ML20237A469

From kanterella
Jump to navigation Jump to search

Forwards TR BAW-2325, Response for Addl Info Re Reactor Pressure Vessel Integrity, in Response to NRC 980409 RAI Re GL 92-01,Rev 1,Suppl 1, Reactor Vessel Structural Integrity
ML20237A469
Person / Time
Site: Davis Besse Cleveland Electric icon.png
Issue date: 08/10/1998
From: Jeffery Wood
CENTERIOR ENERGY
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
2545, GL-92-01, GL-92-1, TAC-MA0540, TAC-MA540, NUDOCS 9808140110
Download: ML20237A469 (5)


Text

- - - _ -. - - _ _ _ _ - _ _ _ _ _ _ _ _ _

P4 i

E=

n9" Daws-Besse Nuclear Power Station E SE 5501 North State Route 2 m

Oak Harbor Ohio 43449-9760 i

John K. Wood 419 249-2300 Vice President - Nuclear Fax. 419-3218337 Docket Number 50-346 License Number NPF-3 Serial Number 2545 August 10, 1998 United States Nuclear Regulatory Commission Document Control Desk Washington, D. C. 20555-0001 s

Subject:

Request For Additional Inforraation Regardir.g Reactor Pressure Vessel Integrity -

Davis-Besse Nuclear Power Station, Unit No.1 (TAC No. MA0540)

Ladies and Gentlemen:

By letter dated April 9,1998 (Toledo Edison Log Number 5246), the Nuclear Regulatory Commission (NRC) issued a request for additionai information (RAI) regarding Generic Letter 92-01, Revision 1, Supplement 1, " Reactor Vessel Structural Integrity."

The mason for this RAI is that the NRC staff received additional information that may affect the determination of the best-estimate chemistry composition for the Davis-Besse Nuclear Power Station Unit No.1 (DBNPS) reactor pressure vessel welds or the surveillance weld material.

These data were provided by Framatome Technologies, Inc. (FTI) in several letters from Mr.

Matthew J. DeVan (FI'I) to Mr. Barry J. Elliot (NRC) dated June 6,1997 (INS-97-2262),

June 19,1997 (INS-97-2450) and July 10,1997 (INS-97-2741).

The NRC requested that the D3NPS response include application of the ratio procedure, as described in Position 2.1 of Regulatory Guide 1.99, " Radiation Embrittlement of Reactor Vessel Materials," Revision 2, (RG 1.99) in the assess;nent of surveillance data from welds and a l

certification that previously submitted evaluations remain valid.

The NRC had previously issued a letter dated August 13,1996 (Toledo Edison Log Number 4893) requesting the Toledo Edison Company to provide an assessment of the application of the l

ratio procedure to the DBNPS pressure-temperature limit (P/F) curves and low temperature I

overpressure (LTOP) limits.

nf Toledo Edison responded to that request by letter dated January 3,1997 (Serial Letter Number h 2429). That letter provided a detailed assessment of the application of the ratio procedure to the DBNPS P/r curves and LTOP limits. It provided the adjusted reference temperatures (ART) 9808140110 980810 5

PDR ADOCK 05000346 P

PM

Docket Number 50-346 License Number NPF-3 Serial Number 2545 Page 2 used in the development of the 21 EFPY pressure-temperature limit curves. The 1/4T ART is 155 F and the 3/4T ARTis 114 F. The temperatures are based on surveillance capsule data for critical welds. The weld chemistry of the surveillance capsule is 0.21 weight percent copper and 0.63 weight percent nickel. The best estimate weld chemistry for weld wire is 0.24 weight percent copper and 0.63 weight percent nickel. If the ratio procedure of RG 1.99 is applied to the weld wire data, the chemistry factor used in the calculation of adjusted reference temperatures will increase approximately five percent. The letter concluded that sufficient mitrgins exist in the current pressure-temperature curve analyses so that application of the ratio procedure would not impact the currently approved pressure-temperature limits or the low temperature overpressure protection.

Reauested Information The subject RAI included an attachment that requested the following information:

1. Provide an evaluation of the information in the references above and an assessment of its applicability to the determination of the best-estimate chemistry for all of your reactor pressure vessel (RPV) beltline welds. Based upon this reevaluation, supply the information necessary to completely fill cut the data requested in Table 1 for each RPV beltline weld material. Also provide a discussion for the copper and nickel values chosen for each weld wire heat noting what heat-specific data were included and excluded from the analysis and the analysis method chosen for determining the best-estimate. If the limitir.g material for your vessel's PTS /PT limits evaluation is not a weld, include the information requested in i

Table 1 for the limiting material also. Furthermore, you should consider the information provided in Section 2.0 below on the use of surveillance data when responding.

2. Provide (1) the information listed in Table 2, Table 3, and the chemistry factor from the surveillance data for each heat of material for which surveillance weld data are available and a revision in the RPV integrity analyses (i.e., current licensing basis) is needed or (2) a certification that previously submitted evaluations remain valid. Separate tables should be used for each heat of material addressed. If the limiting material for your vessel's pressurized thermal shock (PTS)/PT limits evaluation is not a weld, include the information requested in the tables for the limiting material (if surveillance data are available for this material).
3. If the limiting material changes or if the adjusted reference temperature for the limiting material increases as a result of the above evaluation, provide the revised RTrrs value for the limitir..aaterial in accordance with 10CFR 50.61. In addition,if the adjus'ed RTmyr value I

increased, provide a schedule for revising the pressure-temperature (P-T) and (LTOP) limits.

l The schedule should ensure that compliance with 10 CFR 50 Appendix G is maintained.

l

_______________a

Docket Number 50-346 License Number NPF-3 Serial Number 2545 Page 3 Toledo Edison Response The Babcock and Wilcox (B&W) Owners Group Reactor Vessel Working Group has submitted l

report BAW-2325, " Response to Request for Additional Information (RAI) Regarding Reactor Pressure Vessel Integrity" by letter dated May 28,1998, (attached) in support of the response to the NRC's RAI. This report includes the information requested for Toledo Edison's Davis-Besse Nuclear Power Station.

Response to item 1:

The Davis-Besse Section of the report contains the information required to complete Table 1 of item 1 of the attachment to the RAI. The completed Tab'e can be found on pages 3-16 through 3-18 of the report. The Table provides all the requested information for the End of Life Inside Diameter Adjusted Reference Temperature (EOL ID ART) and the ART for the vessel at the 1/4T and 3/4T positions at the 21 Effective Full Power Year (EFPY) fluence. The current Technical Specification Pressure-Temperature curves are valid up to 21 EFPY. The bases of the values given in the DBNPS Table 1 are discussed in Section 3 (p. 3-1 to 3-9 of BAW-2325). The Table reveals that the limiting material for the DBNPS Reactor Vessel is still the Upper to Lower Shell Circumfrential Weld, as previously reported to the NRC.

Response to Item 2:

i The information requested in item 2 of the attachment to the RAI can be found in Section 4 of BAW-2325. This section discusses the credibility of the data used to determine the information presented in Table 1 of the report. The adjustments made to the data to account for varying

)

irradiation conditions are also discussed. This information is included in p. 4-1 through 4-3. The specific information for DBNPS's limiting weld material can be found on pages 4-45 and 4-46.

These pages contain Table 2 and Table 3 of the NRC's RAI, Item 2. Similar information can be found for the other non-limiting weld materials used in the DBNPS Reactor Vessel in Section 4.

Based on the above information, the predicted values for the ARTS were compared to the current basis values previously submitted.

Response to Item 3:

The limiting material for the DBNPS reactor vessel is still the WF-182-1 Upper to Lower Shell Circumferential weld. The calculated values for the 1/4T and 3MT Adjusted Reference Temperatures (ARTS) are still below the values used in developing the Pressure-Temperature curves of the DBNPS Technical Specifications.

The calculated value for the EOL ID ART (or RTp) has increased from the174.9 F value previously reported in Topical Report BAW-2257, "B&W Owners Group Reactor Vessel Working Group Response to Generic Letter 92-01, Revision 1 Supplement 1," which was

_ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~

Docket Number 50-346 License Number NPF-3 Serial Number 2545 Page 4 submitted with Toledo Edison Letter Serial No. 2343. The new value, as determined in BAW.

2325 is 193.0 F.

BAW-2325 reports that the current licensing basis EOL ID ART of the DBNPS is 195.1 F. The 195.1 F value was determined by the NRC and retlected in the NRC's Reactor Vessel Integrity Database.

The increase from 174.9 F to 193.0 F is primarily due to an increase in the assumed initial RTmyr from the previously assumed value of-27 F to a new value of +2 F. Minor changes in the value are due to changes in the Chemistry Factor and the EOL fluence. It is noted that the new value of 193.0 F, as well as the 174.9 F and the 195.1 F values, are all significantly below the PTS screening criterion of 300 F, as specified by 10 CFR 50.61.

Although the EOL ID ART has increased, the PTS screening criterion is still met. Additionally, l

the values used to develop the 21 Effective Full Power Year Pressure-Temperature Curves are still valid. Toledo Edison certifies that previously submitted DBNPS reactor vessel integrity calculations remain valid. These evaluations include low temperature overpressure protection (LTOP) and pressure-temperature (P-T) limit curves in the Technical Specifications (

Reference:

DBNPS License Amendment 199 dated July 20,1995).

Should you have any questions or require additional information, please contact Mr. James L.

Freels, Manager-Regulatory Affairs, at (419) 321-8466.

Very truly yours, FWK/laj attachment cc:

A. B. Beach, Regional Administrator, NRC Region III, without attachment A. G. Hansen, DB-1 NRC/NRR Project Manager, without attachment S. J. Campbell, DB-1 NRC Senior Resident Inspector, without attachment Utility Radiological Safety Board, without attachment l

l L___--_.___________--___----__

Doci:et Number 50-346 License Number NPF-3 Serial Number 2545 1

Page 5 i

REQUEST FOR ADDITIONAL INFORMATION TO NRC GENERIC LETTER 92-01 L

FOR THE I

l DAVIS-BESSE NUCLEAR POWER STATION l

UNIT NUMBER 1 l

I, Lonnie W. Worley, state that (1) I am the Director - DB Nuclear Assurance for the Centerior l

Service Company, (2) I am duly authorized to execute and file this certification on behalf of the Toledo Edison Company and The Cleveland Electric Illuminating Company, and (3) the j

statements set forth herein are true and correct to the best of my knowledge, information and belief.

For: John K. Wood, Vice President - Nuclear By:

Lonnie W. Worley,IMetor - DB Nuclear Assurance l

Affirmed and subscribed before me this 10th day of August, 1998.

Notary Public, Sfate of Ohio Nora Lynn Flood My commission expires September 4, 2002.

L___--_-----------_--_--_---------

BAW-2325 MAY 1998

,.7,,_

. y,,.,,, _ _,.

.rh l $f

= OWNERS GRDUP

,., 7 y m1, Reactor Vess$1 Working Group Response to Request for Additional Information (RAl;l Regarding Reactor Pressure Vessel Integrity l

[

um I

M F R AM ATO M E TECHHOLoGlES QR 'l*IW! '({Cf)

{ 4 C );

  • f

" g 2325 May 1998 l

Response to Request for Additional Information (RAl)

Regarding Reactor Pressure Vessel integrity B&W Owners Group - Reactor Vessel Working Group Prepared by:

M.J.DeVan FTl Document No. 43-2325-00 (Section 6 for document signatures.)

Prepared for B&W Owners Group Reactor Vessel Workina Group Commonwealth Edison Company Duke Energy Corporation Entergy Operations, Inc.

Florida Power Corporation Florida Power & Light Company GPU Nuclear, Inc.

Toledo Edison Company Virginia Power Wisconsin Electric Power Company Prepared by Framatome Technologies, Inc.

3315 Old Forest Road P. O. Box 10935 Lynchburg, Virginia 24506-0935 fes oLoe e

l l

)

l Table of Contents l

1.0 Introd uction.......................

.....................................................1-1 2.0 Organization of Response...............................................................2-1 3.0 Request for Additional Information Regarding Reactor Vessel integrity Assessment of Best-Estimate Chemistry..........

........................3-1

]

3.1 Weld Wire Heat Copper and Nickel Chemical Composition Analyses for High-Copper Linde 80 Weld Metals.

.....................................3-1

{

)

3.2 High-Copper Linde 80 Weld Wire Heat Best-Estimate Copper and Nickel C hemical C ompositio n s...................................................... 3-2 1

3.3 Assessment of Linde 80 Weld Wire heat Best-Estimate Copper and Nickel Chemical Compositions..................................................... 3-9 4.0 Request for Additional Information Regarding Reactor Vessel Integrity Evaluation and Use of Surveillance Data.............................

...............4-1 4.1 Surveillance Data Credibility Assessment....................................... 4-1 I

4.2 C red ible S u rveilla n ce Data................................................................ 4-2 4.3 Non-Credible Surveillance Data.................................................... 4-3 4.4 Use of Weld Wire Heat Surveillance Data......................................... 4-3 4.5 Assessment of Weld Wire Heat Surveillance Data................................ 4-5 4.5.1 Weld Wire Heat Number 299L44 (Use of B&W NSSS Data Only)......................................... 4-6 4.5.2 Weld Wire Heat Number 299L44 (Use of Westinghouse NSSS Data Only).........................

4-8 4.5.3 Weld Wire Heat Number 299L44 (Use of All Surveillance Data)........................................ 4-10

-mm

Contents (Cont'd) 4.1.4 Weld Wire Heat Number 406L44 (Use of B&W N SSS Data Only)........................................ 4-13 4.1.5 Weld Wire Heat Number 406L44 (Use of Westinghouse NSSS Data Only)......................... 4-16 4.1.6 Weld Wire Heat Number 406L44 (Use of All Surveillance Data).................

............... 4 - 18 4.1.7 Weld Wire Heat Number 61782 (Use of Westinghouse NSSS Data Only)......................... 4-21 4.1.8 Weld Wire Heat Number 61782 (Use of All Surveillance Data)..............................

... 4-23 4.1.9 ' Weld Wire Heat Number 71249 (Use of Westinghouse NSSS Data Only)......

....................4-25 4.1.10 Weld Wire Heat Number 72105 (Use of B&W NSSS Data Only)..............

.4-27 4.1.11 Weld Wire Heat Number 72105 (Use of Westinghouse NSSS Data Only)............

......... 4-3 0 4.1.12 Weld Wire Heat Number 72105 (Use of All Surveillance Data)................................... 4-33 4.1.13 Weld Wire Heat Number 72442 (Use of B&W NSSS Data Only)................................

...4-36 4.1.14 Weld Wire Heat Number 72445 (Use of B&W NSSS Data Only)..............

........ 4-38 4.1.15 Weld Wire Heat Number 72445 (Use of Westinghouse NSSS Data Only).,............

... 4-4 0 4.1.16 Weld Wire Heat Number 72445 (Use of All Surveillance Data)......................

............ 4 -4 2 4.1.17 Weld Wire Heat Number 821T44 (Use of B&W NSSS Data Only)..................................... 4-45 4.1.18 Weld Wire Heat Number T29744 (Use of Westinghouse NSSS Data Only)..................... 4-4 8 4.1.19 Rotterdam Dockyard Fabricated Weld:

Weld Wire Heat Number 0227.............

..4-50 5.0 R e fe re n ce s......................................................

... 5-1 6.0 C e rtifi ca ti o n.................................................................................. 6 - 1 m

mese

l Contents (Cont'd)

I i

i Appendix A: Best-Estimate Copper and Nickel Contents for High-Copper Linde 80 i

Welds Used in the Reactor Vessel Beltline Regions of the B&W Reactor Vessel Working Group....

...................................A-1 Appendix B: Base Metal Surveillance Data Used in the Reactor Vessel Beltline Regions of the B&W Reactor Vessel Working Group...

..........B-1 q

List of Tables 1

3-1.

B&WOG Reactor Vessel Working Group Reactor Vessel Beltline Welds...... 3-4 i

3-2.

Best-Estimate Copper and Nickel Chemical Compositions For B&WOG Reactor Vessel Working Group Reactor Vessel Beltline Welds...

... 3-5

{

4.4-1.

Summary of Surveillance Data Assessments for the B&WOG Reactor Vessel Working Group Reactor Vessel Beltline Welds......

... 4-4 4.5.1-1. Surveillance Data for Weld Wire Heat Number 299L44 Using B&W l

NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity...

....................... 4-6 4.5.1-2. Credibility Assessment for Weld Wire Heat Number 299L44 Using B&W l

NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Ve ssel I nieg rity.....................................

........ 4-6

)

4.5.1-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 299L44 Using B&W NSSS Surveillance Data Only...

.4-7 4.5.2-1. Surveillance Data for Weld Wire Heat Number 299L44 Using i

Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity...............

.... 4-8 4.5.2-2. Credibility Assessment for Weld Wire Heat Number 299L44 Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity........................................

..... 4-8 4.5.2-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 299L44 Using Westinghouse NSSS Surveillance Data Only... 4-9 4.5.3-1. Surveillance Data for Weld Wire Heat Number 299L44 Using All Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel Integrity. 4-10 4.5.3-2. Credibility Assessment for Weld Wire Heat Number 299L44 Using All Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel Integrity. 4-11 4.5.3-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 299L44 Using All Surveillance Data.

.... 4-12 iv N^7M

i l

List of Tables (Cont'd) 4.5.4-1. Surveillance Data for Weld Wire Heat Number 406L44 Using B&W NSSS Surveillance Data Only (Table 2 of the RAI Regardin Ves sel 1 nteg rity.........................................................

..................4-13 l

4.5.4-2. Credibility Assessment for Weld Wire Heat Number 406L44 Using B&W NSSS Surveillance Data Only (Table 3 of the RAI Regardin Ves sel 1 niegrity.........................................................

.....................4-14 4.5.4-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 406L44 Using B&W NSSS Surveillance Data Only............ 4-15 4.5.5-1. Surveillance Data for Weld Wire Heat Number 406L44 Using Westinghouse NSSS Surveillance Data Only (Table 2 of the RAl Regarding Reactor Vessel Integrity........................................................... 4-16 4.5.5-2. Credibility Assessment for Weld Wire Heat Number 406L44 Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity........................................................... 4-16 4.5.5-3. Weld Wire Heat Number 406L44 Chemistry Factor Calculation for Assessment of B&W NSSS Reactor Vessels (Cold Leg Temperature at 556 F) Using Westinghouse NSSS Surveillance Data Only..................... 4-17 4.5.6-1. Surveillance Data for Weld Wire Heat Number 406L44 Using All Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel integrity. 4-18 4.5.6-2. Credibility Assessment for Weld Wire Heat Number 406L44 Using All Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel Integrity. 4-19 4.5.6-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 406L44 Using All Surveillance Data................................. 4-20 4.5.7-1. Surveillance Data for Weld Wire Heat Number 61782 Using Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity........................................................... 4-21 4.5.7-2. Credibility Assessment for Weld Wire Heat Number 61782 Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity......................................................... 4-21 4.5.7-3. Weld Wire Heat Number 61782 Chemistry Factor Calculation for Assessment of Westinghouse NSSS Reactor Vessel (Point Beach Unit 1 Cold Leg Temperature at 542'F) Using Westinghouse NSSS S u rveilla nce Data Only........................................................................... 4-22 4.5.8-1. Surveillance Data for Weld Wire Heat Number 61782 Using All Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel Integrity. 4-23 4.5.8-2. Credibility Assessment for Weld Wire Heat Number 61782 Using All Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel Integrity. 4-23 i

v WMM

List of Tables (Cont'd) 4.5.8-3.

Weld Wire Heat Number 61782 Chemistry Factor Calculation for Assessment of B&W NSSS Reactor Vessels (Cold Leg Temperature at 556*F) Using All Surveillance Data........................................

. 4-24 4.5.8-4.

Weld Wire Heat Number 61782 Chemistry Factor Calculation for Assessment of Westinghouse NSSS Reactor Vessel (Point Beach Unit 1 Cold Leg Temperature at 542*F) Using All Surveillance Data........ 4-24 4.5.9-1.

Surveillance Data for Weld Wire Heat Number 71249 Using l

Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integ rity.......................................................... 4-2 5 4.5.9-2.

Credibility Assessment for Weld Wire Heat Number 71249 Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity............................................... 4-25 4.5.9-3.

Table Chemistry Factor Non-Conservatism Assessment for Weld Wire j

Heat Number 71249 Using Westinghouse NSSS Surveillance Data O nly..............................................

...................................4-26 4.5.10-1. Surveillance Data for Weld Wire Heat Number 72105 Using B&W NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel I nte g rity.............................................................................. 4-2 7

]

4.5.10-2. Credibility Assessment for Weld Wire Heat Number 72105 Using B&W NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Ve ssel I nieg rity.................................................................................... 4 -2 8 4.5.10-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 72105 Using B&W NSSS Surveillance Data Only............ 4-29 4.5.11-1. Surveillance Data for Weld Wire Heat Number 72105 Using Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity..................................................... 4-30 l

4.5.11-2. Credibility Assessment for Weld Wire Heat Number 72105 Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity....................................................... 4-31

)

4.5.11-3. Weld Wire Heat Number 72105 Chemistry Factor Calculation for Assessment of B&W NSSS Reactor Vessels (Cold Leg Temperature at j

556*F) Using Westinghouse NSSS Surveillance Data Only................... 4-32 i

4.5.11-4. Weld Wire Heat Number 72105 Chemi27 Factor Calculation for Assessment of Westinghouse NSSS Reactor Vessel (Turkey Point Unit 4 Cold Leg Temperature at 546 F) Using Westinghouse S u rveilla nce Data O nly.......................................................................... 4-3 2 4.5.12-1. Surveillance Data for Weld Wire Heat Number 72105 Using All Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel Integrity...................................................................................

.. 4-33 vi IMMM I

List of Tables (Cont'd) 4.5.12-2. Credibility Assessment for Weld Wire Heat Number 72105 Using All Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel I n t e g ri t y........................................................................ 4-34 4.5.12-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 72105 Using All Surveillance Data..............

.. 4-35 4.5.13-1. Surveillance Data for Weld Wire Heat Number 72442 Using B&W NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel integ rity.................................

.4-36 4.5.13-2. Credibility Assessment for Weld Wire Heat Number 72442 Using B&W NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Iniegrity.

.4-36 4.5.13-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 72442 Using B&W NSSS Surveillance Data Only.......

.4-37 4.5.14-1. Surveillance Data for Weld Wire Heat Number 72445 Using B&W NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity.....

...4-38 4.511-2. Credibility Assessment for Weld Wire Heat Number 72445 Using B&W NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity.....

. 4-38 4.5.14-3. Weld Wire Heat Number 72445 Chemistry Factor Calculation for Assessment of B&W NSSS Reactor Vessels (Cold Leg Temperature at 556 F) Using B&W.NSSS Surveillance Data Only.

.4-39 4.5.15-1. Surveillance Data for Weld Wire Heat Number 72445 Using Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity.....

.. 4-40 4.5.15-2. Credibility Assessment for Weld Wire Heat Number 72445 Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity..

.. 4-40 4.5.15-3. Weld Wire Heat Number 72445 Chemistry Factor Calculation for Assessment of Westinghouse NSSS Reactor Vessel (Surry Unit 1 Cold Leg Temperature at 542 F) Using Westinghouse Surveillance Deta Only................

.4-41 4.5.16-1. Surveillance Data for Weld Wire Heat Number 72445 Using All Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel Integrity........

....... 4 -4 2 4.5.16-2. Credibility Assessment for Weld Wire Heat Number 72445 Using All Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel I nteg rity........................

.4-43 4.5.16-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 72445 Using All Surveillance Data.

.. 4-44 vii MNM

(

1

(

List of Tables (Cont'd) l 4.5.17-1. Surveillance Data for Weld Wire Heat Number 821T44 Using B&W j

NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor J

Ves se l I nieg rity...................................................................................

4.5.17-2. Credibility Assessment for Weld Wire Heat Number 821T44 Using B&W

]

NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor i

Vesse l I nteg rity.......................................................................................

4.5.17-3. Weld Wire Heat Number 821T44 Chemistry Factor Calculation for Assessment of B&W NSSS Reactor Vessels (Cold Leg Temperature at 556*F) Using B&W NSSS Surveillance Data Only................................ 4-47

\\

4.5.18-1. Surveillance Data for Weld Wire Heat Number T29744 Using l

Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity..................................................... 4-48 q

4.5.18-2. Credibility Assessment for Weld Wire Heat Number T29744 Using i

Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel integrity....................................................... 4-48 i

I 4.5.18-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number T29744 Using Westinghouse Surveillance Data Only........ 4-49 4.5.19-1. Surveillance Data for Rotterdam Dockyard Fabricated Weld:

i Weld Wire Heat Number 0227 (Table 2 of the RAI Regarding Reactor Ves se l I nteg rity.................................................................................. 4 - 5 0 4.5.19-2. Credibility Assessment for Rotterdam Dockyard Fabricated Weld:

i Weld Wire Heat Number 0227 (Table 3 of the RAI Regarding Reactor Ve s sel i nteg rity................................................................................ 4-5 0

)

i 4.5.19-3. Rotterdam Dockyard Fabricated Weld: Weld Wire Heat Number 0227 Chemistry Factor Calculation for Assessment of Surry Unit 2 Reactor Ves sel..............................................................................................4-51 A-1.

Copper and Nickel Contents Source Means for Weld Wire Heat N u m ber 299 L44......................................................... A-2 A-2.

Copper and Nickel Contents Source Means for Weld Wire H eat N u mbe r 4 06 L44.......................................................... A-6 A-3.

Copper and Nickel Contents Source Means for Weld Wire Heat N u mbe r 6178 2............................................................ A-8 i

A-4.

Copper and Nickel Contents Source Means for Weld Wire Heat N u mbe r 7124 9.......................................................... A-10 A-5.

Copper and Nickel Contents Source Means for Weld Wire Heat N u mbe r 7210 5.............................................................. A-13 A-6.

Copper and Nickel Contents Source Means for Weld Wire Heat N u mbe r 72442........................................................ A-2 0 vili mm.

List of Tables (Cont'd) l A-7.

Copper and Nickel Contents Source Means for l

Weld Wire Heat Number 72445.

.... A-22 A-8.

Copper and Nickel Contents Source Means for l

Weld Wire Heat Number 821T44................

. A-24 A-9.

Copper and Nickel Contents Source Means for Weld Wire Heat Number T29744.....

...............................A-25 A-10.

Copper and Nickel Contents Source Means for Weld Wire Heat Number 1P0661.................

.. A-26 A-11.

Copper and Nickel Contents Source Means for Weld Wire Heat Number 1P0815..........

. A-27 A-12.

Copper and Nickel Contents Source Means for Weld Wire Heat Number 1P0962................

... A-28 A-13.

Copper and Nickel Contents Source Means for Weld Wire Heat Number 8T1554.

.... A-2 9 A-14.

Copper and Nickel Contents Source Means for Weld Wire Heat Number 8T1762..

... A-30 A-15.

Copper and Nickel Contents Source Means for Weld Wire Heat Number 8T3914.....

..A-31 B.1.1-1.

Surveillance Data for Base Metal Heat Number C5114-1 (Table 2 of the RAI Regarding Reactor VesselIntegrity).......

....... B-3 B.1.1-2.

Credibility Assessment for Base Metal Heat Number C5114-1 (Table 3 of the RAI Regarding Reactor Vessel Integrity...........

. B. 3 B.1.1-3.

Table Chemistry Factor Non-Conservatism Assessment for Base Metal Heat Number C5114-1.........

.B-4 B.1.2-1.

Surveillance Data for Base Metal Heat Number C4344-1 (Table 2 of the RAI Regarding Reactor VesselIntegrity)....

.B-5 B.1.2-2.

Credibility Assessment for Base Metal Heat Number C4344-1 (Table 3 of the RAI Regarding Reactor Vesse! Integrity......

.B-5 B.1.2-3.

Base Metal Heat Number C4344-1 Chemistry Factor Calculation for Crystal River Unit 3 Reactor Vessel....

.B-6 B.1.3-1.

Surveillance Data for Base Metal Heat Number SP4086 (BCC 241)

(Table 2 of the RAl Regarding Reactor VesselIntegrity)..........

..B-7 B.1.3-2.

Credibility Assessment for Base Metal Heat Number SP4086 (BCC 241)

(Table 3 of the RAI Regarding Reactor Vessel Integrity.....

..B-7 B.1.3-3.

Table Chemistry Factor Non-Conservatism Assessment for Base Metal Heat Number SP4086 (BCC 241)....

.B-8 B.1.4-1.

Surveillance Data for Base Metal Heat Number C3265-1 (Table 2 of the RAI Regarding Reactor Vessel Integrity)..

..B-9 m

mem

i i

l List of Tables (Cont'd)

B.1.4-2.

Credibility Assessment for Base Metal Heat Number C3265-1 (Table 3 of the RAI Regarding Reactor Vessel integrity....................................... B-9 l

B.1.4-3.

Table Chemistry Factor Non-Conservatism Assessment for Base Metal H e at N u mbe r C 3 26 5-1........................................................................... B-10

]

B.1.5-1.

Surveillance Data for Base Metal Heat Number 3P2359 (AAW 163)

(Table 2 of the RAI Regarding Reactor Vessel Integrity).......................... B-11 B.1.5-2.

Credibility Assessment for Base Metal Heat Number 3P2359 (AAW 163) l (Table 3 of the RAI Regarding Reactor Vessel Integrity........................... B-11 B.1.5-3.

Table Chemistry Factor Non-Conservatism Assessment for Base Metal J

Heat N umber 3 P23 59 (AAW 16 3)........................................................ B-12 B.1.6-1.

Surveillance Data for Base Metal Heat Number 522314 (AWS 192)

(Table 2 of the RAI Regardirg Reactor Vessel Integrity).......................... B-13 l

t

.B.1.6-2.

Credibility Assessment for Base Metal Heat Number 522314 (AWS 192)

(Table 3 of the RAI Regarding Reactor Vessel Integrity........................... B-13

(

B.1.6-3.

Table Chemistry Factor Non-Conservatism Assessment for Base Metal l

Heat Number 5 2 2 314 (AWS 192 )................................................... B-14 B.1.7-1.

Surveillance Data for Base Metal Heat Number 522194 (ANK 191) i l

(Table 2 of the RAI Regarding Reactor Vessel Integrity)........................ B-15 B.1.7-2.

Credibility Assessment for Base Metal Heat Number 522194 (ANK 191)

(Table 3 of the RAI Regarding Reactor Vessel Integrity.................... B-15 B.1.7-3.

Base Metal Heat Number 522194 (ANK 191) Chemistry Factor Calculation for Oconee Unit 3. Reactor Vessel........................................ B-16 q

B.1.8-1.

Surveillance Data'for Base Metal Heat Number C2789-2 (Table 2 of the i

RAI Regarding Reactor Vessel Integrity)............................................. B-17 B.1.8-2.

Credibility Assessment for Base Metal Heat Number C2789-2 (Table 3 i

of the RAI Regarding Reactor Vessel Integrity..................................... B-17 B.1.8-3.

Table Chemistry Factor Non-Conservatism Assessment for Base Metal H e a t N u m be r C 2 7 8 9-2......................................................................... B-18 1

B.1.9-1.

Surveillance Data for Base Metal Heat Number A9811-1 (Table 2 of the RAI Regarding Reactor Vessel Integrity)................................................ B-19 B.1.9-2.

Credibility Assessment for Base Metal Heat Number A9811-1 (Table 3 i

of the RAI Regarding Reactor Vessel Integrity.......................................... B-19 B.1.9-3.

Base Metal Heat Number A9811-1 Chemistry Factor Calculation for Point Beach Unit 1 Reactor Vessel....................................................... B-20 B.1.10-1. Surveillance Data for Base Metal Heat Number C1423-1 (Table 2 of the RAI Regarding Reactor Vessel Integrity)................................................... B-21 B.1.10-2. Credibility Assessment for Base Metal Heat Number C1423-1 (Table 3 of the RAI Regarding Reactor Vessel integrity..................................... B-21 x

List of Tables (Cont'd)

B.1.10-3. Base Metal Heat Number C1423-1 Chemistry Factor Calculation for 1

Point Beach Unit 1 Reactor Vessel..........

. B-22 B.1.11-1. Surveillance Data for Base Metal Heat Number 123V500 (Table 2 of the RAI Regarding Reactor Vessel Integrity)....

. B-23 B.1.11-2. Credibility Assessment for Base Metal Heat Number 123V500 (Table 3 of the RAI Regarding Reactor VesselIntegrity......

...... B-2 3 B.1.11-3. Table Chemistry Factor Non-Conservatism Assessment for Base Metal Heat Number 123V500........................

.B-24 B.1.12-1. Surveillance Data for Base Metal Heat Number 122W195 (Table 2 of the RAI Regarding Reactor Vessel Integrity).....

. B-25 B.1.12-2. Credibility Assessment for Base Metal Heat Number 122W195 (Table 3 of the RAI Regarding Reactor Vessel integrity.................. B-2 5 B.1.12-3. Base Metal Heat Number 122W195 Chemistry Factor Calculation for Point Beach Unit 2 Reactor Vessel.........

. B-26 B.1.13-1. Surveillance Data for Base Metal Heat Number C4415-1 (Table 2 of the RAI Regarding Reactor Vessel Integrity)......

. B-27 B.1.13-2. Credibility Assessment for Base Metal Heat Number C4415-1 (Table 3 of the RAI Regarding Reactor Vessel Integrity.

.. B-27 B.1.13-3. Base Metal Heat Number C4415-1 Chemistry Factor Calculation for Surry Unit 1 Reactor Vessel................

... B-28 B.1.14-1. Surveillance Data for Base Metal Heat Number C4339-1 (Table 2 of the RAI Regarding Reactor VesselIntegrity)........

. B-29 B.1.14-2. Credibility Assessment for Base Metal Heat Number C4339-1 (Table 3 of the RAI Regarding Reactor VesselIntegrity..

... B-29 B.1.14-3. Base Metal Heat Number C4339-1 Chemistry Factor Calculation for Surry Unit 2 Reactor Vessel.....

..B-30 B.1.15-1. Surveillance Data for Base Metal Heat Number 123P461 (Table 2 of the RAI Regarding Reactor Vessel Integrity)...

.B-31 B.1.15-2. Credibility Assessment for Base Metal Heat Number 123P461 '(Table 3 of the RAI Regarding Reactor Vessel Integrity..........

.B-31 B.1.15-3. Base Metal Heat Number 123P461 Chemistry Factor Calculation for Turkey Point Unit 3' Reactor Vessel........

... B-32 B.1.16-1. Surveillance Data for Base Metal Heat Number 123S266 (Table 2 of the RAI Regarding Reactor Vessel Integrity).

.B-33 B.1.16-2. Credibility Assessment for Base Metal Heat Number 123S266 (Table 3 of the RAI Regarding Reactor VesselIntegrity...

... B-33 B.1.16-3. Base Metal Heat Number 123S266 Chemistry Factor Calculation for Turkey Point Unit 3 Reactor Vessel...

.B-34 m

f List of Tables (Cont'd) j B.1.17-1. Surveillance Data for Base Metal Heat Number 122S180 (Table 2 of the RAI Regarding Reactor Vessel Integrity)........................................ B-35 I

B.1.17-2. Credibility Assessment for Base Metal Heat Number 122S180 (Table 3 of the RAI Regarding Reactor Vessel Integrity............................... B-35

{

B.1.17-3. Base Metal Heat Number 122S180 Chemistry Factor Calculation for Turkey Point U nit 4 Reactor Vessel................................................... B-36 1

1 i

(

(

(

l

(

1 Xii fe tiDo^t o Ds5 U

l l

1. Introduction This report provides responses to requests for additional information (RAI) issued by the U. S. Nuclear Regulatory Commission (NRC) regarding reactor pressure vessel integrity.

Responses are provided for the fellowing B&W Owners Group (B&WOG) Reactor Vessel Working Group (RVWG) plants:

Plant Owner Arkansas Nuclear One Unit 1 Entergy Operations, Inc.

Crystal River Unit 3 Florida Power Corporation Davis-Besse Toledo Edison Company Oconee Unit 1 Duke Energy Corporation Oconee Unit 2 Duke Energy Corporation Oconee Unit 3 Duke Energy Corporation Point Beach Unit 1 Wisconsin Electric Power Company Point Beach Unit 2 Wisconsin Electric Power Company Surry Unit 1 Virginia Power Surry Unit 2 Virginia Power Three Mile Island Unit 1 GPU Nuclear, Inc.

Turkey Point Unit 3 Florida Power & Light Company Turkey Point Unit 4 Florida Power & Light Company 1-1 I'"<MNA

2. Organization of Response j

1 The requests for additional information regarding reactor pressure vessel integrity were uniformly drafted for the RVWG plants. The.m were some variations from letter-to-letter depending upon some differences in plant to-plant information requests; however, the information requests generally included the following:

Section 1: Assessment of Best-Estimate Chemistry

1. An evaluation of the chemical composition data provided by letters from Mr. Matthew J. DeVan (FTl) to Mr. Barry J. Elliot (NRC) dated June 6,1997 (INS-97-2262), June 19,1997 (INS-97-2450), and July 10,1997 (INS 2741); and an assessment of their applicability to the determination of the best-estimate chemistries for the reactor vessel beltline region welds. Based on the reevaluation, supply information necessary to complete the requested data in Table 1, addressing the predicted adjusted reference temperature (ART) and/or the pressurized thermal shock reference temperature (RTpTs).

In addition, provide a discussion for the copper and nickel contents used in the determination of the best-estimate values including what heat-specific data were included and excluded in the analysis, and the analysis method used to determine the copper and nickel content best-estimate values.

Section 2: Evaluation and Use of Surveillance Data

2. Provide (1) information requested to complete Table 2 and Table 3 in order to calculate the chemistry factor from surveillance data for each weld wire heat where surveillance data is available and a revision in the reactor vessel i

integrity analysis (i.e., current licensing basis) is needed, or (2) a certification that previously submitted evaluations remain valid.

1 l

2-1 MNM f

1

I Section 3: PTS /PT Limit Evaluation l

3. If the limiting material changes or if the adjusted reference temperature for the limiting material increases as a result of the above evaluation, provide revised RTers alue for the limiting reacter vessel beltline material in v

accordance with 10 CFR 50.61. In addition, if the adjusted RTuor value

)

increased, provide a schedule for revising the pressure-temperature (P-T) and (LTOP) limits.

Section 3 of this document provides the applicable information requested in item 1 above for the RVWG reactor vessels. In this section an assessment of best-estimate copper and nickel contents for high-copper Linde 80 welds is described along with the data necessary to complete Table 1 for each of the RVWG reactor vessel beltline materials.

The information requeste f in item 2 above for the RVWG reactor vessel beltline materials are presented in Section 4. Table 2 and Table 3 are completed for each weld j

wire heat for the high-copper Linde 80 welds located in the RVWG reactor vessel beltline regions. In addition, an assessment of the available high-copper Linde 80 weld i

I metal surveillance data in accordance with 10 CFR 50.61 and Regulatory Guide 1.99, Revision 2 is presented.

z i

The utility owner that holds the nuclear power plant-operating license will provide the response to item 3.

i l

2-2 IMTNRM i

3. Request for AdditionalInformation Regarding Reactor Vessel Integrity 1

Assessment of Best-Estimate Chemistry I

The standard welding practice used by the Babcock & Wilcox Company (B&W) to frbricate reactor pressure vessels included the automatic submerged-arc (ASA) process with copper-plated manganese-molybdenum-nickel (Mn-Mo-Ni) filler wire and Linde 80 flux. The composition range (weight percent) of the filler wire was as follows:

Carbon (C) 0.10 - 0.14 Silicon (Si) 0.10 max Manganese (Mn) 1.75 - 2.25 Nickel (Ni) 0.50 - 0.70 Phosphorous (P) 0.020 max Molybdenum (Mo) 0.35 - 0.55 Sulfur (S) 0.020 max The copper plating was used to promote electrical conductance during welding and corrosion resistance during storage. The copper concentration in the as-deposited weld metal results from the combination of the copper plating and the base filler wire alloy copper concentration. However, the principal source is the copper plating.

