ML20247H033
ML20247H033 | |
Person / Time | |
---|---|
Site: | 05200002, 05000470 |
Issue date: | 03/30/1989 |
From: | ABB COMBUSTION ENGINEERING NUCLEAR FUEL (FORMERLY |
To: | |
Shared Package | |
ML20247G537 | List:
|
References | |
NUDOCS 8904040375 | |
Download: ML20247H033 (738) | |
Text
{{#Wiki_filter:_ - _ _ - - - _ _ - _ - - - -
. CESSAR E*'#,cuit. (Sheet 1 of 8)
O EFFECTIVE PAGE LISTING CHAPTER-6 i Table of Contents . l Page Amendment i j 11 iii j iv E. i y E i vi C j vii viii E l vilia E viiib E ix x xi xii xiii C
) O xiv xv xvi E
C i xvii C xviii xix xx xxi . l xxii xxiii ! xxiv l xxv ! xxvi xxvii xxviii xxir. D Text Pace Amendment 6.1-1 D 6.1-2 6.1-3 D 6.1-4 D 6.1-5 D 6.2-1 8904040375 890330 - Amendment E PDR ADOCK 05000470 . December 30, 1988 K PDC ,
CESSAR H5]incueu (Sheet 2 of 8) O EFFECTIVE PAGE LISTING (Cont'd) CHAPTER 6 e _t, Tex (Cont'd) P_ age Amendment 6.2-2 6.2-3 6.2-4 6.2-5 6.2-6 6.2-7 6.2-8 6.2-9 6.2-10 6.2-11 6.2-12 6.2-13 6.2-14 6.2-15 6.2-16 6.2-17 6.2-18 ] 6.2-19 6.2-20 6.2-21 6.2-22 6.2-23 6.2-24 6.2-25 6.2-26 6.2-27 6.2-28 6.2-29 E 6.2-30 E 6.2-31 E 6.2-32 E 6.2-33 E 6.2-34 E 6.2-35 E 6.2-36 E 6.2-37 E 6.2-38 E 1 6.2-39 E 6.2-40 E 6.2-41 E 6.3-1 C 6.3-2 C 6.3-3 E Amendment E December 30, 1988
CESSAR !!ninem:n (Sheet 3 o' 8) - i EFFECTIVE PAGE LISTING (Cont'd) l CHAPTER 6 Text (Cont'd) Pace Amendment 6 '-4 -C 6.3-5 C 6.3-6 E 6.3-7 C 6.3-8 C 6.3-9 C 6.3-10 C 6.3-11 E 6.3-12 E 6.3-12a E 6.3-13 E 6.3-14 C , 6.3-15 E ! 6.3-16 E 6.3-17 E 6.3-18 E 6.3-19 C , ! 6.3-20 C l 6.3-21 C 6.3-22 4 6.3-23 l 6.3-24 10 6.3-25 4 6.3-26 6.3-27 10 6.3-28 4 6.'3-29 6.3-30 10 6.3-31 6.3-32 4 6.3-33 9 6.3-33(a) 9 - 6.3-34 9 1 6.3-35 9 6.3-36 6.3-37 6.3-38 6.3-39 6.3-40 ; 6.3-40(a) 4 ,
- 6.3-40(b) 4 6.3-41 D 6.3-42 E l
Amendment E December 30, 1988
CESSAR Hincue. (Sheet 4 of 8) O EFFECTIVE PAGE_ LISTING (Cont'd) CHAPTER 6 Leg (Cont'd) Amendment 6.3-43 E 6.3-44 D 6.4-1 E 6.4-2 E 6.4-3 E 6.4-4 E 6.5-1 E 6.5-2 E 6.5-3 E 6.5-4 E 6.5-5 E 6.5-6 E 6.5-7 E 6.5-8 E 6.5-9 E 6.5-10 E 6.5-11 E 6.5-12 E 6.5-13 E 6.5-14 E 6.5-15 E 6.5-16 E 6.5-17 E 6.6-1 D 6.6-2 E 6.6-3 F 6.7-1 D 6.7-2 D D
)
6.7-3 l 6.7-4 D 6.7-5 D 6.7-6 D ; 6.7-7 D 6.7-8 D 6.7-9 D 6.7-10 D 6.7-11 D 6.7-12 D 6.7-13 D Lables Amendment 6.1-1 (Sheets 1 and 2) 6.1-2 D t 6.1-3 Amendment E December 30, 1988
CESSAREinLui. (Sheet 5 of 8) O EFFECTIVE PAGE LISTING ~ (Cont'd) CHAPTER 6 Tables (Cont'd) Amendment 6.1-4 D 6.2.1-1 (Sheets 1-3) 6.2.1-2 (Sheets 1-14) 6.2.1-3 (Sheets 1-11) 6.2.1-4 (Sheets 1-11). 6.2.1-5 (Sheets 1-11) 6.2.1-6 (Sheets 1-13) 6.2.1-7.(Sheets 1-13) 6.2.1-8 (Sheets 1-13) 6.2.1-9 (Sheets 1-15) 6.2.1-10 (Sheets 1-7) 6.2.1-11 (Sheets 1-6) (Sheet 7) 10 6.2.1-12 (Sheets 1-8) (Sheet 9) 10 ( 2.1-13 (Sheets 1-6) (Sheet 7) 10 l 5 6.2.1-14 (Sheets 1-8) (Sheet 9) 10 - 6.2.1-15 (Sheets 1-6) i (Sheet 7) 10 j 6.2.1-16 (Sheets 1-8) l (Sheet 9) 10 l 6.2.1-17 (Sheets 1-6) (Sheet 7) 10 6.2.1-18 (Sheets 1-8) (Sheet 9) 10 j 6.2.1-19 (Sheets 1-6) i (Sheet 7) 10 6.2.1-20 (Sheets 1-8) ! (Sheet 9) 10 6.2.1-21 6.2.1-22 6.2.1-23 (Sheets 1 and 2) 6.2.1-24 6.2.1-25A (Sheets 1-3) , 6.2.1-25B (Sheets 1-3) ; 6.2.1-26A (Sheets 1-3) 6.2.1-26B (Sheets 1-3) 6.2.1-27A (Sheets 1-3) 6.2.1-27B (Sheets 1-3) i 6.2.1-28A (Sheets 1-3) 6.2.1-28B (Sheets 1-3) O 6.2.1-29A (Sheets 1-3) 6.2.1-29B (Sheets 1-3) 6.2.1-30 (Sheets 1-3) Amendment E December 30, 1988
1 ggg (Shest 6 of 8) { e EFFECTIVE PAGE. LISTING (Cont'd) [ CHAPTER 6 l Iables (Cont'd) Amendment 6.2.1-31A (Sheets 1-3) 6.2.1-31B (Sheets 1-3) 6.2.1-32A (Sheets 1-3) 6.2.1-32B (Sheets 1-3) ; 6.2.1-33A (Sheets 1-3) 6.2.1-33B (Sheets 1-3) 6.2.1-34 (Sheets 1-3) 6.2.1-35A (Sheets 1 and 2) 6.2.1-35B (Sheets 1 and 2) 6.2.1-36 6.2.1-37 (Sheets 1-3) 4 6.2.1-38 6.2.4-1 E 6.3.?-1 (Sheet 1) E , 6.3.. 1 (Sheet 2) E i 6.3..-1 (Sheet 3) E 6.3.2-2 (Sheet 1) E 6.3.2-2 (Sheet 2) E 6.3.2-2 (Sheet 3) E 6.3.2-2 (Sheet 4) E 6.3.2-2 (Sheet 5) E 6.3.2-2 (Sheet 6) E 6.3.2-2 (Sheet 7) E 6.3.2-2 (Sheet 8) E 6.3.2-2 (Sheet 9) E 6.1.2-3 C 6.3.2-4 C 6.3.3.2-1 4 6.3.3.2-2 4 l 6.3.3.2-3 1 6.3.3.2-4 4 l 1 6.3.3.2-5 4 6.3.3.2-6 6.3.3.3-1 6.3.3,3-2 4 6.3.3.3-3 6.3.3.3-4 6.3.3.3-5 4 6.3.3.3-6 10 6.3.3.5-1 (Sheet 1) 10 (Sheet 2) 6.3.3.5-2 (Sheets 1 and 2) 6.3.3.5-3 6.3.3.6-1 Amendment E December 30, 1988
CESSAR HEricam,. (Shoot 7 of 8) O EFFECTIVE PAGE LISTING (Cont'd) l J CHAPTER 6 Tables (Cont'd) Amendment 6.3.3.7-1 1 6.5-1 (Sheet 1) E 6.5-1 (Sheet 2) E 6.5-1 (Sheet 3) E 6.5-2 E 6.5-3 (Sheet 1) E 6.5-3 (Sheet 2) E 6.5-3 (Sheet 3) E 6.5-3 (Sheet 4) E 6.5-3 (Sheet 5) E 6.7-1 D 6.7-2 D 6.7-3 (Sheets 1 and 2) D Fiqures Amendment 6.2.1-1 (Sheets 1 and 2) 6.2.1-2 6.2.1-3 6.2.1-4 6.2.1-5 6.2.1-6 6.2.1-7 6.2.1-8 6.2.1-9 l 6.2.1-10 6.2.1-11 (Sheets 1 and 2) 6-2.1-12 (Sheets 1 and 2) g 6.2.1-13 (Sheets 1 and 2) . 6.2.1-14 (Sheets 1 and 2) ) 6.2.1-15 (Sheets 1 and 2) j 6.2.1-16 (Sheets 1 and 2) 4 l 6.2.1-17 (Sheets 1 and 2) .' 6.2.1-18-(Sheets 1 and 2) l 6.2.1-19 (Sheets 1 and 2) 6.2.1-20 (Sheets 1 and 2) 6.2.1-21 ; 6.2.1-22 6.2.1-23 6.2.1-24 4 6.2.1-25 4 6.2.1-26 4 Amendment E December 30, 1988 l
CESSAR !!nincu. (Sheet 8 of 8) O EFFECTIVE PAGE LISTING (Cont'd) CHAPTER 6 Elggr_es (Conted) Amendment 6.2.4 (Sheets lA, 1C) (Sheet 1B) 10 6.3.2-1A C 6.3.2-1B C 6.3.2-1C C 6.3.2-1D C 6.3.2-1E C 6.3.2-1F C 6.3.2-2 C 6.3.2-3 C 6.3.3.2 (Sheets lA-lH) 4 (Sheets 2A-2H) 4 (Sheets 3A-3H) 4 (Sheets 4A-4H) 4 (Sheets SA-50) 4 (Sheets SP) 7 (Sheets 5Q-5U) 7 (Sheets 6A-6H) 4 (Sheets 6I-6S) (Sheets 7A-7H) 4 (Sheets 8A-8G) (Sheet 8H) 4 (Sheets 9A-9G) (Sheet 9H) 4 (Sheets 10 and 11) 4 6.3.3.3 (Sheets lA-lH) (Sheets 2A-2H) (Sheets 3A-3E) (Sheet 3F) 4 (Sheets 3G and 3H) (Sheets 4A-4H) ) (Sheets SA-5H) (Sheets 6A-6H) (Sheet 7) 6.3.3.4-1 9 6.3.3.4-2 6.3.3.4-3 6.3.3.4-4 6.3.3.4-5 4 6.3.3.4-6 6.3.3.5 (Sheets lA-lF) 6.7-1 D Amendment E December 30, 1988
CESSAR Ena"ic.m. T TABLE OF CONTENTS CHAPTER 6 Section Subject Pace No. J 6.0 ENGINEERED SAFETY FEATURES' 6.1-1 6.1 ENGINEERED SAFETY FEATURE MATERIALS .6.1-2 6.1.1 METALLIC MATERIALS 6.1 6.1.1.1 Materials Selection and Fabrication 6.1-2 6.1.1.1.1 Specifications for Principal ESF Pressure Retaining Materials 6.1-2 6.1.1.1.2 Engineered Safety Feature Construction Materials 6.1-2 6.1.1.1.3 Integrity of ESF Components During Manufacture and Construction 6.1-2 6.1.1.1.3.1 Control of Sensitized Stainless Steel 6.1-2 6.1.1.1.3.2 Cleaning and Contamination Protection Procedures 6.1-3 6.1.1.1.3.3 Cold Worked Stainless Steel 6.1-4 6.1.1.1.3.4 Non-Metallic Insulation 6.1-4 6.1.1.1.4 Weld Fabrication and Assembly of Stainless Steel ESF Components 6.1-4 6.1.2 ORGANIC MATERIALS 6.1-5 6.1.2.1 Protective Coatinas 6.1-5 6.1.2.2 Other Materials 6.1-5 6.2 CONTAINMENT SYSTEMS 6.2-1 6.2.1 CONTAINMENT FUNCTIONAL DESIGN 6.2-1 O i
CESSAR nubi:n 1 1 H TABLE OF CONTENTS (Cont'd) CHAPTER 6 c Soction S_ubiect Pace No. I 6.2.1.1 Containment Structure 6.2-1 6.2.1.1.1* Design Bases 6.2-1 6.2.1.1.1.1 Postulated Accident Conditions 6.2-1 6.2.1.1.1.2 Mass and Energy Release 6.2-2 6.2.1.1.1.3 Effects of ESF Systems Energy Removal 6.2-2 6.2.1.1.1.4 Effects of ESF Systems on Pressure Reduction 6.2-3 6.2.1.1.1.5* Containment Leakage Rate Bases 6.2-3 6.2.1.1.1.6 Bases for Analysis of Minimum Containment Pressure 6.2-3 6.2.1.1.2* Design Features 6.2-3 l 6.2.1.1.3 Design Evaluation 6.2-3 6.2.1.1.3.1 Containment Peak Pressure Analysis 6.2-3 6.2.1.1.3.2 Long-Term Containment Performance 6.2-6 6.2.1.1.3.3 Energy Balance 6.2-6 6.2.1.1.3.4 Accident Chronology 6.2-6 6.2.1.1.3.5* Functional Capability of Containment Normal Ventilation Systems 6.2-6 6.2.1.1.3.6* Protection Against Severe External Loadings 6.2-6 6.2.1.1.3.7* Post-accident i Containment Pressure / Temperature Monitoring 6.2-6 1 6.2.1.2 Containment Subcompartments 6.2-6 6.2.1.2.1 Design Bases 6.2-6 6.2.1.2.2* Design Features 6.2-7 j I l 1
*See Site-Specific SAR O
4 11 l i
CESSAR !!Minc mN
)
TABLE OF CONTENTS (Cont'd) CHAPTER 6 f! Section Subiect Pace No. J 6.2.1.2.3 Design Evaluation 6.2-7' 6.2.1.3 Mass and Enercy Release Analyses' 6.2-8 -_ j for Postulated Loss of Coolant Accidents 6.2.1.3.1 Mass and Energy Release ~ Data 6.2-10 6.2.1.3.2 Energy Sources. 6.2-10 L 6.2.1.3.3 Description of Blowdown 6.2-11 Model 6.2.1.3.4 Description.of Core Reflood 6.2-12. Model 6.2.1.3.5 Description of Post Reflood 6.2-14 Model ~ 6.2.1.3.6 Description of Long Term 6.2-14 Cooling Model 6.2.1.3.7 Single Active Failure 6.2-16 Analysis 1 5O 6.2.1.3.8 Metal-Water Reaction 6.2-16 6.2.1.3.9 Energy Inventories 6.2-17 6.2.1.3.10 Additional Information- 6.2-17 6.2.1.4 Mass and Enerav Release Analysis 6.2-17 for Postulated Secondary System Pipe Runtures Inside Containment 6.2.1.4.1 Mass and1 Energy Release Data 6.2-18 6.2.1.4.2 Single Failure Analysis ' 6.2-19 6.2.1.4.3 Initial Conditions 6.2-20 6.2.1.4.4 Description of Blowdown Model 6.2-20 6.2.1.4.5 Energy Inventories' 6.2-23 6.2.1.4.6 Additional Information 6.2-23 i a lii
i l kak hhk E, ICATl!N O TABLE OF CONTENTS (Cont'd) CHAPTER 6 SectioD Section Pace No. 6.2.1.5 Minimum Containment Presr*ure 6.2-23 Analysis for Performance papability Studies on Emercency Core Coolina System 6.2.1.5.1 Introduction and Summary 6.2-23 6.2.1.5.2 Method of Calculation 6.2-24 6.2.1.5.3 Input Parameters 6.2-24 6.2.1.5.3.1 Mass and Energy Release 6.2-24 Data 6.2.1.5.3.2 Initial Containment 6.2-24 Internal Conditions 6.2.1.5.3.3 Containment Volume 6.2-25 6.2.1.5.3.4 Active Heat Sinks 6.2-25 6.2.1.5.3.5 Steam Water Mixing 6.2-25 6.2.1.5.3.6 Passive Heat Sinks 6.2-25 I 6.2.1.5.3.7 Heat Transfer to 6.2-25 Passive Heat Sinks 6.2.1.5.3.8 Containment Purge 6.2-26 System 6.2.1.5.4 Results 6.2-26 6.2.1.6 Testina and Inspection 6.2-26 6.2.1.7 Instrumentation Applications 6.2-26 6.2.2 CONTAINMENT HEAT REMOVAL SYSTEMS 6.2-29 6.2.2.1 Desian Bases 6.2-29 6.2.2.1.1 Summary Description 6.2-29 6.2.2.1.2 Functional Design Basis 6.2-29 E 1 6.2.2.2 System Desian 6.2-29 6.2.2.2.1 System Schematic 6.2-29 6.2.2.2.2 Component Description 6.2-29 6.2.2.2.3 Overpressure Protection 6.2-29 6.2.2.2.4 Applicable Codes and 6.2-29 Classifications 6.2.2.2.5 System Reliability Considerations 6.2-30 i 6.2,2.2.6 System Operation 6.2-30 l l f Amendment E , } iv December 30, 1988 !
-v
) hhk T ICATION O
TABLE OF CONTENTS (Cont'd) i i CHAPTER 6 Section Subiect Pace No. 6.2.2.3 Desian Evaluation 6.2-30 ) 6.2.2.4 Preoperational Testina 6.2-30 6.2.3 SECONDARY CONTAINMENT FUNCTIONAL 6.2-30 DESIGN E 6.2.4 CONTAINMENT ISOLATION SYSTEM 6.2-30 6.2.4.1 Desian Bases 6.2-31 6.2.4.1.1 Overall Requirements 6.2-31 6.2.4.1.2 Design Features 6.2-32 6.2.4.2 System Description 6.2-33 6.2.4.3 Safety Evaluation 6.2-36 i i 6.2.4.4 Testing and Inspection 6.2-37 6.2.4.5 Instrumentation Requirements 6.2-38 6.2.5 COMBUSTIBLE GAS CONTROL IN CONTAINMENT 6.2-39 6.2.6 CONTAINMENT LEAKAGE TESTING 6.2-39 6.2.6.1 Containment Integrated Leak 6.2-39 Rate Test 6.2.6.2 Containment Penetration Leakace 6.2-40 Rate Test 6.2.6.3 Containment Isolation Valve 6.' - 41 Leakane Rate Test 6.2.6.4 Scheduling and Reporting of 6.2-41 Periodic Tests 6.2.6.5 Special Testina Roauirements 6.2-41 ; 1 6.3 ShFETY INJECTION SYSTEM 6.3-1 C l' \ 6.3.1 DESIGN BASES 6.3-1 6.3.1.1 Summary Description 6.3-1 Amendment E v December, 1988
1 CESSARMAUnce 4 TADLE OF CONTENTS (Contid) CHAPTER 6 Section Subject Pace No. 6.3.1.2 Criteria 6.3-1 6.3.1.2.1 Functional Design Bases 6.3-1 6.3.1.2.2 Reliability Design Bases 6.3-2 6.3.1.3 Interface Requirements 6.3-2 f l 6.3.2 SYSTEM DESIGN 6.3-11 6.3.2.1 System Schematic 6.3-11 ; 6.3.2.2 Component Description 6.3-12 l 6.3.2.2.1 Incontainment Refueling Water Storage Tank 6.3-12 6.3.2.2.2 Safety Injection Tanks 6.3-12a 6.3.2.2.3 Safety Injection Pumps 6.3-13 C 4 i 6.3.2.2.4 Piping 6.3-15 6.3.2.2.5 Valves 6.3-15 6.3.2.3 Applicable Codes and Classifications 6.3-16 6.3.2.4 Materials Specifications and Compatibility 6.3-16 6.3.2.5 System Reliability 6.3-16 ; 6.3.2.5.1 Safety Injection Tanks 6.3-16 C 1 Safety Injection Subsystems 6.3-17 j 6.3.2.5.2 6.3.2.5.3 Power Sources 6.3-18 : 6.3.2.5.4 Capacity to Maintain Cooling Following a Single Failure 6.3-18 6.3.2.6 Protection Provisions 6.3-20 l l 6.3.2.6.1 Capability to Withstand i Design Bases Environment 6.3-20 6.3.2.6.2 Missile Prctection 6.3-20 6.3.2.6.3 Seismic Design 6.3-21 6.3.2.7 Recuired Manual Actions 6.3-21 0 ! Amendment C vi June 30, 1988
CESSARn!L m O TABLE OF CONTENTS (Cont'd) CHAPTER 6 Section Subiect Pace No 6.3.3 PERFORMANCE 6.3-22 l 6.3.3.1 Introduction and Summarv 6.3-22 6.3.3.2 Larce Break Analysis 6.3-23 6.3.3.2.1 Mathematical Model 6.3-23 6.3.3.2.2 -Safety Injection System Assumptions 6.3-23 6.3.3.2.3 Core and System Parameters 6.3-24 6 3.3.2.4 Containment Parameters 6.3-25 j 6.3.3.2.5 Break Spectrum 6.3-25 l 6.3.3.3 Small Break Analysis 6.3-27 l 6.3.3.3.1 Evaluation Model 6.3-27 6.3.3.3.2 Safety Injection System 3 Assumptions 6.3-27
,j 6.3.3.3.3 Core and System Parameters 6.3-28 6.3.3.3.4 Containment Parameters 6.3-28 6.3.3.3.5 Break Spectrum 6.3-28 6.3.3.3.6 Results 6.3-29 6.3.3.3.7 Instrument Tube Rupture 6.3-30 6.3.3.4 Post-LOCA Lona Term Coolina 6.3-33 6.3.3.4.1 General Plan 6.3-33 6.3.3.4.2 Assumptions Used in the l Performance 6.3-33a Evaluation of the LTC Plan 6.3.3.4.3 Parameters Used in the Performance Evaluation of the LTC Plan' 6.3-34 6.3.3.4.4 Results of the LTC Performance Evaluation 6.3-35 6.3.3.5 Sequence of Event and Systems Operation 6.3-36 6.3.3.6 ' Radiological Consequences 6.3 6.3.3.7 Chapter 15 Accident Analysis 6.3-40b vii
CESSAR ME"icari u O TABLE OF CONTFNTS (Cont'd) CHAPTER 6 pection Subject Page No. 6.3.4 TESTS AND INSPECTIONS 6.3-41 6.3.4.1 SJS Performance Tests 6.3-41 6.3.4.2 Reliability Tests and Inspections 6.3-41 6.3.4.2.1 System Level Tests 6.3-41 6.3.4.2.2 Component Testing 6.3-41 6.3.5 INSTRUMENTATION 6.3-41 6.3.5.1 Desian Criteria 6.3-41 6.3.5.2 System Actuation Sinnalf 6.3-42 6.3.5.2.1 Safety Injection Actuation Signal (SIAS) 6.3-42 6.3.5.3 Instrumentation Durinq Operation 6.3-43 6.3.5.3.1 Temperature 6.3-43 6.3.5.3.2 Pressure 6.3-43 6.3.5.3.3 Valve Position 6.3-43 6.3.5.3.4 Level 6.3-44 6.3.5.3.5 Flow 6.3-44 6.3.5.4 Post-Accident Instrumentation 6.3-44 6.4 UADITABILITY SYSTEMS 6.4-1 0 6.4.1 DESIGN BASES 6.4-1 E 6.4.2 SYSTEM DESCRIPTION 6.4-1 6.4.2.1 Ggperal 6.4-1 6.4.2.2 System Operation 6.4-2 6.4.3 SAFETY EVALUATION 6.4-2 6.4.4 INSPECTION AND TESTING REQUIREMENTS 6.4-4 O Amendment E viii December 30, 1988
CESSAREnUnce O TABLE OF CONTENTS (Cont'd) CHAPTER 6 Section Subject Pace No. 6.5 CONTAINMENT SPRAY SYSTEM 6.5-1 6.5.1 DESIGN BASES 6.5-1 1 6.5.1.1 Summary Description 6.5-1 6.5.1.2 Functional Desian Bases 6.5-1. 6.5.1.3 Interface Requirements 6.5-2 6.5.2 SYSTEM DESIGN 6.5-11 6.5.2.1 System Schematic 6.5-11 6.5.2.2 Component Description 6.5-11 s 6.5.2.2.1 Containment Spray Pumps 6.5-11
) 6.5.2.2.2 Containment Spray Heat Exchangers 6.5-12 6.5.2.2.3 Valves 6.5-12 6.5.2.2.3.1 Actuator-Operated Valves 6.5-12 6.5.2.2.3.2 Manually-Operated Valves 6.5-12 6.5.2.2.3.3 Relief Valves 6.5-13 6.5.2.2.4 Spray Nozzles 6.5-13 6.5.2.2.5 In-containment Refueling Water 6.5-13 Storage Tank 6.5-13 6.5.2.2.6 Piping 6.5-13 6.5.2.2.7 Instrumentation 6.5-14 6.5.2.3 Overpressure Protection 6.5-14 6.5.2.4 Applicable Codes and Classi- 6.5-14 fications 6.5.2.5 System Reliability Considerations 6.5-15 6.5.2.6 System Operation 6.5-16 6.5.2.6.1 Normal Operation 6.5-16 6.5.2.6.2 Post-Accident Operation 6.5-16 fs 6.5.2.6.3 Plant Shutdown (Startup) 6.5-16
(\ 6.5.3 DESIGN EVALUATION 6.5-17 Amendment E l viiia December 30, 1988
CESSARE!Sinem O TABLE OF CONTENTS (Cont'd) CHAPTER 6 Subj e_c1 Page No. Sect _ ion 6.5.4 PREOPERATIONAL TESTING 6.5-17 E 6.6 INSERVICE INSPECTION OF CLASS 2 & 3 COMPONENTS 6.6-1 6.6.1 COMPONENTS SUBJECT TO EXAMINATION 6.6-1 6.6.2 ACCESSIBILITY 6.6-1 1 6.7 EbFETY DEPRESSURIZATION SYSTEM 6.7-1 6.7.1 DESIGN BASIS 6.7-1 D 6.7.1.1 Summary Description 6.7-1 6.7.1.2 Crj teria 6.7-1 6.7.1.2.1 Functional Design Basis 6.7-1 6.7.1.2.2 Reliability Design Data 6.7-5 6.7.1.2.3 Interface Requirements 6.7-5 6.7.2 SYSTEM DESIGN 6.7-8 6.7.2.1 System Schematic 6.7-9 6.7.2.1.1 Reactor Coolant Gas Vent Function 6.7-9 6.7.2.1.2 Rapid Depressurization (Bleed) 6.7-10 Function 6.7.2.2 Componemt;_ description 6.7-11 6.7.2.2.1 Reactor Coolant Gas Vent Function 6.7-11 Valves 6.7.2.2.2 Rapid Depressurization (Bleed) 6.7-11 Valves 6.7.2.3 hpplicable Codes and 6.7-12 Classification 6.7.2.4 System Reliability 6.7-12 6.7.2.5 Protection ProvisionJ 6.7-12 6.7.2.6 Required Manual Actions 6.7-13 lE Amendment E l I viiib December 30, 1988
+
CESSAR n!Dicari:n O LIST OF TABLES CHAPTER 6 Table Subiect l 6.1-1 Principal ESF Pressure Retaining Materials 6.1-2 Engineered Safety Features Structural Materials That Could Be Exposed To Core Cooling Water or Containment Spray In The Event of A LOCA l 6.1-3 Coating Materials Used In Containment 6.1-4 Other Organic Materials In Containment 6.2.1-1 Postulated Accidents For Containment Design Peak Pressure / Temperature Determination Containment Peak I 6.2.1-2 Data For Pressure / Temperature Analysis Q 6.2.1-3 Data For Containment Peak Pressure / Temperature () Analysis 6.2.1-4 Data For Containment Peak Pressure / Temperature Analysis { 6.2.1-5 Data For Containment Peak Pressure / Temperature Analysis 6.2.1-6 Data For Containment Peak Pressure / Temperature Analysis l l 6.2.1-7 Data For Containment Peak Pressure / Temperature Analysis 6.2.1-8 Data For Containment Peak Pressure / Temperature Analysis s 6.2.1-9 Data For Containment Peak Pressure / Temperature Analysis 6.2.1-10 Data For Containment Peak Pressure / Temperature ' Analysis 6.2.1-11 Data For Containment Peak Pressure / Temperature Analyses 102% Power / Slot /8.78 Sq. Ft./ Loss of O Containment Cooling ix
- - - - - - - - - - - - - - - - - - - . _ - - - - - - ---_J
CESSAR EE"icari2. O LIST OF TABLES (Cont'd) CHAPTER 6 Section Bubiect 6.2.1-12 Data For Containment Peak Pressure / Temperature Analyses 102% Power / Guillotine /8.78 Sq. Ft./ Loss of Containment Cooling 6.2.1-13 Data For Containment Peak Pressure / Temperature Analyses 75% Power / Slot /8. 78 Sq. Ft./ Loss of Containment Cooling 6.2.1-14 Data For Containment Peak Pressure / Temperature Analyses 75% Power / Guillotine /8.78 Sq. Ft./ Loss of Containment Cooling 6.2.1-15 Data For Containment Peak Pressure / Temperature Analyses 50% Power / Slot /8.78 Sq. Ft./ Loss of Containment Cooling 6.2.1-16 Data For Containment Peak Pressure / Temperature Analyses 50% Power / Guillotine /8.78 Sq. Ft./ Loss of Containment Cooling 6.2.1-17 Data For Containment Peak Pressure / Temperature Analyses 25% Power / Slot /8.78 Sq. Ft ./ Loss of Containment Cooling 6.2.1-18 Data For Containment Peak Pressure / Temperature Analyses 25% Power / Guillotine /8.78 Sq. Ft./ Loss of Containment Cooling 6.2.1-19 Data For Containment Peak Pressure / Temperature Analyses 0% Power / Slot /4.00 Sq. Ft./ Loss of l Containment Cooling 6.2.1-20 Data For Containment Peak Pressure / Temperature l Analyses 0% Power / Guillotine /8.78 Sq. Pt ./ Loss of Containment Cooling l 6.2.1-21 Summary of Calculated Energy Releases 6.2.1-22 Initial Conditions For Containment Peak Pressure Analysis j 6.2.1-23 Engineered Safety Feature Systems Operating Assumptions For Containment Peak Pressure Analysis l 1
CESSAR 8lniflCAT10N O LIST OF TABLES (Cont'd) CHAPTER 6 Section Bubiect 6.2.1-24 Summary of Postulated Pipe Ruptures For Containment Subcompartment Analysis 6.2.1-25A Mass / Energy Release Data For 100 Sq. Inch Hot Leg Guillotine Break For Containment Subcompartment Analysis (Flow From Reactor Vessel Side) s 6.2.1-25B Mass / Energy Release Data For 100 Sq. Inch Hot Leg Guillotine Break For Containment Subcompartment Analysis (Flow From Reactor Vessel Side) 6.2.1-26A Mass / Energy Release Data For 600 Sq. Inch Hot Leg Guillotine Break For Containment Subcompartment Analysis (Flow From Reactor Vessel Side) 6.2.1-26B Mass / Energy Release Data For 600 Sq. Inch Hot Leg Guillotine Break For Containment Subcompartment 9 Analysis (Flow From Steam Generator Side) 6.2.1-27A Mass / Energy Release Data For 350 Sq. Inch Discharge Leg Guillotine Break For Containment Subcompartment Analysis (Flow From Reactor Coolant Pump Side) 6.2.1-27B Mass / Energy Release Data For 350 Sq. Inch Discharge Leg Guillotine Break For Containment Subcompartment Analysis (Flow From Reactor Coolant Pump Side) 6.2.1-28A Mass / Energy Release Data For 480 Sq. Inch Discharge Leg Guillotine Break For Containment Subcompartment Analysis (Flow From Reactor Coolant Pump Side) 6.2.1-28B Mass / Energy Release Data For 480 Sq. Inch Discharge Leg Guillotine Break For Containment , subcompartment Analysis (Flow From Reactor Vessel Side) 6.2.1-29A Mass / Energy Release Data For 430 Sq. Inch Discharge Leg Guillotine Break For Containment Subcompartment Analysis (Flow From Steam Generator G Side) xi
1 CESSAR Ruinema l O LIST OF TABLES (Cont'd) CHAPTER 6 l Section Bubiect 1 6.2.1-29B Mass / Energy Release Data For 430 Sq. Inch ; Discharge Leg Guillotine Break For Containment Subcompartment Analysis (Flow From Reactor Coolant l Pump Side) 6.2.1-30 Mass / Energy Release Data For 532 Sq. Inch Suction Leg Slot Break For Containment Subcompartment Analysis 6.2.1-31B Mass / Energy Release Data For 592 Sq. Inch Suction Leg Guillotine Break For Containment Subcompartment Analysis (Flow From Reactor Coolant Pump Side) 6.2.1-32A Mass / Energy Release Data For Double-Ended Surge Line Guillotine Bt2ak For Containment Subcompartment Analysis (Flow From Hot Leg Side) 6.2.1-32B Mass / Energy Release Data For Double-Ended Surge O Line Guillotine Break For Containment Subcompartment Analysis (Flow From Pressurizer Side) 6.2.1-33A Mass / Energy Release Data For Pressurizer Spray Line Break For Containment Subcompartment Analysis (Flow From Pressurizer Side) 6.2.1-33B Mass / Energy Release Data For Pressurizer Spray Line Break For Containment Subcompartment Analysis ! (Flow From Discharge Leg Side) 6.2.1-34 Mass / Energy Release Data For Pressurizer Safety Valve Line Break For Containment Subcompartment Analysis 6.2.1-35A Mass / Energy Release Data For 800.5 Sq. Inch Main i I Steam Line Guillotine Break At SG Nozzle For Containment Subcompartment Analysis (Flow From Ruptured SG Side) 6.2.1-35B Mass / Energy Release Data For 800.5 Sq. Inch Main Steam Line Guillotine Break At SG Nozzle For I Containment Subcompartment Analysis (Flow From l Intact SG Side) l xii l l l _--___________D
C E S S A R E!% ne. m.,
-r LIST OF TABLES (Cont'd)
CHAPTER 6 Section Bubiect l 6.2.1-36 Primary Side Resistance Factors, FLOOD MOD 2 CODE 6.2.1-37 Blowdown And Reflood Mass And Energy Release 0.8 x Double Ended Guillotine Break in Pump Discharge Leg 6.2.1-38 Containment Physical Parameters 6.2.4-1 Containment Isolation System 6.3.2-1 Safety Injection System Component Parameters C 6.3.2-2 Safety Injection System Failure Modes and Effects Analysis 6.3.2-3 Safety Injection Pump NPSH Requirements () 6.3.2-4 Safety Injection System Head Loss Requirements 6.3.3.2-1 Time Sequence of Important Events for a Spectrum of Large LOCAs (Seconds After Break) 6.3.3.2-2 General System Parameters and Initial Conditions 6.3.3.2-3 Large Break Spectrum i 6.3.3.2-4 Peak Clad Temperatures End Oxidation Percentage. l for the Large Break Spectrum 6.3.3.2-5 Variables Plotted as a Function of Time For Each Large Break in the Spectrum 6.3.3.2-6 Additional Variables Plotted as a Function of Time For the Worst Large Break i 6.3.3.3-1 Safety Injection Pumps Minimum Delivered . Flow to I RCS (Assuming One Emergency Generator Failed) 6.3.3.3-2 General System Parameters 6.3.3.3-3 Small Break Spectrum 6.3.3.3-4 Variables Plotted as a Function of Time for Each O. Large Break in the Spectrum Amendment C xiii June 30, 1988 l
~ - - - - - -- CESSAR E!Ence,. Ol LIST OF TADLES (Cont'd) CHAPTER 6 i Section Subiec_t 6.3.3.3-5 Fuel Rod Performance Summary I 6.3.3.3-6 Times of Interest for Small Breaks (Seconds) 6.3.3.5-1 Sequence of Events for Representative Large and Small Break LOCAs 6.3.3.5-2 Disposition of Normally Operating Systems for Large and Small Break LOCA Analyses 6.3.3.5-3 Utilization of Safety Systems for Representative Small Break (0.02 ft") 6.3.3.5-4 Utilization of Safety Systems for Representative Large Break (0.8 DEG/PD) 6.3.3.6-1 Parameters Used in the Radiological Consequences of a LOCA 6.3.3.7-1 Chapter 15 Limiting Events Which Actuate the Safety Injection System 6.5-1 Containment Saray System Design Parameters 6.5-2 Containment Spray System Display Instrumentation 6.5-3 Containment Spray System Failure Modes and Effects Analysis 6.7-1 Safety Depressurization System - Active Valve List 6.7-2 Safety Depressurization System - Safety Class D 6.7-3 Failure Modes and Effects Analysis Safety Depressurization System i l 1 l [ O ! l 1 Amendment E xiv December 30, 1988
l)! hhh khI b!R SCATl!N
~T l
[V LIST OF FIGURES I CHAPTER 6 Ficure Subiect 6.2.1-1 Normalized Decay Heat Curve i 6.2.1-2 Safety Injection Flow Rate vs Time 6.2.1-3 Safety Injection Flow Rate vs Time 6.2.1-4 Safety Injection Flow Rate vs Time 6.2.1-5 Safety Injection Flow Rate vs Time 6.2.1-6 Safety Injection Flow Rate vs Time 1 (,2.1-7 Safety Injection Flow Rate vs Time l 1 l 6,2.1-8 Safety Injection Flow Rate vs Time l gg 6.2.1-9 Safety Injection Flow Rate vs Time N_) 6.2.1-10 Steam Line Model l' 6.2.1-11 102% Power - Slot MSLB, Loss of 1 CHRS, Feedwater Addition vs Time 6.2.1-12 102% Power - Guillotine MSLB, Loss of 1 LHRS, , Feedwater Addition vs Time l 6.2.1-13 75% Power - Slot MSLB, Loss of 1 CHRS, Feedwater Addition vs Time 6.2.1-14 75% Power - Guillotine MSLB, Loss of 1 CHRS, Feedwater Addition vs Time 6.2.1-15 50% Power - Slot MSLB, Loss of 1 CHRS, Feedwater Addition vs Time 6.2.1-16 50% Power - Guillotine MSLB, Loss of 1 CHRS, Feedwater Addition vs Time 6.2.1-17 25% Power - Slot MSLB, Loss of 1 CHRS, Feedwater Addition vs Time 6.2.1-18 25% Power - Guillotine MSLB, Loss of 1 CHRS, iO Feedwater Addition vs Time l XV a-__-______-_.
3 1 CESSAR EEGncue,, i l LIST OF FIGURES (Cont'd) CHAPTER 6 Fiqun Subiect ) 6.2.1-19 0% Power - Slot MSLB, Loss of 1 CHRS, Feedwater Addition vs Time 6.2.1-20 0% Power - Guillotine MSLB, Loss of 1 CHRS, Feedwater Addition vs Time 6.2.1-21 Main Steam System Nodal Model With Guillotine Break at SG Nozzle Terminal End (For Subcompartment Analysis) 6.2.1-22 Combined Spillage and Spray into Containment > 6.2.1-23 Condensing Heat Transfer Coefficients for Static Heat Sinks 6.2.1-24 1.0 x DEG Break in Pump Discharge Leg, Minimum Containment Pressure for ECCS Performance 6.2.1-25 1.0 x DEG Break in Pump Discharge Leg, Containment O Atmosphere and Temperature 6.2.1-26 1.0 x DEG Break in Pump Discharge Leg, Containment Sump Temperature 6.2.4-1A Containment Isolation Valve Arrangement 6.2.4.1B Containment Isolation Valve Arrangement 6.2.4.1C Containment Isolation Valve Arrangement 6.3.2-1A Safety Injection System Piping and Instrumentation l Diagram j l 6.3.2-1B Safety Injection System Piping and Instrumentation Diagram C 6.3.2-1C Safety Injection System Flow Diagram, Short-Term Mode 6.3.2-1D Safety Injection System Flow Diagram, Short-Tern Mode 6.3.2-1E Safety Injection System Flow Diagram, Long-Term Cooling Mode Amendment C xvi June 30, 1988
a CESSAR Unince,. O G LIST OF FIGURES (Cont'd) CHAPTER 6 Section subiect 6.3.2-1F Safety Injection System Flow Diagram, Long-Term Cooling Mode 6.3.2-2 Engineered Safeguards System Schematic Diagram 1 C , 6.3.2-3 Safety Injection Pump Head and NPSH Curves (Typical) 6.3.3.2-1A 1.0 x Double Ended Slot Break in Pump Discharge Leg-Core Power 6.3.3.2-1B 1.0 x Double Ended Slot Break in Pump Discharge Leg-Pressure in Center Hot Assembly Node ) i 6.3.3.2-lc 1.0 x Double Ended Slot Break in Pump Discharge Leg-Leak Flow l a C l (") 6.3.3.2-lD.1 1.0 x Double Ended Slot Break in Pump Discharge Leg-Flow in Hot Assembly - Path 16, Below Hot Spot i i 6.3.3.2-lD.2 1.0 x Double Ended Slot Break in Pump Discharge l Leg-Flow in Hot Assembly - Path 17, Above Hot Spot 6.3.3.2-lE 1.0 x Double Ended Slot Break in Pump Discharge Leg-Hot Assembly Quality 6.3.3.2-lF 1.0 x Double Ended Slot Break in Pump Discharge Leg-Containment Pressure 6.3.3.2-lG 1.0 x Doubled Ended Slot Break in Pump Discharge Leg-Mass Added to Core During Reflood 6.3.S,2-lH 1.0 x Doub' Ended Slot Break in Pump Discharge Leg-Peak Clad Temperature 6.3.3.2-2A 0.8 x Double Ended Slot Break in Pump Discharge I Leg-Core Power ] l 6.3.3.2-2B 0.8 x Double Ended Slot Break in Pump Discharge Leg-Pressure in Center Hot Assembly Node 6.3.3.2-2C 0.8 x Double Ended Slot Preak in Pump Discharge ( Leg-Leak Flow Amendment C xvii June 30, 1988 l _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - . - - - - _ _ _ _ _ _ _ _ _ _ _ - - ..-- .- - - - - - - - U
CESSAR nainemen O LIST OF FIGURES (Cont'd) CHAPTER 6 gection Bubiect 6.3.3.2-2D.1 0.8 x Double Ended Slot Break in Pump Discharge Leg-Flow in Hot Assembly - Path 16, Below Hot Spot 6.3.3.2-2D.2 0.8 x Double Ended Slot Break in Pump Discharge Leg-Flow in Hot Assembly - Path 17, Above Hot Spot 6.3.3.2-2E 0.8 Y Double Ended Slot Break in Pump Discharge Leg-Hot Assembly Quality 6.3.3.2-2F 0.8 x Double Ended Slot Break in Pump Discharge Leg-Containment Pressure 6.3.3.2-2G 0.8 x Double Ended Slot Break in Pump Discharge Leg-Mass Added to Core During Reflood 6.3.3.2-2H 0.8 x Double Ended Slot Break in Pump Discharge Leg-Peak Clad Temperature 6.3.3.2-3A 0.6 x Double Ended Slot Break in Pump Discharge Leg-Core Power 6.3.3.2-3B 0.6 x Double Ended Slot Break in Pump Discharge Leg-Pressure in Center Hot Assembly Node 6.3.3.2-3C 0.6 x Double Ended Slot Break in Pump Discharge Leg-Leak Flow 6.3.3.2-3D.1 0.6 x Double Ended Slot Break in Pump Discharge Leg-Flow in Hot Assembly - Path 16, Below Hot Spot 6.3.3.2-3D.2 0.6 x Double Ended Slot Break in Pump Discharge Leg-Flow in Hot Assembly - Path 17, Above Hot Spot 6.3.3.2-3E 0.6 x Double Ended Slot Break in Pump Discharge Leg-Hot Assembly Quality 6.3.3.2-3F 0.6 x Double Ended Slot Break in Pump Discharge ! Leg-Containment Pressure 6.3.3.2-3G 0.6 x Double Ended Slot Break in Pump Discharge ! Leg-Mass Added to Core During Reflood O xviii
n ; CESSAR inL"icari:n 1 O LIST OF FIGURES (Cont'd) CHAPTER 6 Section Subiect 6.3.3.2-3H 0.6 x Double Ended Slot break in Pump Discharge Leg-Peak Clad Temperature 6.3.3.2-4A 0.5 Ft Slot Break in Pump Discharge Leg-Core Power 2 6,3.3.2-4B 0.5 Ft Slot Break in Pump Discharge Leg-Pressure , in Center Hot Assembly Node j 6.3.3.2-4C 0.5 Ft Slot Break in Pump Discharge Leg-Leak Flow 6.3.3.2-4D.1 0.5 Ft Slot Break in Pump Discharge Leg-Flow in Hot Assembly - Path 16, Below Hot Spot 2 6.3.3.2-4D.2 0.5 Ft Slot Break in Pump Discharge Leg-Flow in ] Hot Assembly Path 17, Above Hot Spot 1 O 2 Slot Break in Pump U 6.3.3.2-4E 0.5 Ft Assembly Quality Discharge Leg-Hot 2 ' 6.3.3.2-4F 0.5 Ft Slot Break in Pump Discharge Leg-Containment Pressure 6.3.3.2-4G 0.5 Ft Slot Break in Pump Discharge Leg-Mass Added to Core During Reflood 2 6.3.3.2-4H 0.5 Ft Slot Break in Pump Discharge Leg-Peak Clad Temperature 6.3.3.2-5A 1.0 x Double Ended Guillotine Break in' Pump Discharge LegCore Power 6.3.3.2-5B 1.0 x Double Ended Guillotine Break in Pump Discharge LegPressure in Center Hot Assembly Node 6.3.3.2-5C 1.0 x Double Ended Guillotine Break in Pump Discharge Leg-Leak Flow 6.3.3.2-5D.1 1.0 x Double Ended Guillotine Break in Pump Discharge Leg- Flow in Hot Assembly-Path 16, Below Hot Spot O xix
CESSARHMenim O LIST OF FIGURES (Cont'd) CHAPTER 6 Section Bubiect 6.3.3.2-5D.2 1.0 x Double Ended Guillotine Break in Pump Discharge Leg-Flow in Hot Assembly-Path 17, Above Hot Spot 6.3.3.2-5E 1.0 x Double Ended Guillotine Break in Pump Discharge Leg-Hot Assembly Quality 6.3.3.2-5F 1.0 X Double Ended Guillotine Break in Pump Discharge LegContainment Pressure 6.3.3.2-5G 1.0 x Double Ended Guillotine Break in Pump Discharge Leg-Mass Added to Core During Reflood 6.3.3.2-5H 1.0 x Double Ended Guillotine Break in Pump Discharge Leg- Peak Clad Temperature 6.3.3.2-5I 1.0 x Double Ended Guillotine Break in Pump Discharge Leg-Mid Annulus Flow 6.3.3.2-5J 1.0 x Double Ended Guillotine Break in Pump Discharge Leg-Qualities Above and Below the Core 6.3.3.2-5K 1.0 x Double Ended Guillotine Break in Pump Discharge Leg-Core Pressure Drop 6.3.3.2-5L 1.0 x Double Ended Guillotine Break in Pump Discharge Leg-Safety Injection Flow Into Intact Discharge Leg 6.3.3.2-5M 1.0 x Double Ended Guillotine Break in Pumn ~ , Discharge Leg-Water Level in Downcomer During
- Reflood 6.3.3.2-5N 1.0 x Double Ended Guillotine Break in Pump Discharge Leg-Hot Spot Gap Conductance ,
6.3.3.2-50 1.0 x Double Ended Guillotine Break in Pump i Discharge Leg-Local Clad oxidation 8 6.3.3.2-5P 1.0 x Double Ended Guillotine Break in Pump Discharge Leg-Clad, Centerline. Average Fuel and coolant Temperature for Hottest Node l xx
i l CESSAR E!L"ican i O LIST OF FIGURES (Cont'd) CHAPTER 6 l Section grn dLt 6.3.3.2-5Q 1.0 x Double Ended Guillotine Break in Dump Discharge Leg-Hot Spot Heat Transfer Coefficient , 6.3.3.2-5R 1.0 x Double Ended Guillotine Break in Pump $ Discharge Leg-Hot Rod Internal Gas Pressure l 6.3.3.2-5S 1.0 x Double Ended Guillotine Break in Pump Discharge Leg-Containment Temperature l 1 Break 6.3.3.2-5T 1.0 x Double Ended Guillotine in Pump l Discharge Leg-Sump Temperature 6.3.3.2-5U 1.0 x Double Ended Guillotine Break in Pump j Discharge Leg-Core Bulk Channel Flow Rate j i 6.3.3.2-6A 0.8 x Double Ended Guillotine Break in Pump ! i Discharge Leg-Core Power 6.3.3.2-6B 0.8 x Double Ended Guillotine Break in Pump Discharge Leg-Pressure in Center Hot Assembly Node 6.3.3.2-6C 0.8 x Double Ended Guillotine Break in Pump i Discharge Leg-Leak Flow 6.3.3.2-6D.1 0.8 x Double Ended Guillotine Break in Pump Discharge Leg-Flow in Hot Assembly-Path 16, Below Hot Spot 6.3.3.2-6D.2 0.8 x Double Ended Guillotine Break in Pump Discharge Leg-Flow in Hot Assembly-Path 17, Above Hot Spot 6.3.3.2-6E 0.8 x Double Ended Guillotine Break in Pump Discharge Leg-Hot Assembly Quality l 6.3.3.2-6F O.8 x Double Ended Guillotine Break in Pump Discharge Leg-Containment Pressure 6.3.3.2-6G 0.8 x Double Ended Guillotine Break in Pump Discharge Leg-Mass Added to Core During Reflood xxi
CESSAR Kncycu 9 LIST OF FIGURES (Cont'd) CHAPTER 6 Section Bubiect 6.3.3.2-6H 0.8 x Double Ended Guillotine Break in Pump Discharge Leg-Peak Clad Temperature 6.3.3.2-6I 0.8 x Double Ended Guillotine Break in Pump Discharge Leg-Mid Annulus Flow 6.3.3.2-6J 0.8 x Double Ended Guillotine Break in Pump ; Discharge Leg-Qualities Above and Below the Core 6.3.3.2-6K 0.8 x Double Ended Guillotine Break in Pump Discharge Leg-Core Pressure Drop 6.3.3.2-6L 0.8 x Double Ended Guillotine Break in Pump Discharge Leg-Safety Injection Flow into Intact Discharge Leg 6.3.3.2-6M 0.8 x Double Ended Guillotine Break in Pump Discharge Leg-Water Level in Down Comer During Reflood l 6.3.3.2-6N 0.8 x Double Ended Guillotine Break in Pump l Discharge Leg-Hot Spot Gap Conductance l 1 6.3.3.2-60 0.8 x Double Ended Guillotine Break in Pump I Discharge Leg-Local Clad Oxidation 6.3.3.2-6P 0.8 x Double Ended Guillotine Break in Pump Discharge Leg-Clad, Centerline, Avg Fuel and Coolant Temperature for Hottest Node 6.3.3.2-6Q 0.8 x Double Ended Guillotine Break in Pump Discharge Leg-Hot Spot Heat Transfer Coefficient 6.3.3.2-6R 0.8 x Double Ended Guillotine Break in Pump Discharge Leg-Hot Rod Internal Gas Pressure 6.3.3.2-6S 0.8 x Double Ended Guillotine Break in Pump Discharge Leg-Core Bulk Channel Flow Rate 6.3.3.2-7A 0.6 x Double Ended Guillotine Break in Pump Discharge Leg-Core Power O xxii
x-i l)! hhkk b ICATIO N f l A (_) LIST OF FIGURES (Cont'd) { CHAPTER 6 i I Section Subiect i 6.3.3.2-7B 0.6 x Double Ended Guillotine Break in Pump Discharge Leg-Pressure in Center Hot Assembly Node i 6.3.3.2-7C 0.6 x Double Ended Guillotine Break in Pump Discharge Leg-Leak Flow 6.3.3.2-7D.1 0.6 x Double Ended Guillotine Break in Pump Discharge Leg-Flow in Hot Assembly-Path 16, Below Hot Spot 6.3.3.2-7D.2 0.6 x Double Ended Guillotine Break in Pump Discharge Leg-Flow in Hot Assembly-Path 17, Above Hot Spot 6.3.3.2-7E 0.6 x Double Ended Guillotine Break in Pump Discharge Leg-Hot Assembly Quality () 6.3.3.2-7F 0.6 x Double Ended Guillotine Break Discharge Leg-Containment Pressure in Pump 6.3.3.2-7G 0.6 x Double Ended Guillotine Break in Pump i Discharge Leg-Mass Added to Core During Reflood 6.3.3.2-7H 0.6 x Double Ended Guillotine Break in Pump Discharge Leg-Peak Clad Temperature 6.3.3.2-8A 1.0 x Double Ended Guillotine -Break in Pump Suction Leg-Core Power , 1 6.3.3.2-8B 1.0 x Double Ended Guillotine Break in Pump 1 Suction Leg-Pressure in Center Hot Assembly Node J l 6.3.3.2-8C 1.0 x Double Ended Guillotine Break in Pump l Suction Leg-Leak Flow 6.3.3.2-8D.1 1.0 x Double Ended Guillotine Break in Pump Suction Leg-Flow in Hot Assembly-Path 16, Below Hot Spot 1 6.3.3.2-8D.2 1.0 x Double Ended Guillotine Break in Pump ; Suction Leg-Flow in Hot Assembly-Path 17, Above j gg Hot Spot \d 6.3.3.2-8E 1.0 x Double Ended Guillotine Break in Pump , Suction Leg-Hot Assembly Quality xxiii j
CESSAREEnemu O LIST OP FIGURES (Cont'd) CliAPTER 6 Section Subiect 6.3.3.2-8F 1.0 x Double Er.ded Guillotine Break in Pump Suction Leg-Contair: ment Pressure 6.3.3.2-8G 1.0 x Double Ended Guillotine Break in Pump Suction Leg-Mass Added to Core During Reflood 6.3.3.2-8H 1.0 x Double Ended Guillotine Break in Pump Suction Leg-Peak Clad Temperature 6.3.3.2-9A 1.0 x Double Ended Guillotine Break in Hot Leg-Core Power j 6.3.3.2-9B 1.0 x Double Ended Guillotine Break in Hot Leg-Pressure in Center Hot Assembly Node 6.3.3.2-9C 1.0 x Double Ended' Guillotine Break in Hot Leg-Leak Flow 6.3.3.2-9D.1 1.0 x Double Ended Guillotine Break in Hot Leg-Flow in Hot Assembly - Path 16, Below Hot Spot 6.3.3.2-9D.2 1.0 x Double Ended Guillotine Break in Hot Leg-Flow in Hot Assembly-Path 17, Above Hot Spot 6.3.3.2-9E 1.0 x Double Ended Guil10 cine Break in Hot Leg-Hot Assembly Quality 6.3.3.2-9F 1.0 x Double Ended Guillotine Break in Hot Leg-Containment Pressure 6.3.3.2-9G 1.0 x Double Ended Guillotine Break in Hot l Leg-Mass Added to Core During Reflood 6.3.3.2-9H 1.0 x Double Ended Guillecint Break in Hot Leg-Peak Clad Temperature l 6.3.3.2-10 Peak Clad Temperature vs Break Area 6.3.3.2-11 1.0 x DE Guillotine Break in Pump Discharge Leg-Peak Clad Temperature and Peak Local Oxidation vs Rod Average Burnup ) O l l xxiv
~ CESSAR inincam,. O V LIST OF FIGURES (Cont'd) CHAPTER 6 section subiect 6.3.3.3-1A 0.5 Ft. Cold Leg Break at Pump Discharge-Normalized Total Core Power 6.3.3.3-1B 0.5 Ft. Cold Leg Break at Pump Discharge-Inner vessel Pressure 6.3.3.3-lc 0.5 Ft. Cold Leg Break at Pump Discharge-Break Flow Rate 6.3.3.3-lD 0.5 Ft.2 Cold Leg Break at Pump Discharge-Inner Vessel Inlet Flow Rate 6.3.3.3-lE 0.5 Ft. Cold Leg Break at Pump Discharge-Inner Vessel Two-Phase Mixture Volume 6.3.3.3-lF 0.5 Ft. Cold Leg Break at Pump Discharge-Heat Transfer Coefficient at Hot Spot 6.3.3.3-1G 0.5 Ft. Cold Leg Break at Pump Discharge-Coolant Temperature at Hot Spot 6.3.3.3-lH 0.5 Ft.2 Cold Leg Break at Pump Discharge-Hot Spot Clad Surface Temperature 6.3.3,3-2A 0.35 Ft. Cold Leg Break at Pump Discharge-Normalized Total Core Power 6.3.3.3-2B 0.35 Ft.2 Cold Leg Break at Pump Discharge-Inner Vessel Prensure 6.3.3.3-2C 0.35 Ft.2 Cold Leg Break at Pump Discharge-Break i Flow Rate 6.3.3.3-2D 0.35 Ft. Cold Leg Break at Pump Discharge-Inner Vessel Inlet Flow Rate 6.3.3.3-2E 0.35 Ft. Cold Leg Break at Pump Discharge-Inner Vessel Two-Phase Mixture Volume 6.3.3.3-2F 0.35 Ft.2 Cold Leg Break at Pump Discharge-Heat Transfer Coefficient at Hot Spot 6.3.3.3-2G 0.35 Ft.2 Cold Leg Break at Pump Discharge-Coolant Temperature at Hot Spot xxV
CESSARO!Gema e LIST OF FIGURES (Cont'd) CHAPTER 6 Section Bubiect 6.3.3.3-2H 0.35 Ft. Cold Leg Break at Pump Discharge-Hot Spot Clad Surface Temperature 6.3.3.3-3A 0.2 Ft. Cold Leg Break at Pump Discharge-Normalized Total Core Power ; i 6.3.3.3-3B 0.2 Ft. Cold Leg Break at Pump Discharge-Inner Vessel Pressure 6.3.3.3-3C 0.2 Ft.2 Cold Leg Break at Pump Discharge-Break Flov Rate l 6.3.3.3-3D 0.2 Ft.2 Cold Leg Break at Pump Discharge-Inner Vessel Inlet Flow Rate 6.3.3.3-3E 0.2 Ft. Cold Log Break at Pump Discharge-Inner Vessel Two-Phase Mixture Volume 6.3.3.3-3F 0.2 Ft. Cold Leg Break at Pump Discharge-Heat Transfer Coefficient at Hot Spot I 6.3.3.3-3G 0.2 Ft.2 Cold Leg Break at Pump Discharge-Coolant , Temperature at Hot Spot ! l 6.3.3.3-3H 0.2 Ft.2 Cold Leg Break at Pump Discharge-Hot Spot l Clad Surfaco Temperature 1 6.3.3.3-4A 0.05 Ft.2 Cold Leg Break at Pump Discharge-Normalized Total Core Power 6.3.3.3-4B 0.05 Ft.2 Cold Leg Break at Pump Discharge-Inner Vessel Pressure { 6.3.3.3-4C 0.05 Ft.2 Cold Leg Break at Pump Discharge-Break Flow Rate 6.3.3.3-4D 0.05 Ft. Cold Leg Break at Pump Discharge-Inner l Vessel Inlet Flow Rate 6.3.3.3-4E 0.05 Ft.2 Cold Leg Break at Pump Discharge-Inner Vessel TwoPhase Mixture Volume Gl ; xxvi
CESSAR EEncue,. O LIST OF FIGURES (Cont'd) CHAPTER 6 Section Subiect 6.3.3.3-4F 0.05 Ft.2 Cold Leg Break at Pump Discharge-Heat Transfer Coefficient 'at Hot "' :J' 6.3.3.3-4G 0.05 Ft.2 Cold Leg Break at Pump Discharge-Coolant Temperature at Hot Spot 6.3.3.3-4H 0.05 Ft. Cold Leg Break at Pump Discharge-Hot spot Clad Surface Temperature 6.3.3.3-5A 0.02 Ft. Cold Leg Break at Pump Discharge- Normalized Total Core Power 6.3.3.3-5B 0.02 Ft.2 Cold Leg Break at Pump Discharge-Inner Vessel Pressure , l 6.3.3.3-SC 0.02 Ft. Cold Leg Break at Pump Discharge-Break l A Flow Rate 6.3.3.3-5D 0.02 Ft.2 Cold Leg Break at Pump Discharge-Inner 1 Vessel Inlet Flow Rate 6.3.3.3-5E 0.02 Ft.2 Cold Leg Break at Pump Discharge-Inner Vessel Two-Phase Mixture Volume 6.3.3.3-5F 0.02 Ft.2 Cold Leg Break at Pump Discharge-Heat Transfer Coefficient at Hot Spot 6.3.3.3-5G 0.02 Ft.2 Cold Leg Break at Pump Discharge-Coolant Temperature at Hot Spot 6.3.3.3-5H 0.02 Ft. Cold Leg Break at Pump Discharge-Hot Spot Clad Surface Temperature 6.3.3.3-6A 0.03 Ft.2 Break at Top of Pressurizer-Normalized Total Core Power 6.3.3.3-6B 0.03 Ft. Break at Top of Pressurizer-Inner Vessel Pressure 6.3.3.3-6C 0.03 Ft. Break at Top of Pressurizer-Break Flow Rate 6.3.3.3-6D 0.03 Ft. Break at Top of Pressurizer-Inner Vessel Inlet Flow Rate xxvii
CESSAREnnnce l LIST OF FIGURES (Cont'd) CHAPTER 6 Section Bubiect 1 6.3.3.3-6E 0.03 Ft. Break at Top of Pressurizer-Inner Vessel TwoPhase Mixture Volume I 6.3.3.3-6F 0.03 Ft.2 Break at Top of Pressurizer-Heat Transfer Coefficient at Hot Spot 6.3.3.3-6G 0.03 Ft.2 Break at Top of Pressurizer-Coolant Temperature at Hot Spot 6.3.3.3-6H 0.03 Ft. Break at Top of Pressurizer-Hot Spot , Clad Surface Temperature { 6.3.3.3-7 Maximum Hot Spot Clad Temperature vs Break Size 6.3.3.4-1 Long Term Cooling Plan 6.3.3.4-2 Core Flush by Hot Side Injection For 9.8 Ft Cold Leg Break
]
6.3.3.4-3 Inner Vessel Boric Acid Concentration vs Time 1 6.3.3.4-4 RCS Refill Time Versus Break Area 1 6.3.3.4-5 Overlap of Acceptable LTC Modes In Terms of Cold Leg Break Size 6.3.3.4-6 RCS Pressure After Refill vs Break Area 6.3.3.5-1A Sequence of Events Diagram for Large and Small Break LOCAs 6.3.3.5-1B Sequence of Events Diagram for Large and Small Break LOCAs 6.3.3.5-lc Sequence of Events Diagram for Large and Small Break LOCAs 6.3.3.5-1D Sequence of Events Diagram for Large and Small Break LOCAs O xxviii
CESSAR !!nificm:,. LIST OF FIGURES (Cont'd) CHAPTER 6 Rgetion Subiect l 6.3.3.5-lE Sequence of Events Diagram for Large.and Small Break Lochs 6.3.3.5-lF Sequence of Events Diagram for Large and Small Break LOCAs 6.7-1 Safety Depressurization System Flow Diagram D
\
l l 1 l l Amendment D XXix September 30, 1988 1 1 1 l'
.,\
CESSARinaca,. O w/ 6.0 ENGINEERED SAFETY FEATURES , Engineered safety features (ESP) systems provide protection in the highly unlikely event of an accidental release of radioactive fission products from the Reactor Coolant System (RCS), ' particularly as the result of a loss-of-coolant-accident (LOCA). The safety features function to localize, control, mitigate, and terminate such incidents and to hold exposure levels below applicable limits (e.g., 10 CFR 100). The following systems are 9 defined as engineered safety features (ESF) systems:
- A. Containment Isolation System (Section 6.2.4)
The containment isolation system provides for automatic containment isolation upon receipt of a Containment Isolation Actuation Signal (CIAS). See Section 6.2.4 for the containment isolation system. l B. Safety Injection System (Section 6.3) D The Safety Injection System injects borated water directly into the reactor vessel. This provides post-accident I ' p)
\s cooling to limit core damage and fission product release and assures adequate shutdown margin. The injection system also provides continuous long-term post-accident cooling of the core by recirculation of borated water from the l In-containment Refueling Water Storage Tank (IWRST) back to I the reactor core.
C. Safety Depressurization System (Section 6.7) The Safety Depressurization System (SDS) provides a safety grade means to depressurize the RCS in the event that pressurizer spray is unavailable during plant cooldown to cold shutdown. In addition, the SDS provides for post-accident venting of non-condensible gases from the RCS. The SDS also provides the capability to rapidly depressurize the RCS to initiate a primary system feed and bleed for the beyond design bases event of a total loss of feedwater. D D. Containment Spray System (Section 6.2.2) l The Containment Spray System (CSS) provides cooling sprays of borated water from the upper regions of the containment to reduce containment pressure and temperature during a . major breach of the pressure boundary of either the Reactor l Coolant, or Main Steam and Feedwater Systems inside containment. In particular, the CSS is designed to remove l !O heat from the containment atuosphere following a LOCA, a i h control element assembly ejection, or a main steam or feedwater line break inside containment. Amendment D , 6.1-1 September 30, 1988 ) l _ - - - - - --- -- ---- 1
i h h kI b ICAT12N t O 6.1 ENGINEEEED SAFETY FEATURE KATERIALS 6.1.1 METALLIC MATERIALS 6.1.1.1 Materials Selection and Fabrication 6.1.1.1.1 Specifications for Principal ESF Pressure Retaining Materials Principal ESF pressure retaining materials are listed in Table 6.1-1. 6.1.1.1.2 Engineered Safety Feature Construction Materials Materials located inside containment that are exposed to boric acid spray and the containment spray solution following a LOCA are indicated on Table 6.1-2. These materials are chosen to be compatible with these chemical solutions. Materials used in ESF component construction are reviewed for acceptability by C-E prior to release for material procurement. Corrosion of materials within the containment is minimized by , restricting the use of zinc, aluminum, and mercury. The problems associated with these metals are: A. Aluminum is attacked by alkaline solutions which may result in the loss of structural integrity and the generation of gaseous hydrogen. The amount of aluminum present inside the containment is the lowest practicable amount. B. Boric acid spray reacts with zinc, oxidizing it and liberating hydrogen gas. The use of zinc in the containment is kept to a minimum to avoid the generation of hydrogen. C. The use of mercury and mercuric compounds is prohibited for C-E supplied components inside the containment. These materials react with aluminum, stainless steel, NiCr/e alloy 600, and alloys containing copper. 6.1.1.1.3 Integrity of ESF Components During Mant.facture and construction 1 6.1.1.1.3.1 Control of Sensitized Stainless Steel The NSSS ESF components comply with tha recommendations of Regulatory Guide 1.44 in the following manner. O 6.1-2 ________________________w
CESSAR EnWic 1cn P d All raw austenitic stainless steel, both wrought and cast, used to fabricate pressure retaining components of the engineered safety features, is supplied in the annealed condition as specified in the pertinent ASME Specification (i.e., 1900-2050*F for 0.5 to 1.0 hour per inch of thickness and rapidly cooled below 700*F). The time at temperature is determined by the size and type of component. In addition, vendor fabrication procedures have been reviewed to assure that unstabilized austenitic stainless steel with a carbon content greater than 0.03% is'not exposed to the temperature range of 800 to 1500*F other than during welding. Duplex, austenitic stainless steels, containing greater than 5FN delta ferrite (weld metal, cast metal, weld deposit overlay), are l not considered unstabilized, since these alloys do not sensitize; ; form a continuous network of chromium-iron carbides. i.e., Specifically, alloys in this category are: CF 8M Cast stainless steels (delta ferrite controlled CF 8 to 5FN to 33FN) Type 308 Singly and combined stainless steel weld filler i Type 309 metals (delta ferrite controlled to 5FN to~20FN D (O / Type Type 312 316 deposited) In duplex austenitic/ferritic alloys, chromium-iron carbides are precipitated preferentially at the ferrite /austenite interface during exposure to temperatures ranging from 800 to 1500'F. This precipitate morphology precludes intergranular penetrations associated with sensitized Type 300 series stainless steels exposed to oxygenated or otherwise faulted environments. 6.1.1.1.3.2 Cleaning and Contamination Protection Procedures Specific requirements for cleanliness and contamination protection are provided for NSSS components which provide contamination control during fabrication, shipment, and storage as recommended in Regulatory Guide 1.37. Contamination of Type 300 series austenitic stainless' steels by compounds that can alter the physical or metallurgical structure and/or properties of the material is avoided during all stages of fabrication. Painting of Type 300 series stainless steels is prohibited. Grinding is accomplished with resin or rubber bonded aluminum oxide or silicon carbide wheels that have not previously been used on materials other than Type 300 series stainless O alloys. Grinding wheels bonded with rubber compositions with halides or sulfur in their chemical makeup are not used on austenitic stainless steels. D Amendment D 6.1-3 September 30, 1988
CESSAR nnincmu O l Internal surfaces of completed components are cleaned to produce an item that is clean to the extent that grit, scale, corrosion products, grease, oil, wax, gum, adhered or embedded dirt, or extraneous material are not visible to the unaided eye. Degreasing solvents, acetone or isopropyl alcohol, may be used on metallic surfaces. Water used for cleaning is inhibited with d 30-100 ppm hydrazine. The specification for water quality is: Halides Chloride, ppm <0.60 Fluoride, ppm <0.40 Conductivity, pmhos/cm <5.0 pH 6.0-8.0 Visual clarity No turbidity, oil or sediment To prevent halide-induced intergranular corrosion which could occur in an aqueous environment with significant quantities of dissolved oxygen, flushing water is inhibited via additions of hydrazine. Many experiments conducted by C-E have proven this inhibitor to be effective. Onsite and pre-operational cleaning of ESF components is in , accordance with the recommendations of Regulatory Guide 1.37. 6.1.1.1.3.3 Cold-Worked Stainless Steel Cold-worked austenitic stainless steel is not utilized for components of the ESF. l 6.1.1.1.3.4 Non-Metallic Insulation All non-metallic insulation materials installed on stainless steel piping and equipment of the ESF are made of calcium silicate, expanded pearlite, fiberglass fiber, or similar materials (ASTM C533, C547, C553, C610, C612) and are consistent with the recommendations of Regulatory Guide 1.36. 6.1.1.1.4 Wald Fabrication and Assembly of Stainless Steel ESF Components The recommendations of Regulatory Guide 1.31 for the ESF components ot' the NSSS are followed as discussed below. The delta ferrite content of A-No. 8 (Table QW-442 of the ASME D l Code, Section IX) austenitic stainless steel welding materials, except SFA-5.4 Type 16-8-2 and welding materials for weld metal Amendment D j 6.1-4 September 30, 1988
1 CESSAREnnc-r ( oorlay cladding, used in the fabrication of components of the engineered safety features system, is controlled to 5FN-20FN. The delta ferrite content of each lot and/or heat of weld filler metal used for welding of austenitic stainless steel code components shall be determined for each process to be used in production. Delta ferrite determinations for consumable inserts, electrodes, rod or wire filler metal used with the gas tungsten D are welding process, and deposits made with the plasma arc welding process may be determined by either of the alternative nethods of magnetic measurement or chemical analysis described in Section III of the ASME Code. Delta ferrite verification should be made for all other processes by tests using the magnetic measurement method on undiluted weld deposits described by Section III of the ASME Code. The. average ferrite content shall meet the acceptance limits of SFN to 20FN for weld rod or filler metal. For submerged arc welding processes, the delta ferrite determination for each wire / flux combination may be made on a production or simulated (qualification) production weld. lD 6.1.2 ORGANIC MATERIALS
,D
( 6.1.2.1 Protective Coatinos Many coatings which are in common . industrial use may deteriorate in the post-accident environment and contribute substantial quantities of foreign solids and residue to the containment' sump. Consequently, protective coatings used inside the containment, excluding components limited by size and/or exposed surface area, are demonstrated to withstand the design basis conditions and meet the intent of ANSI N101.2 (1972), " Protective Coatings (Paints) for Light Water Nuclear Reactor Containment Facilities," and recommendations of Regulatory Guide 1.54, " Quality Assurance Requirements for Protective Coatings Applied to Water-Cooled Nuclear Power Plants." Any chemical precipitation of appreciable size that does occur is trapped by the sump filter screen. The screen size is smaller than the line piping diameter, the shutdown cooling heat exchanger tube diameter, and the spray nozzle openings so that particles that could potentially block the system are filtered out. A list of surface coatings used D inside containment and their applicable conditions is given in Table 6.1-3, 6.1.2.2 Other Materials A listing of other materials in the containment is included in p Table 6.1-4. The materials listed are not protective coatings applied to surfaces of nuclear facilities. Amendment D 6.1-5 September 30, 1988
O 1 l l 9, O
_v - z l k)! hbh k!I !!kb ICATl3N I O[N 4 T&pLE 6.1-1 ' l (Sheet 1 of 2) PRINCIPAL ESF PRESSURE RETAINING MATERIALS q d Product Form ASME Specification l l Plate SA 515 GR 70 SA 516 GR 70 SA 240 TP 304, TP 304L ! SA 240 TP 316, TP 316L Inconel 600 (ASME SB 168) 3 Forgings SA 105 GR 2 , SA 182 F304, F304L l SA 182 F316, F316L L SA 508 CL 2 ] SA 336 F 8 SA 403 F316 Castings SA 351 CF 3M, CF8, CF8M
/ SA 216 WCB '( ,j SA 351 GR CA6NM Pipe SA 106 GR B l
SA 312 TP 304, TP 316 SA 358 TP 304 Class 1 SA 376 TP 304, TP 316 J Tube SA 249 TP 304/316 ; SA 213 TP 316 SS/304 i Bar SA 479 TP 304, TP 316 TP 304H, TP 304L SB 166 SA 276 TP 316 SA 564 TP 630 1 SA 193 GR B7, B6 l Bolting SA 193 GR B8 ; SA 193 GR B8M l l SA 453 GR 660 SA 307 GR B SA 540 B 24 CL 3 Nuts SA 194 GR 2H, GR 8, 6 SA 194 GR 8F, GR 8M, GR 7, i GR 8T, GR 8C
CESSAR EEnncari:n O TABLE 6.1-1 (Cont'd) (Sheet 2 of 2) PRINCIPAL E8F PRESBURE RETAINING MATERIALS Product Form ASME Specification Weld Rod SFA 5.1 Class E 7018 SFA 5.4 Class E 308-15 308-16 308L-15 308L-16 SFA 5.9 Class ER 308 ER 308L ER 309 SFA 5.11 Class E Ni Cr Fe-3 SFA 5.14 Class ER Ni Cr Fe-3 O O
CESSAR Sinincam. O TABLE 6.1-2 ENGINEER 4D SAFETY FEATURE STRUCTURAL KATERIALS THAT COULD BE EXPOSED TO CORE COOLING WATER PR CONTAINMENT SPRAY IN THE EVENT OF A LOCA Product Form ASME Specification I Plate SA 516 GR 70 (painted) lD SA 36 (painted) SA 533 GR B CL 2 (painted) lD l Forgings ASTM A 105 GR 2 (painted) SA 182 F316L SA 182 F316 Castings SA 351 CF8M, CF8, SA 508 CL.2, SA 320 L43 SA 487 CA 6 M, ASTM A 148 GR 90-60 Pipe SA 312 TP 316 , SA 53 (painted) \ SA 358 TP 304 Class 1 SA 312 TP 304 SA 376 TP 304, TP 316 Bar SB-166 Bolting SA 193 B7 SA 193 B8M SA 453 GR 660 SA 307 Nuts SA 194 2H I SA 194 8F l 1 (~5g ; V Amendment D September 30, 1988 l
CESSAR Ennnem0. TABLE 6.1-3 COATING MATERIALS USED IN CONTAINMENT Surface to be Coated Type of coatina Steel surfaces at temperature <200*F Epoxy Inorganic Zinc Uninsulated steel surfaces at temperature Inorganic Zinc more than 200*F Decon'caminable concrete wall surfaces Epoxy Concrete floors Epoxy Cement plaster Epoxy O
CESSAR !!nincam,, O TABLE 6.1-4 OTHER-ORGANIC MATERIALS IN CONTAINMENT Approximate lD Item Material Amount Reactor coolant pump Petroleum' base oil 620 gal lubricant . Cable insulation Chlorosulfonated 9800 lbs polyethylene, polychloroprene, polyolefin, fluoropolymer O O Amendment D Sepuember 30, 1988
CESSAR En&,c.m. I 6.2 CONTAINMENT SYSTEMS (TO BE REVISED IN SUBMITTAL GROUP F) The containment systems include the containment structure (and penetrations) and its associated systems such as the containment heat removal systems (CHRS), the containment isolation system, and the containment combustible gas control system. This section provides the design criteria and evaluations necessary to demonstrate that the systems listed above will function within the specified limits throughout the station operating lifetime. The containment systems are not in the CESSAR Licensing scope. However, in order to fulfill containment functional requirements, the design of all containment systems must be properly integrated. The criteria and design-bases which are necessary for consistency with the design requirements of C-E designed systems and other Engineered Safety Features (ESP) are presented below. 6.2.1 CONTAINMENT FUNCTIONAL DESIGN The containment building is not in the CESSAR Licensing scope. A physical description of the containment is provided in' the Applicant's SAR. This section I.ortains to those aspects of containment design, testing, and evaluation that relate to the accident mitigation function. 6.2.1.1 Containment Structure 6.2.1.1.1 Design Bases The containment design bases are discussed in the Applicant's SAR. 6.2.1.1.1.1 Postulated Accident Conditions The spectrum of postulated accidents considered in determining the containment design pressure and temperature is summarized in Table 6.2.1-1. The spectrum of postulated accidents considered in determining the external pressure is given in the Applicant's SAR. The spectrum of postulated accidents considered in deter-mining subcompartment peak pressures is listed in Subsection 6.2.1.2. The spectrum of breaks used in the Emergency Core Cooling System (ECCS) analysis for minimum containment pressure is listed in Section 6.2.1.5. For each containment structure peak pressure analysis, it is assumed that each accident may occur with a loss of non-emergency 6.2-1
CESSAR EL"icaritu O power (if conservative) and the most limiting single active No two accidents are assumed to occur simultaneously or failure. consecutively. The containment peak pressure design basis accident (CDBA) is defined as the most severe case of the spectrum of postulated accidents. The CDBA, the calculated pressures, the marg'in between calculated and design pressure values, and the bases for the margin and containment design parameters are given in the Applicant's SAR. 6.2.1.1.1.2 Mass and Enerav Release The sources and amounts of mass and energy release for the accidents listed in Table 6.2.1-1 are given in Part A of Tables 6.2.1-2 through 6.2.1-20. Mass and energy release data for subcompartment peak pressure and minimum containment pressure are given in Sections 6.2.1.2 and 6.2.1.5 respectively. The computer codes and assumptions used in deriving each of the mass and energy release tables are discussed in Sections 6.2.1.2 through 6.2.1.5. 6.2.1.1.1.3 Effects of ESF SystemJ on Ener_gy Removal Energy released to the containment atmosphere, as a result of the postulated accidents referred to in Section 6.2.1.1.1.2, is removed by the CIIRS . The CHRS is discussed in the Applicant's SAR. For the purpose of the containment peak pressure analysis, consideration has been given to the most restrictive single active failure in the plant for each loss of coolant accident (LOCA) and each main steam line break (MSLB) case. Consideration has also been given to the conservatism of the choice of non-omergency power versus diesel power. For the LOCA, both maximum and minimum ECCS flows are considered (see Section 6.2.1.3.7). Although maximum ECCS flow requires non-emergency power or no diesel failure, the failure of a diesel is also postulated as a further conservatism; the failure of one diesel reduces the CilRS capability to one train, which still provides 100% of the required heat removal capability. For MSLB, the following single active failures are considered: main feedwater isolation valve (MFIV) failure and loss of containment cooling (assumed to result from a failure other than a diesel failure). Availability of nonemergency power has been O 6.2-2
CESSARE!Nncmo O ' determined to be conservative (see Section 6.2.1.4.2). Under-these conditions, the CHRS will provide at least 100% of the required heat removal capability, i 6.2.1.1.1.4 Effects of ESF Systems on Pressure Reduction 1 Assuming the most limiting single active failure identified in l Section 6.2.1.1.1.3, the CHRS shall be capable of reducing- ! post-accident _ pressures to less than 50% of the containment design pressure within 24 hours following the postulated accident.
