SVP-08-021, Cycle 20 Core Operating Limits Report

From kanterella
Jump to navigation Jump to search
Cycle 20 Core Operating Limits Report
ML080950484
Person / Time
Site: Quad Cities Constellation icon.png
Issue date: 03/27/2008
From: Tulon T
Exelon Corp, Exelon Generation Co, Exelon Nuclear
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
SVP-08-021
Download: ML080950484 (39)


Text

ExeItn.

Exelon Generation Company, LLC Quad Cities Nuclear Power Station 22710 206th Avenue North Cordova, IL 61242-9740 www.exeloncorp.com Nuclear SVP-08-021 March 27, 2008 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D.C. 20555 Quad Cities Nuclear Power Station, Unit 2 Renewed Facility Operating License No. DPR-30 NRC Docket No. 50-265

Subject:

Core Operating Limits Report for Quad Cities Unit 2 Cycle 20 Quad Cities Nuclear Power Station Unit 2 was shutdown for Refuel Outage 19 (Q2R19) on March 3, 2008. In accordance with Technical Specifications Section 5.6.5.d, enclosed is-the Core Operating Limits Report (COLR) for Quad Cities Unit 2 Cycle 20.

Should you have any questions concerning this letter, please contact Mr. W. J. Beck at (309) 227-2800.

Respectfully, Timothy J.

ulon Site Vice President Quad Cities Nuclear Power Station

Attachment:

Core Operating Limits Report for Quad Cities Unit 2 Cycle 20 cc:

Regional Administrator - NRC Region III NRC Senior Resident Inspector - Quad Cities Nuclear Power Station koo (

Attachment Core Operating Limits Report for Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 1 Quad Cities Unit 2, Cycle 20 Core Operating Limits Report Revision 0 Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Pg Page 2 Table of Contents

1. References...................5
2. Terms and Definitions............................................................... 7
3. General Information................................................................. 8
4. Average Planar Linear Heat Generation Rate.............................. 9
5. Operating Limit Minimum Critical Power Ratio............................ 17 5.1. Manual Flow Control MCPR Limits............................................................

17 5.1.1. Power - Dependent MCPR.................................................................

17 5.1.2. Flow - Dependent MCPR..................................................................

17 5.2. Automatic Flow Control MCPR Limits.........................................................

17 5.3. Scram Time........................................

18 5.4. Recirculation Pump Motor Generator Settings................................................ 18

6. Linear Heat Generation Rate.................................................... 25
7. Rod Block Monitor.......................................................

......... 33

8. Stability Protection Setpoints........................................34
9. Modes of Operation................................................................ 35
10. Methodology.........................................................................

37 Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 3 List of Tables Table 4-1 MAPLHGR for bundles:

GE14-Pl ODNAB389-18GZ-1 OOT-145-T6-2650 GE14-P10DNAB418-16GZ-1 OOT-1 45-T6-2646....................................................... 9 Table 4-2 MAPLHGR for bundle/lattice:

Opt2-3.89-16GZ8.00-2G6.00 Lattices 91, 92, 93, and 98.................................................................................

9 Table 4-3 MAPLHGR for bundle/lattice:

Opt2-3.89-16GZ8.00-2G6.00 Lattices 94 and 95...........................................................................................

10 Table 4-4 MAPLHGR for bundle/lattice:

Opt2-3.89-16GZ8.00-2G6.00 Lattices 96 and 97...........................................................................................

10 Table 4-5 MAPLHGR for bundle/lattice:

Opt2-3.94-13GZ7.00-2G6.00 Lattices 91, 98, 99, and 100.............................................................................

11 Table 4-6 MAPLHGR for bundle/lattice:

Opt2-3.94-13GZ7.00-2G6.00 Lattices 101 and 102...............................................................................

11 Table 4-7 MAPLHGR for bundle/lattice:

Opt2-3.94-13GZ7.00-2G6.00 Lattice 103.................................................................................................... 12 Table 4-8 MAPLHGR for bundle/lattice:

Opt2-3.99-15GZ8.00-3G6.00 Lattice 104..................................................................................................

12 Table 4-9 MAPLHGR for bundle/lattice:

Opt2-3.99-15GZ8.00-3G6.00 Lattices 91, 98, and 105...................................................................................

13 Table 4-10 MAPLHGR for bundle/lattice:

Opt2-3.99-15GZ8.00-3G6.00 Lattices 106 and 107.......................................................................................

13 Table 4-11 MAPLHGR for bundle/lattice:

Opt2-3.99-15GZ8.00-3G6.00 Lattices 108 and 109.......................................................................................

14 Table 4-12 MAPLHGR for bundle/lattice:

Opt2-3.99-15GZ8.00-3G6.00 Lattice 110...................................................................................................

14 Table 4-13 MAPLHGR for bundle/lattice:

Opt2-4.05-12GZ7.00-2G6.00 Lattices 91, 98 and 111....................................................................................

15 Table 4-14 MAPLHGR for bundle/lattice:

Opt2-4.05-12GZ7.00-2G6.00 Lattices 112 and 113.........................................................................................

15 Table 4-15 MAPLHGR for bundle/lattice:

Opt2-4.05-12GZ7.00-2G6.00 Lattices 114 and 115.......................................................................................

16 Table 4-16 MAPLHGR SLO multiplier for GE Fuel...................................................... 16 Table 5-1 Scram Tim es........................................................................................

18 Table 5-2 MCPR TSSS Based Operating Limits - Nominal FWT and FWTR.......................

19 Table 5-3 MCPR ISS Based Operating Limits - Nominal FWT and FWTR.......................... 20 Table 5-4 MCPR NSS Based Operating Limits - Nominal FWT and FWTR..................... 21 Table 5-5 MCPR(P) for GE and Westinghouse Fuel - Nominal FWT.............................. 22 Table 5-6 MCPR(P) for GE and Westinghouse Fuel - FWTR..........................

23 Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 4 Table 5-7 MCPR(F) for GE and Westinghouse Fuel, DLO and SLO Operation................ 24 Table 6-1 LHGR Limit for GEl 4-P1ODNAB418-16GZ-10OT-145-T6-2646........................ 25 Table 6-2 LHGR Limit for GE14-Pl ODNAB418-16GZ-10OT-145-T6-2646, Lattice 5972......... 26 Table 6-3 LHGR Limit for GE14-P10DNAB418-16GZ-100T-145-T6-2646, Lattice 5973........ 27 Table 6-4 LHGR Limit for GE14-P1ODNAB389-18GZ-100T-145-T6-2650........................ 28 Table 6-5 LHGR Limit for GE14-P1ODNAB389-18GZ-100T-145-T6-2650, Lattice 5996......... 28 Table 6-6 LHGR Limit for GE14-P1ODNAB389-18GZ-100T-145-T6-2650, Lattice 5997......... 29 Table 6-7 LHGR Limit for Westinghouse Optima2 Fuel Opt2-3.89-16GZ8.00-2G6.00 Opt2-3.94-13GZ7.00-2G6.00 Opt2-3.99-15GZ8.00-3G6.00 O pt2-4.05-12GZ7.00-2G 6.00............................................................................. 29 Table 6-8 LHGRFAC(P) for GE Fuel, DLO................................................................