Thirty specific copper-plated wire /Linde 80 flux combinations were used in the l

fabrication of the RVWG reactor vessel beltline regions. These combinations were produced using 15 different heats of filler wire and 19 separate lots of Linde 80 flux.

Table 3-1 presents the listing of the RVWG reactor vessel beltline region weld metals l

fabricated using copper-plated wire and Linde 80 flux sorted by wire heat number.

l t

3A Weld Wire Heat Copper and Nickel Chemical Composition Analyses for

'High-Copper Linde 80 Weld Metals Over the years, extensive chemical analyses have been performed on available as-deposited weld metals fabricated with copper-plated filler wires and Linde 80 flux.

3-1 INNM

(

These data have been reported in BAW-1500, " Chemistry of 177-FA B&W Own'ers' Group Reactor VesselBeltline Welds,"* BAW-1799. "B&W 177-FA Reactor Vessel Beltline Weld Chemistry Study,"* and BAW-2121P, " Chemical Composition of B&W Fabn'cated Reactor VesselBeltline Welds."* The sources for these weld metals include weldments in the form of nozzle belt forging dropouts, Midland reactor vessel beltline region cutout, surveillance program test blocks and test specimens, weld qualifications, and reanalysis of original weld qualification chemistry samples. An NRC Inspection of Framatome Technologies, Inc. (Inspection Report No.: 99901300/97-01 dated January 28,1998) identified additional data relevant to the determination of the best-estimate copper and nickel chemical contents for the high-copper Linde 80 weld metals during the review process. However, in the Inspection Report, it was determined that the best-estimate copper and nickel chemical contents previously used were conservative in most cases because either (a) the licensee's copper and nickel data were conservative relative to the raw data or (b) when included in the calculations, the formerly unconsidered data had a negligible effect. The listing of the raw copper and t

nickel chemical composition data for the high-copper Linde 80 weld metals is presented in Appendix A.

3.2 High-Copper Linde 80 Weld Wire Heat Best-Estimate Copper and Nickel Chemical Compositions The best-estimate copper and nickel chemical compositions for the high-copper Linde 80 weld metals were determined by first establishing the mean for each particular material source (i.e., nozzle belt dropout, Midland reactor vessel beltline region cutout, surveillance block / specimen, weld qualification, and weld qualification retest). These material source means were then used to calculate the mean for the weld wire heat (e.g., mean-of-the-means).

For certain weld wire heats, individual measured copper and/or nickel chemical compositions are considered suspect and are not used in the determination of the best-estimate chemical compositions for that weld wire heat. These data are identified with shaded cells in the weld wire heat copper and nickel chemical composition tables presented in Appendix A. The basis for excluding the individual measured copper and/or nickel chemical compositions in the best-estimate calculation are based on one or more of the following criteria:

3-2 WNM

The suspect composition data point is lower / higher than the expected range based on other measured data points frcm the same particular weld wire heat; a chemical analysis retest on the sample yields a chemical composition that is more representative of the expected range.

. The suspect composition data point is lower than the expected range based on other measured data points from the same particular weld wire heat; chemical composition data point not used for conservatism.

The suspect composition data point falls outside the expected range based on other measured data points from the same particular weld wire heat; the chemical analysis may have been performed in the base metal region of the sampM.

Further information for excluding the individual measured copper and/or nickel chemical contents are provided in Appendix A.

Table 3-2 summarizes the best-estimate copper and nickel chemical compositions for the high-copper Linde 80 weld metals. In addition, the individual copper and nickel chemical compositions for each of the weld wire heat sources are also presented.

l l

3-3 IMTNRM

i Table 3-1. B&WOG Reactor Vessel Working Group Reactor Vessel Beltline Welds Wire.

Weld Metal '

Flux

~ Reactor Vessel Heat Designation

' L'ot 299L44 SA-1526 8596 Surry-1, TMI-1 i

WF-25 8650 Oconee-1, Oconee-2, TMI-1 406L44 WF-112 8688 ANO-1 WF-154 8720 Oconee-2 61782 SA-847 8350 Point Beach-1 SA-1135 8457 Oconee-1 71249 SA-1101 8445 Point Beach-1, Turkey Point-3, Turkey Point-4 SA-1229 8492 Oconea-1 I

SA-1769 8738 Crystal River-3 72105 WF-70 8669 Crystal River-3, Oconee-3, TMI-1, Turkey Point-4 72442 SA-1484 8579 Point Beach-2, Turkey Point-3 WF-67 8669 Oconee-3, Turkey Point -4 72445 SA-1585 8597 Oconee-1, Surry-1, Surry-2

(

SA-1650 8632 Surry-1 821T44 WF-182-1 8754 ANO-1, Davis-Besse WF-200 8773 Oconee-3 T29744 WF-233 8790 Davis-Besse 1P0661 SA-775 8304 Point Beach-1 1P0815 SA-812 8350 Point Beach-1 1P0962 SA-1073 8445 Oconee-1

(

ST1554 SA-1494 8579 Surry-1, TMI-1 WF-169-1 8754 Crystal River-3 8T1762 SA-1426 8553 Oconee-1, Point Beach-1 l

SA-1430 8553 Oconee-1 SA-1493 8578 Oconee-1 SA-1580 8596 Crystal River-3 l

W F-4 8597 Surry-2

(

WF-8 8632 Crystal River-3, Surry-2, TMI-1 WF-18 8650 ANO-1, Crystal River 8T3914 WF-232 8790 Davis-Besse l

t i

i 3-4 INNM i

I Table 3-2. Best-Estimate Copper and Nickel Chemical Compositions For B&WOG Reactor Vessel Working Group Reactor Vessel Beltline Welds Weld Wire WeldID Flux Source of.

No. of Observ.

Source Mean Heat Number Number Lot No.

Weldment-Cu Ni Cu Ni 299L44 SA-1526 8596 Weld Qualification 1

1 0.4G 0.60 l

CR-3 Nozzle Dropout 13 13 0.37 0.70 Surry-1 RVSP Weld 11 11 0.23 0.64 WF-19 8650 Weld Qualification 1

1 0.29 0.72 WF-25 8650 Weld Qualification 4

3 0.32 0.71 TMI-1 RVSP Weld 10 9

0.33 0.67 ONS-3 Nozzle Dropout 2

2 0.36 0.70

(

TMI-2 Nozzle Dropout 122 121 0.33 0.67 Weld Wire Heat Best-Estimate 0.34 0.68 I

(Mean of the Sources) 406L44 WF-112 8688 Weld Qualification 3

3 0.30 0.58 ONS-1 RVSP Weld 22 23 0.32 0.59 i

WF-154 8720 Weld Qualification 3

3 0.26 0.59 WF-183 8754 Weld Qualification 1

1 0.21 0.59 WF-193 8773 Weld Qualification 2

3 0.28 0.60 ANO-1 RVSP Weld 9

9 0.27 0.58 Point Beach-2 RVSP Weld 1

1 0.25 0.59 Weld Wire Heat Best-Estimate 0.27 0 59 (Mean of the Sources) 61782 SA-847 8350 Weld Qualification 1

0 0.20 SA-848 8373 Weld Qualification 1

1 0.22 0.49 SA-948 8408 Weld Qualification 1

1 0.18 0.55 SA-1014 8436 Weld Qualification 1

1 0.23 0.46 SA-1036 8436 Weld Quahfication 1

1 0.31 0.64 ONS-1 Nozzle Dropout 12 12 0.20 0.49 REG RVSP Weld 10 10 0.24 0.52 SA-1118 8443 Weld Qualification 1

1 0.22 0.52 l

SA-1135 8457 Weld Qualification 1

1 0.17 0.50 ONS-2 Nozzle Dropout 29 29 0.27 0.59 SA-1346 8504 Weld Qualification 1

1 0.20 0.51

{

l SA-1779 8738 Weld Qualification 1

1 0.28 0.45 SA-1788 8754 Weld Qualification 1

1 0.29 0.47 l

Weld Wire Heat Best Estimate 0.23 0.52 (Mean of the Sources)

\\

l 3-5 PMaD 4

i Table 3-2. (Cont'd) Best-Estimate Copper and Nickel Chemical Compositions For B&WOG Reactor Vessel Working Group Reactor Vessel Beltline Welds i

Weld Wire W eld ID c Flux

- Source of1 No. of Observ.

Source Mean Heat Number Number Lot No.

.Weldment Cu Ni Cu '.

Ni.

~

71249 SA-1094 8457 Weld Qualification 1

1 0.23 0.55 TP-4 RVSP Weld 4

1 0.29 0.60 SA-1101 8445 Weld Qualification 1

1 0.21 0.57 ONS-1 Nozzle Dropout 37 36 0.19 0.59

{

TP-3 RVSP Weld 6

1 0.33 0.57 j

SA-1229 8492 Weld Qualification 1

1 0.20 0.57 SA-1344 8504 Weld Qualification 1

1 0.21 0.62 q

SA-1706 8669 Weld Qualification 1

1 0.21 0.55 3

SA-1769 8738 Weld Qualification 1

1 0.19 0.66 W Sury. Weld 41 36 0.28 0.62 Weld Wire Heat Best-Estimate 0.23 0.59

)

(Mean of the Sources) 72105 WF-70 8669 Weld Qualification 3

1 0.31 0.58 MD-1 Nozzle Dropout 78 78 0.39 0.58 MD-1 Beltline Weld 54 54 0.28 0.57 WF-113 8688 Weld Qualification 3

3 0.29 0.60 i

WF-209 8773 Weld Qualification 2

1 0.37 0.59 I

WF-209-1 8773 Weld Qualification 3

2 0.37 0.59 ONS-2 RVSP Weld 7

7 0.35 0.58 CR-3 RVSP Weld 4

4 0.36 0.61 j

ONS-3 RVSP Weld 53 53 0.29 0.56 MD-1 RVSP Weld 12 12 0.36 0.59 ZN-1 RVSP Weld 19 19 0.25 0.54 ZN-2 RVSP Weld 22 22 0.25 0.55 I

Weld Wire Heat Best-Estimate 0.32 0.58 (Mean of the Sources) i 72442 SA-1450 8467 Weld Qualification 1

1 0.25 0.60 SA-1484 8579 Weld Qualification 1

1 0.25 0.64 CR-3 Nozzle Dropout 18 18 0.26 0.59 WF-67 8669 Weld Qualification 4

3 0.32 0.58 MD-1 Nozzle Dropout 27 27 0.22 0.60 Weld Wire Heat Best-Estimate 0.26 0.60 (Mean of the Sources) l 1

3-6 fMWM i

Table 3-2. (Cont'd) Best-Estimate Copper and Nickel Chemical Compositions l

For B&WOG Reactor Vessel Working Group Reactor Vessel Beltline Welds Weld Wire Weld ID Flux Source of '

No. of Observ.

Source Mean Heat Number Number Lot No.

Weldment-Cu Ni,

Cu Ni 72445 SA-1263 8504 Weld Qualification 1

1 0.24 0.47 PB-1 RVSP Weld 2

2 0.23 0.62 SA-1471 8578 Weld Qualification 1

1 0.18 0.54 l

SA-1582 8596 Weld Qualification 1

1 0.25 0.49 SA-1585 8597 Weld Qualification 1

1 0.25 0.51 ANO-1 Nozzle Dropout 32 32 0.22 0.59 SA-1650 8632 Weld Qualification 1

1 0.20 0.47 l

WF-9 8632 Weld Qualification 1

1 0.17 0 60 WF-101 8688 Weld Qualification 0

1 0.60 Weld Wire Heat Best-Estimate 0.22 0.54 (Mean of the Sources)

I 821T44 WF-182 8754 Weld Qualification 3

3 0.26 0.61 WF-182-1 8754 Weld Qualification 5

4 0.22 0.63 TMI-2 RVSP Weld 4

4 0.28 0.63 l

DB-1 RVSP Weld 6

6 0.22 0.63 WF-195 8773 Weld Qualification 1

1 0.18 0.63 WF-200 8773 Weld Qualification 1

1 0.26 0.64 Weld Wire Heat Best-Estimate 0.24 0.63 l

(Mean of the Sources)

T29744 WF-233 8790 Weld Qualification 4

3 0.25 0.63 KORI-1 RVSP Weld 13 10 0.21 0.67

\\NF-282 8806 Weld Qualification 1

1 0.16 0.66 Weld Wire Heat Best-Estimate 0.21 0.65 (Mean of the Sources)

'iP0661 SA-775 8304 Weld Qualification 1

1 0.19 0.63 SA-1060 8446 Weld Qualification 1

1 0.14 0.65 Weld Wire Heat Best-Estimate 0.17 0.64 (Mean of the Sources) 4 3-7

~fMMMM

)

l Table 3-2. (Cont'd) Best-Estimate Copper and Nickel Chemical Compositions For B&WOG Reactor Vessel Working Group Reactor Vessel Beltline Welds Weld Wire WeldID Fluy '

Source of No. of Observ.

Source Mean Heat Number Number Lot No.

Weidment Cu Ni Cu Ni 1P0815 SA-806 8304 Weld Qualification 1

1 0.25 0.48 SA-812 8350 Weld Qualification 1

1 0.12 0.52 SA-1366 8544 Weld Qualification 1l 1-0.13 0.57 Weld Wire,leat Best-Estimate 0.17 0.52 (Mean of the Sources) 1P0962 l SA-1073 l8445 Weld Qualification l

1l 1

0.21 0.64 Weld Wire Heat Best-Estimate 0.21 0.64 (Mean of the Sources)

/

8T1554 SA-1174 8479 Weld Qualification 1

1 0.19 0.60 SA-1413 8504 Weld Qualification 0

0 SA-1494 8579 Weld Qualification 1

1 0.14 0.45 WF-69 8669 Weld Qualification 1

1 0.15 0.61 WF-169-1 8754 Weld Qualification 3

3 0.16 0.61 Wold Wire Heat Best-Estimate 0.16 0.57 l

(Mean of the Sources) 8T1762 SA-1426 8553 Weld Qualification 1

1 0.18 0.61 q

SA-1430 8553 Weld Qualification 1

1 0.16 0.60 SA-1493 8578 Weld Qualification 1

0 0.22 SA-1580 8596 Weld Qualification 1

1 0.22 0.60 W F-4 8597 Weld Qualification 1

1 0.17 0.53 I

W F-8 8632 Weld Qualification 1

1 0.20 0.61 W F-1B 8650 Weld Qualification 0

1 0.45 Weld Wire Heat Best-Estimate 0.19 0.57 l

(Mean of the Sources) i 8T3914 WF-232 8790 Weld Qualification 2

3 0.18 0.66 WF-252 8806 Weld Qualification 0

1 0.59 Weld Wire Heat Best-Estimate 0.18 0.62 (Mean of the Sources) 3-8 f!M%^75 i

M h"

ro sl T to4 0 5 5 1

8 5

8 5

R PT E6 2 5 5 2 4

6 4

A 8

4 2 1

3 9 9

3 9

4 Rt a 1

1 1

1 1

1 2

1 D

I n

i8 0 0 0 0 3 5

5 5

g r 4 4 4 4 4 8 8

8 8

a6 3 3 3 3 4 6

6 6

M 0

0 0 0 0 0 0

0 0

ac7 7 7 7 7 4 8

8 8

1 1

1 1

1 1

2 2

2 s '

la i0 0 0 0 0 7 7

7 7

e1 0 0 0 0 9 9

9 9

n ir 3

1 1

1 1

e o

t i

a s

)

M l

or3 0

1 1

m s

r ia 0 0 0 5 5

5 5

u e+

l t

u 1

c e

inR T T

x s

s I

R i

1 o s

(

c D

it li e

l n

nWV g

U o

t f

e oin t

it a

a e&

r n

e le le le le aD le le le e

nk

a, i u

mFl i

b b b b b b

b b

s H

s rCa a a a a y a

a a

Oc et T

T T

o s

e T

T T T T r

p e

o u

c e

Me S

r ra r

D b

m i

le P

W a

o 1

cB r

)

u o

dl yF C

d r

eat C e Nr nis( 0 8 6 8 6 0 4

6 4

l l

t e

a 0

ri

. 0 2

2 2

c c

l gemo2 r

W 0

2 5 2 5 e

a b

s r 1

it 2 0 2 0 6 5

8 5

saet i

a a u e

sMh c 1

1 1

1 1

1 1

1 A Ca m

h 3

T st R F

nc e

c aa n

h a

D c*; 0 C

E kf o

e r u 1

1 S 8 0 7

5 6

r I

n0 9 7 7 S 5 9 0

3 0

l An d Le1 7 0 8 B 8 7 6

8 6

e o

a e

Ou f

xO 0 0 0 0 0 0

0 0

k t

El yM s

c d

F t

t e

e i

ilie u

e l N

l t

s

. ae) cs q

5 2 5 2 3 7

9 7

d U

smk%O t

as e

e ct T

5 5 5 5 6 5

5 5

n Fe R B s N (w 0 ui 0 0 0 0 0 0

0 0

a a

t V

E n

r a

o e

D e

p i

r a e) d t

t p

te i p% 3 7 5 7 5 4 9

7 9

a smp 0

1 1

1 1

2 1

2 1

o n

t m

BsC(

ow0 0 0 0 0 0 0

0 0

a t

C r

E d

o e

o f

t In d

a h

t l

le W

im e

le h

M S

t r

c s

g e

i d

p C

l E

s r

n n

p le l

W s

y d

i o

ig o

W l

e t

s ignr U

e eo o

RiF te%

t.

S i

B n

t h

l t

e a

e ce te t

te te l

)

i t

t al e

g g

in l

oB la la la la B0 n n

A 0 o o

t lt L lz l

e1 t)

L a

f e

P P P P l

v

)

B z

l n

ll lz(

e le%L n%

e 3 o 4 e e e e zd e

o h h h h ol h0 o h 0 H

N S S S S Ne S 0 t

S 0 n

n n

rWr 1

)

r 1

r r

r r

r e%

e r

io o

o r

e e e e e e. eh eh w

p p w w wc pt p0 wt i

t i

it o

o o

p p o o o :-

p p0 c

s c

oB B

W e

s e

L U U L L LC U( U( L(

1 S

u S d

v c

e l

ee is e

a

)

t ir e

V eWt

)

1 e

1

)

M e01

- 2 1

1 2

)

41 28)

WS D S a

3 2

- - 48 28 2

P d

6 0 4 0 4 41 61 41 61 Rel H 3N 1

5 5 5 2

1 2

1 T -

7 - L -

7 -

se 5

1 1

F F

F F

8Y 1

aW 2A 2WTW0WTW 1

1 6

1 B

5( C C C C 8( 8( 4( 8(

l

RF 9 6

6, 1

2 2 5

0 4

AE2 4 0 4 0 0 3

1 3

T2 8 2

1 2 2 7 7

1 7

1 1

1 1

1 1

2 1

%3

' R n

!g8 0 0 0 0 3 5

5 5

r 4 4 4 4 4 5 8

8 8

a6 3 3 3 3 4 6

6 6

M a0 0 0 0 0 0 0

0 0

c7 7 7 7 7 4 8

8 8

1 1

1 1

1 1

2 2

2 s

0 0 0 0 0 7 7

7 7

m1 0 0 0 0 9 9

9 9

la 3

1 1

1 1

n ire o

i t

)

a r n s

a M

la or s

it n o3 0

0 0 0 5

5 6

5 i

u T

u+

1 1

1 n

c l

I R T e

R s

x

(

s i

1 o s

D c

it i e

. g a

n l

fo in ta nWV t

D le e

le o

d n

e lb lb lb lb b

lb b

e e e e a

U e

o i

Flb i

mCa a

a a a y

a a

a t

e r

h e&

i r

T T

T e

T T

T T T ru s

H t

u e

nk t

s Me S

o e

Oc s

D p

r o

)

r e

m i

c W

d a

r

)

b P Jl yF o

't

cB r

e rC a

- a i

is( 0 8 6 8 6 0

4 6

4 C

d t

n r

r, e r0 2 5 2 5 0

2 2

2 mo2 2 0 2 0 6

5 8

5 l

l o

u o :LM e

t t

a et 1

1 1

1 1

1 1

1 a

c Nr c

W hc Ca c

(

e a

F i

s r 1

m h

a u e

e st R e

c Y -

h a

l nc e

b P ")

aa n

c F 6

5 5 7 7 6

6 3

5 a

kf o

Tn E07 2 2 1

1 7

6 0

6 C

E e

1 4 5 5 5 5 4

3 5

3 r

T r u

%u2 l

r0 0 0 0 0 0 0

0 0

o An d l 3 e

a e

Fg(

k f

t yM s

ic d

e t

e e l N

s i l l

e u

tae) 5 2 5 2 3 7

9 7

cs q smk%0 5 5 5 5 6 5

5 5

d U

t i

eict 7 i

0 0 0 0 0 0

0 0

n a

as e

Bts N (w 0 F e R E

a ta V

r n

e D

o e

i t

r -

p d

- a e) 7 5 7 5 4 9

7 9

p ta s m p% 30 1

1 1

1 2

1 2

1 o

t n

ei ptow0 0 0 0 0 0 0

0 0

a m

BtsC(

C r

E d

o e

o f

t in a

h t

d m

e n

lo it e

W M

hS s

n g

e i

E s

r c

r i

o i

p d

C d

s n

p l

le t

e le l

g s

y ignr U

W l

W eo o t

h e

a o

RiF e e e

l

)

t S

t t

i B

n t

e alt t

te t

e% g ig ce r

n e

n t

A oB ta la la B0 o in t

la l

P P e 0 o

e P P L) w L )

a f

l L le lz n

l l

l k 1 l

o l

e 3 o 4 z(

le%

le%L B

z e le le le zd o

h h h h ol h0 o-h 0 H

t S 0 n

n n

~

N S S S S Ne S 0 rWr e%

eh r

io o

o 1

)

1 e

r r

r r r

r r

p0 wt i

t i

it e

e e e e e eh w

p p w w w m pt o

c s

c o p0 oB W

e s

e p p o o o p B c

1 L

U U L L LC U( U( L(

S u S d

c e

e l

l l

e

)

e s

a e

e P M a

3 2 2 1

1 2

)

41 28)

WS iD S

t ir VeWt

)

1 1

)2

- - - - 48 28 de01 0 4 0 4 41 61 41 61 Rel H6 so 3N 2 1

2 1

T -

7 - L 7 -

1 1

1 1

F F

F F

4 aW 8Y 1

1 1

2A 2WTW( WTW 5 5 5 5 B

S( C C C C 8( 8( 4( B(

AE 6 2 2 2 2 9 6

3 6

T2 7 9 8 9 9 2 3

6 3

%3 1

1 1

1 3

n ig9 0 0 0 0 3 5

5 5

r 2 4 4 4 4 8 8

8 8

a6 3 3 3 3 4 6

8 6

M

,l

- 0 0 0 0 0 0 0

0 - 0 a

'e7 7 7 7 7 4 8

8 8

1 1

1 1

1 1

2 2

2 r

s r 0 0 0 0 0 7 7

7.

7 la e

1 0 0 0 0 9 9

9 9

i 3

1 1

1 1

r n

e o

t

)

i a

la e 'e n

s r n M

s i

3 0 0 0 0 5 5

6 5

l tt u

i T

+

1 1

1 hRT x

' R c

es s

(

i o i

s D

it lc e

,g i

f n

a n

nWV oi~

t aD le e

le o

t din e

le e

le le U

e a

hmF lb b

lb b b b

lb b

t e

o i

e&

r rC a

a a a a v a

a a

i u

e T

T T T T r

T T

T t

nk ot u

s H

s se S

o Oc s

I D o

p e

r

)

r e

c m

i d

a r

.)

W b P dl.yF

't lcB r

nis( 0 8 6 8 6 0 4

6 4

C d

e o

r a

eat C n

ri o

u o

gemor 0 2 5 2 5 0 2

2 2

l it 2

2 0 2 0 6 5

8 5

l e

c N :r t

saet c

sMhc a

1 1

1 1

1 1

1 1

e A Ca c

W

(

1 s

a F

i r

a u e

e st R m

h b

nc Y

e c

l eP) h a

aa n

c F" 3

1 1

8 8 3 3

3 3

kf o

TnE0 7 9 9 8 8 7 3

8 3

C E

c T

r u

%u2 e

1 1 1

1 1

1 1

1 1

1 r

e o

An d l 3 l

x0 0 0 0 9 0 0

0 0

a e

F g {-

k f

t yM s

c d

i t

e e

ie u

e~l N

s l

l i

5 2 5 2 3 7

9 7

d U

t

- ae) cs q smk%0 t

as e

eict 7,

5 5 5 5 6 5

5 5

n a

Fe R Bts N (w 0 i

0 0 0 0 0 0

0 0

a t

V E -.

r a

n e

D o

i e -

p d

r t

ta e) p 7 5 7 5 4 9

7 9

n a

s m p% 3 t

eipt 0 1

1 1

1 2

1 2

1 o

m Bt ow0 0 0 0 0 0 0

0 0

C a

r sC(

d E

o e

o f

t n

a ht e

ld I

l m

e l

o it W

M h

S s

E s

r e

n g

e i

d r

i n

p l

C le ignr U

d s

o ig p

t e

le l

s y

eo o W

l W

e a

o RiF h

t S - t B

n t

t t )

e alt lt c e te te t

t e% g g

e e l

r A

n e

P P ta l

B0 n e

n t

ioB la l

P P a

a 0 o o

w a

f l L e1 L )

o L

e 3 o 4 l

)

e lz l

l l

t lz(

tte%L le%

H 9

z le le le fe zd o

h h h h ol h 0 o h 0 n

n n

N S S S S Ne S 0 t

S 0 Wr e%

e o o

ito 1

)

1 r

r r

r r

r r

r eh eh r

it is c

e e e e e e.

pt p0 wt i

w p p w w we o p0 o

c W

e s e r

o p p o o oi p

oB B

1 L

U U L L LC U( U( L(

S u S d

c e

e lf 1

l a e e

s e

e

)

r i

WS D S VeWt 1) 1 t i

)

M a

3 2 2 1

1 2

)

2

)

6

- - - - 48 28 41 28 de01 0 4 0 4 41 61 41 61 PRel H 3N 2 1

2 1

so T L F F 6 F F

8Y 1

1 1

1 1

1 1

aW 2A CC C C 8( 8( 4( 8(

2WTW0WTW 5 5 5 5 B

5(

f

3.3 Assessment of Linde 80 Weld Wire Heat Best-Estimate Copperand Nickel Chemical Compositions Based on the evaluation of the raw data for the high-copper Linde 80 weld metals and l

the establishment of their best-estimate copper and nickel chemical contents, these data have been used to complete " Table 1" of the request for additionalinformation for the RVWG reactor vessel beltline materials. The following tables provide the RVWG plant-specific information requested in " Table 1" of the request for additional information regarding reactor pressure vessel integrity.

3-9 I"MNM

T TO0 A

7 7

5 8

R P T E2 4 8 7 2 3

/

5 5

2 0

6 5 9 0 6 2 N

1 1

3 1

A Rt ID a1 1

1 1

1 2

2 2

2 2

n 5'

5 0

5 i7 0 0 0 0 0 A

8 6

8 g

r 0 7 4 4 4 6

/

8 1

3 3 3 5 N

a7 6

6 5

6 M

0 5 0 0 0 0 0

0 0

0 0

ac7 8 7 7 7 8 8

8 8

8 8

1 1

1 2

2 2

2 2

2 1

s la i

ci 0 0 0 0 0 0 7

7 7

0 7.

n r

1 0 0 0 0 0 9

9 9

0 9

e 3

1 1

1 1

o t

i a

s M

l t r u

)

a s

3 em s

3 0 0 0 5 0 5

5 5

6 5

l i

c t

e iT InRTe +

2 2 1

4 1

2 s

x

+ +

- + +

s o

R s

i lc D

(

i e

WV n

gn a

io t

f 3

e oi a

t r

a din le D le e le e

t e

F b

. b lb b 12 le le le

!e le i

H it u

omC b

b b

b b

s nk h

a y a a a a

a a

a a

s r

T.

T T

T o

Uc s

et u

t e

T r

T T T T T

e Me S

p e

o r

r c

D m

i e

r b P W

v ia o

1 RB r

dl yF C

le

)

d o

r eat C l

e la :r t

nis( 0 8 8 6 6 6 9

4 4

3 4.

a ri c

gemo W

t r 4 5

1 2 2 7 3

2 2

9 2

l t

e a

c b

s i

9 1

4 8 8 6 4

5 5

9 5

saet r

i u

e sMh c 1

1 1

1 1

1 1

1 E

y A Ca m

h T

r R

F t

Cc e

c a

n h

a f

o

- e C

E

yu Dc9 6

6 6

6 0

r t

6 6 6 6 I

n0 0 6

l i n d 0

A 9

9 9

Le1 8 0 0 0 0 8 N

9 9

0 8

e o

/

li a e

Ou 1

1 1

1 1

f x 0 0

0 0

0 k

c t

elf (

aM s

Fl e

ic de N

e u

. e l d

Us s

q tae) s e

smk%2 5 5 5 5 5 5

5 5

5 5

n t

4 4 8 8 9 7

7 7

8 7

eict 7 a

e R Bts N (w 0 i

0 0 0 0 0 0

0 0

0 0

a t

V E

r a

n e

D o

p it e r d

a e) p t

a n

s m p% 3 2 2 1

1 2

1 1

1 3

1 a

0 0 2 2 3 6

9 9

2 9

t o

meipt 1

Bt ow0 0 0 0 0 0 0

0 0

0 0

C r

sC(

d o

E e

o f

ta h

n l

l m

e t

I le le d

M h

h le i

S S

W ts r

r g

e e

d d

E s

c n

n p

p le le i

d r

i p

p

.o ig igno

)

W W

C le t

U U

s r

n cB t

t te t

e0 lt 0 g it l

W s

y eof o) o%i.

le e

a t

l t %t g

h t

Ri t t e e e

lt e6 n n

S g

B n

e ale e

n io la la la la B 4 B D L L

e o

t o

o r

A eD l

e P P P P lz(

lt L lz l

le le le zd zd eO l

e z(

l l

w L

a f

l )

l l

l t

l e. z le e

l o

le%

e 3 o 4 B

o h h h h ol ol h h

L h0 H

~

N S S S S Ne Ne S S

o S 0 n

n n

rWrWr%

)

)

t )

1 r% e% eh r

r r

r r

e e

io o

o r

r e. e. e e

e e e e w

p p w w we we p0 p0 p0 wt i

t i

it r

p0 p0 p0 o

o p p o o oi oi r

r c

s c

oB W

e s

e 1

1 L

U U L L LC LC U( U( U1 L(

(

S u S d

l c

l e.

)

l e

e a

s r

)

1

)

e t i 9

9

. )

)

e i

e VeWt 0) 0 WS D S 1

2 1

2 6

8 M

a94 46

2) 28 0 2 P

d e1 9 4 4 7 7 9 51 68 61 57 6 7

5 Rel HVJ 4 4 4 4 4 -

1 1

5 7 -

0 -

7 se F

F F

F 3Z 3 3 3 3 2A A

1 1

1 1

1 aW 2 A C C C C 7(1 S TWTWTW2WT S 4 4 4 4 B

8( 8( 8( 7( 8(

1 (

RF 2 7

1 4 4 7 A

3 3

AE 0 4 9 9 4 6

/

3 3

3 8

T5 3 1

4 7 3 6 N

6 6

6 5

1 1

1 1

1 1

1 1

1

%1 nig7 0 0 0 0 0 A

5 5

0 5

r 0 7 4 4 4 6

/

8 8

6 8

1 3 3 3 5 N

6 6

5 6

a7 M

'a0 5 0 0 0 0 0

0 0

0 0

e7 8 7 7 7 8 8

8 8

8 8

1 1

1 1

2 2

2 2

2 2

s l

i 0 0 0 0 0 0 7

7 7

0 7

e1 0 0 0 0 0 9

9 9

0 9

a i

3 1

1 1

1 n

re o

i t

)n s

a r n M

l e r s

a o3 0

0 0 5 0 5

5 5

6 5

i T, u

itfnR Te +

2 2

1 4

1 2

+

+ - + +

c l

R e

x s

is

(

o s

D c

l e

g i

f a

n oin t

WV t

a e

Fl D

le le e

l e

le le le e

o d in e

a r

y.

b b lb b

lb b

b b

lb i

e 3

e om b

a a a a a

a a

a a

t r

h C a ru T

T T

T T

is H

e T

T T T T it t

u et nk s

Me S

o Uc s

p D

er o

e m

iW

)

r c

d e

r

. )F o

b P dl_y

't v

r ia eat C 0

8 8 6 6 6.

9 4

4 3

4 C

d n

RB r

nis

(

ri r 4 5

1 2 2 7 3

2 2

9 2

o gem o9 1

4 8 8 6 4

5 5

9 5

e lar c

l it l

e t

sae t 1

1 1

1 1

1 1

1 c

c a

W sMh c

(

a A

t e

a

. C F s

i 1

ru e

m h

y e

r t

R e

c Cc Y

l h

a eP b

)

a n

cF" 8

1 1

1 1

8 3

3 1

3 f

o TnE 02 0

0 0 0 2 A

8 8

0 5

C E

c t

x0 0

0 0 0 0.

N 2

2 3

2 r

/

T yu

%u5 e

1 2 3

3 3 3 2 l

0 0

0 0

i n d l 1 e

o F

(

a e

k f

l icM t

a s

i d

c e

Fl e

e l )

N s

t e

u

- ae 4

4 8 8 9 7

7 7

8 7

s q smk%2 5

5 5 5 5 5

5 5

5 5

d U

t eict 7 i

0 0 0 0 0 0

0 0

0 0

n a

s e

Bts N (w 0 e R E

a ta V

r n

e D

o e

r p

d t

it a e) p 0 0 2 2 3 6

9 9

2 9

p s m p% 3 2 2 1

1 2

1 1

1 3

1 o

t n

a 1

t ei m

Bt ow0 0 0 0 0 0 0

0 0

0 0

a sC(

C d

E ro e

o f

t n

l a

h t

l m

e I

e le le i

M h

l d

S h

t r

S W

s e

p e

E s

r n

g p

p l

le C

le e

i n

d d

i d

s r

io ig U

p t

e W

W le e

ly gnr o

U s

l W

eo o t )

)

o%

a RiF lt %

t t

t h

t B

n t

e e e e0 lt 0 alt e c e te ta la la B D o o

e o

B4 e6 g g

S g

A n

t t

n n

n t

oB la l

P P lz(

r i L eD L) a f

lt e

P P I

eO L L

w l

lz l

l l

l zd l

e 3 o 4 e

lz(

l l

o le%

e ol zd le le L

B z

le l

le le ol h h

h 0 H

o h h h h rWNerWr% e% e%) S 0 n

n n

Ne o

N S S S S S) S) t e. e eh r

io o

o e

1 r

r r

r r

r r

r e

e e e e e.

w p p w w we we p0 p0 p0 wt i

t i

it c

s c

o o

p p o o oi oi p0 p0 p0 W

e s

e r

r oB L

U U L L LC LC U( U( U1 L(

1 1

(

S u S d

c l

e e

l e

is e

e la i

)

1

)

WS D S e r

)

t VeWta0) 0 9

9

)

8 P M e94 1

2 1 2 " 7 46

2) 28) 0 2 6

5 d

9 4 4 7 7 9 51 68 61 57 6 Rel H1 1

1 se VJ 4 4 4 4 4 -

- 7 5 -

7 -

7 - 0 F

F F

F 3 3 3 3 2A A

aW 3Z 1

1 1

1 1

4 4 4 4 1 S TWTWTW2WT S 2A C C C C 7( 8( 8( 8( 7( 8(

B 1

t

d ei M

b sn Y

o o t

TP n c f

RF 4 3 6 9 9 A 2

8 8

6 4

t d u AE 9 7 5 9 4 /

8 7

7 6

4 luo T5 0 8

N

% @1 1

5 1

1 2

2 1

2 oh wit 1

1 1

1 1

1 1

1 w

s id s

lyte n

a a nlu ig7 0 0 0 0 A 5

5 5

0 5

aa r 0 7 4 4 4 8

8 8

6 8

/

v k

a7 1

3 3 3 N 6

6 6

5 6

e M

is ic is r

e t r s

iu 3 0 5 0 0 0 0 0

0 0

0 0

lia t

a7 8 7 7 7 8 8

8 8

8 8

b r

1 1

1 1

2 2

2 2

2 2

ae b p o

s m

rpe l

,0 0 0 0 0 0 7

7 7

0 7

t ic a

ic n n

e1 0 0 0 0 0 9

9 9

0 9

f ir 3

1 1

1 1

e e e pr o

t se

)

- f is a

3 t

e M

ia o r lpe u

l r n n r s

a d l

it uo3 0 0 0 5 0 5

5 5

6 5

t T u InR T+

2 2 1

4 1

2 e

+ + -

+ +

as c

x R

f u s

s o

oj

(

d i

s i

e ltsa c

D l

g u e WV sh n

foir t

r a

t e

fo o

t n

a 3

e di e

D le le le le le le le le le e

i a

Flb

. b b b b b

b b

b b

r i

i omCa ru h n t

it t o e

h u

r v a a a a a

a a

a a

nk t

e T

T T T T T

T T

T T

taat s

H s

et Uc s

Me S

hl o

u

)

r e

. D c

p e

o t

hl ir c

d e

r ca m

b u c W

't v

P

)

ia dl yF s e o

n r

RB r

eat C eh C

d nis( 0 8 8 6 6 6 9

4 4

3 4

a o ri r t o

o r 4 5

1 2 2 7 3

2 2

9 2

gemo9 e

a A Ca tet l

l t

c lar s

t t

1 4 8 8 6 4

5 5

9 5

i e

5 saet 1

1 1

1 1

1 1

1 u

a

(

c W

sMh c t

r p c

1 s

1 r

F en y

pi i

u e

3 m

h ols s

rCt R r

a i

pi e

c c

Y b

r a

n eP) 7 7

7 itse h

a a

t f

o c F" 9 9 9 9 3

3 9

dm C

E a

T yu TnE0 8 2

0 0 0 0 A 2

1 0

0 0

t e

/

8 9

n r

i n d

%u5 0

1 1

1 1

N 0

1 1

1 0

1 ae l

l 9(

0 h h e

o x0 0 0 0 0 0

0 0

l a

e F

1 0

i t

f aM s

u e, k

c t

g Fl e

no i

d or c

e e

u e l e e N

f s

t r

- ae) we s

q smk%2 loh d

U t

4 4 8 8 9 7

7 7

8 7

s e

eict 7 5 5 5 5 5 5

5 5

5 5

is T n

e R Bts N (w 0 a

i 0 0 0 0 0 0

0 0

0 0

a t

V E

st n

ld n a

e r

o es e

D we p

e i

t r

t r

d lep p

a e) a s m p% 3 t

0 0 2 2 3 6

9 9

2 9

se n

eipt 1 2 2 1

1 2

1 1

1 3

1 sb o

m Bt e

a ow0 0 0 0 0 0 0

0 0

0 0

v o C

r sC(

t ind d

E o

e e

o f

lar t

n ted a

h e

i le le le d o it t

l l

mis m

e d

n h

h lec M

S S

W g

e e

d d

ws s

r r

c a

E s

n n

p p

le l

r d

la w ).

e i

i p

p e

c 4

t io g

s gno

)

W W

C le ilpa e s

ly U

U l

W tyt c r

eof to) o%i.

t le Ame B n

t e

e a

t ig h

t i

%t Rt t

e te t

t B4 B D L L

e o

ee e ale i

n 0 g n

B t

e e tte0 le6 n

n S

g e c f

r n

od e i o la la la la o

o r

A l

f t

e P P P P le0 f L lu l

le eO l

le o

L cwR a

f lt l

w 1

)

l l

(

l dind

(

le e

le nd l

nl e 3 o

4.

le%

e B

o h h h h ol ol h h

L S 0 reae h0 r ice H

N S S S S Ne Ne S S

te%

o upS n

n n

rWrWr% r%

)

)

)

1 r

r cy(

e io o

it r

r r

r r

o e. e. e e

e e e e e

eh ct w

p p w w we we p0 p0 p0 wt o A l.t W

e s

e r

a t

i p0 p0 p0 o

i o

p p o o oi oi r

r c

s c

f oB o e e L

U U L L LC LC U (1 U( U (1 L(

h 1

yt m S

u S t f

/

i id d

h yle c

l e

)

b lnw le a

at e

e r

s t i 9) 1

)

b e

i e

VeWt 0) c i

WS D S 9

0 o al M

a 1

2 1

2 6

. 28 0 2 r c a

)

)

94 46 2) 8 la pfic P

e 7

5 inp d

1 9 4 4 7 7 9 51 68 61 57 6 Rel H VJ 4 4 4 4 4 -

1 1

5 7 7 ip e

se F

F F

F y

3Z 3 3 3 3 gt 2A A

h i 1

1 1

1 1

aW 2A( C C C C 7(

4 4 4 4 S TWTWTW2WT S ty TsA 1

B 1

8( 8( 8( 7( 8( A

T rO1 A

R eT E6 3

0 2

/

3 7

7 9

4 N

9 A Rta 1

1 DI 6.3 5

4 5

A 0

1

/

8 6

0 8

1 2

2 6

N 2

^.