]
6.2.1.1.1.5 Containment Leakace Rate Bases The containment leakage rate bases are discussed in the Applicant's SAR. j 6.2.1.1.1.6 Bases for Analysis of Minimum Containment j l Pressure The analysis cf containment minimum pressure is based on confirming ECCS core reflood capability under a conservative set ) of assumptions that maximize the heat remeval effectiveness of the CHRS systems, structural heat sinks, and other potential heat removal processes. These assumptions are discussed in Section 6.2.1.5. 6.2.1.1.2 Design Features Design features such as protection from the dynamic effects of postulated accidents, codes and standards, protection against external pressure loads, potential water traps inside containment, and containne rt cooling and ventilation systems are discussed in the Applicant's SAR. 6.2.1.1.3 Design Evaluation 6.2.1.1.3.1 Containment Peak Pressure Analysis In the event of a postulated LOCA or MSLB, the release of coolant from the rupture area will cause the high temperature, high pressure fluid to flash to steam. The relense of mass and energy raises the temperature and pressure of the containment ) atmosphere. The severity of the resulting temperature and pressure peaks developed depends upon the nature, location, and size of the postulated rupture, as well as the containment design. 6.2-3
CESSAR nairlCATION O; A. Pipe Break Spectrum In order to establish the controlling rupture for containment design, a spectrum of primary and secondary )' breaks, described in Table 6.2.1-1, are analyzed to determine their effects. Mass / energy source terms for hot leg cases and MSLB cases are not generated after the end of blowdown. For hot leg cases, most of the reflood fluid does not pass through a steam generator prior to being released to the containment; hence, in contrast te a cold leg break, there is no physical mechanism to rapidly remove the residual steam generator secondary energy during or after reflood. For a MSLB, following blowdown of the affected unit, the decay heat is transferred to the unaffected unit which, in turn, will vent to the atmosphere when its safety valves open. For both cases, then, there is no mechanism for the release of significant amounts of mass or energy to the containment after the end of blowdown. Breaks in the main feedwater piping would result in blowdown that is less limiting than the MSLB. Effective break areas for the main feedwater line break (MFLB) are limited by the steam generator internals design. Fluid enthalpy for the MFLB is less than the enthalpy of the fluid in the MSLB; therefore, MFLB's are not analyzed. Blowdown data for the spectrum of breaks shown in Table 6.2.1-1 are evaluated to determine the most limiting mass and energy release rates with respect to containment peak pressure analysis. Those limiting cases, and their results, are presented in the Applicant's SAR. The most severe of these accidents identified in listing D below is selected as the CDBA. Energy releases to the end of blowdown for the cases listed in Table 6.2.1-1 are given in Table 6.2.1-21. B. Initial Conditions and Input Data The containment pressure analysis input data are based upon l the final plant design. A conservative prediction of LOCA i and MSLB consequences is found by determining upper and lower bounding values of containment and by applying those values in the manner producing maximum pressure results. The initial conditions within the Nuclear Steam Supply System (NSSS) prior to accident initiation are given in Table 6.2.1-22. For LOCA, the reactor coolant system (RCS) , is assumed to be at design overpower of 102% and at normal liquid levels. For MSLB, a spectrum of power levels is analyzed. Initial containment conditions are given in the i Applicant's SAR. l 6.2-4
CESSARana m
,o /N. )k In order to determine the peak containment pressure, consideration is given to the availability of non-emergency power and the most restrictive single active failure. For LOCA, the following assumptions are made. The ECCS and the CHRS are assumed to operate in the mode that maximizes the containment peak pressures as shown in Table 6.2.1-23. For the ECCS, maximum and minimum flows are considered in ,
calculating containment peak pressures as discussed in Subsection 6.2.1.3.7. For the CHRS, minimum system capacity is conservative for calculating containment peak pressures. Therefore, the CHRS is assumed to be affected by the most restrictive single active failure. For MSLB, the following assumptions are made. Non-emergency power is assumed to be available as this maintains reactor coolant pump operation which conservatively maximizes heat transfer to the affected steam generator. For the most l restrictive single active failure, the following failures I are considered: MFIV failure and loss of one containment cooling train. The containment heat sink data used in the analysis n including nodalization, gap conductivity justification, and (V i thermophysical properties are discussed in the Applictnt's SAR. Containment heat sink data for the containment minimum pressure calculation are discussed in Subsection 6.2.1.5. Blowdown mass and energy release methodologies for LOCA and MSLB are discussed in Subsection 6.2.1.3 and 6.2.1.4. Blowdown data is presented in Part A of Tables 6.2.1-2 through 6.2.1-20 for each case listed in Table 6.2.1-1. Assumptions made regarding closure times of secondary system isolation valves and single active failures for MSLB analyses are discussed in Subsection 6.2.1.4. C. Methods of Analysis The containment thermodynamic analysis is described in the Applicant's SAR. D. Accident Identification and Results The containment pressere and temperature response and sump water temperature response versus time are given in the Applicant's SAR for the most severe LOCA breaks and the most severe MSLB. j 6.2-5 i i
l)l$!h!hfkhI !b.I^'r$NICATION Pipe break locations, break areas, and total energy released ) to the containment are summarized in Table 6.2.1-21 for each 1 LOCA and MSLB analyzed. I Containment condensing heat transfer coefficients versus time for the most severe LOCA and MSLB cases are given in the Applicant's SAR. i l 6.2.1.1.3.2 Long-Term Containment Performance i The long-term results of the DBA cases for the pump discharge leg break and the pump suction leg break are evaluated to verify the ability of the CHRS to maintain the containment below the design conditions. Long term pressure / temperature versus time responses and containment energy balances are given in the Applicant's SAR. 6.2.1.1.3.3 Energy Balance An energy balance for each caso listed in Table 6.2.1-1 is provided in Part C of Tables 6.2.1-2 through 6.2.1-20. 6.2.1.1.3.4 Accident Chronoloav An accident chronology for each case listed in Table 6.2.1-1 is provided in Part D of Tables 6.2.1-2 through 6.2.1-20. 6.2.1.1.3.5 Functional Capability of Containment Normal Ventilation Systems ) The functional capability of the containment normal ventilation system is given in the Applicant's SAR. 6.2.1.1.3.6 Protection Against Severe External Loadincs Protection against severe external loading is discussed in the Applicant's SAR. 6.2.1.1.3.7 Post-accident Containment Pressure / Temperature Monitoring Postaccident containment pressure / temperature monitoring is discussed in the Applicant's SAR. 6.2.1.2 Containment Subcompartments 6.2.1.2.1 Design Bases This section discusses the bases for the design of the containment subcompartments. A summary of postulated pipe breaks 6.2-6 i
m CESSAR naincua o for rystems within the CESSAR design scope is given in Table 6.2.1-24. The subcompartment arrangements and pressure response analyses are not within the CESSAR design scope. Pipe restraints are used to limit the break area of RCS main coolant pipe ruptures. Design basis pipe break criteria and pipe break characteristics for main coolant piping are discussed in Section 3.6.2. The main coolant pipe breaks are based upon l implementation of a set of pipe waip restraints within the range of parameters tabulated in Table 4-1 of Topical Report CENPD-168A, approved May 5, 1977. In the case of piping other than RCS main coolant piping, maximum full double-ended circumferential ruptures are postulated. The margin on calculated differential pressures in the structural design of the subcompartment walls and equipment supports is addressed in the Applicant's SAR. l 6.2.1.2.2 Design Features Descriptions of the subcompartments analyzed are provided in the n Applicant's SAR. I i V 6.2.1.2.3 Design Evaluation I l Mass and energy release rates from a postulated pipe break are j calculated with the CEFLASH4A computer program. This computer program, the assumptions made to maximize blowdown rates, and the nodalization scheme for the RCS model, are the same as those described in Section 6.2.1.1 of Reference (1). Initial conditions for RCS primary system pipe break analyses were assumed to be those for 102% of nominal full power. The reactor nominal full power level is 3800 MW(t). Mass and energy release data table numbers for the postulated ruptures are listed in Table 6.2.1-24. The inside diameter of each pipe is stated in Table 6.2.1-24. l l Mass and energy release rates from the postulated main steam line break at the steam generator nozzle terminal end are based on l incorporation of flow restrictors integral with the steam generator outlet nozzles. Each restrictor reduces flow area from the steam generator nozzle to 30.% of the 28" ID pipe cross sectional area. The blowdown rates given in Table 6.2.1-35A and i 6.2.1-35B are generally not applicable for break locations other I than at the steam generator outlet nozzle. (h V 6.2-7 I l 1 l
CESSARana m l O' The nodalization scheme for the main steam system is shown in Figure 6.2.121. Two nodes, one for the steam space and the other 1 for the water space, are utilized for each steam generator ! secondary side. Eight equally sized nodes for the 28 inch lines j i from the steam generator to the steam isolation valves, sixteen equally sized nodes frora the isolation valves to the pressure equalization header, and three nodes for the header are used. To maximize blowdown rates, the hot stand-by condition, at which the steam generator water . inventory and secondary pressure are largest, was used as the initial condition for the steam line break analysis. In addition, the following conservative assumptions were made. A. To maximize the water entrainment in the break flow from the ruptured steam generator side, the homogeneous mixing model, for which the potential for the steam generator water surge to reach the break location is greatest, was used instead of the steam-water separation model. B. To minimize the effect of steamline hydraulic losses on the blowdown from the intact unit side, flow resistances such as elbows, bends, and valves, were neglected. C. The IIenry/Fauske-Moody critical flow correlation described in Section 6.2.1.1 of Reference (1), with a flow multiplier of 1.0, was used to calculate the break mass flow rates. Descriptions of the subcompartment pressure response analysis methods, models, and results are given in the Applicant's SAR. 6.2.1.3 Mass and Energy Release Analyses for Postulated Loss of Coolant Accidents LOCA mass / energy release analyses can be classified into the ) following phases: blowdown, refill, reflood, post reflood, and l long term. The blowdown period extends from time zero until the ! primary system depressurizes to essentially the containment ! pressure. During blowdown, most of the initial primary coolant { is released to the containment as a two phase mixture. Following ] blowdown, the water for releases is provided by the ECCS. j i There is an important distinction between hot leg breaks and cold leg breaks for LOCA post blowdown analyses. For a hot leg break, . the majority of the ECCS supplied water leaving the core can vent I directly to the containment without passing through a steam ' generator. Therefore, since there is no mechanism for releasing the steam generator energy to the containment for a hot leg break, only the blowdown period must be considered. Conversely,. for cold leg breaks, the water must pass through a stean 6.2-8
I CESSARnn%ma J O generator before reaching the containment so that post blowdown releases to the containment must be considered for cold leg breaks. The first post blowdown period is refill. During refill, the ' ECCS water refills the bottom of the reactor vessel to the bottom of the core. This period' is conservatively omitted from the analysis. l The second post blowdown period is the reflood period. During reflood, ECCS~ water floods the core. Reflood is assumed to~end when the liquid level in the core is 2 feet below the top of the active core. During reflood, a significant amount of the ECCS-water entering the core is postulated to be carried out of the core by the steaming action of the core to coolant heat transfer process. This fluid then passes through a steam generator where reverse (i.e., secondary to primary) heat transfer heats it before it reaches the containment. The residual steam generator secondary energy is sufficient to convert all of this fluid to superheated steam during the initial part of the reflood period. Subsequently, as the generators are cooled by this process, there is not enough heat transfer to boil all of the fluid passing through the tubes. This causes the break flow to change from O pure steam to two phase. In time, as the entire NSSS cools, the flow to the containment will be subcooled since the safety injection water is subcooled. The onset of the two phase release to the containment may or may not occur before the- end of reflood; typically, this occurs close to the end of reflood. The potential release of subcooled fluid to the containment does not occur during reflood when conservative system parameters are utilized. The third post blowdown period is the post reflood period. During this time frame, the dominant process is the continued cooling of U.;e steam generators by the ECCS water leaving the ; core. The release to the containment during this time frame is j generally two phase due to the cooling of the steam generators. ] The post reflood ends when the affected steam generator has i essentially reached the containment temperature. The final post blowdown period is the long . term period, which begins at the end of post reflood. During long term, the dominant mechanisms for release rates are the decay heat and the cooling of all NSSS metal. Long term ends when the containment pressure and the environment pressure are essentially equal. ( 6.2-9
CESSAR EiH"lCAT12N i OI 6.2.1.3.1 Mass and Energy Release Data Mass and energy release data for the suction leg, discharge leg , and hot leg break cases are given in Part A of Tables 6.2.1-2 ; through 6.2.1-10. For cold leg breaks (pump suction and discharge), some of the post blowdown ECCS water is postulated to spill directly to the containment floor whenever the reactor i vessel annulus is full. The vessel spillage data associated with these breaks are also given in Part A of Tables 6.2.1-2 through j 6.2.110. Additionally, for discharge leg breaks, some of the { ECCS water is postulated to spill directly co the containment floor without first entering the reactor vessel. This direct spillage is in addition to the vessel spillage discussed above. Also, for the discharge leg breaks, 1 out of the 4 available safety injection tanks is assumed to be unavailable due to the break; accordingly, the discharge leg break energy balances show l the inventory of this tank in the sump category. Direct flow ! spillage data for each discharge leg break is given in Part A of j Tables 6.2.1-6 through 6.2.1-9. 6.2.1.3.2 Energy Sources , The following sources of generated and stored energy in the reactor coolant considered: system primary and coolant, secondary primary coolant walls system (including are reactor 9 jl l internals), secondary coolant, secondary walls, safety injection water, core power transient and decay heat, and steam generator forward and reverse heat transfer. The initial reactor coolant system water volumes are conservatively calculated based on l maximum manufacturing tolerances for the reactor vessel and steam l generator tubes. Expansion of the loop components from cold to l hot operating conditions is also considered. The pressurizer water volume includes an allowance for level instrumentation error. Initial conditions in the reactor coolant system are given in Table 6.2.122; a tabulation of sources and amounts of stored energy is given in Part C of Table 6.2.1-2. Figure 6.2.1-1 shows the normalized decay heat curve as a fraction of the initial power level following the accident; a 20% conservatism factor is used for the first 1000 seconds, followed by a 10% factor thereafter. The initial power level assumed in the analyses is 3876 MWt. This is 102% of its nominal 3800 MWt to account for instrumentation error. The higher power level is conservative for LOCA containment pressure calculations. O 6.2-10
CESSAR !!nincamu 6.2.1.3.3 Description of Blowdown Model Blowdown mass and energy release rates are calculated using the CEFLASH4 computer code (Reference '2). 'A description of the CEFLASH4 code including the conservatism in modeling is given below. This section includes justification of the heat transfer correlations. The following. assumptions are made in selecting input data for the code. A. The CEFLASH4 code model of the heat- transfer in a node allows only one wall per node. Accordingly, the-thickness used for the "U" factor for each node wall is the thinnest wall in the node. This conservatism overestimates the "U" factors which, in turn, conservatively overpredicts the heat transfer from the walls. Hence, the energy released from the system is conservatively modeled. B. The CEFLASH4 wall representation uses the total heat capacitance of all the walls in the reactor coolant system that actually face a given node. This is conservative since, in reality, some of the walls will not participate as effectively as others in the heat transfer process.- For example, the geometry of the flow path is such as ' allow O some components to partially shield others from the flow. This effect is conservatively omitted from the modeling. C. Although much of the steel facing the coolant in the reactor coolant system is stainless cladding (K=12 Btu /f t h*F), a conservative carbon steel conductivity (K=26 Btu /ft h*F), is used for the entire wall. This conservatively overpredicts the energy released from all such walls. l D. Wall surface heat transfer coefficients are based.on a well accepted correlation (Colburn) for forced convection. Maximum flowrates from CEFLASH4 runs are used in the correlation to conservatively overpredict the heat transfer coefficients. E. All primary water volumes are conservatively increased from their nominal design values in order to obtain an upper bound for the available mat' and energy in the system prior to LOCA. The pressurizer wt 'er volume includes an allowance for level instrumentation error. Pressure and temperature expansion of the reactor coolant system and steam generator to the normal operating condition is included. F. An accepted (Jens Lottes) two phase heat transfer correlation is used for the core to coolant heat . transfer whenever the flow through the core is not pure steam.
]
6.2-11
- 1 1
CESSARn % mu
$i G. Heat transfer across the steam generator tubes is modeled with the same heat transfer coefficient in both the forward and reverse directjons. The heat transfer coefficient used j is 1600 Btu /ft h*F. By contrast, the coefficient j corresponding *to normallarger operation of the steam generator is 1026 Btu /ft h F. The value is conservative for secondary to primary heat transfer.
H. The turbine stop valves are assumed to close at 0.01 seconds. This is conservative since it keeps energy within the NSSS which in turn is a source of energy for containment pressurization. I. The Main Feedwater Isolation Valves are assumed to close only after the generation of a Main Steam Isolation Signal (MSIS) of 6 psig containment pressure. This signal occurs
/ery rapidly (~1second). Main Feedwater Isolation Valve closure is assumed to take 5 seconds (step function), with an additional allowance of 0.9 seconds for the MSIS signal delay. Feedwater flow and enthalpy are kept at their normal values due to the short times involved. As an additional conservatism, the feedwater is assumed to be added at the end of blowdown, so that the steam generator secondary temperatures (~500*F) during the blowdown are not lowered by the relatively cold feedwater (-450*F). Note that the feedwater is hot relative to potential peak LOCA containment temperatures (~275'F), so that feedwater addition at the end of blowdown is conservative both for blowdown and for reflood calculations. ;
I J. Emergency feedwater flow is conservatively omitted since it j is cold (40'F to 180*F) relative to both blowdown and reflood conditions. 6.2.1.3.4 Description of Core Reflood Model Reflood mass and energy release rates are calculated using the PLOOD-MOD 2 computer code (Reference 3). Heat transfer is conservatively modeled for core, vessel walls, vessel internals, loop metal, steam generator tubes, steam generator secondaries, and steam generator secondary walls. The FLOOD-MOD 2 code hydraulics calculates flow rates and pressure. The heat transfer process predicts fluid enthalpies. Fluid densities aro l calculated as functions of pressures and enthalpies. The i conservatism in the model are as follows: A. Depending on containment design, reflood containment pressures on System 80 plants are typically 55 psia or 70 psia. Tables 6.2.1-2 through 6.2.1-9 include cases with 6.2-12 1
CESSARinnnc-1 V both the 55 psia and 70 psia backpressure so that the Applicant can select the mass /erargy release data which is consistent with his containment design. In essence, the selection of the 55 psia or the 70 psia data allows the Applicant to choose data which is coupled to his containment pressure calculation. B. A one-dimensional heat trar. fer model is used for all wall heat transfer calculations. This is demonstrated in Reference 4 where comparisons of one-dimensional models and otherwise- identical two-dimensional models show that one-dimensional modeling is conservative. C. A nuc boiling heat- transfer coefficient of 10000 Btu /ft}eate br'F is used to model the heat transfer from the ; steam generator tubes to the fluid. This coefficient represents an upper limit, and is conservatively used at all times throughout the tubes. D. During reflood, calculations are made on the steam generator secondaries to predict the liquid levels. These calculations show that a conservatively calculated fraction (~25%) of the tube heat transfer area is in contact with the secondary steam; the remainder of the tubes is in contact with the secondary liquid. A conservative Nussgit condensation heat transfer coefficient of 2250 Btu /hrft *F is used to steam; in conjunction with the tube area a natural circulation coefficient of 5 Btu /hrft exposep* F is used for the rest of the tube area. E. The thermal resistance corresporl ding to the steam generator tubes is 0.00034 (Btu /hrft 2*F) . This value is also used in calculating secondary to primary heat transfer. F. The carryover rate fraction (CRF) used during reflood is 0.05 up to the 18 inch core level, increases to 0.80 at the 24 inch core level, and is kept at 0.80 until the 10.5 foot level is reached. 10.5 feet is 2 feet below the level of l the top of the active core. Other varia.'.es, such as core inlet temperature, pressure, flow rate, linear heat rate, or other experimental data are not used to determine the CRF. G. Reflood is assumed to terminate when the 10.5 foot quench level in the core is reached. H. 120% of the standard decay heat (Figure 6.2.1-1) curve is used as a conservatism for the available energy sources. 1 O 6.2-13 l
i CESSARE!h nu O I. During reflood, credit is taken for the condensation of i steam in the discharge legs by the cold ECCS water. As a conservatism, credit is not taken unless the reactor vessel annulus is full since the FLOODMOD2 Code assumes that the ECCS flow is injected directly into the annulus. Also, as an additional conservatism, credit is not taken when the ECCS rate is too low to thermodynamically condense all of the steam in the discharge legs. The percentage of the total steam flow condensed varies slightly with time for each case. For suction leg cases, credit is taken for the condensation of approximately 42% of the total steam flow when the annulus full and the thermodynamic criteria are simultaneously met; for discharge leg cases, the percentage varies from 42% to 50%. 6.2.1.3.5 Description of Post Reflood Model The Post Reflood Model is . identical to the reflood model except that, at the end of reflood, the carryout rate fraction (CRF) is changed from 0.80 to 1.00. This conservatively increases the system flow rates due to the increased CRF. The flow rates are further enhanced by the fact that the core liquid height is now constrained at the 10.5 foot level, which maximizes the available driving lead between the annulus level and the core in the FLOOD-MOD 2 flooding equation. All heat transfer coefficients are kept at the values used for the reflood analysis. Condensation is analyzed as previously described; however, there is not ! sufficient spillage to completely thermodynamically condense the steam so that credit for condensation has not been taken. 6.2.1.3.6 Description of Long Term Cooling Model The heat generation rate from shutdown fissions, heavy isotope decay, and fission product decay is shown in Figure 6.2.1-1. For conservatism the long-term analysis assumes that decay heat is added to the reactor vessel water at a 20% greater rate than that predicted by the decay heat curve up to time 1000 seconds, after which a 10% margin is used. Following the post reflood period outlined above, the mass / energy source terms for long-term containment analysis are computed j concurrently with the containment back pressure in the containment code. The steam flows out the break will be a j function of the depressurization of the containment (and the l variable ECCS inlet enthalpy when in the recirculation mode), j decay heat (plus margin) and primary metal-to-primary fluid heat ) transfer. The steam generator secondary fluid, tube, thick and l thin metal stored energy are used to superheat the steam prior to 1 discharge into the containment. ) 1 4 6.2-14 l
l CESSAR 88&b. i l l The long term energy release, being containment design dependent, is. detailed in each Applicant's SAR. However, typical long term energy release data for a suction leg LOCA is given in Part A of
]
Table 6.2.1-3. This illustrative data is based on an assumed I containment depressurization history and the following j calculational method: The reactor coolant system is assumed to be a vessel containing a L constant mass of saturated water.' The pressure in the vessel is . assumed to be the containment pressure. ECCS water is injected i into the vessel. Steam is formed at'a rate determined by decay ) heat, RCS ~ metal-to-coolant heat transfer and the rate _of l containment depressurization. Since the water in the vessel is i saturated, boiling will occur even without decay heat or metal - heat transfer as the containment pressure decreases. The difference between the ECCS injection rate and the steaming rate is the spillage rate to the sump. 'It is conservatively assumed that all of the decay and RCS . metal heat transfer goes into creating steam. The spillage flow is assumed to have the same enthalpy as the ECCS injection enthalpy. The rate of steam production is du g 9 RCS ~ " dt "stm " h -h g in Where: stm = steam flow, lbm/sec m q RCS = decay and RCS metal heat rates, Btu /sec du f result of M = rate of change of internal energy in RCS as a dt ' depressurization, Btu /sec h = saturated steam enthalpy at containment pressure, BEu/lbm i h = ECCS injection enthalpy Btu /lbm j in The steam created from the decay and RCS metal heat is saturated. For cold leg breaks it is conservatively assumed A V 6.2-15
-1
_________ _-__ - - - Q
CESSAR Enincucu l l that all the steam passes through the steam generators and leaves at the secondary side temperature. The long-term energy release to the Containment is given by (m h) Release " "stm h g +g gg Where: (m h) = rate of steam energy released to Containment, Btupgggase g gg = rate of heat hansh hom steam , generators to RCS steam, Btu /sec An energy balance is made on the steam generator secondary side. Secondary side metal heat transfer is included. dH 144 dP dt SG G alls ~9 SG 778 E gg Where: H gg = steam generator total enthalpy, Btu O "N
- U alls from steam generator walls, Btu /sec g gg = rate of heat hansfer to RCS steam, Btu /sec 6.2.1.3.7 Single Active Failure Analysis The cases presented in Tables 6.2.1-2 through 6.2.1-9 show the mass / energy source terms with maximum safety injection (no pump or power source failure) and minimum safety injection (failure of 1 diesel). Since the peak containment pressure is a function of both the release rates and the containment parameters, it is not (
possible to state a prior for the wide ranges of System 80 ) containments which sets of source terms are most conservative. This will be detailed in each Applicant's SAR. l 6.2.1.3.8 Metal-Water Reaction Energy addition to the containment atmosphere resulting from the maximum allowable 1% zirconium water reaction is based on a zirconium mass in the active core of 58498 lbm. Using a i Ol l a [ 6.2-16 l l j ! l l l l 1
CESSAR nuikm. i o V molecular weight of 91.22 for Zirconium and a reaction energy of 25g900 Btu /lbm mole, the 1% metal-water reaction produces 1.622 x 10 Btu. This energy may be added directly.to the containment by each applicant in his SAR. This energy is not included in the mass / energy source terms of Tables 6.2.1-2 through 6.2.1-10. 1 Note that this energy will have a very small effect on the l containment pressures. ! 6.2.1.3.9 Energy Inventories An energy balance for each LOCA case listed in Table 6.2.1-1 is provided in Part C of Tables 6.2.1-2 through 6.2.1-10. 6.2.1.3.10 Additional Information Chronology of events for the LOCA cases listed in Tables 6.2.1-1 are given in Part D of Tables 6.2.1-2 through 6.2.1-10. Reactor vessel pressure versus time for the LOCA cases listed.in Table 6.2.1-1 are given in Part B of Tables 6.2.1-2 through 6.2.1-10. The primary side resistance factors for the FLOOD-MOD 2 code are ( shown in Table 6.2.1-36. Curves of Safety Injection Flow vs time are provided in Figures 6.2.1-2 through 6.2.1-9. 6.2.1.4 Mass and Enercy Release Analysis for Postulated Secondary System Pipe Ruotures Inside Containment Following a postulated main steam line break (MSLB) or a main , feedwater line break (MFLB) inside the containment, the contents l of one steam generator (affected) will be released to the containment. Most of the contents of the other steam generator (unaffected) will be isolated by the main steam isolation valves (MSIV) and main feedwater isolation valves (MFIV). Containment pressurization following a secondary side rupture depends on how { much of the break fluid enters the containment atmosphere as steam. MSLB break flows can be pure steam or two-phase. MFLB > flows are two-phase. With a pure steam blowdown, all of the ! break flow enters the containment atmosphere. With two phase blowdown, part of the liquid in the break flow boils off in the containment and is also added to the atmosphere, while the rest falls to the sump and contributes nothing N containment pressurization. For MSLB cases with large brr;k areas, steam cannot escape fast enough from the two-phase region of the affected steam generator and the two-phase level rises rapidly to the steam line mie. A two-phase blowdown results. The 6.2-17 l l L_-_-___________ _ - _ l
i i CESSARMEnce O duration of this blowdown is short; therefore little primary-to-secondary heat transfer takes place and the break flow is largely liquid. Ior MSLB cases with small break areas, steam can escape fast enough from the two-phase region of the affected steam generator so that the level swell does not reach the steam line nozzle. A pure steam blowdown results. Because of the pressure reducing effects of active and passive containment heat sinks, the highest peak containment pressure resulting from a MSLB for a given set of initial steam generator conditions occurs for that case where the break area is the maximum at which a pure steam blowdown can occur. The potential lor steam generator two-phase level swell following a MSLB increases as power level decreases; therefore, a spectrum of power levels must be analyzed to determine which one results in the peak MSLB containment pressures. The feedwater distribution box is below the steam generator water level; therefore, MFLB cases always result in two-phase blowdowns and do not produce peak containment pressures as severe as MSLB Cases. To permit a determination of the effect of MSLB upui. ~ontainment pressure, analyses are performed with SGNIII (described in Appendix 6B of Reference 1) at 102, 75, 50, 25, and 0 percent power. The largest slot and guillotine breaks at which a pure steam blowdown can occur are determined. The breaks are conservatively assumed to be at the nozzle of one of the steam generators. The cases analyzed are listed in Table 6.2.1-1. The System 80 plants have integral flow restrictors in the nozzles of the steam generators. Credit for the flow restrictors is taken in the analysis. In the plant, the main steam isolation signal (MSIS) of the engineered safety features actuation system (ESFAS) closes the MSIV's, MFIV's and the emergency feedwater isolation valves. MSIS is generated either by a steam generator, low pressure signal or a containment high pressure signal. The MSIV's close in 4.6 seconds. The valve closures have been considered in the analysis. The main steam line isolation interface requirements are discussed in Section 5.1.4. The main feedwater line isolation interface requirements are discussed in Section 5.1.4. The emergency feedwater line isolation interface requirements are discussed in Section 5.1.4. O 6.2-18
CESSAREn a m,. O The emergency feedwater system functions automatically during MSLB to ensure that a heat sink is always available to the reactor coolant system by supplying cold feedwater to maintain an adequate water inventory in the unaffected steam generator. The affected steam generator is identified and isolated while a controlled flow path is provided .to the unaffected steam generator. No credit for emergency feedwater flow to thq unaffected steam generator is taken in the MSLB analysis. Interface requirements on the maximum steam line and feedwater line volumes are discussed in Section 5.1.4. The total volume of fluid between the MSIV's and each steam generator is assumed to be 2000 cubic feet (total for two steam lines). The volume of fluid between the MSIV's and the turbine stop valves is assumed l to be 14000 cubic feet maximum. The maximum volumes line. The I maximum volume of fluid between the upstream MFIV and each steam generator is assumed to be 500 cubic feet. The flashing.of this fluid into the affected steam generator and then into the containment is considered in the analysis. ! 6.2.1.4.1 Mass and Energy Release Data 1 Mass / energy release data for the MSLB cases listed in Table 6.2.1-1 are given in Part A of Tables 6.2.1-11 through 6.2.1-20. 6.2.1.4.2 Single Failure Analysis Assuming the availability of non-emergency power is conservative since it allows the continuation of reactor coolant pump operation. This maximizes the rate of heat transfer to the affected steam generator which maximizes the rate of mass / energy release. With non-emergency power, a diesel failure need not be postulated. There is an MSIV in each main steam line. The MSIV's have been designed to close based on a conservative calculation which maximizes the dynamic pressure loading on the valve for all possible flow rates and qualities. Each valve has dual solenoid
- valves to assure closure even with a single failure in the control system. Single failure of the actuation signal will not prevent valve closure since both trains of MSIS actuation are provided to each MSIV. Any failure would result in the valve going to the closed position so that no additional steam could be added to the containment. The other MSIV isolates the unaffected steam generator. Each valve is tested periodically. Therefore, the failure of an MSIV is not considered to be a credible event.
There are two MFIV's in series in each main feedwater line. If one MFIV fails, the second MFIV would provide isolation. All O 6.2-19 E______________-.___________
CESSAR !!!Fi"lCATION i l O cases analyzed considered the flashing of the fluid in the lines from the upstream MFIV's to the affected steam generator; therefore, there is no need to do a separate analysis assuming MFIV failure. Data in Table 6.2.1-11 through 6.2.1-20 assume no failure in C-E l supplied equipment. The data is to be used with the assumption ! of a failure in the CHRS. The effect of a single active failure ! I in the CHRS is shown in the Applicant's SAR. 6.2.1.4.3 Initial Conditions Nominal full load for System 80 is 3800 Mwt. Reactor coolant system parameters at 102 percent of full power are given in Table 6.2.1-22. The steam generator pressure varies from 1070 psia (nominal full load) to 1170 psia (no load). The initial steam generator inventory is calculated assuming manufacturing tolerances which maximize the initial inventory. The increase in the initial inventory resulting form thermal expansion of the steam generator is included. 6.2.1.4.4 Description of Blowdown Model The SGNIII digital computer code described in Appendix 68 of Reference 1 is used for the secondary system pipe break analysis. All significant equations, including those for the calculation of primary-to-secondary, core-tocoolant, and metal-to-coolant heat transfer, and for the calculation of steam separation and moisture carryover, are discussed in Appendix 6B of Reference 1. t Experimental justification for all heat transfer coefficients, steam separation velocities, and two-phase flow correlations is provided in Appendix 6B of Reference 1. Steam line capacity is modeled by performing a mass / energy / volume balance on a steam line node. The calculation is performed { separately from SGNIII by hand. Iteration between the hand ' calculation and SGNIII is required to obtain flows from the steam generators equal to the flow into the steam line node. The flows i out of the steam generators are obtained by using the flow area l Versus time option in SGNIII. Figure 6.2.1-10 shows the flow l paths into and out of the steam line node. The mass / energy / volume balance for the steam line node is given below. 1 l M= Em l l E= Emh 9=0 6.2-20 l l l _ __ __ _ _a
CESSAR HE"mmu Where Em = my+m2 + "4 ~ "B ~ "T for slot breaks and Im=mi + "2 ~ "T ~ "B2 for guillotine breaks (see Figure 6.2.1-10 for subscript definition). The contribution to containment pressure of feedwater flow is handled by feedwater flow addition to the affected steam generator and the boiling off of the feedwater by primary to secondary heat transfer. The feedwater flow is the sum of the pumped feedwater flow prior . to isolation plus the isentropic expansion of the fluid in the feedwate.r line between the affected steam generator and its MFIV. The feedwater flow pumped to the affected steam generator is conservatively modeled as 200 percent of the initial feedwater flow to account for spiking. No degradation of the feedwater flow occurs until the closure of the l MFIV's. For consistency, no feedwater is added to the unaffected i steam generator. The total feedwater flow to the af fected steam generator is a tabular input to SGNIII. Following closure of the MFIV's, there is. an inventory of feedwater between the MFIV and the affected steam generator. As the affected steam generator depressurizes, this inventory starts to boil. As steam in the line expands this feedwater inventory is pushed into the steam generator and is' boiled off by primary to secondary heat transfer. The expansion of the feedwater inventory into the affected steam generatpr has been considered in the analysis. The expression is assumed to be isentropic. l The isentropic expansion of the feedwater downstream of the MFIV is determined in a calculation separate from SGNIII. The expansion flow is added to SGNIII as a tabular input along with the pumped feedwater flow. Since it is assumed that the pressure in the feedwater line downstream of the MFIV is the same as the affected steam generator pressure, iteration with SGNIII is required. As the effected steam generator depressurizes, the
*eedwater expands. At first the feedwater is subcooled and the fluid .which expands into the affected steam generator is pure liquid. Once the steam generator pressure drops below the saturation pressure of the feedwater, flashing starts to occur and then the fluid which expands into the steam generator is f two-phase. The equations for each phase of the isentropic expansion process are given below:
6.2-21 _ _ _ _ _ _ _ _ - - _ - - _ _ _ _ - _ - - _ - _ _ _ _ _ - _ _ _ . - _- _ _ _ _ _ _ _ _ - . - - - _ _ . _ _ - _ _ _ _ _ - _ _ _ _ _ _ _ - _ _ _ _ _ - = _ _ _ -
I CESSAR HMinceu 1 l i Subcooled 4 s y(Pgg, T) =s g j Mvy(PSG' y ) "
"I t ~
l t- t mh = mhy(PSG' } Satu rate _cl , I MVg g(Pgg) +Mv gg (Pgg) =V Msgf (PSG as0 @gg) Mg+ M O g (Mg+ M)g (Mg+ M) g t t- t t Mhg(Pgg) f +Mhq(PSG) Q mh = m g gf, g Symbols M Feedwater mass lbm 3 V Volume of Feedwater downstream gf MFIV, ft P SG essure of a Hected SG, l @ n. a T Feedwater temperature, *F h Specific enthalpy v Specific volume s Specific entropy i m Feedwater flowrate from isentropic expansion 1 mh Feedwater enthalpy rate from isentropic expansion t Time Subscripts i 1 Subcooled liquid ) f Saturated liquid g Saturated vapor o Initial The feedwater flow from isentropic expansion is added to the pumped feedwater flow. The pumped feedwater flow is O l l , 6.2-22 1 1
CESSARHNnc-O i conservatively assumed to be a constant 200% of the initial l l feedwater flow until the MFIVs close. J The MSLB mass / energy data given in Part A of Table 6.2.1-11 i l through 6.2.120 represent the total release from the NSSS to the containment. The mass / energy contributions from the steam lines and feedwater lines are included in Tables 6.2.1-11 through 6.2.1-20. There are no additional releases. 6.2.1.4.5 Energy Inventories l An energy balance for each MSLB case listed in Table 6.2.1-1 is provided in Part C of Tables 6.2.1-11 through 6.2.1-20. 6.2.1.4.6 Additional Information The flow area of the main steam lines is 4.28 square feet. For. the MSLB analysis, the postulated rupture is assumed to occur at j the nozzle of one of the steam generators; therefore, the fL/D l from the affected steam generator to the break is zero. In the l MSLB analysis, the fL/D from the affected steam generator to the break is conservatively assumed to be 10 since the fL/D in the System 80 plants is greater than 10. The flow restrictor area is 1.28 square feet. Pressures in the affected and unaffected steam generators for each MSLB case listed in Table 6.2.1-1 are given in Part B of l Tables 6.2.1-11 through 6.2.1-20. j Chronology of events for the MSLB cases listed in Table 6i.2.1-1 are given in Part D of Tables 6.2.1-11 through 6.2.1-20. Feedwater flow to the affected steam generator for each MSLB case listed on Table 6.2.1-1 are shown on Figures 6.2.1-11 through 6.2.1-20. 6.2.1.5 Minimum Containment Pressure Analysis for Performance Capability Studies on Emercency Core Cooling System 6.2.1.5.1 Introduction and Summary Appendix K to 10CFR50 provides the required and acceptable features of emergency core cooling system (ECCS) evaluation models.(1) Included in this list is the requirement that the containment pressure assumed in the evaluation of ECCS performance not exceed a pressure ' calculated conservatively for that purpose. The result presented herein was obtained using the O 6.2-23
CESSAR En@lCATl*N O i method and models approved by the Nuclear Regulatory Commission 1 (NRC). This result was used in the ECCS performance analysis for the System 80 Standard Plant, which is presented in Section ! 6.3.3. l 6.2.1.5.2 Method of Calculation The calculations reported in this section were performed using the methods described) in Reference 2 and approved in Reference
- 6. In this method, the CEFLASH-4A(3) computer program is used to I determine the mass and energy released to the containment during the blowdown phase of a postulated LOCA. The COMPREC-II(4) computer program is used to determine both the mass and energy released to the containment during the refill /reflood phase and the minimum containment pressure response to be used in the evaluation of the effectiveness of the emergency core cooling system.
6.2.1.5.3 Input Parameters The ECCS performance analysis for the System 80 Standard Plant is intended to be applicable to and referenced in many individual System 80 plant Safety Analysis Reports. Therefore, the input used for the minimum containment pressure analysis presented herein was chosen such that the results, which are used in the ECCS performance analysis of Section 6.3.3, conservatively envelope the individual System 80 plants referencing this document. 6.2.1.5.3.1 Mass and Energy Release Data The mass and energy released to the containment for the limiting large break LOCA, 1.0 x DEG/PD, is listed as a function of time in Table 6.2.1-37. The quantity of safety injection fluid that is assumed to spill from the break is discussed in Section 6.2.1.5.3.5 6.2.1.5.3.2 Initial Containment Internal Conditions The initial containment conditions which have been used for this analysis are: Temperature 50*F (minimum) Pressure 14.7 psia (minimum) Relative Humidity 100% (maximum) For each parameter, the conservative direction with respect to minimizing the containment pressure appears in parentheses. 6.2-24
CESSAR nninemen
\
6.2.1.5.3.3 Containment Volume The net freg containment volume assumed for this analysis is 3,707,000 ft 6.2.1.5.3.4 Active Heat Sinks In order to conservatively maximize the heat removal capacity of the containment active heat sinks, the containment sprays are assumed to be actuated in the shortest possible time following the break, and to operate at their maximum capacity assuming the minimum spray water temperature. To minimize the spray system actuation time, offsite power is assumed to be available. (It should be noted that offsite power is assumed not to be available for the safety injection system (SIS)). The assumed operating parameters for the containment sprays are as follows: Flow rate 11,000 gal / min (total, all pumps) Temperature 60*F during ECCS Injection Mode The containment sprays have been conservatively assumed to be actuated immediately at the time of the postulated LOCA. I 6.2.1.5.3.5 Steam Water Mixinq l l The effect of condensing containment steam with spilled ECCS l water upon the containment pressure is calculated in the manner described in Section III.D.2 of Reference 2. The effective ECCS l spillage rate is shown as a function of time in Figure 6.2.1-22. l j 6.2.1.5.3.6 Passive Heat Sinks l The surface areas and thickness of all exposed containment passive heat sinks are listed in Table 6.2.1-38. The values used' in this analysis either meet or exceed those values specified in , Branch Technical Position CSB 6-1(5) for a 3800 Mwt plant. The j
*hermal properties assumed for this analysis are also listed in Table 6.2.1-38.
6.2.1.5.3.7 Heat Transfer to Passive Heat Sinks The condensing heat transfer coefficients between the containment I atmosphere and the passive heat sinks have been calculated in the 6.2-25
)
a CESSAR Ennnums ! l O ) manner described in Section III.D.2 and Figure III.D.2-2 of Reference 2. The variation of the condensing heat transfer coefficients as a function of time is shown quantitatively in Figure 6.2.1-23. 6.2.1.5.3.8 Containment Purge System The analysis presented in this section has been performed assuming complete containment isolation. The containment purge system has, therefore, been assumed not to be operating at the time of the postulated LOCA. I 6.2.1.5.4 Results l l For the limiting large break LOCA, 1.0 x DEC/PD, the minimum , containment pressure response to be used in analyzing the i effectiveness of the ECCS is shown in Figure 6.2.1-24. The responses of the containment atmosphere and containment sump temperatures are shown in Figures 6.2.1-25 and 6.2.1-26, respectively. The transient containment response is used in the ECCS performance analysis presented in Section 6.3.3. 6.2 1.6 Testing and Inspection 9, Testing and inspection requirements for the containment and for other engineered safety features that interface with the containment structure are discussed in the Applicant's SAR. 6.2.1.7 Instrumentation Applications The containment pressure is measured by independent pressure transmitters located at widely separated points within the containment. Refer to Section 7.3 for a discussion of pressure as an input to the engineered safety features actuation system (ESFAS). Refer to Section 7.5 for a discussion of the display instrumentation associated with pressure. The containment airborne radioactivity is monitored by the airborne radioactivity monitoring system. Hydrogen concentration is monitored in the containment by the hydrogen monitoring system i discussed in Section 6.2.5. Temperature sensors are positioned ! at appropriate locations throughout the containment. The temperature is displayed in the main control room along with high-temperature alarms. O 6.2-26 i
CESSAR ME"ica. O BEFERENCES FOR SECTION 6.2.1.5
- 1. Acceptance Criteria for Emergency Core Cooling Systems for Light-Water Cooled Nuclear Power Reactors, Federal Reaister. Vol. 39,.No. 3 Friday, January 4, 1974. !
- 2. " Calculative Methods for the C-E Large Break LOCA Evaluation Model", CENPD-132, August, 1974 (Proprietary).
" Updated Calculative Methods for the C-E Large Break LOCA I Evaluation Model", CENPD-132, Supplement 1, February, 1975 (Proprietary). " Calculational Methods for the C-E Large Break LOCA Evaluation Model", CENPD-132, Supplement 2, July, 1975 (Proprietary).
I
- 3. "CEFLASH-4A, A FORTRAN-IV Digital Computer Program for Reactor Blowdown Analysis", CENPD-133, August, 1974 (Proprietary).
"CEFLASH-4A, A FORTRAN-IV ' Digital Computer Program. for Reactor Blowdown Analysis (Modification)", CENPD-133 Supplement 2, February, 1975 (Proprietary).
- 4. "COMPREC-II, A Program for Emergency Refill-Reflood of the ;
Core", CENPD-134, August, 1974 (Proprietary).
"COMPERC-II, A Program for Emergency Refill-Reflood of the Core Modification", CENPD-134, Supplement 1, February, 1975 (Proprietary).
- 5. Branch Technical Position CSB 6-1 as given in SRP 6.2.1.5.
- 6. Letter, O. D. Parr (NRC) to F. M. Stern (C-E), June 13, 1 1975. Letter, O. D. Parr (NRC) to A. E. Scherer (C-E), j December 9, 1975.
I l l
/
l u 6.2-27
CESSARHEncueu O B_EFERENCES FOR SECTION 6.2 (Other than Section 6.2.1.5)
- 1. CESSAR, " Combustion Engineering Standard Safety Analysis Report", Combustion Engineering, Inc., docketed December 19, 1973.
- 2. " Description of Loss of Coolant Calculational Procedures",
Report CENPD-26, Combustion Engineering, Inc. l
- 3. " FLOOD-MOD 2 - A Code to Determine the Core Reflood Rate for a PWR Plant with Two Core Vessel Outlet Legs and Four Core Vessel Inlet Legs", Interim Report, Aerojet Nuclear Company, November 2, 1972.
- 4. Kreith, Frank, " Principles of Heat Transfer", International Textbook Company, 1958.
O1 1 6.2-28
l (J' TABLE 6.2.1-1 POSTULATED ACCIDENTS FOR CONTAINMENT DESIGN PEAK PRESSURE / TEMPERATURE DETERMINATION (Sheet 1 of 3) Loss of Coolant Accidents (LOCA) Double Ended Suction Leg Slot (DESLS), 70 Psia Back Pressure, Maximum ECCS Flow, 9.8175 Square Feet Double Ended Suction Leg Slot (DESLS), 70 Psia Back Pressure I Minimum ECCS Flow, i 9.8175 Square Feet Double Ended Suction Leg Slot (DESLS), I 55 Psia Back Pressure, Maximum ECCS Flow, j 9.8175 Square Feet Double Ended Suction Leg Slot (DESLS), 55 Psia Back Pressure, Minimum ECCS Flow, 9.8175 Square Feet Double Ended Discharge Leg Slot (DEDLS), 70 Psia Back Pressure, Maximum ECCS Flow, 9.8175 Square Feet f l
TABLE 6.2.1-1 (Cont'd.) f (Sheet 2 of 3) Double Ended Discherge Leg Slot Break (DEDLS), 70 Psia Back Pressure, Minimum ECCS Flow, 9.8175 Square Feet Double Ended Discharge Slot Break (DEDLS) 55 Psia Back Pressure Maximum ECCS Flow j 1 9.8175 Square Feet ; Double Ended Discharge Slot Break (DEDLS) 55 Psia Back Pressure, Minimum ECCS Flow, 9.8175 Square Feet Double Ended Hot Let Slot (DEHLS), 19.2423 Square Feet ; i Main Steam Line Breaks (MSLB) 102% Power, Slot 8.78 Square Feet, 1 Loss of Containment Cooling l 102% Power, Guillotine, 8.'78 Square Feet, Loss of Containment Cooling I 75% Power, Slot, 8.78 Square feet, Loss of Containment Cooling 75% Power, Guillotine, 8.78 Square Feet, Loss of Containment Cooling I l
1 TABLE 6.2.1-1 (Cont'd.)
~
(Sheet 3 of 3) 50% Power, Slot, 8.78 Square Feet, ; Loss of Containment Cooling 50% Power, Guillotine, 8.78 Square Feet, Loss of Containment Cooling 25% Power, Slot, 8.78 Square Feet, ! Loss of Containment Cooling l l 25% Power, Guillotine, 8.78 Square Feet, Loss of Containment Cooling 0% Power, Slot, 4.0 Square Feet, I
?O i ( ) Loss of Containment Cooling 0% Power, Guillotine, 8.78 Square Feet Loss of Containment Cooling O
n
TABLE 6.2.1-2 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS I DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 1 of 14 PART A: Mass / Energy Release Data Bre.tk Mass Break Energy Time Flow Rate Flow Rate Point (Sec) (Lbm/Sec) (Million Btu /Sec) 1 0.000 '0.00 0.000000 2 .025 78684.15 44.190115 3 .075 77023.43 43.299911 4 .150 80294.85 45.230353 i 5 .175 81715.47 46.060543 l 6 .200 103845.07 58.673430 7 .250 99073.00 55.992516 8 .350 94681.10 53.642278 9 .500 91739.82 52.231955 ' 10 1.000 85247.00 49.361298 11 1.100 78744.18 45.600437 12 1.200 72561.49 42.039622 13 1.300 68208.11 39.599004 14 1.500 64107.83 37.208517 15 2.000 60876.42 35.448114 16 3.000 56734.63 33.357635 17 4.000 50692.00 30.546992 18 5.000 43248.77 27.486291 13 6.000 36035.64 24.235547 20 7.000 31113.50 21.804991 ] 21 8.000 29012.69 20.444680 1 22 9.500 25491.00 18.174160 } 23 11.000 22289.67 16.213711 24 :2.000 18948.22 14.403297 25 1h.000 15050.54 12.312818 26 14.000 11655.06 10.362372 j 27 15.300 9476.11 8.266892 L 28 16.000 7653.32 5.943360 l 29 17.000 4916.13 3.698847 30 18.000 3326.44 2.344537 31 18.400 2647.15 1.930442 32 18.600 2724.18 1.927441 / 33 18.800 2369.03 1.603367 )
() \ TABLE 6.2.1-2 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 2 of 14 i PART A: Mass / Energy Release Data Break Mass Break Energy Time Flow Rate Flow Rate Point (Sec) (Lbm/Sec) (Million Btu /Sec) 34 19.300 1990.86 1.317302 35 20.000 1336.58 .973623 36 21.000 1341.58 .685857 37 21.600 748.32 .419496 38 22.200 68.64 .083249 39 22.400 0.00 0.000000 INTEGRAL 582100. LBM 378.100 MILLION BTU t i v i c).
q l r l TABLE 6.2.1-2 ' DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS i DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure J l Sheet 3 of 14 ] PART A: Mass / Energy Release Data Time Mass Release Enthalpy Energy Release Rate ) (Sec) Rate (Lbm/Sec) (Btu /Lbm) (Million Btu /Sec) 1 22.400 0.00 0.00 0.000000 2 23.000 329.69 1296.45 .427426 4 3 24.000 548.10 1293.58 .709009 4 25.000 854,15 1289.66 1.101567 i 5 26.000 1119.81 1285.46 1.439476 ) 6 26.100 654.67 1285.17 .841362 7 30.000 651.69 1280.95 .834780 8 40.000 635.82 1273.36 .809630 9 50.000 619.92 1265.84 .784721 1258.08 10 60.000 604.21 .760146 11 70.000 588.59 1250.47 .736012 12 80.000 572.94 1242.62 .711949 13 90.000 557.40 1234.76 .688258 14 95.000 455.04 1215.23 .552978 l 15 95.100 780.24 1215.41 .948315 l 16 100.000 608.29 1224.43 .744808 1 17 103.000 538.29 1228,94 .661524 18 106.000 477.67 1233.30 .589109 19 110.000 511.61 1220.45 .624395 ' 20 110.100 425.41 1229.92 .523221 21 110.200 373.81 1238.28 .462882 22 114.800 451.10 1219.39 .550065 23 120.400 276.04 1239.74 .342219 24 130.000 138.65 1273.94 .176632 25 140.000 65.64 1307.51 .085825 26 160.000 23.53 1307.48 .030765 27 180.000 23.51 1307.53 .030740 28 200.000 23.50 1307.45 .030725 29 220.000 23.49 1307.49 .030713 1 30 240.000 23.48 1307.71 .030705 31 260.000 23,47 1307.88 .030696 32 280.000 23.47 1307.54 .030688 33 300.000 23.46 1307.76 .030680 34 325.000 23.46 1307.33 .030670 ! O i I
v TABLE 6.2.1-2 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 4 of 14 PART A: Mass / Energy Release Data Time Mass Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) (Btu /Lbm) (Million Btu /Sec) 35 350.000 23.45 1307.51 .030661 36 375.000 23.44 1307.59 .030650 37 400.000 23.43 1307.68 .030639 INTEGRAL 65896. LBM 82.303 MILLION BTU O V 1 O' V
-- -- -- - i
TABLE 6.2.1-2 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 5 of 14 Typical Long Term Mass / Energy Release Data NOTE: This data is not to be used for Applicant's final SAR calculations. PART A: Mass / Energy Release Data l Time, Mass Release Rate, Energy 6 Release Rate, l Seconds 1bm/sec _ 10 Btu /Sec 400. 0.00 0.000000 410. 127.71 0.153257 450. 125.69 0.150987 { 500. 123.45 0.148484 l 600. 118.23 0.142541 1 700. 112.16 0.135563 800. 102.71 0.124434 - 900. 100.15 0.121407 l 1,000. 96.47 0,116912 1,100. 89.88 0.108902 1,200. 85.19 0.103205 1,300. 83.33 0.100926 1,400. 81.65 0.098872 1,500. 80.12 0.097010 1,600. 78.71 0.095297 l,690. 77.19 0.093440 , NOTE: Recirculation Assumed at 1693 seconds. 1,700. 85.70 0.103732 2,000. 81.76 0.098919 2,500. 7T. 07 0.090746 3,000, 70.12 0.084719 4,000. 64.75 0.078128 5,000, 60.47 0.072901 ; 7,500. 52.96 0.063679 ' 10,000. 48.02 0.057629 20,000. 40.41 0.048233 30,000. 36.55 0.043477 50,000. 31.87 0.037749 0
i
,O TABLE 6.2.1-2 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 6 of 14 Typical Long Term Mass / Energy Release Data NOTE: This data is not to be used for Applicant's final SAR calculations.
PART A: Mass / Energy Release Data Time, Mass Release Rate, Energy 6 Release Rate, Seconds 1bm/sec 10 Btu /Sec 75,000. 28.64 0,033802 100,000. 26.31 0.030953 200,000. 21.11 0.024735 300,000. 18.27 0.021394 l 500,000. 15.19 0.017788 g
, 750,000. 12.92 0.015725 l
1,000,000. 11.49 0.013451 l
}
i i l l V l i i l
TABLE 6.2.1-2 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure i Sheet 7 of 14 PART A: Mass / Energy Release Data Spillage Data j l Time Mass 1bm Energy 106 Btu ! End of Blowdown 22.4 sec 0.0 0.000 l l End of Reflood 119.1 sec 303999 69.808 l End of Post Reflood 400 sec 758358 186.664 NOTE: The spillage datt tabulated is sum of.: 1
- 1) Direct ECCS Spillage (discharge leg cases only)
- 2) Vessel Spillage Direct ECCS Spillage is ECCS flow which goes directly to the contain-ment without entering the NSSS. Vessel Spillage is the sum of all liquid leaving the break.
O
~
l l lI TABLE 6.2.1-2 [] DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area I HAXIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure I theet 8 of 14 PART B: Reactor Vessel Pressure vs. Time l l Time (Sec) R.V. Pressure (psia) 4 0.000 2295 0.025 2193 : 0.050 2073 I 0.075 1816 0.100 1644 0.125 1769 0.150 1698 0.200 1715 0.250 1775 0.275 1699 (9 0.350 1700 I Q l 0.425 0.500 1665 1631 l 0.600 1605 0.700 1586 0.800 1568 0.900 1549 1.100 1517 1.300 1492 l 1.500 1464 2.000 1410 2.600 1375 2.200 1337 3.700 1303 4.200 1280 4.700 1271 5.300 1241 6.000 1202 7.000 1163 8.000 1117 9.000 1054 10.000 998 11.000 943 12.000 858 Ch V
l TABLE 6.2.1-2 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS l DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 9 of 14 PART B: Reactor Vessel Pressure vs. Time Time (Sec) R.V. Pressure (psia) l 14.000 687 16.000 376 18.000 150 20.000 69 I 22.000 .39 22.400 36 l l
)
i O
1 rh TABLE 6.2.1-2 (LY' DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area , 1 MAXIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 10 of 14 PART 8: Reactor Vessel Pressure vs. Time Time (Sec) Reactor Vessel Annulus Pressure (Psia) 1 1 22.400 70.00 2 23.000 74.30 3 24.000 81.38 ,l 4 25.000 95.33 I l 5 26.000 110.08 6 26.100 110.40 7 30.000 109.69 8 40.000 107.51 9 50.000 105.40 10 60.000 103.33 7- 11 70.000 101.36 t 12 80.000 99.43 l
- 13 90.000 97.55 l 14 95.000 96.34 '
15 95.100 96.32 16 100.000 95.59 17 103.000 94.51 18 106.000 93.13 , 19 110.000 85.62 l 20 110.100 86.55 21 110.200 87.43 22 114.800 81.66 23 120.400 79.82 J 24 130.000 76.60 25 140.000 72.81 26 160.000 70.37 27 180.000 70.37 28 200.000 70.37 , 29 220.000 70.37 30 240.000 70.37 31 260.000 70.37 32 280.000 70.37 33 300.000 70.37 34 325.000 70.37 35 350.000 70.36 36 375.000 70.36
/'~'i 37 400.000 70.36 D
a----------
l k a c t a o B d T o t f o t n ol 3 0 6 2 6 1 5 e e f 2 3 4 4 3 7 8 e m de 0 0 9 4 7 2 6 4 F n nR i E 7 0 3 3 4 3 7 7 e a t 4 2 8 1 1 3 r t t s 1 1 a n Ao u q o P C S a 5 i 7 s f 1 p Od 9 6 2 3 9 6 5 5 8 o 1 7 2 8 9 5 1 3 0 d o 8 6 6 5 5 9 0 4 9 7 nl Ef 0 4 3 9 7 8 0 9 e 5 2 8 1 2 4 tR 1 1 A e r uf sO S s n I ed w S rno Y ped * * * * * * *
- L w A A A A A A A A A k ro N ael A etB Pf E A R t U A T
A R E P n M f w 2 7 8 0 1 6 1 4 E oo 6 1 3 3 4 8 6 3 T d 2 8 0 8 3 0 1 8
/ d w .
2 E 4 no 2 1 3 3 8 2 9 3
- R 1 El 3 3 1 3 8 2 2 5 1 U B 1 1 . S f 2 S o E
6 R 1 P 1 t E dAe L K t n r B A e E nu A E e ws T P h oos S td e * * * * * * *
- T N rop wr A A A A A A A A E ol M iBk N r a I Pf e A OP T
N O C R A 2 6 9 6 2 4 0 4 O rC 9 4 9 8 0 9 8 3 F oO 9 8 2 3 6 2 1 8 iL . A r 7 1 0 7 8 4 2 3 T P o 5 4 3 3 8 2 3 5 A T 3 1 1 D s l y e a l r b n a a u r n m T e r i U t e r r r T n t P o o B I n t t T E I s , a a O T 6 n r l r r r L A 0 o e r a e e e S R 1 i t e n z n n t a t r l is e e G E N O e i p W W a t e t a rp un r G G L I c r m n e su m m T n c e k e I M sP a a R N C a s t n r e e e A O E l e s a o V V rd t t S I J a D y T C R R P n S S T N B S a s C I y n n n n n n n U y g t o I I I I , I I s 't S Y g r n i s l n T r e a t d d d d e d dl a D E e n l c e e e ev e ea c E D F A E n E o o j e r o o r r o rl oa r o rW o i l N S C n t t t tV t t y p E I S S S S , S S r p M r a A E U C: oy yy y y y yg y yd L M tg t g g g g gn g gn e B I T cr er r r r ri r ro e U X R ae f e e e e ep e ec S O A A en an n n n ni n ne D M P RE SE E E E EP E ES
- a c t a o B d T o t f o t n ol 6 4 8 5 0 0 0 0 e e f 9 5 3 6 3 3 8 7 e m d e 2 9 3 7 4 4 9 9 F n nR i E 6 0 8 1 7 7 0 9 e a t 8 5 3 4 5 r t ts 5 a n Ao u
q o P C S a 5 i 7 s f 1 p Od 9 3 8 6 0 0 0 2 8 o 7 2 3 2 3 3 8 1 0 do 4 0 3 5 4 4 9 9 9 7 nl Ef 3 4 8 4 7 7 0 6 e 9 6 3 3 1 tR 6 A e r uf sO S s n I edw S rno * *
- Y ped * * * *
- L w A A A A A A A A A k ro N ael A etB Pf E A R t U A T
A R E P n M f w 6 6 8 9 0 0 0 6 E oo 7 5 3 5 3 3 8 9 T d 2 7 3 8 4 4 9 4
/ d w 2 E 4 no 0 9 8 8 7 7 0 7 - R 1 El 2 0 3 5 1 U B 1 1 7 . S f 2 S o - E , 6 R P
2 1 t E dAe L K t n r B A e E nu A E e ws T P h oos S td e * * * * * * *
- T N rop wr A A A A A A A A E ol M iBk N r a I Pf e A OP T
N O C R A 6 6 8 3 O rC 4 4 3 6 F oO 3 3 3 4 0 0 0 0 iL A r 2 2 8 9 0 0 0 0 T P o 1 1 3 2 A T 1 1 1 D 1 m n n n o I I I r F y y y U g g g n T r r r w B e e e 1 2 o T E n n n d O T 6 n E E E r r t L A 0 o o o u S R 1 i l l l t t h t a a a a a S G N , p n n n y r r E O e i r r r g e e g L I c r e e e r n n n T n c t t t e e e e i N C a s n n n n G G n r O E l e I I I E i u I J a D m m b D T N B t1 t2 t d a a r C I y n n n e e e u d U y g g r ar ar a r t t T e S Y l o l o l o S S t T r e ot ot o t o a o D E e n oa oa o S o T r E F n E C r C r C T T e
-. D A E e e e S w nt ,, N E
S yn re yn re yn ri S S r e r e l o Ge ea M : aG aG aL N t t F H E U C d d d a a y L M nm nm nm l w w m gy B I T oa oa oa a d d a ra U X R ce ce ce t e e e ec O A A et et et o e e t ne D M P SS SS SS T F F S ED l\ l
y e a r D u * * * * *
- a s 1 A A A A A A A A A e s r e t A r A p
l t T t a o k B t c a n fo ol d o 3 4 7 O e e f 0 6 6 F e mn de nR 0 6 6 A A A A A A i E 1 6 7 e a t 6 8 4 r t ts 4 1 6 a n Ao u o P q C S a 5 i 7 s f 1 p Od 6 8 4 8 o 8 0 9 0 do 9 8 7 9 7 nl A A A A A A Ef 8 9 8 e 4 6 1 tR 4 5 A e r uf sO S s n I edw S rno * * *
- Y ped * * * *
- L w A A A A A A A A A A kro N ael A etB Pf E A R t U A T
A R E P n M f w 0 0 E oo 0 0 T d 1 0 1 * *
/ dw . A A A A A A 2 E 4 no 8 0 8 - R 1 El 7 7 -
1 U B 3 3 S f o O 2 S E 6 R 3 P 1 t E dAe L K t n r B A e Enu A T E P h e oos ws S tde * * * * * *
- T N ropwr A A A A A A A E ol M iBk N r a I Pf e A OP T
N O C ; R A O rC F oO 0 0 0 * * * * *
- iL A A A A A A A r 0 0 0 T Po A T D
g n i d l i U e u T r n t B B e l o a T E h a i e t O T 6 n p n t r H n L A 0 o s r a e e S R 1 i o e l t n m t m t u a w n G N , p t n c W o i E O e i A I r d a L I c r i T t t T n c B B c S u ns R N C a s C C e W h or A O E l e R R R) R S C e S I J a D p l T N B f f f m f y yo s C I y O O ou o B Bo U y g S C 't S Y g r t t t( t d d n T r e n n n n e en a D E e n e e er e v va c E F n E t t t e t o oF i O D A E n ns nt n ms er m l N S o oe oa o ey p E e C Cr CW C Re Rc p M : g u g n A E U C a y yt ye y yn ye L M k l l g gc gk g ga gg e B I T a l a r ru ra r rh rr e U X R e i t e er et e ec ee S O A A r p o n nt nn n nx nm D M P B S T E ES EI E EE EE *
) ./ ' TABLE 6.2.1-2 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area.
MAXIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure
< _ Sheet 14 of 14 ,
PART D: Chronology of Events Time (Seconds) Event 0.0 Break Occurs 14.4 Start Core Flood Tank Injection 22.4 Start ECCS Injection Phase A* Peak Containment Pressure (Blowdown) 1 22.4 End of' Blowdown j l A* Start Fan Coolers. (s A* Start Spray Injection A* Peak Containment Pressure Subsequent j To End of Blowdown 119.1 End of Core Reflood I 400.0 End of Steam Generator Energy Release: Post Reflood A* End of ECCS Injection A* Start ECCS Recirculation 4 A* End Spray Injection A* Start Spray Recirculation A* Depressurization of Containment
- See Applicant's SAR O ,
i TABLE 6.2.1-3 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS ] l DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area MINIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 1 of 11 4 i PART A: Mass / Energy Release Data Break Mass Break Energy Time Flow Rate Flow Rate Point (Sec) (Lbm/Sec) (Million Btu /Sec) l l 1 0.000 0.00 0.000000 l l 2 .025 78684.15 44.190115 3 .075 77023.43 43.299911 4 .150 80294.85 45.230353 5 .175 81715.47 46.060543 6 .200 103845.07 58.673430 7 .250 99073.00 55.992516 8 .350 94681.10 53.642278 9 .500 91739.82 52.231955 l 10 1.000 85247.00 49.361298 ) 11 1.100 78744.18 45.600437 12 1.200 72561.49 42.039622 13 1.300 68208.11 39.599004 14 1.500 64107.83 37.208517 15 2.000 60876.42 35.448114 i 16 3.000 56734.63 33.357635 l 17 4.000 50692.00 30.546992 18 5.000 43248.77 27.486291 19 6.000 36035.64 24.235547 20 7.000 31113.50 21.804991 , 21 8.000 29012.69 20.444680 22 9.500 25491.00 18.174160 23 11.000 22289.67 16.213711 24 12.000 18948.22 14.403297 25 13.000 15050.54 12.312818 26 14.000 11655.06 10.362372 27 15.000 9476.11 8.266892 28 16.000 7653.32 5.943360 29 17.000 4916.13 3.698847 30 18.000 3326.44 2.344537 31 18.400 2647.15 1.930442 32 18.600 2724.18 1.927441 33 18.800 2369.03 1.603367 O
l (N TABLE 6.2.1-3 I i DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area MINIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 2 of 11 PART A: Mass / Energy Release Data l 1 Break Mass Break Energy Time Flow Rate Flow Rate Point (Sec) (Lbm/Sec) (Million Btu /Sec) l 34 19.300 1990.86 1.317302 35 20.000 1336.58 .973623 36 21.000 1341.58 .685857 37 21.600 748.32 .419496 38 22.200 68.64 .083249 39 22.400 0.00 0.000000 INTEGRAL 582100. LBM 378.100 MILLION BTU l
TABLE 6.2.1-3 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS ; DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area MINIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 3 of 11 PART A: Mass / Energy Release Data Time Mass Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) (Btu /Lbm) (Million Btu /Sec) 1 22.400 0.00 0.00 0.000000 , 2 23.000 318.20 1295.51 .412230 3 24.000 508.02 1292.91 .656823 i 4 25.000 806.99 1289.24 1.040407 ! 5 26.300 1128.15 1284.18 1.448749 1 6 26.400 660.97 1283.87 .848602 1 7 30.000 659.09 1279.96 .843609 8 40.000 643.03 1272.40 .818191 9 50.000 626.96 1264.88 .793029 10 60.000 611.08 1257.12 .768202 1 11 70.000 595.28 1249.49 .743797 12 80.000 579.48 1241.64 .719508 13 85.000 571.46 1237.71 .707300 14 85.100 984.95 1237.64 1.219014 15 90.000 969.05 1233.86 1.195674 l 16 100.000 643.67 1219.88 .785199 17 110.000 459.36 1229.38 .564729 18 120.000 355.71 1229.47 .437334 19 130.000 216.59 1240.33 .268642 20 140.000 118.99 1269.42 ,151048 21 160.000 108.23 1234.32 .133590 22 180.000 86.02 1238.32 .106520 23 200.000 83.24 1238.44 .103088 24 220.000 88.72 1236.87 .109735 25 240.000 96.83 1235.13 .119598 26 260.000 104.73 1233.72 .129208 27 280.000 111.33 1232.55 .137220 28 300.000 116.63 1231.88 .143674 29 325.000 121.74 1231.26 .149893 30 350.000 125.52 1230.67 .154474 31 375.000 128.22 1230.36 .157757 32 400.000 130.07 1230.10 .159999 INTEGRAL 94191. LBM 117.281 MILLION BTU O
J ( TABLE 6.2.1-3 \.' ]} DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area MINIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 4 of 11 PART A: Mass / Energy Release Data Spillage Data i Time Mass 1bm Energy 106 Btu End of Blowdown 22.4 sec. 0.0 0.0 i End of Reflood 216.9 sec. 231861 64.612 End of Post Reflood 400 sec 365186 95.888 j l l NOTE: The spillage data tabulated is the sum of: V.O 1) Direct ECCS Spillage (discharge leg cases only)
- 2) Vessel Spillage Direct ECCS Spillage is Eccs flow which goes directly to the containment without entering the NSSS. Vessel Spillage is the sum of all liquid leaving the break.
I i v 4
l l TABLE 6.2.1-3 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS ; DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area MINIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 5 of 11 PART 8: Reactor Vessel Pressure vs. Time Time (Sec) R.V. Pressure (psia) 0.000 2295 0.025 2193 0.050 2073 I 0.075 1816 0.100 1644 0.125 1769 0.150 1698 0.200 1715 ; 0.250 1775 0.275 1699 0.350 1700 i 0.425 1665 0.500 1631 0.600 1605 0.700 1586 0.800 1568 0.900 1549 , 1.100 1517 ! 1.300 1492 1.500 1464 2.000 1410 2.600 1375 3.200 1337 3.700 1303 4.200 1280 4.700 1271 l S.300 1241 I 6.000 1202 7.000 1163 3' 8.000 1117 9.000 1054 10.000 998 11.000 943 4 12.000 858 I 1 I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _
v t ' TABLE 6.2.1-3 i
\
l DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS i DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area MINIMlW SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 6 of 11
'PART B: Reactor Vessel Pressure vs. Time Time (Sec) R.V. Pressure (psia) 14.000 687 16.000 376 18.000 150 20.000 69 22.000 39 22.400 36 l 1
1 i (
TABLE 6.2.1-3 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area MINIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 7 of 11 PART B: Reactor Vessel Pressure vs. Time Time (Sec) Reactor Vessel Annulus Pressure (Psia) 1 22.400 70.00 I 2 23.000 73.93 j 3 24.000 79.67 l 4 25.000 92.47 - 5 26.300 109.78 6 26.400 110.31 a 7 30.000 109.71 8 40.000 107.53 9 50.000 105.41 10 60.000 103.35 11 70.000 101.37 12 80.000 99.44 13 85.000 98.48 14 85.100 98.46 15 90.000 97.42 i 16 100.000 93.94 ! 17 110.000 89.01 l 18 120.000 81.84 l 19 130.000 76.69 20 140.000 74.47 21 160,000 71.40 22 180.000 71.02 23 200.000 70.96 24 220.000 71.04 25 240.000 71.16 26 260.000 71.28 27 280.000 71.39 28 300.000 71.49 29 325.000 71.58 30 350.000 71.65 31 375.000 71.70 32 400.000 71.74 O
l k a c t a o B d T o t f o t n ol 0 9 9 1 3 9 8 e e f 5 5 9 5 2 2 3 e m de 2 0 3 9 3 3 4 3 F n nR . i E 9 0 6 5 5 3 8 8 e a t 5 2 8 1 1 3 r t ts 1 1 a n Ao u q o P C S a 5 i 7 s f 1 p Od 7 1 2 5 6 3 3 8 8 o 7 5 7 0 3 3 8 4 0 d o 2 1 0 5 5 7 8 9 9 7 nl . Ef 1 3 4 9 7 8 9 8 e 5 2 8 1 1 4 tR 1 1 A e r uf sO S s n I ed w S rno *
- Y ped * * * * *
- L w A A A A A A A A A k ro
_ N ael _ A etB Pf E A . R t _ U A _ T A R E P n M f w 2 7 8 0 1 6 1 4 E oo 6 1 3 3 4 8 6 3 T d 2 8 0 8 3 0 1 8
/ d w .
3 E 1 no 2 1 3 3 8 2 9 3
- R 1 El 3 3 1 3 8 2 2 5 /. 1 U B 1 1 . S f 2 S o E
6 R 8 P t E t dAe L K e n r B A e E nu A T E P h S oos ws td e * * * * * * *
- T N rop wr A A A A A A A A E ol M iBk N r a I Pf e A OP T
N O C R A 2 6 9 6 2 4 0 4 O rC 9 4 9 8 0 9 8 3 F oO 9 8 2 3 6 2 1 8 iL . A r 7 1 0 7 8 4 2 3 T P o 5 4 3 3 8 2 3 5 A T 3 1 1 D s l y e a l r b _ n a a u _ r n m T _ e r i _ U t e r r r T n t P o o _ B I n t t _ T E I s , a a O T 6 n r l r r r L A 0 o e r a e e e _ S R 1 i t e n z n n t a t r l i s e e G E N O e i p W W a t e t a rp G um G L I c r m n e su m m T n c e k e I M sP a a N C a s t n r e e e O E l e s a o V V rd t t I J a D y T C R R P n S S T N B S a C I y n n n n n n n U y q t o I I i I , I I s S Y g r n s Y i l T r e a t d d d de d dl D E e n l c e e e ev e ea
.- E D
F A E n E o o j e r o r o r o rl oa r o rW o N S C n t t t tV t t y E I S S S S S Sr M : r , a E U C oy yy y y y yg y yd L M t g t g g g g gn g gn B I T cr er r r r ri r ro _ U N R ae f e e e e ep e ec O I A en an n n n ni n ne D M P RE SE E E E EP E ES
l k a c t a o B d T o t f o t n ol 5 4 8 4 0 0 0 0 e e f 8 6 3 6 3 3 8 7 e m d e 4 6 3 1 4 4 9 9 F n nR . i E 1 0 8 8 7 7 0 9 e a t 8 6 3 9 5 r t t s 5 a n Ao q u o P C S a 5 i 7 s f 1 p Od 4 6 8 9 0 0 0 7 8 o 3 6 3 9 3 3 8 1 0 do 3 4 3 0 4 4 9 0 9 7 nl Ef 2 3 8 9 7 7 0 5 e 9 6 3 3 2 tR 6 A e r uf ~ sO S s n I ed w S rno *
- Y ped * * * * *
- L w A A A A A A A A A k ro N ael A etB Pf E A R t U A T
A R E P n M f w 6 6 8 9 0 0 0 6 E oo 7 5 3 5 3 3 8 9 T d 2 7 3 8 4 4 9 4
/ d w 3 E 1 no 0 9 8 8 7 7 0 7 - R 1 El 2 0 3 5 1 U B 1 1 7 . S f 2 S o E
6 R 9 P t E t dAe L K e n r B A e E nu A T E P h S oos ws td e * * * * * * *
- T N rop wr A A A A A A A A E ol M iBk N r a I Pf e A OP T
N O C R A 6 6 8 3 O rC 4 4 3 6 F oO 3 3 3 4 0 0 0 0 iL A r 2 2 8 9 0 0 0 0 T P o 1 1 3 2 A T 1 1 1 D 1 m n n n o I I I r F y y y U g g g n T r r r w B e e e 1 2 o T E n n n d O T 6 n E E E r r t L A 0 o o o u S R 1 i l l l t t h t a a a a a S G N , p n n n y r r E O e i r r r g e e g L I c r e e e r n n n T n c t t t e e e e i R N C a s n n n n G G n r A O E l e I I I E i u S I J a D m m b D T N B t1 t2 t d a a r s C I y n n n e e e u d U y g g ar ar a r t t T e 't S Y r l o l o l o S S t n T r e ot ot o t o a a D E e n oa oa o S o o T r c E F n E Cr C r C T T e i D A E e e e S w nt l N S yn yn yn S r r o ea p E re re ri S e e l Ge p M : aG aG aL N t t F H A E U C d d d a a y B L M I T nm oa nm oa nm oa l a d w d w m a gy ra e e U N R ce ce ce t e e e ec S O I A et et et o e e t ne D M P SS SS SS T F F S ED * ! l
l k a c t a o B d T o t f o . t n ol 1 8 9 e e f 8 8 6 e m d e 3 8 2 * * *
- f n nR A A A A A A i E 5 5 1 ~ -
e a t 9 9 9 r t t s 4 5 a n Ao q u o .P C S a 5 i 7 s f 1 p Od 7 2 9 8 o 6 1 7 _ 0 do 7 6 3 * * * * *-
- 9 7 nl A A A A A A
_ Ef 0 4 5 - e 5 6 1 tR 4 5 A e r uf S I sO s ed w n _ S rno _ Y ped * * * * * * * *
- _ L w A A A A A A A A A
- A kro - _ N ael _ A etB Pf E A R t U A _ T _ A _ R - E _ P n M f w 0 0 oo _ 3 E T
/
E 1 dw no d 0 1 8. 0 0 0 1 8 A A A A A A _ - R 1 El 7 - 7 1 U B 3 3
. S f 2 S o
- E _ 6 R 0 P 1 t E dAe L K t n r _ B A e Enu A T E P h e oos ws S td e * * * * * *
- T N rop wr A A A A A A A E ol M iBk N r a
_ I Pf e A OP T N O _ C R A O rC F oO 0 0 0 * * * * *
- iL A A A A A A A r 0 0 0 T P o A T D
g n i _ d _ l i _ U e u _ T r n t B e o a _ B l _ T E h a i e t O T 6 n p n t r H n L A 0 o s r a e e S R 1 i o e l t n m t m t u a w n G E N O e i p A t I n c r W d o i a L I c r i T t t T n c B B c S u ns N C a s C C e W h or O E l e R R R) R S Ce I J a D p l _ T N B f f f m f y yo _ C I y O O ou o B Bo U y g S C S Y g r t t t( t d d _ T r e n n n n e en D E e n e e er e v va _ E F n E t t t e t o oF D N A S E n o ns oe nt oa n o ms er m ey _ E e C C r CW C R e R c M : g u g n E U C a y yt ye y yn ye L M k l l g gc gk g ga gg _ B I T a l a r ru ra r rh rr - U N R e i t e er et e ec ee O I A r p o n nt nn n nx nm D M P B S T E ES EI E EE EE
TABLE 6.2.1-3 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area MINIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 11 of 11 PART D: Chronology of Events Time (Seconds) Event
- 0. 0 Break Occurs 14.4 Start Core Flood Tank Injection 22.4 Start ECCS Injection Phase A* Peak Containment Pressure (Blowdown) 22.4 End of Blowdown A* Start Fan Coolers A* Start Spray Injection A* Peak Containment Pressure Subsequent !