30 Table 6-9 LHGRFAC(P) for GE Fuel, SLO................................................................

30 Table 6-10 LHGRFAC(P) for W estinghouse Fuel......................................................

31 Table 6-11 LHGRFAC(F) Multipliers, GE Fuel, DLO and SLO......................................

32 Table 6-12 LHGRFAC(F) Multipliers, Westinghouse Fuel............................................ 32 Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 5

1. References
1. Exelon Generation Company, LLC and MidAmerican Energy Company, Docket No. 50-265, Quad Cities Nuclear Power Station, Unit 2, Renewed Facility Operating License, License No. DPR-30.
2.

NRC Letter from D. M. Crutchfield to All Power Reactor Licensees and Applicants, Generic Letter 88-16; Concerning the Removal of Cycle-Specific Parameter Limits from Tech Specs, October 3, 1988.

3. Westinghouse Document, NF-BEX-08-1, Revision 0, "Quad Cities Nuclear Power Station Unit 2 Cycle 20 Reload Licensing Report", January 2008. (Attachment 15 to EC/FCP 364632-00)
4. Westinghouse Document, NF-BEX-05-151, Revision 0, "Final Report Quad Cities 2 Cycle 19 Bundle Designs", October 12, 2005. (Attachment 3 to EC/FCP 354483-02)
5.

Westinghouse Document, NF-BEX-07-95-NP, Revision 1, "Quad Cities Nuclear Power Station Unit 2 Cycle 19 MAPLHGR Report", July 2007. (Attachment 15 to EC/FCP 360358-05)

6.

Westinghouse Document, NF-BEX-07-177, Revision 0, "Final Report for Quad Cities 2 Cycle 20 Bundle Designs", September 7, 2007. (Attachment 3 to EC/FCP 364632-00)

7.

GNF Letter, FRL-EXN-EE2-04-002, "Quad Cities Unit 2 Cycle 18 Fresh Fuel Peak Pellet LHGR Limits," F. Lindquist to F. Trikur, January 16, 2004. (Attachment 45 to EC/FCP 354483-02)

8.

GE Document, GE DRF C51-00217-01, "Instrument Setpoint Calculation Nuclear Instrumentation, Rod Block Monitor, Commonwealth Edison Company, Quad Cities 1 & 2," December 14, 1999. (Attachment A to Exelon Design Analysis, QDC-0700-1-1419, Revision 0)

9.

GE Design Basis Document, DB-0012.03, Revision 0, "Fuel-Rod Thermal-Mechanical Performance Limits for GE14C," May 2000.

10. Exelon Letter, NF-MW:02-0081, "Approval of GE Evaluation of Dresden and Quad Cities Extended Final Feedwater Temperature Reduction," Carlos de la Hoz to Doug Wise and Alex Misak, August 27, 2002.
11. Technical Specifications for Quad Cities 1 and 2, Table 3.1.4-1, "Control Rod Scram Times".
12. FANP Letter, NJC:04:031/FAB04-496, "Startup with TIP Equipment Out of Service," April 20, 2004 (EC 348897-00).
13. GNF Document, 0000-0024-0751-SRLR, Revision 1, "Supplemental Reload Licensing Report for Quad Cities Unit 2 Reload 17 Cycle 18," April 2005. (TODI NF0400018 Revision 1). (Attachment 44 to EC/FCP 354483-02)
14. Exelon TODI NF0700128 Revision 0, "Quad Cities 2 Cycle 20 Licensing Generic Inputs Report", June 29, 2007. (Attachment 6 to EC/FCP 364632-00)

Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 6

15. Exelon TODI QDC-07-027, Revision 0, "OPL-W Parameters for Quad Cities Unit 2 Cycle 20 Transient Analysis," July 20, 2007. (Attachment 7 to EC/FCP 364632-00)
16. Westinghouse Document, NF-BEX-08-2, Revision 0, "Quad Cities Nuclear Power Station Unit 2 Cycle 20 Reload Engineering Report", January 2008. (Attachment 16 to EC/FCP 364632-00)

Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 7

2. Terms and Definitions APLHGR APRM BOC DLO EFPD EFPH EOC EOOS EOFPL FWTR FWHOOS FWT GE14 GNF ICF ISS LHGR LHGRFAC(F)

LHGRFAC(P)

LPRM MAPLHGR MAPRAT MCPR MCPR(F)

MCPR(P)

MFLCPR MFLPD MSIV NSS OLMCPR OPRM PBDA PLUOOS PROOS RBM RWE SLMCPR SLO SRVOOS TBPOOS TCV TIP TSSS Average planar linear heat generation rate Average power range monitor Beginning of cycle Dual loop operation Effective full power days Effective full power hours End of cycle Equipment out of service End of full power life Feedwater temperature reduction Feedwater heater out of service Feedwater temperature GE14C fuel Global Nuclear Fuel Increased core flow Intermediate scram speed Linear heat generation rate Flow dependent LHGR multiplier Power dependent LHGR multiplier Local power range monitor Maximum average planar linear heat generation rate Maximum average planar ratio Minimum critical power ratio Flow dependent MCPR Power dependent MCPR Maximum fraction of limiting critical power ratio Maximum fraction of limiting power density Main steam isolation valve Nominal scram speed Operating limit minimum critical power ratio Oscillation power range monitor Period based detection algorithm Power load unbalance out of service Pressure regulator out of service Rod block monitor Rod withdrawal error Safety limit minimum critical power ratio Single loop operation Safety-relief valve out of service Turbine bypass valves out of service Turbine control valve Traversing incore probe Technical Specification scram speed Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 8

3. General Information Power and flow dependent limits are listed for various power and flow levels. Linear interpolation is to be used to find intermediate values.

Rated core flow is 98 Mlb/hr. Operation up to 108% rated flow is licensed for this cycle. Licensed rated thermal power is 2957 MWth.

MCPR(P) and MCPR(F) values are independent of scram time.

LHGRFAC(P) and LHGRFAC(F) values are independent of scram speed.

