequency of 2500 EFPH (2000 EFPH +25%).
- 2. All analyses support the fastest Turbine Bypass Valve (assumed to be #1) OOS, with the remaining 8 Turbine Bypass Valves meeting the assumed opening profile in Reference 21. The analyses also support Turbine Bypass flow of 29.6% of vessel rated steam flow, equivalent to one Turbine Bypass Valve OOS (or partially closed Turbine Bypass Valves equivalent to one closed Turbine Bypass Valve), if the assumed opening profile (Reference 21) for the remaining Turbine Bypass Valves is met. If the opening profile is NOT met, or if the Turbine Bypass Valve system cannot pass an equivalent of 29.6% of vessel rated steam flow, utilize the TBVOOS condition.
Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 39
- 3. For all cases, including TBVOOS, the equivalent of 2 of the first 3.4 Turbine Bypass Valves must be capable of responding to pressure increases under DEHC control. The TBVOOS condition assumes that all of the Turbine Bypass Valves do not trip open on Turbine Control Valve fast closure or on Turbine Stop Valve closure but does require that the equivalent of 2 of the first 3.4 Turbine Bypass Valves must be capable of responding to pressure increases under DEHC control.
- 4. For both Base and EOOS DLO/SLO conditions, for operation at nominal FWT, the OLMCPR limit is applicable to a variation of +10°F/-30°F in feedwater temperature, and an operating steam dome pressure region bounded by the maximum value of 1020 psia and the minimum pressure curve in Reference 26.
- 5. For operation outside of nominal FWT, reduced FWT of up to 120°F is also supported for cycle operation through EOC subject to the restriction in Reference 11 for feedwater temperature reductions of greater than 100 OF. The restriction is to maintain less than 100% rod line. This includes, but is not limited to FWHOOS and FFTR. For a feedwater temperature reduction of between 30°F and 120 0 F, the reduced FWT limits should be applied.
- 6. A single MSIV may be taken OOS (closed) under any of the specified OOS Options if the core thermal power is maintained
- 75% of 2957 MWth (Reference 13).
Table 8-1 Core Thermal Power Restriction for TBVOOS (Reference 13)
Core Thermal Power Restriction (% of Rated Power) TiU Depletion (MWd/TU) Number of Safety Valves Available
_ 100.00 Entire Cycle 9 of 9
_*100.00 _<16,876 8 of 9
__97.00 > 16,876 8 of 9 Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 40
- 9. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documents:
- 1. Westinghouse Topical Report CENPD-300-P-A, "Reference Safety Report for Boiling Water Reactor Reload Fuel," July 1996.
- 2. Westinghouse Topical Report CENPD-390-P-A, "The Advanced PHOENIX and POLCA Codes for Nuclear Design of Boiling Water Reactors," December 2000.
- 3. Westinghouse Report WCAP-16081 -P-A, "10x10 SVEA Fuel Critical Power Experiments and CPR Correlation: SVEA-96 Optima2," March 2005.
- 4. Westinghouse Report WCAP-1 5682-P-A, 'Westinghouse BWR ECCS Evaluation Model:
Supplement 2 to Code Description, Qualification and Application," April 2003.
- 5. Westinghouse Report WCAP-16078-P-A, 'Westinghouse BWR ECCS Evaluation Model:
Supplement 3 to Code Description, Qualification and Application to SVEA-96 Optima2 Fuel,"
November 2004.
- 6. Westinghouse Topical Report WCAP-1 5836-P-A, "Fuel Rod Design Methods for Boiling Water Reactors - Supplement 1," April 2006.
- 7. Westinghouse Topical Report WCAP-1 5942-P-A, "Fuel Assembly Mechanical Design Methodology for Boiling Water Reactors, Supplement 1 to CENPD-287-P-A," March 2006.
- 8. NEDE-2401 1-P-A-15, "General Electric Standard Application for Reactor Fuel (GESTAR-Il),"
September 2005.
- 9. NEDO-32465-A, "BWR Owners' Group Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology for Reload Applications," August 1996.
Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 41
- 10. References
- 1. Exelon Generation Company, LLC, Docket No. 50-254, Quad Cities Nuclear Power Station, Unit 1 Facility Operating License, License No. DPR-29.
- 2. Letter from D. M. Crutchfield to All Power Reactor Licensees and Applicants, Generic Letter 88-16; Concerning the Removal of Cycle-Specific Parameter Limits from Tech Specs, October 3, 1988.
- 3. Westinghouse Document, WCAP-16728-P, Rev. 2, "Quad Cities Nuclear Power Station Unit 1 Cycle 20 Reload Licensing Report," June 2008 (TODI NF0700086, Revision 2).
- 4. GE Document, GE-NE-J1 1-03912-00-01-R3, "Dresden 2 and 3 Quad Cities 1 and 2 Equipment Out-Of-Service and Legacy Fuel Transient Analysis," September 2005 (TODI NFM01 00091 Sequence 03).