To End of Blowdown 1 1 126.9 End of Core Reflood I . 400.0 End of Steam Gererator Energy Release: 1 Post Reflood A* End of ECCS Injection A* Start ECCS Recirculation A* End Spray Injection A* Start Spray Recirculation A* Depressurization of Containment i
- See Applicant's SAR O'
TABLE 6.2.1-4 0ATA FOR CONTAINMENT PEAK' PRESSURE / TEMPERATURE ANALYSIS DOUBLE' ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 55 psia Containment Backpressure Sheet 1 of 11 PART A: Mass / Energy Release-Data i i Break' Mass ' Break Energy Time Flow Rate . Flow Rate Point (Sec) (Lbm/Sec) (Million Btu /Sec)
-1 0.000 . 0.00 0.000000- l 2 .025 78684.15 44.190115 3 .075 77023.43 43.299911 4 .150 80294.85 45.230353 5 .175 81715.47~ 46.060543 6 .200 103845.07 '58.673430 1 7 .250 '99073.00 55.992516 8 .350 94681.10- 53.642278 9 .500 91739.82- 52.231955 O 10 11 12 1.000 1.100 1.200 85247.00 78744.18 72561.49 49.361298 45.600437 42.039622 f 13 1.300 68208.11 39.599004 14 1.500 64107.83 37.208517 15 2.000 60876.42 35.448114. -
16 3.000 56734.63 .33.357635 l 17 4.000 50692.00 30.546992 18 5.000 43248.77 27.486291 19 6.000 36035.64 24.235547 20 7.000 31113.50 21.804991 21 8.000 29012.69 20.444680 22 9.500 25491.00 18.174160 23 11.000 22289.67 16.213711 24 12.000 18948.22 14.403297 ' 25 13.000 15050.54 12.312818 26 14.000 11655.06 10.362372 27 15.000' 9476.11 8.266892 28 16.000 7653.32 5.943360 29 17.000 4916.13 3.698847 30 18.000 3326.44 2.344537 i 31 18.400 2647.15 1.930442 32 18.600 2724.18 1.927441. 33 18.800 2369.03 1.603367- i l
1 l 1 TABLE 6.2.1-4 - DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS I DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area ; 1 MAXIMUM SAFETY ' INJECTION RATE 55 psia Containment Backpressure ! Sheet 2 of 11 i PART A: Mass / Energy Release Data Break Mass Break Energy Time Flow Rate Flow Rate Point (Sec) (Lbm/Sec') (Million Btu /Sec) 34 19.300 1990.86 1.317302 35 20.000 1336.58 .973623 36 21.000 1341.58 .685857 37 21.600 748.32 .419496 38 22.200 68.64 .083249 ! 39 22.400 0.00 0.000000 l INTEGRAL 582100. LBM 378.100 MILLION BTU O
TABLE 6.2.1-4 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 55 psia Containment Backpressure Sheet 3 of 11 PART A: Mass / Energy Release Data Time Mass Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) (Btu /Lbm) (Million Btu /Sec) 1 22.400 0.00 0.00 0.000000 2 23.000 326.16 1296.12 .422743 3 24.000 528.45 1293.37 .683482 4 25.000 846.74 1289.43 1.091810 5 25.800 1078.91 1285.95 1.387429 6 25.900 637.76 1285.56 .819880 7 30.000 638.43 1281.18 .817946 8 40.000 622.05 1274.24 .792642 9 50.000 605.82 1267.37 .767801 10 60.000 589.82 1260.33 .743370 O 11 12 13 70.000 80.000 90.000 573.91 558.37 542.68 1253.43 1246.51 1239.60
.719358 .696013 .672708 14 100.000 527.28 1232.73 .649993 15 100.106 908.84 1232.66 1.120289 16 105.000 848.93 1205.17 1.023104 17 110.000 658.86 1213.42 .799476 18 119.900 442.10 1226.68 .542314 19 125.200 353.59 1232.76 .435891 20 140.000 287.82 1231.41 .354423 21 160.000 171.92 1234.78 .212284 22 180.000 87.70 1263.89 .110843 23 200.000 64.81 1259.44 .081624 24 220.000 52.25 1272.42 .066484 25 240.000 47.27 1275.76 .060305 26 260.000 41.28 1280.33 .052852 27 280.000 34.43 1286.49 .044294 28 300.000 26.60 1296.32 .034482 29 325.000 21.08 1308.21 .027577 30 350.000 21.06 1308.59 .027559 31 375.000 21.05 1308.41 .027542 32 400.000 21.04 1308.17 .027524 INTEGRAL 81205. LBM 101.569 MILLION BTU O
l TABLE 6.2.1-4 ! DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 55 psia Containment Backpressure ! Sheet 4 of 11 PART A: Mass / Energy Release Data Spillage Data Time Mass 1bm Energy 106 Btu End of Blowdown 22.4 sec 0. O. End of Reflood 136.5 sec 369743 69.153 End of Post Reflood 400 sec 743010 169.232 NOTE: The spillage data tabulated is the sum of:
- 1) Direct ECCS Spillage (discharge leg cases only) l
- 2) Vessel Spillage Direct ECCS Spillage is ECCS flow which goes directly to the contain-ment without entering the NSSS. Vessel Spillage is the sum of all r liquid leaving the break. l l
l 9
TABLE 6.2.1-4 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 55 psia Containment Backpressure Sheet 5 of 11 PART B: Reactor Vessel Pressure vs. Time Time (Sec) R.V. Pressure (psia), 0.000 2295 0.025 2193 0.050 2073 0.075 1816 0.100 1644 0.125 1769 0.150 1698 0.200 1715 0.250 1775 0.275 1699 0 0.350 0.425 0.500 1700 1665 1631 0.600 1605 0.700 1586 0.800 1568 0.900 1549 1.100 1517 1.300 1492 1.500 1464 2.000 1410 2.600 1375 3.200 1337 3.700 1303 4.200 1280 4.700 1271 5.300 1341 6.000 1202 7.000 1163 8.000 1117 9.000 1054 10.000 998 11.000 943 12.000 858 O
TABLE 6.2.1-4 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 55 psia Containment Backpressure , Sheet 6 of 11 PART B: Reactor Vessel Pressure vs. Time Time (Sec) R.V. Pressure (psia) 14.000 687 16.000 376 18.000 150 20.000 69 22.000 39 22.400 36 O O
TABLE 6.2.1-4 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDE0 SUCTION LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFET" INJECTION RATE 55 psia Containment Backpressure Sheet 7 of 11 PART B: Reactor Vessel Pressure vs. Time Time (Sec) Reactor Vessel Annulus Pressure (Psia) 1 22.400 55.00 2 23.000 59.92 3 34.000 67.22 4 25.000 82.97 5 25.800 96.65 6 25.900 97.81 7 30.000 97.28 8 40.000 95.00 9 50.000 92.79 10 60.000 90.65 11 70.000 88.58 O 12 13 14 80.000 90.000 100.000 86.61 84.69 82.84 15 100.100 82.82 16 105.000 81.49 17 110.000 80.82 18 119.900 76.47 19 125.200 72.49 20 140.000 66.41 21 160.000 59.80 22 180.000 57.80 23 200.000 56.39 24 220.000 56.21 25 240.000 56.05 26 260.000 55.88 27 280.000 55.69 28 300.000 55.49 29 325.000 55.37 30 350.000 55.37 31 375.000 55.37 32 400.000 55.37 O
a c t a o B d T o t f o t n ol 9 1 5 8 1 1 1 e e f 8 3 5 4 6 5 3 e m d e 0 0 9 6 8 9 5 4 F n nR i E 7 0 3 3 4 2 7 7 e a t 4 2 8 1 1 3 r t t s 1 1 a n Ao u q o P C S a 5 i 7 s f 1 p Od 3 9 1 0 7 9 4 8 o 9 8 4 7 0 6 6 5 do 1 0 4 4 4 5 4 4 9 5 nl . Ef 2 0 4 9 7 8 9 8 e 5 2 8 1 1 4 tR 1 1 A e r uf sO S s n I ed w S rno Y ped * * * * * * *
- L w A A A A A A A A A k ro N ael A etB Pf E A R t U A T
A R E P n M f w 2 7 8 0 1 6 1 4 E oo 6 1 3 3 4 8 6 3 T d 2 8 0 8 3 0 1 8
/ d w .
4 E 1 no 2 1 3 3 8 2 9 3
- R 1 El 3 3 1 3 8 2 2 5 1 U B 1 1 . S f 2 S o E
6 R 8 P t E t dAe L K e n r B A e E nu A E h ws T P S oos td e * * * * * * *
- T N rop wr A A A A A A A A E ol M iBk N r a I Pf e A OP T
N O C R A 2 6 9 6 2 4 0 4 O rC 9 4 9 8 0 9 8 3 F oO 9 8 2 3 6 2 1 8 iL . . A r 7 1 0 7 8 4 2 3 T P o 5 4 3 3 8 2 3 5 A T 3 1 1 D s l y e a l r b n a a u r n m T e r i U t e r r r T n t P o o B I n t t T E I s , a a O T 6 n r l r r r L A 0 o e r a e e e S R 1 i t e n z n n t a t r l i s e e G E N O e i p W W a t e t a rp um G G L I c r m n e su m m T n c e k e I M sP a a R N C a s t n r e e e A O E l e s a o V V rd t t S I J a D y T C R P P n S S T N B S a s C I y n n n n n n n U y g t e I I I I , I I s 't S Y g r n i s l n T r e a t d d d d e d dl a D E e n l c e e e ev e ea c E D F A E n E o c j e r o r o r o rl oa r o rW o i l N S C n t t t tV t t y p E I S S S S S S r p M : r , a A E U C oy yy y y y yg y yd L M t g t g g g g gn g gn e B I T cr er r r r ri r ro e U X R ae f e e e e ep e ec S G A A en an n n n ni n ne D M P RE SE E E EP E ES
- l\
a c t a o B d T o t f o t n ol 6 4 8 2 0 0 0 0 e e f 9 7 3 3 3 3 8 7 e m d e 6 3 3 5 4 4 9 9 F n nR i E 3 2 8 0 7 7 0 9 e a t 8 5 3 4 5 r t t s 5 a n Ao u o P q C S a 5 i 7 s f 1 p Od 0 0 8 4 0 0 0 2 8 o 4 1 3 2 3 3 8 2 5 do 6 0 3 7 4 4 9 4 9 5 nl Ef 1 1 8 2 7 7 0 6 e 9 6 3 2 2 tR 6 A e r uf sO S s n I ed w S rno Y ped * * * * * * *
- L w A A A A A A A A A k ro N ael A etB Pf E A R t U A T
A R E P n M f w 6 6 8 9 0 0 0 6 E oo 7 5 3 5 3 3 8 9 T d 2 7 3 8 4 4 9 4
/ dw .
4 E 1 no 0 9 8 8 7 7 0 7
- R 1 El 2 0 3 5 1 U B 7 O
1 1
. S f 2 S o E
6 R 9 P t E t dAe L K e n r B A e E nu A T E P h S oos ws td e * * * * * * *
- ropwr T A A A A A A A A N
E ol M iBk N r a I Pf e A OP T N O C R A 6 6 8 3 O rC 4 4 3 6 F oU 3 3 3 4 0 0 0 0 iL A r 2 2 8 9 0 0 0 0 T P o 1 1 3 2 A T 1 1 1 D 1 m n n n o I I I r F y y y U g g g n T r r r w B e e e 1 2 o T E n n n d O T 6 n E E E r r t L A O o o o u S R I i l l l t t h t a a a a a S G N , p n n n y r r E O e i r r r g e e g L I c r e e e r n n n T n c t t t e e e e i R N C a s n n n n G G n r A O E l e I I I E i u S _ I J a D m m b D T N B t1 t2 t d a a r s _ C I y n n n e e e u d _ U y q ar ar a r t t T e 't _ S Y g r l o l o l o S S t n T r e ot ot o t o a a D E e n oa oa e S o o T r c E F n E C r C r C T T e i _O D N E E A S M U E C d yn re aG e d yn re aG e d yn ri aL e S S S N t r e a t r e a l F w o nt ea Ge y H l p p L M nm nm nm l w w m gy e _ B I T oa oa oa a d d a ra e U X R ce ce ce t e e e e S - O D A M A P SS et et et o e e t S
- r. ce
- SS SS T F F ED
( y e a r D u * * * * * * * *
- a s 1 A A A A A A A A A e s r e t A r A O
p l k a c t a o B d T o t fo t n ol 9 2 1 e e f 6 3 0 e m de 6 2 9 * * * *
- F n nR A A A A A A i E 9 9 8 e
r at ts t 7 4 6 1 4 6 a n Ao u q o P C S a 5 i 7 s f 1 p Od 7 3 0 8 o 0 5 6 5 do 0 1 1 *
- 9 5 nl A A A A A A Ef 4 9 3 e 6 6 3 tR 4 5 A
e r uf sO S s n I edw S rno * *
- Y ped * * * * *
- L w A A A A A A A A A A kro N ael A etB Pf E A R t U A T
A R E P n M f w 0 0 E oo 0 0 T d 1 0 1 * * * * *
/ dw . A A A A A A 4 E 1 no 8 0 8 - R 1 Ei 7 7 1 U B 3 3 . S f 2 S o E
6 R 0 P 1 t E L B A T K A E P T t h S e e dAe n E nu oos tde rop ws wr r A A A A A A A O_ N E ol M iBk N r a I Pf e A OP T N O C R A O rC F oO 0 0 0 * * * * *
- iL A A A A A A A r 0 0 0 T P o A T D
g n i d l i U e u T r n t B B e l o a T E h a i e t O T 6 n p n t r H n L A 0 o s r a e e S R 1 + o e l t n m t m t u a w n G N , p t n c W o i E O e i A I r d a L I c r i T t t T n c B B c S u ns R N C a s C C e W h cr A O E l e R R R) R S Ce S I J a D p l T N B f f f m f y yo s C I y y g O O ouS o B Bo C U 't S Y g r t t t( t d d n T r e n n n n e en a D E e n e e er e v va c O E F n E t t t e t o oF i D A E n ns nt n ms er m ey l p N S o oe oa o p E e C C r CW C R e R c M : g u g n A E U C a y yt ye y yn ye L M k l l g gc gk g ga gg e B I T a l a r ru ra r rh rr e U X R e i t e er et e ec ee S O A A r p o n nt nn n nx nn D M P B S T E ES EI E EE EE *
/'
i TABLE 6.2.1-4 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 55 psia Containment Backpressure Sheet 11 of 11 PART D: Chronology of Events Time (Seconds) Event l 0.0 Break Occurs 14.4 Start Core Flood Tank Injection 22.4 Start ECCS Injection Phase A* Peak Containment Pressure (Blowdown) 22.4 End of Blowdown j q A* Start Fan Coolers A* Start Spray Injection A* Peak Containment Pressure Subsequent To End of Blowdown 136.5 End of Core Reflood 400.0 End of Steam Generator Energy Release: Post Reflood A* End of ECCS Injection A* Start ECCS Recirculation i A* End Spray Injection A* Start Spray Recirculation A* Depressurization of Containment
- See Applicant's SAR i
f t i
~ l i l TABLE 6.2.1-5 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area l MINIMUM SAFETY INJECTION RATE 55 psia Containment Backpressure i Sheet 1 of 11 j l PART A: Mass / Energy Release Data 1 Break Mass Break Energy j Time Flow Rate Flow Rate q Point (Sec) (Lbm/Sec) , (Million 8tu/Sec) j 1 1 0.000 0.00 0.000000 l 2 .025 78684.15 44.190115 3 .075 77023.43 43.299911 4 .150 80294.85 45.230353 5 .175 81715.47 46.060543 6 .200 103845.07 58.673430 7 .250 99073.00 55.992516 8 .350 94681.10 53.642278 9 .500 91739.82 52.231955 10 1.000 85247.00 49.361298 11 1.100 78744.18 45.600437 12 1.200 72561.49 42.039622 13 1.300 68208.11 39.599004 14 1.500 64107.83 37.208517 15 2.000 60876.42 35.448114 16 3.000 56734.63 33.357635 17 4.000 50692.00 30.546992 18 5.000 43248.77 27.486291 l 19 6.000 36035.64 24.235547 ; 20 7.000 31113.50 21.804991 J 21 8.000 29012.69 20.444680 1 22 9.500 25491.00 18.174160 23 11.000 22289.67 16.213711 1 24 12.000 18948.22 14.403297 1' 25 13.000 15050.54 12.312818 26 14.000 11655.06 10.362372 27 15.000 9476.11 8.266892 28 16.000 7653.32 5.943360 29 17.000 4916.13 3.698847 30 18.000 3326.44 2.344537 31 18.400 2647.15 i.330442 32 18.600 2724.18 1.927441 33 18.800 2369.03 1.60335/ 9\ l l
P [ TABLE 6.2.1-5
\
DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area MINIMUM SAFETY INJECTION RATE 55 psia Containment Backpressure Sheet 2 of 11 PART A: Mass / Energy Release Data Break Mass Break Energy Time Flow Rate Flow Rate Point (Sec) (Lbm/Sec) (Million Btu /Sec) 34 19.300 1990.86 1.317302 35 20.000 1336.58 .973623 36 21.000 1341.58 .685857 l 37 21.600 748.32 .419496 38 22.200 68.64 .083249 39 22.400 0.00 0.000000 INTEGRAL 582100. LBM 378.100 MILLION BTU v
\
l
TABLE 6.2.1-5 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area MINIMUM SAFETY INJECTION RATE 55 psia Containment Backpressure Sheet 3 of 11 PART A: Mass / Energy Release Data Time Mass Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) (8tu/Lbm) (Million 8tu/Sec) 1 22.400 0.00 0.00 0.000000 2 23.000 302.25 1298.000 .392319 3 24.000 480.97 1295.38 .623040 4 25.000 768.37 1291.77 .992561 5 26.100 1050.33 1287.38 1.352173 6 26.200 618.77 1287.02 .796370 7 30.000 618.66 1283.04 .793765 8 40.000 602.74 1276.17 .769198 9 50.000 586.99 1269.34 .745089 10 60.000 571.46 1262.34 .721377 11 70.000 556.02 1255.47 .698069 12 80.000 540.91 1248.58 .675369 13 90.000 525.79 1241.70 .652876 14 100.000 510.78 1234.86 .630743 15 100.100 880.40 1234.79 1.087111 16 105.000 828.19 1207.18 .999773 17 110.000 645.80 1215.20 .784776 18 120.000 474.49 1224.80 .581155 19 130.000 467.55 1211.06 .566233 20 140.000 345.44 1211.12 .429271 21 160.000 209.29 1214.63 .254209 22 180.000 160.18 1223.64 .196002 23 200.000 155.45 1224.21 .190304 24 220.000 155.35 1224.36 .190205 25 240.000 156.53 1224.26 .191633 26 260.000 157.84 1224.14 .193219 27 280.000 158.89 1224.12 .194501 28 300.000 159.60 1224.07 .195362 29 325.000 160.00 1224.07 .195852 30 350.000 159.93 1224.11 .195772 31 375.000 159.46 1224.17 .195206 32 400.000 158.65 1224.32 .194239 INTEGRAL 110564. LBM 136.787 MILLION BTU > 0
h V
' TABLE 6.2.1-5 DATA'FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS-DOUBLE ENDED SUCTION LEG SLOT- 9.8175 Square _ Feet Total Area MINIMUM SAFETY INJECTION RATE. 55 psia Containment Backpressure Sheet 4 of 11 PART A: Mass / Energy Release Data Spillage Data Time Mass 1bm Energy-106 Btu End of. Blowdown 22.4 sec- 0.00 0.000 End of Reflood 119.3 sec 277550 64.332 End of Post Reflood 400 sec 347429 82.243 NOTE: The spillage data tabulated is the sum of:
O- 1) Direct ECCS Spillage (discharge leg cases only)
- 2) Vessel Spillage Direct ECCS Spillage'is ECCS flow which~goes directly-to the contain-ment without entering the NSSS. Vessel Spillage is the sum of all i liquid leaving the break, i
l i e i O
TABLE 6.2.1-5 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area ; MINIMUM SAFETY INJECTION RATE 55 psia Containment Backpressure l Sheet 5 of 11 PART B: Reactor Vessel Pressure vs. Time Time (Sec) R.V. Pressure (psia) 0.000 2295 4 0.025 2193 0.050 2073 0.075 1816 0.100 1644 0.125 1769 0.150 1698 0.200 1715 0.250 1775 0.275 1699 0.350 1700 , 0.425 1665 0.500 1631 0.600 1605 0.700 1586 0.800 1568 0.900 1549 1.100 1517 1.300 1492 1.500 1464 2.000 1410 2.600 1375 3.200 1337 3.700 1303 l 4.200 1280 4.700 1271 5.300 1341 l 6.000 1202 7.000 1163 8.000 1117 9.000 1054 10.000 998 11.000 943 12.000 858 O
l TABLE 6.2.1-5 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS i DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area . MINIMUM SAFETY-INJECTION RATE 55 psia Containment Backpressure Sheet 6 of 11 PART B: Reactor Vessel Pressure vs. Time i Time (Sec) R.V. Pressure (psia) 14.000 687 16.000 376 18.000 150 20.000 69 22.000 39 22.400 36 i 1 l l O r
TABLE 6.2.1-5 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area MINIMUM SAFETY INJECTION RATE 55 psia Containment Backpressure Sheet 7 of 11 PART B: Reactor Vessel Pressure vs. Time Time (Sec) Reactor Vessel Annulus Pressure (Psia) 1 22.400 55.00 2 23.000 59.01 3 24.000 65.89 4 25.000 80.02 5 26.100 96.94 6 26.200 97.87 7 30.000 97.33 8 40.000 95.05 9 50.000 92.84 10 60.000 90.69 11 70.000 88.62 12 80.000 86.64 13 90.000 84.73 14 100.000 82.88 15 100.100 82.86 16 105.000 81.52 17 110.000 80.77 18 120.000 77.09 19 130.000 66.64 20 140.000 61.93 J 160.000 21 58.01 22 180.000 57.71 23 200.000 57.63 24 220.000 57.63 25 240.000 57.66 26 260.000 57.70 1 27 280.000 57.74 28 300.000 57.76 29 325.000 57.78 30 350.000 57.79 31 375.000 57.79 32 400.000 57.78 O,
~/
t a o B d T o t f o t n ol 7 2 9 0 3 9 6 e e f 7 4 2 7 6 4 6 e m de 6 0 0 8 3 8 6 5 F n nR i E 1 0 6 5 4 2 7 7 e a t 6 2 8 1 1 3 r t t s 1 1 a n Ao u o P q C S a 5 i 7 s f 1 p Od 9 8 6 4 3 3 2 8 o 6 8 1 3 8 1 5 5 5 do 1 0 0 2 2 7 0 9 5 nl . Ef 4 0 6 9 7 7 9 6 e 5 2 8 1 1 4 tR 1 1 A e r uf sO S s n I ed w S rno Y ped * * * * * * *
- L w A A A A A A A A A k ro N ael A etB Pf E A R t U A T
A R E P ri M f w 2 7 8 0 1 6 1 4 E oo 6 1 3 3 4 8 6 3 T d 2 8 0 8 3 0 1 8
/ d w .
5 E 1 no 2 1 3 3 8 2 9 3
- R 1 El 3 3 1 3 8 2 2 5 1 U B 1 1 . S f 2 S o E
R [ 6 P 8 t E t dAe L K e n r B A e E nu A T E P h S oos ws td e * * * * * * *
- T N rop wr A A A A A A A A E ol M iBk N r a I Pf e A OP T
N O C R A 2 6 9 6 2 4 0 4 O rC 9 4 9 8 0 9 8 3 F oO 9 8 2 3 6 2 1 8 iL . A r 7 1 0 7 8 4 2 3 T P o 5 4 3 3 8 2 3 5 A T 3 1 1 D ' s l y e a l r b n a a u r n m T e r i U t e r r r T n t P o o B I n t t T E I s , a a O T 6 n r l r r r L A 0 o e r a e e e S R 1 i t e n z n n t a t r l i s e e G N , p W a e a rp G G E O e c i r m W t n t e um su e L I m T n c e k e I M sP a a R N C a s t n r e e e A O E l e s a o V V rd t t S I J a D y T C R R P n S S T N B S a s C U I y y g n n n n n n n t o I I I I , I I s 't S Y g r n i s l n T r e a t d d d de d dl a N D E e n l c e e e ev e ea c E D F A E n E o o j e r o r o r o rl oa r o rW o i
^ N S C n t t t tV t t y l
p [ E M : r I S S S S S S r a A p E U C oy yy y y y yg y yd L M t g t g g g g gn g gn e B I T cr er r r r ri r ro e U N R ae f e e e e ep e ec S O I A en an n n n ni n ne D M P RE SE E E E EP E ES
- l
( y e a r D u * * * * * * *
- a s 1 A A A A A A A A e s r e t l
T A t a o k B r p c a A d o O t f o t n ol 7 8 8 3 0 0 0 0 e e f 1 1 3 0 3 3 8 7 e m de 7 6 3 3 4 4 9 9 F n nR i E 8 7 8 2 7 7 0 9 e a t 7 5 3 9 5 r t ts 5 a n Ao u o P q C S a 5 i 7 s f 1 p Od 6 8 8 7 0 0 0 7 8 o 8 4 3 4 3 3 8 9 5 do 6 1 3 3 4 4 9 7 9 5 nl Ef 9 8 8 6 7 7 C 0 e 8 5 3 2 3 tR 6 A e r uf sO S s n I edw S rno Y ped * * * * * * *
- L w A A A A A A A A A k ro N ael A etB Pf E A R t U A T
A R E P n M f w 6 6 8 9 0 0 0 6 E oo 7 5 3 5 3 3 8 9 T d 2 7 3 8 4 4 9 4
/ dw 5 E R
1 no 0 9 8 8 7 7 0 7
- 1 El 2 0 3 5 O
1 U B 1 1 7
. S f 2 S o E
6 R 9 P t E t dAe L K e n r B A e Enu A T E P h S oos ws td e * * * * * * *
- T N
wr A A A A A A A A r6P E o1 M iBk N r a I Pf e A OP T N O C R A 6 6 8 3 O rC 4 4 3 6 F oO 3 3 3 4 0 0 0 0 iL A r 2 2 8 9 0 0 0 0 T Po 1 1 3 2 A T 1 1 1 D 1 m n n n o I I I r F y y y U g g g n T r r r w B e e e 1 2 o T E n n n d O T 6 n E E E r r t L A 0 o o o u S R 1 i l l l t t h t a a a a a S G N , p n n n y r r E. O e i r r r g e e g i I c r e e e r n n n T n c t t t e e e e i R N C a s n n n n G G n r A O E l e I I I E i u S I J a D m m b D T N B t1 t2 t d a a r s C I y n n n e e e u d U y g o r ar ar: a r t t T e 't S Y l o l l o S S t n T r e o o a a O ot ot t D E e n ca oa o S o o T r c E F n E Cr Cr C T T e i D A E e e e S w nt l N S yn yn yn S r r o ea p E re re ri S e e l Ge p M : aG aG aL N t t F y H A E U C d d d a a L B M I T nm oa nm oa nm oa l a d w d w m a gy ra e e U N R ce ce ce t e e e ec S O I A et et et o e e t ne D M P SS SS SS T F F S ED
- ll llic
G T t e t n f o ol o 7 3 0 e f 8 4 3 e m d e 8 2 1 * * * * *
- F n nR . A A A A A A i E 4 2 7 e a t 1 8 9 r t ts 5 5 a n Ao u o P q C S
a 5 i 7 s f _ 1 p Od 8 2 0 8 o 7 3 1 5 do 5 3 9 * * *
- 9 5 nl A A A A A A Ef 9 4 3 e 6 6 3 tR 4 5
_ A e r _ uf _ sO _ S s n I ed w _ S rno
- Y ped * * * * * * *
- A A L w A A A A A A A
_ A k ro N _ ael _ A etB _ Pf E A R t _ U A _ T . A _ R _ E P n M E f w oo 0 0 0 0 T d 1 0 1 * * * * *
- _ / d w . .
A A A A A A 5 E 1 no 8 0 8 _ - R 1 El 7 7 1 U B 3 3
. S f ).
2 6 S E R P 0 o t 1 E dAe L K t n r B A e E nu A T E P h e oos ws S td e * * * * * *
- wr A A A A A A A T
N rop E ol M iBk N r a I Pf e A OP T N O C R A O rC F oO 0 0 0 * * * * *
- iL A A A A A A A r 0 0 0 T P o A T D
g n _ i d l i _ U e u _ T r n t B B e l o a _ T E h a i e t O T 5 n p n t r H n L A 0 o s r a e e o n _ S G E R N O 1
, g i
t A m I t e n l u c r t W a d w o i m n a L I T an r c 8 B i c T S t u t ns N O C E l a s e C R C R R) e W R h S Ce or a p _ I J D i _ T N B f f f r e f y yo _ C U I y sr O O ouS o B Bo C S Y g t t t( t d d _ T r e n n n n e en _ D E e n e e er e v va o E F n E t t t e t oF D A E n ns nt oa n o ms er m ey _ N S o oe
~
E e g C Cr CW C R e g Rc M u n -_ .G
/ E U C a y yt ye y yn ye L M k l l g gc gk g ga gg B I T a l a r ru er ra r rh rr
_ U N R e i t e et e ec ee _ O I A r p o n nt nn n nx nm D M P B S T E ES EI E EE EE
TABLE 6.2.1-5 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED SUCTION LEG SLOT 9.8175 Square Feet Total Area MINIMUM SAFETY INJECTION RATE 55 psia Containment Backpressure ) Sheet 11 of 11 ; PART D: Chronology of Events Time (Seconds) Event
- 0. 0 Break Occurs 14.4 Start Core Flood Tank Injection 22.4 Start ECCS Injection Phase A* Peak Containment Pressure (Blowdown) 22.4 End of Blowdown A* Start Fan Coolers A* Start Spray Injection A* Peak Containment Pressure Subsequent To End of Blowdown 167.3 End of Core Reflood 400.0 End of Steam Generator Energy Release:
Post Reflood i 1 A* End of ECCS Injection l A* Start ECCS Recirculation A* End Spray Injection A* Start Spray Recirculation A* Depressurization of Containment
- See Applicant's SAR O
i. TABLE 6.2.1-6 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS ! DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area _ MAXIMUM SAFETY INJECTION RATE .70 psia Containment Backpressure - Sheet 1 of 13 PART A: Mass / Energy Release Data Break Mass Break Energy i Time Flow Rate Flow Rate Point (Sec) (Lbm/Sec) (Million Btu /Sec) 1 0.000 0.00 0.000000 l 2 .025 78543.59 44.069701 3 .050 77521.20 43.538741 4 .100 78864.34 44.370245 5 .150 81670.90 '45.993189 6 .175 105947.65 59.738038 7 .200 103842.73 58.585954 8 .250 102038.51 57.524034 9 .300 100334.53 56.572313 10 .350 .99432.42 56.041352 l 0s 11 12
.500 .800 96495.55 92305.76 54.418417 52.224449 13 1.000 89398.96 50,731750 14 1.300 84818.26- 46.417504 15 1.850 80588.37 46.484068 16 2.000 74975.65 43.308324 17 2.100 70364.47 40.693595 18 2.200 66294.96 38.379410-19 2.400 61473.69 35.654482 20 2.800 57915.37 33.700949 21 4.000 54276.87 31.587126 22 5.000- 51380.10 30.124481-23 6.000 47350.65 28.411363 24 7.000 40955.73 25.956944 25 8.000 31724.15 22.360439 26 9.000 24276.75 19.014388 27 10.000 18803.95 16.329532 i 28 11.000 13601.79 13.404242 29 12.000 12589.43 11.190238 1 30 13.000 14253.32 9.335884 I 31 14.000 13842.36 7.712949 32 15.000 11115.98 5.325632'- i 33 16.000 9189.48 3.861985
- 34. 17.000 7749.11 2.825109 0 .
1
l l TABLE 6.2.1-6 f DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area ) i MAXIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure j Sheet 2 of 13 PART A: Mass / Energy Release Data Break Mass Break Energy Time Flow Rate Flow Rate Point (Sec) (Lbm/Sec) (Million Btu /Sec) 1 35 17.400 7725.06 2.671832 l 36 17.500 3882.07 1.321390 37 17.800 11196.17 3.449238 38 18.400 5708.34 1.593883 39 19.000 2487.82 .676123 40 19.200 811.30 .221601 41 19.300 0.00 0.000000 INTEGRAL 627500. LBM 382.900 MILLION BTU O O i
TABLE 6.2.'l-6 DATA FCR CON 7AINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS
.)
DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure - Sheet 3 of 13 PART A: Mass / Energy' Release Data Time Mass Release Enthalpy Energy Release-Rate (Sec) Rate (Lbm/Sec) (Btu /Lbm) (Million Btu /Sec) i 1 19.300 0.00 . 0.00 0.000000 2 20.000 235.69 1315.52 .310055 3 21.000 315.84 1315.10 .415361 4 22.000 486.96 1313.82 .639778 5 23.000 616.58 1312.58
.809312 6 24.100 734.25 1311.29 .962817 7 24.200 426.44 1311.27 .559180 8 26.000 425.75' 1310.94 .558132 9 '27.500 424.91 1310.74 .556947 10 30.000 423.42 1310.46 .554875 i
11 35.000 420,37 1309.83 .550613 12 40.000 417.33 1309.18 .546362 13 45.000 414.31 1308.47 .542112 14 50.000 410.96- 1307.81 .537458 l 15 50.100 354.21 1307.83 .463245 16 60.000 348.61 1306.38 .455416 17 70.000 343.10 1304.90 .447712 18 80.000- 337.72 1303.33 .440160
.19 80.100 675.34 1303.30 .880169 h 20 85.000 670.10 1302.48 .872792 21 90.000 664.71 1301.69 .865244 22 95.000 659.32 1300.89 .857701 23 100.000 653.89 1300.05 .850090-24 110.000 642.97 1298.37 .834811-25 120.000 631.94 1296.61 .879379 26 130.000 620.91 1295.03 .804100-27 140.000' 609.77 1293.63 .788819 28 150.000 598.40 1292.07 .773177 29 170.000 574.89 1288.47 .740731 30 200.000 513.01 1184.13' .607471 31 225.000 358.61 1184.31 .424705 !
32 224.200 266.63 1184.56 .315840 33 252.600
)
291.49 1184.35 .345227 : 34 256.700 37646 1184.07 .445636 o O
- _ _ _ - _ - _ _ _ - _ _ _ _ _ _ _ _ __ \
TABLE 6.2.1-6 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 4 of 13 PART A: Mass / Energy Release Data Time Mass Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) (Btu /Lbm) (Million Btu /Sec) 35 275.000 214.92 1184.58 .254589 36 300.000 213.25 1184.21 .252533 37 350.000 107.24 1184.48 .127024 38 400.000 84.06 1184.63 .099580 39 450.000 68.08 1184.84 .080664 40 500.000 72.72 1184.79 .086158 INTEGRAL 147517. LBM 184.793 MILLION BTU l i 6 1
rs '( TABLE 6.2.1-6 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS i DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 5 of 13 I PART A: Mass / Energy Release Data Spillage Data i 6 Time Mass ibm Energy 10 Btu 1 End of Blowdown 19.3 sec. 118916 10.461
]
1 End of Reflood 217.0 sec 479302 65.761 l l End of Post Reflood 500 sec 851452 148.492 l NOTE: The spillage data tabulated is the sum of:
- 1) Direct ECCS Spillage (discharge leg cases only)
- 2) Vessel Spillage-Direct ECCS Spillage is ECCS flow which goes directly to the contain-ment without entering the NSSS. Vessel Spillage is the sum of all )
liquid leaving the break. i
)
Ith o _- -
~ l l 1 l i TABLE 6.2.1-6 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS ) DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area 1 MAXIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure l l Sheet 6 of 13 PART B: Reactor Vessel Pressure vs. Time Time (Sec) R.V. Pressure (psia) 0.000 2295 0.025 2027 0.050 1865 0.075 1672 0.100 1625 0.125 1707 0.150 1714 0.200 1660 0.250 1716 0.275 1663 0.350 1671 0.425 1645 0.500 1612 0.600 1598 0.700 1568 0.800 1548 0.900 1530 1.100 1481 1.300 1452 1.500 1427 2.000 1362 2.600 1293 3.200 1256 3.700 1233 4.200 1213 4.700 1194 5.300 1174 6.000 1153 7.000 1116 8.000 1065 9.000 986 10.000 904 11.000 784 12.000 638 9
l t TABLE 6.2.1-6 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure - Sheet 7 of 13 PART 8: Reactor Vessel Pressure vs. Time l l Time (Sec) R.V. Pressure (psia) i l 13.000 488 1 14.000 366 15.000 264 16.000 177 17.000 113 18.000 69 19.000 40 19.300 35 a 1 1 l d
TABLE 6.2.1-6 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 8 of 13 PART B: Reactor Vessel Pressure vs. Time Time (Sec) Reactor Vessel Annulus Pressure (Psia) 1 19.300 70.00 2 20.000 70.98 3 21.000 71.75 4 22.000 74.08 5 23.000 76.43 6 24.100 78.95 7 24.200 78.96 i 8 26.000 78.92 9 27.500 78.88 10 30.000 78.82 11 35.000 78.68 12 40.000 78.55 13 45.000 78.42 14 50.000 78.27 15 50.100 78.27 16 60.000 78.00 17 70.000 77.73 ' 18 80.000 77.47 19 80.100 77.47 20 85.000 77.34 21 90.000 77.21 22 95.000 77.09 23 100.000 76.96 24 110.000 76.71 25 120.000 76.47 26 130.000 76.23 27 140.000 75.99 28 150.000 75.76 29 170.000 75.28 30 200.000 74.22 31 225.000 74.05 32 244.200 74.69 33 252.600 74.1C 34 258.700 72.42 9
TABLE 6.2.1-6 DAT/, FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED OISCHARGE LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 9 of 13 PART B: Reactor Vessel Pressure vs. Time Time (Sec) Reactor Vessel Annulus Pres'ure s (Psia) 35 275.000 72.46 36 300.000 71.55 37 350.000 70.85 38 400.000 70.50 39 450.000 70.26 40 500.000 70.25 O O 4
l k a c t a o B d T o t f o t n ol 9 2 0 5 8 5 3 e e f 3 4 5 5 7 4 2 e m de 2 0 1 5 3 1 4 3 F n nR . . i E 1 0 5 3 4 0. 5 3 e a t 3 2 8 0 1 3 r t t s 1 1 a n Ao u o P q C S a 5 i 7 s f 1 p Od 5 0 1 7 6 9 3 8 o 8 6 1 3 1 4 6 0 do 3 0 7 8 9 8 8 9 9 7 nl Ef 0 0 6 8 6 2 7 4 e 4 2 8 2 1 4 tR 1 1 A e r uf sO S s n I ed w S rno Y ped * * * * * * *
- L w A A A A A A A A A k r0 N ae1 A et8 Pf E A R t U A T
A R E P n M f w 3 9 1 8 0 0 5 4 E oo 4 6 4 4 0 1 1 3 T d 2 8 7 9 4 8 8 8
/ dw 6 E 3 no 4 4 3 3. 8 2 9 3 - R 1 El 1 2 1 3 8 2 2 5 1 U B 1 1 . S f 2 S o . E 6 R 0 P 1 t E .
dA e L W t n r B A e E nu A E P h e oos ws T S td e * * * * * * *
- T N rop wr A A A A A A A A E ol M iBk N r a I Pf e A OP T
N O C R A 2 5 9 6 2 4 0 4 O rC 9 8 9 8 0 9 8 3 F oO 3 2 3, 6 2 1 8 iL S. . A r 7 1 0 7 8 4 2 3 T P o 5 3 3 3 8 2 3 5 A T 3 1 1 D s l y e a l r b n a a u r n m T e r i U t e r r r T T n t P o o O B I n t t L E I s , a a S T 6 n r l r r r A 0 o e r a e e e G R 1 i t e n z n n E t a t r l i s e e L N , p W a e a rp G G E O I e c i r m W t n t e um s u m m G T n c e k e I M sP a a R R C a s t n r e e e A A E l e s a o V V rd t t S H J a D y T C R R P n S S C N B S a s S I y n n n n n n n I y g t o I I I I , I I s 't D Y g r n i s l n T r e a t d d d de d dl a D E e n l c e e e ev e ea c E D F A E n E o o j e o r r o o r rl oa r o rW o i l N S C n t t t tV t t y p E S S S S S r p M : r I S , a A E U C oy yy y y y yg y yd L M t g t g g g g gn g gn e B I T cr er r r r ri r ro e U X R ae f e e e e ep e ec S O A A en an n n n ni n ne D M P RE SE E E E EP E ES
- O r e t A r A p
l k a c t a o B d T o t f o t n ol 6 2 8 4 7 7 6 4 e e f 0 9 3 1 7 7 6 6 e m d e 7 3 3 6 3 3 0 3 f n nR . i E 3 1 8 0 7 7 1 0 e a t 6 6 3 0 7 r t t s 6 a n Ao u q o P C S a 5 i 7 s f 1 p Od 6 2 8 4 7 7 6 1 8 o 0 4 3 1 7 7 6 2 0 d c 2 4 3 6 3 3 0 6 9 7 ni . . Ef 6 8 8 0 7 7 1 6 e 7 6 3 0 3 tR 7 A e r uf sO S s n I edw S rno Y ped * * * * * * *
- L w A A A A A A A A A kro N ael A etB Pf E A R t U A T
A R E P n M f w 3 3 8 7 7 7 6 4 E oo 2 2 3 1 7 7 6 5 T d 4 3 3 5 3 3 0 9
/ dw 6 E 3 no 9 6 8 2 7. 7 5 O
1
- R 1 El 1 1 3 5 1 U B 1 1 7 . S f 2 S E
o 6 R 1 P 1 t E dAe L K t n r B A e E nu A E e ws T P h oos S td e * * * * * * *
- T N rop wr A A A A A A A A E ol M iBk N r a I Pf e A OP T
N O C R A 6 6 8 3 O . C 4 4 3 6 F oO 3 3 3 4 0 0 0 0 iL A r 2 2 8 9 0 0 0 0 T P o 1 1 3 2 A T 1 1 1 D 1 n n n m o I I I r F y y y U g g g n T T r r r w O B e e e 1 2 o L E n n n d S T 6 n E E E r r t A 0 o o o u G R 1 i l l l t t h E t a a a a a S L N , p n n n y r r O e i r r r g e e g E I c r e e e r n n n G T n c t t t e e e e i R R C a s n n n n G G n r A A E l e I I I E i u S H J a D m m b D C N B t1 t2 t d a a r s S I y n n n e e e u d I y g ar ar a r t t T e 't D Y g r O T r e l o l o l o S S t n D E e ot ot o t o a a n oa oa o S o o T r c E F n E C r C r C T T e i D N A S E yn e yn e yn e S w nt l S r r o ea p E M re re ri S e e l Ge p E
- aG aG aL N t t F H A U C d d d a a y L
B M nm nm nm l w w m gy e U I T oa oa oa a d d a ra e X R ce ce ce t e e e ec S O A A et et et o e e t ne D M P SS SS SS T F F S ED
- ll
a c t a o B d T o t f o t n ol 3 2 5 e e f 9 9 8 e m d e 6 4 1 * * * * *
- F n nR .
A A A A A A i E 7 8 6 e a t 6 4 1 r t t s 5 1 7 a n Ao u o P q C S a 5 i 7 s f 1 p Od 1 1 2 8 o 6 6 2 0 do 3 7 1 * * * * *
- 9 7 nl . A A A A A A Ef 6 5 2 e 1 6 8 tR 5 5 A
e r uf sO S s n I edw S rno
- Y ped * * * * * * *
- L w A A A A A A A A A A k ro N ael A etB Pf E A R t U A T
A R E P n M f w 0 1 1 E oo 0 6 6 T d 9 4 3 * * * * * *
/ d w A A A A A A 6 E R
3 ne 2 0 3
- 1 El 8 1 9 1 U B 3 3 . S f 2 S o E
6 R 2 P 1 t E dAe L K t n r S A e E nu A E P h e oos ws T S td e * * * * * *
- T wr A A A A A A A N rcP E o1 M iBk N r a I Pf e A OP T
N O C R A O rC F oO 0 0 0 * * * * *
- iL A A A A A A A r 0 0 0 T P o A T D
g n i d l i U e u T T r n t B O B e l o a L E h a i e t S T 6 n p n t r H n A 0 o s r a e e G R 1 i o e l t n m E t m t u a w n L N , p t n c W o i O e i A I r d a E I c r i T t t G T n c B B c S u ns R R C a s C C e W h or A A E l e R R R) R S C e S H J a D p l C N B f f f m f y yo s S I I y y g O O ouS o B B o C 't D Y g r t t t( t d d n T r e n n n n e en a D E e n e e er e v va c E F n E t t t e t o oF i D A E n ns nt n ms m l N S o oe oa o er ey p E e C C r CW C R e R c p M : g u g n A E U C a y yt ye y yn ye L M k l l g gc gk g ga gg e B I T a l a r ru ra r rh rr e U X R e i t e er et e ec ee S O A A r p o n nt nn n nx nm D M P B S T E ES EI E EE EE
- TABLE 6.2.1-6 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 13 of 13 PART D: Chronology of Events Time (Seconds) Event 0.0 Break Occurs 14.4 Start Core Flood Tank Injection 19.3 Start ECCS Injection Phase A* Peak Containment Pressure (Blowdown) 19.3 End of Blowdown A* Start Fan Coolers A* Start Spray Injection A* Peak Containment Pressure Subsequent To End of Blowdown 217.0 End of Core Reflood 500.0 End of Steam Generator Energy Release:
Post Reflood A* End of ECCS Injection A* Start ECCS Recirculation A* End Spray Injection A* Start Spray Recirculation A* Depressurization of Containment 1
- See Applicant's SAR O
TABLE 6.2.1-7 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area MINIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 1 of 13 PART A: Mass / Energy Release Data Break Mass Break Energy , Time Flow Rate Flow Rate Point (Sec) (Lbm/Sec) (Million Btu /Sec) 1 0.000 0.00 0.000000 2 .025 78543.59 44.069701 3 .050 77521.20 43.538741 4 .100 78864.34 44.370245 5 .150 81670.90 45.993189 6 .175 105947.65 59.738038 7 .200 103842.73 58.585954 8 .250 102038.51 57.524034 9 .300 100334.53 56.572313 10 .350 99432.42 56.041352 11 .500 96495.55 54.418417 12 .800 92305.76 52.224449 13 1.000 89398.96 50.731750 14 1.300 84818.26 46.417504 , 15 1.850 80588.37 46.484068 16 2.000 74975.65 43.308324 17 2.100 70364.47 40.693595 l 18 2.200 66294.96 38.379410 l 19 2.400 61473.69 35.654482 20 2.800 57915.37 33.700949 21 4.000 54276.87 31.587126 l 22 5.000 51380.10 30.124481 23 6.000 47350.65 28.411363 24 7.000 40955.73 25.956944 25 8.000 31724.15 22.360439 26 9.000 24276.75 19.014388 27 10.000 18803.95 16.329532 28 11.000 13601.79 13.404242 29 12.000 12589.43 11.190238 30 13.000 14253.32 9.335884 31 14.000 13842.36 7.712949 32 15.000 11115.98 5.325632 33 16.000 9189.48 3.861985 34 17.000 7749.11 2.825109 O
TABLE 6.2.1-7 DATA FOR CONTAINMENT PEAK PRESSURE /TEMPERATIJRE ANALYSIS DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Totai Area- - MINIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure i Sheet 2 of 13-PART A: Mass / Energy Release Data Break Mass Break Energy Time Flow Rate . Flow Rate l Point (Sec) (Lbm/Sec)- (Million Btu / Sic) 35 17.400 7725.06 2.671832~ 36 17.500 3882.07: 1.321390 l 37 17.800 11196.17 3.449238' 38 18.400 5708.34 1.593883 s 39 19.000 2487.82 .676123 40 19.200 811.30 .221601 41 19.300 0.00 0.000000 INTEGRAL 627500. LBM 382.300 MILLION BTU i Ib
TABLE 6.2.1-7 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDE0 DISCHARGE LEG SLOT 9.8175 Square Feet Total Area MINIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 3 of 13 PART A: Mass / Energy Release Data Time Mass Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) (Btu /Lbm) (Million 8tu/Sec) 1 19.300 0.00 0.00 0.000000 - 2 20.000 223.95 1311.72 .293760 3 21.000 290.03 1311.52 .380381 4 22.000 454.56 1310.34 .595630 5 23.000 578.18 1309.19 .756950 6 24.600 732.88 1307.51 .958245 7 24.200 425.41 1307.48 .556215 8 26.000 424.93 1307.26 .555495 9 27.500 424.11 1307.07 .554343 10 30.000 422.63 1306.70 .552288 11 35.000 419.58 1306.17 .548044 12 40.000 416.54 1305.54 .543808 13 40.100 359.04 1305.50 .468728 14 45.000 356.48 1304.84 .465149 j 15 50.000 353.59 1304.13 .461128 16 55.000 350.72 1303.46 .457150 17 60.000 347.93 1302.74 .453261 18 70.000 342.44 1301.25 .445600 ; 19 70,100 684.77 1301.24 .891047 l $? $:S$ $:N l!$:SS :*96!!$ l 22 85.000 668.81 1298.86 .868693 l 23 90.000 663.44 1298.07 .861189 ! 24 95.000 641.71 1297.51 .832627 25 100.000 594.74 1297.56 l
.771713 -
26 110.000 509.34 1297.65 .660946 27 120.000 435.09 1297.74 .564634 28 130.000 371.86 1297.84 .481613 29 140.000 319.66 1297.88 .414880 30 150.000 278.36 1297.88 .361277 31 170.000 225.58 1297.53 .292697 32 200.000 196.29 1296.78 .254545 33 225.000 190.47 1295.92 .246833 34 250.000 189.09 1294.87 .244847 gl, 1 l l
~
lABLE 6.2.1-7 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS 1 DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area
.i MINIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 4 of 13 PART A: Mass / Energy Release Data Time Mass Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) (Btu /Lbm) (Million Btu /Sec) 35 275.000 188.84 1294.28 .244412 36 300.000 188.86 1293.32 .244257 37 350,000 189.00 1291.26 .244048 38 400.000 189.11 1288.77 .243720 -
39 450.000 239.400 1285.01 .307632 I 40 475.000 261.16 1282.59 .334962 ! 41 500.000 271.66 1280.14 .347763 j INTEGRAL 132767. LBM 171.971 MILLION BTU l O 1 l i l 1 l O l l l
TABLE 6.2.1-7 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area MINIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 5 of 13 PART A: Mass / Energy Release Data Spillage Data 6 Time Macs 1bm Energy 10 Btu End of Blowdown 19.3 sec. 118916 10.461 End of Reflood 425.7 sec 396854 50.188 End of Post Reflood 500 sec 415495 55.064 NOTE: The spillage data tabulated is the sum of:
- 1) Direct ECCS Spillage (discharge leg cases only)
- 2) Vessel Spillage Direct ECCS Spillage is ECCS flow which goes directly to the contain-ment without entering the NSSS. Vessel Spillage is the sum of all liquid leaving the break.
l l O',
l pg TABLE 6.2.1-7 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS ] DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area 1 HINIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure- I
)
Sheet 6 of 13 PART B: Reactor Vessel Pressure vs. Time Time (Sec) R.V. Pressure (psia) l 0.000 2295 l 0.025 2027 0.050 1865 0.075 1672 l 0.100 1625 1 0.125 1707 l 0.150 1714 ! 0.200 1660 l 0.250 1716 O.275 1663 g 0.350 1671 p(y. O.425 1645 0.500 1612 0.600 1598 0.700 1568 0.800 1548 0.900 1530 1.100 1481 1.300 1452 1.500 1427 2.000 1362 2.600 1293 3.200 1256 3.700 1233 4.200 1213 4.700 1194 5.300 1174 6.000 1153 7.000 1116 8.000 1065 9.000 986 10.000 904-11.000 784 12.000 638 O
TABLE 6.2.1-7 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area MINIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 7 of 13 PART 8: Reactor Vessel Pressure vs. Time Time (Sec) R.V. Pressure (psia) 13.000 488 14.000 366 15.000 264 16.000 177 17.000 113 18.000 69 19.000 40 19.300 35 O O
l
-~ l l TABLE 6.2.1-7
\m /) ' 1 I DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS 1 l I DOUBLE EN0ED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area MINIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 8 of 13 PART B: Reactor Vessel Pressure vs. Time Time (Sec) Reactor Vessel Annulus Pressure (Psia) 1 19.300 70.00 2 20.000 70.89 ] 3 21.000 71.49 i 4 22.000 73.59 l 5 23.000 75.71 l 6 24.600 78.95 7 24.700 78.95 8 26.000 78.93 9 27.500 78.89 10 30.000 78.82 11 35.000 78.69 0 12 13 14 40.000 40.100 45.000 78.56 78.55 78.42 15 50.000 78.28 16 55.000 78.14 17 60.000 78.00 18 70.000 77.73 1 19 70.100 77.73 l 20 75.000 77.60 1 21 80.000 77.47 22 85.000 77.35 23 90.000 77.22 24 95.000 76.76 25 100.000 75.84 26 110.000 74.32 27 120.000 73.18 1 28 130.000 72.34 1 29 140.000 71.73 30 150.000 71.32 31 170.000 70.87 32 200.000 70.66 33 225.000 70.62 34 250.000 70.61
l TABLE 6.2.1-7 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area MINIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 9 of 13 PART B: Reactor Vessel Pressure vs. Time l l Time (Sec) Reactor Vessel Annulus Pressure (Psia) l 35 275.000 70.61 36 300.000 70.60 l 37 350.000 70.60 ; 38 400.000 70.60 39 450.000 70.95 40 475.000 71.12 41 500.000 71.20 0 4 l l l 9 I i 1
l k a c t a o B d T o t f c t n oi 9 8 9 1 1 4 6 e e f 5 9 8 8 1 9 5 e m d e 3 0 0 3 7 6 9 9 F n nR . i E 8 0 7 5 4 8 7 7 e r t a t s t 5 2 8 0 1 1 3 1 a n Ao u o P q C S a 5 i 7 s f 1 p Od 6 8 2 0 1 9 4 8 o 6 9 8 3 0 3 8 0 d o 8 0 0 0 3 7 1 9 9 7 nl . Ef 6 0 7 6 5 0 9 9 e 5 2 8 1 1 3 tR 1 1 A e r uf sO S s n I ed w S rno Y ped * * * * * * *
- L w A A A A A A A A A k ro N ael A etB Pf E A R t U A T
A R E P n M f w 3 9 1 8 0 0 5 4 E oo 4 6 4 4 0 1 1 3 T d 2 8 7 9 4 8 8 8
/ d w 7 E 3 no 4 4 3 3 8 2 9 3 O - R 1 El 1 2 1 3 8 2 2 5 1 U B 1 1 . S f 2 S o E
6 R 0 P 1 t E dAe L K t n r B A e E nu A T E P h e oos ws S td e * * * * * * *
- T N rop wr A A A A A A A A E ol M iBk N r a I Pf e A OP T
N O C R A 2 5 9 5 2 4 0 4 O rC 9 8 9 8 0 9 8 3 F oO 9 3 2 3 6 2 1 8 iL . A r 7 1 0 7 8 4 2 3 T P o 5 3 3 3 8 2 3 5 A T 3 1 1 D s l y e a l r b n a a u r n m T e r i U t e r r r T T n t P o o O B I n t t L E I s , a a S T 6 n r l r r r _ A 6 o e r a e e e _ G R 1 i t e n z n n E t a t r l i s e e L N O e i p W W a t e t a rp um G G _ E I c r m n e su m m _ G T n c e k e I M sP a a R R C a s t n r . e e e A - A E l e s a o V V rd t t S _ H J a D y T C R R P n S S _ C N B y S n n n a n
's
_ S I y g n n n I t o I I I I , I I s ' D Y g r n s n O _ i l _ T r e a t d d d d e d dl a _ D E e n l c e e e ev e ea c E D F A E n E o o j e o r o r r o rl oa r o rW o i l _ N S C n t t t tV t t y p _ E I S S S S , S Sr p M : r a A E L U M C oy t g yy t g y g g y y g yg gn y g yd gn e B I T cr er r r r ri r ro e _ U N R ae f e e e e ep e ec S O I A en an n n n ni n ne D M P RE SE E E E EP E ES
- l k a c t a o B d T o t f o t n ol 7 0 8 7 7 7 6 4 e e f 1 1 3 3 7 7 6 6 e m de 1 0 3 4 3 3 0 3 F n nR . .
i E 7 8 8 9 7 7 1 0 e a t 7 6 3 0 7 r t t s 6 a n Ao u q o P C S a 5 i 7 s f 1 p Od 2 3 8 8 7 7 6 8 8 o 0 9 3 5 7 7 6 2 0 do 0 4 3 6 3 3 0 0 9 7 nl Ef 1 2 8 4 7 7 1 2 e 8 7 3 2 6 tR 6 A e r uf sO S s n I ed w S rno Y ped * * * * * * *
- L w A A A A A A A A A k ro N ael A etB Pf E A R t U A T
A R E P n M f w 3 3 8 7 7 7 6 4 E oo 2 2 3 1 7 7 6 5 T d 4 3 3 5 3 3 0 9
/ d w 7 E R
3 no 9 6. 8 2 7 7 1 5
- 1 El 1 1 3 5 1 U B 1 1 7 . S f 2 S o E
6 R 1 P 1 t E dA e L K t n r B A e E nu A T E P h e oos ws S td e * * * * * * *
- ropwr T A A A A A A A A N
E ol M iBk N r a I Pf e A OP T N O C R A 6 6 8 3 O rC 4 4 3 6 F oO 3 3 3 4 0 0 0 0 iL A r 2 2 8 9 0 0 0 0 T P o 1 1 3 2 A T 1 1 1 D 1 m n n n o I I I r F y y y U g g g n T T r r r w O B e e e 1 2 o L E n n n d S T 6 n E E E r r t A 0 o o o u G R 1 i l l l t t h E t a a a a a S L N , p n n n y r r O e i r r r g e e g E I c r e e e r n n n G T n c t t t e e e e i R R C a s n n n n G G n r A A E l e I I I E i u S H J a D m m b D C N B t1 t2 t d a a r s S I y n n n e e e u d I y g ar ar a r t t T e 't D Y g r l o l o l o S S t n T r e ot ot o t o a a D E e n oa oa o S o o T r c E F n E C r C r C T T e i D A E e e e S w nt l N S yn yn yn S r r o ea p E re re ri S e e l Ge p M aG aG aL N t t F H A E U C: d d d a a y L M nm nm nm l w w m gy e B I T oa oa oa a d d a ra e U N R ce ce ce t e e e ec S O I A et et et o e e t ne D M P SS SS SS T F F S ED
- f;
2 y e a _ r D _ u * * * * * * * * *' a s 1 A A A A A A A A A _ e r s e t A r A p l k a c t a o B d _ T o t f o t n ol 1 4 5 e e f 7 6 3 e m de 8 0 9 * * * * *
- _ F n nR A A A A A A
_ i E 4 5 9 e r a ts t 5 5 0 t 5 6 a n Ao u o q C P _ S _ a _ 5 i _ 7 s f - 1 p Od 4 8 2 _ 8 o 8 8 7 0 do 7 1 9 * * * * *
- A A A A A A
_ 9 7 nl . Ef 4 0 4 e 3 5 8 tR 5 5 A e r uf sO S s n I edw S rno Y ped * * * * * * * *
- L w A A A A A A A A A A kro N ael A etB Pf E A R t U A T
A R E P n M f w 0 1 1 E T ood 0 6 6 9 4 3
/ dw A A A A A A 7 E 3 no 2 0 3 - R 1 El 8 1 9 1 U B 3 3 S f 2 S E
o 6 R 2 P 1 t E dAe L K t n r B A e Enu A T E P h e oos ws S tde * * * * * *
- ropwr A A T A A A A A N
E ol M iBk N r a I Pf e A OP T N O C R A O rC F oO 0 0 0 * * * * *
- iL A A A A A A A r 0 0 0 T Po A T D
g n i d l i U e u T T r n t B O B e l o a - L E h a i e t S T 6 n p n t r H n A 0 o s r a e e G R 1 i o e l t n m E t m t u a w n L N , p t n c W o i E O I e c i r A I i r T d t t a G T n c B B c S u ns R R A C E l a s e C R C R e R) W R h S or Ce A S H J a D p l C N B f f fm f y yo s S I . y O O ou o B Bo I y g S C 't D Y g r t t t( t d d n T r e n n n n e en a D E E e n n e e er e v va c F E t t te t o oF i D N A S E n o ns oe nt oa n o ms er m ey l p E e C Cr CW C Re Rc p M : g u .g n A E U C a y yt ye y yn ye L B M I T k a l l l a g r gc ru gk ra g r ga rh gg rr e e U N R e i t e er et e ec ee S O D I M A r p o n nt nn n nx nm P B S T E ES EI E EE EE *. llllllll
i TABLE 6.2.1-7 OATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDE0 OISCHARGE LEG SLOT 9.8175 Square Feet Total Area MINIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 13 of 13 l PART 0: Chronology of Events Time (Seconds) Event
- 0. 0 Break Occurs 14.4 Start Core Flood Tank Injection 1 19.3 Start ECCS Injection Phase A* Peak Containment Pressure (Blowdown) 19,3 . End of Blowdown A* Start Fan Coolers A* Start Spray Injection A* Peak Containment Pressure Subsequent To End of Blowdown 425.7 End of Core Reflood 500.0 End of Steam Generator Energy Release:
Post Reflood i A* End of ECCS Injection A* Start ECCS Recirculation A* End Spray Injection A* Start Spray Recirculation A* Depressurization of Containment
- See Applicant's SAR O
1 i
~ 1 TABLE 6.2.1-8 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS i DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 55 psia Containment Backpressure Sheet 1 of 13 l PART A: Mass / Energy Release Data Break Mass Break Energy Time Flow Rate Flow Rate Point (Sec) (Lbm/Sec) (Million 8tu/Sec) 1 0.000 0.00 0.000000 2 .025 78543.59 44.069701 3 .050 77521.20 43.538741 4 .100 78864.34 44.370245 5 .150 81670.90 45.993189 6 .175 105947.65 59.738038 7 .200 103842.73 58.585954 8 .250 102038.51 57.524034
's 9 .300 100334.53 56.572313 10 .350 99432.42 56.041352 11 .500 96495.55 54.418417 .
12 .800 92305.76 52.224449 l 13 1.000 89398.96 50.731750 i 14 1.300 84818.26 46.417504 ) 15 1.850 80588.37 46.484068 16 2.000 74975.65 43.308324 17 2.100 70364.47 40.693595 18 2.200 66294.96 38.379410 19 2.400 61473.69 35.654482 20 2.800 57915.37 33.700949 21 4.000 54276.87 31.587126 22 5.000 51380.10 30.124481 23 6.000 47350.65 28.411363 , 24 7.000 40955.73 25.956944 1 25 8.000 31724.15 22.360439 i 26 9.000 24276.75 19.014388 27 10.000 18803.95 16.329532 28 11.000 13601.79 13.404242 29 12.000 12589.43 11.190238 30 13.000 14253.32 9.335884 31 14.000 13842.36 7.712949 32 15.000 11115.98 5.325632 33 16.000 9189.48 3.861985 34 17.000 7749.11 2.825109
TABLE 6.2.1-8 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED DISCliARGE LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 55 psia Containment Backpressure Sheet 2 of 13 PART A: Mass / Energy Release Data Break Mass Break Energy i Time Flow Rate Flow Rate Point (Sec) (Lbm/Sec) (Million 8tu/bec) 35 17.400 7725.06 2.671832 . l 36 17.500 3882.07 1.321390 37 17.800 11196.17 3.449238 38 18.400 5708.34 1.593883 i 39 19.000 2487.82 .676123 ! 40 19.200 811.30 .221601 ! 41 19.300 0.00 0.000000 l 1 INTEGRAL 627500. LBM 382.900 MILLION BTU j l l O
O TA8LE 6.2.1-8 k ) DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area MINIMUM SAFETY INJECTION RATE 55 psia Containment Backpressure l l Sheet 3 of 13 PART A: Mass / Energy Release Data ( Time Mass Release Enthalpy Energy Release Rate (Million Btu /Sec) (Sec) Rate (Lbm/Sec) (Btu /Lbm) 1 19.300 0.00 0.00 0.000000 2 20.000 224.92 1312.64 .295238 3 21.000 299.88 1312.26 .393522 4 22.000 455.39 1311.14 .597078 5 23.000 577.65 1310.00 .756723 6 23.900 670.45 1309.03 .877640 7 24.000 389.50 1308.99 .509851 8 26.000 388.74 1308.71 .508748 9 27.500 388.01 1308.57 .507739 10 30.000 386.75 1308.30 .505986 [ 11 35.000 383.75 1307.80 .501869 ,\ 12 40.000 379.59 1307.35 .496256 13 45.000 376.28 1306.99 .491786 14 50.000 373.19 1306.26 .487484 15 55.000 370.24 1305.71 .483425 16 60,000 367.36 1305.13 .479452 17 65.000 364.55 1304.54 .475571 18 70.000 361.77 1303.98 .471741 19 70.100 623.66 1303.94 .813216 20 75.000 619.03 1303.33 .806802 21 80.000 614.36 1302.72 .800338 22 85.000 609.76 1302.06 .793946 23 90.000 605.17 1301.42 .787579 24 95.000 600.59 1300.74 .781213 25 100.000 596.01 1300.05 .774842 l 26 110.000 586.81 1298.67 .762071 27 120.000 577.54 1297.35 .749272 28 130.000 568.23 1295.98 .736414 29 140.000 558.91 1294.50 .723511 30 150.000 549.58 1293.03 .710626 31 170.000 530.69 1290.80 .685016 32 200.000 501.53 1286.48 .645208 1 33 225.000 476.54 1282.82 .611315 l 34 250.000 450.92 1249.16 .563273 { l n i l 1 i j l i
TABLE 6.2.1-8 DATA FOR CONTAINMENT PEAK PRESSURE /TEMPE'ATURE ANALYSIS DOUBLE ENDE0 DISCHARGE LEG SLOT 9.8175 Sauare Feet Total Area MAXIMUM SAFETY INJECTION RATE 55 psia Containment Backpressure Sheet 4 of 13 PART A: Mass / Energy Release Data Time Mass Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) (8tu/Lbm) (Mil! ion Btu /Sec) 35 260.000 405.15 1175.45 .476235 36 275.000 362.75 1175.35 .426358 i 37 300.000 343.22 1175.34 .403400 l 38 350.000 320.33 1175,29 .376480 39 379.300 289.23 1175.17 .339893 40 400.100 301.51 1175.38 .354389 41 425.100 153.16 1175.07 .179973 42 450.400 74.00 1175.07 .086955 43 500.000 76.42 1175.06 .089798 INTEGRAL 178968. LBM 224.229 MILLION BTU i 1 O
. :l l
TABLE 6.2.1-8 {s"]/ DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 55 psia Containment Backpressure Sheet 5 of 13 PART A: Mass / Energy Release Data Spillage Data Time Mass,lp Energy 106 Btu End of Blowdown 19.3 sic. 118916 10.461 End of Reflood 254.0 sec 520893 64.401 End of Post Reflood 500 sec 819800 119.716 O NOTE: The spillage data tabulated is the sum of: l 1) Direct ECCS Spillage (discharge leg cases only) 1
- 2) Vessel Spillage Direct ECCS Spillage is ECCS flow which goes directly to the contain-ment without entering the NSSS. Vessel Spillage is the sum of all.
liquid leaving the break. ! i I l l v 1
I TABLE 6.2.1-8 OATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS 00VBLE ENDE0 OISCHARGE LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 55 psia Containment Backpressure Sheet 6 of 13 PART B: Reactor Vessel Pressure vs. Time Time (Sec) R.V. Pressure (psia) l 0.000 2295 1 0.025 2027 . 0.050 1865 1 0.075 1672 0.100 1625 0.125 1707 l 0.150 1714 0.200 1660 0.250 1716 0.275 1663 0.350 1671 0.425 1645 0.500 1612 0.600 1598 0.700 1568 0.800 1548 l 0.900 1530 1.100 1481 1.300 1452 , 1.500 1427 l 2.000 1362 2.600 1293 l 3.200 1256 3.700 1233 4.200 1213 4.700 1194 5.300 1174 6.000 1153 7.000 1116 8.000 1065 9.000 986 10.000 904 11.000 784 12.000 638 9
m - (h TABLE 6.2.1-8
)
l DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 55 psia Containment Backpressure Sheet 7 of 13 PART B: Reactor Vessel Pressure vs. Time Time (Sec) R.V. Pressure (psia) 13.000 488 14.000 366 l 15.000 264 16.000 177 17.000 113 18.000 69 I 19.000 40 19.300 35 I O 1 O
1 TABLE 6.2.1-8 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS D003LE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure Sheet 8 of 13 PART 8: Reactor Vessel Pressure vs. Time Time (Sec) Reactor Vessel Annulus Pressure (Psia) 1 19.300 55.00 2 20.000 56.11 3 21.000 56.96 4 22.000 59.41 5 23.000 61.93 6 23.900 64.15 7 24.000 64.17 8 26.000 64.12 9 27.500 64.09 10 30.000 64.03 11 35.000 63.88 12 40.000 63.70 13 45.000 63.55 14 50.000 63.40 15 55.000 63.26 . 16 60.000 63.13 17 65.000 63.00 l 18 70.000 62.88 19 70.100 62.87 20 75.000 62.75 21 80.000 62.63 22 85.000 62.51 l 23 90.000 62.39 l 24 95.000 62.28 ] 25 100.000 62.16 ' 26 110.000 61.93 27 120.000 61.70 28 130.000 61.47 29 140.000 61.25 i 30 150.000 61.03 ! 31 170.000 60.61 I 32 200.000 59.98 33 225.000 59.47 ] 34 250.000 59.14 O ,
~
'l J
TABLE 6.2.1-8 l
\
i DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS l DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 55 psia Containment Backpressure Sheet 9 of 13 PART B: Reactor Vessel Pressure vs. Time Time (Sec) Reactor Vessel Annulus Pressure (Psia) 35 260.000 58.60 36 275.000 58.70 1 37 300.000 58.78 l 38 350.000 59.11 l 39 379.300 58.92 40 400.100 57.53 41 425.100 56.39 42 450.400 56.22 43 500.000 55.62 i e I O
l k a c t a o B d T o t f o t n ol 2 2 5 1 0 5 9 e e f 4 0 7 1 3 5 7 e m de 9 0 1 6 4 1 8 8 F n nR . i E 1 0 5 3 4 4. 4 2 e a t 3 2 8 9 1 3 r t ts 1 a n A o u o P q C S a 5 i 7 s f 1 p Od 7 9 7 0 8 1 1 8 o 4 1 1 8 0 8 2 5 d o 8 0 8 9 5 2 3 7 9 5 nl . Ef 3 0 6 7 6 2 7 3 e 4 2 8 1 1 4 tR 1 1 A e r uf sO S s n I ed w S rno Y ped * * * * * * *
- L w A A A A A A A A A k r N
A aek et3 Pf E A R t U A T A R E P n M f w 3 9 1 8 0 0 5 4 E oo 4 6 4 4 0 1 1 3 T d 2 8 7 9 4 8 8 8
/ d w 8 E 3 no 4 4 3 3 8 2 9 3 - R 1 El 1 2 1 3 8 2 2 5 1 U B 1 1 . S f 2 S o E
6 R 0 P 1 t E dAe L K t n r B A e E nu A T E P h e oos ws S td e * * * * * * *
- T N rop wr A A A A A A A A E ol M iBk N r a I Pf e A OP T
N O C R A 2 5 9 6 2 4 0 4 O rC 9 8 9 8 0 9 8 3 F oO 9 3 2 3 6 2 1 8 iL . A r 7 1 0 7 8 4 2 3 T P o 5 3 3 3 8 2 3 5 A T 3 1 1 D s l y e a l r b n a a u r n m T e r i U t e r r r T T n t P o o O B I n t t L E I s , a a S T 6 n r l r r r A 0 o. e r a e e e G R 1 t e n z n n E L a t r l is e e L N O e i p W W a t e t a rp um G G E I c r m n e s u m m G T n c e k e I M sP a a R R C a - t n r e e e A A E l e s a o V V rd t t S H J a D y T C R R P n S S C N B S a s S I y n n n n n n n ' I y g t o I I I I , I I s t D Y g r n i s l n T r e a t d d d d e d dl a D E e n l c e e e ev e ea c E D F A E n E o o j e r o r o r o rl oa r o rW o i l N S C n t t t tV t t y p E S S S S S r p M r I S , a A E U C: oy yy y y y yg y yd L M t g t g g g g gn g gn e B I T cr er r r r ri r ro e U X R ae f e e e e ep e ec S O A A en an n n n ni n ne D M P RE SE E E E EP E ES
- I
( l1lb-y a e e r u s s D 1 a A A A A A A A A (y r e t A r A p
~ l k a c t a o B d T o -
t fo - t n ol 8 0 8 7 7 7 6 4 - e e f 1 6 3 9 7 7 6 6 F e m n de nR 4 2 3 4 3 3 0 3 -- i E 0 0 8 8 7 7 1 0 e r a t 6 6 3 9 7 t ts 4 a n Ao u o P q C S a 5 i 7 s f 1 p Od 7 5 8 8 7 7 6 0 8 o 0 9 3 3 7 7 6 1 5 do 6 7 3 8 3 3 0 4 9 5 nl Ef 5 5 8 3 7 7 1 1 e 7 6 3 9 4 tR 5 A e r uf sO S s n I edw S rno Y ped * * * * * * *
- L w A A A A A A A A A kro N ael A etB Pf E A R t U A -
T A R E P n M fw 3 3 8 7 7 7 6 4 E oo 2 2 3 1 7 7 6 5 T d 4 3 3 5 3 3 0 9
/ dw 8
E R 3 no El 9 6 8 2 5 7 7 1 5 - aI> 1 1 1 3 1 U B 1 1 7
. S f 2 S o E
6 R 1 _ P 1 t E dAe L B K A t e n Enu r - A T E P h e oos ws S tde * * * * * * *
- T N rop wr A A A A A A A A E ol M iBk N r a I Pf e A OP T
N O C R A 6 6 8 3 O rC 4 4 3 6 F oO 3 3 3 4 0 0 0 0 iL A r 2 2 8 9 0 0 0 0 T Po 1 1 3 2 A T 1 1 1 D 1 m n n n o I I I r F y y y T O L S E T 6 U T B n E g r e n E g r e n E g r e n 1 r 2 r d t n w o -_ A 0 o o o u = G R 1 i l l l t t h E t a a a a a S L N , p n n n y r r O e i r r r g e e g - E I c r e e e r n n n G T n c t t t e e e e i R R C a s n n n n G G n r A _ A H C E J N l b a D e I t1 I t2 I t E d m a m a i b r D u S s _ S I y n n n e e e u d I y g ar ar a r t t T e 't D Y g r l o l o l o S S t n T r e ot ot o t o a a D E E e n n oa oa o S o o T r c F E Cr Cr C T T e i A e e yne D E S w nt l N S yn yn S r r o ea p E re re ri S e e l Ge p M aG aG N F A y H
- aL t t E U C d d d a a .