For thermal limit monitoring above 100% rated power or 100% rated core flow, the 100% rated power and the 100% core flow values, respectively, can be used unless otherwise indicated in the applicable table.

The OPRM PBDA trip settings are based, in part, on the cycle specific OLMCPR and the power dependent MCPR limits. Any change to the OLMCPR values and/or the power dependent MCPR limits should be evaluated for potential impact on the OPRM PBDA trip settings.

For both Base and EOOS DLO/SLO conditions, for operation at Nominal FWT, the OLMCPR limit is applicable to a variation of +1 0°F/-30°F in feedwater temperature. For operation outside of Nominal FWT, a feedwater temperature reduction of up to 120°F is supported for Base and EOOS DLO/SLO conditions for cycle operation through EOC subject to the restriction in Reference 10 for feedwater temperature reductions of greater than 100 OF. The restriction is to maintain less than 100% rod line. This includes, but is not limited to, FWHOOS and final FWTR.

For a feedwater temperature reduction of between 30°F and 120'F, the FWTR limits should be applied.

Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 9

4. Average Planar Linear Heat Generation Rate The MAPLHGR values for the most limiting lattice (excluding natural uranium) of the GE14 bundle types as a function of average planar exposure is given in Table 4-1. During single loop operation, these limits are multiplied by the SLO multiplier listed in Table 4-16.

For Optima2 fuel, lattice-specific MAPLHGR values for DLO and SLO are provided in Tables 4-2 through 4-15.

Table 4-1 MAPLHGR for bundles:

GE14-P1ODNAB389-18GZ-10OT-145-T6-2650 GE1 4-P1 ODNAB418-16GZ-1 OOT-1 45-T6-2646 (Reference 13)

Avg. Planar Exposure MAPLHGR (GWd/MT)

(kWlft) 0.00 11.68 16.00 11.68 22.05 11.34 55.12 8.19 63.50 6.97 70.00 4.36 Table 4-2 MAPLHGR for bundle/lattice:

Opt2-3.89-16GZ8.00-2G6.00 Lattices 91, 92, 93, and 98 (References 4 and 5)

Bundle Opt2-3.89-16GZ8.00-2G6.00 Lattices 91: Opt2-BO.71 92: Opt2-B4.27-16G8.00-2G6.OO 93: Opt2-BE4.38-14G8.00-2G6.00 98: Opt2-TO.71 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MT)

(kW/ft)

(kW/ft) 0.0 9.43 8.11 7.5 9.10 7.83 17.5 9.10 7.83 24.0 9.55 8.21 58.0 9.55 8.21 70.0 8.18 7.03 Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 10 Table 4-3 MAPLHGR for bundle/lattice:

Opt2-3.89-16GZ8.00-2G6.00 Lattices 94 and 95 (References 4 and 5)

Bundle Opt2-3.89-16GZ8.00-2G6.00 Lattices 94: Opt2-M4.38-14G8.00-2G6.00 95: Opt2-ME4.35-12G8.00-2G6.00 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MT)

(kW/ft)

(kW/ft) 0.0 9.74 8.38 7.5 9.30 8.00 17.5 9.30 8.00 24.0 9.68 8.33 58.0 9.68 8.33 70.0 8.31 7.15 Table 4-4 MAPLHGR for bundle/lattice:

Opt2 -3.8 9 -16GZ8.00-2G6.00 Lattices 96 and 97 (References 4 and 5)

Bundle Opt2-3.89-16GZ8.00-2G6.00 Lattices 96: Opt2-T4.35-12G8.00-2G6.00 97: Opt2-T4.35-14G6.00 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MT)

(kW/ft)

(kW/ft) 0.0 10.31 8.86 7.5 9.64 8.29 17.5 9.64 8.29 24.0 9.96 8.57 58.0 9.96 8.57 70.0 8.59 7.39 Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Table 4-5 MAPLHGR for bundle/lattice:

Opt2-3.94-13GZ7.00-2G6.00 Lattices 91, 98, 99, and 100 (References 4 and 5)

Page 11 Bundle Opt2-3.94-13GZ7.00-2G6.00 Lattices 91: Opt2-BO.71 98: Opt2-TO.71 99: Opt2-B4.33-13G7.00-2G6.00 100: Opt2-BE4.43-12G7.00-2G6.00 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MT)

(kW/ft)

(kW/ft) 0.0 9.82 8.44 10.0 9.50 8.17 58.0 9.50 8.17 70.0 8.12 6.99 Table 4-6 MAPLHGR for bundle/lattice:

Opt2-3.94-13GZ7.00-2G6.00 Lattices 101 and 102 (References 4 and 5)

Bundle Opt2-3.94-13GZ7.00-2G6.00 Lattices 101: Opt2-M4.43-12G7.00-2G6.00 102: Opt2-ME4.40-10G7.00-2G6.00 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MT)

(kW/ft)

(kW/ft) 0.0 10.22 8.79 10.0 9.64 8.29 58.0 9.64 8.29 70.0 8.27 7.11 Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Table 4-7 MAPLHGR for bundle/lattice:

Opt2 -3.94-13GZ7.00-2G6.00 Lattice 103 (References 4 and 5)

Bundle Opt2-3.94-13GZ7.00-2G6.00 Lattice 103: Opt2-T4.40-10G7.00-2G6.00 Page 12 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MT)

(kW/ft)

(kW/ft) 0.0 10.84 9.33 10.0 9.95 8.56 58.0 9.95 8.56 70.0 8.58 7.38 Table 4-8 MAPLHGR for bundle/lattice:

Opt2-3.99-15GZ8.00-3G6.00 Lattice 104 (References 3 and 6)

Bundle Opt2-3.99-15GZ8.00-3G6.00 Lattice 104: Opt2-B4.40-13G8.00-3G6.00 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MT)

(kW/ft)

(kW/ft) 0.0 9.52 8.19 7.5 9.25 7.95 17.5 9.25 7.95 24.0 9.47 8.15 58.0 9.47 8.15 70.0 8.10 6.97 Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 13 Table 4-9 MAPLHGR for bundle/lattice:

Opt2-3.99-15GZ8.00-3G6.00 Lattices 91, 98 and 105 (References 3 and 6) 1 Bundle Opt2-3.99-15GZ8.00-3G6.00 Lattices 91: Opt2-BO.71 98: Opt2-TO.71 105: Opt2-B4.38-15G8.00-3G6.00 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MT)

(kW/ft)

(kW/ft) 0.0 9.28 7.98 7.5 9.12 7.85 17.5 9.12 7.85 24.0 9.48 8.15 58.0 9.48 8.15 70.0 8.11 6.97 Table 4-10 MAPLHGR for bundle/lattice:

Opt2-3.99-15GZ8.00-3G6.00 Lattices 106 and 107 (References 3 and 6)

Bundle Opt2-3.99-15GZ8.00-3G6.00 Lattices 106: Opt2-BE4.47-15G8.00-3G6.00 107: Opt2-M4.47-15G8.00-3G6.00 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MT)

(kW/ft)

(kW/ft) 0.0 9.39 8.08 7.5 9.18 7.90 17.5 9.18 7.90 24.0 9.60 8.25 58.0 9.60 8.25 70.0 8.22 7.07 Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 14 Table 4-11 MAPLHGR for bundle/lattice:

Opt2-3.99-15GZ8.00-3G6.00 Lattices 108 and 109 (References 3 and 6)

Bundle Opt2-3.99-15GZ8.00-3G6.00 Lattices 108: Opt2-ME4.46-11G8.00-3G6.00 109: Opt2-T4.46-1 1 G8.00-3G6.00 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MT)

(kW/ft)

(kW/ft) 0.0 10.17 8.75 7.5 9.68 8.32 17.5 9.68 8.32 24.0 9.87 8.49 58.0 9.87 8.49 70.0 8.50 7.31 Table 4-12 MAPLHGR for bundle/lattice:

Opt2-3.99-15GZ8.00-3G6.00 Lattice 110 (References 3 and 6)

Bundle Opt2-3.99-15GZ8.00-3G6.00 Lattice 110: Opt2-T4.46-14G6.00 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MT)

(kW/ft)

(kW/ft) 0.0 10.24 8.80 7.5 9.79 8.42 58.0 9.79 8.42 70.0 8.41 7.24 Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 15 Table 4-13 MAPLHGR for bundle/lattice:

Opt2-4.05-12GZ7.00-2G6.00 Lattices 91, 98 and 111 (References 3 and 6)

Bundle Opt2-4.05-12GZ7.00-2G6.00 Lattices 91: Opt2-BO.71 98: Opt2-TO.71 111: Opt2-B4.44-12G7.00-2G6.00 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MT)

(kW/ft)

(kW/ft) 0.0 9.92 8.53 10.0 9.54 8.20 58.0 9.54 8.20 70.0 8.16 7.02 Table 4-14 MAPLHGR for bundle/lattice:

Opt2-4.05-12GZ7.00-2G6.00 Lattices 112 and 113 (References 3 and 6)

Bundle Opt2-4.05-12GZ7.00-2G6.00 Lattices 112: Opt2-BE4.55-10G7.00-2G6.00 113: Opt2-M4.55-10G7.00-2G6.00 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MT)

(kW/ft)

(kW/ft) 0.0 10.35 8.90 10.0 9.71 8.35 58.0 9.71 8.35 70.0 8.33 7.17 Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 16 Table 4-15 MAPLHGR for bundle/lattice:

Opt2-4.05-12GZ7.00-2G6.00 Lattices 114 and 115 (References 3 and 6)

Bundle Opt2-4.05-12GZ7.00-2G6.00 Lattice 114: Opt2-ME4.51-10G7.00-2G6.00 115: Opt2-T4.51-10G7.00-2G6.00 Avg. Planar DLO SLO Exposure MAPLHGR MAPLHGR (GWd/MT)

(kW/ft)

(kW/ft) 0.0 10.69 9.19 10.0 9.92 8.53 58.0 9.92 8.53 70.0 8.55 7.36 Table 4-16 MAPLHGR SLO multiplier for GE Fuel (Reference 13)

Fuel~ype SLO Fuel Type Multiplier GE14 0.77 Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 17

5. Operating Limit Minimum Critical Power Ratio 5.1. Manual Flow Control MCPR Limits The OLMCPR is determined for a given power and flow condition by evaluating the power-dependent MCPR and the flow-dependent MCPR and selecting the greater of the two.

5.1.1. Power - Dependent MCPR For operation at less than 38.5% core thermal power, the OLMCPR as a function of core thermal power is shown in Tables 5-5 and 5-6. For operation at greater than 38.5% core thermal power, the OLMCPR as a function of core thermal power is determined by multiplying the applicable rated condition OLMCPR limit shown in Tables 5-2 through 5-4 by the applicable MCPR multiplier K(P) given in Tables 5-5 and 5-6. For operation at exactly 38.5% core thermal power, the OLMCPR as a function of core thermal power is the higher of either of the two methods evaluated at 38.5% core thermal power.

5.1.2. Flow - Dependent MCPR Table 5-7 gives the MCPR(F) limit as a function of the flow based on the applicable plant condition. The MCPR(F) limit determined from these tables is the flow dependent OLMCPR.

5.2. Automatic Flow Control MCPR Limits Automatic flow control MCPR limits are not provided.

Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 18 5.3. Scram Time TSSS, ISS, and NSS refer to scram speeds. TSSS is the Technical Specification Scram Speed, ISS is the Intermediate Scram Speed, and NSS is the Nominal Scram Speed.

The scram time values are shown in Table 5-1. The TSSS scram times shown in Table 5-1 are the same as those specified in the Technical Specifications (Reference 11).

Reference 3 indicates that the TSSS control rod insertion times that were actually used in the transient analysis are conservative with respect to the scram times specified in the Technical Specifications.

The NSS scram times are based on a conservative interpretation of scram time surveillance measurements. In the event that plant surveillance shows these scram insertion times to be exceeded, the MCPR limits are to default to the values that correspond to the ISS scram time. The ISS times have been chosen to provide an intermediate value between the NSS and the TSSS, but the interpolation between these values is not supported by Westinghouse methodology. In the event that the ISS times are exceeded, MCPR limits for the TSSS apply.

Table 5-1 Scram Times (References 3 and 11)

Control Rod tonFraon Rd TSSS (seconds)

ISS (seconds)

NSS (seconds)

Insertion Fraction (0/)

5 0.480 0.360 0.324 20 0.890 0.720 0.694 50 1.980 1.580 1.510 90 3.440 2.800 2.670 5.4. Recirculation Pump Motor Generator Settings Cycle 20 was analyzed with a maximum core flow runout of 110%; therefore the recirculation pump motor generator scoop tube mechanical and electrical stops must be set to maintain core flow less than 110% (107.8 Mlb/hr) for all runout events (Reference 14). This value is consistent with the analyses of Reference 3.

Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 19 Table 5-2 MCPR TSSS Based Operating Limits - Nominal (Reference 3)

FWT and FWTR Operating Limit MCPR, Operating Limit MCPR, EOOS Combination Fuel Type Nominal FWT FWTR Base Optima2 1.65 1.65 GE14 1.68 1.68 Base SLO Optima2 1.68 1.68 GE14 1.72 1.72 PLUOOS Optima2 1.73 1.73 GE14 1.76 1.76 PLUOOS SLO Optima2 1.77 1.77 GE14 1.80 1.80 TB POOS Optima2 1.83 1.83 GE14 1.82 1.82 TBPOOS SLO Optima2 1.87 1.87 GE14 1.86 1.86 TCV Slow Closure Optima2 1.74 1.74 GE14 1.79 1.79 TCV Slow Closure SLO Optima2 1.78 1.78 GE14 1.83 1.83 TCV Stuck Closed Optima2 1.65 1.65 GE14 1.68 1.68 TCV Stuck Closed SLO Optima2 1.68 1.68 GEl4 1.72 1.72 Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page.20 Table 5-3 MCPR ISS Based Operating Limits - Nominal FWT and FWTR (Reference 3)

EOOS Combination FuelType Operating Limit MCPR, Operating Limit MCPR, Nominal FWT FW"TR Base Optima2 1.52 1.58 GE14 1.62 1.62 Base SLO Optima2 1.55 1.61 GE14 1.65 1.65 PLUOOS Optima2 1.55 1.58 GE14 1.62 1.62 PLUOOS SLO Optima2 1.58 1.61 GE14 1.65 1.65 TBPOOS Optima2 1.63 1.63 GE14 1.62 1.62 TBPOOS SLO Optima2 1.66 1.66 GE14 1.65 1.65 TCV Slow Closure Optima2 1.55 1.58 GE14 1.62 1.62 TCV Slow Closure SLO Optima2 1.58 1.61 GE14 1.65 1.65 TCV Stuck Closed Optima2 1.52 1.58 GE14 1.62 1.62 TCV Stuck Closed SLO Optima2 1.55 1.61 GE14 1.65 1.65 Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 21 Table 5-4 MCPR NSS Based Operating Limits - Nominal FwVT and FWTR (Reference 3)

EOOS Combination Fuel Type Operating Limit MCPR, Operating Limit MCPR, Nominal FWT FWTR Base Optima2 1.50 1.56 GE14 1.62 1.62 Base SLO Optima2 1.53 1.59 GE14 1.65 1.65 PLUQOS Optima2 1.53 1.56 GE14 1.62 1.62 PLUOOS SLO Optima2 1.56 1.59 GE14 1.65 1.65 TBPOOS Optima2 1.61 1.61 GE14 1.62 1.62 TBPOOS SLO Optima2 1.64 1.64 GE14 1.65 1.65 TCV Slow Closure Optima2 1.53 1.56 GE14 1.62 1.62 TCV Slow Closure SLO Optima2 1.56 1.59 GE14 1.65 1.65 TCV Stuck Closed Optima2 1.50 1.56 GE14 1.62 1.62 TCV Stuck Closed SLO Optima2 1.53 1.59 GE14 1.65 1.65 Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 22 Table 5-5 MCPR(P) for GE and Westinghouse Fuel - Nominal FWT (Reference 3)

Core Flow Core Thermal Power (% of rated)

EOOS Combination

(% of 0

25 38.5 38.5 41 60 80 100 Rated)

Operating Limit MCPR Operating Limit MCPR Multiplier, Kp

<60 2.83 2.38 2.14 Base 1.36 1.33 1.16 1.06 1.00

>60 3.02 2.66 2.47

<60 2.90 2.43 2.18 Base SLO 1.36 1.33 1.16 1.06 1.00

>60 3.07 2.71 2.52

<60 2.83 2.38 2.14 PLUOOS 1.59 1.56 1.36 1.06 1.00

>60 3.02 2.66 2.47

<60 2.90 2.43 2.18 PLUOOS SLO 1.59 1.56 1.36 1.06 1.00

>60 3.07 2.71 2.52

<60 4.20 3.12 2.54 TBPOOS 1.36 1.33 1.16 1.06 1.00

>60 4.31 3.40 2.91

<60 4.28 3.18 2.59 TBPOOS SLO 1.36 1.33 1.16 1.06 1.00

>60 4.40 3.47 2.97

<60 2.83 2.38 2.14 TCV Slow Closure 1.60 1.57 1.37 1.06 1.00

>60 3.02 2.66 2.47 TCV Slow Closure

<60 2.90 2.43 2.18 SLO 1.60 1.57 1.37 1.06 1.00

>60 3.07 2.71 2.52

<60 2.83 2.38 2.14 TCV Stuck Closed 1.36 1.33 1.16 1.06 1.00

>60 3.02 2.66 2.47 V<60 2.90 2.43 2.18 TCV Stuck Closed 1.6 133 1.16 1.06 1.00 SLO 13

.3 11

.6 10

>60 3.07 2.71 2.52 Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 23 Table 5-6 MCPR(P) for GE and Westinghouse Fuel - FWTR (Reference 3)

Core Flow Core Thermal Power (% of rated)

EOOS Combination

(% of 0

25 38.5 38.5 1 41 60 80 100 Rated)

Operating Limit MCPR Operating Limit MCPR Multiplier, Kp

<60 2.83 2.38 2.14 Base 1.43 1.39 1.19 1.07 1.00

>60 3.02 2.66 2.47

<60 2.90 2.43 2.18 Base SLO 1.43 1.39 1.19 1.07 1.00

>60 3.07 2.71 2.52

<60 2.83 2.38 2.14 PLUOOS 1.59 1.56 1.36 1.07 1.00

>60 3.02 2.66 2.47

<60 2.90 2.43 2.18 PLUOOS SLO 1.59 1.56 1.36 1.07 1.00

>60 3.07 2.71 2.52

_<60 4.59 3.31 2.62 TBPOOS 1.43 1.39 1.19 1.07 1.00

>60 4.33 3.47 3.01

<60 4.67 3.37 2.67 TBPOOS SLO.