~

r0 0

0 0

0 0

e7 7

7 8

8 4

1 1

1 2

2 1

c s

l a

i s 0 0

0 7

7 0

o 0 0

0 9

9 0

n r

1 1

e o

t i

a

- r4 ss M

lao 1 0 0

0 5

5 2

u n

i Tiw s

5 2

5 l

it

+

c o

e InR T

+

+

+

s ix s

.R t

o i

(

a s

D t lc e

SirWV

-. g n

f e

e oi ta o

t n

a a

i r

din' e

le le le le w&

D.

it

_l e

F b

b b

b b

o m C.

u s

H h

ok a

a a

a a

y r

s t

e T

T T

T T

r o

Pc s

Me et u

c e

D S

p e

o r

r m

le P

o Wi a

r ba

)

yF C

d 1

cB r

nl r u

o at C wis( 0 0

0 3

3 0

e l

e l

t l

Nr

. ri c

femo i

r 6

6 0

7 2

0 a

sMh c 1

1 1

i W

t b

er a

saet 2

2 2

5 7

6 c

e su e

A T

st R Ca m

h t

F ec e

c Ba n

h a

IDc90 C

E e

f o

su 7

7 5

A 7

r n0 5 in d

v Le1 0

0 1

0 l

/

1 1

0 N

e o

1 aa e

Ou 1

t El x0 f

F(

k DM s

c d

e N

i e

le u e l d

U s

y t

- ae) s q

tsmk%8 7

1 2

5 3

it s e

eice 6 7

8 6

6 6

n l

i 0

0 0

0 0

0 a

ie R

Bts N (v c

a t

aV E

n r

a F

o e

D e 'r p

i t a e) d t

t p

s m p% 4 0

0 1

2 2

o p

4 2

8 1

4 a

0 n

t m

Bt ow0 0

0 0

0 0

ei a

r sC(

C E

d o

e o

f t

ld a

h In t

m e

eW M

i t

c s

s l

l r

n le le i

E i

C o

h h

ign S

S ll t

s

)

e s

y eo r

r Ri g g

g e

e%h e

la n

n p) p1 S

tain i

g o

r p% p9 B

n i

e cg g

r U9 U r

n or o

o D e t

A il L F F

F oD oO w lt o

a f

e l

l t 1(

lted t

(

B lt le le lt L

e 3 o 4 e

eld l

B Be Be o H

h h

S S

n l

n n

t eW eW

)

e r

r z. z. - %

e o

o z

p w

zc ze 0

r it i

io lz e

e l

t r

r

,0 o

p o

oi oi i

c s

c W

N U

L NC NC U1 e

s e

(

S u S d

c l

e e

e l

a t ir

)

WS is e

)

)

)

1 e

e eWta7 0 4 3 3

1

)

)

V 4

2 3

2 M

D S de1 2 4 3 6 2 43 43 48 P

3 2 2 8 1 2 42 41 Rel H YB XJ 0C 9 -

7 - T so 3D 3K 4C 3 F 9 F F

aW 2A(

1 1

2 A P B TW2W2W B

S( 8( T( 8(

1

(

1

AE7 0

0

/

9 3

T1 5

6 6

8 N

1 1

1

%2 9

n A

5 0

ig5 0

4

/

8 8

r 0

5 N

6 2

a8 2

1 M

i

'a 0 0

0 0

0 0

c7 7

7 8

8 4

1 1

1 2

2 1

s i 0 0

0 7

7 0

la c0 0

0 9

9 0

i 1

1 r

n e

o t

)

is n

a l

r nr s

ia M

it e

0 0

0 5

5 2

T e5 2

5

+

u n

l InR R+

c T

+

+

o e

s ix

(

s a

s i

t o

D t lc e

g oin a

Si f

n rWV t

a t

D.

io din e

le le l

le e

a e

om Flb b

b b

b e&

t e

r hr C a a

a a

a y

i W

u et u

s H

e T

T T

T T

r t

ok s

Me S

o Pc s

D o

p er

)

r e

c m

i d

a r

W

)

b e

P dl yF o

't lcB r

nis 0

0 0

3 3

0 C

l r

a eat C n

d

(

ri gem o6 6

0 7

2 0

r o

u o

t l

isae t 2 2

2 5

7 6

e c Nr t

a W

c 1

1 1

c sMh c

(

a e

A C F i

1 er a

su e

m h

e l

st R b

ec

- Y -

e c

5 5

h a

e P ")

a Ba n

cF 7

7 7

E C

f o

T n 3

3 A

3 1

1 T

su

%eE0 6

/

6 in d

lu1 0

4 4

N 0

4 r

1 l

0 2 x0 0

0 0

e o

v f

aa e

$(

k f

t DM s

iN s

c d

e e

e-le u

t l

- ae) y 7

1 2

5 3

s q smk%8 7

8 6

6 6

d U

teict 6 tis e

Bts N (w 0 i

0 0

0 0

0 n

a lie R E

a t

caV a

r n

e D

F o

e p

r d

i t

t ae) p 4

2 8

1 4

p s m p% 40 0

0 1

2 2

o t

n a

t ei m

Bt ow0 0

0 0

0 0

a sC(

C d

E ro e

o f

t in a

h t

d m

e le M

i W

t l

l e.

s n

le le i

E s

r i

C s

o h

h l

t ign S

S le s

y r%h e

la eo

)

r Rig g

g e

e e

i i

n p) p1 S B

n ta n n

p% p9 r n cg g

ig r

r U9 U e

t A

i or l L o o

o o

e l

l toD oO w a

f lt F

F F

I(

lt t

o e 3 o 4

(

B lt le le lt L

e eld eld H

h h

B Be Be o n

n n

S S

t eWleWr%

e o

z. z. e r

io o

it

)

e r

r lz e

e l

z p

w ze ze p0 i

t is c

c W

e s

e o

p o

oi oi p0 r

r N

U L

NC NC U (1 S

u S d

c e

a l

ll e

is e

e a

)

e r

t i 3

)

)

WS D S M

a 0 4 3 1) 1

)

)

VeWt 7

4 2

3 2

de1 2 4 3 6 2 43 43 48 P

3 2 2 8 Rel H YB XJ 0C 91 2 42 41 T F-se 3D 3K 4 3 F 9 F aW 2A 2A P, C TW2W2W 1

B B

1 (

1 (

f (

8( T( 8(

~

1

T P RF 6 8

6 AE9 6

0 A

3 5

2

/

7 5

4 7

N 1

T1 7

2 1

nig8 4

3 A

6 0

r M

4 0

/

3 0

8 a4 N

1 5

2

- 0 0

0 0

0 0

3e7 7

7 8

8 4

1 1

1 2

2 1

s l

i 0 0

0 7

7 0

a c0 0

0 9

9 0

n; i

1 1

re o

t

)

i a

l mm s

M it e

ia 0

s T e5 0

0 5

5 2

2 5

+

u n

l n

T

+

+

o e

i R R+

c ix

(

s s

t o

i a

s c

D t

l e

g Si fo in a

rWV n

t n

e le le le le a

d imFl o

t D.

e o

e&

a b

b b

b b

i r

h rC a a

a a

a v

e w

t u

t i

e e T

T T

T T

ru s

H ok t

s M e Pc s D

S o

)

r e

p e

o r

c d

a r

m i

b yF

)

W

't lcB r

ni imo6 6

0 7

2 0

l e

P dl r C o

a ea t n

s(

0 0

0 3

3 0

C d

r o

u o

ge r

it c Nr t

sa et 2 2

2 5

7 6

e l

c sMh c a

(

1 1

1 W

e A

C c

a 1

er a

F i

su e

e st R m

h b

ec

. Y e

c l

eP) a Ba n

c F" 9

9 3

h a

3 2

9 C

E f

o TnE0 2 5

5 A

2 6

T isu

%u1

/

2 e

1 0 1

1 N

0 1

r v n d l.$(

e o

2 x0 0

0 0

l 0

aa e

F f

t k

DM s

c d

e e

i e

l u

t l N

e ae) s y

t s q smk%8 t

7 1

2 5

3 l

s e

eict 6 7

8 6

6 6

d U

i Bts N (w 0 i

0 0

0 0

0 n

a i e R c

E a

t aV n

r a

F o

e D

e p

r i

t t

a e) d p

4 2

8 1

4 p

ts m p% 40 0

0 1

2 2

o a

n t

ei m

Bt ow0 0

0 0

0 0

a sC(

C r

E d

o e

o f

t in a

h d

t m

e le W

i M

t s

e o

e le i

E s

n l

l r

l i

C h

h l

t s

lgn S

S le l

s y

eo r)

Ni g g

g e"

e r

p% h a

e t

e an n

n p)

S B

n 1

n cg ig ig p% p9 r

r r

U9 U e

t A

i or l L o o

o D

te l

toD oO w a

f t

F F

F I

t o

e 3 o 4 B

lt le ll ted lt e

e l

(

(

L Be l

H ed h

h l

Be o-n n

n B

S S

t eWleWr%

e i o

o o

e

)

r r

lz e

e l

z. e r

o p

o oir oir p0 i

t i

it z.

z p

w ze ze p0 c

s c

W e

s e

N U

L NC NC U(

1 S

u S d

c ll l

e e

e eWS is a

)

r e

e t i 3

1

)

)

2 VeWt

)

)

)

1 P M a

0 4 3 D S 7

4 2

3 de1 2 4 3 S 2 43 43 48 3

2 2 8 2 42 41 Rel H YB XJ 0C 19 -

7 - T -

se

. aW 3D 3K 4C 3 F 9 F F

1 B

2 A 2A P B TW2W2W S( 8( T( 8(

1

(

1 (

(

l l

M ro E

sL T rO5 5 8 3 1

1 1

8 8

A 0

0 3

3 R eT E7 2 7 5 6 6 7 1

2

/

2 0

2 2

2 N

0 8

0 0

2 6 2 4 3 3 0 1

A Rt 2

2 2

1 2

2 D

a1 1

1 1

1 1

1 I

n ig 7 6 6 6 6 6 3 5

0 A

5 3

5 5

r 0 3 3 3 3 3 8 8

6 8

8 8

8

/

a7 6 6 6 6 6 4 6

5 N

6 4

6 6

M 0

0 0 0 0 0 0 0

0 0

0 0

0 0

3 7

7 7 7 7 7 4 8

8 8

8 4

8 8

c 1

1 1

1 1

1 1

2 2

2 2

1 2

2 s

l i0 9 9 9 9 9 7 7

0 6

7 7

7 7

a i

e1 6 6 6 6 6 9 9

0 0

9 9

9 9

n r

3 2 2 2 2 2 1

1 2

1 1

1 1

e o

t i

a s

)

M l

mm3 s

ia 1

1 1

1 1

5 5

0 7

5 5

5 5

u l

it T

+

+ + +

+ + -

1 c

e n

x iR T

+

s R

s 1

o s

i

(

it c D

l e

ni n

UWV g

f t

n a

a o

e oi a

t t

i e

a a

n e

D le le le e

n r

d i Flb b b b b b b

b b

lb b

b it u

omC le le le le le o&

D le le h

a a a a a a v a

a a

a y

a a

s H

k s

e T

T T T T T r

it t

T, T

T T

T T

o r

r a c et e

u t

o Me S

S p

e se D

r Sc m

i r

W rb P o

aa

)

n eB r

dl yF C

le 9

d r

o eat C i

lc:

t nis( 3 5 0 0 5 5 4 6

6 6

4 3

4 4

l ri r

r 9 4 5 3 4 4 1

0 7

0 2

2 2

2 a

o u

c gemo1 W

it 1

e 0 6 8 7 7 4 7

6 2

5 4

5 5

c lb Nr a

saet 1

1 1

1 2

1 1

1 1

i sMh c1 3

a u

e A Ca m

h F

et R T

ec e

c na n

h a

C E

e) of o

ID c "0 8

6 4 4 8 8 8 8

6 3

8 9

9 cu n

1 9 0 0 6 6 1

2 9

A 2

6 2

2 r

On d le1 1 7 9 9 8 8 1

6 7

N 7

8 7

7 e

o l

/

a e

ou f

x0 0 0 0 0 0 0 0

0 0

0 0

0 k

t elf (

M s

c y

e i

d e

N s

ti l l

e u

e l t

0 0 0 3 3 2 4

9 8

7 4

7 7

d U

ae) i s q

c smk%5 5 5 6 6 6 5 6

5 6

5 5

5 5

n a

t s

e eict 6 a e R Bts N (w 0 i

0 0 0 0 0 0 0

0 0

0 0

0 0

a t

F V E

a r

n e

D o

e p

r d

it ta e) p s m p% 6 p

5 0 2 1

1 3

1 3

4 9

2 9

9 n

t a

t 1 1

1 1

1 1

2 2

2 3

1 2

1 1

o ei m

Bt ow0 0 0 0 0 0 0 0

0 0

0 0

0 0

a r

sC(

C E

d o

e o

f t

n a

h d

d d

t m

e i

l le le le it e

d W

M m

W W

W s

g r

it c

E i

e s

g i

ir c

n n

r d

r d

d te) n C

C le C

le le t

io ig te e

s In% o le le r

0 l

h h

!e e

ly gn o la 0 L l

l W

I W

W s

eof P

o Ri t

le te ta la t

Bl S

e e

t a

1 le S

S t

h t

t e

g S

it e al l

e t

a e e lt (

h r

r g

g B

n c e d

n n

n n oB h a e

p p

o e

o o

t A

r S

l l

l I! L e P P P P L

w L

L a

f e

e) p p

lt lz l

l l

l lzWta%U U

B z

te le le le le z.

l )

le% o le e

e3 o4.

e l

h a

i0

)

L o

i h h h h oe d 0 o) o%h0 te%) S) S) n n n H

h h

d r

t.

S 0 o t.

N e S S S S Ni e1 m% m3 C

9 1

e e e e ell mh r 6 r

pt p0 w0 w0 mr r% e%

e it i

it o

o o r

r r

r r

r r

r 1

e r

p p w w we eo te eh e

r r

t D teD 0

w e

o p0 0

i s c Wc o

t p p o o oh L

In U U L L LS InB InI( Inop t

o o1 B

(

(

U( U( L (1 L(

1 e

s e S

uS d

c l

l e

e la e e

is t i

)

)

)

e r

e VeWt

)

5 3

9) 3)

5 6) 0)

WS DS P M a1 4 2 1

1 1

2 3 2 Rel H 8 7 5 8 0 0 2 6 0 2

45) 2 2

2 7

2 9

8 2

3 e65 1

4 5

4 4

d 9

42 6 5

6 6

se 2 R 9 6 7 0 0 8 -

1 1

1 1

1 1

1 9

4 - L -

7

- 1

- 7 7

1 2 2 8 8 7A 0A 2A 9 F H

A 4A A

A 1

1 aW V A C C C C C 6( 1 (

7( 2( 8( 7( 8( 8(

S P S S 9WT S 2S T S T S 2 3 3 2 2 1

1 B

Z(

AE9 8 2 6 9 9 5 4

4

/

7 7

8 0

3 1

2 1

1 8

7 8

N 6

4 6

6 T1 1

1 1

1 1

1 1

1 1

1 1

1

%2 9

f[

nig7 6 6 6 6 6 3 5

0 A

5 3

5 5

r 0 3 3 3 3 3 8 8

6 8

8 8

8

/

a7 6 6 6 6 6 4 6

5 N

6 4

6 6

A R

a 0 0 0 0 0 0 0 0

0 0

0 0

0 0

c7 7 7 7 7 7 4 8

8 8

8 4

8 8

1 1

1 1

1 1

1 2

2 2

2 1

2 2

s

,0 9 9 9 9 9 7 7

0 6

7 7

7 7

a e1 6 6 6 6 6 9

9 0

0 9

9 9

9 l

r 2

1 1

1 1

3 2 2 2 2 2 1

1 n

i o

e i

t

)

r ui s

a l

e e3 s

i Tr a

M it 1

1 1

1 1

5 5

0 7

5 5

5 5

u 1

nR T

+

c T

+

+ + + + +

le I

x R

s

(

s i

i o s

D it c n

l e

g a

n f

n a

t o

U Wi V oi

. e le %

lb b b b

b lb b

b lb t

e t

t a

aD le e

n D

le le e

le e

on F b b b le le d i l

e a

i a

a n

r h n C a a a a a a y

a a

a a

v o&

u et u

u i

T T

s H

o T

T T T T T r

T T

T T

r t

t e

S S

o ik s

Re s

.D p

e a c r

o

)

t e

m i

d Sc W

r

)

't rb P dleyF

~

C d

s o

n a a eat C

r nis 3

5 0 0 5 5 4

6 6

6 4

3 4

4

(

eB ri a

lc :r r

l gem o9 4 5 3 4 4 1

0 7

0 2

2 2

2 l

o e

t c

isee t 1 0 6 8 7 7 4

7 6

2 5

4 5

5 a

t a

c W

u c

sA h c1 1

1 1

1 2

1 1

1 1

(

e AR C m Nr a

i u

e F

m h

i e

et R e

c l

ec Y

h a

eP

)

b.

na n

- cF" 8 5 5 0 0 1

7 4

A 4

4 5

8 6

0 9

9 1

/

1 8

1 1

C E

1 e

of o

TnE 0 5 4 9 9 8 8 5

T cu

%u1 0

3 3 3 3 3 0

2 3

N 3

3 3

3 r

e l

0 0 0 0 0 0

e o

0 0

0 0

0 0

On d l 2 (x 0 F

f a

e

- 9 k

t c

M s

i d

e y

e e l

)

N s

ti l e

u t

6 5 5 6 6 6 5

6 5

6 5

5 5

5 d

U ae l

s q smk

%5 0 0 0 3 3 2

4 9

8 7

4 7

7 t

ic s e

BtsN t

eic 0 0 0 0 0 0

0 0

0 0

0 0

0 n

a i

(w 0 a e R E

a a

t F V r

n e

D o

e p

r d

- t i

a smp%6 5 0 2 1

1 3

1 3

4 9

2 9

9 p

t a e )

n t

t 1 1

1 1

1 1

2 2

2 3

1 2

1 1

o eip o w0 0 0 0 0 0 0

0 0

0 0

0 0

0 a

m BtsC(

C d

E r

o e

o t

f a

h n

d t

m e

I l

d o

d l

W le le i

M d

t e

W W

s c

m W

i r

e r

E s

c te) ig n

C le C

le ld is n

g r

t C

i d

i d

n r

t o

i e

l W

le e

ly e

g t

In% n e

le s

ignr l

W W

eo o la 0 o h

a RiF P

o 0 L t

l S

h h

t t

B n

t t

i i

S ig S

g g

1 e alt l

e t

te te lt (

le r

ce le t

a p

e e

e e

r n

n n

t A

B' le P P la la Bld h n

ioB h la l

P P r

o e

o o

a f

t L S

e S p

p

't L

L L

w l

l e3 o4 e

p lzWe%

l )

t U

U

)

e e

le% o le le H

z t

l l

l l

z ia le le l

le z. a e

L o

h h h h oe i 0 o

)

o% h0 h

h n

n d

r d 0

t. %. 9 1

)

S 0 o t

S) S) e N

e S S S S Ni e1 eh e% e% r%

r io oio t )

C l

mh m1 m3 mr r

r r

r r

r r

r e

w e p p w w we eo e eD pt p0 w0 w0 i

t i

t e e e e el r t e

r6 r

0 r

c s c We o p0 0

D p

t t

t p p o o oh nB U( U1 L( L(

t B

o1 o1 L

I U U L L LS i(

InI InO s e o

n

(

(

(

S uS d

c l -

l e

e is i e e

a WS DS r

t i 5

3) 9 3

5) 6 0

)

)

)

)

)

e VsWt

)

2 1

1 1

2 3 2 7 2

)

2 2

2 l

a1 4 9

8 2

3 45 PI e65 1

d T 5 8 0 0 2 6 0 2

4 5

4 4

9 42 6 5

6 6

Rel H8 R 9 6 7 0 0 8 -

1 1

1 1

1 1

1 se 2

9 4 - L 7

4 -

7 7

F

- 4A 1

2 2 8 8 7A 0A 2A 9 A

A A

H 1

1 1

aN V

S P S 1 S 9WT S 2S T S T S 2 3 3 2 2

~

ATC 1

E'..

L(

C C C 6( 1 (

7( 2( B( 7( 8( 8(

j 1

h

M Y

TP f

RF 7 3 7 6 7 7 1

5 1

1 2

1 3

3 2

5 5

A AE7 3 5 5 0 0 4 4

/

5 8

1 9 0 0 0 6 3

N 6

3 1

3 1

T1 1

1 1

1 1

1 1

1 1

1

% @2 n

i0 6 6 6 6 6 8 5

A 5

5 3

5 5

g r 5 3 3 3 3 3 5 8

/

8 8

8 8

8 a6 6 6 6 6 6 4 6

N 6

6 4

6 6

M a0 0 0 0 0 0 0 0

0 0

0 0

0 0

e7 7 7 7 7 7 4 8

8 8

8 4

8 8

1 1

1 1

1 1

1 2

2 2

2 1

2 2

s l

i ri 0 9 9 9 9 9 7 7

0 6

7 7

7 7

a c 1 6 6 6 6 6 9 9

0 0

9 9

9 9

r 3

2 2 2 2 2 1

1 2

1 1

1 1

n e

o t

i a

)n.

s M

i T l

r n a er s

o3 1

1 1

1 1

5 5

0 7

5 5

5 5

u l

it i

w+

+ + +

+ + -

1 InR T

+

c e

x R

s s

1

(

o s

i it c D

l e

ni g

UWV n

a a

n foi t

t o

t e

din e

le le le le le a

a D

le le le le D

le le a

n r

Flb b b b b b b

b b

b b

b it o&

omC e

u hr a

a a a a a r

T T

T T

ru i

v a

a a

a y

a a

e T

T T T T T T

T s

H t

ik s

et u

t o

a c Me S

S e

s D

p o

)

t d Sc e

r m

i r

't b P W

r

)

n aa dl yF o

r r

eat C C

d o

eB nis(

ri 3

5 0 0 5 5 4 6

6 6

4 3

4 4

l o

c lc:

t gemo9r 4 5 3 4 4 1

0 7

0 2

2 2

2 e

1 l

it

(

r c

saet 0 6 8 7 7 4 7

6 2

5 4

5 5

a 1

u W

2 e

sMh c1 1

1 1

1 2

1 1

1 1

a Nr a

A Ca ic u

e F

1 3

a et R m

h e

c l

ec Y

b na n

eP) h a

7 7

8 a

of o

c F" 6 4 4 8 8 6

5 8

6 6

C E

8 8

9 A

2 1

3 1

1 T

cu TnE0 2 4 4 3 3 1

1 9

e On d

%u1 1

r

/

l 0

1 1

1 1

1 0

0 N

1 1

1 1

1 le o

0 0 0 0 0 0

0 0

0 0

F @2 (x 0 a

e 0

0 f

k t

M s

c d

y e

i e

it l l

e u

e l N

s tae) i s q

0 0 0 3 3 2 4

9 8

7 4

7 7

d U

c smk%5 t

6 5 5 6 6 6 5 6

5 6

5 5

5 5

n s

e eict a e R Bts N (w 0 i

0 0 0 0 0 0 0

0 0

0 0

0 0

a F

a t

V E -

r a

no e

D i

e p

d r

t ta e) p a

s m p% 6 t

p 5 0 2 1

1 3

1 3

4 9

2 9

9 n

o t 1 1

1 1

1 1

2 2

2 3

1 2

1 1

a m

Bt ow0 0 0 0 0 0 0 0

0 0

0 0

0 0

C ei r

sC(

d E

o e

o f

t n

a h

t i

d m

e d

d le le it M

le W

W s

t W

r E

is e

g m

ir C

le C

le le t

e i

s t

e n

n te) i C

l d

ir d

d o

ig te g

in% n le h

W 0 o l

le igno la r

e e

ly W

W s

n eof P

o 0 L h

S t

i i

a t

Ri le le t

ta la la Bld h e

t n

S s

h t

t e a t

l e e e t 1 i cB h

t te le e

g S

g g

B n

(

r r

e) n n

n l

o S la l

P P n

A p

o e

o o

t p%

r e S p

e P P lt L lz t

le le e e e

p 9 L )

o le le w

L L

a f

lzWe%U e

l l

n n

)

U3 e

le%

l l

e 3 o4 ta i

L z

a z. M1 B

o i h h h h oc o) oD h0 h

h 0

H d

t. O S 0 o N

r 0

e S S S S Ni tm% m(

S) S) n n n rC t )

1 mr r

e% e% e%

e io oi r

r r

o 1

r r

r r

e e e e e en w

i h d eh r 6 r

r 0

0 r

o te p p w w we e t e

el pt p0 w0 w0 i

t is c t

o a

o p p o o oh t

p p0 o o

D Wc t

t L

I U U L L LS InB InI( InWU( U (1 L (1 L(

B n

1 e s e

(

S uS d

/

c l

e l

e e

a s

r e

t i'

)

)

)

)

)

5 3) 9 3) 5 6

0)

WS DS e i e VeWta1 4 2 1

1 1

2 3

M 2 7 2

)

9 8

2 3

P e65 45 2 4

5 2 2

1 0

2 d

8 7 5 8 0 0 2 6

9 42 6 5

6 6

4 4

Rel H 2R 9 6 7 0 0 8 -

1 1

1 1

1 1

1 9

4 - L -

7 4 -

7 7

se 1

2 2 8 8 7A 0 A 2A 9 F H

A 4A aW V A CC C C C 6(

1 (

7(

A 1

A 1

1 2 3 3 2 2 1 S P S 1 S 2 (W T 9

S 2S T S T S B

Z(

8( 7( 8( 8(

o ls L 5

T tO9 0 4 0 6 6 7 8

6

/

0 8

0 0

0 4

5 A

T E7 4 8 6 7 7 5 3

5 6

1 4

4 R P 1

2 N

1 6 2 4 3 3 9 A Rt 2

2 2

1 2

2 1

1 1

1 1

a1 D

I

'n

^

g7 6 6 6 6 6 3 5

0 A

5 3

5 5

i r 0 3 3 3 3 3 8 8

6

/

8 8

8 8

a7 6 6 6 6 6 4 6

5 N

6 4

6 6

M

. 0 0 0 0 0 0 0 0

0 0

0 0

0 0

7 7 7 7 7 7 4 8

8 8

8 4

8 8

a c1 2

2 2

2 1

2 2

1 1

1 1

1 1

ls 0

6 7

7 7

7 a

i 0 9 9 9 9 9 7 7

e1 6 6 6 6 6 9 9

0 0

9 9

9 9

n ir 3

2 2 2 2 2

1 1

2 1

1 1

1 o

e i

t s

a s

)

ew3 M

la u

t 1

1 1

1 1

5 5

0 7

5 5

5 5

c i

Te

+

+ + + +

+ -

1 l

it x

s I R T

+

s e

n i

R 1

o s

D

(

it c l

e ni n

UWV

. g t

a o

n a

t f

a o in e

t i

e a

aD le le t

e D

le le le le o

F b b

le le le n

r d imC le le ib b b b

b b

b b

b b

o&

u i

h a

a a a a a y a

a a

a y

a a

s H

t T

T T

T r

T T

o ik s

e T

T T T T T ru u

r t

s M e S

S p

e a c e

t r

t o e

D m

i Sc r

W b P o

ra a

.)

b r

dl yF C

d 1

leB r

o ea t C l

l u

c ge is( 3 5 0 0 5 5 4 6

6 6

4 3

4 4

e l

t ni

. 5 3 4 4

1 0

7 0

2 2

2 2

a c :r r

W r 9 4

mo1 e

0 6 8 7 7 4 7

6 2

5 4

5 5

c b Nr a

it et e

sa 1

1 1

1 2

1 1

1 1

i sM hc1 m

h u

e A C a

a et R e

c F

T ec C

E h

a na n

e of o

D 6

cu I

c ") 6 8 2 2 0 0

5 4

4 9

7 7

8 r

8 3 3 3 3 3

5 4

A 9

9 6

6 l

n0 7 70 6

8 N

7 8

7 7

e o

On d L

e1 8 9 9 9 9

/

a e

O lu 0

. 0 0 0 0 0 f

x0 0

0 0

0 0

0 0

k t

E F(

c y

e i

d M

s e

i l N

s t

l e

u e le) 0 0 0 3 3 2 4

9 8

7 4

7 7

d U

t i s q

a c s e

sm k%5 t

6 5 5 6 6 6 5 6

5 6

5 5

5 5

n a

t ic,w 0 0 0 0 0 0 0 0

0 0

0 0

0 0

a t

ei a e R Bt N(

s F

a V

E r

n e

D o

p e

d r

i p

t t

a e) 5 0 2 1

1 3

1 3

4 9

2 9

9 n

p% 6 1

1 1

1 2

2 2

3 1

2 1

1 o

t a

sm p t 1 a

1 ei m

Bt ow0 0 0 0 0 0 0 0

0 0

0 0

0 0

C sC(

d r

E o

e o

t f

a h

n t

d d

d m

e I

le le le lde i

M W

m W

W W

s t

c g

r it c

E s

r r

e g

i i

d r

n n

e) n C

C le C

le le t

i t

i d

d s

o ig te In% o le le 0

l h

h e

e ly ign o la 0 L l

l W

l W

W s

r l

eof P

o a

t al l

e e l

1 le S

S t

h t

t Rit t

l e te t

t e (

h r

r g

S g

g B

n t

e c e e ta la la l

Bl S

e e

d n

n n

A n

h l

P P P r

ioB a

o e

o o

t S

e p

p L

w L

L a

f L e P

lt e

e) p p

lzWta%U U

l

)

l le to lz te l

l l

o l

e 3 o4 le%

B z

ia le le ll le z.

L le e

i0

)

H to) o% h0 h

h o

h h h h oc d 0 d

r S 0 o S) S) n n n t

N e S S S S Ni e1 rC mh m% m3 e% r% r%

e it i

t t )

9 1

o oio mr r

r r

r r

r 1

eh e

e r

e e e e el rt r 6 r

e re p p w w we eo t D 0

0 l

e eD pt p0 w0 w0 iWe w

o p0 1

1 o1 c

s c t

t p

o t

p p o o oh o

L I

U U L L LS InB InI InO( U( U( L( L(

n B

s e

(

(

S uS d

c l

l e

e e

la i 5

3 9) 3 5

6) 0)

WS IDS a

s r

e e

t

)

)

)

)

VeWt

)

2 1

1 1

2 3 2 7 2

)

2 M

a1 4 9

8 2

3 2

2 7 5 8 0 0 2 6 0 2 45 P

de65 1

4 5

4 4

4 - L - 7 1 5

6 6

9 42 6 Rel H 8 1

1 1

1 9 1 1

R 9 6 7 0 0 8 -

7 7 - se 2

F 1

2 2 8 8 7A 0A 2A 9 A

A A 4A H

1 1

1 aW V A C C C C C 6( 1 (

1 S P S S 9WTS 2S T S T S 2 3 3 2 2 1

B Z(

7( 2( 8( 7( 8( 8(

M

. Y h"

TP RF 1 0 6 8 6 6 1

3 1

6 3

1 1

A AE8 0 9 4 7 7 4 1

3

/

8 6

8 8

5 2

4 4

0 5

1 3 2 2 8 9

0 N

T3 1

1 1

1 1

1 1

2 1

1 1

1

% @3 n

i7 6 6 6 6 6 3 5

0 A

5 3

5 5

g r 0 3 3 3 3 3 8 8

6

/

8 8

8 8

a7 6 6 6 6 6 4 6

5 N

6 4

6 6

M 4 0 0 0 0 0 0 0 0

0 0

0 0

0 0

c7 7 7 7 7 7 4 8

8 8

8 4

8 8

1 1

1 1

1 1

1 2

2 2

2 1

2 2

lsa i 0 9 9 9 9 9 7 7

0 6

7 7

7 7

c1 6 6 6 6 6 9 9

0 0

9 9

9 9

ir 3

2 2 2 2 2 1

1 2

1 1

1 1

n e

o t

i a

s

)

n.

M l

r n s

a ere3 1

1 1

1 1

5 5

0 7

5 5

5 5

u it l

iT

+

+ + +

+ + -

1 InR T

+

c e

x R

s s

1 o

(

i s

it c D

l e

. g niUWV n

a a

n f

oi t

t o

t n

a a

e d!

D le le le le n

r le le le le le le D

le e

a i

o&

omF b b b b b b b

b b

b b

lb i

H t

e u

h rC a a a a a a v a

a a

a y

a a

e T

T T T T T r

T T

T T

r T

T s

t ik s

et u

u t

o a c s

.Me S

S e

D p

)

t o

d Sc e

m ir r

't b P yF o

n aa dl r W

r

)

o r

eat C C

d c leB nis(

3 5 0 0 5 5 4 6

6 6

4 3

4 4

o ri gemro9 4 5 3 4 4 1

0 7

0 2

2 2

2 l

l e

3 c:

t t

i

(

r c

1 0 6 8 7 7 4 7

6 2

5 4

5 5

a u

saet b Nr a

A Ca i

W c

2 e

sMh c1 1

1 1

1 2

1 1

1 1

u e

F 3

1 m

h et R e

e c

l ec Y

eP h

a b

na n

a of o

c F9 6 5

2 1

6 4

4 C

E 6

8 G 6 5 5 8

8 T

cu TnE0 4 4

1 7 7 7 7 0

2 A

9 5

7 7

/

r e

d

%u3 0

5 5 5 5 5 0 4

5 N

4 5

4 4

l o

1 On 3 x0 0 0 0 0 0 0 0

0 0

0 0

0 e

a e

F l

6(

k f

t

M s

ic d

y e

e t

N i

l u

e l s

e li s q

t

- ae) 0 0 0 3 3 2 4

3 8

7 4

7 7

d U

c smk%5 t

s e

eict 6 5 5 6 6 6 5 6

5 6

5 5

5 5

n a

i 0 0 0 0 0 0 0

0 0

0 0

0 0

a e R Bts N (w 0 a

t F V E

a n

re D

o i

e p

d r

t ta e) p a

5 0 2 1

1 3

1 3

4 9

2 9

9 n

e i p% 6 tsmp o

1 1

1 1

1 1

2 2

2 3

1 2

1 1

a m

t Bt ow0 0 0 0 0 0 0 0

0 0

0 0

0 0

C r

sC(

d o

E e

o f

t n

a h

t i

d m

e d

l d

l e

le i

M e

W W

s t

m W

i r

c E

s e

r

.c g

r t.

C i

d ir le le t

n n

te) i C

le C

i g

l d

d e

s o

ig t

in% n l

l W

l W

W s

y igno la e

r 0 o h

le le e

a eof P

o l

0 L t

l S

h h

t t

Ri lt le te te te ta Bld h t

1 S

i i

i t

l e

lt le g

S g

g B

n

(

r e a e e

e r

n cB h la la la l

n n

n p) e r

A o

e o

o t

o S

e S e

p% p II e

P P P P L )

o l

l e 3 o4.

l w

L L

a f

lt L lz te le le le l

lzWe%) U1 U p

e l

l l

l le%

le le t

o

)

a 6

z a

e z. s0 t. D o%h0 o L

B o

i h h h h oc H

0 h

h d

r 1

I t.

S 0 S) S) n n n N

e S S S S Ni e

t )

rC i m( m3 e% r% e%

e io oio 9

1 r

e rmr r

r r

r r

r r

w e p p w w we i h rd r

pt p0 w0 w0 i

t it e e e e el T

eh e

r l

t 0

0 eD o p0 o1 o1 el o

t p p o o oh te o e

c s c p

t We tnO L

I U U L L LS InB( InWI B

n U( U1 L( L(

s e

(

(

S uS d

C l

l e

e l

e a

s e

t ir e i e

)

)

)

)

)

)

)

5 3

9 3

5 6

0)

WS D S VeWta1 4 2 1

1 1

2 3 2 P M e65 - 5 8 0 0 2 6 0 2

45) 2 2

2 7

2 9

8 2

3 d

8 7

1 4

5 4

4 9

42 6 5

6 6

Rel H R 9 6 7 0 0 8 -

1 91 4 - L 1

1 1

1 1

7 1 7

7 se 2

1 3 3 2 2 H

2 2 8 8 7A 0 A 2A 9 F A 4A A

A 1

1 aW V A C C C C C 6(

1 (

7( 2( 8( 7( 8( 8(

S P S 1 S 9WT S 2 S T S T S 2

1 B

Z(

.AE6 7 7 8

2 0 1

0 0 6 4

N 8

4 2

4 4

T3 1

1 1

1 1

1 1

1 1

1 1

% @3

n

.i 8 6 6 6 6 6 4 5

A 5

5 3

5 5

g c 4 3 3 3 3 3 5 8

8 8

8 8

8

/

a6 6 6 6 6 6 4 6

N 6

6 4

6 6

.M

+ 0 0 0 0 0 0 0 0

0 0

0 0

0 0

no7 7 7 7 7 7 4 8

8 8

8 4

8 8

~

1 1

1 1

1 1

1 2

2 2

2 1

2 2

s 0

9 9 9 9 9 7 7

0 6

7 7

7 7

l i

m1 6 6 6 6 6 9 9

0 0

9 9

9 9

a n

3 2 2 2 2 2 1

1 2

1 1

1 1

r o

e i

t s

a

)

n.

s M

l or t n u

a n o3 1

1 1

1 1

5 5

0 7

5 5

5 5

l i

c iT u +

+ + + + + -

1 t

e InR T

+

s x

s i o s

- R iD

(

it c l

e n

ni g

UWV a

t a

t o

foin ta a

a D

le le i

e D

le le e

e e

di e

lb b b b lb b

b lb lb b

b i

n e le le le e

t n&

r omFlb v

a a

s H

o u

hrCa a a a a a v a

a a

a r

T T

T T

T T

e T

T T T T T ik s

et u

t u

o t

r e

a c s

Me S

S p

r

)

t o

D d Sc m

i e

W r

't b P yF C

d o

r

)

n a a d lat C r

r e

eB a

lc :r is aet 1 0 6 8 7 7 4 7

6 2

5 4

5 5

l o

n is(

3 5 0 0 5 5 4 6

6 6

4 3

4 4

l ri e

c r

t g emo9

. 4 1

0 7

0 2

2 2

2 a

t 4 5 3 4 W

(

u c

c e

s Mh c1 1

1 1

1 2

1 1

1 1

b Nr a

A Ca m

h i

u e

F i

et R e

c e

ec b

na n

.Y h

a l

c of o

c F" 8 9 9 9 9 7

0 8

2 2

2 C

E eP) 6 6

7 7

T cu T nE0 8 0 0 0 0 4

A 9

7 0

7 7

r 1

1

/

l a

e lu3 0

1 2 2 2 2 0 1

N 1

1 2

1 1

e o

d

% e 1

. 0 0 k

On 3 x0 0 0 0 0 0

0 0

0 0

0 f

F 9(

c d

t M

s

y e

i t

l e

N s

ie u

e l d

U l

t is q

ae) c nk%5 0 0 0 3 3 2 4

9 8

7 4

7 7

t e ict 6 5 5 6 6 6 5 6

5 6

5 5

5 5

n a

s e

s r

a e R B s N (w 0 t i 0 0 0 0 0 0 0

0 0

0 0

0 0

a t

F a

V E

r n

e D

o p

d it e

p r

n ta e) a 5 0 2 1

1 3

1 3

4 9

2 9

9 o

m p% 6 t

a p

s t 1 1

1 1

1 2

2 2

3 1

2 1

1 m

1 C

e ow0 0 0 0 0 0 0 0

0 0

0 0

0 0

r B it d

sC(

e o

o E

t f

a h

n t

m e

i d

d d

le le it M

l W

W s

e c

m W

i c

s r

E r

c i

g r

t i

C le C

le ld s

In% n ll ll d

i d

te) t C

t n

n r

o ig te g

e s

y e

W l

W W

igno l

o r

a l

0 o e

h l

e a

eof P

1(

le 0 L h

S e

B n

t l

e e e lt l

S t

h t

t Ri i

i t t le t

te t

t e

r e) n n

n t

r g

S g

g ale A

e d h e

_n cB h

la l

P P l

o S

la l

Bl a

a r

p o

e o

o p%

e S p

a e

P P 9 L w

L L

f iL lz te l

le l

le e

p lzWe%U l

)

l l

e3 o4 t

l l

l z.

t U3

)

le% o le le H

ie le e

a oD h0 h

h L

z a

B o

i h h h h oe i 0 o)

S S S Ni e1

t. O S 0 o n

n r

d 0 t

wS S) S)

N e e e e ell mh m% m(

e r io oi e

t )

rC 1

w r t r 6 rd eh e% r% e%

i t

it r

r r

r r

r r

r 1

e pt p0 w0 w0 c

s o

te p p w w we teo te ele o

0 0

We t

p p0 p p o o oh D

o1 o1 s

InWU( U( L( L(

B L

I U U L L LS InB InI n

1

(

(

S uS d

a t

l e

e e

l e

e a

r i_D

)

)

)

5 6

0)

WS

)

)

t i

)

5 3) 9

)

9 8

2 3

3 VeWta1 4 2 1

1 1

2 3 2 7

2 M

e65 45 2 2

2 1

P 7 5 8 0 0 2 6 0 2

4 5

4 4

9 42 6 5

6 6

d 8

Rel H R 9 6 7 0 0 8 -

1 1

1 1

1 1

1 se 2

9 L - 7 7

7 - -

1 2 2 8 8 7A 0A 2A 9 F A 4A A

A H

1 1

1 aW V A C C C C C 6(

1 (

7( 2( 8( 7( 8( 8(

S P S S 9WT S 2 S T S T S 2 3 3 2 2 1

1 B

Z(

,lll 1

jlll

y R.

r l/"

o sL

. f T tO1 4

1 2

9 R PT E4 1

9 7

7 A

6 7

5 3

7 Rt 2

2 a1 D

I n

i '.