- 5. NRC Letter, "Quad Cities Nuclear Power Station, Units 1 and 2 - Issuance of Amendments RE: Safety Limit Minimum Critical Power Ratio (TAC NOS. MD7374 AND MD7375)
- 6. GE DRF C51-00217-01, "Instrument Setpoint Calculation Nuclear Instrumentation, Rod Block Monitor, Commonwealth Edison Company, Quad Cities 1 & 2," December 14,1999.
- 7. GE Design Basis Document, DB-001 2.03, Revision 1, "Fuel-Rod Thermal-Mechanical Performance Limits for GE14C," May 2005.
- 8. GE Document, NEDE-24011-P-A-15, "General Electric Standard Application for Reactor Fuel (GESTAR-II),"
September 2005.
- 9. Westinghouse Document, NF-BEX-08-106, Revision 0, "Final Task Report for Quad Cities Unit 1 Cycle 21 Reload Licensing Analysis Plan", September 2, 2008.
- 10. Letter from NRC (Joseph Williams) to Exelon Generation Company, LLC, dated May 3, 2007, Quad Cities Nuclear Power Station, Unit 1 - Issuance of Amendment RE: Request for Technical Specification Change for Minimum Critical Power Ratio Safety Limit (TAC No. MD4008).
- 11. Nuclear Fuels Letter, NF-MW:02-0081, "Approval of GE Evaluation of Dresden and Quad Cities Extended Final Feedwater Temperature Reduction," August 27, 2002.
- 12. Not Used.
- 13. Westinghouse Document, NF-BEX-09-42, Revision 1, "Quad Cities Nuclear Power Station Unit 1 Cycle 21 Reload Licensing Report," April 2009.
(Attachment 2 to FCP 352744 Rev. 1)
- 15. Exelon Letter RS-05-078, "Request for Licensing Amendment Regarding Transition to Westinghouse Fuel," Patrick R. Simpson to U.S. Nuclear Regulatory Commission, June 15, 2005. (Available in EDMS)
- 16. FANP Letter, NJC:04:031/FAB04-496, "Startup with TIP Equipment Out of Service," April 20, 2004 (EC 348897-00)
- 17. Not Used
- 18. Technical Specifications for Quad Cities 1 and 2, Table 3.1.4-1, "Control Rod Scram Times".
- 19. GNF Document, 0000-0028-1626-SRLR, Rev. 1, "Supplemental Reload Licensing Report for Quad Cities 1 Reload 18 Cycle 19," May 2005 (TODI NF0500036, Revision 1).
- 20. Westinghouse Document, NF-BEX-06-254, Revision 1, "Exelon Nuclear - Final Report Quad Cities 1 Cycle 20 Bundle Designs Revision 1", December 22, 2006.
- 21. Exelon TODI QDC-08-033, Revision 0, "OPL-W Parameters for Quad Cities Unit 1 Cycle 21 Transient Analysis,"
August 27, 2008.
- 22. Westinghouse Document, NF-BEX-08-129, Revision 1, "Final Report for Quad Cities 1 Cycle 21 Bundle Designs Revision 1", November 6, 2008.
Quad Cities Unit 1 Cycle 21
COLR Quad Cities 1 Revision 0 Page 42
- 23. Westinghouse Letter NF-BEX-09-01, "Quad Cities Unit 1 Cycle 21 SLMCPR," E. J. Mercier (Westinghouse) to Ed McVey, January 5, 2009. (Attachment 20 to FCP 370379)
- 24. Exelon Letter RS-06-009, "Additional Information Supporting Request for Licensing Amendment Regarding Transition to Westinghouse Fuel," Patrick R. Simpson to U.S. Nuclear Regulatory Commission, January 26, 2006.
- 25. NRC Memo, "Staff Position Regarding the Use of Methods Described In ABB/Westinghouse Topical Report CENPD-300-P-A, "Reference Safety Report for Boiling Water Reactor Reload Fuel," for Safety Limit Minimum Critical Power Ratio Determinations," Benjamin T. Parks (NRC) to Gregory Cranston (NRC), August 13, 2008.
(Attachment 23 to FCP 368721)
- 26. Westinghouse Report NF-BEX-09-36, "Quad Cities Nuclear Power Station Unit 1 Cycle 21 Reload Engineering Report," March 2009.
- 27. GE Report 0000-0085-9120-RO, "Evaluation of LOCA Analysis Effects from Installation of Adjustable Speed Drive for Dresden and Quad Cities", August 2008.
- 28. GEH Report GEH 0000-0084-1975 RO, "Summary of Engineering Review of GEH Evaluation Reports with Respect to ASD Modification in Dresden and Quad Cities," October 2008.
Quad Cities Unit 1 Cycle 21