1.43 1.39 1.19 1.07 1.00

>60 4.42 3.54 3.07

<60 2.83 2.38 2.14 TCV Slow Closure 1.60 1.57 1.37 1.07 1.00

>60 3.02 2.66 2.47 TCV Slow Closure

<60 2.90 2.43 2.18 LO1.60 1.57 1.37 1.07 1.00

>60 3.07 2.71 2.52

<60 2.83 2.38 2.14 TCV Stuck Closed 1.43 1.39 1.19 1.07 1.00

>60 3.02 2.66 2.47

_<60 2.90 2.43 2.18 SLO Coe 1.43 1.39 1.19 1.07 1.00 SO>60 3.07 2.71 2.52 Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 24 Table 5-7 MCPR(F) for GE and Westinghouse Fuel, DLO and SLO Operation (Reference 3)

Operating Limit MCPR Core Flow

(% of rated)

Optima2 Fuel GE14 Fuel DLO SLO DLO SLO 0.0 1.75 1.78 2.04 2.06 20.0 1.67 1.70 1.93 1.95 40.0 1.59 1.62 1.82 1.84 60.0 1.51 1.54 1.62 1.63 80.0 1.35 1.37 1.42 1.44 100.0 1.17 1.19 1.23 1.24 110.0 1.17 1.19 1.23 1.24 Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 25

6. Linear Heat Generation Rate The maximum LHGR shall not exceed the zero exposure limit of 13.4 kW/ft for the following fuel bundles (Reference 9):

GE14-Pl ODNAB418-16GZ-1 OT-145-T6-2646 GE1 4-P1 ODNAB389-18GZ-1 OOT-1 45-T6-2650 The thermal mechanical operating limit at rated conditions for the Optima2 fuel is established in terms of the maximum LHGR given in Table 6-7 as a function of rod nodal exposure. The limit applies to all Optima2 bundle designs.

The linear heat generation rate (LHGR) limit is the product of the exposure dependent LHGR limit from Tables 6-1 through 6-7 and the minimum of: the power dependent LHGR factor, LHGRFAC(P) or the flow dependent LHGR factor, LHGRFAC(F) where applicable. The LHGRFAC(P) is determined from Table 6-8, 6-9, or 6-10. The LHGRFAC(F) is determined from Table 6-11 or 6-12.

Table 6-1 LHGR Limit for GE14-P1ODNAB418-16GZ-10OT-145-T6-2646 (Reference 7)

Lattices 5963, 5970, 5971, 5974 and 5975 Composite Limit kW/ft 5963: P10DNAL071-NOG-100T-T6-5963 5970: P1ODNAL465-16G7.0-10OT-T6-5970 5971: P1ODNAL465-13G7.0/3G6.0-10OT-T6-5971 5974: P1ODNAL071-NOG-10OT-V-T6-5974 5975: P1ODNAL071-16GE-100T-V-T6-5975 U02 Pellet Burnup Composite Limit (GWd/MTU)

(kW/ft) 0.0 13.4 16.0 13.4 63.5 8.0 70.0 5.0 Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 26 Table 6-2 LHGR Limit for GE14-P1ODNAB418-16GZ-100T-145-T6-2646, Lattice 5972 (Reference 7)

Lattice 5972 Composite Limit kW/ft P1ODNAL461-12G7.0/3G6.0-10OT-E-T6-5972 U02 Pellet Burnup Composite Limit (GWd/MTU)

(kWlft) 0.0000 13.4000 15.9515 13.4000 17.2857 13.2538 18.1089 13.1602 19.4140 13.0119 20.7050 12.8651 23.2463 12.5762 26.9800 12.1517 33.0780 11.4585 39.0585 10.7786 44.9195 10.0506 50.6634 9.3499 56.3043 8.7427 61.8691 8.1854 67.3941 6.2027 70.0000 5.0000 Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 27 Table 6-3 LHGR Limit for G E14-P 1ODNAB418-16GZ-10OT-145-T6-2646, Lattice 5973 (Reference 7)

Lattice 5973 Composite Limit kW/ft P1 ODNAL461-12G7.0/3G6.0-1 OOT-V-T6-5973 U02 Pellet Burnup Composite Limit (GWd/MTU) j (kW/ft) 0.0000 13.4000 14.6537 13.4000 16.0077 13.3991 17.3409 13.2476 18.1982 13.1501 19.5019 13.0019 20.7905 12.8554 23.3251 12.5672 27.0482 12.1440 33.1306 11.4525 39.0945 10.7607 44.9367 9.9688 50.6595 9.2608 56.2772 8.6476 61.8172 8.1267 67.3169 6.2384 70.0000 5.0000 Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 28 Table 6-4 LHGR Limit for GE14-P1ODNAB389-18GZ-10OT-145-T6-2650 (Reference 7)

Lattices 5963, 5994, 5995, 5998 and 5999 Composite Limit kW/ft 5963: P1ODNAL071-NOG-10OT-T6-5963 5994: P1ODNAL430-17G8.01 G3.0-10OT-T6-5994 5995:

P1ODNAL431-9G8.0/8G6.0/1G3.0-10OT-T6-5995 5998: P1ODNAL071-NOG-10OT-V-T6-5998 5999:

P1ODNAL071-18GE-10OT-V-T6-5999 U02 Pellet Burnup Composite Limit (GWd/MTU)

(kW/ft) 0.0 13.4 16.0 13.4 63.5 8.0 70.0 5.0 Table 6-5 LHGR Limit for GE14-P1ODNAB389-18GZ-100T-145-T6-2650, Lattice 5996 (Reference 7)

Lattice 5996 Composite Limit kW/ft P1 ODNAL430-7G8.0/8G6.0-1 OOT-E-T6-5996 U02 Pellet Burnup Composite Limit (GWd/MTU)

(kW/ft) 0.0000 13.4000 14.8906 13.4000 16.2580 13.3707 17.6015 13.2179 18.9215 13.0679 19.4423 13.0087 20.7453 12.8605 23.3142 12.5685 27.0881 12.1395 33.2434 11.4389 39.2913 10.5936 45.2308 9.8060 51.0564 9.1014 56.7750 8.4943 61.9432 8.0319 67.9800 5.9323 70.0000 5.0000 Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 29 Table 6-6 LHGR Limit for GE14-P1ODNAB389-18GZ-100T-145-T6-2650, Lattice 5997 (Reference 7)

Lattice 5997 Composite Limit kW/ft P1 ODNAL430-7G8.0/8G6.0-1 OOT-V-T6-5997 U02 Pellet Burnup Composite Limit (GWd/MTU)

(kW/ft) 0.0000 13.4000 14.9485 13.4000 16.3156 13.3641 17.6577 13.1592 18.9752 12.9330 19.3601 12.9427 20.6567 12.8235 23.2117 12.5211 26.9637 12.0810 33.0874 11.3527 39.1088 10.5071 45.0238 9.6894 50.6192 8.9710 56.3453 8.3308 62.0012 7.7843 67:6125 6.1019 70.0000 5.0000 Table 6-7 LHGR Limit for Westinghouse Optima2 Fuel Opt2-3.89-16GZ8.00-2G6.00 Opt2-3.94-13GZ7.00-2G6.00 Opt2-3.99-15GZ8.00-3G6.00 Opt2-4.05-12GZ7.00-2G6.00 (Reference 3)

Rod Nodal Exposure LHGR Limit (GWd/MTU)