7 5

5 5

g0 5

9 8

8 a7 2

1 6

6 M

0 0

0 0

0 ac7 7

7 8

8 1

1 1

2 2

s l

a r 0 0

0 7

6, i

o1 0

0 9

0 n

r 3

1 2

e o

t is a

)

M l

on3 0

0 5

7 u

u s

r ia u

T ru+

2 2

l it c

e InR T

+

+

x

.R is 2o ss

(

D it c l

e ni n

UWV g

f t

e oin o

a i

n e

n r

d i Flb b

b b

b i

H u

omC le le le le t

o&

e h

a a

a a

a s

ik s

r t

t e

T T

T T

T o

a c et p

e s

Me o

t r

Sc e

D m

i r

b P W

ra a o

)

a eB r

dl yF C

l r

d o

eat C 1

lc :r nis( 0 0

0 6

6 l

e 5

t ri r5 6

0 2

0 a

a u c

gemo9 W

2 t

i e

2 2

8 2

c l

saet b Nr a

sMh c 1

2 i

a u

e A C F m

h 3

a T

et R ec e

c na n

h a

Dc92 C

E e

of o

7 9

I n0 4 5

1 2

9 cu r

4 1

l On d Le1 8 9

9 8

9 e

o a

e Ou f

x0 0

0 0

0 k

t elf (

M s

y e

ic d

e N

ti l l

e u

e l d

U s

t

- ae) is q

c smk%6 t

5 0

9 8

s e

eict 7 7

8 5

6 n

a e R Bts N (w 0 i

0 0

0 0

a a

t F V E

a r

n e

D o

e p

it d

r ta e) p a

s m p% 3 t

4 2

7 4

n eipt 1 0

0 2

3 o

m Bt ow0 0

0 0

0 a

r sC(

C E

d o

e o

f t

d a

h n

l l

m e

t i

le e

W i

M h

S t

r e

s E

s n

n p

ir g

e C

i io i

p l

t -

s g

U le s

ly g n *o eo o

h e

Rif ig r

B0 e g

g

)

S a

t t

it n

n te%

B n

t i

l e ie r

g r

n oS o

o 0 w A_

t 5! L e F

F lz(

e z

t e1 a

it

_l o

f L

e 3 o 4

'B z

te ie zd o

h h

ol o

H N

S S

Ne t

n n

n rW r)%

e o

w p

w we p0 r

io o i r

r r

e. e e

e e

o p

o oi p0 i

t is c

t r

c W

e s

e L

U L

LC U1

(

S u S d

c l/

l e

e e

a

)

)

e VeWta27 6

6

)

WS is r

t i

)

3 4

e e

D S 4

)

M e87 91 51 45 45 P

d 3

5 8

Rel H TX 3W8 G 41 42 L -

L -

se 3M 2 A 1 W6 F F

9 aW 2A P A P A 0W9W B

1 (

3(

4(

4( 2(

AE9 7

8 9

9 3

5 4

8 1

T9 1

1 2

%1 3

n ig7 8

2 5

5 r 0 8

4 8

8 a7 1

1 6

6 M

0 0

0 0

0 ac7 7

7 8

8 1

1 1

2 2

s

,0 0

0 7

6 la e1 0

0 9

0 i

3 1

2 n

re o

t is

)

a 2

M l

r s

n ia e e3 0

0 5

7 u

l it

+

2 2

T inR T

+

+

c e

R s

x s

(

i 2 o s

D it c l

e g

oi n

ni f

UWV n

t di le le le e

e o

n a

e F b b

b lb lb it e

i n&

r om e

T T

T T

T s

H hr Ca a

a a

a o

u tet ik s

Me o

t s

D p

e a c r

o

)

t e

m i

d Sc W

r

)

't b P dls yF C

d r

o r

n a a eat C r

nis 0

0 0

6 6

eB r i (

l lc :r o

r gem o5 6

0 2

0 l

e c

it t

sae t 9 2

2 8

2 a

W

(

u c

sMhc 1

2 e

c s Nr a

A Ca F i

u e

m h

i a

et R e

c ec f

eP h

a lb na n

cF92 C

E 1

2 1

6 c

of o

TnE0 2 6

5 2

5 3

3 3

3 3

r T

cu

%u9 e

1 x0 0

0 0

0 l

o d

l 1 On e

f a

e F 9(

k t

M s

c de i

y e

N s

ti l e'l l

e u

t

. ae) 5 0

9 8

d U

is q smk%6 7

8 5

6 t

eict 7 n

a c s e

Bts N (w 0 a

t i

0 0

0 0

a e R F

E a

V

~

r n

e D

o p

e r d

it

. a e) p t

t 4

2 7

4 n

a s m p% 3 0

0 2

3 o

ei pt 1 a

m Bt ow0 0

0 0

0 C

sC(

d r

E o

e o

f t

n a

h t

d m

e i

l le it le W

M hS s

r e

s n

g e

i E

is r

n p

C t

o ig y

p ignr U

ll s

la eo o e

e o

h

. Rift in ig g

g t

S B

n t

n t )

al e%

e t

A ce g

r t

in r

r l

oB o

o B0 e 0 w a

f l L e

F F

e1 t

o e 3 o 4 e

lz n

l lz( L H

B z

e le zd o

h h

ol o

n n

n N

S S

Ne e. e r

io o

o t

e rWr%

)

w p

w wc p0 i

t i

it r

r r

e e

e c

s c

W e

s e

p0 r

o p

c oi 1

L U

L LC U(

S u S d

c l

l e

e la i '

3) 4 e

is e

e

)

e VeWt 27 6

6

)

WS D S r

t

)

4

)

M a87 91 51 45 45 P

de3 5

8 Rel HTX 3W8 G 41 42 L - L -

aW1 2A P A P1 W6 F 9 F se 3M 2A A 0W9W B

1 (

3( 4( 4( 2(

l l

l

1 4

3 4

6 T9 1

1 1

%13

~

nig7 4

3 5

5 r 0 2

8 8

a7 9

1 6

6 M

t n0 0

0 0

0 o7 7

7 8

8 1

1 1

2 2

s

~

l i 0 0

0 7

6 a

e 1

0 0

9 0

i 3

1 2

r n

e o

t i

)

a l

r nn s

ia or s

M it w o 3 0

0 5

7 u

T s

+

2 2

InR T

+

+

c le R

x 2 o is s

(

s it c D

l e

.g ni f

n n

UWV oi o

t n

e omC le le e

le di lb b

b lb b

i e

F a

n r

o&

t a

a a

a a

e h

r i

t u

ete T

T T

T T

s H

ik s

Me o

ta c s

D o

p e

)

t r

m ir d Sc e

)

W

't b P dl yF r

o r

n aa at C wis(

it 6

0 C

d r

eB r

ri 0

0 0

6 6

lc:

t seet 9 2

2 8

2 e

c o

gemo5 2

0 r

l l

1 2

a

(

r c

sMh c W

u e A

Ca c

e Nr a

F i

u e

m h

1 le et R

  • Y e

c ec b

na n

cF97 h

a eP 3

8 7

8 1

3 2

1 2

C E

c of o

TnE0 T

cu

%u9 e

1 1 1

1 1

1 r

On d l $(

k l

n0 0

0 0

0 F

e o

1 a

e f

t

M s

i d

c y

e e -

e t l N

s t l ie u

. ae) l t

i s q smk%6 5

0 9

8 c

eict 7 7

8 5

6 d

U s

e Bts N (w 0 i

0 0

0 0

n a

a e R E

a t

F V a

r n

e D

o i

t e) p e

r d

t t a 4

2 7

4 p

s m p% 3 0

0 2,

3 o

p n

a t 1 ei m

Bt ow0 0

0 0

0 a

sC(

C r

E d

o e

o f

t n

a h

t d

m e

I l

le it le W

M h

S s

n g

e i

E s

r e

r i

o i

p C

s n

p t

g s

y g'n r U

le i

l eo o l

o e

a h

RiF g

g t

S B

n t

n i

alt i

n

)

te% r e

l ce g

g A

n oB o

o B0 e t

r r

il L 0 w a

f t

e F

F l

lz l

e1 e

o e 3 o 4 B

z le ll lz(

L e

zd H

o h

h ol o ')

n n

n N

S S

Ne t

rWr%

e o

o o

r r

r w

p w

we p0 ir it i

it e. e e

e e

c s c W

e s

e r

p0 o

p o

oi 1

L U

L LC U(

S u S d

c e

e l

e is l

a

)

e l

e

)

4 e

r P M a27 6

6

)

WS D S t i

)

3 VeWt 4

)

91 51 45 45 de87 Rel H T X 3W88G 41 42 3

5 L

L -

se W6 F 9 F 3M 2 A 1

aW 2A( 3( 4( 4( 2(

P A P A 0W9W B

1

8 T nO 9 5

7 R

T E3 0

8 6

4 6

7 5

3 7

A Rt 2

2 I

a1 D

nig7 2

4 5

5 r 0 5

9 8

8 a7 2

1 6

6 M

0 0

0 0,

0 a 7 7

7 8

8 c

1 1

1 2

2 s

la

, 0 0

0 7

6 e1 0

0 9

0 n

ire

- 3 1

2 o

i t

s a

)

s M

la

. rw u

o t

s r 3 0

0 5

7 i

c l

i Ti a+

2 2

e n

e

+

+

x s

I R T s

2 o s

. ' R iD

(

t c l

e ini n

UWV g

t o n o

f a

e n

le i'

i u

mCa te le le e

it e

n r

d i o&

W o

F b b

b b

h a

a a

t s

H a

ik s

e T

T T

T T

o r

t ta c e

e t

s M e p

r t

o e

D m

W i

Sc r

b P

'y)

C d

o ra a b

eB r

dl F

r o

ea t C l

t ni is( 0 0

0, 6

6 e

i lc :r l

e u

c gemo9 0

2 0

a r

W r 5 6

it 2

2 8

2 c

e b Nr a

saet l

1 2

i sMh c

u e

A Ca m

h a

et R

. F e

c T

ec

~

C E

na n

h a

e of o

D c ") 5 2

3 5

0 r

cu I

n0 3 0

9 3

7 l

d le1 8 9

8 8

8 e

o Ona e

ou f

x0 0

0 0

0 k

t ElF(

y e

ic d

M s

e N

s t l ie u

e l 5

0 9

8 d

U t

l ae) i s q

c smk%6 t

s e

eict 7 7

8 5

6 n

a a e R Bts N (w 0 i

0 0

0 0

a t

F a

V E.

r n

e D

o p

e d

r it t e) p a

4 2

7 4

n s m p% 3 t

p a

t 1 0

0 2

3 o

a ei m

Bt ow0 0

0 0

0 C

sC(

d r

E o

e o

f t

i l

d a

h n

le t

W im e

le M

h S

t r

c s

g e

i E

s r

n n

p i

C p

s io ig U

l t

gnr le s

y o

o h

e a

eof g

g t )

l Ri m

n S

t le%

B n

t t

al i

e c e g

g r

n r

r B0 e t

A l

oP o

o i L lz l

l lz(

0 w e

F F

e1 a

f lt o

B z

le le zd L e 3 o

4.

e o

h h

ol o

H N

S S

Ne n

n n

t Wr%

e io o

io

)

r r

r r

e e

e e. e r

w p

w we p0 i

t it p0 c

s c

r o

p o

oi W

e s

e 1

L U

L LC U(

S u S d

c

'e e

e

/

l la

)

4 e

e s

)

k 3

V eWta27) 6 6

)

WS i

e t

D S 4

)

P M e87 91 51 45 45 d

3 5

8 se T X 3W8 G 41 42 Rel H

- L -

L 3M 2A 1 W6 F 9 F

- aW 2A( 3( 4( 4( 2(

P A P A 0W9W B

1

AE1 3

3 2

4 5

6 5

1 4

.~

T3

%3 1

2 2

'9 nig7 8

7 5

5 0

1 6

8 8

ra7 2

1 6

4 M

~

i0 0

0 0

0 e7 7

7 8

8 1

1 1

2 2

s i 0 0

0 7

6 la

. e1 0

0 9

0

=

i 3

1 2

r n

e o

t o

s a

)

i a

m s

r M

l o

it u

o3 0

0 5

7 u

iT u

2 2

InR T+

l

+

+

R c

e x

s 2o s

(

i s

D it c l

e

._' g ni foin' n

UWV

. d in : e le lb b

b e

e e

o ta e

om Flb b

i l

i n&

t Ca a

a a

a e

r hr i

i u

e T

T T

T T

s H

tet k

s Me o

a c s

D o

p e

)

t r

d Sc e

m i

r W

't rb P dl yF

)

o r

n aa eat C

C d

r nis 0

0 0

6 6

(

leB ri c

o gom o5 6

0 2

0 r

l it l

e c:

t soet 9 2

2 8

2 a

u c

sMhc

(

r W

1 2

e A

Ca c

b Nr a

F i

u e

m h

i et R e

ec Y

e c

eP) h a

l b

na n

c F" 6

7 2

6 8

E C

c of o

TnE0 1

5 5

1 3

T cu

%e 5

5 5

5 5

r 1

On d lu3 l

3 x0 0

0 0

0 F

e o

a e

9 (.

k f

t M

s y

e ic d

e t l N

s e

t l e u

i

- ae) l is q

smk%6 s

e i

7 7

8 5

6 d

U 5

0 9

8 t

c eict 0

0 0

0 n

a Dts N (w 0 a e R E

a t

F V r

a n

e D

o e.

p r

i t

d a e) t 4

2 7

4 p

a s m p% 3 0

0 2

3 o

t n

eipt 1 m

Bt ow0 0

0 0

0 a

sC(

C r

E d

o e

o f

t n

a h

d t

i l

l m

e le o

it W

M h

S s

n' g

e i

E s

r c

r i

n p

C s

io i

p gnr U

l ts y

g le eo o l

h e

a o

RiF g

g t

S B

n t

n e alt ig in t )e%

l ioB r

g ce r

A n

o o

B0 e t

r 0 w a

f uL e

F F

e1 l

lz l

l lz(

e o

e 3 o 4 B

z le le zt L H

o h

h ok o~

n n

n N

S S

Ne t

e. e r io o

o rWr%

e

)

r r

r w

p w

we p0 i

t i i e

e e

t c

s c

W e

s e

p0 r

o p

o oi L

U L

LC U1

(

S u S d

c e

s e

l

.lla 'e

)

WS iD S

e e

e

)

r t t

)

)

3 4

VeWta27 6

6 4

')

M ie87 91 51 45 45 P

- so T X 3W88G 41 42 3

5 RekH L - L -

W6 F F

3M2A 9

1 aW 2A P A P A 0W9W B

1 (

3( 4( 4( 2(

l

%3 2

4 4

6 8

.T3 1

1 1

~- 9 n

g7 9

4 5

5 i

r 0 4

1 8

8 a7 1

1 6

6 eR 1

0 0

0 0

0 67 7

7 8

8 1

1 1

2 2

s

- 0 0

0 7

8 a

m1 0

0 9

0 l

3 1

2 n

ire o

i t

)

s a

- n s

t a M

laev it s

e3 0

0 5

7 u

i T i+

2 2

c l

. InR T

+

+

e R

s x

2o s

f.

(

i s

D ic e

t l

f g

n ni

.f UWV

. din n

t oi o

le a

omCa le le le e

it e

e H

Fb b

b b

n r

io&

u a

a a

a' t

i hr e T

T T

T T

s H

t k

s A e st o

t e

a c s

D p

I r

)

t o e

m W

i d Sc r

. )

't b P yF o

r d

n aa r

e lat C C

d r

o eB n is(

0 0

0 6

6 l

o g omo5 5

0 2

0 e

r i r l

l c

c:

t is aet 9 2

2 8

2 a

t W

(

r c

s R hc u

1 2

c e

R i

b Nr a

A CaF i

u e

m h

et R e

c a

ec Y :

h a

lb na n

. cF 8

2 1

8 5

C E

ePD c of o

T n E'0 8

0 0

8 9

r T

cu

%e 1 1 2

2 1

1 l

On d lu3 x0 0

0 0

0 e

o 3

f a

e

.F. 9(

k t

M s

ic de y

e s

N t l ie u

e l 5

0 9

8 d

U t

l

- ae) is q

smk%6 7

8 5

6 n

a t

c s e

eict 7 a e R Bts N (w 0 i

0 0

0 0

a t

F a

V E

r n

e D

o p

i e

d r

p t

t 4

2 7

4 n

a e) s m p% 3 0

0 2

3 o

a t

p 1

a m

t eiBt ow0 0

0 0

0 C

E d

r sC(

e o

o t

fn a

h t

m e

d i

l lo le i

M W

t hS s

r c

s n

n p

i E

g e

r i

s C

t p

o i

U l

e la g

l s

y ignr e

o o

h eof g

g t

t n

t t) S B

n Ri a n u

e ce ig r

e%

A n

r g

r t

~

i oB o

o B0 e 0 w a

f lt L lz l

l lz( L l

e F

F e1 o

e 3 o 4 eB z

le le zd H

o h

h ol o'

n n

n N

S S

Ne e

o o

o t

rWr%

)

e e

e e. e r

it i

it r

r r

i w

p w

we p0 c

s c

W e

s e

r p0 o

p o

oi 1

L U

L LC U(

S u S d

c l

e e

is e

e le e

f a

)

t ir 3) 4

)

WS D S VBeWts27

)

6 6

4

)

PR o87 91 51 45 45 Rel H T X 3W8 G 41 42 d

3 5

8

- L -

L W6 F 9 F so 3M 2A 1

aW 2A( 3( 4( 4( 2(

P A P A 0W9W B

1

llIl1l!1I Illll)l ll D

g t

n nis esi 4

r n s 4

M-a 3

r ueB 2

c Ci M

L r

sL E

o T

6 4

8 8

2 A

R nO T E 4 9

3 4

8

/

6 0

7 9

3 N

A Rta 1

1 1

2 D-I

... n

.ig 7 0

9 3

5 0

r 0

4 6

8 8

6 a 7 3

1 4

6 5

.M 0

0 5

0 0

0 ac 7 7

8 4

8 8

1 1

1 2

2 s

l

-i 0 0

0 7

7 0

a c

1 0

C 9

9 0

n ir 3

1 1

e o

t i

a s

)n.

s M

laon 3 0

0 5

5 6

u v n it s

+

4 4

2 c

Tiu l

inR T

+

+

e I

R s

x 3o s

i

(

s D

ic e

t l n

niUWV g

t o

f n

a a

a i

oi-a t

t t

e n

a a

a e

lb D

D D

l e

t e

n r

di le io&

omF i

a t

b b

v y

a a

s H

u hrC k

s e

T n

r r

T T

o t

ta c et u

u u

e s

Me S

S S

p t o r

Sc e

D m

i W

r rb P o

aa

)

n r

dl yF C

d i leB r

l o

eatC nis(

0 0

4 0

0 3

e 1

l c:

t ri e

u c

gemo 6

6 7

0 0'

9 a

r r

W 3

b Nr a

saet 9

3 1

6 8

9 c

it e

l 1

1 1

i sMhc 3

u e

A Ca m

h t

et R e

c F

T ec h

a na n

C E

D e"0 of o

)

c 6

9 1

6 1

cu I

n 2

3 0

2 0

A r

/

l On d

. Ou

.Le1 8

9 9

8 9

N e

o f

a e

x 0 0

0 0

0 k

El t

.F(

c d

M s y

e N

se i

t l ie u

e l 3

6 3

0 8

d U

tae) lis q

c smk%

t 1

9 7

7 6

6 5

n a

s e eict a e R Bts N (w i

0 0

0 0 _

0 0

a t

F V E

r a

n e

D o

p e r d

i ta e) p t

3 1

2 4

6 2

n e i p%

t a

smp t

1 0

0 2

2 3

o a

m Bt ow 0 0

0 0

0 0

C sC(

d r

E o

e o

f t

n l

d a

h t

s e

I le le le i

d r

h W

M t

S W

r c

s g

e i~

c E

s r

n i

p l

C t

n p

i C

e s

r o

ign rg U

le te e

a o

o h~

t s

y eo F

g g

t l

Ri S

h t

lt ig in n

t )

S B

n a

e% r l

e c e g

n r

r A

lio B o o

B0 e

r 0

w e

t L

e F F

e1 o

w a

lt lz l

l lz(

o e

3.

f e

o 4

. B z le le zd L

L) o h h

ol o) o%

H N S S

Ne n

n n

rW r%

t t

5 o

o o

e5 r2 e

it i

i r

r r

e e e e

e. p7 pD r

t w

p w

we i

c s

c o

p o

oi pD pO r

W e

s e

L U L

LC UI U(

(

S u

S d

c l

l e

e s

la e e

)

e e

r

)

ti 2

i WS D

S 1

)

VeWt 9

P M a

9 0

. )

)

41 41 40 7

0 de Rel H S

9 42 26 57 1

K T

4 -

0 -

se 0

3 1

8 2W 2N F 4 F F

1 1

aW 6 2A 2A 2W 2W 2W B

4 5(

5(

8( 7(

7(

RF 85 A

AE1 3 5

6 5

/

4 9 6

5 9

N T1 1

1 1

%2

. 3 ng77 7

3 5

0 i

r 06 2

8 8

6 a7 2 1

4 6

5

. M p00 5

0 0

0 o7 7 8

4 8

8 1 1 1

2 2

s 00 0

7 7

0 m1 0 0

9 9

0 la i

3 1

1 n

re o

i t

)

r tn s

a M

la o e

s r

it a

o30 0

5 5

6 i T u + 4 4

2 u

InR T

+

+

c l

x s

. R s

e

(

i 3 o s

- g D

it lc e

n a

a a

n f

ni oi UWV di le a a

t e

le o

t t

n a

ta e

om Fb d.

D D

lb b

it e

n r

hr C av ru u

o o&

v.

y a

a i

k s

Me S

S S

s H

T T

e T ru t

u et r

it s

D p

e a c

~

r o

)

t e

m W

i d Sc r

-. yF o

)

't rb P

- at C l

r C

d n

a a r

nis ri 00 4.

0 0

3

(

e leB r

l

sem o66 7

0 0

9 o

e t

l c

c:

t sae t 93 1

6 8

9 a

(

r c

sMhc c

W 1

1 1

u a

e A C F i

a Nr a

u e

m h

i e

et R e

c ec Y

e P ")

h a

lb na n

4 9 8

4 8

A C

E cF 85 0

8 0

c of o

TnE0

/

1 33 3

3 3

N r

T cu

%e On d lu1 l

x00 0

0 0

e o

2

'Fg(

k f

a e

t

M s

i d

c e

y e

e N

s t l l

e u

i t

l ae) 3 6

3 0

8 97 7

6 6

5 d

U is q smk%1 t

eict c s e

Bts N (w 0 0 i

0 0

0 0

n a

a e R E

a t

F a

V r

n e

D o

e p

d r

t i

- ae) 2 4

6 2

p ta s m p% 310 0

2 2

3 o

t n

1 eipt m

Bt ow00 0

0 0

0 a

sC(

C d

r E

o e

o f

t n

a h

t d

m e

i l

le le t

le d

W M

i h

S W

s r

c E

s g

e n

p ir i

.n ig e

s C

r

_ i t

o p

ignr U

l C

s y

eo o l

l e

a l

e o

h le RiFteg ig g

g t

B n

t

) S h

e al i n

n te%r S

t c

t A

n r

r B0 e r

l oB i

o o

0 w e

a f

lt L eF F

e -

lzll t

le1 o w

e 3 o 4 z(

L o

B z e te zd L)

H oh h

ol o) o%

n n

n e

NS S

N Wr%t t

5 e

o o

o r

r r r

r e5 e 2

r i i

it ee e

e. p7 pD iW e

s e

t w :r c

s c

wp w

oipDI pO op o

LU L

LCU( U(

S u S d

c e

e

. l ~

le s

la e

)

)

e e

t i 9

1 0)

WS D S i

r 2

eWt V M a

9

)

)

P de 41 41 40 7

0 Rel H S 9 4226 57 1

K T -

03 1

4 - 0 se 82W2N F

F 1 F 1

4 aW 62A 2A 2W2W2W B

4 5( 5( 8( 7( 7(

AE85 6

7 0

6 1 7 5

1 5

2 T1 1

1 1

1

%29 n

J. 0 78 4

3 5

0 7

8 8

6 8

". 7 1

4 6

5 00 5

0 0

0 6c7 7 8

4 8

8 1 1 1

2 2

s i00 0

7 7

0 la a 1 0 0

9 9

0 i

3 1

r 1

e no t

.)

i a

u s

r la cm M

s InR Te 30 0

5 5

6 it s

+4 4

2 u

T i

l

+

+

R c

e x

3 o is

(

ss D

it c l

e

g ni foin a

a dino a

t ta UWV n

t a

a D

D D

le le o

t hmC le e

a o

F b.

y a

a e

a b

b i

n r

o&

t u

e T ry y

r T

T r

i t

r ik et u

u u

s H

t s

Me S

S S

o a c s

D o

p e

)

t d Sc e

r m

i r

- 'y F W

't rb P dl

. )

n aa eat C o

r r

nis( 00 4

0 0

3 C

d eB ri o

gemo 66 7

0 0

9 l

r c

lc:

t saet 93 1

6 8

9 e

it l

(

r c

sMh c a

u W

1 1

1 2 Nr a

.C a c

e A

F i

1 u

e

a et R m

h ec Y

e c

i eP) h a

b na n

c F" 64 8

6 8

8 c

of o

TnE0 2 4 3

2 3

3 C

E T

cu

%u1 e

1 1 1 1

1 1

1 r

On d lF 2 x00 0

0 0

0 le o

a e

$(

f t

k M

s y

e ic d

e-e t

t l N

s i

l l

e u

ae) is q smk%1 t

3 6

3 0

8 97 7

6 6

5 d

U c

eict s

e Bts N (w 0 0 i

0 0

0 0

n a e R E

a ta F V n

r a

o e

D e

p r

i ta e) d t

p 2

4 6

2 p

ts m p% 31 0

2 2

3 o

a 0

n t 1 ei m

Bt ow00 0

0 0

0 a

sC(

C r

E d

o e

o f

t n

a ht d

i m

e n

lo le t

e d

W M

i hS W

s r

c n

p E

s n

g e

i e

r i

p C

ir o

ig t

s

,ig'n r U

ll C

s ly eo o e

n e

a o

RiF g g

h e

t t

B n

e alt in ign lt ) S h

ceg r

e%r S

in r

A oBo o

B0 e r

t lti L 0 w e

a f

eF F

e lzn n

le1 w

o e 3 o 4 z(

L o

B*

z e e

zd L)

H oh h

ol o) o%

n n

n

. NS S

NerWr%t t

5 e

o r2 r i o

o r r r

ee e

e. e5 wp w

w e p7 pD i

t i

it e

r c

s c

op o

oipD pO W

e s

e LU L

LCU( U(

1 S

u S d

c l ~

l e

s e

l e -

2

)

a e

e e

t i

)

r

)

)

WS D S i

VeWt 1

)

9 M

s 9

0 P

41 41 40 7

0 do Rel H 1 S 9 4226 57 03 K T -

1 4 so 82W2N F

1 4 F F

aW 62 A 2A 2W2W2W 1

B 4 5( 5( 8( 7( 7(

l'

sL T TO98 6

7 8

A ReE38 3

3 5

/

T 60 7

9 3

N A Rt 1

1 2

a1 D

.I n

i7 0 8

3 5

0 g

r 04 6

8 8

6 a7 3 1

4 8

5 M

00 5

0 0

0

. 7 7 8

4 8

8 a

1 1 1

2 2

ir 3

1 1

s l

a s 00 0

7 7

0 o1 0 0

9 9

0 n

e o

i t

s a

)'n s

M la r n u

ev30 0

5 5

6 e+4 1-i T x

s i R T

+

+

1 2

c l

it e

n s

R i

3 o s

D

(

it c l

e ni n

UWV n

a a

a o

g t

f a

o i e

n t

t t

e le t

e e

i a

a a

n r

d o&

D D

D l

i imFl b

b b

o rCa v.

y y

a a

s H

u h

ik s

e T r ru ru e

t T

T o

t e

u a c s

M e S

S S

p t

r t

o Sc m

i e

D W

r rb P

~

o a a

)

r dl yF C

d b

eB r

i l

o ea t C l

t ni s( 00 4

0 0

3 e

l c :r r66 7

0 0

9 a

r le u

c ge i W

mo93 1

6 8

9 c

it e

b Nr a saet 1

1 1

i sMh c

e A

,C a m

h u

a et R F

e c

T ec h

a na n

e' C

E of o

D c ")

7 0 8

7 9

I n0 09 8

0 5

A r

cu l

d Le1 88 8

8 8

N e

o

/

On a e Ou f

x00 0

0 0

k t

elf (

y e

i d

M s

c e

N t l ie u

e l s

3 6

3 0

8 d

U tae) l is q

c smk%1 t

i 7

6 6

5 n

a 97 s

e eict a e R Bts N (w 0 0 0

0 0

0 a

t F

a V

E r

n e

D o

e p

d r

it t

t a e) p p

2 4

6 2

n s m p% 310 0

2 2

3 o

a 1

ei a

t m

Bt ow00 0

0 0

0 C

sC(

d r

E o

e o

f t

n a

h l

d t

l d

m e

I le o

le it W

M h

S W

r c

s g

e i

e E

s r

n n

p i

C i

r p

l C

t s

o ig ign U

le l

s y

ro o

le e

eof g g

t ) S h

a l

h Ri alt in n

t te%r S

B n

c eg ig l

enioB r

r B0 e r

A l

o o

0 w e

t l L eF F

e1 w

a f

t o

e lzl l

lz(

l L

o e 3 o

4.

B ze le zd L) oh h

ol o) o%

H NS S

Ne n

n n

Wr%t t

5 o

o o

5 r2 e

it i

it r r r

r e. e e

ee e

wp w

w e p7 pD r

i op o

oip0 pO c

s c r

W e

s e

LU L

LCU1 U(

(

S u S f

=

d c

l e

l e

e e

s a

)

t ir 2

e e

)

i WS D S VeWt 1

)

9 P M a

9 0

)

)

41 41 40 7

0 de Rel H S 9 42 26 57 1

03 1 K T 0 -

se 82W2N F

F F

1 4

1 aW 62A 2A 2W2W2W B

4 5( 5( 8( 7( 7(

5 0 6

7 1

T3 N

1 1 1

2

% @3 n

ig7 0 5

3 5

0 r 00 4

8 8

6 a73 1

4 6

5 M

i 00 5

0 0

0 e7 7 8

4 8

8 1 1 1

2 2

ls i.0 0

7 7

0 0

a a1 0 0

9 9

0 i

3 1

1 r

n e

o t

.)

i a

n s

r M

lao r

s it n

o30 0

5 5

6 InR T+ 4 4

2 u

i T w

l 4

R

+

+

c e

x s

s

(

3 o i

s it c D

l e

g ni f

n a

ta a

n n

a UWV oi t

t a

a e

D D

D d

le o

t d i e

e om Flb y.

y.

t a

b i

n r

hr Ca y ru ru o&

t a

a e

i u

e e T

t r

T T

ik s

Me S

S S

s H

t u

t o

a c s

D o

p e

)

t r

d Sc e

m r

i

't rb P d

l' y)F W

o r

n aa eat C 3

C d

r nis

(

eB ri 00 4

0 0

o gem o66 7

0 0

9 r

l c

lc :r it t

sae t 93 1

6 8

9 la e

(

u c

sMh ca c

W 1

1 1

e A C F b Nr a

i u

e m

h i

3 et R e

c ec Y

l eP h

a b

na n

cF990 9

9 2

c of o

TnE0 9 5 4

9 3

A C

E

/

e T

cu

%u3 1 4 5 5

4 5

N r

On d l $(

k l

x00 0

0 0

F e

o 3

a e

f t

M s

i d

c y

e e

t l N

s e'

t l ae) ie u

lis q

smk%1 3

6 3

0 8

t i

7 6

6 5

d U

97 c s e

eict 0

0 0

0 n

a Bts N (w 0 0 a

e R E

a t

F V a

r n

e D

o e

p a e')

d r

i t

t 2

4 6

2 p

e i p % 31 tsmp n

a 0

0 2

2 3

o t 1 m

Bt ow00 0

0 0

0 a

sC(

C E

d ro e

o f

t n

a ht d

m e

i l

l d

i M

le o

le t

W hS W

s g

e r

E s

r e

. 'n i

o in p

i c

s p

C i

t r

eo o l

s y

g l

C ignr U

le le l

o e

a h

Rift in i

g g

t S

h B

n t

e al n

t )e%r S

l

.ioB r g

n ceg A

B0 e r

t r

o o

l L 0 w, e a

f lt eF F

e1 w

e 3 o 4 o

e lzl B

z le ll lz(

L o

e zd L)

H oh h

ol o) o%

n n

n Ne NS S

rWr%t t

5 e

o o

o r r r

5 r2 r

it i

it e. e ee e

e wp w

w e p7 pD c

s c

i op o

o i pD pO W

e s

e d

r LU L

LCUI U(

(

S u S c

e e

l l

e e

s la

)

~

t i -

2

)

WS D S e e

r i

)

VeWt 1

9 P M a

9 0

)

)

Rel H 141 41 40 ~ 7 0

e d

S 9 42 26 57 K T -

03 4 - 0 1

se 82W2N F

F F

1 4

1 aW 62A 2A 2W2W2W B

4 5( 5( 8( 7( 7(

i

'a.

dg Y t

e sisF 5

R en P Bo si n sE - -

4

?^%

a 6

opeB 3

1 To c 3

riPL 9 "A.

.iY f

TP RF 1 0 8

7 5

8 1

9 0

4 1

,AE 62 8 5

3 6

4 T3 1

1 1

1

%33 n

ig 9

3 5f 0

7 5 8

8 6

r 0 0 9

4 6~

5 e 7 2 s

A

~

D

~ '

0 0 5

0

0.