L B M I T nm oa nm oa nm oa l a d w d w m a gy ra e e U X R ce ce ce t e e e ec S O A A et et et o e e t ne D M P SS SS SS T F F S ED * -
( y e a r D u * * * * * * * *
- a s 1 A A A A A A A A A O
e s r e t A r A p l k a c t a o B d T o t fo t n ol 9 6 5 e e f 2 1 4 e m de 1 7 8 A A F n nR A A A A i E 7 9 6 e a t 0 1 2 r t ts 6 1 7 a n Ao u q o P C S a 5 i 7 s f 1 p Od 3 1 4 8 o 4 0 4 5 do 4 4 8 * * *
- 9 5 nl A A A A A A Ef 0 4 4 e 3 6 9 -
tR 5 5 A e r uf sO S s n I edw S rno
- Y ped * * * * * * *
- L w A A A A A A A A A A kro N ael A etB -
Pf E A R t U A T A R E P n M f w 0 1 1 E ood 0 6 6 T 9 4 3
/ dw A A A A A A 8 E 3 no 2 0 3 O - R 1 El 8 1 9 1 U B 3 3 . S f 2 S o E
6 R 2 P 1 t E dAe L K t n r B A e Enu A T E P e h oos ws a tde * * * * * *
- ropwr T A A A A A A A N
E ol M iBk N r a I Pf e A OP T P O C R A O rC F oO 0 0 0 * * * * *
- iL A A A A A A A r 0 0 0 T Po A T D
g n i d l i U e u T T r n t B O B e l o a L E h a i e t S T 6 n p n t r H n A 0 o s r a e e G R 1 i o e l t n m E t m t u a w n L N O e i p t A I n r c W d o i a E I c r i T t t G T n c B B c S u ns R R C a s C C e W h or A A E l e R R R f R S Ce S H J a D p l C N B f f f m f y yo s S I y y g O O ou o B Bo C I S 't Y g r t d d n O D t t t( T r e n n n n e en a D E e n e e er e v o va c E F n E t t t e t oF i D A E n ns nt n ms er m ey l p N S o oe oa o E e C Cr CW C R e Rc g n p M : g u A E U C a y yt ye y yn ye L M k l l g gc gk g ga gg e B I T a l a r ru ra r rh rr e U X R e i t e er et e ec ee S O A A r p o n nt nn n E nx EE nm EE
- D M P B S T E ES EI
i TABLE 6.2.1-8 (A) v ' DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area MAXIMUM SAFETY INJECTION RATE 55 psia Containment Backpressure Sheet 13 of 13 PART D: Chronology of Events Time (Seconds) ' Event 0.0 Break Occurs 14.4 Start Core Flood Tank Injection 19.3 Start ECCS Injection Phase A* Peak Containment Pressure (Blowdown) 19.3 End of Blowdown A* Start Fan Coolers f
\ \ A* Start Spray Injection A* Peak Containment Pressure Subsequent To End of Blowdown 254.0 End of Core Reflood 500.0 End of Steam Generator Energy Release:
Post Reflood A* End of ECCS Injection A* Start ECCS Recirculation A* End Spray Injection
, A* Start Spray Recirculation A* Depressurization of Containment
- See Applicant's SAR O
TABLE 6.2.1-9 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area MINIMUM SAFETY INJECTION RATE 55 psia Containment Backpressure Sheet 1 of 13 PART A: Mass / Energy Release Data Break Mass Break Energy Time Flow Rate Flow Rate Point (Sec) (Lbm/Sec) (Million Btu /Sec) 1 0.000 0.00 0.000000 2 .025 78543.59 i44.069701 3 .050 77521.20 43.538741 4 .100 78864.34 44.370245 5 .150 81670.90 45.993189 6 .175 105947.65 59.738038 7 .200 103842.73 58.580954 8 .250 102038.51 57.524034 9 .300 100334.53 56.572313 . 10 .350 99432.42 56.041352 l 11 .500 96495.55 54.418417 i 12 .800 92305.76 52.224449 13 1.000 89398.96 50.731750 14 1.300 84818.26 46.417504 15 1.850 80588.37 46.484068 16 2.000 74975.65 43.308324 17 2.100 70364.47 40.693595 18 2.200 66294.96 38.379410 19 2.400 61473.69 35.654482 20 2.800 57915.37 33.700949 El 4.000 54276.87 31.587126 22 5.000 51380.10 30.124481 23 6.000 47350.65 28.411363 24 7.000 40955.73 25.956944 25 8.000 31724.15 22.360439 26 9.000 24276.75 19.014388 27 10.000 18803.95 16.329532 l 28 11.000 13601.79 13.404242 j 29 12.000 12589.43 11.190238 i 30 13.000 14253.32 9.335884 ! 31 14.000 13842.36 7.712949 32 15.000 11115.98 5.325632 33 16.000 9189.48 3.861985 34 17.000 7749.11 2.825109 ! i i _ _ _ _ _ - - - _ l
~ O TABLE 6.2.1 (G DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED DISCHARGE LEG SLOT -9.8175 Square Feet Total Area MINIMUM SAFETY INJECTION RATE- -55 psia. Containment Backpressure Sheet 2 of'13-PART A: Mass / Energy Release Data Break Mass Break Energy Time Flow Rate Flow Rate- ! < Point (Sec) (Lbm/sec) (Million Btu /Sec) 35 17.400 7725.06 2.671832-36 17.500 3882.07 1.321390-37 17.800 11196.17 ~3.449238 38 18.400 5708.34. 1.593883 39 19.000 2487.82 .676123 40 19.200 811.30 .221601 41 19.300 0.00 0.000000 INTEGRAL 627500. LBM 382.900.MILLION BTU 0 O
TABLE 6.2.1-9 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area MINIMUM SAFETY INJECTION RATE 55 psia Containment Backpressure Sheet 3 of 13 PART A: Mass / Energy Release Data Time Mass Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) (Btu /Lbm) (Million Btu /Sec) 1 19.300 0.00 0.00 0.000000 2 20.000 212.04 1312.97 .278402 l 3 21.000 271.01 1312.72 .355760 l 4 22.000 420.84 1311.71 .552022 5 23.000 536.25 1310.64 .702833 6 24.200 652.42 1309.42 .854289 7 24.300 383.51 1309.34 .502144 l 8 26.000 383.73 1309.08 .502332 l 9 27.500 383.03 1308.91 .501353 10 30.000 381.78 1308.68 .499626 11 35.000 378.88 1308.18 .495644 12 40.000 374.71 1307.69 .490004 13 45.000 371.41 1307.18 .485499 l 14 50.000 368.38 1306.59 .481323 15 50.100 349.27 1306.58 .456350 16 55.000 346.56 1306.06 .452628 17 60.000 343.87 1305.46 .448909 l 18 65.000 341.23 1304.92 .445277 19 70.000 338.64 1304.31 .441693 i 20 70.100 615.62 1304.29 .802947 21 75.000 584.82 1304.10 .762664 22 80.000 548.46 1304.01 .715196 23 85.000 514.41 1303.97 .670777 24 90.000 482.58 1303.90 .629238 25 95.000 452.83 1303.89 .590440 26 100.000 425.12 1303.82 .554280 27 110.000 375.51 1303.70 .489554 28 120.000 333.31 1303.59 .434500 29 130.000 298.14 1303.49 .388622 30 140.000 269.60 1303.30 .351369 31 150.000 247.12 1303.08 .322018 l 32 170.000 217.32 1302.o1 .283084 33 200.000 197.54 1301.83 .257164 34 225.000 191.98 1300.88 .249742 O
m l l l , t TABLE 6.2.1-9 l DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE' ANALYSIS DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area MINIMUM SAFETY INJECTION RATE 55 psia Containment Backpressure Sheet 4 of 13 PART A: Mass / Energy Release Data Time Mass Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) (Btu /Lbm) (Million Btu /Sec) l 35 250.000 190.04 1300.13 .247077 36 275.000 189.44 1299.26 .246131 37 300.000 189.31 1298.28 .245778 38 350.000 189.37 1296.47 .245512 39 400.000 189.49 1294.76 .245345 40 450.000 189.57 1292.94 .245102 l 41 500.000 205.84 1290.36 .265607 INTEGRAL 118390. LBM 153.983 MILLION BTU
\
b l\
q u b ( TABLE 6.2.1-9 %J DATA FOR CONTAINMENT PEAX PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area MINIMUMSAFETYIN[ECTIONRATE 55 psia Containment Backpressure Sheet 4 of 13 ) I PART A: Mass / Energy Release Data Time Mass Release Enthalpy Energy Release Rate i (Sec) Rate (Lbm/Sec) (Btu /Lbm) (Million 8tu/Sec) 35 250.000 190.04 1300.13 .247077 , 36 275.000 189.44 1299.26 .246131 ! 37 300.000 189.31 1298.28 .245778 I 38 350.000 189.37 1296.47 .245512 39 400.000 189.49 1294.76 .245345 { 40 450.000 189.57 1292.94 .245102 l 41 500.000 205.84 1290.36 .265607 i INTEGRAL 118390. LBM 153.983 MILLION BTU ('T b f) C/
TABLE 6.2.1-9 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area 55 psia Containment Backpressure ! MINIMUM SAFETY INJECTION RATE i Sheet 5 of 13 l PART A: Mass / Energy Release Data Spillage Data 6 Time Mass 1bm Energy 10 Btu End of Blowdown 19.3 sec. 118916 10.461 End of Reflood 492.8 sec 429477 53.219 End of Post Reflood 500. sec 431023 53.356 NOTE: The spillage data tabulated is the sum of:
- 1) Direct ECCS Spillage (discharge leg cases only) l
- 2) Vessel Spillage Direct ECCS Spillage is ECCS flow which goes directly to the contain-ment without entering the NSSS. Vessel Spillage is the sum of all liquid leaving the break.
l l O'
/N TABLE 6.2.1-9
,. U 0ATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE EN0E0 DISCHARGE LEG SLOT 9.8175 Square Feet Total Area MINIMUM SAFETY INJECTION-RATE 55 psia Containment Backpressure Sheet 6 of 13 l PART B: Reactor Vessel Pressure vs. Time Time (Sec) R.V. Pressure (psia) 0.000 2295 0.025 2027 0.050 1865 0.075 1672 0.100 1625 0.125 1707' O.150 1714 0.200 1660 0.250 1716 0.275 1663 0 0.350 0.425 0.500 0.600 1671 1645 1612 1598 0.700 1568 0.800 1548 0.900 1530 l 1.100 1481 l 1.300 1452 1.500 1427 2.000 1362 2.600 1293 3.200 1256 3.700 1233 4.200 1213 4,700 1194 5.300 1174 6.000 1153 7.000 1116 8.000 1065 9.000 986 10.000 904 11.000 784' 12.000 638 O i q
l TABLE 6.2.1-9 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area j MINIMUM SAFETY INJECTION RATE 55 psia Containment Backpressure Sheet 7 of 13 PART B: Reactor Vessel Pressure vs. Time i i Time (Sec) R.V. Pressure (psia) I 13.000 488 14.000 366 15.000 264 16.000 177 17.000 113 18.000 69 19.000 40 19.300 35 O l l 1 i j l
) 'l j
A
CN TABLE 6.2.1-9 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS q l DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area MINIMUM SAFETY INJECTION RATE 70 psia Containment Backpressure 4 Sheet 8 of 13 l PART B: Reactor Vessel Pressure vs. Time Time (Sec) Reactor Vessel Annulus Pressure (Psia) 1 19.300 55.00 2 20.000 56.01 3 21.000 56.65 4 22.000 58.88 5 23.000 61.17 ) l 6 24.200 63.92 l 7 24.300 64.14 l 8 26.000 64.13 ) 9 27.500 64.09 ) 10 30.000 64.03 11 35.000 63.89 l [ 12 40.000 63.70 (]) 13 14 45.000 50.000 63.54 63.40 15 50.100 63.40 16 55.000 63.27 l 17 60.000 63.13 18 65.000 63.01 19 70.000 62.88 20 70.100 62.88 21 75.000 62.14 22 80.000 61.32 23 85.000 60.59 24 90.000 59.95 25 95.000 59.37 1 26 100.000 58.87 27 110.000 58.04 28 120.000 57.41 29 130.000 56.93 1 30 140.000 56.59 31 150.000 56.33 32 170.000 56.03 33 200.000 55.85 3t 225.000 55.81
TABLE 6.2.1-9 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS i DOUBLE ENDED OISCHARGE LEG SLOT 9.8175 Square Feet Total Area MINIMUM SAFETY INJECTION RATE 55 psia Containment Backpressure Sheet 9 of 13 PART B: Reactor Vessel Pressure vs. Time Time (Sec) ReactorVesselAnnulusPressure(Psial 35 250.000 55.79 36 275.000 55.78 37 300.000 55.78 1 38 350.000 55.78 { 39 400.000 55.77 1 I 40 450.000 55.77 41 500.000 55.90 1 O O
Y t a o B c a
' d T o t f o -
t n ol 8 5 1 3 5 8 9 e e f 2 4 0 9 9 6 7 e m de 4 0 7 8 5, 0 8 2 F n nR i E 9 0 6 4 4 0 9 0 e a t 5 2 8 1 1 4 r t ts 1 1 a n Ao u o P q C S a 5 i 7 s f 1 p Od 7 3 8 9 8 6 9 8 o 3 4 6 4 5 5 4 5 do 1 0 7 8 6 2 9 4 9 5 nl . Ef 9 0 6 4 4 0 9 0 e 5 2 8 1 1 4 tR 1 1 A e r uf sO S s n I edw S Y rno . ped * * * * * * *
- L w A A A A A A A A A k ro N ael A etB Pf E A R t U A T
A R E P n M f w 3 9 1 8 0 0 5 4 E T oo 4 6 4 4 0 1 1 3 d 2 8 7 9 4 8 8 8
/ d w 9
E R 3 no 4 4 3 3 8 2 9 3 1 El 1 2 1 3 8 2 2 5
). 1 U
S f B 1 1 2 S E o 6 R 0 P 1 t E dAe L K t n r B A e Enu A T E P h e oos ws S td e * * *
- 2 * *
- ropwr T A A A A A A A A N
E ol M iBk N r a I Pf e A OP T N O C . R A 2 5 9 6 2 4 0 4 O rC 9 8 9 8 0 9 8 3 F oO 9 3 2 3 6 2 1 8 iL A r 7 1 0 7 8 4 2 3 T P o 5 3 3 3 8 2 3 5 A T 3 1 1 D s l . y e _ a l r b _ n a a u r _ n r m T s i U t e r r r T T n t P o o _ O B I n t t _ L E I s , a a _ S T 6 n r l r r r _ A 0 o e r a e e e G R 1 i t e n z n n E t a t r l is e e L N O e i p W W a t e t a rp G um G E I c r m n e su m m G T n c e k e I M sP a a R R C a s t n r e e e A A E l e s a o V V rd t t S H J a D y T C R R P n S S C N B S a s S I y n n n n n n n I y g t o I I I I , I I s 't D Y g r n i s l n T r e a t d d d de d d' l a D E e n l c e e e ev e ea c E D F A E n E o o j e r o r o r o rl oa r o rW o i l N S C n t t t tV t ty p E I S S S S S Sr p M : r , a A E U C oy yy y y y yg y yd L M t g t g g g g gn g gn e B I T cr er r r r ri r ro e U N R ae f e e e e ep e ec S O I A en an n n n ni n ne D M P RE SE E E E EP E ES
- y o
r D a u * * * * * * *
- a s 1 A A A A A A A A e s r e t A r A p
l t T t a o k B t c a n f o ol d o 2 8 8 2 7 7 6 4 O-e e f 9 0 3 3 7 7 6 6 e m de 4 7 3 1 3 3 0 3 F n nR i E 3 5 8 9 7 7 1 0 - e a t 8 7 3 2 7 r t ts 6 a n Ao u o P q C S 5 7 i a s f 1 p Od 4 7 8 3 7 7 6 8 8 o 8 3 3 8 7 7 6 6 5 do 7 0 3 1 3 3 0 5 - 9 5 nl . Ef 3 6 8 0 7 7 1 9 e 8 7 3 3 6 tR 6 A e r uf sO S s n I edw S rno Y ped * * * * * * *
- L w A A A A A A A A A k ro N ael A etS Pf E A R t U A T
A R E P n M f w 3 3 8 7 7 7 6 4 E oo 2 2 3 1 7 7 6 5 T d 4 3 3 5 3 3 0 9
/ dw 9
E R 3 no 9 6 8 2 7 7 1 5 1 El 1 1 3 5 1 U B 1 1 7 S f O 2 S o E 6 R 1 P 1 t E dAe L K t n r B A e Enu A E e ws T P h oos S tde * * * * * * *
- ropwr T A A A A A A A A N
E ol M iBk N r a I Pf e A OP T N O C R A 6 6 8 3 O rC 4 4 3 6 F oO 3 3 3 4 0 0 0 0 iL A r 2 2 8 9 0 0 0 0 T Po 1 1 3 2 A T 1 1 1 D 1 n m n n o I I I r F y y y U g g g a T T r r r w O B e e e 1 2 o L E n n n d S T 6 n E E E r r t A 0 o o o u G R 1 i l l l t t h E t a a a a a S L N , p n n n y r r O e i r r r g e e g E I c r e e e r n n n G T n c t t t e e e e i R R C a s n n n n G G n r A A E l e I I I E i u S H J a D m m b D C N B t1 t2 t d a a r s S I y y n n n e e e u d I g g ar ar a r t t T e 't D Y r l o l o l o S S t n T r e ot ot o t o a a D E e n oa oa o S o o T r c O E F n E Cr Cr C T T e i D A E e e e S w nt l N S yn yn yn S r r o ea p E re re ri S e e l Ge p M : aG aG aL N t t F H A E U C d d d a a y L B M I T nm o: nm oa nm oa l a d w w d m a gy ra e e U N R ce ce ce t e e e ec S O A o e e ne _ et et I et t D M P SS SS SS T F F S ED
- c t a o B d T o t f o t n ol 3 6 9 e e f 8 5 3 e m de 8 3 2 * * * * *
- F n nR A A A A A A i E 6 3 0 e a t 3 5 9 r t t s 5 5 a n Ao u o P q C S
a - 5 i 7 s f 1 p Od 7 9 6 8 o 3 1 5 5 do 0 2 2 * * * * *
- 9 5 nl A A A A A A Ef 5 3 8 '
- e 3 5 8 5 5 t R_
A e r uf sO S s n I edw S Y rno
- ped * * * * * * *
- L w A A A A A A A A A A kro N ael A etB Pf E A R t U A T
A R E P n M f w 0 1 1 E oo 0 6 6 - T d 9 4 3 * * * * * *
/ d w A A A A A A 9 E 3 no 2 0 3 - R 1 El 8 1 9 1 U B 3 3 . S f 2 S E
o 6 R 2 P 1 t E dAe L K t n r B A e Enu A T E P h e oos ws S tde * * * * * *
- ropwr T A A A A A A A N
E ol M iBk N r a I Pf e A OP T N O C R A O rC ' F oO 0 0 0 * * * * *
- A iL r A A A A A A T
0 0 0 P o A T D g n i d l i T U T e u r n t B O B e l o a L E h a i e t S T A 6 'n p n t r H n G R 0 o s r a e e E 1 i o e l t n m t m t u a w n L N , p t n c W o i O e i A I r d a E I c r i T t t G T n c B B c S u ns R C a s C C e W h or A E l e R R R) R S Ce H J a D p l C N B f f f m f y yo S I y O O ou o B B o I y g S C D Y g r t t t( t d d T r e n n n n e en D E e n e e er e v va E F n E ]/ D N E A S E e t o n t ns oe t e nt oa t o n o-ms er oF m ey M g C Cr u CW C R e g R c E U C a y yt ye y yn n ye L M k l l g gc gk g ga gg B I T a l a r ru ra r rh rr U N R e i t e er et e ec ee O I A r p o n nt nn n nx nm D M P B S T E ES EI E EE EE
TABLE 6.2.1-9 l DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS o DOUBLE ENDED DISCHARGE LEG SLOT 9.8175 Square Feet Total Area MINIMUM SAFETY INJECTION RATE 55 psia Containment Backpressure . i Sheet 13 of 13 PART D: Chronology of Events Time (Seconds) Event 0.0 Break Occurs 14.4 Start Core Flood Tank Injection 19.3 Start ECCS Injection Phase A* Peak Containment Pressure (Blowdown) 19.3 End of Blowdown A* Start Fan Coolers A* Start Spray Injection A* Peak Containment Pressure Subsequent To End of Blowdown 492.8 End of Core Reflood 500.0 End of Steam Generator Energy Release: Post Reflood I 1 A* End of ECCS Injection l A* Start ECCS Recirculation j A* End Spray Injection A* Start Spray Recirculation A* Depressurization of Contain,T>ent l
- See Applicant's SAR 9
I i TABLE 6.2.1-10 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED HOT LEG SLOT 19.2423 Square Feet Total Area Sheet 1 of 7 ! l PART A: Mass / Energy Release Data ' Break Mass Break Energy l Time Flow Rate Flow Rate i Point (Sec) (Lbm/Sec) (Million Btu /Sec) 1 0.000 0.00 0.000000 l 2 .025 166691.58 107.408989 i 3 .050 155171.43 99.974524 4 .100 161983.35 104.403140 5 .125 162183.70 104.503335 6 .175 152867.40 98.281229 7 .225 145454.44 93.321579 O .275 138542.34 88.802786 9 .300 135036,21 .86.478263 10 .400 130327.98 83.211908 , -s 11 .500 123816.59 78.843408 h [V 12 13 14
.750 1.000 1.500 117405.37 111394.86 101778.03 74.264499 70.276740 l
l 64.826134 15 2.000 93363.32 60.006757 16 2.500 86861.94 56.189329 17 3.000 84297.45 53.654397 18 3.500 79869.71 50,558373 19 4.000 73107.88 46.791043 20 4.500 65133.94 42.632952 21 5.000 57059.81 38.534979 22 5.500 48935.60 34.376888 23 6.000 41242.14 30.178720 24 6.500 31014.25 23.786282 25 7.000 19233.64 16.431972 26 7.500 11039.31 11.061523 27 8.000 6133.73 6.708052 28 8.500 4243.42 4.925584 29 9.000 2925.12 3.506823 l 30 9.500 2265.96 2.822492 31 10.000 1705.08 2.141166 32 10.200 1577.76 1.974843 33 10.300 1675.93 1.683275 34 10.500 1457.55 1.829560 ( b r l E ___ __ - - _ - - - . -
l l
)
l TABLE 6.2.1-10 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS l l DOUBLE ENDED H0T LEG SLOT 19.2423 Square Feet Total Area Sheet 2 of 7 PART A: Mass / Energy Release Data q Break Mass Break Energy Time Flow Rate Flow Rate i Point (Sec) (Lbm/Sec) (Million 8tu/Sec) 35 11.000 1050.84 1.358646 36 11.500 399.70 .516204 37 11.800 191.94 .227944 38 12.000 0.00 0.000000 IhTEGRAL 563100. LBM 376.000 MILLION BTU O' 1
\
e\
p R l 1
/ '
TABLE 6.2.1-10 O l DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS I i i l DOUBLE ENDED HOT LEG SLOT BREAK 19.2423 Square Feet Total Area ! Sheet 3 of 7 PART A: Mass / Energy Release Data Spillage Data Time Mass ibm Energy 106 Btu End of Blowdown 12.0 0. O. End of Reflood sec. N/A N/A l End of Post Reflood sec. N/A N/A NOTE: The spillage data tabulated is the sum of: I
- 1) Direct ECCS. Spillage (discharge leg cases only)
O 2) Vessel Spillage Direct ECCS Spillage is ECCS flow which goes directly to the contain-ment without entering the NSSS. Vessel Spillage is the sum of all liquid leaving the break. t h b
i TABLE 6.2.1-10 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS DOUBLE ENDED H0T LEG SLOT BREAK 19.2423 Square Feet Total Area i Sheet 4 of 7 PART B: Reactor Vessel Pressure vs. Time
.i Time (Sec) R.V. Pressure (psia) i 0.000 2295 0.025 2227 :
0.050 1785 0.075 1617 0.100 1854 0.125 1773 . 0.150 1815 1 0.200 1695 0.250 1684 0.275 1686 0.350 1650 0.425 1617 0.500 1569 0.600 1499 0.700 1476 0.800 1424 0.900 1385 1.100 1311 3 1.300 1285 1.500 1223 2.000 1132 2.600 1090 3.200 1024 3.700 970 4 4.200 915 l 4.700 858 5.300 786 6.000 692 6.500 533 7.000 400 7.500 288 8.000 194 8.500 139 9.500 77 l 10.500 57 i 11.500 40 12.000 37 . O
rO TABLE 6.2.1-10
'& DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS '
1 {
)
DOUBLE ENDED HOT LEG SLOT BREAK 19.2453 Square Feet Total Area Sheet 5 of 7 PART C: Ene r', . Balance, 106BTU Energy'(106 Btu) Prior to End- 1 Prior Of Blowdown At Erd of- i Energy Description To LOCA Peak Pressure B1>down , Reactor Coolant System Water-Internal 357.992 A* ,. 405 1 Eliergy Safety Injection Tank Water Internal 41.846 A* 3.724 l Energy Energy Stored In Core 30.299 A* 16.51'4 Energy Stored In RV Internals 37.386 A* 34.421 Energy Stored In RV Metal 88.602 A* ';.412 Energy Stored In Pressurizer, Primary 124.294 A* i . ' '. 808 Piping, Valves, and Pumps Energy Stored In Steam Generator Tubes 32.180 A* 28.528 Energy Stored In Steam Generator 153.834 A* 153.834 Secondary Walls Secondary Coolant Internal Energy In 112.346 A* 116.253 Steam Generator 1-Secondary Coolant Internal 'nergy In 112.346- A* 107.623 Steam Generator 2 Secondary Coolant Internal Energy In 38.338 A* 38.338
, Steam Line Total NSSS Stored Energy 1129.463 A* 196 Feedwater To Steam Lonerator 1 0.0 A* 107
- See Applicant's SAR
I i TABLE 6.2.1-10 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS i l DOUBLE ENDED HOT LEG SLOT BREAK 19.2423 Square Feet Total Area l Sheet 6 of 7 PART C: Energy Balance, 106BTU Energy (106 Btu) Prior to End Prior Of Blowdown At End of Energy Description To LOCA Peak Pressure Blowdown )I Feedwater To Steam Generator 2 0. 0 A* 6.907 Steam Flow To Turbine 0.0 A* 0.950 l Energy Generated During Shutdown From 0.0 A* 5.533 Decay Heat Break 0.0 A* 376.000 Spillage 0.0 0.0 l Total 0.0 376.000 Energy Content Of RCB Atmosphere A* A* A* Energy Content Of RCB Internal A* A* A* , Structures Energy Content of Recirculation Intake A* A* A* Water (Sump) Energy Content Of RWST Water A* A* A* Energy Removed By Shutdown Heat A* A* A* Exchangers Energy Removed By Containment Building A* A* A* Emergency Fan Coolers J
^ See Applicant's SAR 4
O
._____.___._._____-____s
1 i TABLE 6.2.1-10 V l DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSIS ) J DOUBLE ENDED HOT LEG SLOT BREAK 19.2423 Square Feet Total Area Sheet 7 of 7 PART D: Chronology of Events Time (Seconds) Event l
- 0. 0 Break Occurs 6.2 Start Core Flood Tank Injection 12.0 Start ECCS Injection Phase A* Peak Containment Pressure (Blowdown) 12.0 End of Blowdown A* Start Fan Coolers l
lg A* Start Spray Injection b A* Peak Containment Pressure Subsequent To End of Blowdown l 1 1 End of Core Reflood End of Steam Generator Energy Release: Post Reflood A* End of ECCS Injection l l A* Start ECCS Recirculation A* End Spray Injection A* Start Spray Recirculation A* Depressurization of Containment
- See Applicant's SAR a
u________ ___
TABLE 6.2.1-11 l DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 102% POWER / SLOT /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 1 of 7 PART A: Mass / Energy Release Data Time Mass Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) (8tu/Lbm) (Million 8tu/Sec) 1 0.000 9854.33 1189.79 11.724573 2 .200 9588.00 1190.74 11.416772 3 .600 9228.30 1192.02 11.000293 4 1.000 8989.56 1192.88 10.723510 5 2.000 8518.14 1194.58 10.175634 6 3.000 8122.28 1195.93 9.713698 7 4.000 7784.90 1197.01 9.318629 8 5.000 7715.75 1197.34 9.238404 9 6.000 8017.52 1196.58 9.593640 10 7.000 8045.04 1196.51 9.625982 11 8.000 8056.48 1196.48 9.639377 12 9.000 8068.61 1196.44 9.653582 13 9.500 8071.35 1196.43 9.656787 14 10.000 2520.37 1195.57 3.013270 15 10.500 2557.49 1195.14 3.056566 16 11.000 2587.71 1194.79 3.091789 17 11.500 2611.48 1194.51 3.119452 18 12.000 2629.25 1194.30 3.140124 19 12.500 2641.24 1194.16 3.1540f' 20 13.000 2647.55 1194.09 3.16140* 21 15.000 2618.80 1194.43 3.127963 22 20.000 2351.41 1197.49 2.815786 23 25.000 2187.84 1199.18 2.623612 24 30.000 2138.98 1199.65 2.566026 25 35.000 2053.85 1200.43 2.465496 26 40.000 1970.16 1201.14 2.366438 27 45.000 1918.21 1201.58 2.304874 28 50.000 1859.29 1202.04 2.234936 29 60.000 1745.67 1202.83 2.099748 30 70.000 1635.03 1203.47 1.967712 31 80.000 1514.10 1203.99 1.822960 32 90.000 1371.01 1204.34 1.651156 i 33 100.000 1198.88 1204.30 1.443807 I 34 110.000 1123.41 1204.10 1.352696 35 120.000 1013.51 1203.58 1.219838 36 130.000 861.64 1202.29 1.035944 i 37' 140.000 673.34 1199.35 .807572 l Ol l
TABLE 6.2.1-11 [Vh DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 102% POWER / SLOT /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 2 of 7 PART A: Mass / Energy Release Data (continued) Time Mass Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) (Btu /Lbm) (Million 8tu/Sec) 38 150.000 448.21 1227.82 .550321 39 155.000 313.07 1239.05 .387909 40 160.000 193.13 1256.33 .242635 41 165.000 62.06 1270.29 .078834 42 170.000 0.00 0.00 .000000 INTEGRAL 295067. LBM 354.239 MILLION BTU l i l l l l r g s
TABLE 6.2.1-11 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 102% POWER / SLOT /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING j Sheet 3 of 7 PART B: Steam Generator Pressures Unaffected Steam Affected Steam Time Generator Generator (Sec) Pressure (PSIA) Pressure (PSIA) , l 1 0.000 1070.00 1070.00 i 2 .200 1075.22 1068.80 ! 3 .600 1064.90 1053.24 4 1.000 1047.88 1034.08 5 2.000 1009.36 990.73 6 3.000 976.13 953.78 7 4.000 948.78 924.01 8 5.000 926.47 900.12 9 6.000 916.40 890.12 10 7.000 917.71 888.72 11 8.000 919.91 889.20 12 9.000 921.54 890.04 13 9.500 921.62 889.90 14 10.000 947.31 898.77 15 10.500 984.46 911.44 16 11.000 1017.05 921.64 17 11.500 1046.04 929.64 18 12.000 1071.82 935.57 19 12.500 1094.52 939.51 20 13.000 1114.16 941.50 21 15.000 1162.89 930.86 22 20.000 1148.92 835.29 23 25.000 1137.77 776.81 24 30.000 1137.80 759.19 25 35.000 1137.49 728.25 l' 26 40.000 1137.13 698.02 27 45.000 1136.90 678.33 28 50.000 1136,60 655.90 29 60.000 1135.98 612.80 30 70.000 1135.37 570.75 31 80.000 1134.77 524.80 I 32 90.000 1134.17 471.80 33 100.000 1133.60 409.71 l 34 110.000 1133.09 382.38 I 35 120.000 1132.55 342.55 l 36 130.000 1132.06 287.53 i 37 140.000 1131.60 219.41 Ol1 i -__ _ - _ - - - - - - _ - - - _- 1
.. TABLE 6.2.1-11 OATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 102% POWER / SLOT /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING . Sheet 4 of 7 ,
PART B: Steam Generator Pressures (continued) Unaffected Steam Affected Steam Time Generator Generator I (Sec) Pressure (PSIA) Pressure (PSIA) 38 150.000 1131.20 139.40 39 -155.000 1131.01 93.48 40 160.000 1130.86 56.33 41 165.000 1130.77 37.66 42 170.000 1130.66 33.69 l O 1 l l O
TABLE 6.2.1-11 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 102% POWER / SLOT /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 5 of 7 PART C: Energy Balance Energy (106 Btu) Prior At Peak End of Energy Description to MSLB Pressure Blowdown Reactor Coolant System Water Internal 357.992 A* 277.284 Energy Safety Injection Tank Water Internal NA** NA** NA** Energy Energy Stored In Core 30.299 A* 11.256 Energy Stored In RV Internals NA** NA** NA** Energy Stored In RV Metal NA** NA** NA** Energy Stored In Pressurizer, Primary 250.282 A* 208.341 Piping, Valves, and Pumps Energy Stored In Steam Generator Tubes 32.180 A* 26.764 Energy Stored In Steam Generator 153.834 A* 153.834 Secondary Walls < Secondary Coolant Internal Energy In 112.346 A* 78.386 Steam Generator i l Secondary Coolant Internal Energy In 112.346 A* 0.749 Steam Generator 2 Secondary Coolant Internal Energy In 38.338 A* 31.528 Steam Line Total NSSS Stured Energy 1087.617 A* 778.142 a See Applicant's SAR
"* Not Applicable O
TABLE 6.2.1-11 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 102% POWER / SLOT /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 6 of 7 PART C: Energy Balance (continued) Energy (106 Btu) Prior -- At Peak End of Energy Description to MSLB Pressure Blowdown
-Feedwater To Steam Generator 1 0.0 A* 0.0 feedwater To Steam Generator 2 0.0 A* 32.946 Steam Flow To Turbine 0.0 A* 23.130 Energy Generated During Shutdown From 0.0 A* 44.948 Decay Heat Break Flow 0.0 A* 354.239 Energy Content Of RCB Atmosphere A* A* A*
Energy Content Of ICB Internal A* A* 'A* c Structures Energy Content Of Recirculation A* A* A* Intake Water (Sump) Energy content Of RWST Water A* A* A* l l Energy Removed By Shutdown Heat A* A* A* Exchangers Energy Removed By Containment Building A* A* A* Emergency Fan Coolers
- See Applicant's SAR i f
I
m- . . . . TABLE 6.2.1-11 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 102% POWER / SLOT /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING i Sheet 7 of 7 PART D. Accident Chronology Time (Seconds) Event Setpoint 0.00 Break Occurs 3.80 Containment Pressure Reaches Reactor 6.0 psig Trip Analysis Setpoint ! 3.80 Containment Pressure Reaches Main 6.0 psig Steam Isolation Signal (MSIS) Analysis Setpoint 4.90 High Containment Pressure Reactor 10 Trip Signal and MSIS Generated 6' 4.95 Reactor Trip Breakers Open 4.95 Turbine Admission Valves Closed 9.70 Main Steam Isolation Valves Closed 9.70 Main Feedwater Isolation Valves Closed A* Containment Spray Actuation Signal A* Peak Containment Temperature A* Peak Containment Pressure 170.00 End Of Blowdown
- See Applicant's SAR l
l l Amendment No. 10 June 28,1985 l
) ' TABLE 6.2.1-12 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 102% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 1 of 9 PART A1: Upstream Mass / Energy Release Data 1
Time Mass Release Enthalpy Energy Release Rate (Sec)' Rate (Lbm/Sec) (Btu /Lbm) (Million Btu /Sec)- 1 0.000 3011.53 '1189.67 '3.582734 2 .200 3011.16 1189.59 3.582049 3 .600 2977.00 1190.11 3.542972 4 1.000 2937.91 1190.62 3.497944 5 2.000 2845.08 1191.91 3.391090 6 3.000 2763.77 1192.97 3.297099 7 4.000 2696.27 1193.81 3.218836' 8 5.000 2640.41 1194.49 3.153942 9 6.000 2591.38 1195.07 3.096886' 10 7.000 2577.16 1195.30 .3.050486 11 8.000 2603.12 1194.99 3.110706 12 9.000 2633.54- 1194.63 3.146112 13 9.500 2649.65 1194.44 3.164848 l 0 14 15 16 10.000 10.500 11.000 2665.64 2680.75 2694.16 1194.25 1194.07
'1193.90 3.183435 3.200993 3.216565 L 17 11.500 2717.82 1193.59 3.243969 18 12.000 2744.05 1193.27 3.274389
, 19 12.500 2764.03 1193.02 3.297596 l 20 13.000 2778.00 1192.85 3.313727 21 15.000 2774.92 1192.88 3.310153 22 20.000 2504.51 1196.11 2.995672 23 25.000 2300.09 1198.39 2.756401 24 30.000 2234.66 1199.07 2.679508 25 35.000 2151.22 1199.89 2.581223 26 40.000 2060.49 1200.73 2.474086 27 45.000 1999.77 1201.25 2.402217-28 50.000 1937.73 1201.77 2.328710 29 60.000 1816.36 120E.71 2.184546 30 70.000 1704.84 1203.43 2.051664 31 80.000 1383.51 1204.07 1.906652 32 90.000 1447.09 1204.54 1.743085 33 100.000 1263.86 1204.73. 1.522606 34 110.000 1153.97 1204.55 1.390012 35 120.000 1057.29- 1204.18 1.273171 36 130.000 918.46 1203.22 1.105111 37 140.000 731.69 1200.82 .878626 O
1 TABLE 6.2.1-12 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 102% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 2 of 9 PART A1: Upstream Mass / Energy Release Data (continued) Time Mass Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) (Btu /Lbm) (Million Btu /Sec) 38 150.000 527.53 1197.87 .631911 39 160.000 268.03 1247.96 .334492 40 165.000 126.78 1265.22 .160304 41 170.000 27.19 1274.77 .034661 42 175.000 0.00 0.00 .000000 l INTEGRAL 253408. LBM 304.305 MILLION BTU O 1
)
l TABLE 6.2.1-12 w ] DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 1 102% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 3 of 9 PART A2: Downstream Mass / Energy Release Data Time Mass Release Enthalpy :.nergy Release Rate 4 (Sec) Rate (Lbm/Sec) (Btu /Lbm) (Million Btu /Sec) i 1 0.000 3937.33 1190.22 4.686304 2 .200 3839.30 1191.15 4.573201 3 .600 3725.54 1192.10 4.441209 4 1.000 '3654.50 1192.73 4.358814 5 2.000 3519.71 1193.82 4.201885 6 3.000 3404.27 1194.73 4.067179 . 7 4.000 3304.78 1195.19 3.940827 8 5.000 3215.67 1196.11 3.846305 9 6.000 3135.33 1196.65 3.751887 l 10 7.000 3324.19 1195.28 3.973333 i 11 8.000 3373.93 1194.91 4.031526 l 12 9.000 3420.19 1194.54 4.085559 l 13 9.500 3444.63 1194.35 4.114088 l l /" x 14 10.000 3469.14 1194.15 4.142681-i 15 10.500 3492.62 1193.97 4.170075 s 16 11.000 3513.81 1193.80 4.194785 17 11.500 0.00 0.00 0.000000 18 12.000 0.00 0.00 0.000000 19 12.500 0.00 0.00 0.000000 l 20 13.000 0.00 0.00 0.000000 21 15.000 0.00 0.00 0.000000 , 22 20.000 0.00 0.00 0.000000 l 23 25.000 0.00 0.00 0.000000 l 24 30.000 0.00 0.00 0.000000 25 35.000 0.00 0.00 0.000000 26 40.000 0.00 0.00 0.000000 27 45.000 0.00 0.00 0.000000 28 50.000 0.00 0.00 0.000000 29 60.000 0.00 0.00 0.000000 30 70.000 0.00 0.00 0.000000 31 80.000 0.00 0.00 0.000000 32 90.000 0.00 0.00 0.000000 33 100.000 0.00 0.00 0.000000 34 110.000 0.00 0.00 0.000000 35 120.000 0.00 0.00 0.000000 36 130.000 0.00 0.00 0.000000 37 140.000 0.00 0.00 0.000000
'l v
l u___--__-___________________--_. ._-
i l TABLE 6.2.1-12 j DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 102% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONTAINMENT C00 LING l i Sheet 4 of 9 PART A2: Downstream Mass / Energy Release Data (continued) Time Mass Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) (Btu /Lbm) (MillionBtu/SacL 38 150.000 0.00 0.00 0.000000 i 39 160.000 0.00 0.00 0.000000 J 40 165.000 0.00 0.00 0.000000 / 41 170.000 0.00 0.00 0.000000 42 175.000 0.00 0.00 0.000000 INTEGRAL 38397. LBM 45.866 MILLION BTU l 1 O
/G TABLE 6.2.1-12 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 102% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONT. COOLING Sheet 5 of 9 PART B: Steam Generator Pressures Unaffected Steam 'Affected Steam Generator Generator Time (SEC) Pressure (PSIA) Pressure (PSIA) 1 0.000 1070.00 1070.00 2 .200 1076.41 1069.43 3 .600 1071.25 1056.81 4 1.000 1060.70 1041.61 5 2.000 1033.00 1008.25 6 3.000 1007.02 980.01 7 4.000 984.53 956.95 8 5.000 955.12 937.82 9 6.000 947.59 920.98 10 7.000 948.26 917.23 11 8.000 960.12 926.34 12 9.000 972.04 936.89 13 9.500 978.15 942.46 e 14 10.000 984.07 947.96 (d ) 15 16 10.500 11.000 989.51 953.13 994.14 957.69 17 11.500 1023.31 966.44 18 12.000 1057.86 975.27 19 12.500 1088.16 981.97 20 13.000 1114.79 986.57 21 15.000 1187.69 984.72 22 20.000 1200.26 890.34 23 25.000 1179.27 817.10 24 30.000 1179.30 793.61 25 35.000 1179.03 763.29 26 40.000 1178.67 730.58 l 27 45.000 1178.42 708.68 i 28 30.000 1178.12 685.52 l 29 60.000 1177.48 639.48 l 30 70.000 1175.86 597.12 31 80.000 1176.24 551.02-32 90.000 1175.63 499.21 33 100.000 1175.04 432.83 34 110.000 1174.48 393.36 ,
35 120.000 1173.97 358.32 l 36 130.000 1173.46 308.03 l 37 140.000 1172. 96 240.45 n i 1
i TABLE 6.2.1-12 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES W % POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONT. COOLING Sheet 6 of 9 PART B: Steam Generator Pressures (continued) Unaffected Steam Affected Steam Generator Generator Time (SEC) Pressure (PSIA) Pressure (PSIA) 38 150.000 1172.54 168.24 1 39 160.000 1172.17 76.39 40 165.000 1172.04 45.99 41 170.000 1171.95 34.58 1 42 175.000 1171.83 33.30 l 9 4 4 O
1 I
/
TABLE 6.2.1-12 V) [ DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES l 102% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 7 of 9 l PART C: Energy Balance Energy (106 Btu) Prior At Peak End of ; Energy Description to MSLB Pressure Blowdown Reactor Coolant System Water Internal 357.992 A* 278.800 ) Energy Safety Injectien Tank Water Interna' NA** N A* f- NA** I l Er.argy Energy Stored In Core 30.299 A* 11.300 J Energy Stored In RV Internals NA** NA** NA** Energy Sto mo In RV Metal NA** NA** NA** l [V . Energy Stored In Pressurizer, Primary Piping, Valves, and Pumps 250.282 A* 209.201 j Energy Stored In Steam Gene.rator Tubes 32.180 A* 2.6.882 l l Energy Stored In Steam Generator 153.834 A* 153.834 Secondary Walls Secondary Coolant Internal Energy In 112.346 A* 79.342 Steam Generator 1 Secondary Coolant Internal Energy In 112.346 A* 0.751 Steam Generator 2 Secondary Coolant Internal Energy In 38.338 A* 34.938 Steam Line Total NSSS Stored Energy 1087.617 A* 795.048
- See Applicant's SAR
** Not Applicable l \
U
k TABLE 6.2.1-12 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 102% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING j Sheet 8 of 9 PART C: Energy Balance (continued) Energy (106 Btu) Prior At Peak End of Energy Description to MSLB Pressure Blowdown Feedwater To Steam Generator 1 0. 0 A* 0.0 Feedwater To Steam Generator 2 0.0 A* 35.986 1 I' Steam Flow To Turbine 0.0 A* 31.890 Energy Generated During Shutdown From 0.0 A* 53.506 Decay Heat Break Flow - Upstream 0.0 A* 304.305 l
- Downstream 0.0 A* 45.866 Total 0.0 A* 350.171 Energy Content Of RCB Atmosphere A* A* A*
Energy Content Of RCB Internal Structures A* A* A* Energy Content Of Recirculation Intake A* A* A* h!ater (Sump) ; Energy Content Of RWST Water A* A* A* Energy Removed By Shutdown Heat A* A* A* l Exchangers Energy Removed By Containment Building A* A* A* l Emergency Fan Coolers ! l
! l QSee Appliciint's SAR l i
O! 4 l
-[ 3 TABLE 6.2.1-12 DATA FOR CONTAlllMENT PEAK PRESSURE / TEMPERATURE ANALYSES 102% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONTAINMENT C0OLING Sheet 9 of 9 PART 0: Accident Chronology Time (Seconds) Event Setpoint 1
0.00 Break Occurs j 5.25 Containment Pressure Reaches Reactor 6.0 psig Trip Analysis Setpoint 5.25 Containment Pressure Reaches Main 6.0 psig Steam Isolation Signal (MSIS) A,alysis l Setpoint 10 6.25 High Containment Pressure Peactor Trip Signal and MSIS Generated l 6.40 Reactor Trip Breakers Open l O l 1 6.40 Turbine Admission Valves Closed L) 1 11.15 Main Steam Isolation Valves Closed ! l 11.15 Main Feedwater Isolation Valves Closed A* Containment Spray Actuation Signal A* Peak Containment Temperature A* Peak Containment Pressure 175.00 End Of Blowdown 1
*See Applicant's SAR l
l r i 1
'J Amendment No. 10 June 28, 1985
TABLE 6.2.1-13 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 75% POWER / SLOT /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 1 of 7 PART A: Mass / Energy Release Data l Time Mass Release Enthalpy Energy Release Rate , (Sec) Rate (Lbm/Sec) (Btu /Lbm) (Million Btu /Sec) l l 1 0.000 10045.77 1189.06 11.945012 2 .200 9792.61 1190.00 11.653239 3 .600 0455.70 1191.28 11.264352 4 1.000 9222.11 1192.17 10.994316 5 2.000 8771.84 1193.88 10.472546 6 3.000 8396.03 1195.24 10.035297 7 4.000 8076.16 1196.35 9.661894 8 5.000 7985.31 1196.74 9.556317 9 6.000 7976.86 1196.82 9.546877 10 7.000 7916.07 1197.03 9.475779 11 8.000 7867.45 1197.19 9.418842 i 12 9.000 7826.58 1197.33 9.370980 13 9.500 7805.16 1197.40 9.345891 14 10.000 2434.44 1196.63 2.913136 15 10.500 2460.54 1196.34 2.943638 , 16 11.000 2481.18 1196.10 2.967729 17 11.500 2496.99 1195.92 2.986191 18 12.000 2508.38 1195.78 2.999468 19 12.500 2515.50 1195.70 3.007771 20 13.000 2518.42 1195.68 3.011176 21 15.000 2489.33 1196.01 2.977259 23 20.000 2250.63 1198.63 2.697672 23 25.000 2089.48 1200.20 2.507798 24 30.000 2037.13 1200.67 2.445917 25 35.000 1961.56 1201.31 2.356448 26 40.000 1884.55 1201.95 2.265131 27 50.000 1778.21 1202.73 2.138705 28 60.000 1670.15 1203.40 2.009857 29 70.000 1571.96 1203.89 1.892474 30 80.000 1467.46 1204.27 1.767219 31 90.000 1351.24 1204.49 1.627557 32 100.000 1213.64 1204.46 1.461777 33 110.000 1020.29 1203.78 1.228208 34 120.000 912.88 1202.97 1.098169 35 130.000 860.53 1202.42 1.034719 36 140.000 779.05 1201.37 .935926 37 150.000 661.10 1199.27 .792837 O
)
i i
l l CN TABLE 6.2.1-13 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 75% POWER / SLOT /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 2 of 7 PART A: Mass / Energy Release Data (continued) Time Mass .. .sase Enthalpy Energy Release Rate j (Sec) Rate (Lbm/Sec) (Btu /Lbm) (Million Btu /Sec) 38 160.000 518.03 1195.55 .619331 39 170.000 309.60 1251.45 .387450 40 175.000 205.01 1250.28 .256320 41 180.000 74.75 1262.54 .094375 42 185.000 0.00 0.00 .000000 INTEGRAL 297862. LBM 357.629 MILLION BTU l (~ 1 1 s
v q l TABLE 6.2.1-13 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 75% POWER / SLOT /8.78 SQ. FT./ LOSS OF CONTAINMENT C0OLING Sheet 3 of 7 1 PART B: Steam Generator Pressures Unaffected Steam Affected Steam Time Generator Generator (Sec) Pressure (PSIA) Pressure (PSIA) 1 0.000 1086.00 1086.00 2 .200 1089.20 109?.07 3 .600 1076.99 10'.3.29 4 1.000 1058.86 1041.67 , 5 2.000 1015.24 994.59 , l 6 3.000 975.64 954.19 7 4.000 941.49 920.48 8 5.000 951.48 894.26 9 6.000 907.30 881.45 10 7.000 902.09 S73.54 11 8.000 897.88 868.01 12 9.000 893.71 863,24 13 9.500 891.19 860.62 ! 14 10.000 918.74 869.25 l 15 10.500 949.42 878.50 16 11.000 976.46 885.79 17 11.500 1000.58 891.36 18 12.000 1022.12 895.34 19 12.500 1041.20 897.76 20 13.000 1057.86 898.67 "i _ 15.000 1100.64 887.56 22 20.000 1091.55 800,69 23 25.000 1079.66 742.87 24 30.000 1079.65 723.98
?5 35.000 1079.43 696.30 26 40.000 1079.14 667.08 27 50.000 1078.68 626.61 28 60.000 1078.16 585.52 29 70.000 1077.64 548.14 30 80.000 1077.11 508.35 31 90.000 1076.58 465.80 32 100.000 1076.05 415.85 33 110.000 1075.54 345.62 34 120.000 1075.05 307.04 35 130.000 1074.62 288.01 36 140.000 1074.16 258.41 37 150.000 1073.70 215,62 0
w .. .- . /h TABLE 6.2.1-13 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 75% POWER / SLOT /8.73 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 4 of 7 PART B: Steam Generator Pressures (continuea) Unaffected Steam Affected Steam Time Generator Generator (Sec) Pressure (PSIA) Pressure (PSIA) 38 160.000 1073.27 165.32 39 170.000 1072.87 91.53 40 175.000 1072.69 57.32 41 180.000 1072.54 38.26 42 185.000 1072.40 33.00 l i O O . I i i
TABLE 6.2.1-13 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 75% POWER / SLOT /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 5 of 7 PART C: Energy Balance Energy (106 8tu) Prior At Peak End of Energy Description to MSLB Pressure Blowdown Reactor Coolant System Water Internal 353.928 A* 269.551 Energy l Safety Injection Tank Water Internal NA** NA** NA** l Energy
)
i Energy Stored In Core 25.780 A* 10.595 i Energy Stored In RV Internals NA** NA** NA** Energy Stored In RV Metal NA** NA** NA** l Energy Stored In Pressurizer, 226.756 A* 181.301 Primary Piping, Valves And Pumps ; Energy Stored In Steam Generator 30.662 K 24.639 ) l Tubes l Energy Stored In Steam Generator 154.668 A* 154.668 Secondary Walls l Secondary Coolant Internal Energy In 119.460 A* 82.603 Steam Generator 1 Secondary Coolant Internal Ene? ' In 119.460 A* 0.747 Steam Generator 2 Secondary Coolant Internal Energy In 39.317 A* 30.584 Steam Line Total NSSS Stored Energy 1070.031 A* 754.688 i
- See Applicant's SAR
** Not Applicable O
3 T , J
..]
i I t O . TABLE 6.'2.~1-13 < 1 j DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 75% POWER / SLOT /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 6 of 7 , PART C:' Energy Balance (continued) f q Energy.(10* Btu) l l Prior At' Peak End of : Energy Description to MSLB Pressure Blowdown i Feedwater To Steam Generator 1 0.0 A* 0.0 1 Feedwater To Steam Generator 2 '0.0 A* 25.365 l i Steam Flow To Turbine .0.0 ~A* 16.390 Energy Generated During Shutdown From 0.0 A* 33.311 1 Decay Heat j i O Break Flow 0.0 A* 357.629 l l Energy Content Of RCB Atmoshpere A* A* A* i Energy Content Of RCB Internal A* A* A* j Structures Energy Content Of Recirculation A* A* A* l Intake Water (Sump)- , Energy Content Of RWST Water A* A* A* z Energy Removed By Shutdown Heat A* A* A* Exchangers Energy Removed By Containment Building A* A* A* Emergency Fan Coolers
- See Applicant's SAR l
O l
^ I TABLE 6.2.1-13 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 75% POWER / SLOT /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 7 of 7 PART 0: Accident Chronology Time (Seconds) Event Setpoint 0.00 Break Occurs 3.70 Containment Pressure Reaches 6.0 psig Reactor Trip Analysis Setpoint 3.70 Containment Pressure Reaches Main 6.0 psig Steam Isolation Signal (MSIS) Analysis Setpoint 10 4.70 High Containment Pressure Reactor Trip Signal and MSIS Generated 4.85 Reactor Trip Breakers Open 4.85 Turbine Admission Valves Closed 9.60 Main Steam Isol. Valves Closed 9.60 Main Feedwater Isol. Valves Closed A* Containment Spray Actuation Signal j A* Peak Containment Temperature A* Peak Containment Pressure i 185.00 End Of Blowdown
- See Applicant's SAR .
I I i O i Amendment No.10 June 28,1985 )
1 1 l I ( TABLE 6.2.1-14 (_/ i DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSE 1 75% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING
. Sheet 1 of 9 PART A1: Upstream Mass / Energy Release Data Time Mass Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) (Btu /Lbm) (Million 8tu/Sec) ;
l 1 0.000 3055.39 1188.77 ' 3.632151 i 2 .200 3048.32 1188.79 3.623820 ) 3 .600 3006.03 1189.43 3.575462 4 1.000 2961.77 1190.01 3.524547 5 2.000 2860.79 1191.42 3.408394 6 3.000 2773.60 1192.57 3.307700 7 4.000 2699.77 1193.49 3.222143 8 5.000 2639.01 1194.23 3.151572 9 6.000 2587.61 1194.84 3.091777 10 7,000 2574.69 1195.03 3.076833 11 8.000 2581.79 1194.95 3.085100 12 9.000 2590.25 1194.85 3.094964 13 9.500 2595.09 1194.79 3.100594 14 10.000 2599.85 1194.74 3.106141 l ( 15 10.500 2604.04 1194.68 3.111006 l 16 11.000 2607.07 1194.65 3.114538 17 11.500 2622.65 1194.46 3.132659 18 12.000 2637.22 1194.29 3.149604 19 12.500 2647.34 1194.17 3.161380 20 13.000 2653.17 1194.10 3.168158 21 15.000 2635.46 1194.31 3.147559 22 20.000 2400.44 1197.03 2.873390 l 23 25.000 2204.12 1199.09 2.642946 24 30.000 2130.84 1199.80 2.556580 25 35.000 2055.35 1200.49 2.467435 26 40.000 1970.67 1201.22 2.367199 27 50.000 1855.25 1202.15 2.230290 28 60.000 1740.21 1202.95 2.093383 ' 29 70.000 1637.60 1203.54 1.970911 30 80.000 1532.38 1204.01 1.844999 31 90.000 1416.82 1204.34 1.706328 32 100.000 1282.13 1204.46 1.544277 33 110.000 1100.95 1204.10 1.325650 34 120.000 926.76 1203.01 1.114901 ! 35 130.000 881.49 1202.58 1.060062 36 140.000 807.81 1201.70 .970745 l 37 150.000 696.60 1199.90 .835849 l ' O V 1 l l
~
TABLE 6.2.1-14 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 75% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 2 of 9 PART A1: Upstream Mass / Energy Release Data (continued) Time Mass Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) (8tu/Lbm) (Million 8tu/Sec) 38 160.000 561.88 1196.76 .672435 39 170.000 373.17 1236.00 .461238 40 180.000 127.56 1258.12 .160486 41 185.000 32.62 1268.36 .041374 42 190.000 0.00 0.00 .000000 INTEGRAL 254845. LBM 306.115 MILLION BTU 1 l l Oi l O
TABLE 6.2.1-14 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 75% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 3 of 9 PART A2: Downstream Mass / Energy Release Data Time Ma.ss Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) (8tu/Lbm) (Million Btu /Sec) 1 0.000 4012.22 1189.22 4.771398 2 .200 3924.79 1190.07 4.670783 3 .600 3826.02 1190.92 4.556498 4 1.000 3759.78 1191.54 4.479910 5 2.000 3621.70 1192.70 4.319618 6 3.000 3498.22 1193.72 4.175894 7 4.000 3390.09 1194.58 4.049736 8 5.000 3298.25 1195.29 3.942364 9 6.000 3217.80 1195.88 3.848110 10 7.000 3310.82 1195.16 3.956952 11 8.000 3320.80 1195.08 3.968623 12 9.000 3332.82 1194.99 3.982670 13 9.500 3339.94 il94.93 3.990997 14 10.000 3347.17 1194.87 G 15 16 17 10.500 11.000 11.500 3353.72 3358.75 0.00 1194.83 1194.79 0.00 3.999442 4.007110 4.012989 18 0.000000 12.000 0.00 0.00 0.000000 19 12.500 0.00 0.00 0.000000 20 13.000 0.00 0.00 0.000000 21 15.000 0.00 0.00 0.000000 22 20.000 0.00 0.00 0.000000 23 25.000 0.00 0.00 0.000000 24 30.000 0.00 0.00 0.000000 25 35.000 0.00 0.00 0.000000 26 40.000 0.00 0.00 0.000000 27 50.000 0.00 0.00 0.000000 28 60.000 0.00 0.00 0.000000 29 70.000 0.00 0.00 0.000000 30 80.000 0.00 0.00 0.000000 31 90.000 0.00 0.00 0.000000 32 100.000 0.00 0.00 0.000000 33 110.000 0.00 0.00 0.000000 34 120.000 0.00 0.00 0.000000 35 130.000 0.00 0.00 0.000000 36 140.000 0.00 l 0.00 0.000000 ' 37 150.000 0.00 0.00 0.000000 0
~
l i TABLE 6.2.1-14 DATA FOR CONTAINMENT PEAK PRESSURE /TEMPERATi!RE ANALYSES , 75% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONTAINMENT C0OLING ! Sheet 4 of 9 i PART A2: Downstream Mass / Energy Release Data (continued) ! 1 Time Mass Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) (Btu /Lbm) (Million Btu /Sec) ! 38 160.000 0.00 0.00 0.000000 39 170.000 0.00 0.00 0.000000 40 180.000 0.00 0.00 0.000000 41 185.000 0.00 0.00 0.000000 42 190.000 0.00 0.00 0.000000 INTEGRAL 38598. LBM 46.090 MILLION BTU d I O\ 1 i i i i { i Ol 4 l 1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - . _ _ _ _ _ _ _ _ _ . - . - - _ _ 1
s-l 1 [ ) TABLE 6.2.1-14 v OATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 75% POWER / GUILLOTINE /8.78 SQ. F' il0SS OF CONTAINMENT C0OLING Sheet 5 of 9 PART B: Steam Generator Pressures Unaffected Steam Affected Steam Time Generator Generator (Sec) Pressure (PSIA) Pressure (PSIA) 1 0.000 1086.00 1086.00 2 .200 1090.53 1082.81 3 .600 1083.84 1067.34 ! 4 1.000 1072.58 1050.18 5 2.000 1043.83 1013.94 6 3.000 1016.34 983.41 7 4.000 992.03 958.17 8 5.000 971.20 937.39 9 6.000 953.07 919.77 10 7.000 949.51 916.27 11 8.000 951.38 918.72 12 9.000 954.44 921.67 13 9.500 956.23 923.35 i 7 -s3i 14 10.000 957.95 924.98 .'
's_ / 15 10.500 959.37 926.39 16 11.000 960.28 927.39 17 11.500 988.65 933.27 18 12.000 1016.03 938.14 19 12.500 1040.10 941.49 20 13.000 1061.35 943.35 21 15.000 1121.41 936.69 22 20.000 1139.00 852.92 23 25.000 1117.88 782.46 24 30.000 1117.85 756.16 25 35.000 1117.67 728.75 26 40.000 1117.39 698.11 27 50.000 1116.93 654.31 28 60.000 1116.40 610.66 29 70.000 1115.88 571.70 30 80.000 1115.35 531.72 31 90.000 1114.82 488.39 l 32 100.000 1114.28 439.63 110.000 1113.75 373.97 33 34 120.000 1113.24 311.30 35 130.000 1112.82 294.89 36 140.000 1112.33 268.19 37 150.000 1111.87 227.91 'O ~~ I 1
\ _ _ _ _ _ _ _ - _ - _ _ _ _ _ _ -
TABLE 6.2.1-14 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE' ANALYSES 75% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 6 of 9 PART B: Steam Generator Pressures (continued) Unaffected Steam Affected Steam Time Generator Generator (Sec) Pfessure (PSIA) Pressure (PSIA) 38 160.000 1111.43 180.07 39 170.000 11s1.01 114.75 40 180.000 1110.64 45.26 41 185.000 1110.50 34.08 42 190.000 1110.35 32.53 I O O
4 I O TABLE 6.2.1-14 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 75% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 7 of 9 i PART C: Energy Balance Energy (106 Btu) Prior At Peak End of Energy Description to MSLB Pressure Blowdown Reactor Coolant System Water Internal 353.928 A* 271.031 l I Energy Safety Injection Tank Water I:-ternal NA** NA** NA** Energy l Energy Stored In Core 25.780 A* 11.013 Energy Stored In RV Internals NA** NA** NA** Energy Stored In RV Metal NA** NA** NA** A Energy Stored In Pressurizer, 226.756 A* 182.308
) Primary Piping, Valves And Pumps Energy Stored In Steam Generator 30.662 A* 24.784 Tubes Energy Stored In Steam Generator 154.668 A* 154.668 Secondary Walls Secondary Coolant Internal Energy In 119.460 A* 84.206 Steam Generator 1 Secondary Coolant Internal Energy In 119.460 A* 0.744 Steam Generator 2 Secondary Coolant Internal Energy In 39.317 A* 33.852 Steam Line Total NSSS Stored Energy 1070.031 A* 762.606
- See Applicant's SAR
** Not Applicable J -------.--_______--_J
TABLE 6.2.1-14 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES l 75% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 8 of 9 PART C: Energy Balance (continued) i s 6 I Energy (10 Btu) Prior At Peak End of Energy Description to MSLB Pressure Blowdown Feedwater To Steam Generator 1 0.0 A* 0.0 l Feedwater To Steam Generator 2 0.0 A* 27.383 Steam Flow To Turbine 0.0 A* 22.420 l Energy Generated During Shutdown From 0.0 A* 39.817 Decay Heat Break Flow - Upstream 0.0 A* 306.115 t
- Downstream 0.0 A* 46.090 l Total 0.0 A* 352.205 Energy Content Of RCB Atmoshpere A* A* A*
Energy Content Of RCB Internal A* A* A* l Structures l Energy Content Of Recirculation A* A* A* Intake Water (Sump) Energy Content Of RWST Water A* A* A* Energy Removed By Shutdown Heat A* A* A* Exchangers Energy Removed By Containment Building A* A* A* Emergency Fan Coolers a See Applicant's SAR O
[\ TABLE-6.2.1-14 l DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 75% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 9 of 9 PART D: Accident Chronology Time (Seconds) Event Setpoint 0.00 Break Occurs 5.15 Containment Pressure Reaches 6.0 psig Reactor Trip Analysis Setpoint 5.15 Containment Pressure Reaches 6.0 psig-Main Steam Isolation Signal-(MSIS) Analysis Setpoint
]
{ 6.15 High Containment Pressure Reactor Trip Signal and MSIS Generated 6.30 Reactor Trip Breakers Open 6.30 Turbine Admission Valves Closed O- 11.05 Main Steam Isol. Valves Closed 11.05 Main Feedwater Isol. Valves Closed A* Containment Spray Actuation Signal j A* Peak Containment Temperature " A* Peak Containment Pressure r 190.00 End of Blowdown
- See Appliiant's SAR i
Amendment No. 10' June 28, 1985'
TABLE 6.2.1-15 DATt. FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 50% POWER / SLOT /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 1 of 7 i q I PART A: Mass / Energy Release Data Time Mass Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) (8tu/Lbm) (Million Btu /Sec) 1 0.000 10446.05 1187.44 12.404087 2 .200 10196.87 1188.41 12.118105 3 .600 9867.10 1189.73 11.739160 4 1.000 9629.02 1190.69 11.465164 5 2.000 9145.30 1192.59 10.906580 6 3.000 8733.71 1194.12 10.429136 7 4.000 8377.19 1195.39 10.013996 8 5.000 8210.99 1196.01 9.820038 9 6.000 8065.23 1196.52 9.650210 10 7.000 7925.36 1196.98 9.486324 11 8.000 7810.73 1197.36 9.352225 12 9.000 7714.35 1197.66 9.239183 13 9.500 2368.11 1197.35 2.835462 14 10.000 2390.81 1197.10 2.862037 15 10.500 2408.70 1196.90 2.882984 16 11.000 2422.99 1196.75 2.899704 17 11.500 2434.12 1196.62 2.912715 18 12.000 2442.26 1196.53 2.922232 19 12.500 2447.43 1196.47 2.928254 20 13.000 2449.48 1196.45 2.930669 21 15.000 2425.10 1196.72 2.902170 22 20.000 2207.84 1199.01 2.647220 23 30.000 1984.55 1201.03 2.383504 24 40.000 1843.32 1202.16 2.215958 25 50.000 1738.52 1202.87 2.091212 26 60.000 1633.30 1203.46 1.965612 27 70.000 1540.13 1203.87 1.854114 28 80.000 1448.73 1204.15 1.744494 29 90.000 1347.52 1204.31 1.622838 30 100.000 1241.59 1204.30 1.495252 31 110.000 1116.31 1204.03 1.344067 32 129 000 942.15 1202.99 1.133401 33 130.0C0 685.34 1199.52 .822078 34 19.000 588.38 1197.30 .705067 35 lb?.000 576.13 1196.99 .689620 36 160.200 557.31 1196.45 .666795 37 180.006 480.31 1194.02 .573498 9
\ TABLE 6.2.1-15 l .(N DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSr- !
f 50% POWER / SLOT /8.78 SQ. FT./ LOSS OF CONTAINMENT C00LIG Sheet 2 of 7 l PART A: Mass / Energy Release Data (continued) Time Mass Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) (Btu /Lbm) (Million Btu /Sec) 38 190.000 420.93 1229.75 .517639 39 200.000 265.98 1251.03 .332748 40 205.000 1"S.19 1254.25 .231020 41 210.000 70.43 1259.25 .088689 42 215.000 0.00 0.00 .000000 INTEGRAL 305341. LBM 366.560 MILLION BTU f'+ d l a
TABLE 6.2.1-15 g DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 50% POWER / SLOT /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 3 of 7 PART B: Steam Generator Pressures Unaffected Steam Affected Steam Time Generator Generator (Sec) Pressure (PSIA) Pressure (PSIA) 1 0.000 1118.00 1118.00 2 .200 1117.76 1110.11 3 .600 1102.60 1087.28 4 1.000 1082.70 1062.71 5 2.000 1036.32 1010.85 6 3.000 993.99 966.52 7 4.000 956.72 928.95 8 5.000 927.75 899.46 9 6.000 910.31 880.30 10 7.000 896.14 865.50 11 8.000 884.39 853.67 12 9.000 874.12 843.57 13 9.950 872.79 840.18 14 10.000 900.82 848.13 15 10.500 925.58 854.44 ! 16 11.000 948.03 859.47 l 17 11.500 968.52 863.37 , 18 12.000 987.20 866.20 . l 19 12.500 1004.06 867.95 20 13.000 1019.05 868.58 L 21 15.000 1059.71 859.32 22 20.000 1056.19 780.62 23 30.000 1042.76 700.81 24 40.000 1042.41 647.35 25 50.000 1042.06 607.73 26 60.000 1041.64 567.94 27 70.000 1041.22 532.68 28 80.000 1040.77 498.17 29 90.000 1040.30 461.69 30 100.000 1039.82 423.49 31 110.000 1039.33 378.28 32 120.000 1038.83 315.38 33 130.000 1038.34 222.73 34 140.000 1037.88 188.94 35 150.000 1037.47 184.55 36 160 000 1037.02 178.06 37 180.000 1036.08 151.51 0
( TABLE 6.2.1-15
%._,l DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 50% POWER / SLOT /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 4 of 7 PART B: Steam Generator Pressures (continued)
Unaffected Steam Affected Steam Time Generator Generator (Sec) Pressure (PSIA) Pressure (PSIA) 38 190.000 1035.62 130.53 39 200.000 1035.15 73.06 40 205.000 1034.92 52.87 41 210.000 1034.70 36.42 42 215.000 1034.49 31.66 l ( , %) 0
4 TABLE 6.2.1-15 l DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 50% POWER / SLOT /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 5 of 7 PART C: Energy Balance Energy (106 Btu) Prior At Peak End of Energy Description to MSLB Pressure Blowdown Reactor Coolant System Water Internal 350.498 A* 262,104 Energy Safety Injection Tank Water Internal NA** NA** NA** Energy Energy Stored In Core 21.260 A* 10.348 Energy Stored In RV Internals NA** NA* NA* Energy Stored In RV Metal NA** NA** NA** ,
)
Energy Stored In Pressurizer, 224.997 A* 176.197 Primary Piping, Valves And Pumps l Energy Stored In Steam Generator 30.764 A* 24.174 Tubes Energy Stored In Steam Generator 155.744 A* 155.744 Secondary Walls Secondary Coolant Internal Energy In 128.863 A* 88.048 Steam Generator 1 Secondary Coolant Internal Energy In 128.863 A* 0.720 Steam Generator 2 Secondary Caolant Internal Energy In 40.813 A* 30.018 Steam Line Total NSSS Stored Energy 1081.802 A* 747.353
- See Applicant's SAR R* Not Applicable O
i TABLE 6.2.1-15 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 4 50% POWER / SLOT /8.78 SQ. FT./ LOSS OF CC'TAINMENT COOLING Sheet 6 of 7 PART'C: Energy Balance (continued) Energy (106 Btu)' Prior At Peak End of Energy Description to MSLB Pressure ' Blowdown Feedwater To Steam Generator 1 0. 0 A* 0. 0 Feedwater To Steam Generator 2 0.0 A* 19.189 ; Steam Flow-To Turbine 0. 0 A* 10.05D Energy Generated During Shutdown From 0. 0 A* 23.972- l Decay Heat Break Flow 0. 0 A* 366.560 i Energy Content Of RCB Atmoshpere A* A* A* Energy Content Of RCB Internal A* A* A* ! Structures Energy Content Of Recirculation A* A* A* Intake Water (Sump) Energy Content Of RWST Water A* A* A* Energy Removed By Shutdown Heat A* A* A* < Exchangers Energy Removed By Containment Building A* A* A* Emergency Fan Coolers t
- See Applicant's SAR b
O l _
i l l TABLE 6.2.1-15 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 50% POWER / SLOT /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 7 of 7 PART D: Accident Chronology Time (Seconds) Event Setpoint 0.00 Break Occurs ! 3.55 Containment Pressure Reaches 6.0 psig i Reactor Trip Analysis Setpoint I i 3.55 Containment Pressure Reaches 6.0 psig Main Steam Isolation Signal (MSIS) Analysis Setpoint 10 4.55 High Containment Pressure Rea,ctor Trip Signal and MSIS Generated 4.70 Reactor Trip Breakers Open 4.70 Turbine Admission Valves Closed 9.45 Main Steam Isol. Valves Closed 9.45 Main Feedwater Isol. Valves Closed A* Containment Spray Actuation Signal A* Peak Containment Temperature A* Peak Containment Pressure 215.00 End of Blowdown
- See Applicant's SAR O
Amendment No.10 June 28, 1985
m -
-J O
Q TABLE 6.2.1-16 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 50% POWER / GUILLOTINE /8.78 SQ. TT./ LOSS OF CONT. COOLING Sheet 1 of 9-PART A1: Upstream Mass / Energy Release Data
]
Time Mass Release Enthalpy.' Energy Release Rate (Sec) Rate (Lbm/Sec) ,(Btu /Lbm) (Million 8tu/Sec) 1 0.000 3147.71~ 1187.78 3.738799 2 .200 3130.02 1187.96 3.718324 3 .600 3075.99 1188.75 3.656596 4 1.000 3025.74 1189.43 3.598895 , 5 2.000 '2916.05 1190.98 3.472956 6 3.000 2824.10 1192.24 3.367011 7 4.000 2742.64 -1193.28 3.272732 ; 8 5.000 2673.66 1194.13 3.192693 9 6.000 2615.39 1194.94 3.125233 10 7.000 2596.56 1195.09 3.103111 11 8.000 2581.78 1195.26 3.085889 12 9.000 2569.21 1195.40 3.071237 13 9.500 2563.54 1195.47. 3.064636 O 10.000 i 14 2557.91 1195.56 3.058061 15 10.500 2551.94 1195.60 3.051096 . i 16 11.000 2546.84 1195.67 3.045183 i 17 11.500 2553.14 1195.60 3.052527 18 12.000 2556.24 1195.56 3.056135 l 19 12.500 2556.47 1195.50 3.056409 ' 20 13.000 2554.03 1195.59 3.053565 21 15.000 2519.85 1195.98 3.013459 22 20.000 2314.73 1198.29 2.773708 23 30.000 2049.05 1200.87 2.460643 24 40.000 1903.38 1202.10 2.288044 25 50.000 1790.38 1202.94 2.153711 26 60.000 1681.31 1203.61 2.023645 27 70.000 1584.18 1204.11 1.907522 28 80.000 1492.43 1204.46 1.797570' 29 90.000 1392 72 1204.70 1.677809 30 100.000 1287.72 1204.78- 1.551417' 31 110.000 1168.29 1204.62 1.407344 32 120.000 1010.36 1203.95 1.216421 33 130.000 771.61 1201.49 .927078 34 140.000 590.17 1197.83- .706923 35 150.000 579.00 1197.54 .693377 36 160.000 562.34 1194.08 .673167 37 180.000 495.71 1195.04 .592391 O
TABLE 6.2.1-16 l DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 50% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONT. COOLING Sheet 2 of 9 PART A'.. Upstream Mass / Energy Release Data (continued) i Time Mass Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) (Btu /Lbm) (Million Btu /Sec) 1 38 190.000 426.33 1192.37 .508342 39 200.000 317.32 1248.37 .396133 40 210.000 120.00 1259.09 .151091 41 215.000 37.93 1260.72 .047819 42 220.000 0.00 0.00 .000000 INTEGRAL 261205. LBM 313.779 MILLION BTU Ol i I l 1 1 l l l O
i l
~~s 1 TABLE 6.2.1-16 )
( ) DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 50% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONT. COOLING Sheet 3 of 9 PART A2: Downstream Mass / Energy Release Data 1 Time Mass Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) (Btu /Lbm) (Million Btu /Sec) 1 0.000 4313.76 1187.79 5.123853 2 .200 4218.42 1188.60 5.014009 3 .600 4123.61 1189.42 4.904724 ' 4 1.000 4053.14 1190.08 4.823578 5 2.000 3896.52 1191.42 4.642398 6 3.000 3755.10 1192.59 4.478306 7 4.000 3630.27 1193.59 4.333068 8 5.000 3522.60 1194.43 4.207500 9 6.000 3443.96 1194.94 4.115332 10 7.000 3'16.28 1194.99 4.118258 11 8.000 .; '.2.66 1195.16 4.090639 12 9.000 3412.83 1195.32 4.067456 13 9.500 3394.06 1195.38 4.057186
/' 's 14 10.000 3385.44 1195.44 4.047099 10.500 4.036537 IV) 15 16 11.000 3376.41 0.00 1195.51 0.00 0.000000 17 11.500 0.00 0.00 0.000000 18 12.000 0.00 0.00 0.000000 19 12.500 0.00 0.00 0.000000 20 13.000 0.00 0.00 0.000000 21 15.000 0.00 0.00 0.000000 22 20.000 0.00 0.00 0.000000 23 30.000 0.00 0.00 0.000000 24 40.000 0.00 0.00 0.000000 25 50.000 0.00 0.00 0.000000 26 60.000 0.00 0.00 0.000000 27 70.000 0.00 0.00 0.000000 28 80.000 0.00 0.00 0.000000 29 90.000 0.00 0.00 0.000000 30 100.000 0.00 0.00 0.000000 31 110.000 0.00 0.00 0.000000 32 120.000 0.00 0.00 0.000000 33 130.000 0.00 0.00 0.000000 34 140.000 0.00 0.00 0.099000 35 150.000 0.00 0.00 0.FJ0000 36 160.000 0.00 0.00 0.000000 37 180.000 0.00 0.00 0.000000
(" k
TABLE 6.2.1-16 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 50% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONT. COOLING Sheet 4 of 9 PART A2: Downstream Mass / Energy Release Data (continued) Time Mass Release Enthalpy Energy Release Rate ] (Sec) Rate (Lbm/Sec) (Btu /Lbm) (Million Btu /Sec) 38 190.000 0.00 0.00 0.000000 l 39 200.000 0.00 0.00 0.000000 l 40 210.000 0.00 0.00 0.000000 41 215.000 0.00 0.00 0.000000 42 220.000 0.00 0.00 0.000000 INTEGRAL 38931. LBM 46.461 MILLION BTU j l l O O
( TABLE 6.2.1-16 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 50% POWER / GUILLOTINE /8.78 SQ. FT / LOSS OF CONT. COOLING Sheet 5 of 9 PART 8: Steam Generator Pressures Unaffected Steam Affected Steam Time Generator Generator ' (Sec) Pressure (PSIA) Pressure (PSIA) 1 0.000 1118.00 1118.00 2 .200 1119.37 1118.00 3 .600 1110.01 1091.99 4 1.000 1097.21 1072.59 5 2.000 1065.76 1033.31 6 3.000 1035.50 1000.35 7 4.000 1008.20 972.39 8 5.000 984.45 948.78 9 6.000 964.17 928,96 10 7.000 954.70 923.01 11 8.000 948.59 917.93 12 9.000 944.05 913.63 (N 13 9.500 942.04 911.68
- i. _,) id 10.000 940.01 909.73 15 10.500 937.80 907.65 16 11.000 941.04 906.39 17 11.500 964.27 908.44 18 12.000 984.65 909.40 19 12.500 1002.83 909.39 20 13.000 1019.07 908.46 21 15.000 1066.52 896.10 22 20.000 1087.44 821.65 23 30.000 1066.77 726.22 24 40.000 1066.47 672.22 25 50.000 1066.13 629.37 26 60.000 1065.74 587.99 27 70.000 1065.33 551.14 28 80.000 1064.89 516.31 29 90.000 1064.44 479.48 30 100.000 1063.96 441.51 31 110.000 1063.47 398.29 32 120.000 1062.97 341.09 33 130.000 1062.47 254.61 34 140.000 1061.98 190.00 35 150.000 1061.57 186.14 36 160.000 1061.10 180.37 37 180.000 1060.15 157.33 A
I 1 TABLE 6.2.1-16 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES i 50% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONT. COOLING Sheet 6 of 9 " l PART 8: Steam Generator Pressures (continued) ] l Unaffected Steam Affected Steam Time Generator Generator (Sec) Pressure (PSIA) Pressure (PSIA) l 38 190.000 1059.66 133.39 39 200.000 1059.18 94.77 l 40 210.000 1058.70 42.81 I 41 215.000 1058.48 33.05 I 42 220.000 1058.26 31.18 l l 1 O l l I l l 9 l
v i ( TABLE 6.2.1-16 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 50% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONT. COOLING Sheet 7 of 9 PART C: Energy Balance Energy (106 Btu) Prior At Peak End of Energy Description to MSLB Pressure Blowdown ! Reactor Coolant System Water Internal 350.498 A* 263.182 Energy l Safety Injection Tank Water Internal NA** NA** NA** Energy Energy Stored In Core 21.260 A* 10.381 Energy Stored In RV Internals NA** NA** NA** I Energy Stored In RV Metal NA** NA** NA** O g j Energy Stored In Pressurizer, 224.997 A* 176.803
'v Primary Piping, Valves And Pumps Energy Stored In Steam Generator 30.764 A* 24.257 Tubes l
Energy Stored In Steam Generator 155.744 A* 155.744 Secondary Walls i Secondary Coolant Internal Energy In 128.863 A* 86.661 Steam Generator 1 Secondary Coolant Internal Energy In 128.863 A* 0.727 Steam Generator 2 Secondary Coolant Internal Energy In 40.813 A* ba.170 Steam Line Total NSSS Stored Energy 1081.802 A* 753.925
- See Applicant's SAR
** Not Applicable v
TABLE 6.2.1-16 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 50% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONT. C0OLING Sheet 8 of 9 PART C: Energy Balance (continued) Energy (106 Btu) Prior At Peak End of Energy Description to MSLB Pressure Blowdown Feedwater To Steam Generator 1 0. 0 A* 0.0 Feedwater To Steam Generator 2 0.0 A* 19.307 Steam Flow To Turbine 0.0 A* 13.780 f Energy Generated During Shutdown From 0.0 A* 26.836 Decay Heat Break Flow - Upstream 0.0 A* 313.779 ;
- Downstream 0.0 A* 46.461 Total 0.0 A* 360.240 Energy Content Of RCB Atmoshpere A* A* A*
Energy Content Of RCB Internal A* A* A* Structures l Energy Content Of Recirculation A* A* A* I Intake Water (Sump)
]
Energy Content Of RWST Water A* A* A* l Energy Removed By Shutdown Heat A* A* A* Exchangers Energy Ramoved By Containment Building A* A* A* l Emergency Fan Coolers Q See Applicant's SAR i i O! i
v O TABLE 6.2.1-16
/ i U/ DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 50% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONT. COOLING Sheet 9 of 9 PART D: Accident Chronology Time (Seconds) Event Setpoint I 1
0.00 Break Occurs 5.00 Containment Pressure Reaches 6.0 psig Reactor Trip Analysis Setpoint 5.00 Containment Pressure Reaches 6.0 psig Main Steam Isolation Signal (MSIS) Analysis Setpoint 10 6.00 High Containment Pressure Reactor Trip Signal and MSIS Generated 6.15 Reactor Trip Breakers Open
,,_s 6.15 Turbine Admission Valves Closed I )
y/ 10.90 Main Steam Isol Valves Closed 10.90 Main Feedwater Isol. Valves Closed A* Containment Spray Actuation Signal A* Peak Containment Temperature A* Peak Containment Pressure 220.000 End of Blowdown
- See Applicant's SAR l
rx v) Amendment No.10 June 28, 1985
TABLE 6.2.1-17 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 3 25% POWER / SLOT /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 1 of 7 PART A: Mass / Energy Release Data J i Time Mass Release Enthalpy Energy Release Rate ' (Sec) Rate (Lbm/Sec) (Btu /Lbm) (Million Btu /Sec) 1 0.000 10647.52 1188.53 12.654933 l 2 .500 10162.02 1190.51 12.097984 3 1.000 9862.16 1191.76 11.753282 4 2.000 9373.49 1193.73 11.189431 5 3.000 8948.13 1195.36 10.696230 6 4.000 8572.44 1196.72 10.258833 7 5.000 8314.98 1197.64 9.958393 8 6.000 8079.90 1198.45 9.683645 9 7.000 7877.40 1199.12 9.445821 1 10 8.000 7709.37 1199.65 9.248573 1 11 9.000 7569.26 1200.09 9.083808 12 9.500 2326.44 1199.77 2.791193 , 13 10.000 2338.70 1199.64 2.805589 l 14 10.500 2348.67 1199.53 2.817296 ' 15 11.000 2356.87 1199.44 2.826929 16 11.500 2363.51 1199.37 2.834727 17 12.000 2368.58 1199.32 2.840674 18 14.500 2362.92 1199.38 2.834032 19 17.000 2293.70 1200.11 2.752690 20 22.000 2078.73 1202.20 2.499042 21 32.000 1909.23 1203.63 2.298013 22 42.000 1774.28 1204.62 2.137331 23 52.000 1676.29 1205.21 2.020282 24 62.000 1578.21 1205.70 1.902842 25 72.000 1490.25 1206.02 1.797276 26 82.000 1406.94 1206.22 1.697078 27 92.000 1325.07 1206.31 1.598441 28 102.000 1240.64 1206.29 1.496575 29 112.000 1154.99 1206.13 1.393064 30 122.000 1061.35 1205.76 1.279732 31 132.000 946.34 1205.00 1.140342 32 142.000 782.41 1203.14 .941352 33 150.800 582.65 1199.13 .698671 34 160.800 299.62 1247.95 .373910 35 170.800 264.86 1183.42 .313440 36 220.800 255.69 1182.71 .302407 37 250.800 226.79 1187.96 .269418 O j
i i
/~N TABLE 6.2.1-17 )
DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 25% POWER / SLOT /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 2 of 7 i PART A: Mass / Energy Release Data (continued) l Time Mass Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) (Btu /Lbm) (Million Btu /Sec) 38 280.800 206.32 1185.15 .244521 39 300.000 86.74 1254.97 .108856 40 310.800 4.27 1259.25 .005377 41 315.800 0.00 0.00 .000000 INTEGRAL 322151. LBM 386.914 MILLION BTb O i l
.r' l
TABLE 6.2.1-17 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 25% POWER / SLOT /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 3 of 7 PART B: Steam Generator Pressures Unaffected Steam Affected Steam Time Generator Generator (Sec) Pressure (PSIA) Pressure (PSIA) 1 0.000 1137.00 1137.00 2 .500 1121.60 1108.19 3 1.000 1097.80 1078.15 4 2.000 1050.55 1024.55 5 3.000 1006.98 978.40 6 4.000 967.81 938.53 7 5.000 935.22 905.71 8 6.000 909.75 880.10 9 7.000 888.39 859.04 10 8.000 870.60 841.73 11 9.000 855.59 827.27 12 9.500 857.89 824.26 13 10.000 879.31 828.66 14 10.500 893.81 832.24 15 11.000 916.92 835.18 16 11.500 933.86 837.57 17 12.000 950.91 839.50 18 14.500 1010.21 837.04 19 17.000 1031.56 811.66 20 22.000 1007.70 734.23 21 32.000 1007.64 672.27 22 42.000 1007.50 621.22 23 52.000 1007.32 584.14 24 62.000 1007.09 547.06 25 72.000 1006.82 513.78 26 82.000 1006.50 483.10 27 92.000 1006.14 453.59 , 28 102.000 1005.74 423.17 I 29 112.000 1105.31 392.29 30 122.000 1004.85 358.52 31 132.000 1004.35 317.01 1 32 142.000 1003.82 257.81 33 150.800 { 1003.34 186.61 1 34 160.800 1002.79 88.14 I 35 170.800 1002.23 75.73 i 36 220.800 999.36 71.86 1 37 250.800 997.55 60.74 ) O i 1
f'~% TABLE 6.2.1-17 ('- DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 25% POWER / SLOT /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 4 of 7 PART B: Steam Generator Pressures (continued) Unaffected Steam Affected Steam Time Generator Generator (Sec) Pressure (PSIA) Pressure (PSIA) 38 , 280.800 995.66 53.13 39 300.800 994.37 35.17 40 310.800 993.72 27.76 41 315.800 993.40 27.48 v 8
t i i 1 l TABLE 6.2.1-17 l DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 25% POWER / SLOT /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING j Sheet 5 of 7 I
-(
PART C: Energy Balanco j Energy (106 Btu) Prior At Peak End of I Energy Description to MSLB Pressure Blowdown Reactor Coolant System Water Internal 346.468 A* 251.290 ; Energy 4 Safety Injection Tank Water Internal NA** NA** NA** Energy i' Energy Stored In Core 16.741 A* 9.648 Energy Stored In RV Internals NA** NA** NA** i Energy Stored In RV Metal NA** NA** NA** Energy Stored In Pressurizer, 223.163 A* 169.223 . Primary Piping, Valves And Pumps Energy Stored In Steam Generator 30.822 A* 23.422 Tubes Energy Stored In Steam Generator 156.374 A* 156.374 Secondary Walls Secondary Coolant Internal Energy In 142.444 A* 95.349 Steam Generator 1 l Secondary Coolant Internal Energy In 142.444 A* 0.639 Steam Generator 2 Secondary Coolant Internal Energy In 41.687 A* 29.510 Steam Line Total NSSS Stored Energy 1100.143 A* 735.455
- See Applicant's SAR C* Not Applicable O
s,_,/ . TABLE 6.2.1-17. DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 25% POWER / SLOT /8.78 SQ. FT./ LOSS OF~ CONTAINMENT COOLING Sheet 6 of 7 i PART C: Energy Balance (continued) Energy'(106 Btu) Priore At Peak End of Energy Description to MSLB Pressure Blowdown-Feedwater To Steam Generator 1 0.0 A* 0.0 Feedwater To Steam Generator 2 0.0 A* 11.479 Steam Flow To Turbine 0.0 A* 4.507 Energy Generated During Shutdown From 0.0 A* 15.254 Decay Heat Break Flow 0.0 A* 386.914 Energy Content Of RCB Atmoshpere A* A* A* Energy Content Of RCB Internal A* A* A* Structures Energy Content Of Recirculation A* A* A* Intake Water (Sump) Energy ..ntent Of RWST Water A* A* A* Energy Removed By Shutdown Heat A* A* A* Exchangers Energy Removed By Containment Building A* A* A* Emergency Fan Coolers
- See Applicant's SAR
, f
\s.