(kW/ft) 0.00 13.11 14.00 13.11 72.00 6.48 Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 30 Table 6-8 LHGRFAC(P) for GE Fuel, DLO (Reference 3)

Core Flow Core Thermal Power (% of rated)

EOOS Combination

(% of 0

25 38.5 38.5 70 70 80 100 rated)

LHGRFAC(P) Multiplier

< 60 Base 0.50 0.56 0.59 0.68 0.86 1.00

< 60 PLUOOS 0.54 0.54 0.54 0.54 0.73 0.78 1.00

> 60

< 60 0.22 0.48 TBPOOS 0.39 0.54 1.00

> 60 0.33 0.42 TCV Slow Closure 0.54 0.54 0.54 0.54 0.73 0.78 *$

1.00

> 60

<60 TCV Stuck Closed 0.50 0.56 0.59 0.68 0.86 1.00

> 60

¢ *':-

':;/i 4%'

Table 6-9 LHGRFAC(P) for GE Fuel, SLO (Reference 3)

Core Flow Core Thermal Power (% of rated)

EOOS Combination

(% of 0

25 38.5 38.5 70 CP*

100 rated)

LHGRFAC(P) Multiplier

< 60 o',i*

Base SLO 0.50 0.56 0.59 0.68 0.77 0.77

<60 PLUOOS SLO 0.54 0.54 0.54 0.54 0.73 0.77 0.77

> 60

< 60 0.22 0.48 TBPOOS SLO 0.39 0.54 10.77 0.77

>60 0.33 0.42 TCV Slow Closure

_<60 0.5 0.54 0.54 0.54 0.73 0.77 0.77 SLO

>60 TCV Stuck Closed

-< 60

='** !;

Stc C60 0.50 0.56 0.59 0.68 0.77 0.77 SLO

> 60 G,.

CP is the cutoff power level and is equal to 59.25% for Base Case SLO and TCV Stuck Closed SLO, 70% for PLUOOS SLO, 69.25% for TBPOOS SLO, and 70% for TCV Slow Closure SLO.

Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 31 Table 6-10 LHGRFAC(P) for Westinghouse Fuel (Reference 3)

Core Thermal Power (% of rated)

EOOSCombination 38.5 1

41 60 80 100 102 LHGRFAC(P) Multiplier Base 0.46 0.61 0.69 0.70 0.71 0.77 0.82 1.00 1.00 Base SLO 0.46 0.61 0.69 0.70 0.71 0.77 0.82 1.00 1.00 PLUOOS 0.46 0.61 0.69 0.69 0.70 0.77 0.82 1.00 1.00 PLUOOS SLO 0.46 0.61 0.69 0.69 0.70 0.77 0.82 1.00 1.00 TBPOOS 0.26 0.43 0.52 0.68 0.69 0.74 0.78 1.00 1.00 TBPOOS SLO 0.26 0.43 0.52 0.68 0.69 0.74 0.78 1.00 1.00 TCV Slow Closure 0.46 0.61 0.69 0.69 0.70 0.77 0.82 1.00 1.00 TCV Slow Closure 0.46 0.61 0.69 0.69 0.70 0.77 0.82 1.00 1.00 SLO TCV Stuck Closed 0.46 0.61 0.69 0.70 0.71 0.77 0.82 1.00 1.00 TCV Stuck Closed 0.46 0.61 0.69 0.70 0.71 0.77 0.82 1.00 1.00 SLO Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 32 Table 6-11 LHGRFAC(F) Multipliers, GE Fuel, DLO and SLO (Reference 3)

DLO SLO CoreFlow 1 Al caes eceptAll cases except Core Flow All cases except TCV Stuck Closed TCV Stuck Closed TCV Stuck Closed I(% ofrated)

ITCV Stuck Closed ITVSukCoe 0.00 0.28 0.14 0.28 0.14 30.00 0.55 0.41 0.55 0.41 40.00 0.64 0.50 0.64 0.50 50.00 0.77 0.63 0.77 0.63 68.30 0.77 0.77 80.00 1.00 0.86 0.77 0.77 98.30 1.00 1.00 0.77 0.77 100.00 1.00 1.00 0.77 0.77 Table 6-12 LHGRFAC(F) Multipliers, Westinghouse Fuel (Reference 3)

Flow LHGRFAC(F)

(% rated)

Multiplier 0.00 0.27 20.00 0.40 40.00 0.53 60.00 0.76 80.00 1.00 100.00 1.00 110.00 1.00 Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 33

7. Rod Block Monitor The rod block monitor upscale instrumentation setpoints are determined from the relationships shown below (Reference 8):

ROD BLOCK MONITOR UPSCALE TRIP FUNCTION ALLOWABLE VALUE Two Recirculation Loop 0.65 Wd + 56.1%

Operation I

Single Recirculation Loop 0.65 Wd + 51.4%

Operation I

W The setpoint may be lower/higher and will still comply with the rod withdrawal error (RWE) analysis because RWE is analyzed unblocked.

The allowable value is clamped with a maximum value not to exceed the allowable value for a recirculation loop drive flow (Wd) of 100%.

Wd - percent of recirculation loop drive flow required to produce a rated core flow of 98 Mlb/hr.

Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 34

8. Stability Protection Setpoints The OPRM PBDA trip settings (Reference 3):

PBDA Trip Amplitude Setpoint (Sp)

Corresponding Maximum Confirmation Count Setpoint (Np) 1.14 16 The PBDA is the only OPRM setting credited in licensing basis for the OPRM system.

the safety analysis as documented in the The OPRM PBDA trip settings are based, in part, on the cycle specific OLMCPR and the power dependent MCPR limits.

Any change to the OLMCPR values and/or the power dependent MCPR limits should be evaluated for potential impact on the OPRM PBDA trip settings.

The OPRM PBDA trip settings are applicable when the OPRM system is declared operable, and the associated Technical Specifications are implemented.

Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 35

9. Modes of Operation The allowed Modes of Operation with the combinations of EOOS are as described below:

EOOS Options1 '2'6' 7"10 Operating Region Standard MELLLA ICF4 Coastdown3 Base, TSSS, ISS, or NSS Yes Yes Yes Yes Base SLO, TSSS, ISS, or NSS Yes Yes' No Yes TBPOOS, TSSS, ISS, or NSS Yes

Yes, Yes Yes TBPOOS SLO, TSSS, ISS, or NSS Yes Yes No Yes PLUOOS5 'u, TSSS, ISS, or NSS Yes Yes Yes Yes PLUOOS SLO5 '9, TSSS, ISS, or NSS Yes Yes No Yes TCV Slow Closure"'u, TSSS, ISS, or NSS Yes Yes Yes Yes TCV Slow Closure SLO"', TSSS, ISS, or NSS Yes Yes No Yes TCV Stuck Closedb'9, TSSS, ISS, or NSS Yes Yes Yes Yes TCV Stuck Closed SLO"', TSSS, ISS, or NSS Yes Yes No Yes 1 Each OOS Option may be combined with up to 18 TIP channels OOS provided the requirements (as clarified in Reference 12) for utilizing SUBTIP methodology are met and up to 50% of the LPRMs OOS with an LPRM calibration frequency of 2500 EFPH (2000 EFPH +25%).