0 ae 7 7 8

4 8~

8 2~

2 1 1 1

s

'ai 0 0 0

7

7. ~

0 l

1 0 0

9 9

0 a

3 1

1 '

n i

re o

i t

..)n s

a rm 6

M l

s aee 3 0 0

5 5

it nR Ti

+

4 4

2 u

T i

+

+

c l

I x

s

. R s

e

(

i 3 o s D

t c e

g ini l

a a

n f

n a

ta a

e' le o

UWV oi-t t

a t

din ~

le a

D D

D l

e omF b v.

i b~a

a e

b t

n&

r hrC a

y.

v i

o u

et u

u ru s

H T'

T e

T r

r t

k s

Me S

S S

o it e

a c s

D p

r

)

t o e

m W

i d Sc r

- ; 'y F o

)

't rb P

. dl r

n aa eatC r

nis( 0 0

4 0

0. '

3 C

d e

eB vi r

l o

gomo 6

6 7

0 0

9 l

e 6

c it f

t saet 9

3 1

6 8

9 a

3 c :r u

c sMhc c

W

(

1 1

1 e

.A.Ca b Nr a F

i 3

i u

e m

h et R ec Y

e c

e eP h

a lb na n

. cF9 c

of o

.TnE0 8 0

9 8

9 9

C E

1 0

9 1

3 3

e 1 1 2

1 1

1 1

r T

cu

.%u3 l

3 2 0

0 0

0 0

e o

On d Fe 0

l f

a e M

s k

t c

d e

i y

e e

N s

t l ie u

t-ae) t l 9

7 7

6 6

5 d

U l

1 3

6 3

0 8

is q

smk%

c eict 0

0 0

0 0

n a

s e Bts N (w 0 i

a e R E

a t

F a

V

~

r n

e D

o

. e p

r d

i t

t-e e) 3 1

2 4

6 2

p n

ta s m p%

0 0

2 2

3 o

1 e3ow 0

0 0

0 0

0 a

pt m

BsC(

C r

E' d

o e

o f

t n

a h

t d'

m e

i n

le d

e M

i W

le t

hS c'

W s

1 r

E s

r n

g e

i e

s i

n p

C i

t r

o y

p C

a y

ign n U

ll eo o

e n

l o

h' e

k a

Ri F g g

t t

n ig t) S' h

n E

n a

t le% r' S

e c le ig B0 e r

t A

n o B o o

0 w e

a f

r r

i L

l le le F F

t z n n

le1 o' w

e 3

o 4

z(

L o

B z e e

zd L)

H o h h

ol o) o%

n n

n N S S

Ne rW r%

t 5

e o

o o

t r r r

e5 r2 r

it i

it e

e e e

e wp w

we p7 pD c

s c i

op o

oi pD pO W

e s e r

L U L

LC U(

U(

I S

u S d

c e

e s

l

. v e

a e e

e r

)

i s

1

)

WS D S

)

t i 2

VeWt 9

a 9

0 -

)

)

41 41 40 7

0 PR de Rel H S

9 42 I6 57 1

K T -F JF 0 -

so 03 1

aW 82W 2N 1

F 62 2A 2W "?

l 12W fl 4 5 (A B

5( 8 7 (t 7(

(

r T

0 9 9 1

2 0 7

8 1

1

/

f/"

o sL f

T nU 0 3 3 0 6 8 1

0 6

6 A

R R "t 2 1

1 4 3 1

0 6

6 6

N A

a1 1

1 1

1 2

2 2

2 2

0 1

n ig 7 6 6 6 6 0 5

5 6

5 A

r 0 3 3 3 3 6 8

9 9

9

/

a7 6 6 6 6 5 6

6 6

6 N

M 3

3 0 0 0 0 0 0 0

0 0

0 0

e7 7 7 7 7 8 8

8 8

8 8

1 1

1 1

1 2

2 2

2 2

2 s

i 0 9 9 9 9 0 7

6 6

6 7

la e1 i 6 6 6 0 9

0 0

0 9

t 3

2 2 2 2

1 2

2 2

1 ir n

e o

t

)

i a

l r tn s

ia om3 M

it s

n 1

1 1

1 6

5 7

7 7

5 T = +

+ + +

+ 2 u

InR T l

R c

e x

s s

(

o i

s lc D

i e

g f

WV 1

n oi n

din le le le lb b

ib b

b lb b

b it o m f-b b b le e

le le e

it le o

t it e

e a

e n&

r hrC a a a a a a a

a a

a a

e U

u i

t e

T T T T T T T

T T

T T

s H

et k

s Me o

d c s

D no p

e e

r lac r

)

m i

W b

r C Is P

dl yF o

a eat r

nf s(

it 6

6 6

9 C

d a leB ri 0

0 0 0 0 3 4

1 o

gemo1 8 8 2 3 9 2

0 0

0 3

l l

r i:

t saet 5 5 5 8 7 9 5

2 2

2 4

a 7

e r

Me c

sMh c 1

1 2

2 2

1 W

l 3

a A Ca c

b F

r i

c e

e 3

u m

h T

et R c

Y e

c r

)

h n

P) h a

a De Tf o

7 8 8 1

8 0

0 A

C E

I c F' 8

6 1

7 7 7 8

7 7

7 N

1 1

6 3 3 8 6

3 6

6 u

L n E '0 8

8 1

/

r e7 yn d 1

O u 7. (x 0 l

0 0 0 0 0 0

0 0

0 e

o it a e

El f

l t

F8 k

iM s

2 cl e

i d

c

(

e ae u

N s

e F s q

d U

t l )

- ae%2 t

7 7 5 0 8 7

8 8

8 7

s e

s e R eNi kct 7 5 5 5 5 5 5

6 6

6 5

n a

V D s N (w 0 0 0 0 0 0 0

0 0

0 0

a ta n

E r

o e

D p

it e

d r

a a e) p t

n te i p% 8 9 9 2 1

2 9

4 4

4 6

o smp m

0 0 0 1

1 3

1 3

3 3

1 a

t r

Bt ow0 0 0 0 0 0 0

0 0

0 0

C sC(

d o

E e

o f

t in 5

a h

3 t

n m

e e

d 9

h le f

i M

o S

W ty s

t r

d d

i g

e le le i

E s

c l

p d

r i

n n:

p le C

W W

ld b

io g

r U

e e

ia s

ly gno W

ll t

W la s

t t

e R,

i n

B n

eof o

h ig i

v e

a Ri

)

t t

a t t te%

ig S

n n

g in cB te te t

te e ale e

l l

o la la la la B0 n o

e n

a r

A 0 o e

L L

o t

e P P P P e1 L w

le le l

)

l l

L n

.lt L lz le e e e zd o

a e

l n n n lz(

B o

h h h h ol h0 h

h e) d e3.

f o

H le%

z L

o4 e

H S) h%

N S S S S Ne e

e e e e e. eh e%) S' S 0 os

n n n r )% r%S rWr t

3 a

1 r

r r

r r r

e e7 r6 b

e i i it o

o o e

w p p w w we pt p0 w0 w3 wD r

We r

e i

t o p0 o0 oD oO a

o p p o o oi p r

c s c B

L U U L L LC U( U( L( L( L(

1 1

I s

s e e

S uS l

u d

c e

la l

e e

la i 6

2 9

c s

v e

t r

)

)

)

e e

e VeWt 4)

WS IDS 6

4 M

a 9

1 2

1

)

4 4

4 5

1

)

2 5

P 0 2, 45 5

5 de 4 9 9 7 1

57 66 42 4 4

5 +

n Rel H SY 8 8 0 5 3 -

7 -

L - L - L -

1 A 1

1 1

e 5

se u

3R 7 7 3 2 F

F 1

1 9 F 9A 9A aW 2A 2 2 3 3 2WTW9W9 S 9 S T S F

B C C C C 7( 8( 2( 2( 2( 8(

1 (

T F0 7 7 4 3 0 6

4 4

4 I

A 70 0 0 2 1

6 6

1 0

0

/

R E7 4 4 0 4 1

8 2

7 7

A 1

1 1

1 1

1 1

2 2

2 N

T 7

%ig i5 6 6 6 6 0 5

5 5

5

/

n A

g r 0 3 3 3 3 6 8

9 9

9 N

a7 6 6 6 6 5 6

6 6

6 M

3 0 0 0 0 0 0 0

0 0

0 0

o7 7 7 7 7 8 8

8 8

8 8

1 1

1 1

1 2

2 2

2 2

2 s

,0 9

9 9 9 0 7

6 6

6 7

a l

e1 6

6 6 6 0 9

0 0

0 9

n i

3 2

2 2 2 1

2 2

2 1

r o

e i

t

.)

s a

m s

r M

la er 1

1 1

1 6

5 7

7 7

5 u

l it i o, 3 i

T

+

+

+ + + 2 c

e I

R T n

R s

x i

s

(

o D

s lc i

e n

g iWV f

t n

o o

i e

lb b b lb b

lb l

b lb b

ea n

e le le e

le e

e le e

le it it e

d imFl b

b i

n&

r o

U u

h rC a a

a a a a

a a

a a

a s

H k

s e e T

T T T T T

T T

T T

T t

o e

t d c M e p

s r

no D

e m

i

)

W ac r

d ls P

y )F b

o

't IeB o

isa et 5 5 5 8 7 9

5 2

2 2

4 a

dl C

d r C n

r ea t

0 0 0 0 0 3

4 6

6 6

9 l

ni s(

r i

ge imo1 8 8 2 3 9

2 0

0 0

3 e

l r

a c

l t

t W

Mr c

c sM h c 1

1 2

2 2

1

(

e a

A C a i

m h

r 1

e e

- F u

e c

)

et R h

a i

r c

Y b h P

C E

a n

c Tf o

e F95 4 4 1

1 5

4 1

4 4

0 8 2 2 1

1 8

2 1

8 8

A r

T u

Tn E

c l

d e 71 2 3 3 3 3 2

3 3

2 2

N e

o

/

yn

%u f

7 x0 0 0 0 0 0

0 0

0 0

k t a e

1 c

d l

t lF @(

iiM s

e i

cl e

N s

ae u

d U

Fs q

e l 7 7 5 0 8 7

8 8

8 7

n a

tae) s e

smk%2 5 5 5 5 5 5

6 6

6 5

a t

teict 7 e R i

0 0 0 0 0 0

0 0

0 0

a V

Bts N (w 0 r

n E

e D

o p

d p

it n

a e

o r

a

.t e) a 9 9 2 1

2 9

4 4

4 6

C mt s m p% 8 p

0 0 0 1

1 3

1 3

3 3

1 d

t ei ro Bt ow0 0 0 0 0 0 0

0 0

0 0

e o

sC(

t 5

a h

E fn 3

t m

e i

9 l

ld o

i M

f t

e y

s le W

l E

i s

t h

i i

S b

s r

c la t

g e

l d

a d

ia s

ly t

n n

p d

O le le le a

p l

v e

a o

i U

le n

g e

ignr W

l W

W W

B n

o eo o

h a

A F

t t

S t

t t

t Rusl e e e

lt )

g g

g n

o o

o d

e3 o4.

t a

f

c. e t

t te t

e% g r

e n

e n

n n

o n uB la l

l l

B0 a a a 0 oL w

L L

L e

H li L lz n n n l

lz(

t e

P P P P e1 l

o t

l l

s n

n n

)

te le%L l

l le) a B

z e e e l

zd e

e o

o b

e i oi e

o h h h h ol h0 o-h h) h%

r e

S 0 t

S) S%S 3 r

Wc is c e

i t

t N

N S S S S rWr r% r% r7 r6 a

)

1 r

r r

r r

eh e e

e3 e e

s e e

e e e e e.

pt p0 w0 oD oO la l

e s

0 w wD s

w p p w w wc o p0 o 1 L(

u d

c r

e S

uS o

p p o o oi p B 1

L U U L L LC U( U( L(

LI(

e v

e e i e WS DS e

/

c la i 6) 6)

4 e

e t

)

n r

V eWt 4)

- 9 7 1 57 68 42 4 - 9A de 4 9 -

1

)

)

2 2

9 lu P M a5 9 1

2 1

4 0

2) 45 4 5 4 5 4

F 5

4 5

1 1

1 Rel H SY 8 8 0 5 0 5 -

  • L - L L -

3R 7 7 3 2 F

F 9 F 9A se A

1 1

1 aW 2A( C C C C 7( 8( 2( 2( 2( B(

2WTW9W9S 9S T S 2 2 3 3 B

1

T' P R,

F3 9 9 9 0 5 1

0 9

4 R

F E0 6 6 0 6 4 2

0 5

A 4

A 9

8 8 0 9 1

3 6

5

/

2 T 7 N

1 1

1 1

1 1

7

%1 n

ig7 9 9 6 8 0 5

5 5

A 5

r 5 9 9 3 2 6 8

9 9

/

8 a6 5 5 6 6 5 6

6 6

N 6

M a0 0 0 0 0 0 0

0 0

0 0

c7 7 7 7 7 8 8

8 8

8 8

1 1

1 1

1 2

2 2

2 2

2 s

l i 0 9 9 9 9 0 7

6 6

6 7

a e1 6 6 6 6 0 9

0 0

0 9

ir 3

2 2 2 2 1

2 2

2 1

n e

o t

i a

l mm i

1 1

1 6

5 7

7 7

5

)r, s

M ia s

o3 u

l it e

T,+

+ + +

+ 2 InR T c

e R

x s

s

(

o i

s lc D

i e

WV

- g 1

f n

n oi e

di e

le b lb b b b

b b

lb b

io t

t n

e le le le le le e

le a

in&

Flb b b t

omCa r

e U

u h r T

T T T T T T

T T

T T

s H

a a a a a a

a a

a a

i t

k s

ete d c Me o

s no D

p e

e

)

r d lac m

i r

b W

S P

't I

a dl yF o

)

r n

r eat C C

d o leB nis( 0 0 0 0 0 3 4

6 6

6 9

o ri gemo1 8 8 2 3 9 2

0 0

0 3

e 9

r l

l c i :

t it r

Me c

saet 5 5 5 8 7 9 5

2 2

2 4

a

(

W sMh c 3

1 1

2 2

2 1

u ic a

A Ca 1

r e

e F

m h

3 a

et R e

c l

r c

b h Y

a n

h a

  • P c Tf o

eF)

C E

T u

Tnc E "0 e 8 8 3 3 4 8

3 3

3 0

1 1

1 1

0 1

1 0

A 0

r yn d

%u7 0 0 0 0 0 0

0 0

0 f

x0 1

1 N

1 l

o e71 1 1

1 1

1 1

1

/

a it a e

l t

F1 k

l

(

iM s

9 i

d c

cl e

e ae u

N s

Fs q

e l d

U t

s e

- ae) smk%2 7 7 5 0 8 7

8 8

8 7

n t

a e R eict 7 5 5 5 5 5 5

6 6

6 5

a t

V Bts N (w 0 i

0 0 0 0 0 0

0 0

0 0

a r

n E

o e

D i

p t

d e

p a

t e) o r

n mts m p% 8 0 0 1

a 9 9 2 1

2 9

4 4

4 6

a 3

1 3

3 3

1 C

eipt 0 1

ro Bt ow0 0 0 0 0 0 0

0 0

0 0

e o

d sC(

E f

t n

5 a

h 3

t i

9 m

e l

d f

it M

o le lo ty i

s W

i E

s h

S b

l i

r c

la s

n g

e ir ia s

ly t

n p

d C

l d

d d

o i

p le l

e le is e

a v

g ignr U

a eo o W

le W

W W

B n

o n

RiF t )

t S

t i

t t

t h

a A

c e t

e e e lt t

t e al e

t t

t e% g g

g g

n i oB la la la la B0 n n

n n

o a

f n

i P P P P 0 o o

o o

d e 3 o4 tt L lz l

l l

l le1 L

L L

L e

H e

l )

c l

l l

s n

n n e

z(

le%L le le le) a B

z le le le le zd b

e o

h h h h ol h0 o h

h) h %

r io o o N

S S S S Ne S 0 S) S%S e

i t

i it t

rWr 1

)

3 r

r r

r r

r e% r% r7 r6 a

r c

s c We e

e e e e e.

pt p0 eh e

e3 e s e w

p p w w we o p0 w0 w wD s

0 o

p p o o oi p

r B

o oD oO e

S uS t

U U L L LC U( U (1 L (1 LI L(

la l

e e

u d

(

c v

e s

e e

l WS DS i

e e

la i

)

6 4

e r

c t

n

)

)

V eWt 4) 6 M

a 9

1 2

1 1

)

2) 45 4 5 4 5 4

F

)

57 68 42 4 4

5 lu 2

2 9

5 0

P d e 5

4 4

9 9 7 1

Rel H SY 8 8 0 5 0 1

1 1

7 -

L - L - L -

5 se 3R 7 7 3 2 F

F F 9A 9A aW 2A( C C C C 1

1 9

1 A

2 2 3 3 2WTW9W9 S 9 S T S B

7( 8( 2( 2( 2( S(

1 l

R nO 0 8 T E28 1

8 4

/

3 2

A 55 0 0 2

N 7

2 Rt 1

1 1

2 2

2 a1 n

D I

ig04 4 5 5

5 0

3 r 4 6 6 8 8

8 6

8 a35 5 6 6

6 8

4 IR 05 5 0 0

0 0

0 c7 8 8 8 8

8 8

4 a

1 2

2 2

2 1

s l

a r

or 09 9 7 7

7

0. '

7 i

06 6 9 9

9 0

9 n

e 2 2 1

1 1

o t

s 1

i a

s M

i r n u

)n s

a oT J u o 01 1

5 5

5 0

5 l

WT c

e u 5 + + -

1 1

x s

hR T

+

+

s it o R

i s

nc D

(

l e

Ui n

WV g

o t

f t

e oin a a t

i a

a n&

t t

r a a a

d in-le D D le e

le e

a it e

D l

u o

F b

. b lb b

lb s

H hmC Pk s

a y.

v a a

a a

y r

c T

T T

T r

o t

s e e T ru ru u

p e

r o t

a c e

Me S S S

r i

D m

eb P o

r W

lca r

yF C

d

)

1 uB dl r C N:

o eat l

t nis(

03 8 4 2

6 6

6 la e

e r c gemo ri W

r 7 9 5 2 8

7 7

7 l

b h e a

saet 77 3 5 3

5 6

5 c

it cr i

c au e

sMhc 1

1 1

1 1

A Ca m

h T

et R F

Bc e

c a

n h

a t f o

.'e C

E ID c ") 0 0

r inu 5

1 3

1 3

l on d n0 6 6

A Le1 6 8 4 6 8

/

4 6

e o

Pa e

Ou 2 2 N

2 1

f k

1 x0 0

t elf (

c d

M s

e e

i yl N

t e u e -

s is q

tae) d U

l l

t 7 7 2

4 9

2 is e

smk%26 80 0 5 5

6 5

5 n

c eict a

e R Bts N (w 0 0 i

0 0 0

0 0

0 a

t aF V n

E r

a o

e D

e d

p it r

a e) p t

a n

m e i p% 1 0 2 9 7

7 3

3 tsmp o

t 1 2 1

1 1

1 2

2 a

Bt ow00 0 0 0

0 0

0 C

r sC(

d E

e o

o f

ta h

n l

m e

t i

le le le l

i d

d h

S M

n t

W W l

t e

s e

h E

s io te i

t it S

le t

a e

d i

d g

g r

s gn la e

n n

e o

o w

W s

y eogP m

L L

o )'

l r

e a

e i

Ri nn e) l L% g B

n t

tn%n le t

e aie te D

iooS l

i0 h

h o0 n c

h a e

t lle e 3 o

4.

n r

t 0 o t

A i LF P o0 S S

t 1 e1 L a

f lto te e

(

(

B lt t

e ted ia ta) iad

%l l

i eia l

Bd Be d) d% do h H

e S e

z. e%m7 m W. S )

e3 n

n n

eWm7 e mr e%

e it i

it o

o o

r lz re w zc e eD ec w0 l

e r 2 r

r 0

r z

Dt t r i

ot o oi t

r c

s c

NI L NC InI( InO o

inCi L(

W e

s e

n 1

(

S u S v,

d c

a e

)

)

e s

e le r

t i 7

6

)

5 0

7 e

e VeWt

)

1

)

WS D S i

1 1

2 5 2 M

s3

- - 2 1

P do2 4

6 7 1

4 1

3 6 1 1 Rel HP1 2 7 8 8 6 7 9 2 8 1

1 4 -

so 2 8 4 1 A 0A0A 2A 7A aW 29 1

T S P S P S 1 S S

1 B

A C 8(

1 ( 1 (

7( 6(

1

R E3 4 6 1

8 A

7 4

A 24 9 4 9

/

4 9

T 5 N

2 1

1 1 1

1 3

%2

.n L

ig04 4 5 5

5 0

3 r 4 6 6 8 8

8 6

8 a35 5 6 6

6 5

4 M

a05 5 0 0

0 0

0 c7 8 8 8 8

8 8

4 1

2 2

2 2

1 s

l i

i 09 9 7 7

7 0

7 a

a06 6 9 9

9 0

9 n

r 2

2 1

1 1

e 1

o t

i a

s

)n s

M l

rr t a oT u

1 5

5 5

0 5

N o01 i T u5 +

+ -

1 c

l it e

InR T +

+

s ix s

R i

o s

D t

(

ic nl e

n i

g UWV

. oin a a t

i t

f a

o a

t t

t e

D D le le e

le a

n a a n&

t r

di e

D e

Flb

.. b b

lb b

s H

i la u

omC h r at v a a

a a

v k

o Pc s

e T n T

T T

T t

r et u ru u

r o Me S S S

p e

s m

ir e

D

)

d ac W

r eb P

)

o

't lc a r

d yF C

d n

uB e lat C r

o n is(

l ri 03 8 4 2

6 6

6 e

l c N :r t

g emo7 9 5 2 8

7 7

7 r

a W

c is aet 7 7 3 5 3

5 6

5 c

t

(

h e a

s Mhc 1

1 1

1 1

i 1

cr e

A - Ca m

h e

au F

R e

c t

e c h

a lb Ba n

Y -

C E

c f

o

'e P t

T nu cF) 6 6

8 r

in d

T n E0 5 5

2 A

5 0

l 2 5

/

3 e

o 6

o e

%e51 1 4 3 1

9 N

8 k

f Pa t

lu 1

1

M s

F2(

0 1

J x0 0

0 yl e

9 ic de i e u

N s

t l

s q

d U

ic s e

e l

.tae) n a

a e R smk%26 7 7 2

4 9

2 a

t t

80 0 5 5

6 5

5 a

FV eict r

n Bts N (w 0 0 i

0 0 0

0 0

0 e

D o

E,-

p d

it p

n a

e o

r a

mt

.t e)

C a

0 2 9 7

7 3

3 s m p% 1 p t 1 2 1

1 1

1 2

2 d

r eiBt ow00 0 0 0

0 0

0 e

o o

f sC(

t n

E a

h t

m e

i M

l it le d

d s

h le le le i

n t

W W l

E s

S e

h s

t e

i t

t S

d s

y a

i i

o t

d g

g r

le l

a e

n n

e e

a ign l

m L

L o

o w

W B

n eogP re) le le o)

A Ri nll e

t tn%

l l

L%i t

g t

ai e t

g e

cr h 0 h h

o0 n a

f iooS la io0 S S

n t 0 o e 3 o 4 lt LF P

te( L 1

l e

e e

t 1 iad ll H

e -

t t

e t

(

B leia ll ted ta ta) l e

n n

n Bd Be d) d% do h e

it i

it h

l i

i o

o o

mW S) e S e

leW m% m7 e

e3 r

e n r

r. e%

c s

c r

i 7

l r e 2 red e c w0 W

e s

e z r z. re z e w ze t Dt r

0 r

ot o oi t

NI L NC InI InO i o1 S

u S InC L(

d n

(

(

c e

s e

le e

e l

la WS i S e

D r

t i 6

)

)

1

)

)

)

VeWt 7

a 1

1 2 5 2 5

0 7

M de3 - 3 6 1 1 21

- 2 1

P 7

1 4

4 6

Rel H P1 2 7 8 8 6 7 9 2 8 1

1 so

- 8 -

aW. 2 8 4 1 A 0A0A 2A 7A 2 9 1

T S P S P S( 7( 6(

1 S 1 S B

A C 8(

1 ( 1 1

R E4 7 8 5 A

3 1

0

_A 02 8 1

/

8 1

6 T 5 N

1 1 1

1 2'

3 1

%2 9

n ig24 4 6 5

5 0

3

. r 7 6 6 6 8

8 6

8 a25 5 6 6

6 5

4

.M a05 5 0 0

0 0

0 e7 8 8 8 8

8 6

4 1

2 2

2 2

1 s

l a

. 9 9

9 0

9 n

i n 0 9 9 7 7

7 0

7 o06 6 re 2 2 1

1 1

1 o

t i

a s

)

M l

r s

n u

a er 01 1

5 5

5 0

5 l

i i e5 t

c iT

+ + -

1 e

inR Ti +

+

s 1 x ss

- R(

i it o D

c nl i

e UWV

- g n

f e

oin' t

ta a

o t

a t

a t

n a a i

n r

di e D D le le le le a

la&

t D

e u

o mFl i

b k

h rC a v.

y.

b b

b b

s H

a a

a a

y Pc s

e T

t T

T T

T ru o

r r

et u u s

M e S S S

p e

r o d

ac e

D r

)

m i

r W

't leb P

)

n c a o

r dl yF uB eat C C

d r

o ni s(

l c N :r ri 03 8 4 2

6 6

6 e

l t

ge mo7 9 5 2 8

7 7

7 r

a

(

c W

itsa et 7 7 3 5 3

5 6

5 c

h e a

sMh c 1

1 1

1 1

i 1

cr e

A C m

h a

e au et R

F c

e c

lb Ba n

Y h

a e

C E

c f

o P

t T

nu

- cF) i n d T n E"0 1

r 5 2 1

A 3

2 9

l 7

o e

%ue51 0 6 6 7

/

4 6

3 e

o 0 0 0 N

0 0

0 f

PaM s

F2(

k t

l 3 x0 yl e

9 ic d

e N

s t e u

i l

s q

d U

e:

ic s e

t l n

ae) a a e R smk%2 6 7 7 2

4 9

2 t

a t

80 0 5 5

6 5

5 FV eicti 0 0 0

0 0 ' 0 r

a n

Bts N (w 0 0 e

D o

.E p

i d

t p

e n

a t

r' o

mto m p% 1 a e) a 0 2 9 7

7 3

3 C

oipt 1 2 1

1 1

1 2

2 d

ro Bt ow00 0 0 0

0 0

0 e

o f

sC(

t n

.E a

h t

m e

i M

l i

le d

d t

h le le i '

s S

le' E

s W W i

e h

s

- ~

t S

d n'

a t

io e

i it t

d g

g r

le ly s

t

.gn la e

n n

e o

o w W e

a m

o)

B n

eogP r

L L

Ri nll t

e) l l

L% i t

t A

tn% le le aie te g

e cg h la i0 h

h o0 n a

f ln r

o0 S S

t 0 o ooS i LF te( L e 3 o 4 P

1 lto t

t t

t 1 e

eld te ta) e l

H

(

n B

leia te lt iad e n

n n

a i

Bd Be d) d% do h h

i o

o o

e e

it i i e S m W. S )

eW m7e%m7 e3 r

e mr e%

c s

c r

t lz r w ze tnt InO i

l e

z r

i w0 W

e s

e r 2 r r

z e

. e eD e c 0

ot o oi Dt tnC L(

S u S r

n I

o1 NI L NC I

(

(

d c

e s

e le l

e e

e la WS iD S

r t i -

)

)

eWt 7

6

)

)

1

)

V M 1

1 2 5 2 5

. 0 7

a3

- - 2 1

.1 4

P d e2 4

7 1

3 6 1 1 6 Rel HP1 2 7 8 8 6 7 9 2 8 1

1 4 -

so 2 8 4 1 A 0A0A 2A 7A

. aW 29 1

7 S P S P S 1 S S

1 B

A C 8(

1 ( 1 (

7( 6(

1

R.

ro sL F

T nO 0 4 0 2 0

R E89 1

3 9

T A Rt 3 4 1

5 8

1 1

1 2

a1 D

I n

i0 0 0 5 5

g r 4 4 7 5 8

a33 1

6 6

M 00 5 0 0

ac77 8 8 8

1 1 2

2 g

in s

re la i

i 00 0 0 7

e r

e00 0 7 9

n n

e 1

1 o

ig t

i a

n s

E M

)

s ia m m4 l

u 00 0 6 5

l c

n e it T 4

4 5 2

InR T ++

+ -

t io s

s R

i s

it D

(

ns e Uu V n

b g

a o

t t

f nm e

oin t

i a

r n

l D le le i

H a

t e

lao di ee u

Flb b omOa r

a y.

b b

s PC s

h a

a e

TT r

T T

o t

r s

et u

a&

e Me S

p er D

m i

ex r

o P W

lc o

c 1

ul r

)

dl yF C

ld i o r

NWt eat C l

e e

nis( 00 8 5 0

a 3

ri c

r 68 2 0 0

l h

gemo7 W

4 c

b c&

s itsaet 5 4 7 8

i 1

1 a

a e

sMhc m

h 3

A Ca k R T

e c

- F e

c Bo n

. e C

E h

a t c o

IDc90 nb 0

r 2 5 7

l ia d

n0 7 7

o Le1 P B e

Ou 5 1 6 5 5

e o

3 2 f

x0 0

2 k

t elf (

c d

s

r e

e i

ye t r u

N e

s i u q

t l d

U ae) l e

smk%30 t

2 0 0

i t eict 7 7 7 7 6

n cc a

aa R Bts N (w 0 0 i

0 0 0

a t

Ff n

E r

a u

e D

n o

e' p

a it r

d a e) p t

a n

M m

e i p% 1 t

9 5 8 6

smp o

1 0 0 1

2 a

t Bt ow00 0 0 0

C l

r sC(

d e

E o

e o

s f

t s

n a

h e

I t

V ll m

e e

h M

S l

i l

t e

n te h

s g

n' i

d r

is g

i S

E a

o r

e e

t s

ign o

a w'

s y

eogF g iT l

l o) e a

Rit nl n

e) e cge ig n% L%

B n

a i t

ooS o i 0 o0 r h r

t 0 n

A e'

t t l

to0 t

il LF F

e (1 a

lt 1

e t

i h l

id e

3.

f

(

B le a le lted a

l o 4 Bo Be de H

mS e

leW mW n

n n

e r

e o

o o

lzme z.

r z e w zc e e.

r it i

it r

ot o oi t

r InC iW e

s e

i c

s c

n NI L NC S

u S d

l c

ie l

e e

a r

e s

t i 2 0 4

)

5 e

V eWt e

WS D S i

M a50 9

. 8 P

de3 5 5

2 1

4 Rel HVV W3 1

se 4 -

33 2 9 4A aW 2 2 2 1

2 S B

1 1 1

2 7(

t

A 1 3 0 0 5

5 1 1 1

1 2

T 3

%2

~

8 n

i00 0 5 5

_~'-. a33 g

r 4 4 7 5 8

1 6

6 M

00 5 0

0.,,

ac77 8 8 8

1 1 2

2 g

n s

r l

i l

e a

, 00 0 0 7

e00 0 7 9

n i

e r

1 1

in e

o i

t g a s

.)

n u

s E M l

r 0 6 5

u a ere00 it 4 4 4 5 c

l iT n

e InR T + +

+

s 2 o s

- R i

(

it it s

D n s e

n Uu V

. g t

f a

o b

oi -

D le l

i n

ta e

t ea nm e

dn: lee t

i r

i F b lb lao u

hmCaa

.b b

o r

v a a

s H

P C s

e T

T o

e TT t

ru e

t s

Me S

p r

r&

e D'

m W

)

i d a r

x e

o o P

)

't lcc r

eat C n

dl yF C

d r

ul o

nis( 00 8 5 0

l e

e i

r i r l

NWt gemo68 2 0 0

a c

W it c

saet 75 4 7 8

c

(

h a

sMh c 1

1 c&

A Ca m

h i

1 e

F a

ak R e

c ec l

h a

b.

Bo n

Y E

P C

'ec F)'

c c

o t

T nb T n E 0 r

6 6

7 5 5

l 3

e o

a d 9

9 ioB e

%e51 1 4 3 1

f t

l 3 x0 0

1 k

u 1

1 P:

s F2(

c d

r e

i ye e

g N

s i r u

t l

u q

d U

t e

tel 2 0 0

a t

i n

a c c

- ae)

R smk%30 7 7 6

a t

a a 77 eict Ff r

s N.(w 0 0 i

0 0 0

e D

n Bt un o

E~

p d

i a

t p

n a

o M

~ e a

mt t e)

C r

a 9 5 8 6

s m p% 1 d

l r

eipt 1 0 0 1

2 e

o e

o Bt ow00 0 0 0

s f

sC(

a h

t s

n E

t e i m

e V

l t

i M

le s

E s

hS lle s

i

- ~

g te h

t o

ig d

r e

ly n

n ia S

s a

r e

e m

w B

n ign o

eog F g o)

A r

)

t Ri nl in te% L%

a t

i aie e

g g

l ooS o I 0 o0 f

n in r h r

c t 0 e 3 o 4 lt LF F o0 e

te(

H 1

t 1 n

n n

B lt t

l R(

iad e

le eld a

o o

o l

e i i

it e i h Bd Be do r

e S e

t e W m W. W e

s e

i c

s c

e mr l

lz r e

z. r ze w ze e c S

u S ot o oi t ir r

d c

InC le s

n NI L NC e

ee e

i WS D S l

la i -

)

e r

t 5

4 VeWt 20 9

8 P M a

50 e

1 4

d 35 5

2 Rel H VV W3 4 -1 so 33 2 9 4A aW 22 2 1

2 S B

1 1 1

2 7(

I

,l I

l' I

1ll

!lilIl llll Y

g-P M

t n

nisF esiE

5. '

rn s 9'

CcBQ_-

r a5 ue 1

W-2 U

.S Y

T' P fE F 1. 6 1

9 4

R E 0 5 4

6 9'

A 5 0 2 9

7 1

T 1 1 2

3

%2

~. n

. ig 0 0 0

5

5. ~

r 4 4 7

5 8

a 3 3 1

6 6'

M 0 0 5

0

0. '

3c 7 7 8

8 8~

1 1

2 2 '

gn s

i l

r 0

0 0

0

7. '

e a i 0 0 0

7 9

e e r 1

1 n

i n e

~

o ig t

i a

s

)

n laerm s

E M l

i io 0 0

0 6

5 u

t

.iT u 4 4

4 5

n e

n c

iR T

+

+

+

2o s R

s it i s D

(

i t

n s e

Uu V

.f g n

b n

a o

t oi ta tnme diF le lb b

b a

r D

le le' n

e it e

omC lao u b

i h

a a v

a a

s H

P C s et u

o r

t e

T T

T T'

r s

Me S

e D

p e

a&

r r

)

m d

i

't le x r

W o P o

)

dl yF n

c c r o

ui eat C C

d r

l o

nis(

0 0

8 5

0 NWt ri l

r l

c gemo 6

8 2

0 0

a e

5 t

c i

(

W 4

saet 7

5 4

7 8

h c

1 c& a sMhc 1

1 e

A Ca i

F m

h 3

a ak R ec e

c lb Bo n Y

h a

c c o

. cF)

C E

eP t

T nb T n E"0 9 7

2 9

2 r

ia d

l 0

6 6

0

6. ~

e o

oB e

%e51 u

0 0

0 0

0 f

P t

l 3 x k

F2(

s c

d ye e g

r i

e t r u N

s i

u q d

U l

i e l n

t e

c c t

- ae) a R

smk%

t 3

0 2

0 0

a a 7

7 7

7 6

a t

eict Ff u n Bts N (w i

0 0

0 0

0 r

a e

D n o E '

p i

a t

d p

a o

e n

M r

m ta e) a p

1 9

5 8

6 C

tsmp%

l r

t 1

0 0

1 2

d e

ei o

Bt ow 0 0

0 0

0 e

o s

f sC(

t s n E

a h

e t

i m

e V

le t

M l

i h

l s

S l

E s

e i

e h

o g

i S

t s

g t

.n" e

d a

e a

n a

s y

l ig 'n o

r e

m B

n eo g F g

.Ri ig e g n% L%

t r

)

e a l

n e) t n

l i

t A

c h

r i o o S o

I 0 o0 a

f ln r

t 0 lt L F F

o0 e

3 o

4.

1 e(

t 1 t te 1

t H

t

(

e iad n

n n

B le ia le tek i

l Be de e

it i

i B d h o

o o

e S e

e

. mW.

i leW r

e m t

r ln r

w ne e c c

s c

e W

e s

e r

n o

oir t r o t i

InC S

u S

N I

L NC d

c e

le s

e

,l e

e WS D

S l

e i

a r

t i 5

4

)

VeWt 2 0 P M a

9 5 0 8

de 3 5 5

2 1

4 Rel H V V W 3 4 -1 se 3 3 2 9 4A aW 2 2 2 1

2S B

1 1 1

2 7(

,11,

l

!ll I'

l jlIl11 M

g t

n nis esi 7

W<

r n s 4

r a

uecB 23

~

. Ci L

o5 r

I sL T r 5

6 6

9 0

6 8

2 A

6

1...

R eO TE 5

1 1

9 1

1 6

0

/

2 5.

2 4

3 4

3 7

8 2

N 8

4 A Rt 1

1 1

1 1

1 1

2 1

2

. D1 a I ' '

. ^ _

~

. 0 0

0 0

0 3

5 3

A 5

5. y 4

4 4

4 7

4 8

8 8

/

8 8m

.L 3

3 3

1 3

6 6

4 N

6 6

0 0

0 5

0 0

0 0

0 0

0...

.7 a 7 7

7 8

7 8

8 4

4 8

8,,

e 1

1 1

1 2

2 1

1 2

2 1

dr s

a l

y a 0

0 0

0 0

0 7

7 7

7 6.-

i k

r m 0 0

0 0

0 0

9 9

9 9

0 n

c e 2

1 1

1 1

2 o

o t

i D a s

M

.)

s a

ml ia

.l nn u

an a

e

. it r u 0 0

0 C

0 0

5 5

5 5

7..

c T

InR Ts 4

1 2

s d

s

+

+

+

i R

r s

D e

e

(

to V n

t gn a

a a

o t

f R

e oi1 a

t t

t i

a a

a r

din e

t d

u omF le le lb b

b b

D.

le le e

D le le le D

i b

b b

b s

H hrC a

a a

y a

a a

v y

a a.

1 n s

o t

e T

T T

T T

T r

r T

T.

p e

a s

r et u

u u

t iNe S

S S

inx e

r D

m i

r Uo P o

W c

l yi r

nWto 4

, )F C

d 1

.l GC a

l a u

. ir:

l t

1 5

5 0

0 0

9 4

4 9

6 a

e 6

(

c

. r 6 3

3 5

3 2

3 5

5 3

0 b S&

a

. e

. o 7 7

7 8

7 5

4 3

3 4

2 c

W 4

l a

.t i

R

.c 1

1 1

1 1

2 c

k e R"

?

Ca m

h 3

T yc R t o

- F e

c ic n

h a

lib o

~ e)

C E

c a D c"0 7

7 0

0 0,

r I n 0

3 3

3 3

0 0

0 A

4 4-aB d

.. Le1 3

5 5

5 5

3 6

2 Ou*

0 3

3 3

3 0

0 3

N 5

5.

e o

F e

/

f 0

0,.

k t

elf (

r s

c d

e e

e i

r N

s u

u e

t q

t lae) d U

c e

smk% 7 5

5 5

5 1

5 5

5 5

6 n

t 4

5 5

0 0

0 7

4 4

7 8

eict a

a R Btis N (w 0 0

0 0

0 0

0 0

0 0

0 a

t fu n

E r

a n

o e

D e

p a

i

- ae) p d

t r

M a

t n

te i p%

1 1

1 1

1 3

6 2

2 6

4.

smp o

m t

1 1

1 1

1 3

1 2

2 1

3 a

le r

Bt ow 0

0 0

0 0

0 0

0 0

0 0

C sC(

d s

o E

e o

s f

t e

n a

ht V

I n

e e

m e

e d

r r

h i

i i

S le C

C t

l M

W l

n s

e n

a e

e d.

E s

t l

o e

e i

it h

h le W.

d o.

i d

g S

S a

a c

n t

s t

t ign l

P m

l o

o i

f.

e a

o e

e W

r r

s y

P l

L w

w eo g

l Ri in n

t e) t t

. n c g

e te e

te n%

le L

L) g B

n e a t

t r

h h

a o) o%

o L-t A

o o S S la l

i0 h

n P P o0 S i

e e

e) e% te0 t

t lt L F L

a t

t t

l l

t 1 l

.le le a.

ia le le lt l

f

(

0 6

n e

e 3

o 4.

a%

t t

Be d 0 ia4 a

e h

- B' edl i0 iD h

h h

eO S)

S7 H

B M-d MD

-r (

r d

e S S n

n n

leW e1 I

lez m

m

(

z.

mh md md e%

e e

o o

r r

r z

e e

w w

ze eo ele e le w0 w

r it i

io e

e r

r t 0

t o

o o

oir i

t t

t o1 o

t t

c s

c N

I I

L L NC InB InW InW L(

L n

n W

e s

e

(

S u

S f

d

.la e c

e s

e l

r e

t i

)

)

)

)

VReWt 9 e

4 5

0 4

e 1

2 1

2 9

8 5

9 W

S D

S i

a 0 4

PR de 1

6 6 5 5 7) 5 4 5

6 4

4 5

5 5 4 4

Rel H V 2 2 1

1 6 5 1

1 1

1 5

- L 1 4 -

so 2 3 3 4 4 0 27 A 4A 4A 1

1 A 9 aW' 2 4 4 4 4 5 T S 2 S 2$ T S 9 B

J 1 C C C C 2( 8( 7( 7(

B( 2

Y

'M g

.P t

n nisF 4

R esiEs 8

r n a8 2

M ru e 2

CcB8 2

U M

Y P

f T

8 8 7 2 0 4

5 4

7 F 1 R E 6 2 2 9 2 3 7

3 A

3 5

.A 1

3 2 3 2 5 6

0

/

6 1

T 1

1 1

1 1

1 1

2 N

6 1

2 9

2 in 0 0 0 0 0 8 5

3 A

5 5

g r 4 4 4 7 4 8 8

8 8

8

=

/N 6

6 a 3 3 3 1

3 6 6

4

. M 0 0 0 5 0 0 0

0 0

0 0

a

.s 7 7 7 8 7 8 8

4 4

8 8

1 1

1 1

2 2

1 1

2 2

dr s

a t 0 0 0 0 0 0

9 9

9 9

0 0 0 0 0 0 0

7 7

7 7

6 l

y a e

k r

2 1

1 1

1 2

n i

c e

o 1

i o

t D a s

)n s

M i

t t

u ml laoTi no 0

0 0 0 0

0 5

5 5

5 7

c iT u 4

1 2

t a

e nR T +

+

+

s

.I R

d s i

r s

D

(

e e

n t

V g

t t

o n

a a

a o

f oi a

t t

t D

D le e

t e

R e a

a a

i din' lb b

b b

b lb v.

b lb D

le le e

omF le le e

r i

hrC a

a a

y a

a a

y a

a s

H d

u r

r T

T o

T T

T e

T T

T r

n s

et u

u u

e t

1 a

s Me S

S S

p r

)

it d

n x e

D m

i o

W r

't Uc P o

)

i dl yF C

d n

yl r

r eat C l

rWt r

o nis(

ri 1

5 5

0 0

0 9

4 4

9 6

e 7

l r

gemo 6

3 3

5 3

2 3

5 5

3 0

a c

u c

saet 7

7 7

8 7

5 4

3 3

4 2

c W

4 t

i

(

S&

a sMhc 1

1 1

1 1

2 i

a 3

1 A C k

e

.F m

h e

yc R e

c l

t o h

a b

c n

Y~

eP C

E i

l c

ib o

cF)

T c a T n E"0 7

6 9

9 r

7 5

l 5

5 5

5 aB d 8

8 6

A 2

2 N

3 3

e o

F e

%ue61 1

1 1

1 1

1 3

9

/

f 0

0 0

0 k

2 2

2 2

1 t

l 9 x 0

F2(

c d

r s

e e

- 9 e

i r

N s

u u t

q d

U e

n a

c e

t l

ae) 4 5

5 0

0 0

7 4

4 7

8 a

t a R snk%

t eict 7

5 5

5 5

1 5

5 5

5 6

a f

r i 0

0 0

0 0

0 0

0 0

0 0

r u

n Bts N (w e

D n

o E

p d

a it p

n M a o

e a

r m

t 1

1 1

1 1

3 6

2 2

6 4

C t a e) l smp%

e r

eipt 1

1 1

1 1

3 1

2 2

1 3

d s

o Bt ow 0 0

0 0

0 0

0 0

0 0

0 e

o t

s f

sC(

E a

h e

n t

V m

e I

M e

it n

c e

d i

i s

r r

h le C

C E

s S

W i

t e

e d.

s n

n e

t l

.o e

e d

g S

S ld e

s y

n-a it h

h i

e W.