TABLE 6.2.1-17 1 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES i 25% POWER / SLOT /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING l Sheet 7 of 7
.I PART D: Accident Chronology Time (Seconds) Event Setpoint !
0.00 Break Occurs 3.45 Containment Pressure Reaches 6.0 psig Reactor Trip Analysis Setpoint 3.45 Containment Pressure Reaches 6.0 psig Main Steam Isolation Signal (MSIS) Analysis Setpoint 10 4.45 High Containment Pressure Reactor i Trip Signal and MSIS Generated > 4.60 Reactor Trip Breakers Open ; 4.60 Turbine Admission Valves Closed 9.35 Main Steam Isol. Valves Closed 9.35 Main Feedwater Isol. Valves Closed A* Containment Spray Actuation Signal A* Peak Containment Temperature A* Peak Containment Pressure 315.8 End of Blowdown o See Applicant's SAR O Amendment No. 10 June 28, 1985 t l l I
( TABLE 6.2.1-18 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 25% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONT. COOLING Sheet 1 of 9 PART A1: Upstream Mass / Energy Release Data Time Mass Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) (Btu /Lbm) (Million Btu /Sec) 1 0.000 3192.52 1184.12 3.780333 2 .500 3122.54 1185.10 3.700507 3 1.000 3056.07 1186.04 3.624634 4 2.000 2946.90 1187.60 3.499749 5 3.000 2853.95 1188.88 3.393018 6 4.000 2770.73 1189.98 3.297101 7 5.000 2696.46 1190.89 3.211199 8 6.000 2635.42 1191.64 3.140462 9 7.000 2596.66 1192.09 3.095457 10 8.000 2562.22 1192.50 3.055442 11 9.000 2532.78 1192.83 3.021184 12 9.500 2519.53 1192.99 3.005764 . 13 10.000 2507.38 1193.13 2.991627 1 14 10.500 2495.51 1193.27 2.977827 15 11.000 2488.40 1193.36 2.969558 V 16 11.500 2485.52 1193.39 2.966200 l 17 12.000 2481.19 1193.44 2.961149 18 14.500 2440.19 1193.91 2.913376 19 17.000 2365.31 1194.75 2.825955 20 22.000 2165.03 1196.83 2.591166 21 32.000 1955.07 1198.70 2.343551 22 42.000 1819.46 1199.77 2.182938 23 52.000 1715.74 1200.47 2.059699 24 62.000 1614.86 1201.03 1.939489 25 72.000 1524.00 1201.42 1.830957 26 82.000 1439.40 1201.68 1.729698 27 92.000 1356.96 1201.82 1.630823 28 102.000 1271.79 1201.86 1.528509 29 112.000 1185.81 1201.75 1.425052 30 122.000 1093.74 1201.48 1.314104 31 132.000 984.38 1200.88 1.182124 32 142.000 833.07 1199.45 .999227 33 150.800 640.86 1196.19 .766589 34 160.800 390.23 1233.70 .481428 35 170.800 268.52 1242.60 .333663 36 220.800 235.44 1196.53 .281712 37 250.800 260.03 1220.77 .317437 O
l l TABLE 6.2.1-18 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES l 25% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONT. COOLING Sheet 2 of 9 l PART A1: Upstream Mass / Energy Release Data (continued) ) Time Mass Release Enthalpy Energy Release Rate l (Sec) Rate (Lbm/Sec) (Btu /Lbm) (Million Btu /Sec) l 1 38 280.800 226.27 1242.10 .281051 39 300.800 115.35 1236.17 .142592 40 310.800 36.14 1253.29 .045294 41 315.800 0.00 0.00 .000000 INTEGRAL 277101. LBM 333.083 MILLION BTU l 9 O'
l l l i TABLE 6.2.1-18 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 25% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONT. C0OLING Sheet 3 of 9 i PART A2: Downstream Mass / Energy Release Data i l Time Mass Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) (Btu /Lbm] (Million Btu /Sec) l 1 0.000 4362.40 1186.87 5.177603 1 2 .500 41$4.72 1188.20 4.984149 l l 3 1.000 4101.74 1189.01 4.877009 l 4 2.000 3939.82 1190.46 4.690181 5 3.000 3794.13 1191.71 4.521505 6 4.000 3664.31 1192.80 4.370792 ; 7 5.000 3550.33 1193.73 4.238120 l 8 6.000 3466.74 1194.39 4.140626 l 9 7.000 3407.30 1194.85 4.071213 l 10 8.000 3354.34 1195.25 4.009284 I 11 9.000 3309.14 1195.60 3.956402 l 12 9.500 3288.38 1195.75 3.932079 l 13 10.000 3267.08 1195.89 3.907077 14 10.500 3256.37 1196.03 3.882764 15 11.000 0.00 0.00 0.000000 ( 16 11.500 0.00 0.00 0.000000 17 12.000 0.00 0.00 0.000000 18 14.500 0.00 0.00 0.000000 j 19 17.000 0.00 0.00 0.000000 l 20 22.000 0.00 0.00 0.000000 21 32.000 0.00 0.00 0.000000 22 42.000 0.00 0.00 0.000000 23 52.000 0.00 0.00 0.000000 24 62.000 0.00 0.00 0.000000 25 72.000 0.00 0.00 0.000000 26 82.000 0.00 0.00 0.000000 l 27 92.000 0.00 0.00 0.000000 28 102.000 0.00 0.00 0.000000 29 112.000 0.00 0.00 0.000000 30 122.000 0.00 0.00 0.000000 31 132.000 0.00 0.00 0.000000 32 142.000 0.00 0.00 0.000000 33 150.800 0.00 0.00 0.000000 34 160.800 0.00 0.00 0.000000 35 170.800 0.00 0.00 0.000000 ' 36 220.800 0.00 0.00 0.000000 37 250.800 0.00 0.00 0.000000
I i TABLE 6.2.1-18 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 25% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONT. COOLING Sheet 4 of 9 PART A2: Downstream Mass / Energy Release Data (continued) Time Mass Release Enthalpy Energy Release Rate (SecL Rate (Lbm/Sec) (8tu/Lbm) (Million Btu /Sec) 38 280.800 0.00 0.00 0.000000 39 300.800 0.00 0.00 0.000000 40 310.800 0.00 0.00 0.000000 41 315.800 0.00 0.00 0.000000 INTEGRAL 38824. LBM 46.314 MILLION BTU O i i i l l ( I I l O I a _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . }
ry (<j ) TABLE 6.2.1-18 l l DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES I 25% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONT. COOLING l
'l Sheet 5 of 9 i PART 8: Steam Generator Pressures Unaffected Steam Affected Steam Time Generator Generator (Sec) Pressure (PSIA) Pressure (PSIA) 1 0.000 1137.00 1137.00 l 2 .500 1127.64 1112.27 3 1.000 1111.91 1088.84 4 2.000 1078.86 1049.32 5 3.000 1046.89 1015.66 6 4.000 1017.65 986.16 7 5.000 991.79 860.49 8 6.000 969.81 939.46 9 7.000 954.05 926.05 10 8.000 941.61 914.15 11 9.000 931.29 903.97 12 9.500 926.63 899.36 n 13 10.000 922.15 894.96
( ) 14 10.500 917.76 890.66
\~/ 15 11.000 924.59 888.15 16 11.500 941.61 887.09 17 12.000 958.04 885.36 18 ~14.500 1015.08 870.26 19 17.000 1043.16 842.86 20 22.000 1038.49 770.22 21 32.000 1027.95 694.23 22 42.000 1027.87 642.62 23 52.000 1027.73 603.15 24 62.000 1027.53 564.75 25 72.000 1027.29 530.16 26 82.000 1027.00 498.05 27 92.000 1026.67 468.16 28 102.000 1026.30 437.27 29 l'12.000 1025.88 406.08 30 122.000 1025.42 372.67 31 132.000 1024.93 332.96 l
32 142.000 1024.41 277.98 33 150.800 1023.92 208.42 34 160.800 1023.35 121.17 35 170.800 1022.77 77.07 36 220.800 1019.77 64 41 37 250.800 1017.87 74.%'
,9 l % ,/
l
1 l TABLE 6.2.1-18 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 25% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONT. COOLING Sheet 6 of 9 PART B: Steam Generator Pressures (continued) Unaffected Steam Affected Steam ? Time Generator Generator (Sec) Pressure (PSIA) Pressure (PSIA) 38 280.800 1015.89 60.99 39 300.800 1014.54 39.11 40 310.800 1013.85 29.12 r 41 315.800 1013.51 27.38 l k i l I O O
~ ,
l l TABLE 6.2.1-18 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 25% POWER / GUILLOTINE /8.78 Sq. FT./ LOSS OF. CONTAINMENT COOLING 'l 1 Sheet 7 of 9 j a
.PART C: Energy Balance' .j Energy (106 Btu).
Prior At Peak End of-Energy Description to MSLB Pressure Blowdown Reactor Coolant System Water Internal 346.468 A* 252.557 Energy Safety Injection Tank Water Internal NA** NA** NA**
. Energy Energy Otored In Core' 16.741 A* 9.685 Energy Stored In RV Internals NA** NA** NA**
i Energy Stored In RV Metal NA** NA** NA** Energy Stored In Pressurizer, 223.163 A* 169.886 Primary Piping, Valves And Pumps l' Energy Stored In Steam Generator 30.822 A* 23.519 l Tubes Energy Stored In Steam Generator 156.374 A* 156.374 l Secondary Walls Secondary Coolant Internal Energy In 142.444 A* 97.355 Steam Generator i Secondary Coolant Internal Energy In 142.444 A* 0.637 Steam Generator 2 Secondary Coolant Internal Energy In 41.687 A* 32.593 -l Steam Line Total NSSS Stored Energy 1100,143 A* 742.606 ; i
- See Applicant's SAR
** Not Applicable
TABLE 6.2.1-18 r DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES l 25% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONTAINMENT C0OLING Sheet 8 of 9 PART C: Energy Balance (continued) Energy (106 Btu) Prior At Peak End of Energy Description to MSLB Pressure Blowdown Feedwater To Steam Generator 1 0.0 A* 0.0 Feedwatar To Steam Generator 2 0.0 A* 11.869 Steam Flow To Turbine 0.0 A* 6.142 Energy Generated During Shutdown From 0.0 A* 16.133 Decay Heat Break Flow - Upstream 0.0 A* 333.083
- Downstream 0.0 A* 46.314 Total 0.0 A* 379.397 Energy Content Of RCB Atmoshpere A* A* A*
Energy Content Of RC8 Internal A* A* A* Structures Energy Content Of Recirculation A* A* A* Intake Water (Sump) 1 Energy Content Of RWST Water A* A* A* Energy Removed By Shutdown Heat A* A* A* Enchangers l Energy Removed By Containment Building A* A* A* l Emergency Fan C olers
- See Applicant's SAR O
1
TABLE 6.2.1-18 9 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 25% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 9 of 9 PART D: Accident Chronology Time (Seconds) Event Setpoint 0.00 Break Occurs 4.86 Containment Pressure Reaches 6.0 psig Reactor Trip Analysis Setpoint 4.86 Containment Pressure Reaches 6.0 psig Main Steam Isolation Signal (MSIS) Analysis Setpoint 10 5.86 High Containment Pressure Reactor Trip Signal and MSIS Generated 6.01 Reactor Trip Breakers Open 6.01 Turbine Admission Valves Closed 10.76 Main Steam Isol. Valves Closed 10.76 Main Feedwater Isol. Valves Closed A* Containment Spray Actuation Signal A* Peak Containment Temperature A* Peak Containment Pressure 315.80 End of Blowdown
- See Applicart's SAR O
Amendment No. 10 June 28,1985
TABLE 6.2.1-19 l DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 0% POWER / SLOT /4.00 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 1 of 7 PART A: Mass / Energy Release Data Time Mass Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) (8tu/Lbm) (Million Btu /Sec) { l 0.000 8050.50 1185.45 9.543502 2 .200 7945.94 1136.03 9.424123 3 .600 7795.76 1186.93 9.252999 4 1.000 7665.28 1187.70 9.104040 5 2.000 7379.66 1189.37 8.777119 6 3.000 7128.94 1190.78 8.489018 7 4.000 6902.62 1192.02 8.228057 8 5.000 6697.06 1193.10 7.990269 9 6.000 6513.64 1194.04 7.777532 10 7.000 6352.76 1194.84 7.590511 11 8.000 6213.54 1195.51 7.428353 12 9.000 6094.49 1196.08 7.289471 1 13 9.500 6041.53 1196.32 7.227623 14 10.000 5992.75 1196.55 7.170645 15 10.500 2446.76 1196.73 2.928120 16 11.000 2437.84 1196.83 2.917691 17 11.500 2428.95 1196.94 2.907302 18 12.000 2420.22 1197.03 2.897078 19 12.500 2411.60 1197.13 2.886994 20 13.000 2403.01 1197.22 2.876940 21 15.000 2365.51 1197.64 2.833024 22 20.000 2211.96 1199.23 2.652653 23 30.000 1946.80 1201.62 2.339312 24 40.000 1812.92 1202.65 2.180302 25 50.000 1705.08 1203.35 2.051804 26 60.000 1611.08 1203.84 1.939488 27 70.000 1526.07 1204.20 1.837699 28 80.000 1443.99 1204.45 1.739218 29 90.000 1365.33 1204.58 1.644655 30 100.000 1292.46 1204.62 1.556926 31 110.000 1225.00 1204.58 1.475612 32 120.000 1159.71 1204.44 1.396805 33 130.000 1093.55 1024.22 1.316870 34 140.000 1028.17 1203.90 1.237812 35 150.000 960.57 1203.43 1.155980 36 160.000 885.70 1202.76 1.065287 37 170.000 739.10 1201.63 .953010 i O1 l l i
TABLE 6.2.1-19 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 0% POWER / SLOT /4.00 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 2 of 7 PART A: Mass / Energy Release Data (continued) Time Mass Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) (Btu /Lbm) (Million Btu /Sec) 38 180.000 662.94 1199.36 .785101 39 190.000 491.82 1194.74 .587595 40 200.000 234.29 1242.04 .290997 41 205.000 58.01 1251.25 .072585 42 210.000 0.00 0.00 .000000 INTEGRAL 315493. LBM 378.769 MILLION BTU O
TABLE 6.2.1-19 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 0% POWER / SLOT /4.00 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 3 of 7 PART B: Steam Generator Pressures Unaffected Steam Affected Steam Time Generator Generator (Sec) Pressure (PSIA) Pressure (PSIA) 1 0.000 1170.00 1170.00 2 .200 1165.14 1158.02 3 .600 1151.16 1135.72 4 1.000 1135.17 1114.78 5 2.000 1097.91 1073.22 6 3.000 1062.60 1037.00 ) 7 4.000 1030.01 1004.33 i 8 5.000 1000.44 974.91 l 9 6.000 974.12 948.76 10 7.000 951.10 925.88 11 8.000 931.22 906.13 12 9.000 914.15 889.17 l 13 9.500 906.52 881.59 l 14 10.000 899.39 874.52 ! 15 10.500 894.80 868.22 i 16 11.000 907.89 865.00 j 17 11.500 919.77 861.79 18 12.000 930.86 858.65 19 12.500 61.32 855.54 20 13.000 951.21 852.44 21 15.000 984.42 838.84 22 20.000 1011.62 783.14 i 23 30.000 986.50 687.29 24 40.000 986.47 636.58 25 50.000 986.35 595.79 26 60.000 986.16 560.19 27 70.000 985.89 528.00 28 80.000 985.54 497.05 29 90.000 985.11 468.68 30 100.000 984.62 442.40 31 110.000 984.06 418.07 32 120.000 983.43 394.51 33 130.000 982.74 370.64 34 140.000 981.99 347.05 35 150.000 981.19 322.65 36 160.000 980.33 295.62 37 170.000 979.42 262.18 O
l TABLE 6.2.'l-H DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 0% POWER / SLOT /4.00 SQ. FT./ LOSS 0F CONTAINMENT COOLING-
~ Sheet.4 of 7 PART B: Steam Generator. Pressures (continued)'
Unaffected Steam Affected-Steam Time Generator Generator (Sec)' Pressure (PSIA) Pressure (PSIA) 38 180.000 978.46 215.10 39 190.000 977.46 155.46 40 200.000 976.43 63.28 41 205.000 975.50 36.80 42 210.000 975.36 33.41 r) k/ l O 1
TABLE 6.2.1-19 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 0% POWER / SLOT /4.00 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 5 of 7 PART C: Energy Balance Energy (106 Btu) Prior At Peak End of Energy Description to MSLB Pressure Blowdown Reactor Coolant System Water Internal 343.917 A* 253.604 Energy Safety Injection Tank Water Internal NA** NA** NA** Energy , t Energy Stored In Core 12.221 A* 9.324 I Energy Stored In RV Internals NA** NA** N ,'. *
- Energy Stored In RV Metal NA** NA** NA** ?
I Energy Stored In Pressurizer, 239.691 A* 187.111 Primary Piping, Valves And Pumps )- 1 Energy Stored In Steam Generator 30.924 A* 23.641 Tubes , 1 Energy Stored In Steam Generator 157.441 A* 157.441 Secondary Walls Secondary Coolant Internal Energy In 163.343 A* 111.736 Steam Generator 1 Secondary Coolant Internal Energy In 163.343 A* 0.780 Steam Generator 2 Secondary Coolant Internal Energy In 43.064 A* 31.916 Steam Line Total NSSS Stored 'Jnergy 1153.944 A* 775.553
- See Applicant's SAR C* Not Applicable O
m . m TABLE 6.2.1-19 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 0% POWER / SLOT /4.00 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 6 of 7 PART C: Energy Balance (continued) Energy (106 Btu) Prior' At Peak End of. Enerm/ Description to MSLB Pressure Blowdown l Feedwater To Steam Generator 1 0.0. A* 0.0 Feedwater To Steam Generator 2 0.0 A*' O.371 Steam Flow To Turbinc 0.0 A* 0.006 Energy Generated During Shutdown From 0.0 A* 0.013 Decay Heat Break Flow 0.0 A* 378.769 Energy Content Of RCB Atmoshpere A* A* A* Energy Content Of RCB Internal A* 'A* A* '! Structures 4 Energy Content Of Recirculation A*' A* A* Intake Water (Sump) 1 Energy Content Of RW5T Water A* A* A* Energy Removed By Shutdewn Heat A* A* A* Exchangers 4 Energy Removed By Containment Building A* A* A* Emergency Fan Coolers i
- See Applicant's SAR 1
1 1
}'
1 l 1 1 i TABLE 6.2.1-19 i DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 0% POWER / SLOT /4.00 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 7 of 7 l PART D: Accident Chronology Time (Seconds) Event Setpoint 0.00 Break Occurs 4.55 Containment Pressure Reaches 6.0 psig Reactor Trip Analysis Setpoint 4.55 Containment Pressure Reaches 6.0 psig Main Steam Isolation Signal (MSIS) Analysis Setpoint 4 10 5.55 High Containment Pressure Reactor Trip Signal and MSIS Generated 5.70 Reactor Trip Breakers Open 5.70 Turbine Admission Valves Closed 10.45 Main Steam Isol. Valves Closed ' 10.45 Main Feedwater Isol. Valves Closed A* Containment Spray Actuation Signal A* Peak Containment Temperature A* Peak Containment Preisure 210.00 End of Blowdown
- See Applicant's SAR '
I l O1 l 1 Amendment No. 10 June 28, 1985 E_ .. .
. . .. -. 1
t TABLE 6.2.1-20 l DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 0% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONT. COOLING Sheet 1 of 9 PART A1: Upstream Mass / Energy Release Data Time Mass Release Enthalpy- Energy Release Rate (Sec) Rate (Lbm/Sec) (8tu/Lbm) (Million Btu /Sec) 1 0.000 3296.49 1185.45 3.907835 2 .200 3265.46 1185.84 3.872325 3 .600 3201.72 1186.78 3.799748 4 1.000 3146.65 1187.50 3.736654 5 2.000 3033.15 1189.14 3.606855 6 3.000 2936.54 1190.53 3.496036 7 4.000 2849.22 1191.74 3.395516 8 5.000 2768.19 1192.78 3.301848 9 6.000 2694.86 1193.70 3.216855 , 10 7.000 2630.83 1194.47 3.142457 11 8.000 2575.00 1195.13 3.078177 12 9.000 2528.29 1195.68 3.023027 13 9.500 2508.15 1195.92 2.999538
-p 14 10.000 2489.43 1196.14 2.977715 ,]
k 15 16 10.500 11.000 2471.94 2458.83 1196,34 1196.52 2.957293 2.942037 17 11.500 2448.26 1196.64 2.929692 18 12.000 2437.00 1196.76 2.917592 19 12.500 2427.73 1196.88 2.905691 20 13.000 2417.64 1196.99 2.893896 21 15.000 2375.25 1197.46 2.844268 22 20.000 2218.93 1199.11 2.660731 23 30.000 1951.42 1201.54 2.344713 24 40.000 1815.97 1202.60 2.183886 25 50.000 1707.44 1203.31 2.054577 26 60.000 1613.15 1203.82 1.941946 27 70.000 1528.00 1204.18 1.839981 28 80.000 1446.02 1204.44 1.741638 29 90.000 1367.09 1204.58 1.646771 30 100.000 1294.02 1204.62 1.558800 31 110.000 1226.38 1204.58 1.477277 32 i20.000 1161.15 1204.45 1.398550 33 130.000 1094.92 1204.25 1.318554 34 140.000 1029.55 1203.92 1.239499 35 150.00v 962.02 1203.47 1.157760 36 160.000 887.42 1202.79 1.067380 37 170.000 795.40 1201.70 .955833 O b
l TABLE 6.2.1-20 DATA FOR CONTAINMENT PEAK PRESSURE /TEMPERATI o H ALYSES 0% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONY. CJ0 LING i Sheet 2 of 9 PART A1: Upstream Mass / Energy Release Data (continued) Time Mass Release Enthalpy Energy Release Rate (Sec) Rate (Lbm/Sec) [ Btu /Lbm) (Million 8tu/Sec) 38 180.000 666.37 1199.46 .799287 39 190.000 495.50 1194.88 .592064 40 200.000 239.97 1241.70 .297971 41 205.000 63.56 1250.93 .079509 , 42 210.000 0.00 0.00 .000000 f INTEGRAL 275319. LBM 330.863 MILLION BTU j i O 1 1 i
.~
J
I l O o TABLE 6.2.1-20 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES I 0% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONT. COOLING 1
)
Sheet 3 of 9 PART A2: Downstream Mass / Energy Release Data Time Mass Release Enthalpy Energy Release Rate { (SecL Rate (Lbm/Sec) (8tu/Lbm) (Million Btu /Sec) I 1 0.000 4512.13 1185.41 5.348720 2 .200 4435.06 1186.08 5.260349 3 .600 4331.22 1186.90 5.140737 4 1.000 4239.03 1187.68 5.034599 5 2.000 4049.81 1189.27 4.816314 6 3.000 3896.73 1190.62 4.639537 7 4.000 3758.83 1191.81 4.479819 8 5.000 3634.87 1192.85 4.335864 9 6.000 3524.33 1193.75 4.207174 10 7.000 3427.42 1194.52 4.094123 11 8.000 3343.70 1195.16 3.996261 l 12 9.000 3271.77 1195.70 3.912069 4 13 9.500 3236.59 1195.94 3.870782
,- 14 10.000 3206.91 1196.16 3.832396 i 15 10.500 3173.37 1196.37 3.796512 l 16 11.000 0.00 0.00 0.000000 !
17 11.500 0.00 0.00 0.000000 i 18 12.000 0.00 0.00 0.000000 l 19 12.500 0.00 0.00 0.000000 20 13.000 0.00 0.00 0.000000 21 15.000 0.00 0.00 0.000000 22 20.000 0.00 0.00 0.000000 23 30.000 0.00 0.00 0.000000 24 40.000 0.00 0.00 0.000000 25 50.000 0.00 0.00 0.000000 26 60.000 0.00 0.00 0.000000 27 70.000 0.00 0.00 0.000000 28 80.000 0.00 0.00 0.0nn000 29 90.000 0.00 0.00 0.000000 30 100.000 0.00 0.00 0.000000 31 110.001 0.00 0.00 0.000000 32 120.000 0.00 0.00 0.000000 33 130.000 0.00 0.00 0.000000 34 140.000 0.00 0.00 0.000000. 35 150.000 0.00 0.00 0.000000 36 160.000 0.00 0.00 0.000000 37 170.000 0.00 0.00 0.000000
TABLE 6.2.1-20 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 0% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONT. COOLING Sheet 4 of 9 ! PART A2: Downstream Mass / Energy Release Data (continued) Time Mass Release Enthalpy Energy Release Rate (Sec) Ray (Lbm/Sec) (Btu /Lbm) JMillionBtu/Sec) 38 180.000 0.00 0.00 0.000000 , 39 190.000 0.00 0.00 0.000000 ; 40 200.000 0.00 0.00 0.000000 41 205.000 0.00 0.00 0.000000 l 42 210.000 0.00 0.00 0.000000 INTEGRAL 39378. LBM 46.946 MILLION BTU O I l e 0 O
j
,i l
TABLE 6.2.1-20 0ATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 0% POWER / GUILLOTINE /8.78 SQ.' FT./ LOSS OF' CONT.- COOLING Sheet 5 of 9 4 PART B: Steam Generator Pressures
. Unaffected Steam Affected' Steam- .
J Time Generator Generator- 4 (Sect ' Pressure (PSIA) Pressure (PSIA) 1 0.000 1170.00' 1170.00 2 .200 1165.26. 1158,11 3 .600. 1151'.69 1136.28 4 1.000 1136.12' 1116.05 5 2.000 1099.81 1076.22 3 6 3.000 1065.56 1041.40 7 4.000 1034.08 1009.98 8 5.000 11005.61 981.69 9 6.000 980.35 956.55 10 7.000 958.31 934.60: ; 11 8.000 939.34 915.67 12 9.000 923.09 '899.47 ] 13 9.500 .915.84 892.24 O 14 15 16 10.000 10.500 11.000 909.09 902.75 910.14 885;52 879,23 874.71-1 17 11.500 922.03 870.90 i l 18 12.000 933.03 867.16 l ' 19 12.500 943.34 863.49 20 13.000 953.05 859.84 21 15.000 985.66 844.45 22 20.000 1014.02 787.66 23 30.000 989.32 690.87 24 40.000 989.29 639.40-25 50.000 989.17 598.30' 1 26 60.000 988.98 562.51 1 27 70.000 988.71 530.17 28 80.000 988.36 499.08 l 29 90.000 987.94 470.55 30 100.000 987.45 444.12 " 31 110.000 986.88 419.67 1 32 120.000 986.26 396.07 33 130.000 985.57 372.12 34 140.000 984.82 348.47 35 150.000 984.01 -324.04 36 160.000 983.15- 297.03 37 170.000 982.23 263.71 ,
q TABLE 6.2.1-20 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES ! l 0% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONT. COOLING l Sheet 6 of 9 i PART B: Steam Generator Pressures (continued) Unaffected Steam Affected Steam , Time Generator Generator ! (Sec) Pressure (PSIA) Pressure (PSIA) 38 180.000 981.27 216.94 39 190.000 980,27 157.15 40 200.000 979.23 65.64 41 205.000 978.70 37.34 42 210.000 978.17 33.41 i l
@1 i
1 l l O l
i(v TABLE 6.2.1-20 DATA ~FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 0% POWER /. GUILLOTINE /8.78 SQ. FT./ LOSS 0F CONTAINMENT COOLING Sheet 7 of 9 PART C: Energy Balance Energy (106 Btu) Prior At Peak. End of Energy Description to MSLB Pressure- Blowdown Reactor Coolant System Water Internal 343.917 A* 253.794 Energy-l Safety Injection Tank Water Internal NA** NA** NA** l Energy Energy Stored In Core 12.221 A* 9.329 Energy Stored In RV Internals NA** NA** NA** l l Energy Stored In RV Metal NA** NA** NA** Energy Stored In Pressurizer, 239.691 A* 187.209 NJ Primary Piping, Valves And Pumps Energy Stored In Steam Generator 30.924 A* 23.656 Tubes Energy Stored In Steam Generator 157.441 A* 157.441 Secondary Walls Secondary Coolant Ir.ternal Energy In 163.343 A* 112.03 Steam Generator 1 Secondary Coolant Internal Energy In- 163.343 A* 0.780 Steam Generator 2 Secondary Coolant Internal Energy In 43.064 A* 32.281 Steam Line l Total NSSS Stored Energy 1153.944 A* 776.520 l l
- See Applicant's SAR
** Not Applicable
( s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . ._______________________]
1 TABLE 6.2.1-20 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES 0% POWER / GUILLOTINE /8.78 SQ. FT./ LOSS OF CONTAINMENT COOLING Sheet 8 of 9 f PART C: Energy Balance (continued) , l 6 Energy (10 Btu) Prior At Peak End of 3 Energy Description to MSLB Pressure Blowdown Feedwater To Steam Generator 1 0.0 A* 0.0 j Feedwater To Steam Generator 2 0.0 A* 0.377 j Steam Flow To Turbine 0.0 A* 0.006 Energy Generated During Shutdown From 0.0 A* 0.014 i Decay Heat I l Break Flow - Upstream 0.0 A* 330.863
- Downstream 0.0 A* 46.946 j Total 0.0 A* 377.809 l i
Energy Content Of RCB Atmoshpere A* A* A* ! l Energy Content Of RCB Internal A* A* A* Structures > l Energy Content Of Recirculation A* A* A* Intake Water (Sump) Energy Content Of RWST Water A* A* A* Energy Removed By Shutdown Heat A* A* A* Exchangers l Energy Removed By Containment Building A* A* A* Emergency Fan Coolers
- See Applicant's SAR O'
__________-_______________A
.....s . .1 l
1 TABLE 6.2.1-20 DATA FOR CONTAINMENT PEAK PRESSURE / TEMPERATURE ANALYSES I 0% POWER / GUILLOTINE /8.78 SQ._FT./ LOSS OF CONTAINMENT COOLING Sheet 9 of 9 PART D: Accident Chronology Time (Seconds) Event Setpoint 0.00 Break Occurs 4.75 Containment Pressure Reaches 6.0 psig Reactor Trip Analysis Setpoint 4.75 Containment Pressure Reaches 6.0 psig Main Steam Isolation Signal (MSIS) Analysis Setpoint 5.75 High Containment Pressure Reactor- -10 Trip Signal _and MSIS Generated' 5.90 Reactor Trip Breakers Open 1 5.90 Turbine Admission Valves Closed 10.65 Main Steam Isol. Valves Closed 10.65 Main Feedwater Isol. Valves Closed A* Containment Spray Actuation Signal' A* Peak Containment Temperature A* Peak Containment Pressure f 210.00 End of Blowdown
- See Applicant's SAR ;
t e
' Amendment No. 10 June 28, 1985.
}
TABLE 6.2.1-21 l
SUMMARY
OF CALCULATED ENERGY RELEASES Sheet 1 of 1 Time Of Time Of End Of Energy Released End Of Energy Released Blowdown During681 wdown Reflood During6Reflood LOCA Results Seconds 10 BTU Seconds 10 BTU l 1.0 DEHLS 12.0 376.000 NA NA I 1.0 DESLS Maximum ECCS, 70 psia 22.4 378.100 119.1 70.886 Minimum ECCS, 70 psia 22.4 378.100 126.9 72.667 Maximum ECCS, 55 psia 22.4 378.100 136.5 85.907 Minimum ECCS, 55 psia 22.4 378.100 167.3 91.478 1.0 DEDLS Maximum ECCS, 70 psia 19.3 382.900 217.0 133.461 Minimum ECCS, 70 psia 19.3 382.900 425.7 151.884 > Maximum ECCS, 55 psia 19.3 382.900 254.0 147.543 Minimum ECCS, 55 psia 19.3 382.900 492.8 152.137 i MSLB Results i Power (%) Break
- Type 102 S 170.00 354.239 102 G 175.00 350.171 75 S 185.00 357.629 75 G 190.00 352.205 50 S 215.00 366.560 50 G 220.00 360.240 25 S 315.80 386.914 25 G 315.80 379.397 0 S 210.00 378.769 0 G 210.00 377.809
- 5: Slot Break G: Guillotine Break O
J
l ,V f) TABLE 6.2.1-22 1 INITIAL CONDITIONS FOR CONTAINMENT PEAK PRESSURE ANALYSIS l Parameter Value Reactor Coolant System Reactor power level, MWt(a) 3876 Average coolant temperature, F liquid, lbm 594.8 Mass of reactor coolant system liquid, lbm 590193 Mass of reactor coolant system steam, lbm 5745
- Reactor coolant system liquid plus steam 10 6 Btu (b) 357.992 Steam generator energy from feed nozzle to MSIV 112.346 (per unit), 106 Btu Containment Pressure, lb/in.2 a A c)
Temperature, F A Relative humidity, % A Component cooling water temperature, F A Refueling water temperature, F A Outside air temperature, F A Net free volume (minimum), ft 3 A Stored Water (as applicable) Refueling water storage tank, ft 3 A All accumulators (safety injection tanks), ft 3 7708 3 Condensate storage tanks, ft A
- a. At design overpower of 102% and not% 1 liquid levels j b. All energies are relative to 32F
- c. See Applicant's SAR (v
TABLE 6.2.1-23 ENGIEERED SAFETY FEATURE SYSTEMS OPERATING ASSUMPTIONS FOR CONTAINMENT PEAK PRESSURE ANALYSIS Sheet 1 of 2 Value Used For Peak System / Item Full Capacity Pressure Analyses Passive Safety Injection System Number of accumulators 4 4 ; (safety injection tanks) Pressure setpoint, lb/in.2g 600 600 l 3 Volume, ft / accumulator 1927 1927 Active Safety Injection Systems High pressure safety injection Numer of lines 2 2 3 Number of pumps 2 2 Flowrate, gal / min / pump 1130 1130 i Low pressure safety injection Number of lines 1 1 J Number of pumps 2 2 J I Flowrate, gal / min / pump 5000 5000 Containment Spray System ! Number of lines A(b) A Numper of pumps A A j Number of headers A A j Flowrate, gal / min / pump A A , 1 Containment Fan Cocler System A A { Number of units A a ! 3 Air-side flowrate, ft / min / unit A A l Heatremovalrageatdesign A A temperature, 10 Btu /h/ unit Fouling factor A A L
- a. These numbers are design minimum values; actual values will be '
greater than or equal to the design values.
- b. See Applicant's SAR.
1 i f] TABLE 6.2.1-23 l v ENGINEERED SAFETY FEATURE SYSTEMS OPERATING ASSUMPTIONS FOR CONTAINMENT PEAK PRESSURE ANALYSIS Sheet 2 of 2 ! Value Used For Peak System / Item Full Capacity Pressure Analyses Heat Exchangers Shutdown heat exchangers Type A A Number A A l 2 Heat transfer area, ft A A Overall heat transfer 2 A A i coefficient, Btu /h-ft "F i Flowrates: Recirculatioit side, gal / min A A 3 Exterior side, gal / min A A Source of cooling water A A Flow begins, (OFFSITE Power A A j' Available/ Loss of 0FFSITE Power) l 1 l 1 i q L , u
D s d d d d d d d d d er n n n n n n n n n t e a a a a a a a a a . n ab n w Rm A A A A A A A A A o o u 5 6 7 8 9 0 1 2 3 4 5 i d eN 2 2 2 2 2 3 3 3 3 3 3 t w s - - - - - - - - - - - a o ae 1 1 1 1 1 1 1 1 1 1 1 c l S el . . . . . . . . . . . o b I l b 2 2 2 2 2 2 2 2 2 2 2 l S ea . . l Y RT 6 6 6 6 6 6 6 6 6 6 6 k a L a t A e o N r t A ) b
- s e T ae n h N eh 7 5 e t E rc 1 5 1 5 v M A n . . . . . . . . . . . i ,
T I 0 0 0 0 0 2 2 1 8 1 0 g s R k 0 0 5 8 3 3 9 6 1 2 0 e A a . 1 6 3 4 4 5 5 1 8 a t P eq a . M rS f rs O B( o e C el B s sb U e aa S m d et k k k k k o k k k k k i l T a a a a a r a a a a a s eo N E e r e r e r r e e r f e r e r e r e r e r h rwt M B B B B B B B B B B t k N n 0 o ae I o l l l l l 9 l l l l l b eh A i a a a a a a a a a a rt 4 T t p i i i i i +_ i i i i i m b 2 N t t t t t h t t t t t o n
- O i n n n n n nc n n n n n r l i 1 C r e e e e e it e e e e e f a . c r r r r r h o r r r r r i n 2 R s e e e e e t r e e e e e w t e . O e f f f f f i C f f f f f o nv 6 F D m m m m m w m m m m m l ei u u u u u w u u u u u f rg E S c c c c c t o c c c c c e L E r r r r r ob r r r r r r f s B
A R U i C i C i C i C i C l l SE i C i C i C i C i C f o me ut T T ca P e rr U l i R d d d d e e e b ce n n n d d n l l l a h E E E E n n E z z z l rt P E E z z z i o I P n l a l a l l o o o a ff a l l a N N N v o o n n n a a n d d d ed a n D E i t i m i m i m i n i n w i m rn eE rn eE rn eE l n zE a em vu T a r r r m m o r z z z z e i s A c e e e r r b e il il il ol r g L o T T T e e l T ra ra ra N a a e U L T T E un un un n eh T . . . . si si si .i l rt S O V G V p m p p G sm er sn en sm er Gm r a a m m t o P . . . u u u . re re re .e c st R S R P P P S PT PT PT ST t e F l l O s b a Y ) i au t q R s 4 9 n e A e 0 0 0 0 0 0 0 1 4 1 0 e o M Dh . . . . . . . . . v ws M I c 2 2 0 0 0 0 0 0 3 5 8 i ti U n 4 4 3 3 3 3 3 1 2 g S I ee ( a e rm ei r ht e A w g g n n i k t e e e L a av L L g g g r r re e hi e e e ee ee en m r t g e p e e L L L zn zn zi a B g g ii i i iL e ea i g g r r n n n rL rL r t e t P e e a a o o o u u uf S h ot L L h h i i i se sy se T N a c c t t t sg sa si n t t s s c c c er er el i o o i i u u u ru rp re a *
- H H D D S S S PS PS PR M
- I ll' ll
s< > 1 i M ( \'
\~ /b TABLE 6.2.1-25A- J (Sheet 1 of 3)
MASS / ENERGY RELEASE DATA FOR 100 SQ INCH HOT LEG GUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS !' (FLOW FROM REACTOR VESSEL SIDE) e Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC) 0.000 0.0 647.00 0. l
.001 1910.0 646.80 1235388. .002 3333.0 ~ 646.80 2479184. .003' 5627.0 646.60 3638418. .004 5668.0 646.70 3665496. .005 5542.0 -646.50 3583903. .006 5573.0 646.60 3603502. .007 5567.0 646.60 3599622. .008 5602.0 646.60 3622253. .009 5658.0- 646.60 3658463. ; .010 5676.0~ 646.60 3670102. 4 r"'s .012 5709.0 646.60 3691439.
(' .014 5687.0 646.60 3677214.
.016 5643.0 646.50 3648290. .018 5618.0 646.50 3632037. .020 5625.0 646.40 3636000. .022 5633.0 646.40 3641171. .024 5618.0 646.40 3631475. .026 5587.0 646.30 3610878. .028 5573.0 646.30 3613123. .030 5603.0 646.30 3621219. .032 5055.0 646.40 3055392. .034 5685.0 646.40 3674784.
l .036 5664.0 646.40 3664442. ! .038 5009.0 646.30 3625097.
.040 5542.0 646.20 3581240. .042 5510.0 646.20- 3560562. .044 5523.0 646.20 3568963. ' .046 5559.0 646.20 3592226. j .048 5585.0 646.20 3699027. ' .050 5583.0 546.20 3607735. ; .055 5544.0 646.20 3582533.
(. .060 5550.0 646.20 3580418, i
.065 5501.0 646.10 3554196.
t .070 5517.0 646.10 3564534.
.075 5475.0 646.00 3535850. ,,-.s .080 5412.0 646.00 3486152. \'j) , .085 .090 5396.0 5338.0 645.90 645.80 3485276.
3447280. ,
.095 5313.0 645.70 3439604. l (Continued)
TABLE 6.2.1-25A (Cont'd.) (Sheet 2 of 3) MASS / ENERGY RELEASE DATA FOR 100 SQ INCH HOT LEG GUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM REACTOR VESSEL SIDE) Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (8TU/LB) (BTV/SEC)
.100 5280.0 645.70 3409296. .110 5236.0 645.50 3379838. .120 5180.0 645.40 3343172. .130 5135.0 645.30 3313616. .140 5082.0 645.20 3278906. .150 5040.0 645.10 3251304. .160 5041.0 645.10 3251949. .170 5022.0 645.10 3239692. .180 4958.0 645.00 3197910. .190 4902.0 645.00 3161790. .200 4861.0 644.90 3134859. .220 4756.0 644.70 3066193. .240 4699.0 644.70 3029445. .260 4640.0 644.60 2990944. .280 4582.0 644.60 2953557. .300 4519.0 644.50 2912496. .320 4463.0 644.50 2876404. .310 4409.0 644.50 2841601. .360 4370.0 644.40 2816028. .380 4359.0 644.50 2806153. .400 4349.0 644.60 2803365. .420 4361.0 644.70 2811537. .440 4387.0 644.80 2828738. .460 4420.0 645.00 2850900. .480 4449.0 645.10 2870050. .500 4466.0 645.30 2881910. .550 4488.0 645.50 2897004. .600 4481.0 645.50 2892486. .650 4506.0 645.70 2907587. .700 4530.0 645.80 2925474. .750 4514.0 645.90 2915593. .800 4497.0 645.90 2904612. .850 4488.0 645.90 2898792. .900 4486.0 646.00 2897956. .950 4507.0 646.10 2911973.
1.000 4537.0 646.30 2932263. 1.100 4570.0 646.50 2954505. 1.200 4566.0 646.60 2952370. 1.300 4594.0 646.90 2971859. 1.400 4587.0 647.10 2968288. (Continued) O
v J 1 TABLE 6.2.1-25A (Cont'd.) (Sheet 3 of 3) MASS / ENERGY RELEASE DATA FOR 100 SQ INCH HOT LEG GUILLOTINE BREAK FOR CONTAINMENT ' SUBCOMPARTMENT ANALYSIS (FLOW FROM REACTOR VESSEL SIDE) Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC) 1.500 4580.0 647.40 2965092. 1.600 4574.0 647.70 2962580. 1.700 4551.0 648.00 2949048. 1.800 4530.0 648.30 2936799. 1.900 4503.0 648.70 2921096. 2.000 4471.0 649.10 2902126, 2.500 4358.0 651.90 2840980. 3.000 4380.0 655.80 2898824. 3.500 4097.0 660.40 2705659, 4.000 3838.0 655.90 2555724. O 1
TABLE 6.2.1-25B (Sheet 1 of 3) MASS / ENERGY RELEASE DATA FOR 100 SQ INCH HOT LEG GUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM STEAM GENERATOR SIDE) Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB] (BTU /SEC) 0.000 0.0 646.90 0.
.001 1934.0 646.80 1250911. .002 3801.0 646.70 2458107. .003 5560.0 646.50 3594540. .004 5432.0 646.30 3510702. .005 5397.0 646.20 3487541. .006 5435.0 646.30 3512641. .007 5530.0 646.40 3574592. .008 5641.0 646.60 3649410. .009 5735.0 646.70 3708825. .010 5789.0 646.80 3744325. .012 5772.0 646.80 3733330. .014 5670.0 646.40 3666222. .016 5595.0 646.50 3617158. .018 5599.0 646.50 3619754. .020 5637.0 646.60 3644884. .022 5657.0 646.60 3657816. .024 5637.0 646.60 3644884. .026 5588.0 646.50 3612642. .028 5543.0 646.40 3582995. .030 5552.0 646.50 3589368. .032 5633.0 646.60 3642298. .034 5723.0 646.70 3701004. .036 5733.0 646.70 3707531. .038 5636.0 646.60 3644238. .040 5490.0 646.40 3548736. .042 5430.0 646.30 3509409. .044 5492.0 646.40 3550029. .046 5594.0 646.50 3616521. .048 5633.0 646.60 3642298. .050 5589.0 646.50 3613289. .055 5521.0 646.40 3568774. l .060 55E9.0 646.50 3593894. .065 5475.0 646.30 3558493. .070 5510.0 646.40 3561664. .075 5472.0 646.30 3536554. .080 5376.0 646.20 3473971. .085 5402.0 646.20 3490772. .090 5310.0 646.10 3430791. .095 5311.0 646.10 3431437.
1 (Continued)
- - s, 1 1
)
TABLE 6.2.1-258 (Cont'd.) (Sheet 2 of 3) MASS / ENERGY RELEASE DATA FOR 100 SQ INFH i HOT LEG GUILLOTINE BREAK FOR CONTAINMP.T SU8 COMPARTMENT ANALYSIS (FLOW FROM STEAM GENERATOR SIDE) 1 i Time Flow Rate Enthalpy Energy Rate
'(Seconds) (LB/SEC) (BTU /LB) (BTU /SEC) .100 5269.0 646.10 3404301. ; .110 5236.0 646.00 3382456. .120 5174.0 )
645.90 3341887.
.130 5112.0 645.80 3307788. .140 5066.0 645.70 3271116. .150 5026.0 645.70 3245288. .160 5028.0 645.70 3246580. .170 5009.0 645.60 3233810. .180 4944.0 645.50 3191352. .190 4887.0 645.50 3154559. .200 4847.0 645.40 3128254. .220 4744.0 645.20 3060829. .240 4686.0 645.10 3024229. .260 )
4629.0 645.10 2986168. O .280
.300 .320 4571.0 4509.0 4455.0 645.00 644.90 644.80 2948295.
2907854. 2872534.
.340 4403.0 644.70 2838514. .360 4364.0 644.70 2813471. .380 4348.0 644.60 2802721.
i .400 4340.0 644.60 2801432. l
.420 4358.0 644.70 2809603. .440 4386.0 644.70 2827654. .460 4424.0 644.80 2852595. .480 4456.0 644.80 2873229. .500 4474.0 644.90 2885283. .550 4498.0 645.00 2901210. .600 4469.0 645.10 2966854. .650 4513.0 645.20 2911788. .700 4541.0 645.40 2930761. .750 4523.0 645.40 2919144. .800 4504.0 645.50 2907332. .850 4495.0 645.60 2901972. .900 4492.0 645.70 2900484. .950 4513.0 645.80 2914495.
1.000 4544.0 645.90 2934970. , 1.100 4578.0 646.10 2957846. I 1.200 4573.0 646.30 2955530. 1.300 4602.0 646.50 2975193. l.400 4597.0 O 646.70 2972880. (Continued) w-_____________________-
TABLE 6.2.1-25B (Cont'd.) (Sheet 3 of 3) MASS / ENERGY RELEASE DATA FOR 100 SQ INCH HOT LEG GUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM STEAM GENERATOR SIDE) Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC) 1.500 4591.0 646.90 2969918. 1.600 4586.0 647.10 2967601. 1.700 4564.0 647.30 2954277. 1.800 4545.0 647.60 2943342. 1.900 4520.0 647.90 2928508. 2.000 4490.0 648.20 2910418, 2.500 4390.0 650.50 2855695. 3.000 4323.0 653.80 2826377. 3.500 4180.0 657.90 2750022. 4.000 3945.0 622.80 2614746. O l 9
e () TABLE 6.2.1-26A (Sheet 1 of 3) MASS / ENERGY RELEASE DATA FOR 600 SQ INCH , HOT LEG GUILLOTINE BREAK FOR CONTAINMENT ' SUBCOMPARTMENT ANALYSIS (FLOW FROM REACTOR VESSEL SIDE) Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC) 0.000 0.0 646.90 0.
.001 5745.0 646.70 3715292. .002 10860.0 640.30 7018818. .003 14630.0 645.50 9443665. ! .004 17130.0 644.70 11043711. l .005 21120.0 644.70 13616064. l .006 25290.0 644.70 16304463. .007 25230.0 644.70 16265781. .008 25170.0 644.70 16227099. .009 25110.0 644.70 16188417. .010 25060.0 644.70 16156182. .012 25000.0 644.70 16117500.
g'~'N .014 24960.0 644.70 16091712. ( ,,) .016 24940.0 644.70 16078818.
.018 24920.0 644.70 16065924. .020 24920.0 644.70 16065924. .022 24930.0 644.70 16072371. .024 24950.0 644.70 16085265. .026 ?4970.0 644./0 16098159. .028 26000.0 644.70 16117500. .030 25030.0 644.70 16136841, .032 25060.0 644.70 16156182. .034 25100.0 644.70 16181970. .036 25150.0 644.70 16214205. .038 25200.0 644.70 16246440. .040 25250.0 644.70 16278675. .042 25330.0 644.70 16330251. .044 25380.0 644.80 16365024. .046 28660.0 645.50 18500030. .048 29990.0 645.80 19367542. .050 29810.0 645.70 19248317. .055 26480.0 645.00 17079600. .060 25370.0 644.70 16356039. .065 25350.0 644.70 .070 16343145.
25330.0 644.70 16330251.
.075 25290.0 644.60 16301934. .080 25230.0 644.60 16263258.
f r .085 25170.0 644.50 16222065.
.090 25110.0 644.50 16183395. .095 25030.0 644.50 16131835.
i TABLE 6.2.1-26A (Cont'd,) (Sheet 2 of 3) MASS / ENERGY RELEASE DATA FOR 600 SQ INCH HOT LEG GUILLOTINE BREAK FOR CONTAINMENT i SUBCOMPARTMENT ANALYSIS { j (FLOW FROM REACTOR VESSEL SIDE) 1 Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC)
.100 24940.0 644.40 16071336. i 15798236. j .120 24520.0 644.30 15666944. j .130 24320.0 644.20 ' .140 24170.0 644.20 15570314. .150 24050.0 644.20 15493010. .160 23990.0 644.20 15454358. , .170 23980.0 644.20 15447916. )
644.20 15454355. !
.180 23990.0 .190 24000.0 644.20 15460800. .200 24000.0 644.20 15460800. .220 23920.0 644.30 15411656. .240 23750.0 644.30 15302125. .260 23470.0 644.30 15121721. .280 23110.0 644.40 14892084. 1 .300 22690.0 644.40 14621436. .320 22360.0 644.40 14408784. .340 22190.0 644.50 14301455.
I
.360 22130.0 644.60 14264998. .380 22080.0 644.70 14234976. .400 21940.0 644.80 14146912.
644.90 14026575. j
.420 21750.0 ' .440 21600.0 645.00 13932000. .460 21540.0 645.10 13895454. .480 21540.0 645.20 13897608. .500 21510.0 645.30 13880403. .550 21130.0 645.40 13637302. .600 20896.0 645.40 13486584.
l .650 20820.0 645.80 13445556.
.700 20630.0 646.00 13326980.
646.20 13214790. 20450.0
.750 4 .800 20300.0 646.40 13121920. .850 20140.0 646.50 13020510. .900 19960.0 646.80 12910128. .950 19760.0 647.00 12784720.
1.000 19560.0 647.20 12659232. 1.100 19100.0 647.80 12372980. 1.200 18630.0 648.50 12081555. 1.300 18400.0 649.30 11947120. 1.400 18240.0 650.20 11859648. (Continued) l
m i l 1 O ! (j TABLE 6.2.1-26A (Cont'd. ) (Sheet 3 of 3) MASS / ENERGY RELEASE DATA FOR 600 SQ INCH HOT LEG GUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM REACTOR VESSEL SIDE) Time Flow Rate Enthalpy Energy Rate I (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC) 1.500 18070.0 651.10 11765377. 1.600 17890.0 652.10 11666069. 1.700 17710.0 653.20 11568172.
- 1.800 17530.0 654.30 11469879.
1.900 17370.0 655.50 11386035. 2.000 17230.0 656.70 11314941. 2.500 16490.0 662.70 10927923, 3.000 15730.0 666.10 10477753. 3.500 15130.0 667.50 10099275. 4.000 14510.0 668.40 9698484. 4 I l l 1 l f V
TABLE 6.2.1-268 (Sheet 1 of 3) i MASS / ENERGY RELEASE DATA FOR 600 SQ INCH HOT LEG GUILLOTINE BREAK FOR CONTAINMENT l SUBCOMPARTMENT ANALYSIS (FLOW FROM STEAM GENERATOR SIDE) Time Flow Rate Enthalpy Energy Rate - (Seconds) (LB/SEC) (BTU /LB) (BTV/SEC) . l 0.000 0.0 646.90 0. j
.001 5490.0 646.40 3548736. l .002 10160.0 645.80 6561328, 1 .003 14840.0 645.00 9580704. I .004 18100.0 645.00 11674500. j .005 21130.0 644.50 13618285. f .006 25320.0 644.50 16318740. .007 25300.0 644.40 16303320. .008 25320.0 644.40 16316208. .009 25370.0 644.40 16348428. .010 27680.0 644.90 17850832. .012 25350.0 644.30 16333005. .014 25300.0 644.20 16298260. .016 25230.0 644.10 16250643. .018 25160.0 644.10 16205556. 1 .020 25090.0 644.00 16157960. .022 25020.0 644.00 16112880. .024 24980.0 643.90 16084622. .026 24960.0 643.90 16071744. .028 24960.0 643.80 16089248. .030 24990.0 643.80 16088562. .032 25050.0 643.80 16127190. .034 25130.0 643.80 16178694. .036 25220.0 643.70 16234114. .038 25320.0 643.70 16298484. .040 26490.0 644.00 17059560. .042 25330.0 643.70 16304921. .044 25310.0 643.70 16292047. .046 27870.0 644.20 17953854. .048 29090.0 644.60 18751414. .050 29230.0 644.60 18841658. .055 26500.0 644.10 17068650. .060 25440.0 643.90 16380816. .065 25400.0 643.90 16355060. .070 25360.0 643.90 16329304. .075 25350.0 644.00 16325400. .080 25330.0 644.00 16312520. .085 25280.0 644.00 16280320. .090 25180.0 644.10 16218438. .095 25060.0 644.10 16141145.
l (Continued)
() TABLE 6.2.1-268(Cont'd.)(Sheet 2of3) MASS / ENERGY RELEASE DATA FOR 600 SQ INCH HOT LEG GUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM STEAM GENERATOR SIDE) Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC)- (BTU /LB) (BTU /SEC)
.100 24940.0 .644.10 .16063854. .110 24780.0 -644.10 15960798. .120 24650.0 644.10 15877065. .130 24480.0 644.10 15767568. .140 24320.0 644.10 15664512. .150 24220.0 644.10 15600102. .160 24160.0 644.10 15561456. .170 24090.0 644.10 15516369. .180 24030.0 644.10 15477723. .190 24020.0 644.10 15471282. .200 24000.0 644.10 15458400. .220 23910.0 644.10 15400431. .240 23730.0 644.10 15284493. .260 23460.0 644.10 15110586. .280 23100.0 644.10 14878710.
O .300
.320 .340 22760.0 22490.0 22310.0 644.10 644.10 644.10 14659716.
14485809. 14369871.
.360 22200.0 644.20 14301240. .380 22100.0 644.30 14239030.
21970,0
.400 644.40' 14157468. .420 21830.0 644.50 14069435. 1 .440 21710.0 644.60 13994266. 1 .460 21640.0 644.70 13951308. , .480 21600.0 644.80 13927680. .E00 21540.0 644.90 13891146. .550 21190.0 645.10 13669669. .600 20970.0 645.30 13531941. .650 20860.0 645.50 13465130. .700 20680.0 645.70 13353076. .750 20500.0 645.90 13240950. .800 20350.0 646.10 13148135. .850 20190.0 646.30 13048797. .900 20020.0 646.50 12942930. ' .950 19830.0 646.70 12824061.
1.000 19830.0 646.70 12824061. 1.100 19190.0 647.40 12423606. 1.200 18720.0 648.00 12130560. 1.300 18420.0 648.80 11950896. 1.400 18260.0 649.60 11861696. O (Continued)
n TABLE 6.2.1-26B (Cont'd. ) (Sheet 3 of 3) MASS / ENERGY RELEASE DATA FOR 600 SQ INCH HOT LEG GUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM STEAM GENERATOR SIDE) Time Flow Rate Enthalpy Ener0y Rate (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC) 1.500 18090.0 650.50 11767545. 1.600 17920.0 651.40 11673088. 1.700 17730.0 652.50 11568825. 1.800 17560.0 653.60 11477216. 1.900 17400.0 654.80 11393520. 2.000 17260.0 656.00 11322560. 2.500 16510.0 662.10 10931271. 3.000 15740.0 665.80 '0379692. 3.500 15100.0 667.30 . iO2922. 4.000 14510.0 668.40 9698484. O i i l Oi
v
/N TABLE 6.2.1-27A l (Sheet 1 of 3)
MASS / ENERGY RELEASE DATA FOR 350 SQ INCH DISCHARGE l.EG GUILLOTINE BREAK FOR CONTAINMENT-SUBCOMPARTMENT ANALYSIS (FLOW FROM REACTOR COOLANT PUMP SIDE) Time Flow Rate Enthalpy Energy Rate (Seconds) (LS/SEC) (BTU /LB) (BTU /SEC) 0.000 0. 0 566.20 0.
.001 5466.0 566.00 3093756. .002 10140.0 565.30 5732142. .003 12880.0 564.10 7265608. .004 14150.0 562.80 7363620. .005 13680.0 561.70 7684056. .006 12550.0 561.40 7045570. .007 12540.0 561.40 7039956. .008 12540.0 561.40 7039956. .009 12540.0 561.40 7039956. .010 12530.0 561.40 7034342. .012 12540.0 561.40 7039956. .014 12550.0 561.40 7045570. .016 15590.0 562.20 8764698. / .018 19340.0 563.30 10894222. .020 21340.0 564.00 12035760. .022 22700.0 564.40 12811880. .024 23210.0 564.50 13102045. .026 23230.0 564.50 13113335. .028 23130.0 564.50 13056885.
l .030 23070.0 564.50 13023015. l .032 23140.0 564.50 13062530.
.034 23360.0 564.50 13186720.
l
.036 23680.0 564.60 13369728. .038 24050.0 564.80 13583440. .040 24370.0 564.90 13766613. .042 24620.0 565.00 13910300. .044 24740.0 565.00 13978100. .046 24700.0 565.00 13955500. .048 24510.0 564.90 13845699. .050 24180.0 564.80 13656864. .055 23060.0 564.50 13017370. .060 22170.0 564.20 12508314. .065 22050.0 564.10 12438405. .070 22500.0 564.20 12694500. .075 23040.0 564.40 13003776. .080 23080.0 564.40 13026352. .085 22470.0 564.20 12677574. .090 21520.0 563.90 12135128. .095 20530.0 563.50 11568655.
O (Continued)
l l TABLE 6.2.1-27A (Cont'd.) (Sheet 2 of 3) MASS / ENERGY RELEASE DATA FOR 350 SQ INCH DISCHARGE LEG GUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM REACTOR COOLANT PUMP SIDE) Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC)
.100 19820.0 563.20 11162624. .110 19790.0 563.20 11145728. i .120 20879.0 563.50 1176-0245. { .130 21440.0 563.70 12085728. l .140 21.30.0 563.60 11908868. .150 21090.0 563.60 11886324. .160 21250.0 563.60 11976500. .170 21080.0 563.50 11878580. l .180 20540.0 563.30 11570182. l .190 20430.0 563.30 11508219. l .200 20650.0 563.30 11632145. .220 20420.0 563.20 11500544. .240 31220.0 563.50 11957470. .260 20760.0 563.30 11694108. , .280 20570.0 563.20 11585024. l .300 20480.0 563.20 11539968. .320 20710.0 563.20 11663872. .340 20750.0 563.30 11688475. .360 20670.0 563.20 11641344. .380 20430.0 563.10 11504133. .400 20480.0 563.10 11532288. .420 20630.0 563.20 11618816. .440 20590.0 563.20 11596288. .460 20570.0 563.20 11585024. .480 20400.0 563.10 11487240. .500 20440.0 563.10 11509864. .550 20440.0 563.10 11509784. .600 20380.0 563.10 11475978. .650 20350.0 563.10 11459085. , .700 20330.0 563.20 11449856. .750 20260.0 563.20 11410432. .800 20250.0 563.30 11406825. .850 20190.0 563.30 11373027. .900 20180.0 563.30 11369412. .950 20140.0 563.50 11348890.
1.000 20120.0 563.60 11339532. 1.100 20050.0 563.80 11304190. 1.200 20070.0 564.10 11321487. 1.300 20040.0 564.40 11310576. 1.400 19980.0 564.60 11280708. { (Continued)
i p TABLE 6.2.1-27A (Cont'd. ) (Sheet 3 of 3) MASS / ENERGY RELEASE DATA FOR 350 SQ INCH DISCHARGE LEG GUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM REACTOR COOLANT PUMP 510E) Time Flow Rate Enthalpy Energy Rate-(Seconds) (LB/SEC) (BTU /LB) (BTU /SEC) 1.500 19920.0 564.93 11252808. - 1.600 19880.0 565.20 11236176. 1.700 19830.0 565.60 11215848. i 1.800 19750.0 565.80 11174550. 1.900 19750.0 565.80 11174550. l 2.000 19580.0 566.40 11090112. 2.500 19190.0 567.40 10888406. 3.000 18620.0 568.00 10576160. 3.500 18000.0 568.30 10229400. l 4.000 17420.0 568.40 9901528. D 0 0
TABLE 6.2.1-278 TSheet1of3T~ MASS / ENERGY RELEASE DATA FOR 350 SQ INCH DISCHARGE LEG CUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM REACTOR COOLANT PUMP SIDE) Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (8TU/SEC) 0.000 0.0 566.20 0.
.001 5070.0 565.30 2866071. .002 8983.0 564.40 5070005. .003 13010.0 564.10 7338941. .004 15030.0 563.00 8461890. .005 14850.0 561.80 8342730. .006 13800.0 561.50 7748700. .007 14440.0 561.60 8109504. .008 14700.0 561.60 8255520. .009 14550.0 561.50 R169825. J .010 14430.0 561.50 8102445. .012 14350.0 561.40 8056090. .014 14230.0 561.40 7988722. ! .016 14890.0 561.60 8362224. l .018 19360.0 562.90 10897744. .020 21220.0 563.50 11957470. .020 22480.0 563.90 12676472. l .024 23120.0 564.00 13039680. l .026 23260.0 564.00 13116640. .028 23210.0 563.90 13088119. .030 23180.0 563.90 13071202. .032 23250.0 563.90 13110675. l .034 23440.0 563.90 13217816. I .036 23720.0 564.00 13378080. l .038 24040.0 564,00 13558560. .040 24340.0 564.10 13730194. .042 24540.0 564.20 13845468. .044 24650.0 564.20 13907530. .046 24620.0 564.10 13888142. .048 24450.0 564.00 13789800. .050 24160.0 563.90 13623824. .055 23180.0 563.50 13061930. .060 22380.0 563.20 12604416. .065 22260.0 563.20 12536832. ' .070 22630.0 563.30 12747479. .075 23080.0 563.30 13000964. .080 23090.0 563.30 13006597. .085 22480.0 563.10 12658488. .090 21580.0 562.70 12143066. .095 20660.0 562.20 11615052.
(Continued) 9
('~'T TABLE 6.2.1-278 (Cont'd.) (Sheet 2 of 3) O MASS / ENERGY RELEASE DATA FOR 350 SQ INCH DISCHARGE LEG GUILLOTINE 8REAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM REACTOR COOLANT PUMP SIDE) Time Flow Rate Enthalpy Energy Rate (Seconds) (L8/SEC) (BTU /LB) (BTU /SEC)
. '. 0 0 19980.0 561.90 11226762. .110 19950.0 561.70 11205915. .120 21020.0 562.00 11813240. .130 21520.0 562.20 12098544.
140 21240.0 562.00 11936880.
.150 91230.r 562.00 11931260.
160 21360.0 562.00 12004320.
.170 21190.0 561.90 11906661. .180 20700.0 561.70 11627190. .190 20590.0 561.70 11565403. .200 20760.0 561.70 11660892. .220 20570.0 561.60 11552112. .240 21330.0 561.90 11985327. .260 20870.0 561.80 11724766. .280 20710.0 561.70 11632807.
T .300 20620.0 561.70 11582254.
.320 20820.0 561.80 11696676. .340 20880.0 561.80 11730384. .360 20780.0 561.80 11674204. .380 20550.0 561.70 11542935. .400 20610.0 561.70 11576637. l .420 20740.0 561.80 11651732. .440 20700.0 561.80 11629260. .460 20680.0 561.80 11618024. .480 20510.0 561.80 11522518. .500 20560.0 561.80 11550608. .550 20540.0 561.80 11539372. .600 20490.0 561.80 11511282. .650 20450.0 561.90 11490855. .700 20430.0 561.90 11479617. .750 20370.0 561.90 11445903. .800 20360.0 562.00 11442320. .850 20300.0 562.00 11408600. .900 20300.0 562.10 11410630. .950 20260.0 562.10 11388145.
1.000 20240.0 562.10 11376904. 1.100 20180.0 562.20 11345196. 1.200 20210.0 562.40 11366104. 1.300 20190.0 562.50 11356875. 1.400 20140.0 562.60 11330764. (D l '- ' (Continued)
TABLE 6.2.1-278 (Cont'd.) (Sheet 3 of 3) MASS / ENERGY RELEASE DATA FOR 350 SQ INCH DISCHARGE LEG GUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM REACTOR COOLANT PUMP SIDE) Time Flow Rate Enthalpy Energy Rate Qeconds) (LB/SEC) (BTU /LB) (BTU /SEC) 1 500 20100.0 562.70 11310270. 1.600 20080.0 562.80 11301024. 1.700 20040.0 563.00 11282520. 1.800 19980.0 563.10 11250738. 1.900 19920.0 563.10 11216952. 2.000 19850.0 563.20 11179520. ' 2.500 19500.0 563.70 10992150. 3.000 18950.0 564.10 10689695. 3.500 18310.0 564.50 10335995. 4.000 17700.0 564.90 9998730. O l l l l l 9
v - l j O TABLE 6.2.1-28A
,h TSheet1of3) i MASS / ENERGY RELEASE DATA FOR 480 SQ INCH ,
DISCHARGE LEG GUILLOTINE BREAK FOR I CONTAINMENT SUBCOMPARTMENT ANALYSIS { i (FLOW FROM HEACTOR COOLANT PUMP SIDE) Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC) 0.000 0.0 566.20 0.
.001 6087.0 565.80 3444025. .002 10760.0 564.70 6076172. .003 13650.0 563.50 7691775. j .004 14600.0 562.30 8209580. .J .005 14350.0 561.40 8056090. ! .006 17200.0 561.40 9656080. j .007 17180.0 561.40 9644852. .008 17160.0 561.40 9633624. .009 17140.0 561.40 9622396. .010 17120.0 561.40 9611168. .012 17080.0 561.40 9588712. .014 17060.0 561.40 9577484. ~ .016 17030.0 561.40 9560642. .018 17020.0 561.30 9553326.
Os .020 17000.0 561.30 9542100.
.022 16980.0 561.30 9530874. .024 16960.0 561.20 9517952. .026 16950.0 561.20 9512340. .028 16940.0 561.20 9506728. .030 16930.0 561.20 9501116. l .032 16930.0 561.20 9501116. .034 16940.0 561.20 9506728. .036 16960.0 561.20 9517952. .038 16990.0 561.20 9534788. l .040 17030.0 561.20 9557236. l .042 17070.0 561.20 9579684. .014 17130.0 561.20 9613356. .046 17190.0 561.20 9647028. .048 28780.0 563.70 16223286.
- .050 28190.0 563.50 15885065.
l .055 29920.0 563.90 16871888.
.060 29130.0 563.70 16420581. .065 28900.0 563.60 16288040. .070 29400.0 563.80 16575720. .075 29940.0 564.00 16886160. .080 29730.0 564.00 16767720. .085 28880.0 563.70 16279656. .090 27730.0 563.40 15623082. .095 26970.0 563.10 15186807.
(Continued)
I TABLE 6.2.1-28A (Cont'd.)(Sheet 2 of 3) MASS / ENERGY RELEASE DATA FOR 480 SQ INCH DISCHARGE LEG GUILLOTINE BREAK FOR CONTAINMENT SU8 COMPARTMENT ANALYSIS (FLOW FROM REACTOR COOLANT PUMP SIDE) Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC)
.100 26970.0 563.20 15189504. ! .110 28060.0 563.60 15814616. .120 28020.0 563.60 15792072. .130 27110.0 563.30 15271063. i .140 27280.0 563.30 15366824. l I .150 27850.0 563.50 15693475. .160 27450.0 563.40 15465330. i .170 26880.0 563.30 15141504. .180 27270.0 563.40 15363918. .190 27850.0 563.60 15696260. .200 27480.0 563.50 15484980. .220 27130.0 563 40 15285042. .240 27000.0 563.40 15211800. .260 27270.0 563.50 15366645. .280 27040.0 553.A0 15234336. .300 27270.0 563.50 15366645. .320 26720.0 563.30 15051376. ' .340 26930.0 563.40 15172362. .360 26890.0 563.30 15147137. .380 26990.0 563.40 15206166. .400 26620.0 563.30 14995046. .420 26650.0 563.30 15011945. .440 26740.0 563.30 15062642. .460 26800.0 563.30 15096440. .480 26650.0 563.30 15011945. .500 26440.0 563.20 14891008. .550 26530.0 563.30 14944349. .600 26350.0 563.30 14842955. .650 26320.0 563.40 14828688. .700 26220.0 563.50 14774970. .750 26070.0 563.60 14693052. i .800 25980.0 563.70 14644926. .850 25810.0 563.90 14554259. .900 25680.0 564.00 14483520. .950 25520.0 564.20 14398384.
1.000 25380.0 564.40 14324472. 1.100 25100.0 564.90 14178990. 1.200 24950.0 565.40 14106730. 1.300 24760.0 565.80 14009208. I 1.400 24560.0 566.30 13908328. l (Continued) Ol l l
TABLE 6.2.1-28A (Cont'd. ) (Sheet 3 of 3) MASS / ENERGY RELEASE DATA FOR 480 SQ INCH OISCHARGE LEG GUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM REACTOR COOLANT PUMP SIDE) l Time Flow Rate Enthalpy Energy Rate , (Seconds) (L8/SEC) ,( BTU /LB) (BTU /SEC) 1.500 24380.0 566.70 13816146. 1.600 24250.0 567.10 13752175. 1.700 24120.0 567.50 13688100. 1.800 23950.0 567.90 13601205. 1.900 23770.0 568.20 13506114. 2.000 23610.0 568.60 13424646. 2.500 22800.0 569.70 12989160. 3.000 22060.0 570.40 12583024. 3.500 21200.0 570.60 12096720. 4.000 20410.0 570.80 11650028. O O
TABLE 6.2.1-28B ISheet 1 of 5I~ MASS / ENERGY RELEASE DATA FOR 480 SQ INCH D;SCHARGE LEG GUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM REACTOR VESSEL SIDE) Time Flow Rate Enthalpy Energy Rate (LB/SEC) (BTU /LB) (BTU /SEC) (Seconds)
- 0. 0 566.20 0.