2 All analyses support the fastest Turbine Bypass Valve (assumed to be #1) OOS, with the remaining 8 Turbine Bypass Valves meeting the assumed opening profile in Reference 15. The analyses also support Turbine Bypass flow of 29.6% of vessel rated steam flow, equivalent to one Turbine Bypass Valve OOS (or partially closed Turbine Bypass Valves equivalent to one closed Turbine Bypass Valve), if the assumed opening profile (Reference 15) for the remaining Turbine Bypass Valves is met. If the opening profile is NOT met, or if the Turbine Bypass Valve system cannot pass an equivalent of 29M6% of vessel rated steam flow, utilize the TBPOOS condition.

3 Coastdown is defined as any cycle exposure beyond the full power, all rods out,condition with plant power slowly lowering to a lesser value while core flow is held constant. Coastdown analysis has been performed with bounding assumption of full power operation up to a cycle exposure of 15,877 MWD/MTU + 25 EFPD, or approximately 16,450 MWD/MTU.

4 Operation up to 108% rated core flow is licensed for this cycle.

5 For operation with a pressure regulator out-of-service (PROOS), the TCV Slow Closure limits should be applied. For operation with a PROOS and TCV slow closure, the TCV slow closure limits are applicable.

For operation with a PROOS and PLUOOS, the PLUOOS limits are applicable. (Reference 3) 6 A single MSIV may be taken OOS (shut) under all OOS Options, as long as core thermal power is maintained < 75% of 2957 MWth (Reference 3).

7 For both Base and EOOS DLO/SLO conditions, for operation at nominal FWT, the OLMCPR limit is applicable to a variation of +10°F/-30°F in feedwater temperature, and an operating steam dome pressure region bounded by the maximum value of 1020 psia and the minimum pressure curve in Reference 16. For operation outside of nominal FWT, FW/TR of up to 120°F is also supported for cycle operation through EOC subject to the restriction in Reference 10 for feedwater temperature reductions of greater than 100 OF. The restriction is to maintain less than 100% rod line. This includes, but is not limited to FWHOOS and final FWTR. For a feedwater temperature reduction of between 30'F and 120'F, the FWTR limits should be applied.

8 For operation with one Turbine Stop Valve (TSV) Stuck Closed, the TCV Stuck Closed limits should be applied (Reference 3). One TSV Stuck Closed and one TCV Stuck Closed is not analyzed. For TSV Stuck Closed or TCV Stuck Closed, operation above 80% rated core thermal power is not analyzed.

9 For operation with a PROOS and TCV Stuck Closed, or for operation with a PLUOOS and Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 36 TCV Stuck Closed, operation is only allowed at or below 80% rated thermal power and the more restrictive of the flow-dependent limits (established by TCV Stuck Closed) and power-dependent limits (established by TCV Slow Closure and PLUOOS limits) apply. (Reference 3) 10 For the analyses to remain applicable, equivalent of 2 of the first 3.4 Turbine Bypass Valves must be capable of opening via the pressure control system while Turbine Bypass Valves #5-9 are allowed to be out of service. The TBPOOS condition assumes that all of the Turbine Bypass Valves do not trip open on Turbine Control Valve fast closure or on Turbine Stop Valve closure. For all cases except TBPOOS, the equivalent of 8 of 9 Turbine Bypass Valves (as stated in Note 2 above) are required to trip open on Turbine Control Valve fast closure or on Turbine Stop Valve closure.

Quad Cities Unit 2 Cycle 20

COLR Quad Cities 2 Cycle 20 Revision 0 Page 37

10. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documents:
1. Commonwealth Edison Topical Report NFSR-0085, Revision 0, "Benchmark of BWR Nuclear Design Methods," November 1990.
2.

Commonwealth Edison Topical Report NFSR-0085, Supplement 1 Revision 0, "Benchmark of BWR Nuclear Design Methods - Quad Cities Gamma Scan Comparisons," April 1991.

3.

Commonwealth Edison Topical Report NFSR-0085, Supplement 2 Revision 0, "Benchmark of BWR Nuclear Design Methods - Neutronic Licensing Analyses," April 1991.

4.

Commonwealth Edison Company Topical Report NFSR-0091, "Benchmark of CASMO/MICROBURN BWR Nuclear Design Methods," Revision 0 and Supplements on Neutronics Licensing Analysis (Supplement 1) and La Salle County Unit 2 benchmarking (Supplement 2), December 1991, March 1992, and May 1992, respectively.

5.

Westinghouse Topical Report CENPD-300-P-A, "Reference Safety Report for Boiling Water Reactor Reload Fuel," July 1996.

6. Westinghouse Topical Report CENPD-390-P-A, "The Advanced PHOENIX and POLCA Codes for Nuclear Design of Boiling Water Reactors," December 2000.
7.

Westinghouse Report WCAP-16081-P-A, "1 0x10 SVEA Fuel Critical Power Experiments and CPR Correlation: SVEA-96 Optima2," March 2005.

8.

Westinghouse Report WCAP-15682-P-A, "Westinghouse BWR ECCS Evaluation Model:

Supplement 2 to Code Description, Qualification and Application," April 2003.

9. Westinghouse Report WCAP-16078-P-A, "Westinghouse BWR ECCS Evaluation Model:

Supplement 3 to Code Description, Qualification and Application to SVEA-96 Optima2 Fuel,"

November 2004.

10. Westinghouse Topical Report WCAP-15836-P-A, "Fuel Rod Design Methods for Boiling Water Reactors - Supplement 1," April 2006.
11. Westinghouse Topical Report WCAP-1 5942-P-A, "Fuel Assembly Mechanical Design Methodology for Boiling Water Reactors, Supplement 1 to CENPD-287-P-A," March 2006.
12. NEDE-2401 1-P-A-14 (Revision 14), "General Electric Standard Application for Reactor Fuel (GESTAR-II)," June 2000.
13. NEDO-32465-A, "BWR Owners' Group Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology for Reload Applications", August 1996.

Quad Cities Unit 2 Cycle 20