B n

l e

a t

ta e

n ign la l

m L

w w

it g

o e

e W

r r

t P

P i

eo g lle e

e e

r l

o o

t A

.Ri e )% le L

L g

n n

n t ig t

t a

t 0

h

)

n o

a

.e n

c h

h f

io o S

S la la Io0 S

o) o%

o L

e 3

o 4.

n r

L F P

P t%

e0 le n

n n

t L

l H

l t 1 t

e) e0 e

e le a%

a4 a

e h

(

t t 6 n

B lt t

t n

n lt t

e ia a

e e

eld i 0 i

i0 h

e it i

io i

h h

o o

B d

d Be d 0 dD d

eW e1 eI e0 S)

S e

e S

S r

r) t e

z.

mh md m( r%

e%

(

i c

s c

m m

r r

w0 w0 W

e s

e l

lz re e

w w

ze eo e le e le rd e

e e

r r

r t

z o1 o0 S

u S

0 r

o o

oi t

o t

t t

t InW N

I I

L L

NC InB InW L(

L(

d c

1 n

n

(

e e

le s

e e

i WS D

S lla i

)

)

)

)

)

e r

t 4

5 0

4 6

VeWt 9 1

2 1

2 9

8 5

9 2

P M o 0 4

4 4

7 )6 5 4 5

6 5 4 5

do 1

6 6

5 5

5 5

4 Rel H V 2

2 1

1 1

1 1

1 1

5 -

L -

1 5

4 -

4 -

so 2

2 3

3 4

4 0 7 T S 2 S 2S T S 9 S A

9A A

4A 4A 1

1 aW 2

4 4

4 4

5 J

b C

C C C 2( 8( 7( 7( B( 2(

1 i

l tl llI l

I i

l

/

6 2

6

6. 9 0

1 0

1 3

N T

1 1

1 1

1 1

1" 1

1 9

%2

3

'n i0 0 0 0 0 4 5

A 3

5 5

g r 4 4 4 7 4 6 8

/

8 8

8

.a3 3 3 1

3 6 6

N 4

6 6

M

~

4

, ~ 0 0 0 5 0 0 0

0 0 '

0 0

ie7 7 7 8 7 8 8

4 4

8 8

1 1

1 1

2 2

1 1

2 2

d r

s a

l y a

' 0 0 0 0 0 0 7

7 7.

7 6

i k i c0 0 0 0 0 0 9

9 9 '

9 0

n r

2 1

1 1

1 o

t

,~

2 c

e o

D a

is M

)s s

ml l

nn u

ia am0 i

0 0 0 0 0 5

5 6

5 7

c a

e it d

s In R Te 4 1

2 T

+ +

+

s

.R i

e e

D r

s s.

(

t V

g t

n o

n a

a a

o t

f R

e o

i e le le a

n t

t t

i a

a a

t r

d imFl D

D le le e

D le le e

i d

u o

b b b

.b b

lb o

a s

e e' T T T r

T T T

r y.

b b

s H

rCa a a v a a a

v a

a n

s h

1 t

r T

T t

u u

u p

e

)

it d

n x e

M e S

S S

r D

o m

i r

W

't Uc P

~

.)

l o

n yi r

dl yF C

d Wt r C o

ea t

r l

ni s(

r l

r 1

5 5 0 0 0 9

4 4

e c

u it 9

6 a

c go imro6 3 3 5 3 2 3

5 5

3 0

W

(

S&

a sa et 7 7 7 8 7 5 4

3 3

4 2

c sl hc 1

i u

1 1

1 1

1 2

k e

Al t Ca m

h e

yc R

F t o e

c lh i c n

h a

l Y

c ib o

P; C

E T

c a e F97 2 2 2 2 7

r c

Tn E

9 9

6 7

3 3

l aB d 0 0 0 0 3

A 2

2 2

e o

0 6 6

/

F e %u 61 0 8 8 8 8 0 1

N 0

0 e

7 1

1 k

f t

l 9 x0 0 0 0 0 0

0 r

s F

2(

i 0

c d

e e

N se ru u

t q

d U

c e

eJ :

n a

t t

ae) a R smk%47 5 5 5 5 1

5 5

5 5

6 a

5 5 0 0 0 7

4 4

7 8

a t

t f

eict r

u n

Bts N (w 0 i

0 0 0 0 0 0

0 0

0 0

n o

E _~

e D

p a

d it p

M a

o n

e a

l m

t e) r C

-t a e

r s m p% 1 1

1 1

1 3 6

2 2

6 4

p d

t 1 1

1 1

1 3

1 2

2 1

3 e

o s

o ei s

f Bt ow0 0 0 0 0 0 0

0 0

0 0

t sC(

I a

h e

n E

t V

m e

i M

t l

c s

le d

i l

E s

r h

le C

le S

i n

t W

le h

t e

l s

a s

y e

i it h

S d

d l

e a

o e

t d

g S

r1 le le t

a e

n e) ign la l

m L

w o0 ig ig a

f o

e w% W W

B n

r eog P P t

A r

t t

Ri n le le te t

t l

l e te) le L

e cg h h a la In%

l o

L 6 ai r

0 h oD n n

e 3 o 4 n

i oo S S l

P o0 S o) t o

o O

l LF P

e% e( L L

H t

le:

lt ta ia le le led t

t 1 e e l

l t (

te) t l

l n

n n

0 h h l

a%ta4 iad le le e i i i t

l o

o o

B e i d Be d 0 dD do h h

i 0 i B d e

S) ir e e S S m W S) t t

e1 eI eWmh m(

c s

c e

d r. e% e%

W e

s e

mmr r

r r

lz r

e w w ze te o lz r t le tnC L( L(

le e e r

r 0

0 te e c w0 w0 S

u S z

t t

o o oi e

r o

r InWI i o o1 d

' N In I

L L NC InB n

1 c

(

e e

l WS is e

e D S la i 9

e r

t

)

5 0

4 6

)

)

)

)

VeWt 4

1 2

1 2

9 8

5 9

2 M

s0 4

4 do1 6 6 5 5

7) 5 4 5

6 4 4 5 P

5 5

5 4

Re8 H V 2 2 1

1 6 5 1

1 1

1 1

5 L -

1 4 -

se 2

2 3 3 4 4 0 1

7 A 4A 4A A 9A 1

aW'2 4 4 4 4 5 T S 2 S 2 S T S 9 S B

J C C C C 2( 8( 7( 7( 8( 2(

1

j lj l!

!lI!'l j

l M

g t

n nis esi 2

A r n s 5

  • M r

a uecB 3

Ci 2

L ro sL E

T rO 7 2

5 4

9 1

0 4

A 8

4 4

A e

R T E 4 4

1 6

4 6

5 3

/

6 0

0

/

A Rt 1

3 1

4 9

7 6

0 N

1 0

0 N

1 1

1 1

1 1

2 2

2 2

D a

I

.n ig 0 0

0 0

0 8

3 5

A 8

5 5

A r

4 4

4 4

7 8

8 8

8 8

8

/

/

a 3 3

3 3

1 6

4 6

N 4

6 6'

N M

1 0

0 0

0 5

0 0

0 0

0

0. '

0 0

a 7 7

7 7

8 8

4 8

4 4

8 8

8

.c 1

1 1

1 2

1 2

1 1

2 2

2 dr s

a l

y a 0

0 0

0 0

0 7

7 7

0 7

7 7

k r

ei 0 0

0 0

0 0

9 9

9 0

9 9

1 o

i 9

n 2

1 1

1 2

1 1

c e o

t i

D a

s M

l

)

rm s

ml ita e u

a e

iTi.o 0 0

0 0

0 0

5 5

5 0

5 5

5 c

3 1

2 3

1 InRT

+

d s R

s r

s i

-(

e e D

t V

g n

to f

R e oin a

a a

a o

t t

t t

t a

a a

i r

din le le le le D te e

a a

e e

e t

D D

D l

i e

F b

b b

b b

b v.

b lb lb l

hromC d u a

a a

a v

a y

a v

a a

a s

H 2ns t

e T

T T

T T

T r

r T

T T

o et u

u u

u r

r a s Me S

S S

S p

e tn x e

D i

r o

m r

iW Uc P

- )

o l

C d

yi r

dl yF 1

rWt r

r o

eat C nis(

8 0

4 3

2 5

4 4

4 t.

4 4

4 e

9 l

a u c

gemo ri l

r 5

3 3

7 6

0 5

2 5

6 2

2 2

a l

W 4

b S& a saet it 7

8 7

0 6

6 3

5 3

2 5

5 5

c 1

1 1

1 1

1 1

1 1

i sMhc c

k e

A Ca T

yc R m

h 3

F t o e

c c n h

a i

l e)

C E

ib o

D c"0 c a 8

8 7

7 7

7 I

n 9

2 2

2 2

9 9

9 A

2 9

9 A

r aB d Le1 2

5 5

5 5

2 6

6 N

3 5

6 6

N e

o l

/

/

F e

Ou x 0 3

3 3

3 0

0 0

0 0

f t

elf (

k r

s c

d e

e i

r e

u u

e l N

s t

. ae) t q

2 0

4 5

4 0

4 7

4 6

7' 7

7 d

U smk%

t c e eict 7

6 5

5 5

1 5

5 5

5 5

5 5

n a R Bts N (w i

0 0

0 0

0 0

0 0

0 0

0 0

0 a

a t

f E

u n r

a n o e

D e

p a

i r

ta e) d t

M a p

te i p%

1 2

1 5

1 5

2 9

2 9

9 9

9 smp n

t 1

1 1

1 1

3 2

1 2

1 1

1 1

o m

Bt ow 0

0 0 0 0 0 0

0 0

0 0

0 0

C a

le r

sC(

E s

o d

s f

e o

t e

n a

h I

l d

m e

V l

d l

d i

i t

e e

e le C

t r

h W

M S

le W

W l

d l

s e

io e

e i

t.

it t

t d

g i

h le ld t

e E

s n

a i

n g

S W

W

!e t

s g

t e

d i

eo P Pla e

n o

n gn la m

l e

W s

y r

o L

o t

r L

l L

w it it Ri g

t ll e

e l

e a

e) l e

g g

it e a n te e

n% le h

tt o

e L

n n

g B

n i

t c

g t

t in r

h h o S S la la i0 h S

h o

o n

o F

P P o0 S S

o L

L o

t A

L i

t tt e

e l

t 1 e

)

l l

L a

e t

e e%

l le l

e 3

o 4.

e' e

l f

(

t t

t l

l t

t B

d i

e le leld a

ia t

t

. B' le i d h h a

a i

d) a i

e i) a0 h

h h)

Be d d% d0 S

S)

H e e S S e) e z.

m% m%

e0 e1 r) r% S n

n n

eW le 7

m m 0

m5 m( e%

e3 r3 e

i i i

r r

o o

o l

e e

z r5 r

rd e

r r

r 0 e

eD ele o0 oD oC w0 w6 wD t

t z

e e w w ze e

r n n o o

oir 0

t o

t t

D i

t t

t c

s c

N I

I L L NC In1 InI InO InW L( LI W

e s

e 1

( L(

(

(

(

S u

S l

e' d

l c

e a

le s

e r

t i'

)

)

VeWt e

e 5

5 W S D S

3 2 2 2 1

i M

a 8

0 de 3 1

9 8 9

)

5 2) 8

)

P 5

8

2) 2) 2)

Rel H V 3 3 0 3 5 7 5 64 5 0

64 64 68 1

1 se 7

4 -

3 4 -

1 F-70 7 F-7 F-7 -

3 3 3 2 3 7 F

aW 2 4 4 4 4 2 L 2 S TW 2 S 2R TW TW TW 7 4A 4A 23 1

1 1

B 1

C C C C 4( 7( 8( 7( 0(

8( 8( 8(

lll'

b T F5 2 6 5 9 6 6

6 6

6 6'.

R E5 4 2 3 6 6 6

9 A

9 9

A A

0 2 0 3 8 5 4

7

/N 2

1 1

N

'r 7

7

/

T 1 1

1 1

1 1

1 1

0

%3 r 4 4 4 4 7 8 8

8

/

8 8

8

/

n i0 0 0 0 0 8 3

5 A

8 5

5 A

g N

4 6

6 N

a3 3 3 3 1

6 4

6 M

)

YPF i0 0 0 0 5 0 0

0 0

0 0

0 0

E

(

c7 7 7 7 8 8 4

8 4

4 8

8 8

1 1

1 1

2 1

2 1

1 2

2 2

s ra d

e r

s y

a l

0 0 0 0 0 0 7

7 7

0 7'

7 7

r y a i

0 0 0 0 0 9

9 9

0 9

9 9

w n

c0 e

k ir 2

1 1

1 2

1 1

1 o

c e

p o

o t

l i

D a

lu s

)

f n.

s M

l ere3 r n ev u

R fe i

ml ia 0 0 0 0 0 0 5

5 5

0 5

5 5

it c

a e

it 1

2 3 1

T c

n d

s i

R T +

e s

f s

D

(

re e

8 8

n t

n a

a a

a o

t;_

V g

2 to fo i

e le le le a

n t

t t

t h

it R

e a

a a

a D

D le e

le g

D le D le d

imC e

a a a a y a v

a v

b lb b

u r

o Flb b b b

.b b

v a

a a

o i

H s

d u

h r

r T

T T

h o

t T

r T

2 n s

e e T T T T ru u

u u

t r

r e

t a

s M e S

S S

S p

r 5

i

)

it d

n x e

D m

8 W

r 5

o o

't Uc P y'

A C

dl 1

)

dl F

n yli o

ni is(

r r

C S

ea t

Wt r

8 0 4 3 2 5 4

4 4

5 4

4 4

d e

l r

r r

ge mo5 3 3 7 6 0 5

2 5

6 2

2 2

le a

c u

c sa et 7 8 7 0 6 6 3

5 3

2 5

5 5

W it 1

A Ca l

ic

(

w S&

a sM h c 1

1 1

1 1

1 1

1 1

k e

m h

a yc R F

ia t

e e

c n

l t o e

b i c n

Y' h

a r

l P

m C E

f c

ib o

e F92 T

c a c

2 5

5 5

5 u

r 0 8 8

2 2

A 5

5 5 5 5 2

2 A

aB d Tn E

le o

/

c

/

1 4

4 N

ic 1 1 1 1

1 1

1 1

4 4

N 2

r e

F e %u f

F l

k 2 2 2 2 0 x0 0

0 0

0 0

t l

3(

le iN s

c d

r s

e e

h e

r s

u u

re d

U t

q w

e a R sm k%2 0 4 5 4 0 4

7 4

6 7

7 7

to n

a c

e t le) t a a

t ei ict 7 6 5 5 5 1

5 5

5 5

5 5

5 o

a f

t 0

0 0 0 0 0

0 0

0 0

0 0

r u

n Bt N (w 0 s

ll e

D e

n o

E h

p s

d a

it t

o e

p n

M a

a e r a

mt t

id C

a e) l p

2 1

5 1

5 2

9 2

9 9

9 9

s m p% 1 e

d e

r 1

1 1

1 3

2 1

2 1

1 1

1 m

e o

1 t

ei s

o Bt ow0 0 0 0 0 0 0

0 0

0 0

0 0

r I

e t

s f

sC(

t a

h E

e n

i m

e n

t V

la it l

c i

M r

le d

d i

e s

r h

le le C

t E

s a

S W

W l

d d

t i

t l

m s

n te ig it h

le l

d n

s y

i t

e g

a i

e e e d

g n

g S

W W

le it l

io 'n t

ta e

n o

n a

r W

i e

a m

g l

l o

L o

e ig it l

B n

eog P P m

L le le L

n n

g t

l l

r l

L w

i A

g d

Ri n l

le ta la Io0 S t

i e e e te) l l

o 1

t n

r n%

l h

a e

l S) o L

L o

i e3 o4.

a e cg h h t

h o

o n

t n

f i oo S S l

0 h S

tt LF P P e%

t

)

t L

U e

l H

e%ll te l

y t 1 e

e e

B lt te t

le le led ia ia5 id%d0 S e

l l

t (

t t 0 ta) n n n ta0 h h

e) r e a a l

d D o

oio r

e it is c h%

u i

i i h h S)

B d d Be d r%S e) eI r

e e S S 7

S e0 e1

)

eW m% m(

r r le o0 oD oO d

S uS i

t r% e3 r3 le m5 m(

Wc mmr r

e e

n 1

I l

rd e e d

te w0 w6 wD o

z.

r z

r r

e s e z e e w w ze 0

el eD e0 e

r o

t t

o o oi t

t t

nO InWL( L( L(

e d c

InWI N

I i L L NC In1 n n

(

(

s e

e l

a e

s e

e b

WS IDS l

e e

la i 3 2 2 2 1

8 8

)

2) 2) 2)

V r

u t

)

)

la 5

5 V eWt P M a0 - 9 8 9

)

2) 5 5

8 de3 1

5 64 5 0 64 64 68 Rel HV 3 3 0 3 5 7

1 1

70 7 7 -

7 3 4 -

F F

F se F

3 3 3 2 3 7 4A 23 1

7 4A 1

1 1

2 4 4 4 4 2 L 2S TW2S 2R TWTWTW aW B

C C C C 4( 7( S( 7( 0( 8( 8( 8(

1

,1

))

l l!'

l) 1)l l{

Y g-P M

t n

nisF esiE 1

8 r n s r

a4 uecB9 8

M Ci 2

1 L '.@

T P "A

Y F 0 8

8 5

0 2

1 1

4 9

9 f

R E 2 1

2 4

9 3

3 A

3 7

1 A

1 A

8 0

8 0

6 2

1

/

1 6

4

/

4-T 1 N

1 1

1 N

1 1

1 1

1 0

%3

- g

'n ig 0 0

0 0

0 1

3 A

3 8

5 A

5. -

r 6

4 4

4 7

8 8

/

8 8

8

/

8 a 2 3

3 3

1 6

4 N

4 4

6' N

6 M

x

)YPF 3 0 0

0 0

5 0

0 0

0 0

0. ^

0 0

E

'o 7 7

7 7

8 8

4 8

4 4

8 8

8

(

1 1

1 1

2 1

2 1

1 2'

2 2

s d

ra r

s e

a l

y 0

0 0

0 0

0 7

7 7

0 T.

7 7

y a

, 0 0

0 0

0 0

9 9

9 0

9 9

9 r

e e

i k

r 2

1 1

1 2

1 1

1 w

n c

e o

o t

p o

i D

a nu s

)

M m

f lam s

ml iTe e e

0 0

0 0

0 0

5 5

5 0

5 5

5 v

u it 3

1 2

3 1

it a

e c

c InRT

+

d s

R e

s f

r

(

i s

e e

f D

e 8

t V

.g 8

n to f

oin a

a a

a 2

o t

R e

t t

t t

n a

a a

a h

a r

di le le le le D

le D

le D

D le le le g

t i

omF e

b b

b b

hrC a

a a

a v.

b b

v.

b b

b u

i d

u a

v a

y a

a a

o s

H 2ns

et u

u u

u t

e T

T T

T T

r T

r r

T T

T h

o r

r a

s Me S

S S

S t,

p e

)

it d

nx e

D 5

r m

r 8

i o

5

't Uc P W

l dl yF o

)

1 n

yi r

r eat C A C d

o rWto nis(

S ri 8

0 4

3 2

5 4

4 4

5 4

4 4

d l

r l

c u

gemr 5

3 3

7 6

0 5

2 5

6 2

2 2

le a

e 1

it o

c saet 7

8 7

0 6

6 3

5 3

2.

5 5

5

(

S&

W 5

a sMhc w

c 1

1 1

1 1

1 1

1 1

1 A Ca l

i

k e

F m

h 3

s yc R ia t

ib t o ne e

c c

n Y

i e h a

r l

a ib o

eP a

cF) 7 7

m C E

f T c aB d T n E"0 9

9 9

9 8

8 9

8 8

7 7

u r

9 9

9 9

5 A

5 9

5 A

5 c

6 l

6 e

%ue11 0 7

7 7

7 0

1 N

1 7

1 N

1 i

e o

/

/

F r

0 c

f 0x 0

0 0

0 0

0 0

0 0

0 l

k t

l r

s F3(

c d

e e

le i

r h

e u

u s

N s

r t

q e d U

e c

e t l w

- ae) a R smk% 7 6

5 5

5 1

5 5

5 5

5 5

5 lo n

t 2

0 4

5 4

0 4

7 4

6 7

7 7

a eict o

a t

fu n

Bts N (w i

0 0

0 0

0 0

0 0

0 0

0 0

0 r

a t

R n

o E

e e

D h

a p

it s

d M

a e

e p

n r

t t

a o

m a e) id C

l a

te i p%

1 2

1 5

1 5

2 9

2 9

9 9

9 smp e

r 1

1 1

1 1

3 2

1 2

1 1

1 1

e t

d s

o Bt ow 0 0 0 0 0

0 0

0 0

0 0

0 0'

m e

o s

f sC(

r E

e n

te ta h

I n

V i

m e

t l,

le d

c ia i

M l

r t

h l

d d

ir e

s S

e le le C

a E

s t

n t

W W

W m

i o

e e

i t

it t

h ld' le g

n e

e d

t s

a i

e n

s y

d g

g g

S W

lde W

i e

a t

t l

ign la la e

n n

n r

W it o

o o

e it eo g P P m

L L

L o o S S la In%

l l

n o

g t

it lm B

n w

i Ri r

t n n n e) l le e

L n

g n-1 t

A g

e a ig e

e e

e e

t t

t c

n h h a

0 h h

h o

n o

a lin lt L F Pl P o0 S S

S o

L o

L it f

n e 3 o 4.

t e%

t L

ll U

e e t 1

)

fe l

e y

e e

e H

B lt t

t n

l t

t t

t

(

e le leld i

d) d% d0 S t

i h

le h) r n

n n

e ia a

e a

a a

a0 B d d h h i

i) i Be d h)

S%

u e

it i

it r

o o o

e e S S z.

m% m%

m5 m (d S%

eW e) e e0 e1

)

r7 S

r e

m m r%

r3 e3 n

r r

0 lz i

l e

c s

c e

e e6 W

e s

e r

r r 5 r

r r0 z

e e w

w ze o o oir 0

e eD el w0 w

wD o

e o

t t

e o0 oD oO d

S u S

D t

t t

t N

I I

L L NC In1 InI InO n n InW L (1 LI L(

e d

(

(

(

(

s c

a e

e le s

l b

e e

l e

W S D S

i a

r e

t i 3 2 2 2 1

)

)

u VeWt 5

5 la P M a 0 8

2) 8

)

5 8 2)

2) 2)

V de 3 1

9 8 9

7) 5 64 5 0 64 64 68 5

Rel H V 3 3 0 3 5 1

1 3 4 7 -

so 4 - 70 7 7

  • 3 3 3 2 3 7 7 4 A-F F

1F F

. aW 2 4 4 4 4 2L 2S TW 2S 2R TW TW TW 4A 23 1

1 1

B C C C C 4( 7( 8( 7( 0( 8(

8( 8(

1 7

!l

o sL T rO2 5 2 4 6

Re E6 5 1

8 8'-

T A Rt 3 7 0 8 72^

a1 1

1 D

I 7

- j nig0 0 0 5 O

r 4 7 7 8 C

a3 1

1 6

S s

t 0 5 5 0 0

ie7 8 8 8 8

c 1

2 2

s

~

l a

-i0 0 0 7

0 ir o0 0 0 9

0 n

e 1

o t

i a

s M

l r

n u

c)n s

a e e0 r

0 0 5

0 l

it c

e iT 5 4 3 1

x InR T + + +

+

s s

. R o

s i

e D

(

lc iWV n

g o

t f

3 e

oin ta t

i a

a r

a a o

FH D D le le t

din ~ e e

t i

u ink s

hm Ca.

v.

b b

s H

t r

y a

a e

r T

T' o

Uc s

st

~ T r

u p

e t

u o

A e S S r

e R

t c

D m

i n

r W

ib P

o oa

,.i dl yF C

d 1

PB r

)

o r

eat C l

a y:

t nis( 2 6 7 0 6

a e

l r

ri e

c c

W gemo7r5 4 2 0 7

l e

a b k i t 1

4 8 6

saet r

i 1

1 r

T uu e

sB hc m

h i

AB Ca t

R

,F e

c Tc h

a a

n f

o

e C

E

yu 0c99 9

r t

1 n0 2 2

4 4 4

l n d i

Le1 3 7 7 3 7

e o

l a

e Ou 2 2 0 2

k f

i E l x0 c

t aM s

Fl e

i F(

c d

i e

N s

e u

e

- ae) d U

s q

t l s

e omk%86 7 6 6 5

n 0 7 0 9

t oict a

e R Bts N (w 0 i

0 0 0 0

a t

V r

a E :

e D

no p

e d

it t

e) r o

n a

a 6 8 6 3

s m p% 1 0 0 2 2

a t

o meipt 1

Bt ow0 0 0 0 0

C r

- sC(

d E

o e

o f

t n

a h

t i

n e

m e

h l

M S

l i

g te h,

t e

s n

n ia S

E s

i i

d r

o g

s ign o

r e

e t

m w

s y

~

eog F g r

o) e a

l Ri ai l

n e) L%

B n

t n le g r

n%

i t

e cg h r

i0 o0 n

A i oo S o t 0 t

l L F F o0 te (1 a

f t

e t 1 le lt t

n lted

(

iad e 3 o

4.

B e ia e

l do H

l le h

B d Be e S e

n n

n e W m W.

mr e

o o

o lz r

z r

e zo te w ze e c r

it i i t

r i

i r

o oi t

c s

c InC W

e s

e n

N I

L NC S

u S t

2 d

L c

la ir6

. )

e-le e

s e

t

)

e e

4 1

o 6

VsWto4 6 6 6

WS D S i

1 8

0 PI do1 4 2 2 9

4 1

Rel HS P S 4 1 1

so 2 3 3 4A 2A aW 2 2 2 2 S 1 S B

1 1

1 7( 7(

TP RF 1 1

5 4 7

1 2 7 4

AE9 1

7 9 4 4

T01 1

2 2

%g n

i0 6 0 5 0

g r 4 5 7 8 6

a3 1

1 6

5 M

'a 0 5 5 0 0

r 7 8 8 8 8

e 1

2 2

s i

'm 0 0 0 0 7 0

la 0 0 9 0

r n

1 e

o i

t s

a

)n M

l nn s

l it e n0 0 0 5 0

u a

i e

a T

,5 4 3 1

n c

x s

I R T + +

+

+

e R

is o

s

(

D lc i

e WV g

n f

a a

n t

t e

a t

o in' e

a a

o D D le l

i 3

e d inFlb

. b b

e t

r o

i nk s

t nCa y.

v a a

it u

h s

H e e T

r r

T T

u u

o t

M e S S Uc s

. D p

e o

r e

c m

W

)

i t

d n

r ib P

)

't oa dl yF o

r r

eat C C

d n

PB nis( 2 6 7 0 6

a o

ri l

4 2 0 7

e gemo5r l

c y:

t

(

e c

saet 7 1

4 8 6

a it W

r sMh c 1

1 c

k e a

A Ca F i

1 r

e uu m

h r

eR e

c t

Tc l

Y h

a b

a n

eP)

E c

7 7 7

C f

o c F" 7

7 T

yu TnE02 2 2 2

r 2

in d %e t

1 1 1

l l

lu0 x0 0

e o

1 1

1 2

f ia e

F $(

k c

t c

d aM s

i e

Fl e

N s

e u

e t ~

t d

U ae) s q

0 7 0 9

smk%8 7 6 6 5

n a

teict 6 s

e e R Bts N (w 0 i

0 0 0 0

a ta V

E r

n e

D o

p i

. e d

r p

t t

t a e) p 6 8 6 3

n a

s m p% 1 t 1 0 0 2 2

o a

m Bt ow0 0 0 0 0

C ei d

r sC(

e o

.E o

f t

n a

h t

i l

m e

le M

h l

it S

le s

E s

e h

g t

S i

n n

a i

s o

ig d

r t

r e

e m

w-s y

ign o

l o) e a

eog F g r

L%

B n

Ri n le ig t

l n

e) n%

ai t

e cg h r

r i0 o0 il oo S o t 0 t

A n

l LF F o0 e (1 a

iad e

3.

f e

t t 1 t

e

(

t l

o 4 B

lt t

te lted e

ia l

B d Be do H

h e

n n

n e S eW mW e

z.

r.

e o

o o

mr lz l

e z e w ze te c ir it i i r

t ir c

s c

r o

t o

oi InC W

n N

I L NC e

s e

S u S l

d c

e e

s l

e le a

r e

e

)

)

t i 6

1 6

WS iD S

4 1

VeWt 8

0 P M a4 6 6 de1 4 2 2 9

4 1

Rel HS P S 4 1 1

so 2 3 3 4A 2A

- aW 2 2 2 2S 1 S B -.

1 1

1 7( 7(

ti

,}

i

!l

i ill1 l

jlI{l 1

i A

g Y

M t

n P

nisF

4. -

esi r n sE 0-M a

0 rueB 0 2'

c 2

CiL 3

M

- L

'Y TP AE 4

3 1

3 1 -

fI 6

5 6

2.

RF 1

9 6

8 1

0' T0 1

2'

% @2 n

ig 0 8

0 8

0.

r 2

1 7

5 6'

-. a 2 1

1 6

5'

.M i 0 5

5 0

0 rc 7 8

8 8

8 1

2 2"

s l

0 0

0 7

0. ~

a o 0 0

0 9

f

~

0'.

n ir 1

e o

t i

a s

)

a s

M l

t aer T e 0 0

0 5

0' u

it 5

4 3

1 l

i c

e nR T

+

+

+

+ '

s I

x R

ss

.(

o iD lc i

e g'

WV

, f n

.oin t

t

^

o t

a a

3 e

dn~-

le a

a D. D.

le e'

a l

i o i F b r

hmC b

b t

e it i

u t

a v

v a

a T

T s

H te s T

r r

nk s u

u M 'e '

S S

o Uc s D

p e

oc e

r

)

t m

d n i

r oc dl yF o

W

't ib P

)

n r

PD r

eatC o

ndis(

C d

2 6

7 0

6 gemor l

c y:

t l

5 4

2 0

7 e

it

(

e c

saet 7

1 4

8 6

a 4

r W

5 sMhc k e a A Ca 1

1 c

1 r

F i

r e uu e

m h

3 Tt R e

c l

c Y

b a

n eP h

a T yu o

cF3 c :

Tn 0

0 C

E 1

1 f

1 1

1 5

0 0

5 0

%eE0 it u0 0

5 5

0 5

r n d 1

l l 2 x 0 0

0 0

0 e

o l

a e

F i

f

. $ (-

k c

t aM s

c d

Fl e

e iN e

u e l s

tae) s q

8 0

7 0

9 d

U smk%

t s

e eict 6

7 6

6 5

n e R Bts N (w i

0 0

0 0

0 a

a t

V E

n r

a o

e D

i

. e p

t t e) p d

r t a a

s m p%

1 6

8 6

3 n

eipt 1

0 0 2

2 o

m a

Bt ow 0 0

0 0

0 C

r sC(

d E

~

e o

o f

t n

a h

t i

le l

m e

h l

i M

t S

le s

e h

o i

S' E

s g

t n'

ig d

t s

n a

i ign o

r e

s y

e' m

c ')

e a

eo g F g

l

.Ri r

n ll n

e) t ig e

ig n% L%

B n

a t

e c h

r io o S o i0 o0 n

r A

t 0 t

lL F

F o0 lt e(

a 1

t 1 e

iad e

3.

f t

(

B tt t

ll lt e

o 4

e a

e ed i

Be dlo H

B d h l

e n

n n

e S eW mW e

it i

it e

m o

o o

r lz l

e z.

r.

r r

z e

w ze ec i

ir o

t c

s c

o oi t

r InC W

e s

e n

N I

L NC S

u S

d c

lla e e

le s

e r

t i 6

1 6

4 1

e

)

)

e VeWt WS D

S i

M a 4 6 6 8

0 P

e 4

1 d

1 4 2 2 9

Rel H S P S 4 1 1

so 2 3 3 4A 2A aW 2 2 2 2S 1

B S

1 1

1 7( 7(

l)

ll i!lljl1.I lI' 1I h

N=

g t

n nis esi 5

9 r n s r

a uecB 2

Ci M

L ro I

sL T rO 4

4 7

4 A

6 ReE6 6

3 8

/

8 T

2 2

5 8

N 7

A Rta 1 1

1 2

DI n

ig 0 0

9 5

A 0

r 4

4 8

/

6 6

a 3 3

6 N

5 -

M 0

0 5

0 0

0 a 7 7

8 8

8 8

c 1

1 2

2 2

s la i

i 0 0

0 7

0 0

r a 0 0

0 9

0 0

n e

o 1

t i

a s

M

)

s iamw l

u it i

0 0

0 5

6 0

l c

e T

4 5

4 2

1 x

s nRT

+

+

+

+

s I

o R

i s

lc D

(

i e

WV n

gn a

o t

f 4

e oi t

i a

r dn le le a

t e

e D

le le l

i it i

b b

b b

b s

H u

omF nk s

hrC a

a v

a a

a e

T T

r T

T T

o Uc s

et u

t o

p e

c e

Me S

r t

.D m

i n

r b P W

ioa o

1 PB r

yF C

d

)

dl o

eatCr l

a y:

t l

e nis(

5 4

4 0

3 6

a 5

ri r

e c

gemo W

r 5

3 5

0 9

7 lb k e a

saet 5

7 3

8 9

6 c

it r

i a

r e

sMhc 1

1 1

T uu A Ca m

h 3

R F

t Tc e

c a

n h

a e)

C E

f o

yu D c"0 I

9 9

r t

n 2

4 4

2 A

4 l

in d Le1 3

7 7

3 N

2 k

7 e

o l

/

a e

Ou i

2 2

f c

t elf (

c d

x 0 0

aM s

Fl e

e i

e u

N e

s s

q

- ae) d U

t l s

e smk% 7 6

7 6

5 5

n t

0 8

4 0

8 9

eict a

e R B s N (w t i 0

0 0

0 0

0 a

t V

n E

r a

o e

D p

i e

d t

r tae) p a

n te i p%

1 5

6 6

2 3

smp 1

0 0

2 3

2 o

m a

t r

Bt ow 0 0

0 0

0 0

C sC(

d E

o e

o f

t n

l a

h t

i le ll m

e e

M h

h l

i S

S le ts g

e e

h n

n a

a S

E s

t t

i i

i o

ig d

d r

e e

e t

s ign o

r m) w' s

y eo g F g m) r%

o) e a

l t

n l

n e%

e3 L%

B n

Ri r

e a i le ig t 7 ltL F F

oD In3 t

c g

In6 o0 r h r

in D

t0 t

A l

o o S o

oO e1 a

f t I(

(

t (

B' lt te le leld t

e l

t led t

iad e

3 o

4 e

a l

B d Be Be dle H

i h

e S e

leW n

n n

z e

w ze ze. m W.

leW e

m r

e o

o o

lz e

z.

z r

r ec r

i i

i t

t o

t o

oi oi t ir i

r r

c s

c N

I L NC NC nC W

e s

e n

I S

u S

d l

c l

e l

a e

e s

e r

t i 9

1 0

1

)

VeWt e

e W

S D

S i

P M a 0 8 8 7

0

)

)

0 de 3 4 1

26 57 9 1

Rel H S P S 4 0 -

1 4 -

se F

F 4 3 2 4 2A 1

aW 2 2 2 2W 2W 1S B

1 1

1 7( 7( 7(

flll;

Y TP RF 5 2 4 8 8

A AE8 9 1

5

/

2 0

1 5 4 N

4

.T0 1

1 1

2 2

ni0 0 7 5 A

0 g

/

6 8

r 4 4 5 a3 3 6

N 5

M 0 0 5 0 0

0 f

o7 7 8 8 8

8 2

2 2

1 1

s l

t 0 0 0 7 0

0 a

i e0 0 0 9 0

0 n

1 re o

i t

s a

t s

)n M

l r r a ere0 0 0 5 6

0 u

i T l

it 4 5 4

2 1

c n

T

+

+

+

x s

I R.R+

i e

s

(

o s

D c

i e

g n

l WV foi ta o

n' t

n e e e

le e

a a

4 e

d i Flb lb t

b lb t

e i

D n r

omCa i

it a

y a a

a h

T T

T s

H u

re T T ru t

nk s

et M e S

o e

Uc s

D p

o r

)

e c

m i

t W

d n

r ib P

't oa dl yF o

)

r r

e at C C

d n

PB nis( 5 4 4 0 3

6 o

l r i r l

gemo5 3 5 0 9

7 e

c y:

t saet 7 3 8

9 6

a t

i W

r

(

e c

1 1

1 c

sMhc e

a a

A k

e u u e

C F i

r 1

m h

r t

R Tc e

c l

a n

eP) h a

Y b

T yu T n E'0 2 2

A 2

C E

c f

o c F' 2

2 2 2 2 2

/

2 r

in d %e t

1 1 1

N l

1 e

o lu0 1

1 2 (x 0 0

k l

a e

F f

ic t

aM s

i d

c e

Fl e

N s

e u

e l '

tae) 8 4 0 8

9 d

U s

q smk%0 teict 7 6 7 6 5

5 n

a s

e e R Bts N (w 0 i

0 0 0 0

0 a

ta V

E r

n e

D o

p d

i e

r t

t p

a e) n a

s m p% 1 0 0 2 3

2 o

p 5 6 6 2

3 t

t 1 a

m Bt ow0 0 0 0 0

0 C

ei r

sC(

d o

E e

o f

t n

a h

t l

m e

I l

le it le h

h l

M S

S le s

n n

ia ia S

E s

e e

h g

t t

i i

s o

r d

d r

t g

e e) e s

y ign o

m% m%

w l

r o) e a

eog F g r )

Ri n

e e3 L%

B n

t n

l ig ai le t 7 t 3 e cg h r

in6 n o0 F oD I D t 0 t

A n

r l

oo S o i LF oO e (1 a

f lt t I t

e t

te l

t (

t

(

ta e 3 o 4 B

le a le id led leld B d Be Be do H

l i h l

e n

n n

e S eWleW nW o

o o e

z. z. n.

e it i

it mr lz l

e r

r z e wze ze e e iW e

s e

i c

s c

r o

t r

o oi oir tInC n

N I

L NC NC S

u S d

c l

e e

ie le s

a t ir e

e

)

WS D S i

VeWt 9 1

0 1

M a

)

)

0 0 8 8 7

0 P

d e3 4 1

26 57 9 1

Rel H S P S 4 1

0 4 -

se F

1 F 2A 4 3 2 4 aW 2 2 2 2W2W1 S B

1 1

1 7( 7( 7(

M Y

TP f

RF 3 2 6 1

3 A

AE3 3 8 7

9

/

8 0 4 N 8

9 T0 1

1

% @2

~

. n ig6 F 3 A 0

0 r 1 6

/

6 6

4 N 5

5 a2 2 M

a0 0 5 0 0

0 c7 7 8 8 8

8 1

1 2

2 2

s l

a i 0 0 0 7 0

0 c0 0 0 9 0

0 i

n r

1 e

o t

i a

)

s l

mm0 s

M ia 0 0 5 6

0 u

l it T, 4

5 4 2

1 InRT +

+ +

+

c e

x R

s s

olc s

(

iD i

e g

WV a

n foin ta o

t n

e le le a

4 e

di e

ie D

l i

o Flb b

r hmC

. b b

b t

e it a

a y a a

a i

u r

T T

T s

H t

s e e T

T ru nk t

o Uc s

Me S

e o

D c

e p

)

r t

d n

r m

i W

't ib P

)

oa dl yF o

n r

PB r

eat C C

l nis(

d o

o ri 5 4 4 0 3

6 gemo5r c

y:

t l

3 5 0 9

7 e

it r

(

e c

saet 7 3 8

9 6

a 7

W k e sMh c 1

1 1

c 5

a A Ca 1

r i

a uu e

.F r

m h

3 R

t Tc e

c lb Y

a n

eP h

a T yu o

cF91 a

1

/A 8

C E

f 1

1 1

1 Tn 8

8 3 8

%eE0 4

4 r

t li n d lu0 0 4 4 N 0

4 l

o 0

e 2 x0 0 0 i a e

F 0

f 9(

k c

t aM s

c Fl e

i de t

N e

u e l d

U s

- ae) s q

tsmk%0 8 4 0 8

9 s

e eict 7 6 7 6 5

5 n

e R Bts N (w 0 i

0 0 0 0

0 a

a t

V E

a n

r o

e D

i e

p r

d t

ta e) p a

teip%1 5 6 6 2

3 n

smp 4 1 0 0 2 3

2 o

m Bt a

ov0 0 0 0 0

0 C

r sC(

d E

o e

o f

t n

a h

t i

l le it l

m e

le h

h S

S ll M

e s

e e

h s

g t

S E

i n

n ta id t

s a

i d

e) s o

g ign o

i m% L) e ly r

eog F g r)i%

a Ri r

n l

n e

e3 t

t le g tn6 n o0 L%

B n

a i

7 t 3 e cg h r

n r

A l LF F toD i D i

t 0 t

i oo S o oO e1 a

it B

lt te lt t

t I(

(

t (

Be Be l

e 3.

f e

e a e leld tted a

id o 4 h

l de H

eS B

e n

n n

eW eW mW e

z. z. r.

e io o

io r

r lz e

l l

r o te w ze zc ee z

t i

t i

r o oi oi t

r r

i c

s c

InC W

e s

e n

N I

L NC NC S

u S d

/

c l

e l

a e

e e

s t ir V e W t'

e

)

e WS D S i

9 1

0 1

M a0 8 8 7

0

)

)

0 P

d e3 4 1

26 57 9 1

Rel H S P S 4 0 -

1 4 -

se F

1 F 4 3 2 4 2A aW 2W2W1 S 2 2 2 B

1 1

1 7( 7( 7(

l

4. Request for AdditionalInformation Pegarding Reactor Vessel Integrity Evaluation and Use of Surveillance Data Both Regulatory Guide 1.99, Revision 2W and 10 CFR 50.61* require that surveillance data (if available) be considered in evaluating reactor vessel integrity. The best-estimate copper and nickel chemical compositions for both the weld wire heats and their weld metal sources are used in the evaluation of the surveillance data. The process of evaluating surveillance data includes a credibility assessment against five criteria and the calculation of the chemistry factor based on the surveillance data.