0.000
.001 6195.0 565.90 3505751. .002 11350.0 565.10 6413885. .003 14200.0 563.80 8005960. .004 14490.0 562.30 8147727. l .005 14340.0 561.40 8050476. .006 17190.0 561.30 9648747. .007 17160.0 561.30 9631908. .008 17130.0 561.30 9615069. l .009 17090.0 561.30 9592617. .010 17060.0 561.30 9575778. ' .012 17010.0 561.30 9547713. .014 16970.0 561.30 9525261. , .016 16930.0 561.30 9502809. l .018 16900.0 561.20 9484280. .020 16880." 561.20 9473056. .022 16870.0 561.20 9467444. .024 16870.0 561.20 9467444. .026 16880.0 561.20 9473056. .028 16890.0 561.20 9478668. .030 16910.0 561.20 9489892. .032 16930.0 561.20 9501116. .034 16970.0 561.10 9521867. .036 17000.0 561.10 9538700. ) .038 17050.0 561.10 9566755. .040 17100.0 561.10 9594810. .042 17160.0 561.10 9628476. .044 17200.0 561.10 9650920. .046 23470.0 562.30 13197181. : .048 23480.0 562.30 13202804. .050 28270.0 563.40 15927318. .055 29300.0 563.70 16516410. .060 28890.0 563.60 16282404. .065 28820.0 563.50 16240070. .070 29360.0 563.60 16547296. .075 29960.0 563.70 16888452. .080 29870.0 SFV 70 16837719. .085 29050.0 563.40 16366770. .090 27870.0 563.10 15693597. .095 27030.0 562.80 15212484.
(Continued)
1
)
TABLE 6.2.1-288(Cont'd.)(Sheet 2of3) ) MASS / ENERGY RELEASE DATA FOR 480 SQ INCH DISCHARGE LEG GUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM REACTOR VESSEL SIDE) Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC)
.100 26950.0 562.70 15164765. .110 28090.0 562.90 15811861. .120 28180.0 562.90 15862522. l .130 27240.0 562.60 15325224. .140 27350.0 562.50 15384375. .150 27980.0 562.60 15741548. .160 27640.0 562.50 15547500. .170 27040.0 562.30 15204592.
. .180 27380.0 562.30 15395774. l .190 27980.0 562.40 15735952.
.200 27650.0 562.30 15547595. .2.20 27260.0 562.10 15322846. .240 27220.0 562.00 15297640. i .260 27420.0 562.00 15410040. .280 27220.0 561.90 i
(n
'd l 300 .320 27470.0 26910.0 561.90 561.70 15294918.
15435393. 15115347.
.340 27150.0 561.70 15250155. l .360 27070.0 561.70 15205219. .380 27180.0 561.70 15267006. .400 25830.0 561.60 15067728. .420 26850.0 561.60 15078960. .440 26930.0 561.60 15123888. .460 26990.0 561.60 15157584. .480 26850.0 561.60 15078960. , .500 26620.0 561.60 14949792. .550 26720.0 561.70 15000624. .600 26530.0 561.70 14901901. l .650 26500.0 561.80 14887700. l .700 26410.0 561 80 14837138. I .750 26260.0 561.90 14755494. .800 26180.0 562.00 14713160. .850 26010.0 562.00 14617620. .900 25900.0 562.10 14558390. .950 25750.0 562.10 14474075.
1.000 25630.0 562.20 14409186. 1.100 25390.0 562.30 14276797. 4 1.200 25280.0 562.40 14217472. 1.300 25130.0 562.50 14135625. 1.400 24960.0 562.60 14042496. (Continued)
TABLE 6.2.1-288 (Cont'd.) (Sheet 3 of 3) MASS / ENERGY RELEASE DATA FOR 480 SQ INCH DISCHARGE LEG GUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM REACTOR VESSEL SIDE) Time Flow Rate Enthalpy Energy Rate (Seconds) (L8/SEC) (BTU /LB) (BTU /SEC) 1.500 24830.0 562.80 13974324. 1.600 24730.0 562.90 13920517. s 1.700 24630.0 563.00 13866690. , 1.800 24490.0 563.10 13790319. { 1.900 24340.0 563.20 13708288. 4 2.000 24200.0 563.30 13631860. 2.500 23470.0 563.30 13631860. 3.000 22760.0 564.10 12838916. 3.500 21860.0 564.60 12342156. 4.000 21030.0 565.20 11886156. O O
O TABLE 6.2.1-29A d (Sheet 1 of 3) MASS / ENERGY RELEASE DATA FOR 430 SQ INCi! DISCHARGE LEG GUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM STEAM GENERATOR SIDE) Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC) 0.000 0.0 565.80 0,
.001 6401.0 565.60 362040G. .002 11550.0 546.80 6523440. .003 14600.0 563.50 8227100. .004 14680.0 562.10 8251628. .005 15420.0 561.50 8658330. .006 15400.0 561.50 8647100. .007 15380.0 561.50 8535870.
! .008 15350.0 561.50 8619025.
.009 15330.0 561.50 8607795. .010 15310.0 561.50 8596565. .012 15270.0 561.50 8574105. .014 15250.0 561.50 8562875. .016 15240.0 561.60 8558784.
O' .018
.020 .022 15230.0 15230.0 15240.0 561.60 561.60 561.60 8553168.
8553168. 8558784.
.024 15250.0 561.60 8564400. .026 15260.0 561.60 8570016.
l .028 15280.0 561.60 8581248.
.030 15300.0 561.60 8592480. .032 15320.0 561.60 8603712. .034 15350.0 561.60 8620560. .036 15380.0 561.60 8637468. .038 15420.0 561.60 8659872. .040 23680.0 563.50 13343680. .042 25020.0 563.80 14106276. .044 25390.0 563.90 14317421. .046 26400.0 564.20 14894880. .048 25600.0 564.00 14438400. .050 25260.0 563.90 14244114. .055 25010.0 563.70 14098137. .060 25320.0 563.80 14275416. .065 25300.0 563.80 14264140. .070 24760.0 563.60 13954736. .075 24090.0 563.40 13572306. .080 23670.0 563.20 13330944. .085 23630.0 563.20 13308416. .090 23780.0 563.20 13392896. .095 23890.0 563.30 13457237.
(Continued)
l TABLE 6.2.1-29A (Cont'd.)(Sheet 2 of 3) MASS / ENERGY RELEASE DATA FOR 430 SQ INCH DISCHARGE LEG GUILLOTINE BREAK FOR . CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM STEAM GENERATOR SIDE) ) l Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC)
.100 23810.0 563.20 13409792. .110 23350.0 563.10 13148385. .120 23050.0 563.00 12977150. .130 23320.0 563.10 13131492. .140 23410.0 563.10 13182171. ) .150 23020.0 563.00 12960260. .160 23040.0 563.00 12971520. .170 23530.0 563.20 13252096. .180 23750.0 563.30 13378375. .190 23670.0 563.30 13333311. .200 23610.0 563.30 13299513. .220 23140.0 563.30 13034762. .240 23040.0 563.40 12980736. l .260 23520.0 563.60 13255872. j l .280 23440.0 563.80 13215472. .300 23200.0 563.90 13082480. .320 22970.0 564.00 12955080. .340 23180.0 564.30 13080474. , .360 23230.0 564.50 13113335. .380 23040.0 564.70 13010688. .400 22720.0 564.80 12832256. .420 22910.0 565.10 12946441. .440 22900.0 565.40 12947660. .460 22900.0 565.60 12952240. .480 22730.0 565.80 12860634. .500 22670.0 566.10 12833487. .550 22610.0 566.70 12813087. .600 22450.0 567.40 12736130. .650 22410.0 568.10 12731121. .700 22240.0 568.70 12647888.
l .750 22180.0 569.30 12627074.
.800 22060.0 570.00 12574200. .850 21960.0 570.60 12530376. .900 21880.0 571.20 12497856. .950 21770.0 571.70 12445909.
1.000 21700.0 572.30 12418910. 1.100 21500.0 573.30 12325950. 1.200 21340.0 574.30 12255562. 1.300 21220.0 575.20 12205744. 1.400 21110.0 576.00 12159360. (Continued)
f TABLE 6.2.1-29A (Cont'd.)(Sheet 3 of 3) MASS / ENERGY RELEASE DATA FOR 430 SQ INCH. DISCHARGE LEG GUILLOTINE BREAK FOR CONTAINMENT SUSCOMPARTMENT ANALYSIS (FLOW FROM STEAM GENERATOR SIDE) Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (8TU/SEC) 1.500 21020.0 576.80 12124336. 1.600 20940.0 577.60 12094944. 1.700 20850.0 578.20 12055470. 1.800 20740.0 578.80 12004312, 1.900 20610.0 579.30 11939373. 2.000 20490.0 579.80 11880102. 2.500 19910.0 581.70 11581647. 3.000 19170.0 582.70 11170359. 3.500 18440.0 584,10 10770804. 4.000 17480.0 586.60 10253768. O l
)
l O I
)
TABLE 6.2.1-29B TSheet 1 of 3) MASS / ENERGY RELEASE DATA FOR 430 SQ INCH DISCHARGE LEG GUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM REACTOR COOLANT PUMP SIDE) Time Flow Rate Enthalpy Energy Rate fSeconds) (LB/SEC) (8TU/LB) (BTU /SEC) 0.000 0.0 565.80 0.
.001 6275.0 565.40 3547885. .002 10850.0 564.40 6123740. .003 13940.0 563.20 7851008. .004 15190.0 562.20 8539818. .005 15430.0 561.40 8662402. .006 15420.0 561.40 8656788. .007 15410.0 561.40 8651174. .008 15410.0 561.30 8649633. .009 15410.0 561.30 8649633. .010 15420.0 561.30 8655246. .012 16840.0 561.50 9455660. .014 16300.0 561.40 9150820. .016 15420.0 561.20 8653704. .018 15410.0 561.10 8646551. .020 15400.0 561.10 8640940. .022 15390.0 561.10 8635329. .024 15380.0 561.00 8628180.
l .026 15360.0 561.00 8616960.
.028 15350.0 561.00 8611350. .030 15340.0 561.00 8065740. .032 15350.0 560.90 860S815. .034 15390.0 560.90 8632251. .036 16650.0 561.20 9343980. .038 19870.0 561.90 11164953. .040 17700.0 561.40 9936780. .042 25030.0 563.20 14096896. .044 26520.0 563.60 14946672. .046 25050.0 563.20 14108160. .048 25960.0 563.50 14628460. .050 25550.0 563.30 14392315. .055 25310.0 563.30 14257123. .060 25440.0 563.40 14332896. .065 25310.0 563.30 14257123. .070 24760.0 563.20 13944832. .075 24110.0 563.00 13573930. .080 23700.0 562.90 13340730.
l .085 23640.0 562.80 13304592. i .090 23780.0 562.90 13385762.
.095 23870.0 562.90 13436423.
I (Continued) a______________.
I TABLE 6.2.1-298 (Cont'd.)(Sheet 2 of 3)
)
k./ MASS / ENERGY RELEASE DATA FOR 430 SQ INCH DISCHARGE LEG GUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM REACTOR COOLANT PUMP SIDE) Time Flow Rate Enthalpy Energy Rate l (Scconds) (LB/SEC) (BTU /LB) (BTU /SEC)
.100 23d00.0 562.90 13397020. .110 23330.0 562.70 13127791. .120 23080.0 562.70 12987116. .130 23380.0 562.70 13155926. .140 23440.0 562.80 13192032. .150 23030.0 562.70 12958981. .160 23090.0 562.70 12992743. .170 23560.0 562.80 13259568. .180 23760.0 562.90 13374504.
l .190 23680.0 562.90 13329472. ! .200 23640.0 562.90 13306956.
.220 23190.0 562.80 13051332. .240 23120.0 562.80 13011936. .260 23570.0 563.00 13269910. .280 23510.0 563.00 13236130. /. -g .300 23280.0 563.00 13106640. \- 'j .320 23070.0 563.00 12988410. .340 23290.0 563.20 13116928. .360 23350.0 563.20 13150720. .380 23190.0 563.30 13062927. .400 22880.0 563.30 12888304. .420 23080.0 563.40 13003272. .440 23090.0 563.50 13011215. .460 23100.0 563.60 13019160. .480 22950.0 563.70 12936915. .500 22900.0 563.70 12908730. .550 22880.0 564.00 12904320. .600 22760.0 564.30 12543468. .650 22760.0 564.60 12650296.
l
.700 22630.0 564.90 12783687. .750 22600.0 565.20 12773520. .800 22510.0 565.50 12729405. .850 22430.0 565.80 12690894. .900 22390.0 566.10 12674979. .950 22300.0 566.40 12630720.
1.000 22260.0 566.70 12614742. 1.100 22100.0 567.30 12537330. 1.200 21990.0 567.80 12485922. 1.300 21900.0 568.30 12445770. 1.400 21840.0 568.80 12422592.
. <'-'j (Continued) l
TABLE 6.2.1-29B (Cont'd.) (Sheet 3 of 3) MASS / ENERGY RELEASE DATA FOR 430 SQ INCH DISCHARGE LEG GUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM REACTOR COOLANT PUMP SIDE) Time flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) , (BTU /SEC) 1.500 21780.0 569.30 12399354. . 1.600 21720.0 569.70 12373884. 1.700 21650.0 570.20 12344830. . 1.800 21560.0 570.60 12302136. 1.900 21450.0 571.00 12247950. 2.000 21350.0 571.30 12197255. 2.500 20840.0 572.40 11928816. 3.000 20130.0 573.10 11536503. 3.500 19490.0 573.60 11179464. 4.000 18680.0 574.60 10733528. O O
/ TABLE 6.2.1-30 (Sheet 1of37 MASS / ENERGY RELEASE DATA FOR 532 SQ INCH SUCTION LEG SLOT BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS Time- Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC) 0.000 0.0 565.80 0. .001 15610.0 565.40 8825894.
i
.002 26780.0 564.40 15114632. .003 32540.0 562.90 18316766, .004 30960.0 561.50 17384040.
fj
.005 38120.0 561.40 21400568. .006 38060.0 561.40 21366884.
l .007 37990.0 561.40 21327586. l .008 37930.0 561.40 21293902. l .009 37880.0 561.40 21265832.
.010 37830.0 561.40 21237762. .012 37750.0 561.40 21192850. .014 37700.0 561.40 21164780.
l .016 37670.0 561.40 21147938.
.018 37650.0 561.40 21136710.
Q .020 37660.0 561.40 21142324. j V .022
.024 37670.0 37700.0 561.30 561.?0 21144171.
21161010.
.026 37750.0 561.30 21189075. .028 37800.0 561.30 21217140. .030 37870.0 561.30 21256451. .032 37960.0 561.30 21306948. .034 38050.0 561.20 21353660. l .036 38130.0 561.20 21398556. l .038 50430.0 562.30 28356789. .040 57370.0 562.90 32293573. .042 59510.0 563.10 33510081. .044 59810.0 563.20 33684992.
l .046 59440.0 563.10 33470664.
.048 58890.0 563.00 33155070. .050 58340.0 562.90 32839586. .055 57690.0 562.90 32473701. .060 57800.0 562.80 32529840. .065 58140.0 562.90 32737006. .070 58750.0 562.90 33070375. i .075 60050.0 563.10 33814155. .080 61510.0 563.30 34648583. .085 62120.0 563.40 34998408. .090 61750.0 563.30 34783775. .095 61240.0 563.30 34496492.
[V (Continued)
TABLE 6.2.1-30 (Cont'd.)(Sheet 2 of 3) l h MASS / ENERGY RELEASE DATA FOR 532 SQ INCH SUCTION LEG SLOT BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS j i j Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC)
.100 61310.0 563.30 34535923. .110 58690.0 563.00 33042470. .120 56630.0 562.70 31865'/01. .130 55980.0 562.70 31499946. .140 56450.0 562.80 31770060. .150 56280.0 562.80 31674384. .160 58180.0 563.00 32755340. .170 58880.0 563.10 33155328. .180 58950.0 563.20 33200640. .190 58010.0 563.20 32671232. .200 56840.0 563.10 32006604. .220 56470.0 563.20 31803904. .240 57130.0 563.40 32187042. .260 57610.0 563.70 32474757. .280 56546.0 563.80 31877252. .300 56520.0 564.00 31877280. .320 56730.0 564.20 32007066. .340 57080.0 564.50 32221660. .360 56640.0 564.70 31984608. .380 56680.0 565.00 32024200. .400 56370,0 565.20 31860324. .420 56170.0 565.40 31758518. .440 56110.0 565.70 31741427. .460 56270.0 566.00 31848820. .480 55850.0 566.20 31622270. .500 55570.0 566.40 31474848. .550 55240.0 567.00 31321080. .600 54660.0 567.00 31023014. .650 54390.0 568.10 30898959. .700 54110.0 56:. 60 30766946. .750 53780.0 56 00 30600820. .800 53510.0 569.50 30473945. .850 53160.0 569.90 30295884. .900 52920.0 570.20 30174984. .950 526/0.0 570.60 30053502.
1.000 52430.0 570.90 29932287. 1.100 52040.0 ' 571.50 29740860. 1.200 51560.0 571.90 29487164. 1.300 51220.0 572.40 29318328. 1.400 50920.0 572.80 29166976. (Continued)
v ( \ TABLE 6.2.1-30 (Cont'd.) (Sheet 3 of 3) %.-l MASS / ENERGY RELEASE DATA FOR 532 SQ INCH SUCTION LEG SLOT BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC) 1.500 50640.0 573.10 29021784. 1.600 50340.0 573.50 28869990. 1.700 50070.0 573.80 28730166. 1.800 49920.0 574.00 28654080. 1.900 49700.0 574.30 28542710. 2.000 49480.0 574.50 28426260. 2.500 47700.0 575.30 27441810. 3.000 46220.0 575.70 26608854. 3.500 44210.0 576.30 25478223. 4.000 42000.0 578.00 24276000. O b/
I l l i l TABLE 6.2.1-31 A l I TSheet 1 of 3) MASS / ENERGY RELEASE DATA FOR 592 SQ INCH SUCTION LEG GUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS i (FLOW FROM STEAM GENERATOR SIDE) j Time Flow Rate Enthalpy Energy Rate i (Secondsj (LB/SEC) (BTU /LB) (BTU /SEC) 0.000 0.0 565.80 0.
.001 5943.0 564.00 3351852. i .002 9760.0 562.70 5491952. .003 16290.0 563.30 9176157. .004 21480.0 563.30 12099684. .005 24650.0 562.80 13873020.
1
.006 27310.0 562.40 15359144. .007 28830.0 562.60 16219758. .008 30030.0 562.80 16900884. .009 30170.0 562.70 16976659. .010 29820.0 562.60 16776732. .012 28860.0 562.20 16225092. .014 28090.0 561.80 15780962. .016 27450.0 561.40 15410430. .018 26820.0 561.00 15046020. .020 26290.0 560.70 14740803. .022 25900.0 560.40 14514360. .024 03600.0 560.20 14341120. .026 25220.0 559.90 14120678. .028 24720.0 559.70 13835784. .030 24220.0 559 'io 13551090. .032 24060.0 55 .30 13456758. .034 24240.0 559.30 13557432. .036 25130.0 559.30 14055209. .038 26570.0 559.50 14865915. j .040 27640.0 559.60 15467344. i .042 28390.0 559.80 15892722. .044 29050.0 560.00 16268000. ; .046 29710.0 560.20 16643542. .048 30310.0 560.50 16988755. .050 30750.0 560.80 17244600. .055 31610.0 561.40 17745854. .060 32790.0 562.00 18427980. .065 33820.0 562.70 19030514. .070 35600.0 563.50 20060600. .075 36350.0 564.10 20505035. .080 35930.0 564.10 20268113. .085 355'i0.0 564.10 20065037. .090 35150.0 564.00 19824600. .095 34090.0 563.70 19216533.
(Continued) l l -----------_--_----J
TABLE 6.2.1-31A (Cont'd.)(Sheet 2 of 3) MASS / ENERGY RELEASE DATA FOR 592 SQ INCH SUCTION LEG GUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM STEAM GENERATOR SIDE) I Time Flow Rate Enthalpy_ Energy Rate (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC)
.100 32080.0 563.10 18064248. .110 32050.0 563.10 18047355. .120 31920.0 563.20 17977344. .130 33320.0 563.80 18785816. .140 32640.0 563.80 18402432. .150 31790.0 563.80 17923202. .160 32360.0 564.10 18254276. .170 32930.0 564.50 18588985. .180 33480.0 564.90 18912852. .190 32800.0 564.90 18528720.
i .200 32180.0 564.90 18178482. l
.220 32190.0 565.20 18193788. .240 32150.0 565.60 18184040.
l .260 32210.0 566.10 18234081.
.280 31720.0 566.30 17963036. ,Q .300 31820.0 566.70 18032394. !
() .320
.340 31400.0 31390.0 567.00 567.30 17803800.
17807547. j
.360 31660.0 567.90 17979714. .380 30990.0 568.00 17602320. 4 .400 30960.0 568.40 17597664. l .420 30960.0 568.70 17606952. l .440 30730.0 569.10 17488443. .460 30630.0 569.40 17440722. .480 30430.0 569.70 17335971. .500 30260.0 569.90 17245174. .550 29980.0 570.70 17109586. .600 29760.0 571.40 17004864. .650 29470.0 572.00 16856840. .700 29280.0 572.60 16765728. .750 29050.0 573.20 16651460. .800 28870.0 573.80 16565606.
l .850 28670.0 574.30 16465181.
.900 28470.0 574.80 16364556. .950 28290.0 575.30 16275237.
1.000 28220.0 575.80 16249076. 1.100 27940.0 576.60 16110204. 1.200 27620.0 577.40 15947788. 1.300 27400.0 578.10 15839940. 1.400 27200.0 578.80 15743360. O D (Continued) 1
TABLE 6.2.1-31 A (Cont'd. ) (Sheet 3 of 3) MASS / ENERGY RELEASE DATA FOR 592 SQ INCH i SUCTION LEG GUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM STEAM GENERATOR SIDE) Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (BTV/SEC) 1.500 26960.0 579.30 15617928. 1.600 26750.0 579.80 15509650. 1.700 26590.0 580.20 15427518. 1.800 26470.0 580.60 15368482. 1.900 26350.0 580.90 15306715. 2.000 26170.0 581.10 15207387. 2.500 24960.0 582.20 14531712. 3.000 23970.0 583.40 13984088. 3.500 22520.0 587.00 13219240. 4.000 19830.0 592.80 11755224. O O
l []\ (' TABLE 6.2.1-31B (Sheet 1 of 3) MASS / ENERGY RELEASE DATA FOR 592 SQ INCH SUCTION LEG GUILLOTINE BREAK FOR . CONTAINMENT SUBCOMPARTMENT ANALYSIS l (FLOW FROM REACTOR COOLANT PUMP SIDE) Time Flow Rate Enthalpy Energy Rate . (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC) { 0.000 0.0 565.80 0. ,
.001 7398.0 565.60 4184309. l .002 13760.0 565.00 7774400. ! .003 17860.0 564.00 10073040. .004 19790.0 562.80 11137812. .005 19030.0 561.70 10689151. ; .006 21220.0 561.40 11912908. j .007 21200.0 561.40 11901680. j .008 21180.0 561.40 11890452. {
- .009 21150.0 561.40 11873610. )
! .010 21130.0 561.40 11862382. i
.012 21100.0 561.40 11845540. j .014 21080.0 561.40 11834312. !
l O, .016 21070.0 561.40 11828698. j (~j .018
.020 21070.0 21070.0 561.40 561.40 11828698.
11828698. l
.022 21090.0 561.40 11839926. l .024 21100.0 561.40 11845540. j .026 21130.0 561.40 11862382. .028 21160.0 561.40 11879224. .030 21190.0 561.40 11896066. .032 21220.0 561.40 11912908. 1 .034 23010.0 561.60 12922416. .036 28930.0 562.60 16276018. .038 31710.0 563.10 17855901. .040 32680.0 563.20 18405376.
l
.042 32610.0 563.20 18365952. .044 32070.0 563.10 18058617. .046 31500.0 562.90 17731350. .048 31090.0 562.90 17500561. .050 30930.0 562.80 17407404. .055 31220.0 562.80 17570616. .060 31770.0 562.90 17883333. .065 32450.0 563.00 18269350. .070 33510.0 563.20 18872832. .075 35200.0 563.60 19838720. .080 36360.0 563.80 20499768. .085 36340.0 563.80 20488492. .090 35740.0 563.70 20146638. .095 35000,0 563.50 19722500.
(Continued) L____________
TABLE 6.2.1-318 (Cont'd. )(Sheet 2 of 3) MASS / ENERGY RELEASE DATA FOR 592 SQ INCH SUCTION LEG GUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM REACTOR COOLANT PUMP SIDE) Time Flow Rate Enthalpy Energy Rate (Second.) (LB/SLC) (BTU /LB) (BTV/SEC)
.100 33780.0 563.30 19028274. .110 31290.0 562.80 17610012. .120 31770.0 562.80 17880156. .130 32880.0 563.10 18514728. .140 33110.0 563.10 18644241. .150 32330.0 563.00 18201790. .160 32030.0 562.90 18029687. .170 33270.0 563.20 18737664. .180 33450.0 563.30 18842385. .190 33210.0 563.30 18707193. .200 32310.0 563.10 18193761. .220 32520.0 563.20 18315264. .240 32270.0 563.30 18177691. .260 32720.0 563.50 18437720. .280 32180.0 563.50 '4133430. .300 32080.0 563.60 18080288. .320 31860.0 563.70 17959482. .340 31830.0 563.90 17948937. .360 31990.0 564.10 18045559. .380 31640.0 564.20 17851288. .400 31350.0 564.30 17690805. .420 31590.0 564.60 17835714. .440 31230.0 564.70 17635581. .460 31330.0 564.90 17698317. .480 30920.0 565.00 17469800. .500 31020.0 565.20 17532504. .550 30750.0 565.70 17395275. .600 30500.0 566.10 17266050. .650 30190.0 566.50 17102635. , .700 30030.0 567.00 17027010. 1 .75G 29810.0 567.40 16914194. .800 29660.0 567.80 16840948. .850 29470.0 568.20 16744854. .900 29280.0 568.60 16648608. .950 29110.0 569.00 16563590.
1.000 29070.0 569.40 16552458. 1.100 28810.0 570.00 16421700. l 1.200 28510.0 570.60 16267806. 1.300 28310.0 571.20 16170672. 1.400 28120.0 571.80 16079016. (Continued) 9
TABLE 6.2.1-31B (Cont'd.) (Sheet 3 of 3) MASS / ENERGY RELEASE DATA FOR 592 SQ INCH SUCTION LEG GUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM REACTOR COOLANT PUMP SIDE) Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC) 1.500 27910.0 572.20 15970102. 1.600 27700.0 572.70 15863790. 1.700 27530.0 573.00 15774690. 1.800 27400.0 573.40 15711160. 1.900 27290.0 573.70 15656273. 2.000 27110.0 574.00 15561140. 2.500 25910.0 575.10 14900841. 3.000 24970.0 575.80 14377726, 3.500 23790.0 577.10 13729209. 4.000 22520.0 580.20 13066104. O O
TABLE 6.2.1-32A (Sheet 1 of 3) MASS / ENERGY RELEASE DATA FOR 00VBLE-EN0E0 SURGE LINE GUILLOTINE BREAK FOR CONTAINMENT SU8 COMPARTMENT ANALYSIS (FLOW FROM HOT LEG SIDE) Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /L_B} (BTU /SEC) 0.000 0.0 646.90 0.
.001 9204.0 646.70 5952227. .002 8841.0 646.40 5714822. .003 8533.0 646.10 5513171. .004 8315.0 645.90 5370559.
l
.005 8196.0 645.80 5292977. .006 8174.0 645.80 5278769. .007 8240.0 645.80 5321392.
> .008 8377.0 646.00 5411542.
.009 8564.0 646.10 5533200. .010 8777.0 646.30 5672575. .012 9174.0 646.70 5932626. .014 9376.0 646.90 6065334. .016 9368.0 646.80 6059222. .018 9191.0 646.70 5943820. .020 8935.0 646.50 5777124. .022 8718.0 646.30 5634443. .024 8628.0 646.20 5575414. .026 8671.0 646.20 5603200. .028 8806.0 646.00 5693431. .030 8972.0 646.50 5800398. .032 9100.0 646.60 5881060. .034 9151.0 646.70 5917952. .036 9133.0 646.60 5905398. J .038 9068.0 646.60 5863369. I .040 8989.0 646.50 5811389. ' .042 8937.0 646.50 5777771. .044 8930.0 646.50 5773245. .046 8968.0 646.50 5797812. l .048 9034.0 646.60 5841384. .050 9099.0 646.60 5883413. , .055 9121.0 646.60 5897639. ! .060 8950.0 646.50 5786175. .065 8739.0 646.30 5648016. .070 86S8.0 646.20 5594800. .075 8835.0 646.40 5710944. .080 8972.0 64E.50 5800398. .085 8642.0 646.20 5584460. .090 8351.0 645.90 5393911. .095 8712.0 646.30 5630566.
(Continued) l l _ ___b
v (/) w TABLE 6.2.1-32A (Cont'd) (Sheet 2 of 3) MASS / ENERGY RELEASE DATA FOR DOUBLE-ENDED SURGE LINE GUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS . (FLOW FRGM HOT LEG SIDE) f Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC)
.100 9086.0 646.60 5875008. .110 8625.0 646.20 5573475. .120 8974.0 646.40 5800794. ] .130 8503.0 646.00 5492938. r .140 8336.0 645.90 5384222. .150 8152.0 645.70 5263746. .160 8271.0 645.80 5341412. .170 8100.0 645.60 5229360. .180 8168.0 645.70 5274078. .190 7967.0 645.50 5142699. .200 7899.0 645.50 5098805. .220 7798.0 645.40 5032829. .240 7960.0 645.50 5138180. .260 7779.0 645.30 5019789. .280 7553.0 645.10 4872440.
('"'s ( ,/ .300 7409.0 645.00 4778805.
.320 7230.0 644.80 4661904. .340 7138.0 644.70 4601869. .360 7034.0 644.60 4534116. .380 7006.0 644.60 4516068. .400 6948.0 644.60 4478681. .420 6911.0 644.50 4454140. .440 6879.0 644.50 4433516. .460 6867.0 644.50 4425782. .480 6860.0 644.50 4421270. .500 6858.0 644.60 4420667. l .550 6847.0 644.60 4413576. i .600 6033.0 644.70 4406523. .650 6817.0 644.80 4395602. .700 6811.0 644.90 4392414. .750 6791.0 645.00 4380195. .800 6763.0 6t5.10 4362811. .850 6747.0 645.20 4353164. .900 6732.0 645.40 4344833. .950 6712.0 645.50 4332596.
1.000 6695.0 645.60 4322292. 1.100 6672.0 645.90 4309445. 1.200 6655.0 646.20 4300461. 1.300 6645.0 646.50 4295993. 1.400 6632.0 646.80 4289578. 7ss (Continued)
TABLE 6.2.1-32A (Cont'd) (Sheet 3 of 3) , MASS / ENERGY RELEASE DATA FOR DOUBLE-ENDED SURGE LINE GUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM HOT LEG SIDE) Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC) 1.500 6614.0 647.10 4279919. 1.600 6591.0 647.50 4267673. ! 1.700 6569.0 647.80 4255398. 1.800 6548.0 648.30 4245068 1.900 6528.0 648.70 4234714. 2.000 6508.0 649.20 4224994. 2.500 6368.0 652.40 4154483. 3.000 6177.0 656.50 4055201. 3.500 5953.0 661.50 3937910. 4.000 5714.0 666.80 3810095. O O _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .- - ]
m () TABLE 6.2.1-32B (Sheet 1 of 3) MASS / ENERGY RELEASE DATA FOR DOUBLE-ENDED SURGE LINE GUILLOTINE BREAK l FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM PRESSURIZER SIDE) Time Flow Rate Enthalpy Energy Rate j (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC) 1 0.000 0.0 700.70 0. 1 .001 17256.0 700.70 5084279.
.002 7255.0 700.70 5083579. .003 7255.0 700.70 5083579. .004 7254.0 700.70 5082878. .005 7254.0 700.70 5082878. .006- 7253.0 700.70 5082177. .007 7253.0 700.70 5082177. .008 7252.0 700.70 5081476. .009 7252.0 700.70 5081476. .010 7251.0 700.70 5080776. .012 7250.0 700.70 5080075. ) .014 7249.0 700.70 5079374. 1 .016 7248.0 700.60 5077949.
l .018 7247.0 700.60 5077248.
.020 7246.0 700.60 5076548. .022 7245.0 700.60 5075847. .024 7244.0 700.60 5075146. .026 7242.0 700.60 5073745. l .028 7241.0 700.60 5073045. l .030 7240.0 700.60 5072344. .032 7239.0 700.60 5071643. .034 7238.0 700.60 5070943. .036 7237.0 700.60 .5070242. .038 7236.0 700.60 5069542. .040 7235.0 700.60 5068841. .042 7234.0 700.60 5068140. .044- 7233.0 700.60 5067440. .046 7232.0 700.50- 5066016. .048 7231.0 700.50 5065316. .050 7230.0 700.50 5064615.
l.
.055 7227.0 700.50 5062514. l .060 7224.0 700.50 I
5060412.
.065 7222.0 700.50 5059011. .070 7219.0 700.50 5056910. .075 7216.0 700.40 5054086. .080 7214.0 700.40 5052686. .085 7211.0 700.40 5050584.
()
.090 7208.0 700.40 5048483. , .095 7206.0 700.40 5047082.
I (Continued)
TABLE 6.2.1-328 (Cont'd.) (Sheet 2 of 3) l h, MASS / ENERGY RELEASE DATA FOR 00VBLE-ENDED SURGE LINE GUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM PRESSURIZER SIDE) Time Flow Rate Enthalpy Energy Rate JSeconds) (LB/SEC) (BTU /LB) (BTU /SEC)
.100 7203.0 700.30 5044261. .110 7196.0 700.30 5039359. .120 7189.0 700.30 5034457. < .130 7181.0 700.20 5028136. .140 7173.0 700.20 5022535. .150 7165.0 700.20 5016933. .160 7158.0 700.10 5011316. .170 7150.0 700.10 5005715. .180 7142.0 700.00 4999400. .190 7135.0 700.00 4994500. .200 7127.0 700.00 4988900. .220 7112.0 699.90 4977689. .240 7097.0 699.80 4966481. .260 7081.0 699.70 4954576. .280 7067.0 699.60 4944073. .300 7052.0 699.50 4932874. 4 .320 7037.0 699.50 4922382. .340 7022.0 699.40 4911167. .360 7008.0 699.30 4900694. .380 6993.0 699.20 4889506. .400 6977.0 699.10 4877621. .420 6961.0 699.00 4865739. .440 6946.0 698.90 4854559. .460 6931.0 698.80 4843383. .480 6916.0 698.70 4832209. .500 6901.0 698.60 4821039. .550 6863.0 698.30 4792433. .600 6827.0 698.10 4765929. .650 6792.0 697.80 4739458. .700 6758.0 697.50 4713705. .750 6725.0 697.20 4688670. .800 6692.0 696.90 4663655. .850 6660.0 696.60 4639356. .900 6629.0 696.30 4615773. .950 6599.0 695.90 4592244.
1.000 6569.0 695.60 4569396. 1.100 6512.0 694.80 4524538. 1.200 6458.0 694.10 4482498. 1.300 6406.0 693.30 4441280. 1.400 6358.0 692.40 4402279. (Continued) O ! I
TABLE 6.2.1-32B (Cont'd.) (Sheet 3 of 3) (3 MASS /LNERGY RELEASE DATA FOR
\s/)
i DOUBLE-ENDED SURGE LINE GUILLOTINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM PRESSURIZER SIDE) Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC) , 1 1.500 6312.0 690.60 5016933. I 1.600 6270.0 690.60 4330062. l 1.700 6230.0 689.60 4296208. _ 1.800 6194.0 688.50 4264569. l l 1.900 6154.0 687.40 4230260. I l 2.000 6109.0 686.30 4192607. 2.500 5933.0 679.80 4033253. I l 3.000 5852.0 671.80 3931374. ! 3.500 5855.0 662.20 3877181. 4.000 5949.0 650.70 3871014. 1 l l l (^]s
\~- i t
i i ) v i u_________________
l l l TABLE 6.2.1-33A (Sheet 1 of 3) MASS / ENERGY RELEASE DATA FOR PRESSURIZER SPRAY LINE BREAK FOR CONTAINMENT l SUBCOMPARTMENT ANALYSIS (FLOW FROM PRESSURIZER SIDE) j
)
1 Time Flos Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC) 0.000 0.0 781.10 0.
.001 660.1 761.10 502402. j .002 660.1 761.10 502402. ' .003 660.1 761.10 502402. .004 660.1 761.10 502402. i .005 660.1 761.10 502402. .006 660.1 761.10 502402. .007 660.1 761.10 502326. .008 660.0 761.10 502326. .009 660.0 761.10 502326. .010 660.0 761.10 502326. .012 660.0 761.10 502326. .014 660.0 761.10 502326. ' .016 660.0 761.10 502326. .018 660.0 761.10 502326. .020 609.9 761.10 502250. .022 659.9 761.10 502250. .024 659.9 761.10 502250. .026 659.9 761.10 502250. .028 659.9 761.10 502250. ' .030 659.8 761.10 502174. .032 659.8 761.10 502174. .034 659.8 761.10 502174. .036 659.8 761.10 502174. .038 659.8 761.10 502174. .040 659.8 761.10 502174. .042 659.7 761.10 502098. .044 659.7 761.10 502098. .046 659.7 761.10 502098. .048 659.7 761.10 502098. .050 659.7 761.10 502098. .055 659.6 761.10 502022. l .060 659.6 761.10 502022. i .065 659.5 761.10 501945. ! .070 659.5 761.10 501945. .075 659.5 761.10 501945. .080 659.4 761.10 501869. .085 659.4 761.10 501869. .090 659.3 761.10 501793. .095 659.3 761.10 501793.
4 (Continued) [ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/'~'N TABLE 6.2.1-33A (Cont'd.) (Sheet 2 of 3) .
( ) I MASS / ENERGY RELEASE DATA FOR PRESSURIZER SPRAY LINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM PRESSURIZER SIDE) Time Flow Rate Enthalpy Energy Rate { Seconds) (LB/SEC) (BTU /LB) (BTU /SEC)
.100 659.2 761.10 501717. .110 659.1 761.10 501641. .120 659.1 761.10 501641. .130 659.0 761.10 501565. .140 658.9 761.10 501489. .150 658.8 761.10 501413. .160 658.7 761.10 501337. .170 658.6 761.10 501260. .180 658.5 761.10 501184. .190 658.4 761.10 501108. .200 658.3 761.10 501032. .220 658.1 761.10 500880. .240 657.8 761.00 500586. .260 657.6 761.00 500434. .280 657.4 761.00 500281. .300 657.1 761.00 500053.
( .320
.340 656.9 656.6 761.00 761.00 499901.
499673.
.360 656.3 761.00 499444. .380 656.0 761.00 499216. .400 655.7 761.00 498988. .420 655.4 761.00 498759. .440 655.1 761.00 498531. .460 654.7 761.00 498227. .480 654.4 761.00 497998. .500 654.0 761.00 497694. .550 652.9 760.90 496792. .600 651.9 760.90 496031. .630 650.7 760.90 495118. .700 649.5 760.90 494205. .750 648.P 760.90 493215. .800 646.8 760.80 492085. .850 645.4 760.80 491020. .900 643.9 760.80 489879. .950 642.4 760.70 488674.
1.000 637.6 760.60 487457. 1.100 637.6 760.60 484959. 1.200 634.4 760.60 482525. l 1.300 631.7 760.50 480408. l 1.400 629.1 760.40 478368. ' O (Continued) i
)
1 l l l TABLE 6.2.1-33A (Cont'd.) (Sheet 3 of 3) PASS / ENERGY RELEASE DATA FOR PRESSURIZER ! ( SPRAY LINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM PRESSURIZER SIDE) Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC) 1.500 626.7 760.40 476543. ' 1.600 624.6 760.30 474883. 1.700 622.8 760.30 473515. 1.800 621.3 760.20 472312. j 1.900 620.1 /60.20 471400. 1 2.000 619.1 760.20 470640. I 2.500 615.2 760.00 467552. ! i 3.000 607.9 759.90 461943, 3.500 597.7 759.60 454013. 4.000 591.2 759.50 449016. l l i i O1 4 i l l l l
@l l
l 1
l 4 TABLE 6.2.1-33B (Sheet 1 of 3) MASS / ENERGY RELEASE DATA FOR PRESSURIZER SPRAY LINE BREAK FOR CONTAINMENT , I SUBCOMPARTMENT ANALYSIS (FLOW FROM DISCHARGE LEG SIDE) Time Flow Rate Enthalpy Energy Rate . (Seconds) (LB/SEC) (BTU /LB) JBTU/SEC) 0.000 0.0 566.20 0.
.001 1474.0 566.20 834579. .002 1464.0 566.10 828770; .003 1453.0 566.00 822398. .004 1442 0 / 565.90 816028. .005 1433.0 / 565.90 810935. .006 1425.0 / 565.80 806265. .007 1419.C' 565.80 802870. .008 141F/0 565.80 800607. .009 1 A?3. 0 565.70 799334. .010 1413.0 565.70 799334. .012 / 1416.0 565.80 801173. .014 1425.0 565.80 806265. .016 1437.0 565.90 813198. .018 1451.0 566.00 821266. .020 1463.0 566.00 828058. .022 1471.0 566.10 832733. .02t 1477.0 566.2C 836277.
526 1481.0 566.20 838542.
.028 1483.0 566.20 839675. .030 1484.0 566.20 840241. .032 1485.0 566.20 840807. .034 1486.0 566.20 841373. .036 1468.0 566.20 842506. .038 1492.0 566.30 844920. .040 1495.0 566.30 846618. .042 1497.0 566.30 847751. .044 1498.0 566.30 848317. .046 1496.0 566.30 847185. .048 1492.0 566.30- 844920. .050 1484.0 566.20 840241. .055 1459.0 566.00 825794. .060 1436.0 565.90 812632. .065 1439.0 565.90 814330. .070 1462.0 566.00 827492. .075 1482.0 566.20 839108. .080 1488.0 566.20 842506. .085 1479.0 566.10 837262. .090 1467.0 566.10 830469. .095 1461.0 566.00 826926.
(Continued) i I
TABLE 6.2.1-338 (Cont'd.) (Sheet 2 of 3) h MACS / ENERGY RELEASE DATA FOR PRESSURIZER SPRAY LINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FICW FROM DISCHARGE LEG SIDE) Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC)
.100 1460.0 566.00 826360. .110 1457.0 566.00 824662. .120 1465.0 566.00 829190. .130 1481.0 566.10 838394. .140 1467.0 566.00 830322. .150 1440.0 565.90 814896. .160 1442.0 565.90 816028. .170 1458.0 565.90 825082. .180 1470.0 566.00 832020.~ .190 1466.0 566.00 829756. .200 1440.0 565.80 814752. .220 1453.0 565.90 822253. .240 1456.0 565.90 823950. .260 1430.0 565.70 808951. .280 1463.0 565.90 827912. .300 1426.0 565.70 806688. .320 1445.0 565.80 817581. .340 1433.0 565.70 810648. .360 1434.0 565.70 811214. .380 1439.0 565.80 814186. .400 1422.0 565.60 804283. .420 1441.0 565.80 815318. .440 1421.0 565.60 803718. .460 1429.0 565.70 808385. .480 1429.0 565.70 808385. .500 1418.0 565.60 802021. .550 1420.0 565.60 803152. .600 1420.0 565.60 803152. .650 1421.0 565.60 803718. .700 1421.0 565.60 803718. .750 1422.0 565.60 804283. .800 1424.0 565.60 805414. .850 1425.0 565.70 806123. .900 1427.0 565.70 807254. .950 1430.0 565.70 808951.
1.000 1433.0 565.70 810648. 1.100 1439.0 565.80 814186. ! 1.200 1445.0 565.90 817726. 1.300 1450.0 566.00 820700. 1.400 1453.0 566.10 822543. O, ' (Continued)
1 l l l
,s m b TABLE 6.2.1-338 (Cont'd.) (Sheet 3 of 3)
MASS / ENERGY RELEASE DATA FOR PRESSURIZER SPRAY LINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM DISCHARGE LEG SIDE) Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC) 1.500 1454.0 566.10 823109. 1.600 1453.0 566.20 822689. 1.700 1448.0 566.30 820002. 1.800 1442.0 566.30 816605. 1.900 1433.0 566.30 811508. 2.000 1423.0 566.30 805845. 2.500 1 1378.0 566.20 780224. J 3.000 1367.0 566.10 773589. 3.500 1386.0 565.90 784337. 4.000 1384.0 565.60 782652. l ( ) 1 i A 'U o
TABLE 6.2.1-34 [3heet 1 of 37 MASS / ENERGY RELEASE DATA FOR PRESSURIZER SAFETY VALVE LINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC) 0.000 0.0 761.10 0.
.001 1504.0 761.10 1144694. .002 1504.0 761.10 1144694. .003 1504.0 761.10 1144694. .004 1504.0 761.10 1144694. .005 1504.0 761.10 1144694. .006 1504.0 761.10 1144694. .007 1504.0 761.10 1144694. .008 1504.0 761.10 1144694. .009 1504.0 761.10 - 1144694. .010 1504.0 761.10 1144694. .012 1504.0 761.10 1144694. .014 1503.0 761.10 1143933. .016 1503.0 761.10 1143933. .018 1503.0 761.10 1143933. .020 1503.0 761.10 1143933. .022 1503.0 761.10 1143933. .024 1503.0 761.10 1143933. .026 1503.0 761.10 1143933. .028 1503.0 761.10 1143933. .030 1503.0 761.10 1143933. .032 1503.0 761.10 1143933. .034 1503.0 761.10 1143933. .036 1503.0 761.10 1143933. .038 1502.0 761.10 1143172. .040 1502.0 761.10 1143172. .042 1502.0 761.10 1143172. .044 1502.0 761.10 1143172. .046 1502.0 761.10 1143172. .048 1502.0 761.10 1143172. .050 1502.0 761.10 1143172. .055 1502.0 761.10 1143172. .060 1501.0 761.10 1142411.. .065 1501.0 761.10 1142411. .070 1501.0 761.10 1142411. .075 1501.0 761.10 1142411. .080 1501.0 761.10 1142411. ; .085 1500.0 761.10 1141650. l .090 1500.0 761.10 1141650. < .095 1500.0 761.10 1141650.
l (Continued) l
m i
, ~g TABLE 6.2.1-34 (Cont'd.) (Sheet 2 of 3) s- MASS / ENERGY RELEASE DATA FOR PRESSURIZER SAFETY VALVE LINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS _
Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SECl_ (BTU /LB) (BTU /SEC)'
.100 1500.0 761.10 1141650. .110 1499.0 761.00 1140739.
. .120 1498.0 761.00 1139978. l
.130 1498.0 761.00 1139978.
i .140 1498.0 761.00 1139978. l .150 1497.0 761.00 1139217.
.160 1497.0 761.00 1139217. .170 1497.0 761.00 1139217.
180 1496.0 761.00 1138456.
.190 1496.0 761.00 1138456. .200 1495.0 761.00 1137695. .220 1494.0 761.00 1136934. .240 1493.0 761.00 1136173. .260 1493.0 761.00 1136173. .280 1492.0 761.00 1135412. .300 1491.0 761.00 1134651. .320 1490.0 760.90 1 O .340 .360 .380 1489.0 1488.0 1487.0 760.90 760.90 760.90 1133741.
1132980. 1132219. 1131458. l
.400 1487.0 760.90 1131458. .420 1486.0 760.90 1130697. .440 1485.0 760.90 1129937. .460 1484.0 760.90 1129176. .480 1483.0 760.80 1128266. .500 1482.0 760.80 1127506. .550 1480.0 760.80 1125984. .600 1478.0 760.70 1124315. .650 1476.0 760.70 1122793. .700 1474.0 760.60 1121124.
i .750 1472.0 760.60 1119603.
.800 1470.0 760.50 1117935. .850 1468.0 760.50 1116414. .900 1466.0 760.40- 1114746. .950 1465.0 760.30 1113840.
1.000 1463.0 760.30 1112319. 1.100 1459.0 760.10 1108986. 1.200 1455.0 760.00 1105800. 1.300 1451.0 759.80 1102470. 1.400 1448.0 759.70 1100046. () (Continued)
l 1 TABLE 6.2.1-34 (Cont'd. ) (Sheet 3 of 3) MASS / ENERGY RELFASE DATA FOR PRESSURIZER SAFETY VALVE LINE BREAK FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS T.ime Flow Rate Enthalpy Energy Rate < (Seconds] (LB/SEC) (BTU /LB) (BTU /SEC) 1.500 1444.0 759.60 1096862. 1.600 1441.0 759.40 1094295. 1.700 1438.0 759.30 1091873. 1.800 1434.0 759.10 1088549. 1.900 1431.0 759.00 1086129. 2.000 1427.0 758.90 1082950. 2.500 1410.0 758.00 1068780. 3.000 1396.0 756.80 1056493. 3.500 1384.0 755.10 1045058. 4.000 1374.0 753.40 1035172. O O
-v l l l l
/m TABLE 6.2.1-35A (Sheet 1 of 2)
MASS / ENERGY RELEASE DATA FOR 800.5 SQ. ! INCH MAIN STEAM LINE GUILLOTINE BREAK AT SG N0ZZLE FOR CONTAINMENT SUBCOMPARTMENT ANALYSIF (FLOW FROM RUPTURED SG SIDE) Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) _(BTU /LB) (BTU /SEC) O.00000 0.0 1182.00 0.
.00100 3323.0 1182.00 3927786. .00200 3322.0 1182.00 3926604. .00300 3316.0 1182.00 3919512. .00400 3314.0 1182.00 3917148.
l .00500 3313.0 1182.00 3915966.
.00600 3312.0 1182.00 3914784. .00700 3311.0 1182.00 3913602. !
i .00800 3310.0 1182.00 3912420. l l .00900 3309.0 1182.00 3911238.
.01000 3308.0 1182,00 3910056.
- .02000 3300.0 1180.00 3894000.
l'
.03000 3293.0 1178.00 3879154. .04000 3287.0 1174.00 3858938. .05000 3306.0 1168.00 3861408. .06000 3337.0 1161.00 3874257. .07000 3375.0 1152.00 3888000. .08000 3421.0 1141.00 3903361. .09000 3469.0 1130.00 39199'70. .10000 3522.0 1117.00 3934074. .12000 3636.0 1091.00 3966876. .14000 3752.0 1065.00 3995880. .16000 3892.0 1039.00 4043788. .18000 4028.0 1015.00 4088420. .20000 4163.0 992.30 4130945. .22000 4302.0 971.60 4179823.
l .24000 4430.0 952.80 4220404.
.26000 4551.0 935.50 425M61. ;
l
.28000 4682.0 919.80 4306504. .30000 4801.0 905.40 4346825. .32000 4911.0 892.20 4381594. .34000 5011.0 880.10 4410181. .36000 5120.0 869.10 4449792. .38000 5227.0 858.90 4489470. ! .40000 5325.0 849.60 4524120. J .42000 5416.0 841.00 4554856. .44000 5499.0 833.10 4581217. .46000 5576.0 825.80 4604661.
(Continued)
- - _ - _ _ . . - - - - - - - J
TABLE 6.2.1-35A (Cont'd. ) (Sheet 2 of 2) MASS / ENERGY RELEASE DATA FOR 800.5 SQ. INCH MAIN STEAM LINE GUILLOTINE BREAK AT SG N0ZZLE FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM RUPTURED SG SIDE) Time flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC)
.48000 5647.0 819.00 4524893. .50000 5722.0 812.00 4650269. .55000 5909.0 798.80 4720109. .60000 6067.0 787.00 4774729. .65000 6201.0 776.90 4817557. .70000 6317.0 768.10 4852088. .75000 6417.0 760.20 4878203. .80000 6508.0 753.00 4900524. .85000 6617.0 745.90 4935620. .90000 6722.0 7'8.60 4964869. .95000 6830.0 750.70 4990681.
1.00000 6944.0 722.20 5014957. 1.10000 7185.0 704.50 5061833. 1.20000 7418.0 688.00 5103584. 1.30000 7696.0 674.20 5188643. 1.40000 7925.0 663.00 5254275. J 1.50000 8107.0 653.90 5301167. 1.60000 8254.0 646.40 5335386. 1.70000 8370.0 640.20 5358474. 1.80000 8463.0 634.80 5372312. 1.90000 8538.0 630.10 5379794. 2.00000 8601.0 626.00 5384226. 2.20000 8706.0 619.30 5391626. I 2.40000 8793.0 614.10 5399781. 1 2.60000 8847.0 609.60 5393131. 2.80000 8883.0 605.80 5381321. 3.00000 8903.0 602.50 5364058. 3.20000 8911.0 599.50 5342145, 3.40000 8908.0 596.90 5317185. 3.60000 8896.0 594.60 5289562. 3.80000 8878.0 592.50 5260215. 4.00000 8854.0 590.60 5229172. 4.20000 8825.0 588.90 5197043. ' 4.40000 8791.0 587.30 5162954. i 4.60000 8755.0 585.90 5129555. 4.80000 8740.0 584.60 5109404. 5.00000 8720.0 583.40 5087248. 5.20000 8696.0 582.30 5063681. 5.40000 8666.0 581.30 5037546. 5.60000 8629.0 580.40 5008272. i 5.80000 8585.0 579.50 4975008. 6.00000 8534.0 578.80 4939479. _---___----___-____o
~ q TABLE 6.3.1-35B ( (Sheet 1 of 2) j L { MASS / ENERGY RELEASE DATA FOR 800.5 SQ. j INCH MAIN STEAM LINE GUILLOTINE BREAK , AT SG N0ZZLE FOR CONTAINMENT 1 SUBCOMPARTMENT ANALYSIS (FLOW FROM INTACT SG SIDE) i Time Flow Rate Enthalpy Energy Rate LS,econds) (LB/SEC)_ (BTV/LB) (BTU /SEC) 0.00000 0.0 1182.00 0.
.00100 10980.0 1182.00 12978360. j .00200 10610.0 1181.00 12530410. .00300 10540.0 1181.00 ]
12447740. .
.00400 10470.0 1180.00 12354600. .00500 10320.0 1180.00 12177600. .00600 10260.0 1179.00 12096540. I .00700 10200.0 1179.00 13035800. .00800 10140.0 1178.00 11944920. .00900 10080.0 1178.00 11874240. .01000 10030.0 1177.00 11805310. .02000 9488.0 1172.00 11119936. .030n0 8996.0 1167.00 10498332.
c .04000 8511.0 1162.00 9889782. Q .05000
.06000 8080.0 7711.0 1157.00 9348560.
1153.00 8890783. j
.07000 7400.0 1149.00 8502600. .08000 7086.0 1146.00 8120556. .09000 6871.0 1143.00 7853553. .10000 6700.0 1141.00 7644700. .12000 6481.0 1138.00 7375378. .14000 6393.0 1138.00 7275234. j .16000 6395.0 1139.00 7283905. ! .18000 6447.0 1142.00 7362474. .20000 6516.0 1144.00 7454304. .22000 6581.0 1146.00 7541826. .24000 6629.0 1148.00 7610092. .26000 6656.0 1149.00 7647744. .28000 6661.0 1150.00 7660150. .30000 6650.0 1150.00 7647500. .32000 6628.0 1151.00 7628828. .34000 6602.0 1151.00 7598902. .36000 6576.0 1152.00 7575552. .38000 6555.0 1152.00 7551360. .40000 6539.0 1153.00 7539467. .42000 6529.0 1154.00 7534466. .44000 6525.0 1155.00 7536375. .46000 6524.0 11'55.00 7535220. /
(Continued)
TABLE 6.2.1-35B (Cont'd. ) (Sheet 2 of 2) MASS / ENERGY RELEASE DATA FOR 800.5 SQ. INCH MAIN STEAM LINE GUILLOTINE' BREAK AT SG N0ZZLE FOR CONTAINMENT SUBCOMPARTMENT ANALYSIS (FLOW FROM INTACT SG SIDE) Time Flow Rate Enthalpy Energy Rate (Seconds) (LB/SEC) (BTU /LB) (BTU /SEC)
.48000 6524.0 1156.00 7541744. .50000 6525.0 1156.00 7542900. .55000 6517.0 1157.00 7540169. .60000 6495.0 1157.00 7514715. .65000 6473.0 1158.00 7495734. .70000 6475.0 1159.00 7504525. .75000 6523.0 1162.00 7579726. .80000 6625.0 1166.00 7724750. .85000 6774.0 1171.00 7932354. .90000 6944.0 1176.00 8166144. .95000 7102.0 1180.00 8380360.
1.00000 7214.0 1181.00 8519734. 1.10000 7280.0 1180.00 8590400. 1.20000 7226.0 1177.00 8505002. 1.30000 7179.0 1174.00 8428146, 1.40000 7144.0 1172.00 8372768. 1.50000 7081.0 1170.00 8284770. 1.60000 7015.0 1168.00 8193520. 1.70000 6993.0 1168.00 8167824. 1.80000 7030.0 1169.00 8218070. 1.90000 7102.0 1171.00 8316442. 2.00000 7153.0 1172.00 8383316. 2.20000 7091.0 1169.00 8289379. 2.40000 6962.0 1167.00 8124654. 2.60000 6863.0 1165.00 7995395. 2.80000 6783.0 1165.00 7902195, 3.00000 6692.0 1164.00 7789488. 3.20000 6607.0 1163.00 7683941, 3.40000 6519.0 1161.00 7568559, 3.60000 6437.0 1160.00 7466920. 3.80000 6356.0 1159.00 7366604. 4.00000 6275.0 1158.00 7266450. 4.20000 6197.0 1156.00 7163732, 4.40000 6123.0 1154.00 7065942. 4.60000 6051.0 1152.00 6970752, 4.80000 5983.0 1148.00 6868484. 5.00000 5922.0 1144.00 6774768. 5.20000 5868.0 1137.00 6671916. 5.40000 5822.0 1129.00 6573038. 5.60000 5792.0 1118.00 6475456. 5.80000 5780.0 1105.00 6386900. 6.00000 5800.0 1089.00 6316200.
m I TABLE 6.2.1-36 PRIMARY SIDE RESISTANCE FACTORS, FLOOD M002 CODE (o)
%/
Resistance Factor psi 6 R' = x 10 2 3 lbm ft Path sec sec j Core i Lower core 0.2918 i Upper core 0.3234 i Upper plenum to steam generator, broken side Upper plenum to tubes 3.156 Tubes to steam generator outlet 3.098 Steam generator outlet in broken side to annulus ) Forward flow 10.34 Reverse flow 74.10 O Annulus to break Q Suction leg break 73.6 Discharge leg 1.117 Steam generator outlet on broken l side to break Suction leg break 2.590 Discharge leg break 11.33 Upper plenum to annulus, intact side Upper plenum to tubss 3.156 Tubes to annulus 5.683 Break resistances 1.0 break 4.473
?
U l l l l
~
TABLE 6.2.1-37 (Sheet 1 of 3) BLOWDOWN AND REFLOOD MASS AND ENERGY RELEASE 1.0 X DOUBLE ENDED GUIL,LOTINE BREAK IN PUMP DISCHARGE LEG Integral Integral of of Time Mass Flow Energy Release Mass Flow Energy Release (sec) (1bm/sec) (BTU /SEC) (1bm) (BTU) 0 0.0 0.0 0. 0 0.0
.05 7.097 x 10 4 3.9747 x 10 7 3.6574 x 10 3
2.0497 x 10 6
.10 8.2847 4.6555 7.3531 x 10 4 4.1238 .15 8.2234 4.6171 1.1464 x 10 6.4326 .20 8.0164 4.5023 1.5532 8.7170 x 10 67 .25 8.0621 4.5320 1.9547 1.0973 x 10 .35 7.8749 4.4326 2.7470 1.5430 .45 7.7544 4.3682 3.5251 1.9811 .60 7.6083 4.2885 4.6751 2.6291 .80 7.5353 4.2496 6.1934 3.4852 4
1.0 7.4282 4.1912 7.6878 x 10 5 4.3282 1.4 7.1519 4.0418 1.0608 x 10 5.9769 l 1.8 6.8132 3.8600 1.3394 7.5534 7 l 2.2 6.1414 3.4868 1.6014 9.0393 x 10 8 4 2.6 5.3776 3.0602 1.8299 1.0338 x 10 3.0 5.0588 2.8906 2.0381 1.1525
- 3. 4 4.8416 2.7816 2.2356 1.2657 3.8 4.6863 2.7169 2.4267 1.3759 4.4 4.2674 2.5319 2.6958 1.5335 l 5. 2 3.5744 2.2329 3.0080 1.7234 6.0 3.1232 2.0305 3.2743 1.8933 6.8 2.8498 1.8713 3.5123 2.0492 7.6 2.6988 1.7547 3.7331 2.1937 8.4 2.6244 1.6879 3.9465 2.3315 9.2 2.5071 1.6090 4.1518 2.4633 10.0 2.3875 1.5354 4.3476 2.5891 11.0 2.2127 1.4380 4.5779 2.7378 12.0 1.9730 1.3389 4.7884 2.8767 13.0 1.4056 1.1824 4.9597 3.0029 4 7 5.0800 x 10 5 3.1132 x 10 8 14.0 1.0867 x 10 1.0224 x 10 Amendment No. 4 July 16, 1981
. TABLE 6.2.1-37 (Cont'd.) (Sheet 2 of 3)
BLOWDOWN AND REFLOOD MASS AND ENERGY RELEA5E 1.0 X DOUBLE ENDED GUILLOTINE BREAK IN PUMP DISCHARGE LEG Integral Integral of of Time Mass Flow Energy Release Mass Flow Energy Release (sec) (1bm/sec) (BTU /SEC) (ibm) (BTU) 3 6 5 8 15.0 9.7275 x 10 9.1101 x 10 5.1854 x 10 3.2098 x 10 16.0 7.4384 7.8313 5.2711 3.2949 17.0 5.8326 5.7784 5.3367 3.3622 18.0 5.2488 5.0939 5.3897 3.4148 19.0 6.7388 5.4679 5.4501 3.4685 20.0 6.8805 4.8114 5.5198 3.5209 21.0 6.3304 3.9007 5.5860 3.5644
'2. 0 5.2770 3 0069 5.6442 3.5988 23.0 4.3468 2.3716 5.6922 3.6255 24.0 4.1383 2.1111 5.7324 3.6470 25.0 2.4047 1.3428 5.7674 3.6651 8 3 6 5 25.2 2.4476 x 10 1.3378 x 10 5.7738 x 10 3.6683 x 10 Time of Annulus Downflow Start of Reflood (values below are for steam only) 5 8 31.9 0 0 5.7738 x 10 3.6683 x 10 41.9 0 0 5.7738 3.6683 4 51.9 0 0 5.7738 3.6683
. 61.9 0 0 5.7738 3.6683 2 5 71.9 1.9177 x 10 2.5030 x 10 5.7831 3.6804 81.9 1.7378 2.2681 5.8012 3.7041 91.9 2.1002 2.7412 5.8204 3.7291 101.9 2.0898 2.7277 5.8412 3.7563 111.9 2.0705 2.7024 5.8620 3.7835 l 121.9 2.0652 2.6855 5.8827 3.8105 131.9 2.0652 2.6955 5.9033 3.8374 141.9 2.0665 2.6972 5.9240 3.8643 151.9 2.0675 2.6984 5.9446 3.8913 161.9 2.0728 2.7054 5.9654 3.9183 171.9 2.0858 2.7224 5.9861 3.9454 181.9 2.0935 2.7324 6.0070 3.9727 191.9 2.0972 2.737.; 6.0280 4.0000 201.9 2.0999 2.7408 6.0490 4.0274 8 2 5 5 221.9 2.1168 x 10 2.7629 x 10 6.0911 x 10 4.0825 x 10 Amendment No. 4 July 16,19PI
TABLE 6.2.1-37 (Cont'd.) (Sheet 3 of 3) BLOWDOWN AND REFLOOD MASS AND ENERGY RELEASE 1.0 X DOUBLE ENDED GUILLOTINE BREAK IN PUMP OISCHARGE LEG Integral Integral of of Time Mass Flow Energy Release Mass Flow Energy Release (sec) (1bm/sec) (BTU /SEC) (lbm) (BTU) 2 241.9 2.1389 x 10 2.7917 x 10 5 6.1336 x 10 5 4.1379 x 10 8 261.9 2.1375 2.7898 6.1764 4.1937 281.9 2.1595 2.8185 6.2194 4.2499 301.9 2.1622 2.8222 6.2626 4.3063 321.9 2.1823 2.8483 6.3061 4.3631 341.9 2.1904 2.8589 6.3497 4.4200 361.9 2.1895 2.8577 6.3935 4.4771 381.9 2.1984 2.8694 6.4374 4.5344 401.9 2.1942 2.8639 6.4814 4.5918 421.9 2.1976 2.8683 6.5254 4.6493 4 ; 441.9 2.2052 2.8782 6.5695 4.7068 1 461.9 2.1994 2.8706 6.6136 4.7643 481.9 2.1994 2.8707 6.6576 4.8219 501.9 2.2050 2.8780 6.7017 4.8794 1 521.9 2.2075 2.8813 6.7557 4.9369 I 541.9 2.2052 2.8783 6.7898 4.9943 I 561.9 2.1971 2.8677 6.8338 5.0518 I 581.9 2.1944 2.8642 6.8777 5.1091 601.9 2.1947 2.8645 6.9216 5.1664 2 631.9 2.1852 x 10 2.8521 x 10 5 6.9872 x 10 5 5.2520 x 10 8 l l i Amendment No. 4 July 16,1981
n. TABLE 6.2.1-38 CONTAINMENT PHYSICAL PARAMETERS Net Fr0e Volume 6 3 3.7 x 10 ft Initiation Time for Spray Flow 0.0 sec
' Containment Initial Conditions:
Temperature 50 F Pressure 14.7 psia Relative Humidity 100% Enclosure Building Temperature 38 F Containment Spray Water: Temperature 60 F Flow Rate 11,000 gpm Heat Transfer Coefficient from Heat Sinks to Building Annulus 13.0 BTU /hr-ft2 ,7 Heat Sink Physical Data: h 0.375 in. Thickness Internal Steel 1.65 in. Thickness Steel Liner 375,000 ft 2 2 130,000fg 1.0 ft Thickness Internal Concrete 14,608 ft 2 1.5 ft Thickness Internal Concrete 180,933fg 3.6 ft Thickness Internal Concrete 36,589 ft 9.5 ft Thickness Internal Concrete with 0.25 in. Steel Liner 18,219 ft 2 Thermal Conductivity of: Steel 2 Concrete 26.0 BTU /hr-fg,7 1.0 BTU /hr-ft -F 1 Volumetric Heat Capacity of: Steel Concrete 56.35 BTU /f}3,7 32.4 BTU /ft -F /
l O l THIS PAGE INTENTIONALLY BLANK. O O
l l ./~'T I G l
) -1 10 : ,,,,,,,, , , , , ,,,, , , , , ,,,, , , , , , , , l e
w _- j 5:: o -
- a. _
E 10-2 ___ it
- I e -
i w _
- a. -
o _ 6 - z 10-3 ___ l 1 i 1 x - u-
)
_ i 10-4 - 'iiini . ......I , ,,'"" ' "I ' ' ' ' ' " ' 10-1 100 101 102 103 104 i TIME AFTER SHUTDOWN, SEC. l i i l I C-E Figure NORMALIZED DECAY HEAT CURVE S Sheet 1 of 2 6.2,1-1
1 i
-1 10 - , ,,,,n,, , , ,,,,,,
i m - - l w q ! g - _ o . . m o z 10-2 -
- i p : _ l
< : i m _
w -
- o. -
o - ; g z 10-3 o
~ _
t; : : m . i u. 10
~4 'il - . ..iii..I . ...I . , , , , , , ,1 ,
4 5 6 7 8 l 10 10 10 9 10 10 10 TIME AFTER SHUTDOWN, SEC. l 1 I h - C-E NORMALIZED DECAY HEAT CURVE sgm
. . _ _ <l Sheet 2 of 2 6. 2.1-1 J
E----_ _ . _ - - - - _ - - _ - - - _ i
9.82 SQUARE FEET 1.0 DOUBLE ENDED SUCTION LEG SLOT BREAK O MAXIMUM SAFETY INJECTION RATE MAXIMUM CONTAINMENT PRESSURE, 70 PSIA 17000 , , , , , , , , , , , , , , , l 16000 - ' 15000 - 14000 - 13000 - o - y 12000 - y11000 - g 10000 -
$ 9000 -
8 d 8000 7000 - y 6000 z [ 5000 b g 4000
^
3000 - 2000 - 1000 - 0 10 20 3O ~ l0 N0 60 7O 80 90 ld0 ll0 lh0130140150 TIME, SEC O C-E / Figure g g gg f/ S AFETY INJECTION FLOW RATE vs TIME 6.2.1-2
9,82 SQUARE FEET 1.0 DOUBLE ENDED SUCTION LEG SLOT BREAK MINIMUM S AFETY INJECTION RATE O MAXIMUM MAINMENT PRESSURE, 70 PSIA 17000 . . . . . . . . . . > i i i i 16000 15000 l @ 00 13000
$12000 - $11000 a
p! 10000 - -
- 9000 - -
E 8000 - - o 7000 - - S 6000 2 - - [ 5000 bm 5 3000 - - 2000 1000 - - 1 A i i i i i i l i i i i l 1 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 TIME, SEC ; O l ggg SAFETY INJECTION FLOW RATE vs TIME 6.'f.73
9.82. SQUARE FEET i 1.0 DOUBLE ENDED SUCTION LEG SLOT BREAK MAXIMUM-SAFETY INJECTION RATE i MINIMUM CONTAINMENT PRESSURE, 55 PSIA
. . . . . . . . . i 17000- . . . . .
16000 i
- 1 15000 14000 13000 $12000 E -
cg 11000 g 10000 - x gg _
$ 8000 d
h - - O 7000 ; Pu 6000 - 2
~ - -
5000 D - l g 4000 m - 3000 2000 1000 0 10 20 30 40 50 60 70 80 90 100 110 120 130 .140 150 TIME, SEC O ggg SAFETY INJECTION FLOW RATE vs TIME 6?$.II4
9.82 SQUARE FEET-1.0 DOUBLE ENDED SUCTION LEG SLOT BREAK MINIMUM SAFETY INJECTION RATE O MINIMUM CONTAINMENT PRESSURE, 55 PSIA. 17000 , c -r , , , , , , , .. . . . . 16000 - 15000 14000 13000 o - E12000 2 -
$ 11000 (10000 9000 ;
d 8000 - -
! 7000 - -
13 y 6000
~ ' -
5000 b - - et 4000 m 3000 - 2000 - - 1000 - - a i e I i i e a i I e a R 9 1 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 TIME, SEC O ggg SAFETY INJECTION FLOW RATE vs TIME-I 5 6Sf."l
9.82 SQUARE FEET 1.0 DOUBLE ENDED DISCHARGE LEG SLOT BREAK O MAXIMUM SAFETY INJECTION RATE MAXIMUM CONTAINMENT PRESSURE, 70 PSIA i 15000 . , , . , , , . . , , i i 14000 - 13000 - -
$12000 - '
E - -
$ 11000 g 10000 - -
9000 - 3
$ 8000 2
7000 - - 4 S 6000 - - z 5000 h4000 M 3000 - - l 2000 - - 1000 - t i e t i i f I 1 i C i 1 0 10 20 30 40 50 60 70 80 90 100 110 120 130 TIM.E, SEC G V C-E Figure SAFETY INl.7CTION FLOW RATE vs TIME 6.2.1-6
9.82 SQUARE FEET 1.0 DOUBLE ENDED DISCHARGE LEG SLOT BREAK MINIMUM SAFETY INJECTION RATE MAXIMUM CONTAINMENT PRESSURE, 70 PSIA 1%% , i i . . . . . . i i i i i i
)
14000 1 13000 l S 12000 - - m i j 11000 - 1 - a 1 ur 10000 - 1 I %% - - s:: S MM - - J u_ 7000
$, 6000 i'i 5000 - - )
h4
@00 - -
l 3000 2000
- - 1 1000 i
i ,,,,, L a I e i e a i a a a i s a 0 10 20 30 40 50 60 70 '80 90 100 110 120 130 140 150 - TIME, SEC gggg i SAFETY INJECTION FLOW RATE vs TIME 6$.5-7 t
9.82 SQUARE FEET l 1.0 DOUBLE ENDED DISCHARGE LEG SLOT BREAK (7 MAXIMUM SAFETY INJECTION RATE
/
MINIMUM CONTAINMENT PRESSURE,55 PSIA 15000 . . . . . i i i i i i i i 14000 - l 13000 - o - - l 04 12000 i
- =
11000 - g 10000 - - E e 9000 - 3: 8000 - 2 (n) v o p 7000 S 6000 3 32 !
~ -
5000 -
>- 2 3000 - )
2000 - 1000 - 0 l0 N0 $04O N0 6O [0 $0 90 150 1k0 l$0 130 TIME, SEC i I 8% e s
q ,c3 9.82 SQUARE FEET (,) 1.0 DOUBLE ENDED DISCHARGE LEG SLOT BREAK MINIMUM SAFETY INJECTION RATE MINIMUM CONTAINMENT PRESSURE, 55 PSIA i 15000 . . , , , . . . . . . . . . . 14000 - 1 13000 - -
$ 12000 $11000 - -
a ur 10000 - - E e 9000 - - 3:: 7 \ e 'x
'~ )g u-8000 - -
l 5 7000 - -
\
I: S 6000 - - 2
- 5000 - -
I D 4000 - - Ei' 3000 l 2000 - - 1000 - - t I i i i t i I e i i i l i i _ 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 TIME, SEC
" C-E Figure g / S AFETY INJECTION FLOW RATE vs TIME 6.2.1-9
Slot Turbine i] m T Steam Line I aL ak J 6 l mi m2 : B reak ak m4 mB Unaffected Affected Steam Generator Steam Generator I I Guillotine Tu rbine O a s U mT Steam Line B reak
d ' t Al ;m2B m2 r __ > *B1 Unaffected Affected Steam Generator Steam Generator
4 I I I 5000 - 4 - 4866.1 LBMISEC AT 9.70 SECONDS S 4000 - m E h3000 x i d l 5 2000 - E l R ' O m 1000 - q l i 0 I i i l 0 5 10 15 TIME - SECONDS PUMPED FEEDWATER FLOW vs TIME BEFORE MSIV's CLOSE O C - E~ 102% POWER SLOT MSLB LOSS OF 1 CHRS Figure E FEEDWATER ADDITION vs TIME 6.2.1-Sheet 1 of 2 11 t L-_____-----___-_ . _ -
i l .I 30 - P S
-x
- E S 20 -
ci W e 8 O a
$10 -
1 0 ' ' 0 100 200 t TIME - SECONDS ! INTEGRAL OF FLASHED FEEDWATER FLOW vs TIME (J c., 102, e0WER stor Msts <0ss 0F i csRs ,, . FEEDWATER ADDITION vs TIME 6. 0.,,1-Sheet 2 of 2 11
O I I I 5000 - - 4866.1 LBMISEC AT 11.15 SECONDS S 4000 - e
- E h3000 e
td 5 2000 - - E O i 1000 - - 0 I I I 0 5 10 15 TIME - SECONDS PUMPED FEEDWATER FLOW vs TIME BEFORE MSIV's CLOSE c-E 102% POWER GUILLOTINE MSLB LOSS OF 1 CHRS Fi FEEDWATER ADDITION vs TIME 6.0.ure1-S Sheet 1 of 2 12
I i , 30 - T S x
- E
$ 20 of 1 W
Q u_ l 8 4 ip Si b $ 10 l l 0 1 0 100 200 TIME - SECONDS INTEGRAL OF FLASHED FEEDWATER FLOW vs TIME V C-E 102% POWER GUILLOTINE MSLB LOSS OF 1 CHRS naure FEEDWATER ADDITION vs TIME 6.2.1-S Sheet 2 of 2 12 w _ __-_______
O ' ' ' 5000 - 4000 ~ l E 3453.4 LBM/SEC l $ / AT 9.60 SECONDS h3000 x d g 2000 - R w O & 1000 - 0 1 I I 0 5 10 15 TIME - SECONDS + PUMPED FEEDWATER FLOW vs TIME BEFORE MSIV's CLOSE \ ON C-E 75% POWER SLOT MSLB LOSS OF 1 CHRS ri . FEEDWATER ADDITION vs TIME 6.$ur..1-Sheet 1 of 2 13
1 l l I 1 30 m R l
- I h20 - -
ci W 8 m ; o i -
. )
f - d< 10 i l 0 I i 0 100 200 TIME - SECONDS INTEGRAL OF FLASHED FEEDWATER FLOW vs TIME C-E i 75% POWER SLOT MSLB LOSS OF 1 CHRS Fi ure Egply // FEEDWATER ADDITION vs TIME Sheet 2 of 2 6 2 1-13
j O I I I i 5000 - y 4000 - 3453.4 LBMISEC E /AT 11.05 SECONDS l 3000 - x d 2000 - s:: l 1000 - l 0 -I I i 0 5 10 15 j TIME - SECONDS i PUMPED FEEDWATER FLOW vsTIME BEFORE MSIV's CLOSE
" . 4" C-E x ',,,+ . .
bagd 75% POWER GUILLOTINE MSLB LOSS OF 1 CHRS FEEDWATEgDDITj0N vs TIME Fi vre
- 6. 1-
{
l I (V~3 I 30 - T S x \ s j
$ 20 af W
( iti u_ S O $ 10 l 3 i I j 0 I I ' 0 100 200 TIME - SECONDS INTEGRAL OF FLASHED FEEDWATER FLOW vs TIME C-E 75% POWER GUILLOTINE MSLB LOSS OF 1 CHRS Figure .I FEEDWATER ADDITION vs TIME 6.2.1- 4 Sheet 2 of 2 14
-l
O I I I 5000 - y 4000 - E 3 ur E 3000 2173.1 LBMISEC g j AT 9.45 SECONDS 2000 - O i 1000 l I ' ' 0 0 5 10 15 ; TIME - SECONDS 1 PUMPED FEEDWAER FLOW vs TIME , BEFORE MSIV's CLOSE l c-E 50% POWER SLOT MSLB LOSS OF 1 CHRS neur. FEEDWAER ADDITION vs TIME 6.2.1- . Sheet l of 2 15 I i
i i i 30 1
'P S
x
- E l $ 20 5
E R w it' S O Fn cd 10 1 0 i i 100 200 TIME - SECONDS INTEGRAL OF FLASHED FEEDWATER FLOW vs TIME O C-E 50% POWER SLOT MSLB LOSS OF 1 CHRS
~
r; i FEEDWARR ADDITION vs TIME 6.0.or,1-Sheet 2 of 2 15
i 5000 - - 8 4000 e
- E h3000
$ 2173.1 LBM/SEC g /AT 10.90 SECONDS 2000 -
O i 1000 - - 0 I i 1 0 5 10 15 TIME - SECONDS PUMPED FEEDWATER FLOW vs TIME BEFORE MSIV's CLOSE G V Figure C-E 50% POWER GUILLOTINE MSLB LOSS OF 1 CHRS FEEDWATER ADDITION vs TIME 6.2.1- 4 Sheet 1 of 2 16
i i i 30 - q T S , x
- E
$ 20 -
l ci W a S 10 - i 0 1 1 0 100 200 TIME - SECONDS INTEGRAL OF F LASHED FEEDWATER ; FLOW vs TIME C-E / 50% POWER GUILLOTINE MSLB LOSS OF 1 CHRS Figure FEEDWATER ADDITION vs TIME 6.2.1-3 Sheet 2 of 2 16
O I I l 5000 - - o - IM 4000 E N g 3000 g i d x g 2000 g 994.4 LBMISEC O . 11-7 ^19.35 SECONDS 1000 --
)
l 0 l I i 1 0 5 10 15 TIME - SECONDS l, PUMPED FEEDWATER FLOW vs TIME BEFORE MSIV's CLOSE O C-E 25% POWER SLOT MSLB LOSS OF 1 CHRS s FEEDWATER ADDITION vs TIME 6.$ur..1-Sheet l of 2 17
I n ' ' V 30 - I i T S x
- E
$ 20 -
ci ; it' !