4.1. Surveillance Data Credibility Assessment For the RVWG reactor vessels, numerous surveillance data are available for evaluation of irradiation embrittlement. Each plant has their own plant-specific reactor vessel surveillance material. However, these plants also participate in the B&WOG Master integrated Reactor Vessel Surveillance Program (MIRVP) established in 1989, making weld metal surveillance data available from several sources. The reactor vessels participating in the MIRVP include reactor vessels with B&W designed nuclear steam cupply systems (NSSS) and Westinghouse-designed NSSS.

When assessing credibility for surveillance data from several sources, the capsule data may have to be " adjusted"to account for the irradiation environment and chemical composition differences. Because of the irradiation environment differences between the B&W-design NSSS and the Westinghouse-design NSSS, the capsule data are

" normalized"using the mean irradiation temperature of the surveillance specimens.

I 4-1 f M %^7R M

The " normalized" temperature adjusted ARTNOT s determined using the following i

equation:

sor..a-ma = ART or.

ras + 1 0 * (T,,,,, - T,,,,,,,,,,,, )

Temperature Adjusted ART s

{

l I

in addition, if the surveillance data are from multiple sources, it is necessary to adjust the capsule data for chemical composition (copper and nickel contents) differences.

For the credibility determination, the surveillance data are " normalized"to the mean copper and nickel contents of the surveillance materials using the following equation:

1

' C F,u,.s ~. = o'a-r Ratio Adjusted ARTsor,,,, ma =

red C F,ua,s.n. oa..

r s

A best-fit line (least squares regression) is then determined from the adjusted ARTuor capsule surveillance data as a function of the capsule fluence factor.

The data are considered credible if the difference between the adjusted ARTuor (i.e.,

(

temperature adjusted and/or chemistry adjusted) and the predicted ARTuor (from the best-fit line) for all the data are within i28 F for weld metals and 17'F for base metals.

l 4.2. Credible Surveillance Data in accordance with Regulatory Guide 1.99, Revision 2 and 10 CFR 50.61, credible surveillance data are used to determine material-specific chemistry factor values for use in reactor vessel integrity assessments. The chemistry factor is determined froni a best-fit line through the surveillance data adjusted tU account for differences in chemical composition (i.e., copper and nickel contents) and irradiation environment (i.e.,

irradiation temperature) between the capsules and the vessel. The surveillance data are adjusted in the same manner as for the credibility determination except that the 30 ft-Ib transition temperature values are " normalized"to the best estimate copper and

' nickel contents and the irradiation temperature of the vessel being assessed.

4-2 IMTNRM

f 4.3. Non-Credible Surveillance Data if the surveillance data are determined to be non-credible, the chemistry factor value is calculated from the generic Tables in 10 CFR 50.61 and Regulatory Guide 1.99, Revision 2 unless the chemistry factor determined from the surveillance data is sianificantiv oreater than that from the generic Tables, indicating that the Table chemistry factor is non-conservative. To determine if the generic Table chemistry factor is non-conservative, the following steps are performed:

1.

Determine the chemistry factor from the generic Tables based on the surveillance specimen chemical composition; use this chemistry factor to determine the predicted ARTuor for each capsule:

(Predicted ARTuor = CF able, Surv. Avg. Chern.

  • ficapsule)

T 2.

Determine difference between the predicted ARTuor and the measured ARTNOT-If the difference between the predicted ARTuor and the measured ARTuoi values exceeds 2 standard deviations (i.e.,56 F for weld metals and 34 F for base metals),

the Table chemistry factor is considered non-conservative. When the Table chemistry factor is determined to be non-conservative, the chemistry factor determined from the "non-credible" surveillance data is used in the assessment of reactor vessel integrity using the " full" value of o.s in calculating the Margin term.

4.4. Use of Weld Wire Heat Surveillance Data Based on the best-estimate copper and nickel chemical contents of the high-copper Linde 80 weld wire heats and their weld metal sources, the high-copper Linde 80 weld metal surveillance data have been evaluated in accordance with Regulatory Guide 1.99, Revision 2 and 10 CFR 50.61. Table 4.4-1 summarizes the results of the surveillance data evaluations for the RVWG reactor vessel beltline welds.

l 4-3 fPMNM

i l

l Table 4.4-1. Summary of Surveillance Data Assessments for the B&WOG Reactor Vessel Working Group Reactor Vessel Beltline Welds Sury. Data Table Chem. Factor Plant (NSSS)

Method of I

Weld Wire

. Available Surveillance Credible Conservative w/ Weld Chemistry Determining Heat Data' (Y or N) -

(Y or N)'

Wire Heat Factor Chem. Factor 299L44 B&W NSSS N

Y ONS-1 220.6 Table ONS-2 TMI-1 Westinghouse NSSS N

Y S-1 220 6 Table 220 6 Table All(Both B&W and Westinghouse)

N Y

406L44 B&W NSSS N

Y ANO-1 182.6 Table ONS-2 171.2 Surv. Data Westinghouse NSSS Y

All(Both B&W and Westinghouse)

N Y

182 6 Table PB-1 157.6 Surv. Data 61782 Westinghouse NSSS Y

l All(Both B&W and Westinghouse)

Y ONS-1 141.4 Surv Data

Y PB-1 167.6 Table TP-3 TP-4 ONS-1 i

l CR-3 72105 B&W NSSS N

Y CR-3 199.3 Table ONS 3 TMi-1 i

TP-4 203 4 Surv. Data Westinghouse NSSS Y

All(Both B&W and Westinghouse)

N Y

199 3 Table 72442 B&W NSSS N

Y PB-2 180.0 Table l

l TP-3 TP-4 ONS-3 ONS-1 142.3 Sury. Data 72445 B&W NSSS Y

S-1 136.2 Surv. Data j

Westinghouse NSSS Y

S-2 All(Both B&W and Westinghouse)

N Y

158.0 Table ANO-1 160.0 Surv. Data B21T44 B&W NSSS Y

D-B f

ONS-3 T29744 Westinghouse NSSS N

Y D-B 172.3 Table S-2 126.5 Surv. Data 0227 Westinghouse NSSS Y

(RDM) f!MTNRM 4-4

4.5. Assessment of Weld Wire Heat Surveillance Data The following tables provide the surveillance data evaluation of the weld wire heats used in the RVWG reactor vessel belt!ine region. The data contained in these tables provide the information requested in " Table 2" and " Table 3" of the request for additional information regarding reactor pressure vessel integrity in addition to the determination of the chemistry factor for the weld wire heat.

Because the Linde 80 weld metals are most limiting with respect to irradiation embrittlement, an evaluation of the base metal surveillance data is not require in accordance with the requests for additionalinformation regarding reactor pressure vesselintegrity for the RVWG plant. However, the evaluation of the base metal i

surveillance data is provided in Appendix B for completeness.

NOTE: The original Charpy V-notch impact data are based on hand-fit Charpy curves using engineering judgment; these data were re-evaluated using a hyperbolic tangent curve fitting program to achieve consistency in the interpretation of the available surveillance test data.

4-5 IMTNM

1 4.5.1. Weld Wire Heat Number 299L44 (Use of B&W NSSS Data Only)

Table 4.5.1-1. Surveillance Data for Weld Wire Heat Number 299L44 Using B&W NSSS Surveillance Data Only j

(Table 2 of the RAI Regarding Reactor VesselIntegrity)

Irradiation.

Measured Data Used in Capsule ID

. Cu Ni-Temperature Fluence ARTuor Assessing Vessel (including source)

. Wt%

Wt%

('F)-

(x10" n/cm#)

('F)

(Y of N)

TMI-1: Capsule TM11 E 0.33 0.67 556 0.107 74 Y

l l

WF-25: Plant-Specific RVSP Material TMI-1: Capsule TM11-C 0.33 0.67 556 0.866 166 Y

WF-25: Plant-Specific RVSP Material B&WOG: Capsule TMl2-LG1 0.33 0.67 556 0.968 226 Y

l I

WF-25: TMI-2 Nozzle Belt Dropout Matl.

B&WOG: Capsule TMl2-LG1 0.37 0.70 556 0.830 216 Y

SA 1526: CR-3 Nozzle Belt Dropout Matl.

B&WOG: Capsule CR3-LG1 0.36 0.70 556 0.779 205 Y

WF-25: ONS-3 Nozzle Belt Dropout Matl.

1 Table 4.5.1-2. Credibility Assessment for Weld Wire Heat Number 299L44 l

Using B&W NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor VesselIntegrity) 1 l

Chem.

Predicted (Adjusted -

trrad.

Meas.

Adjusted ARTwot from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor ARTwot Best Fit Line ARTuor Designation wt%

wt%

Factor

('F)

Factor

(*F)

(*F)

('F)

('F)

TMl-1: Capsule TM11-E 0.33 0.67 215.2 556 0.431 74 76 90

-14 WF-25: Plant-Specific RVSP Matt.

TMI-1: Capsule TM11-C 0.33 0.67 215.2 556 0.960 166 171 201

-30 t

WF-25: Plant-Specific RVSP Matt.

(

B&WOG: Capsule TMl2-LG1 0.33 0.67 215 2 556 0 991 226 233 208 25 WF-25: TMI-2 Nozzle Belt Dropout Matl.

B&WOG: Capsule TM12-LG1 0.37 0.70 234.0 556 0.948 216 205 198 7

SA-1526: CR-3 Nozzle Belt Dropout M ' tl.

B&WOG: Capsule CR3-LG1 0.36 0.70 230.5 556 0.930 205 198 195 3

WF-25: ONS-3 Nozzle Belt Drr pout Matt.

Sury. Avg 0 344 0682 222.1 556 where Predicted ARTuor = (Slopebest of * (Fluence Factor) and Slopebest nt = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e., 209.4)

These data are not credible since the scatter is greater than 28 F for one surveillance capsule data point.

4-6 h"N'M

f Table 4.5.1-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 299L44 Using B&W NSSS Surveillance Data Only Table Capsule Chem.

(Adjusted -

Capsule Chem. Factor Fluence Adjusted Predicted Predir ted) l Designation (Surv. Avg.)

Factor '

ARTwov (*F)

ARTuor (*F)

ARTwor (*F) l TMI-1: Capsule TM11-E 222.1 0.431 76 96

-20 WF-25: Plant-Specific,RVSP Matl.

TMI-1: Capsule TM11-C 222.1 0.960 171 213

-42 WF-25: Plant-Specific RVEP Matl.

Et&OG: Capsule TMl2-LG1 222.1 0.991 233 220 13 WF-25: TMI-2 Nozzle Belt Dropout Matl.

B&WOG: Capsule TMl2-LG1 222.1 0.948 205 211

-6 SA-1526 CR 3 Nozzle Belt Dropout Matl.

B&WOG: Capsule CR3-LG1 222.1 0.930 198 207

-9 WF-25' CNS-3 Nozzle Belt Drorpg' Matl.

where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

Since the scatter for all data points is less than 2 standard deviations (56 F), the Table chemistry factor is conservative. Therefore, the Table chemistry factor based on the weld wire heat best-estimate copper and nickel contents is used in the assessment of reactor vessel integrity.

4-7

?"MNM

I 4.5.2. Weld Wire Heat Number 299L44 (Use of Westinghouse NSSS Data Only)

Table 4.5.2-1. Surveillance Data for Weld Wire Heat Number 299L44 E

Using Westinghouse NSSS Surveillance Data Only 5

(Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measured Data Used in Capsule ID Cu-

.NI Temperature Fluence ARTwor Assessing Vessel (including source)

Wt%

Wt%

(*F)

(x10 n/cm )

(*F)

(Y or N)

Surry Unit 1: Capsule T 0.23 0.64 538 0.281 171 Y

SA 1526: Plant-Specific RVSP Material Surry Unit 1: Capsule V 0.23 0.64 538 1.94 250 Y

SA-1526: Plant-Specific RVSP Material Surry Unit 1: Capsule X 0.23 0.64 538 1.599 234 Y

SA-1526: Plant-Specific RVSP Material Table 4.5.2-2. Credibility Assessment for Weld Wire Heat Number 299L44 3

Using Westinghouse NSSS Surveillance Data Only 3l (Table 3 of the RAI Regarding Reactor Vessel integrity)

Predicted (Adjusted.

Irrad.

Meas.

Adjusted ARTwor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor ARTwor Best Fit Line ARTwor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F) l Surry Unit 1: Capsule T 0.23 0 64 175.8 538 0.653 171 142 29 SA-1526: Plant Specific RVSP Matt.

Surry Unit 1: Capsule V 0.23 0 64 175.8 538 1.181 250 256 6

SA-1526: Plant-Specific RVSP Matt.

Surry Unit 1: Capsule X 0.23 0.64 175.8 538 1.130 234 245

-11 SA-1526-Plant-Specific RVSP Matl.

Surv. Avg 0 23 0 64 175.8 538 I,

where Predicted ARinor = (Slopebe,rgf *(Fluence Factor) and Slopebestm = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 216.7)

These data are not credible since the scatter is greater than 128*F for one surveillance capsule data point.

I-1 l

l II I

4-8 f."<^ WR M l

f Table 4.5.2-3. Yable Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 299L44 Using Westinghouse NSSS Surveillance Data Only Table Capsule (Adjusted -

Capsule Chem. Factor Fluence Measured Predicted Predicted)

Designation (Sury. Avg.)

Factor ARTwot (*F)

ARTwor (*F)

ARTwor ('F)

Surry Unit 1: Capsule T 175.8 0653 171 115 56 SA-1526-Plant-Specific RVSP Matl.

Surry Und 1: Capsule V 175.8 1.181 250 208 42 SA.1526: Plant-Specific RVSP Matl.

Surry Und 1: Capsule X 175.8 1.130 234 199 35 SA-1526 Plant-Specific RVSP where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Facter)

Since the scatter for all data points does not exceed 2 standard deviations (56 F), the Table chemistry factor is conservative. Therefore, the Table chemistry factor based on the weld wire heat best-estimate copper and nickel contents is ned in the assessment of reactor vessel integrity.

4-9 E="MNM

i 4.5.3. Weld Wire Heat Number 299L44 (Use of All Surveillance Data)

Table 4.5.3-1. Surveillance Data for Weld Wire Heat Number 299L44 Using All Surveillance Data (Table 2 of the RAI Regarding Reactor VesselIntegrity)

Irradiation Measured Data Used in l

Capsule ID '

Cu Ni Temperature

.. Fluence ARTuor Assessing Vessel (including source)

Wt%

Wt%

~ ('F)

(x10 n/cm')

('F)

(Y or N)

TMI-1: Capsule TMl1-E 0.33 0.67 556 0.107 74 Y

j WF-25: Plant Speerlic RVSP Material i

TMI-1: Capsule TM11-C 0.33 0.67 556 0.866 166 Y

WF-25: Plant-Specific RVSP M&terial B&WOG: Capsule TM12-LG1 0.33 0.67 556 0.968 226 Y

WF-25: TMI-2 Nonle Belt Dropout Matt.

/

B&WOG: Capsule TM12-LG1 0.37 0.70 556 0.830 216 Y

SA-1526: CR-3 Nonle Belt Dropout Matt.

B&WOG: Capsule CR3-LG1 0.36 0.70 556 0.779 205 Y

WF-25: ONS-3 Nonle Delt Dropout Matl.

Surry Unit 1: Capsule T 0.2,3 0.64 538 0.281 171 Y

(

SA-1526: Plant-Specific RVSP Material Surry Unit 1: Capsule V 0.23 0.64 538 1.94 250 Y

SA-1526: Plant-Specific RVSP Material Surry Unit 1: Capsule X 0.23 0 64 538 1.599 234 Y

SA-1526: Plant-Specific RVSP Material

(

l 4-10 f."<MNRM

Table 4.5.3-2. Credibility Assessment for Weld Wire Heat Number 299L44 Using All Available Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Adjusted -

Irrad.

Meas.

Adjusted ARTwor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor ARTwor Best Fit Line ARTuor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F)

TMI-1: Capsule TMl1-E 0.33 0.67 215.2 556 0 431 74 77 94

-17 V!F-25: Plant-Specific RVSP Matl.

TMI-1: Capsule TMl1-C 0.33 0.67 215.2 556 0 960 166 164 209 45 WF-25: Plant-Specific RVSP Matl.

B&WOG: Capsule TMl2-LG1 0.33 0 67 215.2 556 0.991 226 222 216 6

WF-35: TMI-2 Nozzle Bell Dropout Matl.

B&WOG: Capsule TMl2-LG1 0.37 0.70 234.0 556 0 948 216 195 206 11 SA-1526: CR-3 Nozzle Belt Dropout Matt.

B&WOG: Capsule CR3-LG1 0.36 0.70 230.5 556 0.930 205 188 202 14 WF-35: ONS-3 Nozzle Belt Dropout M11 Surry Unit 1: Capsule T 0.23 0 64 175.8 538

~0653 171 186 142 44 SA 1526: Plant-Specific RVSP Matt.

Surry Unit 1: Capsule V 0.23 0.64 175.8 538 1.181 250 278 257 21 SA-1526: Plant-Specific RVSP Matt.

Surry Unit 1: Capsule X 0.23 0 64 175.8 538 1.130 234 259 246 13 SA-1526: Plant-Specific RVSP Mati Sury. Avg 0301 0 666 204.7 549 25 where Predicted ARTuor = (Slopebesf nt) * (Fluence Factor) and Slopebe,t nt = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e., 217.7)

These data are not credible since the scatter is greater than 128 F for two surveillance capsule data points.

I i

l 4-11 I'"' W a D w

l

(

Table 4.5.3-3. Table Chemistry Factor Non-Conservatism Assessment -

for Weld Wire Heat Number 299L44 Using All Surveillance Data l

Temp. &

Table Capsule Chem.

(Adjusted -

I Capsule :

Chem. Factor Fluence

. Adjusted Predicted Predicted)

Designation (Sury. Avg.)

Factor ARTuor (*F)

ARTuor (*F) s RTuoy (*F)

TMI-1: Capsule TM11-E 204.7 0.431 77 88

-11 WF-25: Plant-Specific RVSP Matt.

TMI-1: Capsule TM11-C 204.7 0960 164 196

-32 WF-25: Plant-Specific RVSP Matt.

B&WOG: Capsule TMl2-LG1 204.7 0.991 222 203 19 WF TMi-2 Nozzle Belt Dropout Matl.

B&WOG: Capsule TM12-LG1 204.7 0948 195 194 1

1 SA-1526: CR-3 Nozzle Belt Dropout Matl.

l B&WOG: Capsule CR3-LG1 204.7 0.930 188 190

-2

/

WF-25' ONS-3 Norzle Belt Dropout Matl.

Surry Unit 1: Capsule T 204.7 0.653 186 134 52 SA-1526: Plant-Specific RVSP Matl.

Surry Unit 1: Capsule V 204.7 1.181 278 242 36 SA-1526: Plant-Specific RVSP Matt.

Surry Unit 1: Capsule X 204.7 1.130 259 231 28 SA-1526: Plant-Specific RVSP 1

where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor) 1 Since the scatter for all data points is less than 2 standard deviations (56 F), the Table chemistry factor is conservative. Therefore, the Table chemistry factor based on the weld wire heat best-estimate copper and nickel contents is used in the assessment of s

reactor vessel integrity.

/

1 4-12 f"MNAM

s 4.5.4. Weld Wire Heat Number 406L44 (Use of B&W NSSS Data Oniv)

Table 4.5.4-1. Surveillance Data for Weld Wire Heat Number 406L44 Using B&W NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiaton Measured Data Used in Capsule ID 1 Cu

. Ni Temperature Fluence ARTuor Assessing Vessel (including source) wt%

wt%

('F)

(x10 n/cm')

(*F)

(Y or N)

ANO-1: Capsule AN1-E 0.27 0.58 556 0.0727 99 Y

WF-193: Plant Specific RVSP Material ANO-1: Capsule AN1-A 0.27 0.58 556 1.03 144 Y

WF-193: Plant Specific RVSP Material ANO-1: Capsule AN1-C 0.27 0.58 556 1.46 173 Y

WF 193: Plan *. Specific RVSP Material Rancho Seco Unit 1: Capsule RS1-B 0.31 0.59 556 0.399 114 Y

WF-193: Plant Specific RVSP Material Rancho Seco Unit 1: Capsule RS1-D 0.31 0.59 556 0 660 146 Y

WF 193: Plant Specific RVSP Material Rancho Seco Unit 1: Capsule RS1-F 0 31 0.59 556 t42 164 Y

WF-193: Plant Specific RVSP Material Oconee Unit 1: Capsule OC1-E 0.32 0.59 556 0.150 80 Y

WF 112: Plant Specific RVSP Material Oconee Unit 1: Capsule OC1-A 0.32 0.59 556 0.895 173 Y

WF-112: Plant Specific RVSP Material Oconee und 1: Capsule OC1-C 0.32 0.59 556 0.986 188 Y

WF 112: Plant Specific RVSP Material B&WOG: Capsule DB1-LG1 0.32 0.59 556 0.821 191 Y

WF-112: ONS-1 RVSP Material 4-13 f ="<^ TNRM

l I

Table 4.5.4-2. Credibility Assessment for Weld Wire Heat Number 406L44 Using B&W NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor VesselIntegrity) l i

l Predicted (Adjusted -

Irrad.

Meas.

Adjusted ARTwor from Predicted)

Capsule Cu Ni Chem.

Temp..

Fluence ARTwor ARTwoT Best Fit Line ARTwor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F) i ANO-1: Capsule AN1-E O 27 0.58 181.1 556 0.356 99 106 60 46 WF 193: Plant Specific RVSP Matt.

ANO-1: Capsule AN1-A 0.27 0.58 181.1 556 1.008 144 154 169

-15 WF-193 Plant Specific RVSP Matl ANO-1: Capsule AN1 C 0.27 0.58 181.1 556 1.105 173 184 185

-1 WF-193 Plant Specific RVSP Matl.

Rancho Seco Unit 1: Capsule RSI-B 0.31 0.59 196.7 556 0.745 114 112 125 13 i

l WF-193: Plant Specific RVSP Matl Rancho Seco Unit 1: Capsule RS1-D 0 31 0.59 196.7 556 0.884 146 143 148 5

i WF-193: Plant Specific RVSP Matt.

Rancho Seco Unit 1: Capsule RS1-F 0.31 0.59 196.7 556 1.097 164 161 184

-23 WF-193: Plant Specific RVSP Matl Oconee Unit 1: Capsule OC1-E O 32 0.59 200.7 556 0.503 80 77 84

-7 WF-11?: Plant Specific RVSP Matl Oconee Unit 1: Capsule OC1-A 0.32 0.59 200.7 556 0.969 173 166 162 4

WF-112: Plant Specific RVSP Matl.

Oconee Unit 1: Capsule OC1-C 0.32 0 59 200.7 556 0.996 188 181 167 14 l

i WF-112: Plant Specific RVSP Matt D&WOG: Capsule DB1-LG1 0.32 0.59 200.7 556 0.945 191 184 158 26 WF-112: ONS-1 RVSP Matt.

Surv. Ava 0.302 0 587 193 1 556 l

where Predicted ARTuor = (Slopebestnd * (Fluence Factor) and Slopebest at = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e.,167.5) i c

These data are not credible since the scatter is greater than 28 F for one surveillance capsule data point.

l i

i 4-14 fMTNRM

Table 4.5.4-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 406L44 Using B&W NSSS Surveillance Data Only Table Capsule Chem.

(Adjusted -

Capsule Chem. Factor Fluence Adjusted Predicted Predicted)

Designation (Surv. Avg.)

Factor ARTum ('F)

ARTum (*F)

ARTum (*F) l ANO-1: Capsule AN1-E 193.1 0.356 106 69 37 WF-193: Plant Specific RVSP Matl, ANO-1: Capsule AN1-A 193.1 1.008 154 195

-41 WF-193 Plant Specific RVSP Matl.

ANO-1: Capsule AN1-C 193.1 1.105 184 213

-29 WF-193: Plant Specific RVSP Matl.

Rancho Seco Unit 1: Capsule RS1-B 193.1 0.745 112 144

-32 WF-193 Plant Specific RVSP Matt.

Rancho Seco Unit 1: Capsule RS1-0 193.1 0.884 143 171

-28 WF-193: Plant Specific RVSP Matt.

Rancho Seco Unit 1: Capsule RS1-F 193.1 1.097 161 212 51 WF-193 Plant Specific RVSP Matl.

Oconee Unit 1: Capsule OC1-E 193.1 0.503 77 97 20 WF-112: Plant Specific RVSP Matl.

Oconee Unit 1: Capsule OC1-A 193.1 0.969 166 187

-21 WF-112 Plant Specific RVSP Matt.

Oconee Unit 1: Capsule OC1-C 193.1 0.996 181 192

-11 WF-112: Plant Specific RVSP Matl.

B&WOG: Capsule DB1-LG1 193.1 0.945 184 182 2

WF 112: ONS-1 RVSP Mati where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

Since the scatter for all data points is less than 2 standard deviations (56 F), the Table chemistry factor is conservative. Therefore, the Table chemistry factor based on the weld wire heat best-estimate copper and nickel contents is used in the assessment of reactor vessel integrity.

4-15 f"<M'M

1 4.5.5. Weld Wire Heat Number 406L44 (Use of Westinghouse NSSS Data Only)

Table 4.5.5-1. Surveillance Data foi Weld Wire Heat Number 406L44 Using Westinghouse NSSS Surveillance Data Only I

(Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measured Data Used in j

Capsule ID Cu Ni Temperature Fluence ARTwot Assessing Vessel (including source) wt%

wt%

(*F)

(x10" n/cm')

(*F)

(Y or N)

Point Beach Unit 2: Capsule V 0.25 0.59 542 0.650 167 Y

{

WF-193: Plant Specific RVSP Material Point Beach Unit 2: Capsule T 0.25 0 59 542 0.861 153 Y

WF 193: Plant Specific RVSP Material Point Beach Unit 2: Capsule R 0.25 0.59 542 2.20 223 Y

I WF 193: Plant Specific RVSP Material Point Beach Unit 2: Capsule S 0.25 0 59 542 3.10 224 Y

WF-193: Plant Specific RVSP Material 1

Table 4.5.5-2. Credibility Assessment for Weld Wire Heat Number 406L44 Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Adjusted.

Irrad.

Meas.

Adjusted ARTwor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwot ARTwor Best Fit Line ARTwor i

Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F)

Point Beach Unit 2: Capsule V 0.25 0.59 174.6 542 0.879 167 155 12 WF 193: Plant Specific RVSP Matl.

1 Point Beach Unit 2: Capsi le T 0.25 0.59 174.6 542 0.958 153 169 16 WF-193: Plant Specific RVSP Matt.

Point Beach Unit 2: Capsule R 0.25 0.59 174.6 542 1.214 223 214 9

WF-193: Plant Specific RVSP Matl.

Point Beach Unit 2: Capsule S 0.25 0.59 174.6 542 1.298 224 229

-5 j

WF-193: Plant Specific RVSP Matl.

0 59 174 6 542 Surv. Ava 0 25 where Predicted ARTuor = (Slopesestnt) * (Fluence Factor) and Slopekest nt = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,176.3)

These data are credible since the scatter is less than 128 F for all surveillance capsule data points.

4-16 f "<WM

l Table 4.5.5-3. Weld Wire Heat Number 406L44 Chemistry Factor Calculation l

for Assessment of B&W NSSS Reactor Vessels l

(Cold Leg Temperature at 556 F)

Using Westinghouse NSSS Surveillance Data Only irred.

Meas.

Temp. & Chem.

Capsule.

Cu Ni.

Chem.'

Temp.

Fluence ARTwor Adjusted Designation wt%

wt%:

Factor

('F)

Factor

('F)

ARTwor ('F)

Point Beach Unit 2: Capsule V O 25 0.59 174.6 542 0.879 167 160 WF.193: Plant Specific RVSP Matl.

i Point Beach Unit 2: Capsule T 0.25 0.59 174.6 542 0.958 153 145 WF.193 Plant Specific RVSP Matt.

Point Beach Unit 2: Capsule R 0.25 0 59 174.6 542 1.214 223 218 WF 193: Plant Specific RVSP Matl.

Point Beach Unit 2: Capsule S 0.25 0 59 174.6 542 1.298 224 220

(

WF-193: Plant Specific RVSP Matl Vessel Best-Estimate YYTY l

]

(

CFsurv. sata = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e., CF urv. data = 171.2)

S l

I l

4-17 I "< W a D 'S

i, t

4.5.6. Weld Wire Heat Number 406L44 (Use of All Surveillance Data)

Table 4.5.6-1. Surveillance Data for Weld Wire Heat Number 406L44 Using All Surveillance Data j

(Table 2 of the RAI Regarding Reactor Vessel Integrity) i Irradiation Measured Data Used in Capsule ID Cu' Ni Ternperature Fluence ARTuor Assessing Vessel 8

(including source) wt%

wt%

('F)

(x10 n/cm )

(*F)

(Y or N)

ANO-1: Capsule AN1-E 0.27 0.58 556 0.0727 99 Y

j WF-193: Plant Specific RVSP Material

]

ANO-1: Capsule AN1-A 0.27 0.58 556 1.03 144 Y

WF-193: Plant Specific RVSP Material ANO-1: Capsule AN1-C 0.27 0.58 556 1.46 173 Y

WF-193: Plant Specific RVSP Material I

Rancho Seco Unit 1: Capsule RS1-B 0.31 0.59 556 0.399 114 Y

WF-193: Plant Specific RVSP Material I

Rancho Seco Unit 1: Capsule RS1-D 0.31 0.59 556 0.660 146 Y

WF-193: Plant Specific RVSP Material Rancho Seco Unit 1: Capsule RS1-F 0.31 0.59 556 1.42 164 Y

{

WF-193: Plant Specific RVSP Material Oconee Unit 1: Capsule OC1-E 0.32 0.59 556 0.150 80 Y

WF-112. Plant Specific RVSP Material Oconee Unit 1: Capsule OC1 A 0.32 0 59 556 0.895 173 Y

l WF-112: Plant Specific RVSP Material Oconee Unit 1: Capsule OC1-C 0.32 0.59 556 0.986 188 Y

WF-112: Plant Specific RVSP Material B&WOG: Capsule DB1-LG1 0.32 0.59 556 0.821 191 Y

WF-112: ONS-1 RVSP Material Point Beach Unit 2: Capsule V 0.25 0.59 542 0.650 167 Y

{

WF-193: Plant Specific RVSP Material l

Point Beach Unit 2: Capsule T 0.25 0.59 542 0.861 153 Y

WF-193: Plant Specific RVSP Material l

Point Beach Unit 2: Capsule R 0.25 0.59 542 2.20 223 Y

WF-193: Plant Specific RVSP Matenal Point Beach Unit 2: Capsule S 0.25 0.59 542 3.10 224 Y

WF-193: Plant Specific RVSP Material l

l 4-18 f."<MeNA

Table 4.5.6-2. Credibility Assessment for Weld Wire Heat Number 406L44 Using All Available Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Irrad...

Predicted (Adjusted -

Meas.

Adjusted ARTwor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTNor ARTuor Best Fit Line ARTwor Designation wt%

w*%

Factor

('F)

Factor

('F)

('F)

('F)

('F)

ANO-1: Capsule AN1-E 0.27 0.58 181.1 556 0.356 99 107 61 46 WF-193: Plant Specific RVSP Matt.

ANO-1: Capsuie AN1-A 0.27 0.58 181.1 556 1.008 144 154 174

-20 WF-193 Plant Srecific RVSP Matt ANO-1: Capsule AN1-C 0.27 0.58 181.1 556 1.105 173 184 190

-6 WF-193 Plant Specific RVSP Matt.

R ncho Seco Unit 1: Capsule RS1-B 0.31 0.59 196.7 556 0.745 114 113 128

-15 WF-193' Plant Specific RVSP Matt Rancho Seco Unit 1: Capsule RS1-D 0.31 0.59 196.7 556 0 884 146 144 152

-8

_WF-193: Plant Specific RVSP Matt.

R ncho Seco Unit 1: Capsule RS1-F 0.31 0.59 196.7 556 1.097 164 161 189 28 WF-193: Plant Specific RVSP Matt Oconee Unit 1: Capsule OC1-E 0.32 0.59 200.7 556 0.503 80 79 87

-8 WF-112: Plant Specific RVSP Matl.

Oconee Unit 1: Capsule OC1-A 0.32 0 59 200.7 556 0.969 173 166 167

-1 WF-112: Plant Specific RVSP Matl Oconee Unit 1: Capsule OC1-C 0.32 0.59 200.7 556 0.996 186 180 172 8

WF-112: Plant Specific RVSP Matt.

B&WCG: Capsule DB1-LG1 0.32 0.59 200.7 556 0.945 191 183 163 20 WF-112: ONS-1 RVSP Matt Point Beach Unit 2: Capsule V 0.25 0.59 174.6 542 0.879 167 169 152 17 WF-193 Plant Specific RVSP Matt.

Point Beach Unit 2: Capsule T 0.25 0.59 174.6 542 0.958 153 154 165

-11 WF-193: Plant Specific RVSP Matl.

Point Beach Unit 2: Capsule R 0 25 0 59 174.6 542 1.214 223 230 209 21 WF-193: Plant Specific RVSP Matl Point Beach Unit 2: Capsule S 0.25 0.59 174.6 542 1.298 224 231 224 7

WF-193-Plant Specific RVSP Matt.

Sum Avg 0 287 0 588 188 2 552 where Predicted ARTuor = (Slopebestm) * (Fluence Factor) and Slopebest rt = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e.,172.3)

These data are not credible since the scatter is greater than 28 F for one surveillance capsule data point.

l I

l j

l/a 4-19 f."MNRM

Table 4.5.6-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 406L44 Using All Surveillance Data l

Temp. &

Table Capsule Chem.

(Adjusted -

Capsule,

Chem. Factor Fluence Adjusted Predicted Predicted) resignation (Surv. Avg.)

Factor ARTuot (*F)

ARTwot (*F)

ARTwot ('F) j ANO-1: Capsule AN1-E 188.2 0.356 107 67 40 WF-193: Plant Specific RVSP Matl.

ANO-1: Capsule AN1-A 188.2 1.008 154 190

-36 WF-193: Plant Specific RVSP Matt.

ANO-1: Capsule AN1-C 188 2 1.105 184 208

-24 I

WF 193: Plant Specific RVSP Matl Rancho Seco Unit 1: Capsule RS1-B 188.2 0.745 113 140

-27 WF-193: Plant Specific RVSP Matt.

Rancho Seco Unit 1: Capsule RS1-D 188.2 0.884 144 166

-22 WF-193: Plant Specific RVSP Matt Rancho $3co Unit 1: Capsule RS1-F 188.2 1.097 161 206

-45 WF 193: Plant Specific RVSP Matl.

Oconee Unit 1: Capsule OC1-E 188.2 0.503 79 95

-16 WF-112: Plant Specific RVSP Matl.

Oconee Unit 1: Capsule OC1-A 188.2 0.969 166 182

-16 WF-112: Plant Specific RVSP Matl.

j Oconee Unit 1: Capsule OC1-C 188.2 0996 180 187

-7 WF-112: Plant Specific RVSP Matt.

B&WOG: Capsule DB1-LG1 188.2 0.945 183 178 5

WF-112: ONS 1 RVSP Matt.

Point Beach Unit 2: Capsule V 188.2 0.879 169 165 4

WF-193: Plant Specific RVSP Matl.

Point Beach Unit 2. Capsule T 188.2 0.958 154 180

-26 WF-193: Plant Specific RVSP Matl.