< 1 it!
O ! O 2 ct' 10
)
l 0 I
-4 i 200 300 TIME - SECONDS INTEGRAL OF FLASHED FEEDWATER FLOW vs TIME C-E 25% POWER SLOT MSLB LOSS OF 1 CHRS Figure FEEDWATER ADDITION vs TIME 6.2.1-S Sheet 2 of 2 17
1 l I 5000 -
$4000 - -
E ur
$3000 -
8 cd 2000 - a O e 1000 994 4 '8m'sec [AT 10.76 SECONDS 0 1 i i ) 0 5 10 15 TIME - SECONDS PUMPED FEEDWATER FLOW vs TIME BEFORE MSIV's CLOSE C-E / 25% POWER GUILLOTINE MSLB LOSS OF 1 CHRS Figur. FEEDWATER ADDITION vs TIME 6.2.1- ' Sheet 1 of 2 18
i i 30 - T S x s 4
$ 20 -
{ of j W e ,
& 1 O
1 O 9 d 10 - l 04 ' I 200 300 TIME - SECONDS INTEGRAL OF FLASHED FEEDWATER FLOW vs TIME C-E 25% POWER GUILLOTINE MSLB LOSS OF 1 CHRS Fi FEEDWATER ADDITION vs TIME 6.0.ure1-Sheet 2 of 2 18 L___-_________-_____-
['h O ~ l i 1 5000 - I S 4000 - - m l 2 N3000 e d 2000 - i 3 (9 b U u-i j 1000 - 179.2 LBMISEC
/ AT 10.45 SECONnS 0 t il 1 0 5 10 15 l TIME - SECONDS PUMPED FEEDWATER FLOW vs TIME BEFORE MSIV's CLOSE C-E 0% POWER SLOT MSLB LOSS OF 1 CHRS rigur.
FEEDWATER ADDITION vs TIME 6*2 1-SMB Sheet 1 of 2 19
O 30 - - T 1 S x
- E
$ 20 -
af W UJ l S O 9 d 10 l I 0 0 100 200 TIME - SECONDS INTEGRAL OF FLASHED FEEDWATER l FLOW vs TIME l O, C-E 0% POWER SLOT MSLB LOSS OF 1 CHRS Figure FEEDWATER ADDITION vs TIME 6.2 1-l Sheet 2 of 2 19
4 0 5000 - l l y4000 - l 3 ! l ur E 3000 - x 3: 1 3 u_ - N 20000- - D V 5 i 1000 - l i 179.2 LBMISEC
/AT 10.65 SECONDS I II 0 I 0 5 10 15 TIME - SECONDS i l
4 PUMPED FEEDWATER FLOW vs TIME l BEFORE MSIV's CLOSE 'A C-E 04 POWER GUILLOTINE MSLB LOSS OF 1 CHRS Figure FEEDWATER ADDITION vs TIME 6. 2.1-S Sheet 1 of 2 20
] , I i 30 - - T S x
- E
$ 20 - -
at W e e O s
$10 - -
0 i i 0 100 200 TIME - SECONDS INTEGRAL OF FLASHED FEEDWATER FLOW vs TIME A kJ C E 0% POWER GUILLOTINE MSLB LOSS OF 1 CHRS p; u,, ggh FEEDWATE ADDjTION vs TIME 6.2.1-
m_. Figure 6.2.1-21 O MAIN STEAM SYSTEM NODAL MODEL WITH GUILLOTINE BREAK AT STEAM GENERATOR NOZZLE TERMINAL END (FOR SUBCOMPARTMENT ANALYSIS) HEADER A
/ %
4 3 7' 6 5 a 20 19 17 18 l 20 21 19 18
~~
21 15 16 122 __ 22 23 17 16
~~ ~~ -~
24 23 13 14 33 INCH I.D. 24 25 15 14 25 ~~11 ~~12 [ 26 0 2e 2t E ,2 28 - 27 ---- 9 - 10 - 28 29 10 11
~~ ~~ ~ ~~
28 INCH 1.D. 30 29 7 8 30 ONTAWMENT 31 9 8 _P , 1 I ' STEAM GENERATOR 1 *---. STEAM SPACE : 3 INTACT SG
/ 1 2 > RUPTURED SG STEAM GENERATOR ~ "
2 WATER SPACE 4
% /
. . 1 ^ )
35000 (v) 'N N '_ ONE TANK SPILLIiNG DIRECTLY TO C0lNTAltNMElvT 30000
-N EFFECTIVE ANNULUS SPILLAGE g
S 25000 - g' 1
< v d \ -
20000 l
^
w 15000 N
.N EFFECTIVE PUMP SPILLAGE -
i 'CqJ $
\N \
N " g s l
-[
10000 5000 - CONTAINMENT S PRAYS - 0 . . / . 0 40 80 120 160 200 TIME AFTER BREAK, SECONDS 1 C-E COMBINED SPILLAGE AND SPRAY S INTO CONTAINMENT 62 h' "'l~
O no h = 4.xh (TAGAMI) (( o max LINEAR O E
~EN Ip h=h stag + (h max -h stag) e E '
h = 1.2 h (UCHIDA)
'g sta !g fi g= 8.
m
- t TIME 8 p REFILL-BLOWDOWN REFLOOD i
TIME OF ANNULUS DOWNFLOW C-E / Figure CONDENSING HEAT TRANSFER COEFFICIENTS I / FOR STATIC HEAT SINKS 6f.1-i
1 60 , i i i 50 - - 40 - 2 d 30 - - - in 20 E O 20 - - 10 - - I I ' ' 0 0 120 240 360 480 600 TIME AFTER BREAK, SEC0ilDS Amendment No. 4 July 16, 1981 C-E 1.0 x DOUBLE ENDED GUILLOTINE BREAK Figure e SE IN PUMP DISCHARGE LEG MIN. CONTAINMENT PRESS. FOR ECCS PERF. ANAL. 6 2'1 24
l O 240 , i i i
)
200 - l 160 - 0 120 - Wc 1 80 - 40 - l 0 O 120 240 360 480 600 TIME AFTER BREAK, SECONDS Amendment No. 4 July 16, 1981 i C-E 1.0 x DOUBLE ENDED GUILLOTINE BREAK- Figure IN PUMP DISCHARGE LEG 6. 2.1. CONTAINMENT ATMOSPHERE TEMPERATURE 25
m 240 , , , , j 200 - - x 160 - - O Q
=> i 3 120 -
U 5 O v 80 - i 1 40 - - 0 0 120 240 360 480 600 3 i TIME AFTER BREAK, SECONDS Amendment No. 4 July 16, 1981 A C-E 1.0 x DOUBLE ENDED GUILLOTINE BREAK Fi
'd S IN PUMP DISCHARGE LEG CONTAINMENT SUMP TEMPERATURE 6.$ur..1.
26
CESSAR EMMncari2. O 6.2.2 CONTAINMENT HEAT REMOVAL 6.2.2.1 Desian Bases 6.2.2.1.1 Summary Description The Containment Spray System (CSS) is designed to reduce j containment pressure and temperature from a main steam line break 1 or loss-of-coolant-accident and to remove iodine from the ) containment atmosphere following a loss-of-coolant-accident. It I is also the system relied on for long term heat removal following j an accident. The CSS is fully described in Section 6.5. 6.2.2.1.2 Functional Design Basis The functional design basis of the CSS are described in Section 6.5.1.2.1. 6.2.2.2 System Desian l 6.2.2.2.1 System Schematic l p The CSS is shown on the SIS Piping and Instrumentation Diagram
* (P&ID) shown in Figures 6.3.2-1A through 6.3.2-1F. The major components of this system are two identical containment spray g i pumps, two containment spray heat exchangers, two containment i spray mini flow heat exchangers, containment spray headers, and associated valves.
6.2.2.2.2 Component Description The major components are described in Section 6.5.2.2. 6.2.2.2.3 Overpressure Protection ! l Protection against overpressure of components within the CSS is provided by conservative design of the system piping, appropriate valving between higher pressure sources and lower pressure and by relief valves. Relief valves will be provided as required by the applicable codes. All relief valves are of the totally enclosed, pressure tight type, with suitable provisions for gagging. 6.2.2.2.4 Applicable Codes and Classifications A. The CSS is a Safety Class 2 System. B. The piping valves and components of the CSS are designed to ASME B&PVC Section III, Class 2 except as noted in C below. Amendment E 6.2-29 December 30, 1988
CESSARnahmu O C. The component cooling water side of the CSS heat exchanger is designed to ASME B&PVC Section III, Class 3. 6.2.2.2.5 System Reliability Considerations System Reliability is discussed in Section 6.5.2.5 6.2.2.2.6' System Operation System Operation is discussed in Section 6.5.2.6. 6.2.2.3 Desian Evaluation The CSS uses the SPRACO Company 1713A nozzle, which provides a drop size distribution which has been established by testing and found suitable for the fission product removal function. The CSS provides a nozzle pressure differential which fixes the drop size distribution. Histograms of the drop size distribution are available for the SPRACO 1713A nozzle. 6.2.2.4 Preoperational Testing Prooperational tests are conducted to verify proper operation of I the CSS. The operational tests include calibration of l instrumentation, verification of adequate flow, and verification of the operability of all associated valves. In addition, a preoperational hot functional performance tests is made on the E installed CSS heat exchangers as part of the precore hot functional test program. The CSS also undergoes a series of preoperational hydrostatic tests conducted in accordance with Section III of the ASME Boiler and Pressure Vessel Code. 6.2.3 SECONDARY CONTAINMENT FUNCTIONAL DESIGN ( LATER) 6.2.4 CONTAINMENT ISOLATION SYSTEM The Containment Isolation System provides the means of isolating fluid systems that pass through Containment penetrations such that any radioactivity that may be released into the' Containment following a postulated design basis accident will be confined. The Containment Isolation Systems are required to function following a design basis event to isolate nonsafety-related fluid systems penetrating the Containment. There is no particular system for complete Containment isolation, but isolation design is achieved by applying acceptable common Amendment E 6.2-30 December 30, 1988 l 1 -
CESSARE!Nnc-
/G b i criteria to penetrations in many different fluid systems and by using Containment pressure to provide a Containment Isolation Actuation Signal- as described below to actuate appropriate valves.
6.2.4.1 Desian Bases 6.2.4.1.1 .Overall Requirements The design bases for the Containment Isolation Systems include provisions for the following: A. A double barrier at the containment penetration . in those fluid systems that are not required to function following a design basis event. 1 B. Automatic and leaktight closure of thane valves required to close for containment integrity following a design basis event to minimize release of any radioactive material. I C. A means of leak testing barriers in fluid systems that serve as containment isolation. This.. is in accordance with General Design Criterion 52. D. The capability to periodically test the operability of containment isolation valves. E In conformance to General Design Criterion 54, the piping systems and related components penetrating the containment are provided with leak detection, isolation, and containment capabilities having redundance, reliability, and performance capabilities that reflect the importance to safety of isolating these fluid systems. The containment leakage test program provides for periodic testing to determine if valve leakage is within allowable design limits and to test the operability of the isolation valve and associated components. Isolation valves are located as close as practical to the containment. All automatic valves are designed with a failure position that provides the greatest safety. Lines that are part of the reactor coolant pressure boundary and penetrate the primary reactor containment are referred to as ' Type I and are provided with valves as follows: A. One locked closed isolation valve inside and one locked closed isolation valve outside containment, or B. One automatic isolation valve inside and one locked closed isolation valve outside containment, or Amendment E 6.2-31 December 30, 1988
CESSAR E'Encm O C. One locked isolation valve inside and one automatic isolation valve outside containment. A check valve is not used as the automatic isolation valve outside containment. D. One automatic isolation valve inside and one automatic isolation valve outside containment. A check valve is not used as the automatic isolation valve outside containment. The above provisions satisfy NRC General Design Criterion 55. Lines that connect directly to the containment atmosphere and penetrate the primary reactor containment are referred to as , Type II and are provided with the following isolation valves: i A. One locked closed isolation valve inside and one locked closed isolation valve outside containment, or B. One automatic isolation valve inside and one locked closed isolation valve outside containment, or C. One locked closed isolation valve inside and one automatic isolation valve outside containment. A check valve is not used as the automatic isolation valve outside containment, or D. One automatic isolation valve inside and one automatic E isolation valve outside containment. A check valve is not used as the automatic isolation valve outside containment. These provisions satisfy General Design Criterion 56. Lines that penetrate the primary reactor containment and are i neither part of the reactor coolant pressure boundary nor , connected directly to the containment atmosphere are referred to ! as Type III and have at least one isolation valve, located outside the containment, which is (a) automatic, (b) locked closed, or (c) capable of remote manual operation. A check valve is not used as the automatic isolation valve. These provisions satisfy NRC General Design Criterion 57. 6.2.4.1.2 Design Features The following is a summary of Containment Isolation System design features. Incorporation of these features into the Containment Isolation System results in a design where the design criteria for containment isolation barriers given above are met: A. Containment isolation valves and interconnecting piping are designed and constructed to Safety Class 2 and Seismic Category I standards as defined in ANSI N18.2-1973 and , Regulatory Guide 1.29, respectively. { l Amendment E 6.2-32 December 30, 1988
CESSAR n!Wicam,. B. The design pressure and temperature of all piping and connected . equipment comprising the isolated boundary is greater than the design pressure and temperature of the containment. C. Containment isolation valves and interconnecting piping are protected against missiles. D. Containment isolation valves and interconnecting piping are protected against the effects of pipe whip and jet impingement. E. The maximum allowable particle size entrained in water taken from the containment sump is limited. This ensures that the proper operation of ESF systems and CIS valves will not be inhibited by debris introduced into the containment following a LOCA. F. Containment isolation valves are designed to operate under normal environmental conditions and to fulfill their safety related function under post-accident environmental conditions, consistent with the requirements of Section 3.11. O G. Containment isolation valve and associated penetration piping are qualified in Section III of the ASME Code, as Class 2 components, as described in Section 3.9.3. E H. Maximum allowable actuation times are imposed on containment isolation valves consistent with their required safety function. I. Valve operators and power sources are selected for containment isolation valves consistent with their requirad safety function. l 6.2.4.2 System Description , 1 No single piping and instrumentation diagram shows all of the l containment penetrations; however, they are shown on appropriate piping and instrumentation diagrams for systems. Containment isolation provisions are tabulated in Table 6.2.4-1. The appropriate valve arrangements are illustrated in Figure 6.2.4-1. All valves that receive an engineered safety features actuation signal are designed and tested with closing time appropriate to the function performed. The sequencing system for loading the ; s onsite emergency electrical generators is designed to close all l valves receiving an engineered safety features actuation signal within seconds of the time the shift to emergency onsite , electrical power signal is accomplished. 1 Amendment E 6.2-33 December 30, 1988
CESSARE!.h m O As described below, adequate protection is provided for piping, valves, and vessels against dynamic effects and missiles which might result from plant equipment failures, including a LOCA. Isolation valves inside the containment are located between the secondary shield and the inside containment wall. The secondary shield serves as the missile barrier. Any necessary missile barriers for isolation valves and piping, or vessels which provide one of the isolation barriers outside the containment, will consist of structural steel and/or concrete. Piping isolation valves and actuators in the Containment Isolation System outside containment are located inside a Seismic Category 1 enclosure complex, and are located as close as practical to the containment wall, i.e., in almost all cases, isolation valves will be located immediately after the penetration assembly. There will, however, be exceptions, such as the case of the main steam lines which require a series of safety valves before the isolation valve. Also, there will be some exceptions due to normal structural design arrangements. Actual lengths of pipe from penetrations to the isolation valves outside containment will be held to a minimum. The isolation arrangement of the fuel transfer tube consists of a transfer tube closure and a blind flange, enclosing the transfer tube. The blind flange contains two 0-ring grooves and a E pressure tap which runs through the blind flange to the annulus between the two 0-rings. When assembled preparatory to reactor operation, the blind flange is bolted to the transfer tube closure and the annulus between the seals is pressurized to ensure that both seals are functioning. The seal is further tested when test pressure is introduced into the containment. When these tests have been satisfactorily completed, the fuel transfer tube is isolated from the containment. The transfer tube closure and the blind flange are considered to be the containment boundary and, therefore, General Design Criterion 56 does not apply to the transfer tube penetration and an isolation valve is not required. A normally locked-closed manual valve will be provided on the transfer tube outside the containment. However, its basic function is not to provide containment isolation. At the beginning of refueling, during filling of the refueling pool, this valve is maintained closed until a common water level is reached in the refueling pool and the spent fuel pool. Then the valve is opened to allow the transfer of fuel. O Amendment E 6.2-34 December 30, 1988
CESSARE!Lbmu Fluid lines which must remain open subsequent to a design basis accident, such as lines serving ESF cystems, do not have containment isolation valves that are automatically closed by the CIS or MSIS. Each of these pccetrations has a minimum of one remote-manual operated isolation valve outside containment. Provisions made to assure the operability of the isolation valve ; system under an accident environment satisfy the requirements for redundancy, independence, and testability. The valving system is designed for pressures equal to or greater than the containment design pressure. A comprehensive testing and inspection program assures that these components will operate for the time period required in the post-design basis accident conditions of temperature, pressure, humidity, radiation, or seismic phenomena. The proper deign basis accident environmental conditions are listed in the design specifications for all components that are part of the Containment Isolation System. Vendor factory testing is performed on a prototype of these components to assure their adequacy under these conditions. Air or motor-operated valves are used for the automatic isolation valves. Air-operated valves are designed to assume the position of greater safety upon loss of air. Motor-operated valves are
) powered from the emergency power sources.
Remote manual control of the automatically actuated containment I isolation valves is provided.. E Automatic valves are installed in lines that must be immediately isolated after an accident. Those lines which must remain in service after an accident have at least one remote manual valve. The integrity of the isolation valves system and connecting lines, under the dynamic forces resulting from inadvertent closure while at operating conditions (e.g., main steam lines) is i assured by the performance of static and dynamic analysis on the l piping, valves and restraints. The supports and restraints are applied such that integrity is assured and pipe stresses and support reactions are within allowable limits. Valves, in nonsafety-related systems where function permits, are normally positioned closed to minimize any ; release following a design basis event are equipped with valve 1 operators to move the valve rapidly. I Containment isolation valves and operators are designed to withstand a maximum integrated radiation dose of 4.0E-7 rads during the life of the plant. O V Amendment E 6.2-35 December 30, 1988
CESSAR EE"icavi:n O Containment isolation valves that are located inside the containment are designed to function under the pressure-temperature conditions of both normal operation and that during the design basis event. The pressure-temperature condition used for valve deign under normal operation is 14.7 psia and 130*F. The pressure-temperature condition used for valve design under accident conditions is given in Section 6.2.1. 6.2.4.3 Safety Evaluation The containment structure and the containment penetrations form an casentially leak-tight barrier. Allowable leak rates from the ; containment under design pressure condition are discussed in i Section 6.2.1. Testing provisions and performance are also discussed in Section 6.2.1. Whenever practicable, isolation valves outside containment which are normally open and required to close on a signal to isolate the containment are designed to fall closed. l In order that no single, credible failure or malfunction will l piping E result in loss of isolation capability, the closed systems, both inside and outside the containment, and various types of isolation valves provide a double barrier. The isolation valve and actuators are located as close as practical to the containment and protected from missile damage. This minimizes the potential hazards that could be experienced by the system. The integrity of the isolation valve system and connecting lines under the dynamic forces resulting from inadvertent closure under operating conditions is assured, based upon required static and dynamic analysis. The supports and restraints are applied such that pipe stresses and support reactions are within allowable limits as defined in Section 3.9.3. Although the large Containment Purge System isolation valves (supply and exhaust) are required by Technical Specifications to be closed when the Reactor Coolant System exceeds hot shutdown l conditions a CIAS is provided to them to further assure closure. The 4-inch On-Line Containment Pressure Control System isolation valves also receive a CIAS signal. Diversity of the CIAS signal is provided since a CIAS occurs on containment high pressure or upon receipt of a SIAS. The Containment Pressure Control System containment isolation valves are designed for positive closure within 1.5 seconds from time of actuation. Amendment E 6.2-36 December 30, 1988 l
~
CESSAR Hinema Testinct and Inspection i 6.2.4.4 j Each valve is designed to be tested periodically during normal operation or during shutdown conditions to verify its operability and ability to meet closing requirements. The isolation valves are tested for leakage (both by the vendor prior to installation in the field and again in the field as part of the installation and integrated system testing program) in accordance with 10 CFR 50, Appendix J. The total combined leakage rate for components subject to Type B and C tests as l defined by 10 CFR 50, Appendix J, is limited to 60 percent of the l design basis accident leakage rate. Appropriate vent and drain connections are provided for Type A and C tests. These tests provide periodic verification by testing for leak-tight integrity of the containment and associated systems. These tests assure that leakage of the Containment Isolation System is held within allowable leakage-rate limits. Periodic surveillance is performed to assure operability throughout plant life. p Test connections, drains, vents, and pressurizing means are
! provided to test each Type C containment isolation valve or I barrier for leak-tightness. Air or nitrogen is used as the E pressurizing medium. Leak testing of individual valves and penetrations will be accomplished by one of the following methods:
A. Method 1, Pressure Decay The test volume is established by closing the appropriate , isolation valves. The volume to be tested is established by either direct measurement of liquid drained from the system or by computation. The test volume is pressurized. The test volume pressure is recorded at 15-minute intervals for a minimum of one hour. The leakage rate is computed using the following equation: 3, , (VT) ( AP) 1 (At) P l I Amendment E 6.2-37 December 30, 1988
CESSAREH L 2 . 3 e Ly is leakage rate (ft /sec) VT is the test volume (ft3) At is the time interval over which the pressure decay is recorded (sec) AP is the change in pressure from the initial pressure at the start of time interval At (psig) P is the initial pressure at the start of time interval at (psig) This method assumes that the temperature of the test volume remains constant throughout the test. B. Method 2, Air Flow The test volume is established by closing the appropriate isolation valves. This method does not require the determination of the volume to be tested. The test volume is pressurized. Pressure and air flow are recorded at 15-minute intervals for a minimum of one hour. 6.2.4.5 Instrumentation Requirements E Containment isolation will be initiated by means of a Containment Isolation Actuation Signe.1 (CIAS). A CIAS occurs on containment l high pressure as sensed by two out of four containment high ! pressure sensors or upon receipt of an SIAS. ) The instrumentation circuits that generate CIAS are described in Section 7.3. The inclusion of the Main Steam Isolation Signal as a CIAS is not necessary as the radiological releases due to a ! steam line break are within acceptable guidelines. Main steam i and main feedwater isolation are initiated by the Main Steam j Isolation Signal as described in Chapter 7. y l 1 i l i Amendment E 6.2-38 December 30, 1988 !
CESSAREni%,m, O TT.BLE 6.2.4-1 CONTAINMENT ISOLATION SYSTEM (LATER) E 1 l I 1 I I i l O I i l l l 1 l O Amendment E December 30, 1988 i
.l E_____________._.____ _
Valve Arrangement Inside Containment Outside Containment Penetration No. No. 4 '.- (, <? 3- - M 1 *
" 11, 12 N :.' ll ;; +- *: .
- e. .
e g... 0
, : N n n 13, 14- /. n n ,, +-- ,'.; _ 15,.16 I. X e @~ ' ;'s h ~
17,18 3
- N 5- ;;
+--
f 19, 20 [y
. /,e 1
l AIR OPERATOR -*
, g ; V MOTOR OPERATOR -
SOLENOID OPER ATOR . , : f iw 4;. 4
... M 4 23, 24
- f;' :: ,%
ENCAPSULATED VALVE OR ,....,** ' * '. . . . '; ' % EQUIVALENT CONTAINMENT -- PENETRATION SATISFYlNG . .e* . 3 r GDC 54 & 56 ;. a g 6*- . k C-E / Figa. e g g gg f CONTAINMENT ISOLATION VALVE ARRANGEMENT 6,2. 4-1 A l 1
Valve ! Arrangement Inside Containment Outside Containment Penetration l t{o. No. l O ,- ; 19 Y. ., y 5 f, r, ; ?. { hn 27, 28
. vI .'.
l. l
2. .4 jf d-9s i.i 't. ' . . ^ 0 6 29 x : :
- s. :
- (
le :'.'
.,s ', r <. A 7 6,':
- a 40 1
' i. ~ +-N ;;
- 4-S ;,
,, -m '.::
8 A <
;9 41
- N
.~.
f.
*~~
l .'.
' Amendment No. 10 ' , *_ June 28, 1985
( C-E Figure g CONTAINMEIG ISOLATION VALVE ARRANGEMENT 6 2,4-1B
m .. V alve - . . . Arrangement Inside Contain ment Outside Containment Penetration No. No.
!h t..;
O A '3 A 9 . .6. . 43 e, .. ii 1 .. .:-.
.a. .u . ..
- i.
1
). .ss A !.9 A .- .(.f.. . .
10 --
.s --
44 p..; j.?. i r'. 0
- 5.
\ i,k, 1 ~.
1 e.:.
" A 11 : :: 45 .N -- .@s. ;i.- .a T .' . .S '9,' . \
i
- t. ,.
. .a ? ,. 's . -' M 12 ; y j,,' 57 ;:6 .i: - - _ _ - . - - _ - _ _ _ _ _ - _ _ . - . ~ -
{ CESSAR EEecnia 6.2.5 COMBUSTIBLE GAS CONTROL IN CONTAINMENT (LATER) 6.2.6 CONTAINMENT LEAKAGE TESTING Containment leakage tests and containment isolation system valve i operability tests will be performed' periodically to verify that leakage from the containment is maintained within acceptable limits. The types of leakage tests are as follows: i A. Type A Tests Tests to measure the reactor primary containment overall l integrated leakage rate. The containment leak rate test I will be conducted in accordance with Appendix J of 10 CFR 50. B. Type B Tests Tests to detect and measure local leaks of containment ! penetrations, hatches, and personnel locks as required by l Appendix J of 10 CFR 50. E C. Type C Tests Tests to detect and measure containment isolation . valve leakage as described by Appendix J of 10 CFR 50. 6.7. 6.1 Containment Intecrated Leak Rate Test The containment leakage rate that the System 80+ containment must be proved lower than 0.50 weight percent per day. During the test, the containment is isolated and pressurized in accordance with Appendix J of 10 CFR 50. When test pressure is reached, the containment is isolated from its pressure source and the following parameters are recorded at periodic intervals: A. Containment absolute pressure. B. Dry bulb temperatures. C. Water vapor pressures. D. Outside containment weather conditions. 5
\
Amendment E 6.2-39 December 30, 1988
CESSARE!ELma O During the test, ventilation inside the containment is operated as necessary to enhance an even air temperature distribution. The test data are processed at periodic intervals during the test to determine test status and leak-tight confidence level. If it appears that the leakage is excessive, the pressure plateau is either maintained on the test or aborted to perform repairs. After a prescribe time period and assurance of leak test rate, the pressure is slowly bled off to verify the leak- rate measurement. This is accomplished by precise measurement of a flow which causes a change in the weight of air in the containment that is in the same order of magnitude as the allowable leakage rate. Formulas used in computing the integrated leak rate are based on the formulas fund in ANSI N45.4, " Standard for Leakage Rate Testing of Containment Structures for Nuclear Reactors." The test methods for the periodic Type A tests are essentially the same as those used for the preoperational Type A tests. Any differences in the methods are due only to minor differences in post operational system alignments, e.g., the piping between the refueling cavity and the suction of the RW pump cannot be drained with water in the refueling cavity. 6.2.6.2 Containment Penetration Leakage Rate Test Type B leakage rate tests are performed on all electrical, equipment, and personnel hatch penetrations in accordance with 10 CFR 50 Appendix J. The test pressure, test frequencies and E acceptcnce criteria are specified. Leakage rates are determined by pressure loss or makeup flow methods. All bellows on mechanical penetrations are subjected to a local structural integrity test by pressurizing the volume between the two ply bellows to 3-5 psig at the same frequency as Type B and C tests. During the performance of each Type A test, the test connections on all bellows are uncapped. This assures that he volume between the two ply bellows is vented to the annulus during performance of this test. At the completion of this test, all of the test connections are capped except for the main steam ; and feedwater penetration outer bellows test connections which ] remain uncapped and vented to the annulus. The testing program ! for bellows on mechanical penetrations is the same as was previously reviewed and approved by the NRC for McGuire (NUREG-0422, Supplement 1, May 1978). I l Ol; I 2 Amendment E 6.2-40 December 30, 1988
-~ CESSAR EMncam,, O v 6.2.6.3 Containment Isolation Valve Leakace Rate Test Type C leakage rate tests are conducted for each penetration identified as a potential bypass leakage path. Each valve or set ] of valves subject to Type C testing is tested by ' pressurizing with air or nitrogen on one side of the valve while the other , side is opened to atmospheric pressure. Leakage rates are I determined by pressure loss or makeup flow methods which recognize that the leak rate is a function of the containment i pressure. 6.2.6.4 Schedulina and Reportino of Periodic Tests Periodic Type A, B and C leakage rate tests are performed, and ! the results are documented. 6.2.6.5 Special Testing Requirements Inleakage from the Reactor Building is checked preoperationally and periodically. The effectiveness of fluid filled systems is verified by use of the systems during normal operation or periodic testing to show Os operability and the ability to develop required pressures. Any major modification or replacement of a component which is l part of the primary reactor containment, performed after the E l preoperational leakage rate test, will be followed by a Type A, B, or C test as appropriate. l I l i i Amendment E 6.2-41 December 30, 1988
CESSAR EH9,cari:n O 1 6.3 SAFETY INJECTION SYSTEM C 6.3.1 DESIGN BASES 6.3.1.1 Summary y ;cription The Safety Injection System (SIS) is designed to provide core cooling in the unlikely event of ' a Loss-of-Coolant Accident (LOCA). The SIS limits fuel damage so as to maintain a coolable core geometry, limits the cladding metal-water reaction, removes the energy generated in the core and maintains the core subcritical during the extended period of time following a LOCA. More specifically, the SIS shall assure that the criteria of 10CFR50.46 are met. The SIS accomplishes these functional requirements - by use of redundant active and passive injection subsystems. The active portion of the SIS consists of four identical Safety Injection (SI) Pumps and associated valves. The passive portion consists j of four identical pressurized Safety Injection Tanks (SITS). j i The SI Pumps can be utilized to achieve safe shutdown by C r providing make-up for volume contraction or lost fluid and by l ( providing sufficient boron to the reactor vessel to achieve and maintain necessary shutdown margin. The SIS is also capable of injecting borated water into the I reactor vessel to mitigate accidents. Safety injection would be initiated in the event of a Steam Generator Tube Rupture, Steam 4 Line Break or a CEA Ejection incident. The system is actuated j automatically. The SI Pumps are also used for bleed-and-feed operations in conjunction with the Safety Depressurization System. 6.3.1.2 Criteria 6.3.1.2.1 Functional Design Bases A. The shutoff head and flow rates of the SI Pumps were l C selected to insure that adequate flow is delivered to the reactor vessel to accomplish the functional requirements of l C Section 6.3.1.1. B. Storage of fluid for the SIS is accomplished by the In-containment Refueling Water Storage Tank (IRWST) which lC contains a sufficient amount of borated fluid to accomplish the functional requirements of Section 6.3.1.1. Amendment C 6.3-1 June 30, 1988
l CESSAREPec-O C. The SIS is designed for Direct Vessel Injection (DVI). The discharge of each SI Pump and Tank is piped directly to a reactor vessel nozzle where the flow is directed into the l reactor vessel downcomer region. C I D. The SIS is designed so that the SIS pumps can be tested at full-flow conditions with the reactor operating at power. 6.3.1.2.2 Reliability Design Bases A. The safety function defined in Section 6.3.1.1 can be accomplished assuming the failure of a single active j component during the short-term mode of operation or a j single active or limited leakage passive failure of a C component during long-term (>24 hr.) post-accident h operation. l l For failure analysis, all necessary supporting systems, ) including the onsite electrical power system, are considered as part of the Safety Injection System. A Failure Modes and Effects Analysis (FMEA) is presented in Table 6.3.2-2. j B. Components of the SIS and instrumentation which must operate ! following a LOCA are designed to operate in the environment i I of Section 3.11. IC I C. The SIS is designed to Seismic Category I requirements. l 6.3.1.3 Interf ace Recruirementat Below are the detailed interface requirements that the SIS places on certain aspects of the Balance of Plant (BOP), listed by categories. In addition, applicable GDC and Regulatory Guides, which C-E utilizes in its design of the SIS, are presented. j These GDC and Regulatory Guides are listed only to show what C-E considers to be relevant, and are not imposed as interface requirements, unless specifically called out as such in a , particular interface requirement. I Relevant GDC - 1, 2, 3, 4, 13, 14, 17, 18, 20, '21, 22, 23, 30, C 31, 32, 34, 35, 36, 37, 54, 56, 57 Relevant Reg. Guides - 1.1, 1.26, 1.28, 1.29, 1.31, 1.36, 1.38, 1.44, 1.45, 1.47, 1.53, 1.64, 1.68, 1.68.2, 1.75, 1.79, 1.82, 1.84, 1.89, C 1.97, 1.148 A. Power I
- 1. Electrical power requirements for the motor-operated C valves in the SIS are contained in Table 8.3.1-1. j Amendment C I 6.3-2 June 30, 1988 i
CESSAR E!'#,c.m. 3 l
) \
- 2. The electrical supplies- for the SIS pumps, valves and C instruments shall be as follows.
- a. The SI Pumps and valves shall be capable of being powered from 'the plant turbine generator (onsite '
power source), and/or plant startup power source (offsite power), andPower the emergency generators connections shall be (emergency power). through a minimum of two independent buses so fhat in the event of a LOCA in conjunct ion witu a single failure in the electrical supply, the flow from at least two safety injection pumps shall be lC available for core protection. An independent electrical bus of the above b. supply two SI Pumps and associated valves. shalllC l
- c. Each emergency generator and the automatic sequencers necessary for generator loading 'shall be designed such that flow is delivered to the i reactor vessel within a maximum of 40 seconds lC l after an SIAS is generated. The emergency j generator design requirements are described in O
C Section 8.3.1.
- d. The SIS hot leg injection valves shall be powered such that a single electrical failure cannot cause spurious initiation of hot leg injection flow through either hot leg injection line, single electrical failure prevent initiation nor shallofa lC hot leg injection flow through at least one of the ,
hot leg injection lines.
- e. Air for all SIS pneumatic valve operators shall be clean, dry and oil-free.
1
- f. Provisions shall be made to remove power from the I SIT vent valves (SI-331, 335, 329, 333, 330, 334, 328, 332) during plant operation.
shall be made to allow restoration of power to Provisions [l these valves from the control room and a remote l shutdown location. The two vent valves on each SIT shall be powered from separate and independent C emergency power sources. Provisions shall be made to remove power from the motors on the SIT isolation valves whenever appropriate consistent with the constraints associated with the plant g' I safety analysis. i ( 1 Amendment E 6.3-3 December 30, 1988
~
l CESSARn%nem O B. Protection from Natural Phenomena
- 1. Design provisions shtcll be incorporated such that SIS components are capable of functioning in the event of the maximua probable flood or other natural phenomenon defined in Criterion 2 of 10 CFR 50.
C. Protection from Pipe Failure
- 1. The maximum expected leakage from a moderate energy pipe rupture postulated during normal plant conditions in the SIS shall be as defined by the methods of Section 3.6. Isolation valves used to contain leakage shall be protected from the adverse effects of a high or moderate energy pipe rupture which might preclude their operation when required.
- 2. No limited leakage passive failure or the effects thereof (such as flooding, spray impingement, steam, j temperature, pressure, radiation, loss of NPSH, or loss of recirculation water inventory), in the SIS during the long term post-accident mode shall preclude the C -
availability of minimum acceptable safety injection capability (minimum acceptable capability is defined as that which is provided by the operation of one subsystem).
- 3. The SIS shall be protected from the effects of pipe rupture.
- 4. The SIS shall be protected fr.;m the effects of pipe whip.
D. Missiles
- 1. The SIS shall be protected from missiles. C E. Separation s l 1. Adequate physical separation sha71 ba maintained between the redundant piping path, and containment penetrations of the SIS such that tha SIS will meet its functional requirements even with the failure of a single active component during the short-term injection mode, or with a single active failure or a limited leakage passive failure during the C !
long-term, post-accident mode, l I i 1 Amendment C l 6.3-4 June 30, 1988
CESSARUnam. O 2.- The cabling which is associated with redundant I channels of ' vital Class 1E ' circuits for the SIS shall be. physically separated to preserve redundancy and prevent a single ~ event from causing multiple channel malfunctions or interactions between channels. Associated circuit cabling from redundant channels i shall either be separated, provided with isolation devices, or analyzed and/or tested to demonstrate that no credible single failure could adversely affect redundant channels of Class 1E circuits.
- 3. In the routing of SIS Class 1E circuits and location of equipment served by these Class- 1E circuits, c',nsideration shall be given to their exposure to potential hazards such as postulated ruptures of piping,. flammable material, flooding, and non-flame retardant wiring. Adequate. separation or protective measures shall be provided. lj
- 4. Failures of non-safety grade systems shall not comprcmise redundancy of the SIS.
F. Independence
- 1. The environmental control system provided for each independent - SIS train shall be powered by the same C emergency power associated with that train.
- 2. Power connections for SIS components shall be from a minimum of two independent electrical buses.
See A.2 above.
- 3. Two independent vital instrument power sources shall be provided for the SIS instrumentation.
See A.5 above. G. Thermal Limitations Not Applicable H. Monitoring
- 1. Provisions shall be made for the detection, containment,. and isolation of the maximum expected leakage from a moderate energy ' pipe rupture, as discussed in C.1 above.
Amendment C 6.3-5 June 30, 1988
CESSAR Maincari:u O
- 2. Process instrumentation shall be available to the l operator in the control room to assist in assessing l post-LOCA conditions. The type of instrument, f parameter measured and instrument range are listed in Table 7.5-2. lC I. Operational Controls Not Applicable
)
J. Inspection and Testing
- 1. Inspection and testing requirements for the SIS are contained in Section 16.4.5. lC
- 2. Prior to initial plant startup, SIS flow tests shall be performed. An adequate supply of and the necassary test connections at the water IRWST lC shall be provided. ,
K. Chemistry / Sampling I
- 1. The Sampling System shall provide a means of obtaining remote liquid samples from the SIS for chemical and radiochemical laboratory analysis.
- 2. The sample ]ines in contact with the reactor !
coolant shall be austenitic stainless steel or equivalent material compatible with the fluid chemistry.
- 3. Post-accident sampling capabilities shall be provided ,
for the SIS. The Sampling System shall be designed to g ( be consistent with the criteria specified in Item j II.B.3, Post Accident Sampling capability, of j NUREG-0737, November, 1980. ] L. Materials
- 1. SIS piping and fittings shall be seismic Category I.
- 2. Design and fabrication of the SIS piping and fittings shall conform to ASME Boiler and Pressure Vessel Code (B&PV) Section III, Class 1 or 2. l
- 3. Pipes and all parts in contact with the system fluid must be of austenitic stainless steel. Valve packings, gaskets, and valve diaphragm materials shall also be compatible with the chemistry of the water and the radioactive dose at that location. .
1 1 l Amendment E l 6.3-6 Decenber 30, 1988 ( I
i CESSARin a m,. O
- 4. Care shall be taken to prevent sensitization and to control the delta ferrite content of (1) the welds which join any system fabricated of austenitic stainless steel to the SIS, and (2) the field welds on the SIS.
- 5. Controls shall be exercised- to assure th;t contaminants do not significant.2 v contribute to stress corrosion of stainless steel.
- 6. Materials used for the containment and its to internal I structures shall withstand exposure all post-accident conditions without causing deleterious or undesirable reactions, or significantly altering i existing long-term operating water chemistry. thelC
- 7. The Containment Spray System is interconnected to the RCS during shutdown or during recirculation of the C IRWST water and, therefore, materials used in this system shall be austenitic stainless steel or other compatible material and shall conform to the standards of Section III Class 2, ASME B&PV Code and applicable Code cases. ]
M. System / Component Arrangement l
- 1. To assure that the Engineered Safety Features Systems flow requirements are met, the maximum and i minimum acceptable head losses for the piping and' l fittings along with the required NPSH are as i presented in Tables 6.3.2-3 and 6.3.2-4.
C
- 2. The SI Pumps shall be located in the auxiliary building as close as practicable to the containment structure.
- a. The elevation of these pumps shall be low j enough such that adequate NPSH is available '
when the pumps take suction from the IRWST.
- b. The available NPSH shall be calculated at the pump suction. C
- c. The calculation shall consider concurrent safety injection and containment spray pump operation. Tables 6. 3. 2-3 and 6.3.2-4 provide SI Pump NPSH and head loss requirements. The NPSH requirements listed include a 10% margin above l p that required for proper pump operation, e
s Amendment C 6.3-7 June 30, 1988
CESSAREnana O
- d. Credit shall not be taken for water that could be trapped in volumes which do not drain to the IRWST. C
- 3. SIS components shall be properly supported such that pipe stresses and support reactions are within allowable limits. C-E will provide to each Applicant the design loads at the support / structure interface i locations for components that C-E supplies.
- 4. The loadings imposed by the SIS piping on the reactor C vessel nozzles, or by the connecting system piping on SIS nozzles, shall be less than the design loads for these nozzles. C-E will provide to each Applicant the "
design loads for all nozzles on those SIS components that C-E supplies.
- 5. In the event of a limited leakage passive failure j
. in one SIS train during the long term cooling mode, i personnel access to the other intact trains will not be affected. C ,
- 6. The two SIS check valves in each of the six safety injection lines shall be located as follows: one as close as practicable to the DVI nozzles (4 DVI lines) C and the RCS piping (2 hot leg injection lines), the other as close as practicable to the containment penetration.
- a. Allowance shall be made for valve accessibility and maintenance.
- b. The check valve leakage lines shall be connected Ic to the safety injection line immediately upstream of the safety injection check valve closest to the RCS piping. This is necessary to ensure that all of the safety injection piping is borated at all times. appropriately lC
- 7. Each SIT shall be located inside the containment, outside the biological shield, and as close as possible to the reactor DVI nozzle into which it injects. lC
- a. The piping run from each tank to the reactor C vessel nozzle shall be as direct as possible with a minimum of bends and elbows.
- b. Long radius elbows or pipe bends shall be used.
C Amendment C 6.3-8 June 30, 1988
CESSAR !!!#icim. O
- c. The bottom of the SIT shall be located above the C-centerline of the reactor vessel DVI nozzle.
- 8. Manually-operated valves shall be provided with locking provisions as shown in Figures 6.3.2-1A and 6.3.2-1B.
- 9. Physical identification of . safety related SIS l equipment and cabling shall be provided to allow l recognition of safety status by plant personnel.
- 10. In.the routing of SIS Class 1E circuits and location.of equipment served by these Class 1E circuits, consideration shall be given to their exposure to potential hazards. .See'E.3 above.
- 11. All SIS ASME B&PV Code Section III components shall be arranged to, provide adequate clearances to permit inservice inspection.
- 12. Protection shall be provided from internally generated flooding that could prevent performance of safety related functions.
-O N. Radioactive Waste
- 1. SIS leakage to the safeguards room will normally drain to the room sump. Provisions shall be provided. to accept the maximum leakage rates listed below:
- a. Safety Injection Pump seals: 1000 cc/hr C
- b. Valves backseat leakage: 10 cc/hr/ inch seat diameter I across the valve seat: 10 cc/hr/ inch of nominal valve size All leakages shall be treated as radioactive waste with a low dissolved solids and organic content.
O. Overpressure Protection Not Applicable l l O Amendment C 6.3-9 June 30, 1988
CESSAR ESinem I O P. Related Services
- 1. Nitrogen gas shall be supplied to each SIT. This supply shall satisfy the following requirements:
- a. Minimum Required Flow Rate 300 SCFM (at supply pressure) i
- b. Maximum Allowable Flow Rate 2490 SCFM (at supply pressure)
- c. Minimum Supply Pressure 630 psig (for normal plant operations)
- d. Maximum Supply Pressure 700 psig (all conditions)
- c. Gas Volume Required for 105,000 SCF i 4 Tank Blowdown
- f. Design Criteria ANSI B31.1
- g. Maximum Water Content 0.1 percent
- h. Minimum Supply Stream 80*F Stagnation Temperature
- 1. Maximum Supply Free Stream 115'F Temperature
- j. No single failure shall allow the compressed nitrogen system delivery pressure to exceed 700 psig.
- 2. An IRWST shall be provided. Baffles and intake screens i shall be installed to limit the maximum particle size C entering the IRWST to 0.09 inches in diameter in order to prevent flow blockage in the SIS components and piping and in the reactor.
- 3. A fire protection system shall be provided to protect j '
the SIS consistent with the requirements of GDC 3, and shall include, as a minimum, the following features: !
- a. Facilities for fire detection and alarming.
- b. Facilities or methods to minimize the ;
probability of fire and its associated effects. 1 Amendment C 6.3-10 June 30, 1988 ] o_______________________________
I I CESSARUM%ma _
]
O
- c. Facilities for fire extinguishment,
- d. Methods of fire prevention ,such as use of ]
fire resistant and- non-combustible materials ! whenever practical, and minimizing. exposure
-of combustible materials to fire hazards. ~
- e. Assurance that : fire protection systems do not adversely affect the functional and structural ;
integrity of safety related structures, systems, and components.
- f. Care should be exercised to ensure fire protection systems are designed to assure that their rupture or inadvertent operation does not significantly impair ' the capability of safety related structures, systems, and components.
- 4. The SIS containment penetrations shall not be subject
-to loss of function- from dynamic effects (e.g.,
missiles, pipe reactions, fluid reaction forces)- p resulting from failure of equipment or piping inside or outside the containment. G
- 5. Where required, bellows shall be provided between piping and the containment wall to prevent excessive forces on the piping.
i Q. Environmental
- 1. Each SIS safeguards train shall be provided with an independent environmental control system, which-is c powered by the same emergency power associated with 4 that train, such that the safety related equipment in each train operates within the ' environmental design limits specified in Section 3.11.
6.3.2 SYSTEM DESIGN 6.3.2.1 System Schematic The SIS Piping and Instrumentation Diagram (P&ID) is shown in Figures 6.3.2-1A through 6.3.2-1F. The major comp &. tents of this system are four identical Safety Injectir.1 Pumps, an C l In-containment Refueling Water Storage Tank, four identical : Safety Injection Tanks, and associated valves. The major - components are described in 'the following section. Figure 6.3.2-2 shows the system orientation with respect to the containment, reactor, and RCS. Amendment E 6.3-11 December 30, 1988
CESSAR n!nncarifu < g 6.3.2.2 Component Description i' A summary of design parameters and codes for the major components is given in Table 6.3.2-1. Section 6.3.3 specifies the components used to provide core protection for the complete opcctrum of RCS pipe breaks. 6.3.2.2.1 In-containment Refueling Water Storage Tank The In-containment Refueling Water Storage Tank (IRWST) provides storage of refueling water, a single source of water for the safety injection and containment spray pumps and a heat sink for ! the Safety Depressurization System. The suction lines of the safety injection and containment spray pumps and the SCS test return lines connect to the IRWST. A CVCS branch line from the , charging pumps to the IRWST is also provided. The IRWST is dishlike in shape and utilizes the lower section of the spherical containment as its outer boundary. The inner boundary is nearly cylindrical. The IRWST is enclosed to prevent contamination of the water and excessive containment humidity. Vents, inlets and other connections are designed to minimize water vapor transfer from the IRWST to the containment atmosphere. The IRWST contains sufficient volume to flood the refueling pool during normal refueling operations. The IRWST , also meets all post-accident SIS and CS pump operation E requirements. The inside surface of the IRWST is constructed of stainless steel. The IRWST is located at a low elevation within containment. This elevation is consistent with safety injection, shutdown cooling, and containment spray pump NPSH requirements. The IRWST contains provisions to prevent H buildup following pressurizer safety valve discharge or bleed-$nd-feed operations. Dedicated vent or existing HVAC ducts prevent cavity pressurization following a severe accident. r The IRWST provides a quenching volume for high pressure and temperature discharges from the safety relief valves and the SDS. ; For further information see Sections 5.4.13 and 6.7. ;
)
The IRWST also provides a source of water for reactor vessel ; cavity flooding in order to cool core debris during postulated ) severe accidents. There are two flowpaths from the IRWST to ) reactor vessel cavity for redundancy. Initial flooding of the ; reactor vessel cavity is accomplished by gravity flow from the r IRWST. The initial flooding contains sufficient volume to remove q decay heat and quench molten debris, but not wet the bottom of the reactor vessel. The cavity flooding system is designed to ; prevent inadvertent flooding of the reactor vessel cavity during normal plant conditions, even in the event of loss of all AC , i j Amendment E ' 6.3-12 December 30, 1988 l
CESSARHSinca. O y power. Long term flooding capability is also provided by the IRWST in order to remove decay heat by boiloff. Water from a backup source outside containment is delivered to the containment E spray system. This water is injected through the containment spray headers to minimize containment pressure buildup and is collected in the IRWST. ; 6.3.2.2.2 Safety Injection Tanks The four Safety Injection Tanks (SITS) discharge their contents into the RCS following depressurization as a result of a LOCA. l Each tank is piped into a reactor vessel safety injection nozzle. During normal plant operation each SIT is isolated from the C reactor by two check valves in series. The SITS automatically , discharge into the reactor downcomer if RCS pressure decreasesg ' below SIT pressure during reactor operation. The motor-operated isolation valves on the SIT discharge are interlocked with the pressurizer pressure measurement channels to open these valves automatically as RCS pressure is increased to 500 psig, and to prevent inadvertent closure prior to or during C l an accident. The valve is subject to status control and power to the motor will be removed (see Section 7.6). During normal power operation, the valve, although locked open, C receives a confirmatory SIAS "Open" signal. During startup and shutdown operations, a variable setpoint is used as described in Section 7.2.1.1.1.6. During plant cooldowns, SIT pressure can be lowered to acceptable value by the operator when RCS pressure E reaches 625 psig. An interlock with pressurizer pressure will prevent the SIT isolation valves from being closed until RCS pressure drops to 415 psig, if necessary. Although .the SIT isolation valves can be closed by the operator, an SIAS will cause the valves to open. Inadvertent repressurization of the SITS during this mode of operation, due to a leaky nitrogen supply valve or by accidental tripping of a nitrogen supply va]ve switch, is prevented by having two fail-closed valves in series with separate hand switches on each SIT nitrogen supply line. The air supply actuating the nitrogen supply valves is controlled by solenoid valves. The two nitrogen supply valve. solenoids on each SIT are connected to separate electrical buses via redundant and physically separated electrical trains. This is to ensure that a fault in one of the trains will not cause a spurious opening of both nitrogen supply valves. Amendment E 6.3-12a December 30, 1988 1
O THIS PAGE INTENTIONALLY BLANK O 1 1 0
CESSARE2% =
?
The operator will repressurize the SITS, if necessary, when pressurizer pressure reaches 625 psig. Failure to do so will E result in an alarm when pressurizer pressure reaches 700 psig. The tank gas / water fractions, gas pressure, and outlet pipe size are selected to allow three of the four tanks to recover the core before significant fuel damage or zirconium-water reaction cah occur following a LOCA. The volume of water in the tanks is conservatively calculated assuming that all water injected prior to the end of the RCS blowdown is lost. The SITS contain borated water at the minimum required boron concentration and are pressurized with nitrogen at a pressure which exceeds the value required by the safety analysis by an E appropriate margin to account for instrument error. The value required for the safety analysis is provided in Table 6.3.3.2-2. Redundant level and pressure instrumentation (described in more detail in Section 6.3.5.3 and Table 7.5-2) are provided to monitor the condition .of the tanks. Sufficient visual and audible indication are made available to the operator such that maintaining the SlTs within the required technical specifications during various modes of plant operation is readily accomplished from the control room. Provisions have been made for sampling, O filling, draining, and correcting boron Atmospheric vent valves are provided for tank venting. concentration. They are locked closed and the power to each valve is removed during normal operation. This prevents inadvertent SIT venting during normal plant operation. SIT Data is summarized in Table 6.3.2-1. l 6.3.2.2.3 Safety Injection Pumps The primary function of the Safety Injection (SI) Pumps is to inject borated water into the RCS if a break occurs in the Reactor Coolant Pressure Boundary (RCPB). For small breaks, the RCS pressure remains high for a long period of time following the accident, and the SI Pumps ensure that the injected flow is C sufficient to meet the criteria given in Section 6.3.1. The SI Pumps are also used for bleed-and-feed operation with the SDS and can be utilized to achieve safe shutdown by providing makeup for volume contraction and by providing sufficient boron to achieve and maintain necessary shutdown margins. For long-term core cooling, the SI Pumps are manually realigned for simultaneous hot leg and reactor vessel injection. This insures flushing and ultimate subcooling of the core independent of break location. o For small breaks, the SI Pumps continue injecting into the } reactor vessel downcomer to provide makeup for spillage out the break while a plant cooldown is implemented. O Amendment E 6.3-13 December 30, 1988
~ - - - - - - - - - - - - - - - - - - - ---
CESSAREMEN - O During normal operation the SI Pumps are isolated from the i reactor by motor-operated valves. During safety injection the SI l Pumps deliver water from the IRWST to the reactor vessel i downcomer via DVI nozzles whenever RCS pressure falls below pump shutoff head. During the long term mode of operation, the SI l pumps continue to take suction from the IRWST. The SI Pumps are sized such that for breaks, up to a double-ended guilotine break, two SI Pumps shall provide the required minimum injection flow rate to the core to meet the performance criteria of Section 6.3.1. The SI Pumps are also sized such that, after consideration of spillage directly out through the break, one SI 1 Pump will supply adequate water to the core to match decay heat boiloff rates soon enough to minimize core uncovery and allow small break LOCAs to meet the performance criteria of Section 6.3.1. A typical SI Pump characteristic curve is shown in Figure 6.3.2-3. The effectiveness of the SI Pump during a steam line break is also analyzed to assure that the pumps are adequately sized. Mechanical shaft seals are used and are provided with leakoffs which collect any leakage past the seals. The seals are designed for operation with a pumped fluid temperature of 350*F. The SI Pump motors are specified to have the capability of G, starting and accelerating the driven equipment, under load, to design point running speed within 5 seconds based on an initial voltage of 75% of the rated voltage at the motor terminals, C increasing linearly with time to 90% voltage in the first 2 seconds, and increasing to 100% voltage in the next 2 seconds. The SI Pumps are provided with drain and flushing connections to permit reduction of radioactive contamination before maintenance, i The pressure containing parts of the pump are stainless steel j with internals selected for compatibility with boric acid solutions. The materials selected are analyzed to ensure that differential expansion during design transients can be accommodated. I 1 The SI Pumps are pir.2ded with minimum flow protection ] (recirculation lines) to prevent damage resulting from operation l against a closed discharge isolation valve. Also, individual SI Pump ultrasonic flow meters provide low flow alarms. The design temperature of the SI Pump is based on the saturation temperature of the reactor coolant at the containment design i pressure plus a design tolerance. The design pressure for the I SI Pumps is based on the shutoff head plus maximum containment l pressure plus a design tolerance. The pump data is provided in Table 6.3.2-1. l Amendment C 6.3-14 June 30, 1988 L__ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
i CESSARSEEnc-1 O 6.3.2.2.4 Piping Piping is designed to deliver borated safety injection water.from the Safety Injection Tanks and from the In-containment Refueling Water Storage Tank via the Safety Injection Pumps, to the reactor vessel nozzles. The major piping sections are (refer to Figures i 6.3.2-1A & 1B) : { A. From each SIT to_its respective DVI nozzle. C B. Redundant piping from the IRSWT to the SI Pumps. 1 C. Redundant piping from each SI Pump discharge to the pump's respective DVI nozzle and one nozzle on each shutdown cooling suction line. {. The SIS piping is fabricated of austenitic stainless steel and is designed to ASME Code Section III. Flexibility and seismic loading analyses are performed by each Applicant to confirm the i structural adequacy of the system piping. 6.3.2.2.5 Valves Q The relative location, type, type of operator, position (during the normal operating mode of the plant) and failure position of the SIS valves, is shown in Figures 6.3.2-1A and 6.3.2-1B. lC ; i 1 A. Relief Valves Protection against overpressurization of components within the SIS is provided by conservative design of the system j piping, maximum utilization of welded connections, I appropriate valving between high-pressure sources and lE low-pressure piping, and by relief valves. All lines from the RCS up to and including the outermost containment C isolation valves are designed for full RCS pressure. Relief valves will be provided as required by applicable codes. All relief valves are totally enclosed and pressure tight i with suitable provisions for gagging. B. Actuator-Operated Throttling and Stop Valves 2 The position of each valve on loss of actuating signal or , power supply (failure position) is selected to ensure safe l operation. System redundancy is considered when defining . the failure position of any given valve. Valve position i indication is provided at the main control panel as ! indicated in Figures 6.3.2-1A and 6.3.2-1B. A momentary ; push button with appropriate status control on the main eO control panel and/or manual override handwheel is provided C i i Amendment E j i 6.3-15 December 30, 1988 !
CESSAREMinem O where necessary for efficient and safe plant operation. All actuator-operated valves have stem leakage controlled by a double packing with a lantern ring leakoff connection. The SIS will be adjusted to its design flow during C preoperational testing. C. Check Valves All check valves are the totally enclosed type. Check valves in pump suction lines are of a low pressure drop type with flow resistance characteristics equal to or less than a swing check valve of the same size as the connecting pipe. lC 6.3.2.3 Applicable Codes and Classification Refer to Section 6.3.2.2 and Table 6.3.2-1. 6.3.2.4 Materials Specifications and Compatibility The materials used in the construction of the SIS components are presented along with the component parameters in Table 6.3.2-1. Basically, all materials in contact with reactor coolant are austenitic stainless steel with stellite or equivalent material ' being used for valve seats. The materials of construction used in both the active and passive components have been evaluated and in each case it has been concluded that the materials selected are both compatible with the most severe environmental condition they will be exposed to and in accordance with all ASME Code requirements. 6.3.2.5 System Reliability 6.3.2.5.1 Safety Injection Tanks The Safety Injection Tanks (SITS), containing borated water pressurized by a nitrogen cover, constitute a passive injection system because no operator action or electrical signal is required for operation. Each tank is connected to its associated reactor vessel nozzle for DVI by a separate line containing two check valves which isolate the tank from the RCS during normal operation. When the RCS pressure falls below the tank pressure, the check valves open discharging the contents of the tank the reactor vessel. intolC 1 The performance evaluation in Section 6.3.3 demonstrates the l adequacy of the quantity of coolant supplied. In order to ' prevent accidental discharge from the SCS suction relief valves (SD-768 and SD-769), SIT pressure can be decreased to an E 1 Amendment E l 6.3-16 December 30, 1988
~ CESSAREnnem,. O acceptable value when reactor coolant pressure is below 625 psig , and, subsequently, the isolation valves on the tanks are closed. E I An interlock with pressurizer pressure prevents these valves from 1 being closed if pressurizer pressure is greater than 415 psig, if necessary. In the unlikely event of a LOCA during shutdown cooling,- an SIAS will automatically open the SIT isolation valves. Inadvertent repressurization of the SITS during shutdown cooling due to a leaky nitrogen supply valve or the accidental tripping of a valve switch is prevented by having two such fail-closed supply valves in series with separate hand switches. The air supply actuating the nitrogen supply valves is controlled by solenoid valves. The two nitrogen supply valve solenoids on each SIT are connected I to separate electrical buses via redundant and physically I separated electrical trains. This is to ensure that a fault in ; one of the trains will not cause a spurious opening of both nitrogen supply valves. The motor-operated isolation valves on the SIT discharge are interlocked with pressurizer pressure to open the valves O automatically as system pressure is increased to 500 psig, RCS pressure repressurize the SITS. increases to 625 psig, the operator When will Failure to do so will result in an alarm E at a pressurizer pressure of 700 psig. Further details of valve l control are provided in Section 7.6. The atmospheric vents on the SIT are locked closed, fail closed f and power to their solenoid valve is interrupted during operation with the RCS pressure greater than 700 psig. This ensures that E the tank will not be vented during RCS power operation. 6.3.2.5.2 Safety Injection Subsystems l The SIS consists of four independent identical safety injection I i discharge lines. The IRWST is the water source for all SI Pumps. C j Each safety injection line contains one SI Pump and associated ) injection valves. Two SI Pumps and the associated injection I valves operate from one emergency power supply, the other two SI { Pumps and injection valves from a second, independent, emergency j power supply. This provides the automatic operation of one I complete, full capacity subsystem in the unlikely event of concurrent loss of offsite power and the failure of an active component, including a standby generator. With the exception of check valves, all valves in the injection j paths not receiving a SIAS signal are status controlled. I
- 1. l I
Amendment E l 6.3-17 December 30, 1988
CESSAR H5Wncuim O Prevention of flow blockage in small diameter pipes, including the above piping, is accomplished by control of particle size and specific weight in the injection water through IRWST design. lc 6.3.2.5.3 Power Sources Independent electrical buses supply power to the SIS equipment. Each bus may receive power from: A. Onsite power B. Offaite power C. Emergency power The safeguards initiation sensors, electrical controls, and electrical indication equipment normally receive power from four 120-volt AC buses. Four 125-volt station batteries with inverters are provided as a backup upon loss of all other sources of power. System reliability is achieved with the following: A. Two electrical buses, with each bus supplying power to two 100% capacity SI Pumps, associated valves and associated lc support systems. (Each support system contains two full capacity subsystems, one connected to each bus and one subsystem servicing each independent injection train). B. Two sources of power, normal and standby to both buses, with automatic backup from the emergency generators. C. Two emergency generators, each capable of supplying power j for the minimum safeguards loads. D. The system is designed such that a single electrical failure can neither spuriously initiato unnecessary injection flow, nor prevent initiation of required injection flow. E , 6.3.2.5.4 Capacity to Maintain Cooling Following a Single Failure i The SIS is designed to meet its functional requirements even with the failure of a single active component during the short-term mode of operation or with the single active or limited leakage l Amendment E 6.3-18 December 30, 1988
CESSAR 2n9caritu l l O ! passive failure of a component during the long-term ccoling mode l C of operation. By providing proper redundancy of equipmsat, even with the single failure noted above, the minimum required SIS equipment is available. The SIS is designed utilizing a philosophy of total physical separation of redundant trains such that the system can carry out its safety function assuming a single active failure both during normal and short-term post-accident modes and a single active or passive failure during long-term, post-accident modes (i.e., time ' periods >24 hr) after event initiation. Total train separation C assures that a single failure in one train cannot preclude the other trains from accomplishing their safety functions. A Failure Modes and Effects Analysis (FMEA) for the SIS is presented in Table 6.3.2-2. Minimum operability requirements for components of the SIS are as l C delineated in Section 16.3.5. requirements and system failure Consistent with these modes, the minimum SISoperability equipment l C that will operate during postulated accidents is as discussed in Section 6.3.3. This complement of equipment is required to mitigate the consequences of a LOCA initiated when the reactor is ; O g anywhere from hot shutdown to full power operation, complement will result in conservative results and this for i incidents where the SIS is required. other l C ! The following design features are provided in the system in order to meet the single failure criterion. A. Redundant SI Pumps. B. Redundant piping and valving between IRWST and SI Pump suction. C C. Redundant safety injection discharge piping. D. Four injection discharge points into the reactor vessel downcomer and redundant injection discharge points into the RCS hot legs. E. Separation of the redundant subsystems of the SIS. No limited leakage passive failure, as defined in Section 3.1.31, or the effects thereof (such as flooding, spray impingement, steam, temperature, pressure, radiation, loss of NPSH), will preclude the SIS from accomplishing C its safety functions. C l Amendment C 6.3-19 June 30, 1988
CESSAREnace l O1 6.3.2.6 Protection Provisions The SIS is provided with protection from damage that could result from a LOCA by: (a) designing components to withstand the Design Bases Event environment including coolant chemistry, radiation, j temperature and pressure resulting from the accident, (b) a seismic design that will withstand the stress imposed by a Safe Shutdown Earthquake occurring simultaneously with a LOCA, and (c) 1 protection from missiles in accordance with section 3.5. lC 6.3.2.6.1 Capability to Withstand Design Eases Environment Components located in the containment, such as remote-operated i valves and instrumentation and control equipment, required for initiation of safety injection are designed to withstand the LOCA conditions of temperature, pressure, humidity, chemistry and radiation3.11. Section for theThe extended valves period include ofthose time required as detailed associated in lC with fill, drain, and pressure control of the Safety Injection Tanks which receive an SIAS or are required to operate following an accident. The instrumentation includes the wide range level and pressure instrumentation associated with the Safety Injection Tanks. Insofar as practical, SIS components required to maintain a i functional status have been located outside containment to eliminate exposure of this equipment to the post-I4CA conditions. The equipment outside containment is designed in consideration of the chemical and radiation effects associated with operation , following a LOCA. (Figures 6.3.2-1A and 6.3.2-1B indicate location of equipment inside or outside of containment). C The design life of the SI Pumps is 60 years, corresponding to the life of the plant. Design pressures and temperatures are in excess of the maximum pressures and temperatures seen by the respective component during the worst of normal operating and design bases conditions. Materials of construction for the pumps are compatible with the expected water chemistry under normal and LOCA conditions. A radiation resistance requirement has been placed on the pumps consistent with Section 3.11. 6.3.2.6.2 Missile Protection Protection from possible RCS generated missiles is afforded by locating all components outside the containment except for the IRWST and SIT. The SITS are located outside the biological l C shield such that procoction from possible Reactor Coolant System I generated missiles is provided. i l Amendment C l 6'.3-20 June 30, 1988 i I _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1
CESSAR En9cari:. l O l l 6.3.2.6.3 Seismic Design l Since operation of the SIS is essential following a Loss-of-Coolant Accident, it is considered Category I for seismic design. The general design basis for Category I equipment is that it must be able to withstand the appropriate seismic loads plus other applicable loads without loss of design functions which are required to protect the public. For the SIS, this means that the components must be able to withstand the stresses resulting from emergency operation following a LOCA, simultaneous with the stresses resulting from i the Safe Shutdown Earthquake (SSE) without loss of function. I Refer to Section 3.7 for details on seismic design and analysis l methods.
]
6.3.2.7 Recuired Manual Actions The short-term injection mode of operation is automatically C initiated by a Safety Injection Actuation Signal (SIAS). e Long-term core cooling is manually initiated a:/ approximately 2 ) hours post-LOCA at which time the hot leg injection valves are opened to provide simultaneous hot leg and direct vessel l C injection, which results in a circulation flow through the core. For small pipe brea%s, the SI Pumps provide makeup for spillage, l C while the RCS is cooled down and depressurized to shutdown cooling initiation conditions utilizing the steam generator Atmospheric Dump Valves and Emergency Feedwater System. For small LOCA's, the SITS must be vented to allow RCS depressur-ization. This is followed by manual shutdown cooling operation. O Amendment C 6.3-21 June 30, 1988
3 CESSAR !!!Mncm2 l O THIS PAGE INTENTIONALLY BLANK l i OI O
CESSAREEGemu O TABLE 6.3.2-1 (Sheet 1 of 3) SAFETY INJECTION SYSTEM COMPONENT PARAMETERS Safety Iniection Pumps Quantity 4 Type Multistage, Horizontal, Centrifugal Safety Classification 2 Code ASME III, Class 2 Design Pressure 2050 psig C Maximum Operating Suction Pressure 100 psig Design Temperature 350*F l Design Flow Rate 815 gpm* Design Head 2850 ft E Materials Stainless Steel, type 304, 316 or approved
/"' alternate
(,) Shaft Seal Brake Horsepower Mechanical 910 C
- Does not include bypass flow O
Amendment E December 30, 1988
q CESSAR E!nincari:n O! TABLE 6.3.2-1 (Cont'd) (Bheet 2 of 3) . I SAFETY INJECTION BYSTEM COMPONENT PARAMETERB Safety Iniection Tanks Quantity 4 Safety Classification 2 Code ASME III, Class 2 Design Pressure, Internal / External 700 psig/100 psig Design Temperature 200*F q Operating Temperature 120*F Minimum Operating Pressure As required by plant safety analysis plus margin for instrument E error (see Table 6.3.3.2-2) Minimum Liquid Volume As required by plant safety analysis plus margin for instrument error (see Table 6.3.3.2-2) l Fluid Borated Water, 2000-4400 ppm lE Material Clad - Stainless Steel, type 304, 316,, or approved alternate Body - Carbon Steel, type ; SA-516 Gr.7 or ! approved alternate i l 1
)
Ol l l Amendment E Pecnmber 30, 1988 I l
CESSAR E!? Enc m. r TABLE 6.3.2-1 (Cont'd) (Sheet 3 of 3) BAFETY INJECTION SYSTEM COMPONENT PARAMETERS j In-containment Refuelinc Water Storace Tank Quantity 1 C Safety Classification 2 Code ASME III, Class 2 Design Pressure, Internal / External Atmospheric Design Temperature 400*F gE Operating Temperature 120*F l Normal Operating Pressure Atmospheric lC Minimum Operating Pressure Atmospheric Volume, Total 116,000 ft E Fluid Borated Water, 4000 - 4400 ppm j Material Austenitic Stainless l O Steel Lined C l 4 O Amendment E December 30, 1988 (
fU R e h O t l e v es ig es a o s o el V lc d c n I o V s D e 9 is t t l v 0 3 g iv n n a / e o a a v 7 l t r iv s d s 0 n P r e n e p3 t e i a bc i n d o - o d d r o c e t h e e e in 1 e e r n r hn in t r l n r l n i u t s 5 s 5 1 ia i u I a l o l o q n e r q s n t e i t l e i t e r da ire entg d e r e e t a e r c l a e c e n ms ve n e n r a j n r j a n o d C c P i P i N R in rpb ie e N o n , , c i io ; I 1 ; I 1 d ; ; t g S 1 g S 1 o g g _ c n 3 n 3 n n . S t e i n w - t o F it n w - o o F n ir o ep it n o its on e s s ,3 s e iot l
,31
_ I l S D e e i eir _ it 1 it it t Y r 10 3 3
; t ;0 ; t
_ L f t is - is r 1 - is r s t is r _ A N o c o o 3 p t F ic pot o 3- F o o g ic o o c o o _ - p t p t i p t _ A d n id a F , d a F , a n d a d a S T h t io v e r l ic d w o 2 1 3 io ve ic w 2 r 1 e v ic ti d s iov e i r l d c ior ev ic l l l d C e a n l - e a nd lo 3 - a n e e a n e a n E F
% P v i f F P v i f F V i t P v i P v i F
E _ D N t t _ A s c c _ e e e S s r j j _ 2 ) E n n 2
- 9 ce ilu t
i i C _ f f a o o 3 o f F t t _ E E r 6 y r fV y e 1 R t U l e t t E a m it i wa t L t L e c d B e I A o n i aw l l ib d _ A h F L e b T S p a e a e ( M d e r r E n D n u n u a i ss T S Y s n g e e ie ess _ S mi s r a p s r o d a p N t u e - e - O pl r h r h e e e I r c c g c g n y n e r n T C S I D i h e i D h L: o o E D N N J " N I Y T , g, E , g g n, , m e, n e, g o _ F n n .f n o _ A S
- f. i : i r f. f r i o
i n f r d d v it u l l i a lu d _ l l t e a n n a ir na i am a n s l s mi m e e r u b ib mi a in ib o C a t, . b. aim fa .t . f m
. in t
a t c h h c
. t t a l r a e c h t t c c t t h a r e
c e c n a e e a n c r p e l e l e o e l l e o e e p E m M e M c s e E s c M ia s o _ e d o o no r o t n t _ M o d o d _ s s e s s e s s e _ e l n S l s l n l s S l n l s r e A i o i e i o e i o lu ia p I a l a p a A ia I p a i F o S F c F o F lc S f o F lc _ a ) ) ) ) ) F a b c a b s e t v 3. 5 9 _ n l 1 1 d 1 _ e a 3 3 e 3 _ mV - - - n I 1 le 1 e n S S B e 5 _ m ia v _ a t g _ N n o a io t 2 . /., 1 1 e a 8, l 3 3 L V 1 C los f G I S I I S I S t f o f H O S 3 I Na1 ) 2
)
i ,! j jl l lll u E d y d2 d e y l t y s e n l a r g d l d t v ig d l nc a e o l a s s a e l m r i e s s a l 8 m e e o nn o e o mr r es rm 8 f d n d l s f v on no l c o c o k E s s n s n r a r ia l i t is i t ne v g it i d e iaisd e R e h t O r e mi r w r o u n a r o e l e v f isd odes a l e e v s o l v f a o d o s o V a o n a c l a V c l V t nd a E0 P f d c t 3 t nr n o g n s e 9 ee is e9 v 0 ie v0 g mb i v l 3 b s p l 3 e a / l dm o a / v7 s r v7 0 dl ne t r p3 n 0 k . t p p3 ec _ nP e r g de o -I a t d e I t o -I od c e me h e n irJ t s S i iru S s S I i n AD n it t t s S a g t n s s . q n e r a ie t d na i t d i a s e e d a d r n n r d r n e r e p e mse eev nia e n kc mse ev ng r a n o d e n r r n o e d e n rei pb e C N R i pd N R R i
; o w ,
n c 3 l 2 k 2 1 io id ; ; n ,1 ; g 3 ; g t o g g a 0 - - n c n n t 2 P n n F o n e n ir n n 1
,it ,
i t o S t o ep it o it s io I S e P 2 s it 1 si I e s i r 2 e a 1 e S Y L A f D o it i ; s r o o e si r t t te it ; c o o s r u n1 t s i P c ic 3 s t e o - d F t it ic pot o s r N p t a n g ic o o d p t a i p t d a r a ,id i n d a A d o 0, 3 o e c ior e c o e c i l p c 1 o ev ic e i vi S vi t w id 2 i rw1o31 3 T C E h t M e l a n e V i t d s e alvin P v i d ir l e a n e P vil d v o n - e L i P P f F F 1 l - - r l e a n P v i d F r E l D e ) N d A s s e f f s 't S s r o o e n ) E t u v o 9 D c t e e c r C O e i c o n i ( f M f a o f F a n a n t c 2 E E
- 2 C t n i a e
2 U l n o o r t L a a f f r 3 e ! c d r e n e n o e A o ne p o p o t 6 h F L S p E ( M d e n it n o e it w o L E n D o c B T a n l A S g t u t m f T Y s n c f a c f a d S mi p yt e o d p y c N t u n t n u e O pl i e e i fe n r n d y nc I f T o a o o a e o C S I N s N N s R N E J N I Y . e T , mh r , , n o c , u E , g n , e, on r e o
- f. n io
.l . eu ita F .
r i f m f i f r int A f S l l ut l a l e a a a l a d ; a f a l s mi n mia in e e r o g m g mina u .b. i n t
. n i
C a t c h a t m t c
.f t
m a t i a t l r a in a r d t c ir t c
. f t
m a t e c n e a n r p e n e a e e ae on e o l e o i e pi l l A s o b l E m c E s c E b E s c e o no o n o n M r t o t r t o o W o s e d s s e - s s s e s t e n s S s r S ia pnl l e ia so AS pmio t l l l l r ia ep ia a A o i a t a A lu F o f l c 5 1 ial F c F s S I F o f l c S I F O i a ) ) ) ) ) F a a b a a e l e , v 1 4 4 3 n o ,3 3 n& o it 3 e n e , iL l v5 7 4 4 g r V - - a 3 3 dn ait 3 6 3 - c e , e V - - a 3 3 a I t a l 3 1 j 2 v 1 1 h nS S o - S n l f 5 5 w c o l i , a f v s i 0,
, l Is 15 ,
y 1 V O 4 6 N t 2 7 9 iF ina e3 t s k d 4 4 iD v 3 33 a 4 4 l 3 3 e p c e3 3 e e - - T o - - T l - - f a u r h r a C lB S t t S Is D v 15 I I 1 E 1 S 5 S S S P 4 S g3 ) ) 4
)
5 6
)
lll L
\ -
E y l t s l d t a ia n a e c ms r i f 8 f o o 8 s f n d t
\) k E n 9 r s a d 1 .x . a r ie edg nd e , m e h e e R
O t lva l so iselos E0 V c d c 3 t nr n o s ee e mb i v in is v l a v g e s 0 5 dm ne - o e3 t r p l in v / ec n P e r o d e t o d e t a o r l 4 a 0 me h e n ir s i r h t v3 - AD n u t s J t n t I it q n e q n o n S a i n e r ai d r e r a i d t d. s n e n c r u ie
<w e n d u s e n e
n o u e dc j d r e e C t N o R i N R in R s n 4 o k 1 r i ; ; ; n 3 o ; g t g g g a - t n c n n n t r F c a n e n i n n o o nd v i e it o o o iolaicn
! t S it it it t t I e s i s i s S a w i d s i c o S
Y D e its t e is r t t t e si r d
;i l n r vi te it s r -
L f c op to r c o o n f io pe ;n - A N o ic op t o i pt i f t g o ic pot o d a A d id a d a d a o a ; ni o e c S T C h o t e o e c i vi r l e a n d o e ic ir l d e a n v i o e c l r vi e l d v e a n e P vil k ca ini -F5ettioispt L c d 3 s 1 i v i r l e a P vi d n E M P vi P vi F F E D
) N d A s g -
e f f
'tn )
S E s r t u o o l e o 9 c l e e C ( f T M f e i a c n c n t o o f F a a h m\J 2 E E m m r e
,/L - 3 R t r 2 U l o o n t L a m f f o 3 e I c d r r
_ e A o n e p on e p o n h n g 6 h S F L m n it n it u o r ia E ( M d e L E n D o c o e r t S T a g n h _ A S t u t m t n o . T Y s n c f a c f wi _ S ni a y y o d o t imte imte u c N t l e O e f e I T ml y in c o a f n o o a f o n j n o C S N s N N s N i N E J N I Y , r m , r m T g, E F n o r , e, no g n o r
. re o rr ,n o , e, no or A i f f r i f f f r i r _
S d l u it d l u it e l u t e _ e n s a l a n s a l a a l a s u a ib n
,il e e r t
a t o mi an i
. f m i e e r b in t a t o minairo .f mt minairo .f mt a a C r a t a l r a t a a t _
h a r c t t h. a r c t t r c t t r c r p e ei e p M a s o l e ae on E s c c r p e ei e p M a s o l e ae on pe E s c o l e ae n E s c o o p e m . m e d o r t o no o d d s ed M s s e s e s e s e l s l nl s S s l s l n r o ia ei p oalA it o i o ia ep tu ial F c F o f c S I a l F c F a l c F o _ sa ) ) a
) )
a b
) _
F b b . t 7 n0 7 in me -3 1 a r iS n 1 t 3 D a g n t e / t n e e nS m a
) l n o oi L vo _
I d l r i , t 6 m/ N i C t t i
't F a o at a 1 n el H n o -
l 3 s o T n os o s C I t I ( S iL i S C I S
)
h ) 6 7
)
8 ll.llllll!'l,
!(I E
s _ d t _ n a e c 8 f s f 8 k E r a r m e h e _ R t o E0 3 t n nr - io ee _ mb is n s _ n dm v g is 7 o r e e3 1 ia r ne t n P l in v / t ec e r g t o r a l 6 a 1 i d e me e n h i h t v3 - S i r u AD n t t n cn t t I I a n S n q s a a e r n da it d s d n e e p r mce d j u de eir d m e n a e n e o C R i R s R N
; e , ) , v ; c n 4 3 7 l n id io t
1 3 o t r ; g 1
,3 - -
1 4 nio t g i o c F ic a n 0 F P ;a n r n n e e nd v e ic 1 ( )
$ t it o 3 , 0 ic it o p t e wi o l d s - 2 e5 d s i S D o i a n e it F 1 r 1 n e ;
3- u it n n r vi s ,i Y l ( t L f f o ep ; n t is r s o A o c op o w F s 9 n c oi N f it g o t o e4 oi p t g A d o a ; ni id a l , r p 1 it o d a n _ o t o e c f 1 e c i S h k ic 5 it 1 i ir v id 1 ,ii vi t d s c d 3 s s w3 w8 s r T C E t N e a n - eto L i F p e la n P vi o - o4l o e L F 1 p p l a n e V i t F F E D s
) N n d A s i e g a 'tn )
S E s r t u l e t r _ o 9 D cl C O t S ( f o M fe ia f F h o I S 2 E E 2 3 6 E L
- 4 h
S ( t e e R U IL A F M E l L a c d o d e n D t e m n e n o h n g u ia o r r t t t o w o w o 9 B T a h l A S g t n f T Y s n o S ni w i f o d u lo t c o . N t O e e s e TI mlc y n f o n j n o o s n o _ C S i N i N L N E J _ N I Y T
, , n, o r n, or E , g F . re o rr . e, o r n _
A f f r _ S l u it e l u i re ii _ e s u a mi an l a i ro mil tn a a i o a r ib v r - a .f n t .f m t C t a a t a a , c t t r c t t r h l e ae onp e l e ae on p e c e E s c o E s c o M e _ d, _ M d d s e s s e s e l s n l s ia pne l _ r i o il e i o _ u a l a p a l l F c F o F c F o ia ) ) ) ) F a b a b s e e v 5 v 1 l 0 n l 0 a 3 o a 3 V - i t V - e g e nS I t n I _ c e nS m L o u o N a t it 4
, S imi, t 0 9
o T a a0 H la3 _ 3 S t 3 l o - W n os - t s I R o I S I S I C I S
&9 ) ) 0 _
1 _
O e c e h R r e t O n n io o s d i is n et s t i n c v a c i e o r e a j t n P r t f f t r i n e r g S a d d I e t e L e n S e r S r H h i b i n t t iuq t u t i a n t n q n h s fa o e e a t n n r r d a e vr d s y t l e n e d e n d mpw e lo l o e i o e o C R w N R N R f w n o m n o 2
)
0 9, 2
) o )
1 l , 0 o r 1 5 1 2 1 5 i ; f 3
,1 - - 1 ; 1 w ,1 -
t g - P - g 3 o c 7 P ( P n - l 7 P 0, ) 0, ) e in o n F , 4 F 4 2 2 2 2 S t e t s it w 1 9, e , r 1 it s
; 1 8, e 1 2 e1 2 I 1 - ,3 - r - 1 r - 1 S D e a 1 P 4 u2 e 0 1 P 4 u I - u I -
L A Y f o t c ic 3 lo d F 3; - ( 1 s 1 s - t 1 3 - 3 ( 1 s s P 1 9 s P s ,P I N n e P r e P r ic - F e P e e 1 F r r 9 , r 9 , A d o id i 0, 3 u , p , d (
, s u 8, p 1 1 p 1 1 S
o - s 8 0 o 2 1 2 1 2 h i w 1 F s 4 h 2 i w 1 s 4 h - 1 h - 1 T t r e 1 g 1 r o 3 e 1 g I - g I - C e e e E F N P lo 3 f F
- r r -
o p P iH P P l f F
- r -
p P i P H ( I P i P H ( I P F E D
) N n n d A s n w e ia o ia f o 't S s r r i r o n ) E t u t t t f l
o 9 c e C T c i e l S n S c f o n ( f M f a I u I n o o f F S f S a ni O3 2 5 E R E t e y e m r o t 2 U n i c l t n o t e t e L a m o e o f a j e I A mdne h f a h r e n l o n 6 E h S ( F M L d e p g u o r s n g u o p io n t is i L H L B E T n D a o r o e t h A S g t h m n l T Y s n t c t t e a S mi w a w c f t n o a r o N o d u p o p y e O t pl f l i r l f n i e t v i t r c d c h I T y n o o o o a f a n t C S i N N N N s I n uf ap E J N I Y T g, r r E o g g, o g F A in rr n n r i r i n f S d e id d e d l e n n n n a s r i r M u ib o b ib o ib a t t C . a , a , t h r h. h r h c c e e p c c e c e e e p e l M o M M o M E e d o - M d a s e s s s e r l s o l n l n l n se ic n u ia i e a p ia pe ia pe l d o a in l l F c F o F o F o F it ia ) ) ) ) ) F a b a b a s s n e 2, e n o v 4 v 4, 6 i l a 1 1 l 4 4 io t c v 1 1 a v - - 1 1 n t 5 u I I I o a 1 e c 3 S n S S e n IS S it m a pi o , , p r io g c e n id F - N r ta 11 3 r a t 3 , 5 j O 1 a 4 4 n I 4, Pt l o - - 1 1 Pt hcs o l 1 1 I w 1 s s H lo3 t I ! I I 1 L - S I S S S iD I S S F F
) ) ) & 1 1
2 1 3 1
e h R t O n io s s s n is n n in v i ia i a a o a r r r t r r t t n P t t e d d r g I e 1 e ! I e n S r 5 r S S i h i i u t t n t t l. g t q n d n I a n n a e a a e a e d m d r d r d d e n ni v n n e u e t u T d t n d n d o e r d e G e o e o p R N R R C R h w 2,
; n g n2, o n 3 o n 2, o 1 l 1 2 2 i 3 3 io g r 0 - ,1 g
it i 3 l ;t g a F g F a i L ic l - t c n o 2 P n c n ic n n i o , e 1 i i f d i t S t it t e - 2, t d , d it n s 1 I e s s r P s n n 1 o se i 3 1 e a 3 it 1 S D e e k 2 e i e 2 Y t t n s t s o - n 1 t l hw -3 eir t w F
- t F
L A N f o ic c iot e r it P ic e v s L p g ic lo , ic ic d , r A d d id c p a 1,d e T 0, ; n d f 0 ) d o i 0 ) o o ep c l I 3 o 1 3 1 3 h' h 2 io S 2 2 it i h 3 1 w 3 1 S T t ir ir s g id 1 r w e n - - e 3 3 s r g - 3 ir e o - 3 Pe i e e e n i n - e F - l F - C ( F P f ( F E M P P i H i P p L i L L t h F F E D p o ) N t A s r I w w d t o o e p f w S f 't S s r u o o o o l f l f n ) E t I l e o 9 D c t S e f t c e e c C ( f O M f e ia e n n a 1 5 g e n a lt l t c f F 2 E E o m a m t t o
- 6 R t o
r o n r a m r o o r r 2 U l t L a m t f u d f h h 3 e I c iv r t r t t e A o ' e e no e e e p o n g r I i F p n it l 6 h L S m a b n it S S E L ( E M d e n D a d a . o c to iss o c w o y w o y B A T S g t n t y o t n t l t l t T Y s n e c f t p c f i i S m i l a i a f l f l o dt b D y l ; p y oi o ib N t F t i T s r t b O pi iss I b S p i e s s p a s a s p
- c a W r f I
T y n P o o fea n R u p N o a s o a L c L o ac C S I N s I I E J N I Y h r c r r T o e no, r o o E r m e, , r n, r F A r r n r S l e , o u it e o l e e a n l a
. cit ic s , r it i an r g, r
o u ic g o io g c a i o C a n n t a s n o t nf m a a t t nna ina t a c id r t t h r id c f t t r c h d r r e r n e l a n e e fl c n ep e p o l a e o p l a e M ib o C ib E m s c o E m m ib o e d o M d d d s e s s e s s s e e l s l n l s ia pne l l n i so l r o i e i o ia e p a u ia l a p a l o l c l F c F o F c F o F F ia ) ) ) ) ) ) F a b a b a b w s e e o e 2, v 1 l v 4 v 3 f l 3 3 l 0 l 1 in i V a 1 I 1 n r u n t va- 3 I V a 3 I s n S e e n S M n S 15 t s o w pi o , 3, R v r o it 2, a p it 0, N t t 1 y a a 3 3 T ia a 0 1 Pt l 1 1 S t l 3 B l 3 o - - W no o - o - s 1 1 R s t t s 1 tS I 5 5 I C I S S ! 5
) ) )
g 4 1 5 1 6 1
E O k r s o a r i l m e c e h e R t v t O l a a i V f n e v io l s a is n V v i o a n t r r o n P t e d it a d e d e r o i e r r e n S r l o i i h i i n t t u s u u I a n q i q q s a e e e d r r s r r m n e i a e e e p u i n m d n p r n o e o e e o o C R N R S N N n 2 n s o ,2 i r o i h 9 1 ; ; g ;g t g ig 11 - g g s t c n P n T n r n a m n e h - i n o I n o i c o ro s i i S t P , t o N S it o t ; t t I t e s e r o 1 s e n s i a m s c o e i d n e e si r S D t 2 it t Y t a 1 t i i t o t i l t L f l - s r. id r o A o c e e P ic o o e e ic op to n c e r N v r p t s r i l i r t ic A d id e u , d a a u d a o d u nd S o o l s 0 s 2 o e c e s i v i r s io ve i c l e r o s co s ior h v tn ir i T t r T e 1 r l d c e r l d e e e r e a n n r e a n e o e r C E F M P S p P P v i i p P v i L c p P in ep F E D I
) N V n d A s D o sr e k 't S s r u
m f o n it o n ) E t o a a t o 9 D c l r e t ic a C c c ( f
'J M f e ia f n i dn id T O2 c f F d e
a S e ' E E m i n r s 7 R t t r e i u s 2 t V t l a e r e f o i z l e l s en or s 3 e l c d v r r v e e e t e A o n e i e n u e v r w a 6 h S F L p d p io s l e p te ic s d l E ( M d e w n t e a t t b d L E n D o o c r r n T n n B T a g l n p e I e ni A S s n f t u e iu r q t S t o T Y c f s s e a e is ne S mi I it r o dt S e p yt t r is a u N t lz r o n e n c s O I mi c e m z i e f n n en e n o w c t o c d i e s T y n o o o a a h o n e n n r C S I S n N s C w N I b I i p E J N I Y T r, r , E o g, o g m g, e F r n rr n o n n, . , r A r i r i o f f u n S e l id e d f d l i l o e s r o icn a i n r n e e r in s i a o m a i m a i t u g b o n t o b r c ib i ra a f n a t
- t. nu a t t e . .
C a a a . l t tc t r h id h. r h r h, c h. c f e p ec n c e c r p e c a e e c e l e p e e p e e e a O m i b M o M ia s o M s le l E m lE m e y d o o et o e l t t t t t M d d a c a c ls n s e s e s s ic e s c e e l s s l n l r l i r r e o il o i e i d r i d r u ia p ia a l a p a n o a n o l F o F lc F c F o F i c F i c ia ) ) ) ) ) ) F a b a b a a n 0, o y 2, 2 0, lp 3,0, 3 3 34, i 4 , 6 3 2 t 2 2 - , 3 c e e 1 1 p2 3 3 3 L 2 e - 2, e c v - - t 3 - - - 2 r P 2 e j i i n 7 2 I S - 1 I I n3 u 3 f a S S 1 5 S S l o - s r - m I i V n 5 e L s o P a r 3, 5, e 9, 1 3, , v it e t O N y O s g s 5 e a , r a , t e pr a p s 2 2 1 1 o e 2 3 3 3 r v 3 3 3 3 L ic 1 2 2 3 P ic 1 2 2 3 f t l T d 3 3 T d 3 3 a u y I 1 a 1 1 I I I n - - I n - - S P B S 5 iN V $ $ S S S I L L S I P P
) ) )
7 8)
& 1 1 9
1 0 2
s v s R O t l a l o isel o V c d c n o s s n n i e o v r is l o io v a t t it o v a c a c a r t n P p i ic e o d id l d r g t e n t r n e n s r i i i h i i n t t s u t t t I a e c n n n s na i e r d a d a d a d r n m n e n n p u s e u u u r d n d d d t e n o e e e C R i N R R R I r n S o r r r t o o o io ; ; a ; t ; t g
; t g
g g a g a a n ic t c n n c n c n c e i n d . i i i i . S t t o it n it s d t s. d n t s v n i d e s s i s t v n s t s t e n v i I S D it e e n e n Y L f e t is r t l e t e n t o t i t t e no t t t e no t i A o c o o c v ic i s i n c s i n ic i s i n a N A d id p t a id d s a t f i d i s ac nda t d s a i o no t a S T h t o o i ev ic r l d ior n le k ior c n o c d i d n io o r c dnid u ire nc nic d ed n C e e a n e a e n n e e n n e E M P v i P t P i i r P i i r P i i r F F E D e
) N h r d A s t u e f 't t i
S s r o w a n ) E t u r o 9 D c l e l e C O e ia c e p ( f M f n v n c f F a e e l 2 E E m l t e
- 8 R t r n 2 U l o e e n t L a e f t t a 3 e I c d r a t a h e A o n e n c e ic c 6 h e o n p
n it F L E S ( M d e p i d n n a d d n e L E n D o e i h i t B T a c c A S g t m o o e T Y n c t d S mi o d a oy f e t e t e a f f N t u n t l c l O ol e i e e b e b h I r c n f n a f a t y in o o a o n f T ni C S N N s N U a U w E J N I Y T g, E e, n m n o F A f. ru ito id r n n n S o o f a io l l l l e a a n a s u mila i n i b e et r n a to ic t i e ic t c a itc c C a t
. f m a . i ra ra l t r
m t r m irt n u c t t h c f c f c f e a n c r p e e l e l e l e o e e p l a a l a lE s c M ia s o E m lE m E m e ix - - - M d a a a s s e e c c e e r l n l s s id n e s i n s ic n u ia pe i o a la n i o l d o a n i l a n io d l F o F lc F i t F i t F i t ia ) ) ) ) ) F a b a a a n n o o n n it - it io io a ic l 1 0 r a e c 0 p 1 t t e n3 a a d v o - m i 3 wl d - n e e n T L o lo I L it T I . h s 9 s a 0, 0 e e 0, I I S T ic T 3 v 0 S r 0 T - T l W d 3 W u3 D 1 I a R n - R t - R $ S V I I L I a T
) ) ) )
L 1 2 2 2 3 2 4 2
/ e h R t O
n ed io r e s a t is n l m n n v e o s ? i o ia l r k v t r r l f n e n P t a a e v e r d t b l a d r g 1 a e e p v h e n 5 ov li to ir I n ita t n t n mt e n d t n u q s a a r u er a d s e r n d d e p n u n e u v r ei e vl u q ne t e m o d e d e lav w o a e de eir n o C R R P v r R s N e n e r _ io s d n k l v ic d r o u s _ t s n, a n o t s g g e a v a e n n S t c e c oi o o n t a ir n e e v ic r p it i t I e r t n e p l d s s S D p a it s s i h a n k e e _ Y t u n t w ; v i n t t _ L f r n is t o n e d a A N o h e e o a rp t it e t g e e ; n n r n g t ic i c A d o t o rt e t s a s c a u e n io I d o d o h s p i t S mr S T h t l s l v oisi r d n c s o e t s is w a i r i r C e l n A i v p i c a t n o o r p is e op o l e e _ E M N t L a P P _ F _ F E _ ) D N o _ t _ d A s o _ e t r
't S s r o n ) y n C
o 9 E D t c lu f o c n l n e o ( f o C M f e ia n a i l h d it f F d f w e a 2
- 9 E
R E t o ne t r d r r e
% 2 U l a a n it a n d
e r e v q iu p t e IL o 3 c d l i r of e r o e e A o ne o a r m r I 6 h S F L p is f u e S t o k s r t E ( M d e n s o n L E n D a t i n a er r n o B T g n S e o t e A T S Y s n n it e p w o o n t S r t r o a h e p c a o id. e it d t v it p N t t v a e , a n O r e r I T ml y in c d c a n n u g n e e e t i l n o p e e n o i o C E S I f D v r N o N N J N I Y T r E g, o n F A n n f f
. r r
o S l o id l l l e it l e a i r a a a a a s c t i m m r n c g u a ir c n b ic g, o C t u t, , n a n i t ar im n i n a a id t c l e f l a h c e c e l c e h c Mep t h n c n o e i e ib l E m M e E M o C mb e M - M a d d e s e s e r s ic d n o l s o ia pne l l s n l s e s pe l i i o lu a n a l ia a l F i it F c F o F o F c ia ) ) ) ) )
'F a a b a b c 2, 4, , e i n r o 6 v , ,2 2 2 pl w 1 3 e 0 3 3 3 r a o 1 1 h it 2 - - - u v n3 3 p a 3 I I I P Y N wFl o - -2, pt r a ,
i F F s o m s t l I o I S
- S 1
S S
, 3, 5, 7 g
n io n t u a P ic 01 1 A t e 2 2 2 2 v 3 3 3 3 igr lo r 1 d 3 3 n - - T n I e a l I I h a C Is 1 I 5 I F F S V V S S 5 S
) ) )
6
& 5 2 2 7
2
CESSAR n!Uicari n O TABLE 6.3.2-3 SAFETY INJECTION PUMP NPSH REQUIREMENTS j Flow / Pump NPSH I Safety Iniection Pumos (com) (feett Long-Term Cooling Mode 1235 22(1) i l l C NOTES: (1) Based on the properties of saturated water at 300*F. All pumps taking suction from the IRWST at runout flows. l O Amendment C June 30, 1988 1
O t m e sg en ri ul t o o w w t e a r g s n ao l o w n y s ,i o e rc f l f ow l o i S l C n et s pn n fl oR i o y r rce uuv mw eo o n f o i o I cl t a ssl td t i S g o c m s a t c t Pn nr n i eS v gu e c Li wt u r rC eh j e /l on F p pS n l s n j go d o o i n no t c t r mni t n i i c u n o eot oe g l h o e t t a hh e g on st d i i n ssl yk o d w l e ow Co c l dd c o scs re . d d re m oi ond l t nt os A yl rrT ci e emt o c h o wu oh cU e . t s S aeI rra ds r e A mtS ei I I t .t o I in dtt S S ut d ea P S rid nei P P h e ncr p n ad n H H Ss an ee sa i an N O t r au re ods ro ot e o r o r ro ot rmw oro - I i s t ie t b t t t t od T - t s ivv id i i id ifl A i e nol nen n n ne nro - T nr ora osa o o os oeo N I p Mpv Muc M M MU Mpc E M U
) R 32 T * - S y 2f N c % % % % . c I a % % % 5 5 5 5 r
- 3. 1 S u 1 1 1 2 2 2 2 S c t + 1 O6 c t E E e C A 1 1 +- i L e 0 Bh P AS P - T( D F - E F T e 0 5 0 A g 0 7 0 0 L n 0 a 0a 6 0 0 0 0 - E a 3 i 5 i - 5 m 5 m 0m 4 R R - s 7 s 5 7 p 7 p 1 p - 5 p - p - g 7 - g g 0 _ Y 1 0 3 0 0 T 0 4 _ E F A S g f e l os l t re o en 4 4 h 4 2 2 2 _ b n a: a r uh e NC p _ 1 m e e t e e r e r t t s y R a t a I S t a R P ed u u o r S w L H ner _ s s H e o w / are _ s s d n l o g g ud _ t e e t er o F l n ntt r n m r r nro i F i i eao e e P P auc t g l l l rc _ m t l t e c e g o onee u s r r oar e L e o oI pR r y e e or/ j L C C m/ t S z z C er n d e rer _ s i i po I t nt n y r r l neTo _ rmt o o wa wg O r t u I u oea y C H oR ont a _ a s s tTc t d d aec m s s c i e I I t w thl i i e e a gd f S S uo uctd r r r een a P P hl h xun P P P RLI S H H SF SEOI
t n
. e n l m o e n i v i t e a c l t n n u T o F W R
c t r ) n r o 2 e e o t d r t i f i u i . n o c s n l o c s o e m 2 A e m v
- r e ,
t t p , L S e s S A e o T A T I h P I R I S S S S ( e ee N r t r t r ) O o a o au
. I t i t is d T i t i t s A n i n ie
't T o n o nr n N M I M I p o E C M ( U R 3 T *
- S y g 2 N c % % i s . I a 5 % 5 p
3 r . 2 .
. S u 2 2 6 S c 2 1 E c 1 +
E C A 1 L O B R A P T D E T e A g % % L n 0 g 0 0 0 g E a 5i 0 0 2 i R R 7 s 1 1 - s
- p - - 4 p Y G 0 0 -
T E F A S f os k k l n n re a a en t t b n 4 4 ma r r uh e e NC p p 1 1 m e t s l e y e r S v u e s n L s t o e n i T T r e t I I P m c S S u e t t r j e e n n t n g l g e e s I ne e n m m n ar v a n n I y R u e R i i t s L a a e es e t t f d e T d n n a i r W i o o S WP R W C C
I C E S S A R Eininc m . I ( TABLE 6.3.2-4 l I SAFETY INJECTION SYSTEM HEAD LOSS REQUIREMENTS Flow / Pump Required System Safety Iniection PumDs (cDm) Resistance (ft) Long-Term Cooling Mode 1235 1580 (1) C 1 NOTES: (1) Friction and elevation losses between the water level in the IRWST at the start of long-term cooling and the outlet of the reactor vessel nozzle. Two safety injection pumps operating. O V i Amendment C June 30, 1988
TABLE 6.3.2-4.a SIS FLOW POINT DATA - INJECTION MODE SIS Point Flow (gpm) SIS Point Flow (gpm) Note (1) Note (1) 2 10815 54 35 5 5100 56 250 6 5715 57 285 12 5000 61 565 16 2500 62 3065 l 17 1165 64 45065 I 24 1130 72 42000 l 25 285 82 570 26 4550 30 4400 34 4400 35 4400 50 100 52 150 Notes: (1) Refer to Figures 6 3.2-1C and 6.3.2-1D O
TABLE 6.3.2-4.b SIS FLOW POINT DATA - SHORT TERM RECIRCULATION MODE SIS Point Fl.ow (gpm) SIS Point Flow (gpm) l Note {lT Note (1) 1 5715 61 585 17 1165 64 585 25 290 72 0 26 4550 34 4550 35 4550 Notes: (1) Refer to Figues 6.3.2-1E and 6.3.2-lf O' l l O'
TABLE 6.3.2-4.c SIS. FLOW POINT DATA -'LONG TERM RECIRCULATION MODE SIS Point Flow (gpm) Note (1) 1 5715 17 1165 24 585 25 150 26 4550-34 4550 35 4550 42 585 47 585 61 290 64 290 Notes: (1) Refer to Figures 6.3.2-lG and 6.3.2-lH
TABLE 6.3.2-4.d SIS FLOW POINT DATA - SHUTDOWN COOLING MODE _ (RCS Temp. < 200 F) SIS Point Flow (gpm) Note (1) 10 5000 13 0 14 9000 16 4500 27 4000 31 9000 37 9000 39 9000 64 45000 l htes: (1) Refer to Figures 6.3.2-11 and 6.3.2-1J O O
i I TABLE 6.3.2-4.e SIS FLOW POINT DATA - SHUTDOWN COOLING MODE (RCS Temp. > 200 F) SIS Point . Flow (gpm) Note (1) l 10 5000 13 Note (2) 14 5000 16 25000 31 Note (2) 37 5000 39 5000 1 64 25000 Notes: (1) Refer to figures 6.3.2-lK and 6.3.2-lL (2) A flow to 5000 gpm is split between points 13 and 31 to maintain I the RCS Cooldown rate at 75 F/hr or less. l 0
I TABLE 6.3.2-5.a ECCS PUMP NPSH REQUIREMENTS Flow / Pump NPSH (gpm) (feet) High Pressure Pumps a) Injection Mode 1165 22(I) b) Recirculation Mode 1165 22(2) c) long Term Cooling Mode 1165 22(2) LOW PRESSURE PUMPS a) Injection Mode 5100 22(I) b) Recirculation Mode 3500 19(2) c) Ambient Temperature 3500 19(3) Recirculation Test O 1 NOTES: (1) Based on the properties of water at one atmosphere and 100 F. All pumps taking suction from the RWT and operating at runout flows. (All pumps include one high pressure, one low pressure, and one containment spray pump operating on each train.) (2) Based on the properties of saturated water at 300 F. All pumps taking suction from the containment sump at runout flows. (3) Based on the properties of water at one atmosphere and 100 F. One LPSI l pump taking suction from the containment sump. l O
TABLE 6.3.2-5.b SAFETY INJECTION SYSTEM HEAD LOSS REQUIREMENTS Flow / Pump Required System (gpm) Resistance-(ft)- ) High Pressure Pumps a) Injection Mode 1130 1580-(I) b) Recirculation Mode 1130 1580-(I)
.c) Long Term' Cooling Mode 1130 1580 (I) i Low Pressure Pumps a) Injection Mode 5000 290 (4) b) Recirculation Mode 3500 370 (5) c) Ambient Temperature 3500 370 (6)
Recirculation Test l NOTES: (1) Friction and elevation losses between the water level in the RWT at the start of recirculation and the outlet of the cold leg injection nozzle. One high pressure pump operating. (2) Friction and elevation losses between the minimum waterslevel in the containment sump and the outlet of the cold leg injection nozzle. One high pressure pump operating. (3) Friction and elevation losses between the minimum water level in the I containment sump and the outlet of the cold leg injection nozzles and the shutdown cooling nozzle on the hot leg. Required head losses include the flow balancing orifice. One high pressure pump operating. i (4) Friction and elevation losses between the water level .in the RWT (at the - l start of recirculation) and the outlet of the cold leg injection nozzle. ' One low pressure pump operating. (5) Friction and elevation losses between the minimum ' water level in the l l containment sump and the outlet of the cold leg injection nozzle. l One low pressure pump operating. pi (6) Friction and elevation losses through_ the entire flow path. One LPSI pump i in operating taking suction from.the containment sump and discharging to the RWT via the corss-connect lines normally used for inservice testing l of the LPSI and CS pumps. Valves SI-306/307 and SI-657/658 must be set to the appropriate test position prior.to starting this test in order to provide sufficient system resistance. u _ _ _ _ -___ - _______-_-_____--__-__----__ _ _ _- .. - _ - - - - _ _ _ _ - _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -
TABLE 6.3.2-6 (Sheet 1 of 6) SAFETY INJECTION SYSTEM VALVE LIST a) Figure 6.3.2-1A VALVE CL V 0 DESG DES E VALVE CL V 0 DESG DES E ID 00 A P PRES TMP N ID 00 A P PRES TMP N OC L E PSIG DEG V OC L E PSIG DEG V RA V R F I RA V R F I DT E A R DT E A R I II T 0 II T 0 NOYT 0(3) AN R N(1) g NO YT R AN 0(3) N(1) 3 T T E P(2) E E P(2) E SI-104 86 T H 435 400 0 SI-256 G8 T H 435 400 D
$1-105 F6 T H 435 400 0 SI-257 G3 G H 650 400 D SI-140 B8 R N 100 350 D SI-260 H4 G H 650 400 D SI-141 B7 R N 435 400 D SI-262 F4 G H 650 400 0 SI-150 G7 R N 435 400 0 SI-264 C4 G H 650 400 D SI-151 F8 R N 100 350 D SI-266 B4 G H 650 400 D SI-157 F6 C N 435 400 0 SI-268 C3 G H 650 400 0 $1-158 86 C N 435 400 0 SI-285 E5 R N 2050 350 0 SI-161 G3 R N 650 400 D SI-286 D4 R N 2050 350 0 SI-162 G2 R N 650 400 D SI-287 A4 R N 650 400 D j SI-170 H4 G N 650 400 D SI-288 E3 R N- 650 400 D i SI-172 F4 G H 650 400 D SI-289 F2 R N 650 400 D i SI-174 F5 G H 650 400 D SI-298 E3 T H 650 400 D SI-175 F5 G H 650 400 0 SI-306 G4 G M 650 400 D SI-176 G5 G H 650 400 0 SI-307 83 G M 650 400 D SI-177 C5 G H 650 400 D SI-400 D6 G H 2050 350 0 $1-180 C4 G H 650 400 D SI-402 C6 T H 100 350 D l SI-182 84 G H 650 400 0 SI-404 E5 C N 2485 350 D SI-184 H6 T H 435 400 D SI-405 DS C N 2050 350 D SI-185 86 T H 435 400 0 SI-407 D7 R N 2050 350 D SI-191 C3 R N 650 400 0 SI-408 D3 G H 2050 350 D SI-192 C2 R N 650 400 D SI-409 03 R N 2050 250 D SI-193 C3 R N 650 400 D SI-416 F3 G H 2485 350 0 SI-194 G3 R N 650 400 0 SI-417 F3 R N 2485 350 0 SI-200 A6 C N 650 400 D SI-418 A8 T H 435 400 D SI-201 H6 C N 435 400 0 SI-419 G8 T H 435 400 D SI-202 C3 G H 650 400 D SI-420 B3 T H 650 400 D SI-203 G3 G H 650 400 0 SI-421 H3 T H 650 400 0 SI-204 88 T H 435 400 0 SI-424 F5 C N 2050 350 D SI-205 F7 C N 100 350 D SI-426 05 C N 2050 350 D 51-206 07 C N 100 350 D SI-427 04 G H 2050 350 D l
SI-207 F7 G H 100 350 D SI-429 G7 G H 2050 350 0 SI-208 B7 G H 100 350 D SI-433 G4 G H 650 400 0 SI-218 E6 G H 2050 350 0 SI-434 H5 C N 650 400 D SI-219 06 G H 2050 350 D SI-435 G4 T H 650 400 D 1 1
~
/'~'$ TABLE 6.3.2-6 (Cont'd.) (Sheet 2 of 6)
SAFETY INJECTION SYSTEM VALVE LIST l 1 a) Figure 6.3.2-1A (Cont'd.) VALVE CL V 0 DESG DES E VALVE CL V 0 DESG DES E ID 00 A P PRES TMP N ID 00 A P PRES TMP N OC L E PSIG DEG V OC L E PSIG DEG V RA V R F I RA V R F I DT E A R DT E A R II T 0 II T 0 NO -YT R0(3) AN N(1) g NO YT 0(3) AN R N(1) 3 T P T P .' E E(2) E E(2) SI-436 84 G H 650 400 D SI-487 C5 C N 2050 350 D SI-437 H3 G H 650 400 0 SI-508 E2 G H 2735 350 D 3 SI-438 H3 G H 650 400 0 SI-509 E2 G H 2735 350 0 SI-439 H2 R N 650 400 D SI-550 G6 G H 435 400 0 i SI-440 B3 G H 650 400 D SI-551 F6 G H 435 400 0 I SI-441 B3 G H 650 400 D SI-552 E6 G H 100 350 D SI-442 A8 T H 435 400 0 SI-553 D6 G H 100 350 0 j/~'} SI-443 H8 T H 435 400 0 SI-554 B6 G H 435 400 D
's,_,/ SI-445 A7 G H 2050 350 0 SI-555 B6 G H 435 400 D i
SI-446 BS C N 650 400 0 SI-604 E2 T M 2485 350 D : SI-447 B5 T H 650 400 D SI-609 D3 T M 2485 350 D ! SI-448 B5 C N 2050 350 D SI-657 G3 F M 650 400 0 l 51-449 B2 R N 650 400 0 SI-658 C3 F M 650 400 D ! SI-450 G2 T H 650 400 D SI-659 D4 G S 2050 350 0 i SI-451 G5 C N 2050 350 D SI-660 E4 G S 2050 350 D SI-454 C2 T H 650 400 0 SI-661 E8 G D 2050 350 B SI-455 C2 T H 650 400 0 SI-664 H5 G M 2050 350 0 SI-458 G2 T H 650 400 D SI-665 C5 G M 2050 350 D SI-459 D6 G H 2050 350 0 SI-666 F5 G M 2050 350 0 SI-460 G3 T H 650 400 0 SI-667 D5 G M 2050 350 0 SI-461 E7 G H 2050 350 0 SI-668 B5 G M 2050 350 D SI-462 D7 G H 2050 350 D SI-669 G5 G M 2050 350 0 51-463 D7 G H 2050 350 D SI-671 C2 T M 650 400 0 SI-464 C3 T H 650 400 D SI-672 F2 T M 650 400 D SI-465 E5 G H 2050 350 D SI-673 F8 F M 100 350 A SI-470 E6 T H 100 350 0 SI-674 F7 F M 100 350 D SI-473 E8 R N 2050 350 B SI-675 C8 F M 100 350 A SI-474 08 R N 2050 350 B SI-676 C7 F M 100 350 0 SI-476 E5 T H 2485 350 D SI-678 F4 F M 650 400 D SI-679 B4 F M 650 400 D SI-478 D5 T H 2050 350 0 SI-682 08 G D 2050 350 A SI-482 C4 G H 650 400 D SI-683 H6 T M 435 400 D fwg SI-483 H4 G H 650 400 0 SI-684 F5 T M SI-484 650 400 D ( C5 C N 650 400 0 SI-685 H4 T M 650 400 0 SI-485 F5 C N 650 400 D SI-686 G3 T M 650 400 D SI-486 F5 C N 2050 350 D SI-687 F2 T M 650 400 0
)
i - l
TABLE 6.3.2-6 (Cont'd.) (Sheet 3 of 6) SAFETY INJECTION SYSTEM VALVE LIST
~
a) Figure 6.3.2-1A (Cont'd.) VALVE CL V 0 DESG DES E ID 00 A P PRES TMP N OC L E PSIG DEG V RA V R F I DT E A R II T 0 NO YT 0(3) AN R N(1) 3 T E P(2) E SI-688 F3 T M 650 400 D SI-689 C5 T M 650 400 D SI-692 A6 T M 435 400 D SI-693 85 T M 650 400 0 SI-694 84 T M 650 400 0 SI-695 C2 T M 650 400 0 SI-696 C3 T M 650 400 D SI-698 E5 T M 2485 350 0 SI-699 05 T M 2050 350 D
\
i i I
- O!
~ l TABLE 6.3.2-6 (Cont'd.) (Sheet 4 of 6) ( SAFETY INJECTION SYSTEM VALVE LIST , l a) Figure 6.3.2-1B VALVE CL V 0 DESG DES E VALVE CL V 0 DESG DES E ID 00 A P PRES TMP N ID 00 A P PRES TMP N OC L E PSIG DEG V OC L E PSIG DEG V RA V R F I RA V R F I , DT E A R DT E A R II T 0 II T 0 i tiO gp YTR0(3) N(1) 3 NO YT 0(3) AN R N(1) g E (2) (2) SI-113 F8 C N 2485 650 A SI-215 88 C .N 2485 650 A SI-114 F7 C N 2485 650 A SI-216 B7 G H 2485 650 B SI-115 G8 G H 2485 650 C SI-217 B7 C N 2485 650 A SI-116 F8 G H 2485 650 D SI-220 C7 G H 2050 350 B SI-117 D8 G H 700 200 B SI-221 E7 R N 700 200 B SI-119 08 G H 700 200 B SI-222 07 G H 700 200 B SI-123 F6 C N 2485 650 A SI-223 C7 G H 700 200 B
; S!-124 F6 C N 2485 650 A SI-224 C7 G H 700 200 B * \ SI-125 G4 G H 2485 650 0 SI-225 B7 C N 2485 650 A SI-126 G4 G H 2485 650 D SI-226 B6 G H 2485 650 B SI-127 D7 G H 700 200 B SI-227 B6 C N 2485 650 A SI-129 D7 G H 700 200 B SI-228 08 G H 700 200 B SI-133 F4 C N 2485 650 A SI-229 C8 G H 700 200 B SI-134 F4 C N 2485 650 A SI-230 B5 G H 2050 350 B SI-135 G7 G H 2485 650 D SI-231 B5 R N 700 200 B SI-136 F7 G H 2485 650 D SI-232 05 G H 700 200 B SI-137 D5 G H 700 200 B SI-233 C5 G H 700 200 B SI-139 D5 G H 700 200 B SI-234 C4 G H 700 200 B SI-143 F3 C N 2485 650 A SI-235 B5 C N 2485 650 A SI-144 F3 C N 2485 650 A SI-236 B4 G H 2485 650 B SI-145 G3 G H 2485 650 D SI-237 B4 C N 2485 650 A SI-146 F3 G H 2485 650 D SI-238 D7 G H 700 200 B SI-147 D3 G H 700 200 B SI-239 C7 G H 700 200 8 i SI-149 D3 G H 700 200 B SI-240 C3 G H 2050 350 B 4 l
51-164 F5 C N 200 350 A SI-241 E3 R N 700 200 B SI-165 F4 C N 200 350 A SI-242 D3 G H 700 200 B SI-166 H5 R N 2485 350 D SI-243 C3 G H 700 200 B SI-169 D6 R N 2485 650 B SI-244 C3 G H 700 200 B SI-179 F2 R N 435 400 B SI-245 B3 C N 2485 650 A i SI-189 F6 R N 435 400 B SI-246 B3 G H 2485 650 B SI-210 C8 G H 2050 350 B SI-247 B3 C N 2485 650 A SI-211 E8 R N 700 200 B SI-248 D4 G H 700 200 B (j;
/ SI-212 SI-213 51-214 08 C8 C8 G
G G H H H 700 700 700 200 200 200 B B B SI-249 SI-258 SI-259 C4 D3 C3 G G G H H H 700 700 700 200 200 200 B B B 4 1 l l 1
l TABLE 6.3.2-6 (Cont'd.) (Sheet 5 of 6) SAFETY INJECTION SYSTEM VALVE LIST a) Figure 6.3.2-1B (Cont'd.) ) VALVE CL V 0 DESG DES E VALVE CL V 0 DESG DES E ID 00 A P PRES TMP N ID 00 A P PRES TMP N OC L E PSIG DEG V OC L E PSIG DEG V , RA V R F I RA V R F I DT E A R DT E A R II T 0 II T 0 NO AN YT 0(3) R N(l) g NO YT 0(3) AN R N(1) g T T P(2) E P(2) E E E SI-321 G2 G M 2485 350 D SI-622 06 G D 700 200 B SI-322 E2 G D 2485 650 A SI-623 E6 G S 700 200 A SI-331 G5 G M 2485 350 D SI-624 B6 T M 2485 650 A SI-332 E5 G D 2485 350 A SI-625 G6 G M 2485 400 D SI-468 H2 R N 2485 350 0 SI-626 G6 G M 2485 350 0 SI-469 02 R N 2485 650 B SI-627 G7 G M 2485 350 D SI-500 G5 G H 200 350 D SI-628 B7 G D 2485 650 A 51-501 G4 G H 200 350 D SI-629 07 G D 700 200 B SI-506 C2 G H 2485 650 B SI-631 85 G D 2050 350 A SI-510 F5 G H 200 350 B SI-632 D4 G D 700 200 B SI-511 F4 G H 200 350 B SI-633 E4 G S 700 200 A SI-516 C5 G H 2485 650 B SI-634 B4 T M 2485 650 A SI-522 C2 C N 2485 650 A SI-635 G4 G M 2485 400 0 SI-522 F2 C N 2485 650 A SI-636 G4 G M 2485 350 0 51-525 G2 G H 2485 350 0 SI-637 G5 G M 2485 350 0 SI-526 F2 G H 2485 350 D SI-638 B5 G D 2485 650 A SI-532 C6 C N 2485 650 A SI-639 D4 G D 700 200 B SI-533 F5 C 6 2485 650 A SI-641 C3 G D 2050 350 A SI-535 G5 G H 2425 350 D SI-642 D3 G D 700 200 B SI-536 F5 G H 2485 350 D SI-643 E3 G S 700 200 A SI-605 E8 G S 700 230 A SI-644 B3 T M 2485 650 A SI-606 E7 G S 700 20L' A SI-645 G3 G M 2485 400 0 SI-607 E4 G S 700 200 A SI-646 G3 G M 2485 350 D SI-608 E3 G S 700 200 A SI-647 G3 G M 2485 350 D SI-611 C8 G D 2050 350 A SI-648 B3 G D 2485 650 A 1 SI-612 08 G D 700 200 B SI-649 D3 G D 700 200 B 1 SI-613 E8 G S 700 200 A SI-651 C2 T M 2485 650 A SI-614 88 T M 2485 650 A SI-652 C6 T M 2485 650 A SI-615 G7 G M 2485 400 D SI-653 E2 ~ M 2485 650 A SI-616 G8 G M 2485 350 D SI-654 E6 T M 2485 650 A 51-617 G8 G M 2485 350 D SI-655 G2 T M 435 400 D SI-618 B8 G D 2485 650 A SI-656 G6 T M 435 400 D SI-619 D8 G D 700 200 B SI-690 G6 G 'M G50 400 D SI-621 C7 G D 2050 350 A SI-691 G2 G M 650 400 0
TABLE 6.3.2-6 (Cont'd.) (Sheet 6 of 6) SAFETY INJECTION SYSTEM VALVE LIcT G NOTES: (1) The environmental service conditions are classified in the following categories. A - Containment Environment: Loss-of-Coolant or Steam Line Break B Containment Environment: Normal environment C - Auxiliary Building Environment: Normal environment l D - Auxiliary Building Environment: Loss-of-Coolant Accident See Section 3.11.2 for the extent of environmental qualification testing. This table assumes that the Applicant will locate Engineered Safety Features equipment outside containment such that it will not be subject to a Steam Line Break (outside containment) environment. (2) Valve Type ( \ The following Symbols are used: l C - Swing Check i F Butterfly 1 G - Globe R - Relief T - Gate (3) Operator Type The following Symbols are used: D - Pneumatic Diaphram H - Hand M - Motor N - None S - Solenoid O
y. O 1 1 THIS PAGE INTENTIONALLY BLANK, g i l ,
)
W %s l
)
Bl-l.1
- _e w
A 01- M 3 i
,1 4 - ~; -,_ ..., ,... Q l ; _ @ tli, it e1 ,,,,, 4 '""5 g @---< 1 ]- J ',,,
D"' mm. . t.
- irs t r
ou g I.
. @w.e.si, . i g.g ~
n
~p ,,
isesis$ ,J ' i b I.f 8 SI-H3 g g" 1 f fYlld.E auff f o-nq
$ l-H
- A ..f . i- n i l 4 ,,. ,
T- n. .. . n_...T.- l e$ Lg 'i a i 60 t .
, Elf O
- t;S I N- .
.....T- ....,'UI -- > in WM f.,
- 1. M I
- 1,c,. a
~ i
- l. ..o.rn . ,n.
7.iT-l l 'u I
..b., , .i tvd 1_. -g- [ " u 3.. ,3 g l . . . . , . . ., t f L 00. I _l 515 I
- o ;.,
a j 8*
$ b l.4 % -e R g Sb 2.J ..t, or " ' . .==. . -"'
1 .- Is . gvgg * , S,-186 q't 4 gg 4 l W gpggy 8-654 EWL5 gg {;a
, g gg 14si ne _ @----c 5$ !*I'Nm.
14 25 ,,,,,. No$ F ill d k
'-u' ; i re Ff,,
umn 4 j III 185, *' I p. 4,, m,
@m.,654' . 4
- l. '
,l.M l 1 1119 A tytu ts.s.ol 1 .Of t i j . 1 1
1_ on.
'-._- h ,
aw, ; p . ,.. _.3_ ..; . ....1__)
. . . .. - .. n.,
u.u. AU.,5191 CO.T Aill.i.1 - 90- ,.. *** 7; IO~ PIO 'i L 10, Ptrl " 30-,g4 1
~ ,Se,eUY n . .BOn. o.,uT.- l l "
i w- p ""a ..,,. cv.s " so- >.< j .. . o.oo ,,. ,,,9 t 1 1 t.0F I , i u
.i. I i x. $ $ - ,.. U l
1 )
r ,_4 .n ,.- 4
- g. -
APERTURh. .,::" 7,,.. -42~E ';.", '
, ,, CARD %
1
" l .*
- l , 5 - ,%1
- I 4 $s ,,, 5 4 - ,,. f,p g, 4 II '* > l ,5 s ,
,~T' 88 - '. ' ~7 -) ...,n -m Also Avadable On y g;,;,
T t~e] .,.n [ g gut Aperture c,ard 46 ,H
~ t 4 u..n g, 1
g4
. , , ,,. ,,, %W .3, .O-,5 7
- _J ao
" -m v "M~ (CS , , , , I u.m g h,,
h,, "..= ' CF ,a ;j ,.,l
- C B-,,, .
e g .. t .. .e , g. t. f H li,,% un., i ("4
';" che. L" } ,,,. , y, . .. .. .. ., n ..,(4/"-"'
4 e .. . . m.. p_ m.,,,3. - t, "-"w y_ %, ~ _,. _,., o ,. n
.. m=:r, ._,., C , .. ,,,
J -. . . _ . .ww.,> , n.,g g,,m.c i
.... .:=,g.,.
% : u. - (,b,.u, a- .. _p._,u,....,,,,, m E.,_,...... ou
- ....., d: :e ,..., , -f my M -m o. , ,. ,, cL g..,.,M~
c, o , .., I M. A e * -**4U,,.,,,'s'_f,, _4m 4 si
.6..,.i- ,e-.H 60 *,1, CWC5 A._, ,,
y ,, , ,, 4 ,
, _ ,,13.I ..-,,y, - 4 m,, ,,_ , . , ....ga 2,.i c
- p. .,. , , , ,
)
i
,e l ln',,'y "l *,' l , u ,,,
h Pu'.t'PM?aue
-u i . "-"' g,) *~
[ j . agge ,ser,, ... 4 j i , e a , i___________________3_,.,_...
,,, 40- ...
1 x
,,. c.. u. d '"
A a u ,n a e ., r,,, ... ca c., ,,, 5 6 4 . ,,. T[._,
-_p". ,.. .... 7. ,.. 4 . , ..
1 _
~ "2
w :d l [.,c,, ....,. .,.,, 3 4 .. . ... ,,. , . y ,,,
, .c.. ,...., y ,, .. 7 4.... f- ~ , 9,'" ,,.,,, . m u .o p::pi , , . . , l , , . .
a ...- ... 72'dg [r _'._...," ..,1.>.. 1 - n' i
, . . , . u. , ..u , m u4= .. . 4 4 e c, ,,,,, ... . . . . 9,,
m r ... l ,,,,, ? ,,. . . . .. . . 4....
% "-- _...p_ m,..p_ h, " _ .-"w .,.., ,
- 3. N e - j =,, = - ,
~e.,,m .-
_.m y==, a ,
.. a . .v.....:=, ,. ,
e-. -g_,
,w,< , .u. r._ .a , . . , _
. - Mm,ui
*a ,. -
- 1 e on 4
'"'a u
[I,, . ,,,,o.s _.u-m .,0
'm r M, -M.. ,.
ge . ,p. '4 _w. eo Qn, I"I d g' ~ -
.. m -
j s _4 ,,. NS f""
^.o- o._.ai.,.a. 3.!
I*"*
~ " ,. p p g- ggo ' " ' .o-"2) ;;4#,n Ig g ii ,
m o' ' rpm 1, a,. . . , n
. =ma ,3 $p.,$m.s.Ipi --f :,
1 m..,_,.__.._..,......._..,.,_,,
.;..,.c.. . . . . . .. . . . . . ,________a.,......
89 040 4 0 37 5.ot
.A.................. Amendment C June 30, 1988 i,
TM Figure ,
/ / SAFETY INJECTION SYSTEM )
gj // PIPING AND INSTRUMENTATION DIAGRAM 6.3.2 1 A l , - I
- 4. .sa y
.e,
{ p. -- S.C. .... 1 g ;
- i ; : l- ; L.s si ..:
r
.....3 r 3 s .u. . l l em. una vm. ..... , vu. i
- n m.....n 1
e', j... e- 1... e.- :: A ... e-j
,. .I. u l::1-- e l::4 ...,.....u e ,4 <
om, o, i
. . m. i....
d l1
- u. .n som e-m l T _Tw P
A ."." f' " g.
,., s i = F -~- 1 r T--. --. q " -wg "a " " .u w in "a khm it . ..
D ,.
-t,uh u- .mu-%,o , .. 4 .y-u,m. "-'" s .. _ .. _ .. _ .. _ .. ~ .._.._.._....:....o..q ; .,a. .l..,
l*%
.r, 3, u-i N, i ,.._..._....J9 ... .... ..... gl9 , . u. ... =M '. @f-@
__w___... ', . . @f-@ w-... vm r)
._c%, u-m w g ,-a ,v.
u-u. r A
, u-m , ,,.,., .
L__., ,.u. L.E;.. :g
..u.
9.i:" 9,.a - 6
@f-@ ..-u.~.,.= ,, g ..m %, ll 9,. a - "= @fx -@=...a u.m gg @Q,:g,' g a-m @ , G,,,,,
p..-Q
@A G,.,,,
q-..-Q ,,Q 7
-m ,-<e- m Tu. me.-.a u,,,,
e-..@
,, o
- 4. ...a-= fg p...m"-nd,j 9- - . - @
.. m e-a ,.,,, o .. -ce --" ' ,.m O ""*
me, T,;am
@@ @ .,,.ua ~~1 .a i.. .u ++--4 u ma. > , f) 4, *u*-u. " 23..m= - - 2a'uu, = , __ ..,.u. n u.u. 9, 2m z : , ""-"a i fi u...t- 4 N. .. u. . .u. <.m,,,, ..X. . - 2 T.J mm <-m ..,.
4,, - .O' *3 i .u, o o o qu .. o _- o
, m.m .... ......_.m...... - <. q .v ~ s -s-- p' u.. .,-m m. . , , . .
uo, - a um. w.a .a, u- = ,, O49 a
..m.
g, ... . . . i .~. g..,.., . a
. . m.
g . .... I i m __. - 6 .~' ' n o
" es g;
f_,,""&
...m' : e .... ,,- &-4'l-s ...,"."' a ' e -
- ,,g'- I; 1::::. o.p- .
m g ..,. m
. g .. u-m L_= @ *, -$ .. ..,,. O .,._- +. ..m .,...,
m-.-=- &,, - @ u..
- =>-4 --
@,, - @ :=+-.<- i ,.u. Q . ~ ..m Q-- ~
if- u-m :;i
.,.u. ... . . .l . . . ' .., .,- l . (
5.< .
.a .
L l 1 l l L
S1
,.y '
1 _ i: APERTURE .. _.
," "_" l 1
_i:l_ I i
- h. . CARD _
- l. l.
< zii : ; i ts i e il ...sii 1 r ,Uso Available On i r 1 r 1 r
+- Aperture Card ~. ,.-m. r,q -.. .....
,.m. ,, . . . . . , , ,, ,, ....m.. ,, ......,, ,, ., u- - .m ... .... !
>g m eu, .- - { ., @. + nj m @. gf,. @%q Jm @,+ n ,u e- pf,.. k!
- 6. I A ,.,,,; @ l. n) n ii ny i A =t A s,,,, . . .m ...... I ,...,
r-no i sea.e s v T _Tm .E - i T s -" ' .A Il __'?.' T ST. -w i >- L >~~-.T.e w- g. ,em.,gj -,
.Jf "a if. . it. .n .n,., "a ti. ,n 11., .,", .L. . - i
- '. *f1 _. . w iu "h .. D w ,a n.m ,.,, 4 '-m
~~--n m .....g_.. ,9 :-).J
- .rF I mm ,, ;;; -
,g;;,
o.... N. - -++ -e ..s , p . . - . . O . . - . . .g W p . . - . . a 2- ([H - . . - . . - . . - . . - . . % - . . - . . - . . - . . - . . H m t.z _.i i au u.v. 9,,,.,., u- . , N m m ,, ,,, m..,\ t won \ t m,. 5 t \ t a.m
-c im _._w _a n., ,m = , .~ - mm ]h,, ..u....,... ::n ..g ,. . -......re . .... ....... ..., g g.o go.y , ;,
- l .... aa ++a @ 4 s !.
{
. . . . um ._c '-'".,.@8 ~~O . . . l .. . ._J, , n u-o, g g @76
_ _ _ . . . ..on ,.un
..... & L._
y , , r A , wn g \" " l .., S d.. L. . . u,
& l ~6 k" D'-
TlE, M. j M" . ...., .. OM. A j
....,, ...., ..-- ra .
rA : .., p-' .] @.. : 'H i
@ @b@-~ gr . -@ .- m qs...@ .m... ,,,,5,;a ,G yl t .r m.-- L"l . ~"_..
o . -m is---@ e -.- 4-{,, ,,,""Vq ,a . ". m" .- u._.,. 4
-a @ ........m.
n n [p*'" _ 2, . m c
=
9,
-.4 -+ ., i ....,, mm. . o. . . . . h .mm - o. .= u!? @m.7amcf r-- ~4~ @_ '~~1 1.M. oL=f ---+.--i i u..,','
mu g .4n n u. m mu f {n ...u, n7rm l 4' i A o(f w m' m t.+- --<-> c,3- m>
?-& ,,Z 3 itin "'g", .t.M i .Wn .+i.. ' ," 6' -my+
em ,
,,,. wm . ,.,,,u .. . m y ",*""g,,,, - . ,wy- ,, r,, , -t$ -t-y. -w3 ,
g
; ,, w iu v1 ... t .... .o,.. .m.n m m. u, .. .o uou _ .n .a @.-" +.y % t;;0,, @mI--t .J,5 g . .m 7- ..g s ..m.Ca') 7-i% lu0,,R. ,,.,,q., . o m.
Ig
-50 " :: ,, ."r.,, ,, n, .. C..hl "G ti n.7 @_m -
m,.,, & -- I L' i i i
. g m ..o.. . g ,.. .o m S.,.".,..+.- ,.,,, .-, O.,. "..t e> . . . . . -. . , mm q-@ -:->-itr-- g-.qp ~
- -> + - -
rm Q: \ s -mQ m i,e. , i ......~ ,
" ...m " .., l ..,
[.(. 4.e &m,., l ~
/ \ /) ,\,s e. i.a e. [\ [\ [\ / \
om ., n..... . . . . . . ....m...
)
890.4040375 6 ^"*"d"*"' ' June 30, 1988 f, w Figure I
/ SAFETY INJECTION SYSTEM Jg / f PIPING AND INSTRUMENTATION DIAGRAM 6.3.2 1 B i
~- s., } - - ~
measse e e emens e e ammes e e 5 1- 10 %
*- 51-30 J l 9
I. I _T.- - la
.m $1-ill ) ;
f tart T T J Im jiC T 10m 8 2 i 13 A - T-- - -
- O se -
61 113 J 3- a0fE I f,u b fou i s _e._. 3 j e e l k C Ge f a lhuf mf l hPeaV Sv5ttu gj g B 1 - 301
;a y 4 ]
Ii ! l l
~e N >- > er E ;" u) m a E ". e I.
O I. 9 I. 8 l l s s. . _ 4 . : ~~-Cp$
** S I- 34 2
- r. . .
*k 5e[ r:
ges e 3 munes4' - ) V
W $ i - l 61 $ arf 1y e
iP ~ 3 5 % - lg
-A 58 Ito g
e 1^ t "0"' # T'S'I'!!La
!L**.3 Ie ,I, t
- p-
-*-a.,
51-100 1 IN510L Conf almutaf
-..-..-..m. g;gipp;,
0075104 tonf alnutsT Ne w * .( m
I ll> B2P Mblat-i{ 81+ 1'3 6 N SI*IEE 51-131 II I l l .
. S I- 8 41 lil
, [ DMi* si YA1 ' ' ' " ' . ( :3.. . l II 3 _f ** m
. gla t4% SIS 51-146 I
l 1 l SI APERTURE CARD Also Available On Aperture Card
,,.u.
l
.i-I -N. -< .ir n j .3* lH ei-n. .,-,.. ii n i
- 7. ,
.. . i u ,,,. ii.
- n. .s.>j i
q .i>.
.n. -} 4 _ ' 7. .
El 141 8904040375 -o3 i DD f tp AN51/ANS-56 I t t994 in # 19 El N A 6 IttsterB 0F 000 56. -
- 2. lapsf Il 4 BluGLE CONTl#U0til f ans APPSOMlMAf ELY TOsWS IN SWAPE A40 45 LOCATED SELow Tut suur pun osalnagg ,
PupF05(1 1 l i Amendment C j June 30, 1988 ' m Figure j SAFETY INJECTION SYSTEM i gJ / FLOW DIAGRAM SHORT TERM MODE 6.3.2-1 C
=- we J / _ _ \ $..I b..I .s, {si-so 'ijer-s>4 1
l i l 1 l s
'l actsies l canvaewent mens e e mesma e e emens e e e- e e amans e e mome( W e seem e - e e esses e 2 - e e y )me...
wem tes)48musst I
- x. 3,,,..
q I l l i l 1
) <i l
O R 1*S,u", ,=
- I e 4 ..E..n 2 tag
- v tae a wy ,
vs gj
====smN .
si-ne [.*
- se a.e a si-34:
1
... si ra ei-e.. ]
I.<. @ . i.<. @ .. a i i i 1 1 AD N 98E%
m
+- ,;l ... m et-- .:1..-m , j I
s , ... , x , ... ... D1 APERTUIh CARD 1 Also Availal>le On Aperture Card I o n
**M !! 3 !aff! 1 J fiY. V us $Y U
- s. >
.4 -m .bm as 9 -.c s: : , . ....., . .em ., ...m ., .,-m i
- h. M.? [. D 8904040375 M ^=endment c June 30, 1988 SAFETY INJECTION SYSTEM
/ / FLOW DIAGRAM SHORT TERM MODE 6.3.2- 1 D I
-- y ) -l l ' - essummmes - on j sp ies J % $F303 4
I. -
=
T- U,. I, ." n i i e ,, EWlon . I i 2 1,g
- . - l 3ls
-T- 'g g:a ei- n2 )
s1 Mb rau i
....i l.
R I 1,- w-1 i s,
*4 . . . . .SYSTEu 5 F 381 SPRA 5
li:::t l a Eg .- g s. I. I.
.l Sl-10 4 i ~ ,,-2.,
m_J.; 2 Ili i ., N ' i
-"> J ...g. =
gie i t g l- H4 g M
..... mu l 3
- I i 1-
...... i . , . . . . . _ . , - c os t a anut e, i,
I '"' ' ' " ') ou,slos touIainn,er l i l l
, .+<c. .i-i n r<
i 4 "" T--- . V. r..j j l[ i ll- 1,1 i . , ;, . , p
.' .-i..
p
$1-3 5 518 Si APERTURE CARD w-r- ~
Aiso Avaihible On Aperture Card
. i o .. ii ,
I
' 7. ,. I
- 8'"i 818 S H 10
~.~. i- i n e
4, ,4....,. 3 _ l s., 7_
.i-.. . El HL 1 .i. .is 8904040375 -0I i Amendment C June 30, 1988 = Figure /7A SAFETY INJECTION SYSTEM gg g-s FLOW DIAGRAM LONG-TERM MODE 6.3.2 1 E t i
LW %y (
\ - . . . .n I, 0F154 w
tuttiot costalmuest a - am - e aassense ee - eenaammse a - enume e - eesemesea m - e eemanse e W y.emseec meme Castalahnqu7 3 g si-ia py, 91-844
/I i.<. _
i i
~
t
. ; a r 3- E !
w._q .,_ ,,. -w f .... :{
.. .._..o.._.._.._.._.._.._.._.._.._..~-.._..,,....._.._ .. ~ ~ , , ,
4 s , .. . ... s , ... . s,... I
+
S1 APEL.tTURE CARD
. . .o --+
Alg gailable On N Apaintt L,LMj - V I
!- l-Ji 11 !!Jr . li _.s
- o E. t
^=endae" c 89.04040375. ,,,, 30, 1933 w Figure SAFETY INJECTION SYSTEM ggg MN / FLOW DIAGR AM LONG TERM MODE 6.3.2 1 F
F a% =g
$1 PUMP 4 l l THIS FIGURE , __
[ .. ss a s f W l o'
...O 2 2,,, , f - a. :: e .,:.: ,.. -::
_... f 2 7J
; i,...,
w .'
, 'w C$HX h cs I
l= , L THis riouns .. 1
][ :. .- .. . O e
~2 #
A
/ =
51 PUMP 3 l THIS FIOuRE l l r [ l . I F g
= =
O '" _R_ 2 1 3lT $1T
/
s 9 -c :: ::
'i
{ f RV I d ,7 7 ,. SCS 1 IRwST # NOTE 18 ,f,5R,A DER I
~
l k n Yg C C8Hx C5 i S!f Sif
$1 PUWP 1 INS (DC CONT AINWENT W. (~ @UTBlot C0%Y AINuf NT 8I 3 m
b 4
\
j 'ggRTgRh
\
- CARD N0to
, l. law 8T 18 A SjNGL f CONTINU0US T ANX , , (){g APPR0XIM ATELY TORUS 1N $ NAP (.
Mso M"' a W""'" a,s g 8904040375- 09 Amendment C June 30, 1988 w Figure ENGINEERED SAFEGUARDS SYSTEM AFA / SCHEMATIC DIAGRAM 6.3.2-2 {
9 4500 , , , , , 4000 - 3500 - TDH u. ci - 5 3000 z
@2500 9 - $2000 Go ,
a 1500 - 8 z 1000 - 20 g NPSH z 500 - 10$ 0 ' ' ' ' ' E 08 0 200 400 600 800 1000 1235 " FLOW, GALLONSIMINUTEIll Note 1: Flow includes bypass flow Amendment C June 30, 1988 9 ,
/ SAFETY INJECTION PUMP HEAD AND NPSH CURVES jfj[g / (TYPICAL) 6.3.23
mrzNI 6 STANDARD DESIGN
- ' \;2/
N / ' x -
/N CESSAR 8!!' rip,c,1,o, O
Volume 7' ,,,,, ,,,,) ,,,,,,,,,,, u
O Q THIS PAGE INTENTIONALLY BLAllK. l I
6.3.3 PERFORMANCE EVALUATION 6.3.3.1 Introduction and Summary 10CFR50.46 provides the Acceptance Crit a for Emergency Core Cooling , Systems for Light-Water-Cooled Reactors . The analysis presented in this section demonstrate that the C-E System 80 Standard Plant design satisfies these criteria. The results of the analysis presented herein are applicable to any System 80 plant that conforms to the interface requirements specified within this section. Hot rod temperature calculations were performed for a complete spectrum of break sizes and locations. The most limiting break, that which limits the peak linear heat generation rate (PLHGR), has been identified as the 1.0 x l4 DEG/PD*. The results of these calculations demonstrate, that for a PLHGR of 14.0 kw/ft, the Standard Plant System 80 ECCS design meets the 10CFR50.46 Acceptance Criteria. Conformance is as follows: Criterion (1) Peak Clad Temperature. "The calculated maximum fuel element cladding temperature shall not exceed 2200 F". The spectrum analysis yielded a peak clad temperature of 2169 F for the 1.0 x DEG/PD break. l4 Criterion (2) Maximum Cladding 0xidation. "The calculated total oxidation ! of the cladding shat 1 nowhere exceed 17% of the total cladding thickness before oxidation". The spectrum analysis yielded a local peak clad oxidation percentage less than 13.32% for the 1.0 x DES /PD** break. l4 Criterion (3) Maximum Hydrogen Generation. "The calculated total amount of hydrogen generated from the chen'ical reaction of the cladding with water or steam shall not exceed 1% of the metal in the cladding cylinders surrounding the fuel, excluding the cladding surrounding the plenum volume were to react". The spectrum analys.is yielded a peak core-wide oxidation less than 0.799% for the 1.0 x DES /PD break. l4 Criterion (4) Coolable Geometry. " Calculated changes in core geometry shall be such that the core remains amenable to cooling." The clad swelling Evaluation Model (and 2, 3) rupture accountsmodel which for the is part effects of of the changes in core geometry if such changes are predicted to occur. With , these core changes, core cooling was enough to lower tempera- i tures. No further clad swelling and rupture can occur since the calculations were carried to the point at which the clad temperatures were decreasing and the system has been completely 1 depressurized. Thus, a coolable geometry has been demonstrated. ODEG/PD = Double Ended Guillotine at the Pump Discharge Amendment No. 4 l
** DES /PD = Double Ended Slot at the Pump Discharge July 16, 1981 l4 6.3-22 I
J
v
-p Criterion (5) Long Term Cooling. "After any calculated successful initial operation of the ECCS, the calculated core temperature shall l
i be maintained at an acceptably low value and decay heat l shall be removed for.the extended period of time required by the long-lived radioactivity remaining in the core". The spectrum analysis shows that the rapid insertion of borated water from the ECCS will suitably limit the peak clad temperature and cool the ccre within a short period of time. Subsequently, the safety injection pumps will supply cooling water from the refueling water tank or the containment sump to remove decay heat resulting from the long-lived radioactivity remaining in the core. A detailed analysis and description of.the long term cooling performance is given in paragraph 6.3.3.4. ; 6.3.3.2 Large Break Analysis 6.3.3.2.1 Mathematical Model The calculations reported in this section were performed using the C-E largebreakevaluatiop4godelwhichisdescribedinreference2. .In the C-E model, the CEFLASH-4A
?
computer program is used to determine the pggary system flow parameters during the blowdown phase, and.the COMPERC-II computer program is used to determine the system behavior during the refill and reflood phases. The core flow and thermogamic parameters from these i two codes are used-as input to the STRIKIN-II computer, which is used to Os calculate the hot rod clad temperature transient. The peak clad temperature and peak local clad oxidation percentage are therefore obtained from the STRIKEN-II calculation. The core-wide clad oxidati p from the results of both the STRIKIN-II and COMZIRCpp,' g g ecomputer is obtained programs. 6.3.3.2.2 Safety Injection System Assumptions The safety injection system (SIS) consists of two high pressure pumps, two-low pressure pumps and four safety injection tanks. Automatic operation of the pumps is actuated by either a low pressurizer pressure signal or a high containment pressure signal. Flow is initiated from the safety injection tanks by the opening of a check valve when the cold leg pressure drops below the tank pressure. In performing the LOCA calculations, conservative assumptions are made concerning the availability of safety injection flow. It is assumed that offsite power is lost and all pumps must await diesel startup before they can begin to deliver flow. (It is assumed, however, that offsite power is available for the containment spray system). For breaks in the pump discharge leg, it is also' assumed that all safety injection flow delivered to the broken cold leg spills into the containment. An analysis of the possible single failures that can occur within the SIS has shown that the worst single failure for the large break spectrum is the ( i l 6.3-23
failure of one of the low pressure pumps to start (2) . This results in a minimum amount of safety injection water, available to the core, without affecting the operation of the containment spray system. 1 Therefore, based on the above assumptions, the following safety injection ! flows are credited for the large break analysis: Two high pressure safety injection pumps (HPSIP's) are piped so that each one j can feed all four cold leg injection points. Thus- l 1
- a. for a break in the pump discharge leg, the safety injection flow credited ;
is 75% of the flow from two HPSIP's since it is assumed that all injection in the broken cold leg is spilled. 1
- b. for breaks in other locations, the safety injection flow credited is 100%
of two HPSIP's. Two low pressure safety injection pumps (LPSIP's) are piped so that each one feeds two cold leg injection points. Thus: ; i for a break in the pump discharge leg, the safety injection flow credited i a. is 50% of the flow from one LPSIP. The bases for this flow is that only the LPSIP is operable (worst single failure) and one of the two injection points for the operable pump is located in the broken loop and thus that flow is spilled.
- b. for breaks in other locations, the safety injection flow is 100% of one ,
LPSIP. Four safety injection tanks (SIT's) are piped so that each SIT feeds a single cold leg injection point. Thus-
- a. for a break in the pump discharge leg, the safety injection flow credited is 100% flow from three SIT's since it is assumed that all injection in the cold leg is spilled.
- b. for breaks in other locations, the safety injection flow credited is 100%
flow from four SIT's. The rate at which emergency cooling water is delivered to the reactor vessel 4 downcomer for the limiting break is shown in Figure 6.3.3.2-5L. System l delivery data for the high and low pressure pumps are presented in Section 6.3.3.3. As shown in Table 6.3.3.2-1, no credit is taken for pump flow until the tanks are empty, resulting in a minimum effective delay of over
- 55. seconds from the time the SIAS setpoint is reached until pump flow is delivered to the RCS. The actual delay time will not exceed 29 seconds 10 l
following a SIAS. In the large break analysis, no operator action has been assumed. 6.3.3.2.3 Core and System Parameters l The significant core and system parameters used in the large break calcula-tions are presented in Table 6.3.3.2-2. The peak linear heat generation 6.3-24 Amendment No.10 June 28,1985 l
, rat'e-was assumed to occur in the top of the core, the conservative location .
l: as identified in Section IV.A.4 of Reference 2. Acggservativebeginning-of-life moderator temperature coefficient (+0.5 x 10 ao./ F) was used in all large break cases. The ECCS performance analyses as' performed, do not account for steam generator 4 tube plugging which may occur during .the plant's lifetime. The initial steady state g l rod conditions were determined as a function of burnup using the FATES computer program. The limiting condition.for ECCS performance was determined to occur for a hot rod average burnup of , 774. MWD /MTV. 4 ' A parameter study was performed which demonstrates that clad temperature I and oxidation were maximized at this exposure. The results of this study are presented in Figure 6.3.3.2-11. 6.3.3.2.4 Containment Parameters Section 6.2.1.5 discusses in detail the containment parameters assumed for the ECCS analysis. The values for these parameters were chosen to minimize containment pressure such that a conservative determination of the core reflood rate was made. Pressure suppression equipment startup times were selected at their minimum values corresponding to offsite power being available. As mentioned in Section 6.2.1.5.3, the results of the ECCS: analysis presented herein are intended to be referenced in many individual System 80 plant Safety Analysis Reports. Therefore, the values for the containment parameters were chosen to conservatively bound the varied containment designs of the d System 80 plants. The results of the ECCS performance analysis presented
)
in this section may be conservatively applied to any individual _ Standard System 80 plant, provided the plant-specific containment data,'using the methodology described in Section 6.2.1.5, results in higher minimum containment pressures than are shown in Figure 6.2.1.5-3. 6.3.3.2.5 Break Spectrum - The large break analyses were performed for nine breaks. These breaks include slot cnd guillotine breaks, ranging in size from 0.5 2ft to full double ended break area. Break locations include the reactor coolant pump suction and discharge legs as well as the hot leg. Table 6.3.3.2-3 list the various break sizes, types and locations examined for this analysis. As previously demonstrated (2,8) , the limiting break is a large break in the pump discharge leg. Pump dis;harge leg breaks are limiting because both the blowdown core flow rate and reflood rate are minimized for this location. 6.3.3.2.6 Results and Conclusions The important results of this analysis are summarized in Table 6.3.3.2-4 and the transient behaviour of important NSSS parameters is shown in the figures listed in Tables 6.3.3.2-5 and 6.3.3.2-6. Times of interest for the various breaks analyzed are presented in Table 6.3.3.2-1. Peak clad temperature vs. break size is shown in Figure 6.3.3.2-10. Fuel cladding 4 ( rupture, for those breaks where rupture is predicted, occurs during the reflood period and peak clad temperature is calculated to occur during late i reflood.
. Amendment No. 4 6.3-25 July 16, 1981
i These results demonstrate that the emergency core cooling system for the Standard System 80 design is in compliance with the Acceptance Criteria of Reference 1, and is adequate to perform its intended function of maintaining the integrity of the core thereby limiting radiation release to the environ-ment. Operational restrictions and limits on operation or maintenance that ; have been dictated by the results of this analysis are listed in the Technical Specification (Chapter 16). j O i
?
6.3-26
TABLE 6.3.3.2-1 TIME SEQUENCE OF IMPORTANT EVENTS FOR A SPECTRUM 0F LARGE BREAK LOCAs [) (SECONDS AFTER BREAK) END OF START OF SI TANKS SI PUMPS HOT R0D SI TANKS REFLOOD EMPTY ON RUPTURE BREAK ON BYPASS ; ; i 15.4 23.2 31.60 66.92 66.92 90.6 1.0 DES /PD* 15.9 23.9 32.39 67.58 67.58 93.5 0.8 DES /PD 17.6 25.3 33.76 69.10 69.10 97.7 0.6 DES /PD 177.8 186.65 224.01 224.10 227.75 0.5 FT2 S/PD 162.5 15.7 23.4' 31 .87 66.89 66.89 89.3 1.0 DEG/PD 4 ' 16.1 24.0 32.48 67.76 67.76 93.1 0.8 DEG/PD 18.1 25.9 34.24 69.73 69.73 94.8 O.6 DEG/PD 18.2 24.4 31 .30 69.90 69.90 102.0 1.0 DEG/PS 8.4 13.8 20.80 55.80 55.80 DID NOT j 1.0 DEG/HL RUPTURE G I
)
See Table 6.3.3.2-3 for an explanation of these abbreviations. , i l Amendment No. 4 July 16, 1981 l
p TABLE 6.3.3.2-2 GENERAL SYSTEM PARAMETERS AND INITIAL CONDITIONS LARGE BREAK ECCS PERFORMANCE l4 Quantity Value Reactor Power Level (102% of Nominal) 3876 MWt Average Linear Heat Rate (102% of Nominal) 5.6 kw/ft Peak Linear Heat Rate 14.0 kw/ft Gap Conductance at Peak Linear Heat Rate
- 1513.0 BTU /hr-ft2 - F Fuel Centerline Temperature at Peak Linear Heat Rate
- 3424.6 F 4 Fuel Average Temperature at Peak Linear Heat Rate
- 2175.4 F Hot Rod Gas Pressure 1129.0 psia Moderator Temperature Coefficient at Initial Density +0.5x10-4 Ap/ F System Flow Rate (Total) 164.0x106 lbs/hr Core flow Rate 159.1x106 lbs/hr l4 Initial System Pressure 2250 psia Core Inlet Temperature 565 "F Core Outlet Temperature 621.6 F Active Core Height 12.5 ft.
Fuel Rod OD 0.382 in. Number of Cold Legs 4 Number of Hot Legs 2 Cold Leg Diameter 30 in. Hot Leg Diameter 42 in. Safety Injection Tank Pressure 608 psia Safety Injection Tank Gas / Water Volume 616/1790 ft3
*These quantities correspond to the burnup (774 MWD /MTU, hot rod average)
{4 yielding the highest peak clad temperature, Amendment No. 4 July 16, 1981
i l TABLE 6.3.3.2-3 LARGE. BREAK SPECTRUM t p\ O Break Size, Type, and Location Abbreviation Figure No. 1.0 x Double Ended Slot Break 1.0 DES /PD 6.3.3.2-1 In Pump Discharge Leg l l l 0.8 x Double Ended Slot Break 0.8 DES /PD 6.3.3.2-2 In Pump Discharge Leg 0.6 x Double Ended Slot Break 0.6 DES /PD 6.3.3.2-3 In Pump Discharge Leg 2 0.5 ft Slot Break in Pump 0.5 ft 2S/PD 6.3.3.2-4 i Discharge Leg 1.0 x Double Ended Gui?'stine 1.0 DEG/PD 6.3.3.2-5 Break in Pump Discharge Leg 0.8 x Double Ended Guillotine 0.8 DEG/PD 6.3.3.2-6 Break in Pump Discharge Leg 0.6 x Double Ended Guillotine 0.6 DEG/PD 6.3.3.2-7 Break in Pump Discharge Leg O 1.0 x Double Ended Guillotine 1.0 DEG/PS 6.3.3.2-8 l l Break in Pump Suction Leg l 1.0 x Double Ended Guillotine 1.0 DEG/HL 6.3.3.2-9 Break in Hot Leg i i l 1
TABLE 6.3.3.2-4 PEAK CLAD TEMPERATURE AND OXIDATION PERCENTAGE FOR THE LARGE BREAK SPECTRUM BREAK PEAK CLAD CLAD OXIDATION TEMPERATURE ( F) LOCAL (%) CORE-WIDE (%) ; 1.0 DES /PD 2168 13.32 < .799 0.8 DES /PD 2156 12.88 < .747 0.6 DES /PD 2137 12.19 < .708 0.5 FT2 S/PD 1963 7.48 < .377 1.0 DEG/PD 2169 13.14 < .767 4 0.8 DEG/PD 2158 13.05 < .735 0.6 DEG/PD 2149 12.64 < .730 1.0 DEG/PS l'50 2.13 < .174 1.0 DEG/HL 1500 0.45 < .011 O l Amendment No. 4 July 16, 1981
TABLE 6.3.3.2-5 f"N VARI ABLES PLOTTED AS A FUNCTION OF TIME Q FOR EACH LARGE BREAK IN THE SPECTRUM Variable Figure i Designation l Core Power A Pressure in Center Hot Assembly Node B Leak Flow , C Hot Assembly Flow (below hot spot) D.1 Hot Assembly Flow (above hot spot) D.2 l Hot Assembly Quality E l Containment Pressure F Mass Added to Core During Reflood G Peak Clad Temperature H* I J l l
*For the worst case, the temperature of the rupture node is also shown. 4 l
Amendment No. 4 July 16, 1981
i 1 I TABLE 6.3.3.2-6 I 1 ADDITIONAL VARIABLES PLOTTED AS A FUNCTION OF TIME FOR THE WORST LARGE BREAK I Figure Va riables Designation Mid Annulus Flow I Qualities Above and Below the Core J Core Pressure Drop l'. Safety Injection Flow into Intact Discharge Legs L Water Level in Downcomer During Reflood M Hot Spot Gap Conductance N Local Clad 0xidation 0 Clad Temperature, Centerline Fuel Temperature, Average Fuel Temperature and Coolant Temperature for Hottest Node P Hot Spot Heat Transfer Coefficient Q Hot Pin Pressure R Core Bulk Channel Flow Rate S i
0 1.2 , , , 1.0 - 0.8 - l i
!E 0.6 - -
E o_
'l O 0." - -
0.2 - - 1 I ' ' I ! 0.0 ' 0 1 2 3 4 5 TIME, SECONDS Amendment No. 4 July 16, 1981 i C-E 1.0 x DOUBLE ENDED SLOT BREAK Fi ure - IN PUMP DISCHARGE LEG 6!3.3. S CORE POWER 2-1A
l O l 2400 , , , , , 2000 - - ! ) l 1600 - - 5
!C d 1200 - -
5 0 O" 800 - - j}}