Point Beach Unit 2: Capsule R 188.2 1.214 230 228 2

WF-193: Plant Specific RVSP Matt.

Point Beach Unit 2: Capsule S 188.2 1.298 231 244

-13 WF-193: Plant Specific RVSP Matt.

where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

Since the scatter for all data points is less than 2 standard deviations (56 F), the Table chemistry factor is conservative. Therefore, the Table chemistry factor based on the weld wire heat best-estimate copper and nickel contents is used in the assessment of reactor vessel integrity.

4-20 f."ATNRM

4.5.7. Weld Wire Heat Number 61782 (Use of Westinghouse NSSS Data Only)

Table 4.5.7-1. Surveillance Data for Weld Wire Heat Number 61782 Using Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measured Data Used in Capsule ID '

Cu Ni Temperature Fluence

' ARTur.tr Assessing Vessel (including source) wt%

wt%'

('F)

(x10" n/cm')

(*F)

(Y or N)

R. E. Genna: Capsule V 0.24 0.52 545 0.556 146 Y

SA-1036: Plant Specific RVSP Material R. E. Ginna: Capsule R 0.24 0.52 545 1.15 167 Y

SA-1036: Plant Specific RVSP Material R. E. Ginna: Capsule T 0.24 0.52 545 1.97 169 Y

SA-1036: Plant Specific RVSP Material R. E. Ginna: Capsule S 0.24 0.52 545 3.87 222 Y

SA-1036: Plant Specific RVSP Material Table 4.5.7-2. Credibility Assessment for Weld Wire Heat Number 61782 Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured -

frrad.

Meas.

Adjusted ARTuoi from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwot ARTwor Best Fit Line ARTuor Designation wt%

wt%

Factor

(*F)

Factor

('F)

- ('F)

('F)

('F)

R. E. Ginna: Capsule V 0.24 0 52 161.4 545 0.836 146 133 13 SA-1036: Plant Specific RVSP Matt.

R. E. Ginna: Capsule R 0.24 0.52 161.4 545 1 039 167 165 2

SA-1036: Plant Specific RVSP Matl.

R. E. Ginna: Capsule T 0.24 0.52 161.4 545 1.185 169 188

-19

$A-1036: Plant Specific RVSP Matl.

R. E. Ginna: Capsule S 0.24 0.52 161.4 545 1.349 222 214 8

SA-1036: Plant Specific RVSP Matt.

Surv. Ava 0.24 0 52 161 4 545 where Predicted ARTuor = (Slopebest nt) * (Fluence Factor) and Slopebest nt = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,159.0)

These data are credible since the scatter is less than i28 F for all surveillance capsule data points.

4-21 I"M7M

\\

Table 4.5.7-3. Weld Wire Heat Number 61782 Chemistry Factor Calculation for Assessment of Westinghouse NSSS Reactor Vessel (Point Beach Unit 1 Cold Leg Temperature at 542 F)

Using Westinghouse NSSS Surveillance Data Only i

l Irred.

Meas.

Temp. & Chem.

Capsule.

Cu NI Chem /

Temp.

Fluence ARTwor Adjusted Designation wt%

wt%

Factor

(*F)

Factor

(*F)

ARTuor (*F) i R. E Ginna: Capsule V 0.24 0.52 161.4 545 0.936 146 145 SA-1036: Plant Specific RVSP Matl.

R. E. Genna: Capsule R 0 24 0.52 161.4 545 1.039 167 166 SA-1036 Plant Speedic RVSP Matl.

j R. E. Ginna: Capsule T 0.24 0.52 161.4 545 1.185 169 168 SA-1036: Plant Specific RVSP Matl R. E. Ginna: Capsule S 0.24 0.52 161.4 545 1.349 222 219 SA-1036: Plant Specific RVSP Matl.

Vessel Best-Estimate 0.23 0 52 157.4 542 CFsurv. data = best fit line relating Adjusted ARTuor to the Fluence Factor i

(i.e., CFsurv. data = 157.6) i l

I i

l I

(

I 4-22

"* TNRM

4.5.8. Weld Wire Heat Number 61782 (Use of All Surveillance Data)

Table 4.5.8-1. Surveillance Data for Weld Wire Heat Number 61782 f

Using All Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measured Data Used in I

CapsuleID,

Cu Ni Temperature Fluence ARTuor Assessing Vessel (including source) wt%

wt%

(*F)-

(x10" n/cm')

(*F)

(Y or N)

B&WOG: Capsule DB1-LG1 0.27 0.59 556 1.03 141 Y

SA-1135: ONS-2 Nonle Delt Dropout Matt.

R. E. Ginna: Capsule V 0.24 0.52 545 0 556 146 Y

SA-1036: Plant Specific RVSP Material R. E. Genna: Capsule R 0.24 0.52 545 1.15 167 Y

SA 1036: Plant Spec 6c RVSP Material R. E. Ginna: Capsule T 0.24 0.52 545 1.97 169 Y

SA-1036: Plant Specrfic RVSP Material R. E. Ginna: Capsule S 0.24 0.52 545 3.87 222 Y

SA 1036: Plant Specific RVSP Material Table 4.5.8-2. Credibility Assessment for Weld Wire Heat Number 61782 Using All Available Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Adjusted -

Irrad.

Meas.

Adjusted ARTuor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor ARTuor Best Fit Line ARTuor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F)

R. E. Genna: Capsule V 0.24 0.52 161.4 545 0.836 146 147 131 16 SA-1036: Plant Specific RVSP Matl.

R. E. Ginna: Capsule R 0.24 0.52 161.4 545

".039 167 169 163 6

SA-1036: Piant Specific RVSP Matt.

R. E. Ginna: Capsule T 0.24 0.52 161.4 545 1.185 169 171 186 15 SA-1036 Plant Specific RVSP Matt R. E. Ginna: Capsule S 0.24 0.52 161.4 545 1.349 222 225 211 14 SA-1036: Plant Specific RVSP Matt B&WOG: Capsule DB1-LG1 0.27 0.59 182.6 556 1.008 141 136 158

-22 SA-1135: ONS-2 Nonle Belt Dropout Matl.

Surv. Ava.

0246 0 534 165 4 547.2 where Predicted ARTuor = (Slopet>est nd * (Fluence Factor) and Slopesest nt = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e.,156.5)

These data are credible since the scatter is less than i28 F for all surveillance capsule data points.

4-23 I"<^ M ' M

Table 4.5.8-3. Weld Wire Heat Number 61782 Chemistry Factor Calculation for Assessment of B&W NSSS Reactor Vessels (Cold Leg Temperature at 556 F)

Using All Surveillance Data l

Irrad.

Meas.

Temp. & Chem.

Capsule Cu N1 Chem.

Temp.

Fluence ARTway Adjusted Designation wt%

wt%

Factor

(*F)

Factor

(*F)

ARTwor (*F)

{

R. E. Ginna: Capsule V 0.24 0.52 161.4 545 0.836 146 132 SA-1036: Plant Specific RVSP Matl.

R. E. Ginna: Capsule R 0.24 0.52 161.4 545 1.039 167 152

{

SA-1036: Plant Specific RVSP Matt.

R. E. Ginna: Capsule T 0.24 0.52 161.4 545 1.185 169 154 SA-1036: Plant Specific RVSP Matl.

R. E. Ginna: Capsule S 0.24 0.52 161.4 545 1.349 222 206 l

SA-1036 Plant Specific RVSP Matl B&WOG: Capsule DB1-LG1 0.27 0.59 182.6 556 1.008 141 122 SA-1135: ONS-2 Nozzle Belt Dropout Matt.

Vessel Best-Estimate 0.23 0 52 157.4 556 E l

CFsuw. cata = best fit line relating Adjusted ARTuor to the Fluence Factor

(

(i.e., CF urv.eata = 141.4)

J S

Table 4.5.8-4. Weld Wire Heat Number 61782 Chemistry Factor Calculation for Assessment of Westinghouse NSSS Reactor Vessel 4

(Point Beach Unit 1 Cold Leg Temperature at 542 F)

Using All Surveillance Data

(

Irrad.

Meas.

Temp. & Chem.

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor Adjusted Designation wt%

wt%

Factor

(*F)

Factor

(*F)

ARTwor (*F)

R. E. Ginna: Capsule V 0.24 0.52 161.4 545 0.836 146 145 SA-1036 Plant Speerfic RVSP Matl.

R. E. Ginna: Capsule R 0.24 0.52 161.4 545 1.039 167 166 SA-1036: Plant Specific RVSP Matt.

R. E. Ginna: Capsule T 0.24 0.52 161.4 545 1.185 169 168 SA-1036: Plant Specific RVSP Matl R. E. Ginna: Capsule S 0.24 0.52 161.4 545 1.349 222 219 SA-1036: Plant Specif:c RVSP Matt.

B&WOG: Capsule DB1-LG1 0.27 0.59 182.6 556 1.008 141 134 SA-1135: ONS-2 Nozzle Belt Dropout Matt.

Vessel Best-Estimate 0 23 0.52 157.4 542 CFsuw.cata = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e., CF urv. data = 153.4)

S 1

t I

(

l 4-24 f."<WM

f 4.5.9. Weld Wire Heat Number 71249 (Use of Westinghouse NSSS Data)

Table 4.5.9-1. Surveillance Data for Weld Wire Heat Number 71249 Using Westinghouse NSSS Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel Integrity) l I

Irradiation Measured Data Used in Capsule ID

'Cu Ni Tempera':ure Fluence ARTway Assessing Vessel (including source) wt%

wt%

(*F)'

(x10 n/cm')

(*F)

(Y or N)

Turkey Point Unit 3: Capsule T 0.33 0.57 546 0.739 166 Y

SA-1101: Plant Specific RVSP Material Turkey Point Unit 3: Capsule V 0.33 0.57 546 1.53 180 Y

SA-1101: Plant Specific RVSP Material Turkey Point Unit 4: Capsule T 0.29 0.60 545 0.708 211 Y

SA-1094: Plant Specif.c RVSP Material Table 4.5.9-2. Credibility Assessment for Weld Wire Heat Number 71249 Using Westinghouse NSSS Surveillance Data (Table 3 of the RAI Regarding Reactor Vossel Integrity)

Predicted (Adjusted -

Irrad.

Meas.

Adjusted ARTuor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor ARTwor Best Fit Une ARTwor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F)

TurkIy Point Unit 3: Capsule T 0.33 0.67 201.3 546 0.916 166 163 172

-9 SA-1101: Plant Specific RVSP Matt Turkiy Point Unit 3: Capsule V 0.33 0.57 201.3 546 1.118 180 177 210

-33 SA-1101: Plant Specific RVSP Matl, Turk:y Point Unit 4: Capsule T 0.29 0.60 191.0 546 0 903 211 219 170 49 SA-1094: Plant Specific RVSP Matt.

Surv. Avg 0317 0580 1980 546 where Predicted ARTuor = (Slopesestml * (Fluence Factor) and Slopese,t rit = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e.,187.7)

These data are not credible since the scatter is greater than 128 F for two surveillance capsule data points.

4-25 I"<WM

Table 4.5.9-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 71249 Using Westinghouse NSSS Surveillance Data i

j

, Tabee -

Capsule Temp.

(Adjusted -

Capsule.

Chem. Factor Fluence Adjusted Predicted Predicted)

Designation (Surv. Avg.)

Factor ARTwey ('F)

ARTuor (*F)

ARTwer (*F)

Turkey Point Unit 3: Capsule T 198.0 0.916 163 181 18 j

SA-1101: Plant Specific RVSP Matl.

Turkey Point Unit 3: Capsule V 198.0 1.118 177 221

-44 SA-1101: Plant Specific RVSP Matl.

.I Turkey Point Unit 4: Capsule T 198.0 0.903 219 179 40 I

SA-1094: Plant Specific RVSP Matt.

where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

\\

a I

Since the scatter for all data points does not exceed 2 standard deviations (56 F), the Table chemistry factor is conservative. Therefore, the Table chemistry factor based on z

the weld wire heat best-estimate copper and nickel contents is used in the assessment of reactor vesselintegrity.

l

(

l l

4-26 I!MTNRM

r-4 4.5.10. Weld Wire Heat Number 72105 (Use of B&W NSSS Data Only)

Table 4.5.10-1. Surveillance Data for Wold Wire Heat Number 72105 I

Using B&W NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation -

Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTwot Assessing Vessel (including source) wt%

wt%

'(*F)

(x10" n/cm )

(*F)

(Y or N) 2 Oconee Unit 2: Capsule OCil-C 0.35 0 58 556 0.102 46 Y

WF-209-1: Plant Specific RVSP Material Oconee Unit 2: Capsule OCll-A 0.35 0.58 556 0.337 107 Y

WF-209-1: Plant Specific RVSP Material Oconee Unit 2: Capsule OCil-E O 35 0.58

$56 1.21 174 Y

WF-209-1: Plant Specific RVSP Material Oconee Unit 3: Capsule OCill-A 0.29 0.56 556 0.081 15 Y

WF-209-1: Plant Specific RVSP Material Oconee Unit 3: Capsule OCill-B 0.29 0.56 556 0 312 70 Y

WF-2091: Plant Specific RVSP Materia!

Oconee Unit 3: Capsulo OCill-D 0.29 0 56 556 1.45 145 Y

WF-209-1: Plant Specific RVSP Material B&WOG: Capsule TMl2-LG1 0.39 0.58 556 0.585 125 Y

WF-70: MD1 Nozzle Belt Dropout Matl.

B&WOG' Capsule DB1-LB1 0.39 0.58 556 0.663 137 Y

WF-70: MD1 Nozzle Belt Dropout Matl.

B&WOG: Capsule CR3-LG2 0.39 0 SS 556 1.19 126 Y

WF-70: M01 Nozzle Belt Dropout Matl.

4-27

(="MNM

l Table 4.5.10-2. Credibility Assessment for Weld Wire Heat Number 72105 Using B&W NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Adjusted -

Irraa.

Meas.

Adjusted ARTuor from Pretticted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor ARTwor Best FM Line ARTuor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F)

Oconee Unit 2: Capsule OCil-C 0.35 0.58 209.5 556 0.421 46 45 57

-12 WF-209-1: Plant Specific RVSP Matl.

Oconee Una 2: Capsule OCil-A 0.35 0.58 209.5 556 0.701 107 106 95 11 WF-209-1 Piant Specific RVSP Matt.

Oconee Unit 2: Capsule OCll-E 0.35 0.58 209.5 556 1.053 174 172 143 29 WF-209-1: Plant Specific RVSP Matt Oconee Unit 3. Capsule OCall-A 0.29 0.56 185 6 556 0.376 15 17 51

-34 WF-209-1: Plant Specific RVSP Matl Oconee Unit 3. Capsule OCill-B 0 29 0.56 185.6 556 0 680 70 78 92

-14 WF-209-1: Plant Specific RVSP Matt.

Oconee Unit 3: Capsule OCill-D 0.29 0.56 185.6 556 1.103 145 162 150 12 WF-209-1: Plant Specific RVSP Matl B&WOG Capsule TMl2-LG1 0.39 0.58 2246 556 0.850 125 115 115 0

l WF-70: MD1 Nozzle Belt Drepout Matl.

B&WOG: Capsule DB1-LB1 0.39 0.58 224.6 556 0 885 137 126 120 6

q WF-70. MD1 Nozzle Belt Dropout Matl.

i B&WOG: Capsule CR3-LG2 0.39 0.58 224.6 556 1.049 126 116 142

-26 WF-70: MD1 Nozzle Belt Dropout Surv Avg 0343 0 573 206 7 556 where Predicted ARTuDr = (Slopebest nd * (Fluence Factor) and Slopebest nt = best fit line relating Adjusted ARTuDr to the Fluence Facto:

(i.e.,135.8)

These data are not credible since the scatter is greater than i28 F for two surveillance q

capsule data points.

4-28 I"MNM

Table 4.5.10-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 72105 Using B&W NSSS Surveillance Data Only Table -

Capsule Chem.

(Adjusted -

Capsule Chem. Factor Fluence Adjusted Predicted Predicted)

Designation (Surv. Avg.)

Factor ARTwot ('F)

ARTuor (*F)

ARTwot (*F)

Oconee Una 2: Capsule OCll-C 206.7 0.421 45 87

-42 WF 209-1: Plant Specific RVSP Matl.

Oconee Una 2: Capsule OCil-A 206.7 0.701 106 145 39 WF 209-1: Plant Specific RVSP Matl.

Oconee Una 2: Capsule OCil-E 206.7 1.053 172 218

-46 WF-2091: Plant Specific RVSP Mati.

Oconee Und 3: Capsule OCill-A 206.7 0.376 17 78

-61 WF-209-1: Plant Specific RVSP Matl.

Oconee und 3' Capsule OCill-B 206.7 0.680 78 141

-63 WF-209-1: Plant Specific RVSP Matl Oconee Una 3: Capsule OCill-D 206.7 1,103 162 228

-66 WF-209-1: Plant Specific RVSP Matl B&WOG: Capsule TMl2-LG1 206.7 0,850 115 176

-61 WF-70: MD1 Nozzle Belt Dropout Matt.

B&WOG: Capsule DB1-LB1 206.7 0.885 126 183

-57 WF-70: MD1 Nozzle Belt Dropout Matt.

B&WOG: Capsule CR3-LG2 206.7 1.049 116 217

-101 WF MD1 Nozzle Belt Dropout Matl.

where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

The above assessment results indicates that the generic Table chemistry factor for the B&W NSSS surveillance data arOssiv over-predicts the adjusted measured data.

Therefore, the Table chemistry factor calculated using the weld wire heat best-estimate copper and nickel contents is considered conservative and is used in the assessment of reactor vessel integrity.

4-29 f="MNM

l I

4.5.11. Weld Wire Heat Number 72105 (Use of Westinghouse NSSS Data Only) l Table 4.5.11-1. Surveillance Data for Weld Wire Heat Number 72105 Using Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiaten '

Measured Data Used in j

. Capsule ID..

Cu.

NI Temperature Fluence ARTwor Assessing Vessel (including source) wt%

wt%

(*F)

(x10 n/cm')

('F)

(Y or N)

Zion Unit 1: Capsule T 0.25 0.54 529.4 0.310 108 Y

j WF-209-1: Plant Specific RVSP Material Zion Unit 1: Capsule U 0.25 0.54 529.4 1.02 190 Y

WF-209-1: Plant Specific RVSP Material Zion Unit 1: Capsule X 0.25 0.54 529 4 1.26 194 Y

WF-209-1: Plant Specific RVSP Material Zion Unit 1: Capsule Y 0.25 0.54 529.4 1.56 201 Y

WF-209-1: Plant Specific RVSP Material i

Zion Unit 2: Capsule U 0.25 0.55 529.4 0.270 138 Y

WF-209-1: Plant Specific RVSP Material Zion Unit 2: Capsule T 0.25 0.55 529.4 0.779 179 Y

l WF-209-1: Plant Specific RVSP Material

{

Zion Unit 2: Capsule Y 0.25 0.55 529.4 1.46 226 Y

WF-209-1: Plant Specific RVSP Material

(

l, l

l 4-30 IMTNRM

}

Table 4.5.11-2. Credibility Assessment for Weld Wire Heat Number 72105 Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Adjusted -

Irrad.

Meas.

Adjusted ARTuor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor ARTwor Best Fit Line ARTuor Designation wt%

wt%

Factor

('F)

Factor

('F)

('F)

(*F)

('F) f Zion Unit 1: Capsule T 0.25 0.54 167.6 529.4 0.679 108 108 128

-20 WF-309-1: Plant Specife RVSP Matl.

Ison Unit 1: Capsule U 0.25 0.54 167.6 529 4 1.006 190 191 190 1

WF-309-1: Plant Specific RVSP Matt.

Ison Unit 1: Capsule X 0.25 0.54 167.6 529.4 1.064 194 195 201

-6 WF-309-1 Plant Specific RVSP Matt.

Zion Unit 1: Capsule Y 0.25 0.54 167.6 529.4 1.123 201 202 212 10 WF-209-1: Plant Specific RVSP Matt Zion Unit 2: Capsule U 0.25 0.55 1690 529.4 0.643 138 137 122 15 WF-309-1: Plant Specific RVSP Matt Zion Unit 2: Capsule T 0.25 0.55 1690 529.4 0.930 179 178 176 2

WF-209-1: Plant Specific RVSP Matl.

Zion Unit 2: Capsule Y 0.25 0 55 1690 529.4 1.105 226 225 209 16 WF-209-1: Plant Specific RVSP Matl Surv. Avg 0 25 0 544 168 2 529 4 where Predicted ARTuor = (Slopebest nd * (Fluence Factor) and Slopebest nt = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e.,188.8)

These data are credible since the scatter is less than i28 F for all surveillance capsule data points.

4-31 f e"<^ M7M

Table 4.5.11-3. Weld Wire Heat Number 72105 Chemistry Factor Calculation for Assessment of B&W NSSS Reactor Vessels (Cold Leg Temperature at 556 F)

Using Westinghouse NSSS Surveillance Data Only irrad.

Meas.

Temp. & Chem.

Capsule Cu-Ni Chem.

Temp.

Fluence ARTwor Adjusted Designation wt%

wt%

Factor

('F)

Factor

(*F)

ARTwor ('F)

Zion Unit 1: Capsule T 0.25 0.54 167.6 529.4 0.679 108 97 WF-209-1: Plant Specific RVSP Matt.

Zion Unit 1: Capsule U 0.25 0.54 167.6 529.4 1.006 190 194 WF-209-1: Plant Specific RVSP Matt Zion Unit 1: Capsule X 0.25 0.54 167.6 529.4 1.064 194 199 WF-209-1: Plant Specific RVSP Matl.

Zion Unit 1: C,psu)e Y 0.25 0.54 167.6 529.4 1.123 201 207 WF-209-1: Plant Specific PVSP Matt.

Zion Unit 2: Capsule U 0 25 0 55 169.0 529 4 0.643 138 131 WF-209-1: Plant Specific RVSP Mati.

Zion Unit 2: Capsule T 0.25 0.55 169.0 529.4 0 930 179 180 WF-209-1: Plant Specific RVSP Matl.

l Zion Unit 2: Capsule Y 0.25 0.55 169.0 529.4 1.105 226 235

(

WF-209-1: Plant Specific RVSP Matl.

Vessel Best-Estimate 0.32 0 58 199.3 556 CFsurv. sata = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e., CF urv. data = 191.2)

S Table 4.5.11-4. Weld Wire Heat Number 72105 Chemistry Factor Calculation for Assessment of Westinghouse NSSS Reactor Vessel (Turkey Point Unit 4 Cold Leg Temperature at 546 F)

Using Westinghouse NSSS Surveillance Data Only irrad.

Meas.

Temp. & Chem.

Capsule Cu Ni Chem.

Temp.

Fluence ARTway Adjusted Designation wt%

wt%

Factor

('F)

Factor

('F)

ARTwor (*F)

Zion Unit 1: Capsule T 0.25 0.54 167.6 529.4 0.679 108 109 WF-209-1: Plant Specific RVSP Matt.

Zion Unit 1: Capsule U 0.25 0.54 167.6 529.4 1.006 190 206 WF-209-1: Plant Specific RVSP Matt.

Zion Unit 1: Capsule X 0.25 0.54 167.6 529.4 1.064 194 211 WF-209-1: Plant Specific RVSP Matl Zion Unit 1: Capsule Y 0.25 0.54 167.6 529.4 1.123 201 219 WF-209-1: Plant Specific RVSP Matl.

Zion Unit 2: Capsule U 0.25 0.55 169.0 529.4 0.643 138 143 WF-209-1: Plant Specific RVSP Matl.

Zion Unit 2: Capsule T 0.25 0.55 169.0 529.4 0.930 179 192 WF-209-1: Plant Specific RVSP Matl.

Zion Unit 2: Capsule Y 0.25 0.55 169.0 529.4 1.105 226 247 WF-209-1: Plant Specific RVSP Matt.

Vessel Best-Estimate YY CFsurv. data = best fit line relating Adjusted ARTuor to the Fluence Factor I

(i.e., CFSurv.eata = 203.4) 4-32 h"< M ' M

2 4.5.12. Weld Wire Heat Number 72105 (Use of All Surveillance Data)

Table 4.5.12-1. Surveillance Data for Weld Wire Heat Number 72105 l

Using All Surveillance Data (Table 2 of the RAI Regarding Reactor VesselIntegrity)

Irradiation Measured Data Used in Capsule ID Cu Ni Temperature

~ Fluence ARTwor Assessing Vessel (including source).

wt%

wt%

(*F)

(x10 n/cm )

(*F)

(Y or N) 2 Oconee Unit 2: Capsule OCil-C 0.35 0.58 556 0.102 46 Y

WF-209-1: Plant Specific RVSP Material Oconee Unit 2: Capsule OCil-A 0.35 0.58 556 0.337 107 Y

WF-2091: Plant Specific RVSP Material Oconee Untt 2: Capsule OCll-E 0.35 0.58 556 1.21 174 Y

WF-209-1: Plant Specific RVSP Material Oconee Unit 3: Capsule OCill A 0.29 0.56 556 0.081 15 Y

WF-209-1: Plant Specific RVSP Material Oconee Unit 3. Capsule OClli-B 0.29 0.56 556 0.312 70 Y

WF-209-1: Plant Specific RVSP Material Oconee Unit 3: Capsule OClli-D 0.29 0.56 556 1.45 145 Y

WF-209-1: Plant Specific RVSP Material B&WOG: Capsule TM12-LG1 0.39 0.58 556 0.585 125 Y

WF-70: MD1 Nozzle Belt Dropout Matl.

B&WOG: Capsule DB1-LB1 0.39 0.58 556 0 663 137 Y

WF-70: MD1 Nozzle Bett Dropout Matl.

B&WOG: Capsule CR3-LG2 0.39 0.58 556 1.19 126 Y

WF-70: MD1 Nozzle Belt Dropout Matt.

Zion Unit 1: Capsule T 0.25 0.54 529.4 0.310 108 Y

WF-209-1: Plant Specific RVSP Material Zion Unit 1: Capsule U 0.25 0.54 529.4 1.02 190 Y

WF-209-1: Plant Specific RVSP Material Zion Unit 1: Capsule X 0.25 0.54 529 4 1.26 194 Y

WF-209-1: Plant Specific RVSP Material Zion Unit 1: Capsule Y 0.25 0.54 529.4 1.56 201 Y

WF-209-1: Plant Specific RVSP Material Zion Unit 2: Capsule U 0.25 0.55 529 4 0.270 138 Y

WF-209-1: Plant Specific RVSP Material Zion Unit 2: Capsule T 0.25 0.55 529.4 0.779 179 Y

WF-209-1: Plant Specific RVSP Material Zion Unit 2: Capsule Y 0.25 0.55 529.4 1.46 226 Y

WF-209-1: Plant Specific RVSP Material 4-33 L"N7M

1 1

l l

Table 4.5.12-2. Cre4'bility Assessment for Weld Wire Heat Number 72105 Using All Available Surveillance Data (Table 3 of the RAI Regarding Reactor VesselIntegrity)

Predicted (Adjusted -

Irrad.

Meas.

Adjusted ARTwor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor ARTwor Best Fit Line ARTwor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F)

Oconee Unit 2: Capsule OCil-C 0.35 0.58 209.5 556 0.421 46 52 70

-18 WF-209-1: Plant Specific RVSP Matl.

Oconee Unit 2: Capsule OCll-A 0.35 0.58 209.5 556 0.701 107 107 117

-10 1

WF-209-1: Plant Specific RVSP Matt.

l Oconee Unit 2: Capsule OCil-E 0.35 0.58 209.5 556 1.053 174 168 175

-7 WF-209-1: Plant Specific RVSP Matt.

Oconee Unit 3: Camle OClll-A 0.29 0.56 185.6 556 0.376 15 27 63

-36 WF-209-1: Plant Specific RVSP Matt.

Oconee Unit 3: Capsule OClli-B 0.29 0.56 185.6 556 0.680 70 83 113

-30 WF-209-1: Plant Specific RVSP Matl.

Oconee Unit 3: Capsule OClli-D 0.29 0.56 185.6 556 1.103 145 160 184

-24 WF-209-1: Plant Specific RVSP Matl.

{

B&WOG: Capsule TM12-LG1 0.39 0.58 224.6 556 0.850 125 115 142

-27

(

WF-70: MD1 Nozzle Belt Dropout Mctl.

B&WOG: Capsule DB1-LB1 0.39 0.58 224 6 556 0.885 137 126 147

-21 j

WF-70. MD1 Nozzle Belt Dropout j

Mcti B&WOG: Capsule CR3-LG2 0.39 0.58 224.6 556 1.049 126 116 175

-59 WF-70: MD1 Nozzle Belt Dropout Matl.

Zion Unit 1: Capsule T 0.25 0.54 167.6 529.4 0.679 108 105 113

-8 WF-209-1: Plant Specific RVSP Matl.

Zion Unit 1: Capsule U 0.25 0.54 167.6 529.4 1.006 190 198 168 30 WF-209-1: Plant Specific RVSP Matt i

Zion Unit 1: Capsule X 0.25 0.54 167.6 529 4 1.064 194 203 177 26

{

WF-209-1: Plant Specific RVSP Matl Zion Unit 1: Capsule Y 0.25 0.54 167.6 529 4 1.123 201 211 187 24 WF-209-1: Plant Specific RVSP Matt Zion Unit 2: Capsule U 0.25 0.55 169.0 529.4 0.643 138 138 107 31 i

WF-209-1: Plant Specific RVSP Matl Zion Unit 2: Capsule T 0.25 0.55 169.0 529.4 0.930 179 184 155 29 WF-209-1: Plant Specific RVSP Matt.

...226 237 184 53 Zion Unit 2: Capsule Y 0.25 0.55 169.0 529.4 1.105 WF-209-1: Plant Specific RVSP Matl.

Surv. Avg 0303 0.561 189 7 544 4 where Predicted ARTuor = (Slopebest nt) * (Fluence Factor) and Slopebest nt = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e.,166.6) l

(

These data are not credible since the scatter is greater than 128 F for several surveillance capsule data points.

l 4-34 fMMM

r l

Table 4.5.12-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 72105 Using All Surveillance Data Temp, &

Table Capsule Chem.

(Adjusted -

Capsule Chem. Factor Fluence Adjusted Predicted Predicted)

Designation (Sury. Avg.)

Factor ARTwot ('F)

ARTwor (*F)

ARTwot ('F)

Oconee Unit 2: Capsule OCil-C 189.7 0.421 52 80

-28 WF-209-1: Plant Specific RVSP Matt Oconee Unit 2: Capsule OCll-A 189.7 0.701 107 133

-26 WF-209-1: Plant Specific RVSP Matt.

Oconee Unit 2: Capsule OCil-E 189.7 1.053 168 200

-32 WF-209-1: Plant Specific RVSP Matt.

Oconee Unit 3: Capsule OClli-A 189.7 0.376 27 71

-44 WF-209-1: Plant Specific RVSP Matt.

Oconee Unit 3: Capsule OCill-B 189.7 0.680 83 129

-46 WF-209-1: Plant Specific RVSP Matl Oconee Unit 3: Capsule OCill-D 189.7 1.103 160 209

-49 WF-2091: Plant Specific RVSP Matl B&WOG: Capsule TMl2 LG1 189.7 0 850 115 161

-46 WF-70 MD1 Nozzle Belt Dropout Matt C&WOG: Capsule DB1-LB1 189.7 0.885 126 168

-42 WF MD1 Nozzle Belt Dropout Matl B&WOG: Capsule CR3-LG2 189.7 1.049 116 199

-83 WF-70: MD1 Nozzle Belt Dropost Matt.

Zion Unit 1: Capsule T 189.7 0.675a 105 129

-24 WF-209-1: Plant Specific RVSP Mati.

Zion Unit 1: Capsule U 189.7 1.006 198 191 7

WF-209-1. Plant Specific RVSP Matl.

Zion Unit 1: Capsule X 189.7 1.064 203 202 1

WF-209-1: Plant Specific RVSP Matt.

Zion Unit 1: Capsule Y 189.7 1.123 211 213

-2 WF-209-1: Ple t Specific RVSP Matt.

Zion Unit 2: Capsule U 189.7 0643 138 122 16 WF-209-1: Plant Specific RVSP Matl Zion Unit 2: Capsule T 189.7 01,0 184 176 8

WF-209-1: Plant Soecific RVSP Matt.

Zion Unit 2: Carsule Y 189.7 1.105 237 210 27 WF-209-1: Plant Specific RVSP Matl where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

The above assessment results indicates that the generic Table chemistry factor for the B&W NSSS surveillance data over-predicts the adjusted measured data for one data point, and the rest of the surveillance data are less than 2 standard deviations (56 F).

Because the Table chemistry factor over-predicts the adjusted measured data and the remaining data are within 56'F, the Table chemistry factor calculated using the weld wire heat best-estimate copper and nickel contents is considered conservative and is used in the assessment of reactor vessel integrity.

4-35 h"MNM

I 4.5.13. Weld Wire Heat Number 72442 (Use of B&W NSSS Data)

Table 4.5.13-1. Surveillance Data for Weld Wire Heat Number 72442 Using B&W NSSS Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel Integrity)

- Irradiation.

Measured Data Used in i

Cs,, e ID '

Cu Ni '

Temperature Fluence ARTuor Assessing Vessel (includirig source) wt%

wt%

('F)

(x10 n/cnd)

(*F)

(Y or N)

B&WOG: Capsule CR3-LG1 0.22 0.60 556 0.609 168 Y

WF-67: MD1 Nozzle Belt Dropout Matl.

i B&WOG: Capsule CR3-LG2 0.22 0.60 556 1.95 139 Y

WF-67; MD1 Nozzle Belt Dropout Matt.

5 l

Table 4.5.13-2. Credibility Assessment for Weld Wire Heat Number 72442 Using B&W NSSS Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predcted (Adjusted -

Irrad.

Meas.

Adjusted ARTuot from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwoi ARTwor Best Fit Line ARTuor Designation wt%

wt%

Factor

('F)

Factor

('F)

(*F)

('F)

(*F)

B&WOG: Capsule CR3-LG1 0.22 0.60 167.0 556 0.861 168 124 44 WF-67: MD1 Nozzle Belt Dropout Matl.

B&WOG: Capsule CR3-LG2 0.22 0.60 167.0 556 1.182 139 171

-32 WF-67: MD1 Nozzle Belt Dropout Matt.

Sury. Avg ggg1 where Predicted ARTuor = (Slopesest nt) * (Fluence Factor) and Slopesest nt = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,144.4)

These data are not credible since the scatter is greater than i28 F for both surveillance capsule data points.

4-36 f."<MNR M

Table 4.5.13-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 72442 Using B&W NSSS Surveillance Data Table Capsule (Adjusted -

Capsule Chem. Factor Fluence Measured Predicted Predicted)

Designation (Surv. Avg.)

Factor ARTuor (*F)

ARTwor (*F)

ARTuor (*1 B&WOG: Capsule CR3-LG1 167.0 0.861 168 144 24 WF-67: MD1 Nozzle Belt Dropout Matl B&WOG: Capsule CR3-LG2 167.0 1.182 139 197

-58 WF-67: MD1 Nozzle Belt Dropout Matt where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

The above assessment results indicates that the generic Table chemistry factor for the B&W NSSS surveillance data over-predicts the adjusted measured data for one data point while the other data point is within 2 standard deviations (i.e.,56 F). Therefore, the Table chemistry factor calculated using the weld wire heat best-estimate copper and nickel contents is considered conservative and is used in the assessment of reactor vesselintegrity.

4-37 I"N'M

4.5.14. Weld Wire Heat Number 72445 (Use of B&W NSSS Data Only)

Table 4.5.14-1. Surveillance Data for Weld Wire Heat Number 72445 Using B&W NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation.

Measured Data Used in Capsule ID,

Cu

. Ni Temperature Fluence -

ARTwor Assessing Vessel (including source) wt%

wt%

('F)

(x10 n/cm')

('F)

(Y or N)

B&WOG: Capsule CR3-LG1 0.22 0.59 556 0.510 141 Y

SA-1585: ANO-1 Nonle Belt Dropout Matl.

B&WOG: Capsule CR3-LG2 0.22 0.! 3 -

556 1.67 156 Y

SA-1585: ANO-1 Nonle Belt Dropout Matl.

l l

Table 4.5.14-2. Credibility Assessment for Weld Wire Heat Number 72445 Using B&W NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity)

(

Predicted (Adjusted -

Irrad.

Meas.

Adjusted ARTwor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor ARTwoT Best Fit Line ARTwot Designation wt%

wt%

Fector

('F)

Factor

(*F)

('F)

(*F)

(*F)

B&WOG: Capsule CR3-LG1 0.22 0.59 165.5 556 0.612 141 121.1 19.9 SA-1585: ANO-1 Nonle Belt Dropout Matl.

j B&WOG: Capsule CR3-LG2 0.22 0 59 165.5 556 1.141 156 170.2

-14.2 SA-15AS: ANO-1 Nonle Belt Dropout Matt.

Suw. Avg 0 22 0 59 165 5 556 where Predicted ARTuor = (Slopebest nt) * (Fluence Factor) and Slopebest nt = best fit line relating Measured ARTuor to the Fluence Factor 1

(i.e.,149.1) l These data are credible since the scatter is less than 28 F for both surveillance capsule data points.

l l

l 4-38 f."MNRM

Table 4.5.14-3. Weld Wire Heat Number 72445 Chemistry Factor Calculation for Assessment of B&W NSSS Reactor Vessels (Cold Leg Temperature at 556'F)

Using B&W NSSS Surveillance Data Only irrad.

Meas.

Chem.

Capsule

~ Cu.

- Ni Chem.

Temp.

Fluence ARTuvy Adjusted Designation -

wt%

wt%

Factor

(*F)

Factor

(*F)

ARTwot (*F) i B&WOG: Capsule CR3-LG1 0.22 0.59 165.5 556 0.812 141 135 SA-1585: ANO-1 Nozzle Belt Dropout Matt.

B&WOG: Capsule CR3-LG2 0.22 0.59 165.5 556 1.141 156 149 SA-1585: ANO-1 Nozzle Belt Dropout Matl.

Vessel Best-Estimate 0.22 0 54 158 0 556 CFsurv. data = best fitline relating Adjusted ARTuor to the Fluence Factor (i.e., CFsurv. data = 142.3) 4-39 I"<MNM

f 4.5.15. Weld Wire Heat Number 72445 (Use of Westinghouse NSSS Data Only)

Table 4.5.15-1. Surveillance Data for Weld Wire Heat Number 72445 Using Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation.

Measured Data Used in Capsule ID.

.Cu l Ni Temperature Fluence ARTuor Assessing Vessel 2

(including source) wt%

wt%

(*F)

(x10" n/cm )

g,F)

(Y or N)

Point Beach Unit 1: Capsule V 0.23 0.62 540 0.634 107 Y

l SA-1263: ": ant Specific RVSP Material j

Point Beach Unit 1: Capsule S 0.23 0.62 540 0.829 165 Y

SA-1263: Plant Specific RVSP Material

(

Point Beach Unit 1: Capsule R 0.23 0.62 540 2.19 181 Y

l

(

SA-1263: Plant Specif;c RVSP Material Point Beach Unit 1: Capsule 1 0.23 0.62 540 2.23 181 Y

SA-1263 Plant Specific RVSP Material i

Table 4.5.15-2. Credibility Assessment for Weld Wire Heat Number 72445 Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Adjusted -

Irrad.

Meas.

Adjusted ARTwot from Predicted) i Capsule Cu Ni Chem.

Temp.

Fluence ARTwot ARTwot Best Fit Line ARTwor I

Designation wt%

wt%

Factor

('F)

Factor

('F)

(*F)

(*F)

(*F)

Point Beach Unit 1: Capsule V 0.23 0 62 172.4 540 0.872 107 130

-23 SA-1263 Plant Specific RVSP Matl 142 23

(

Point Beach Unit 1: Capsule S 0.23 0.62 172.4 540 0.947 165 SA-1263 Plant Specific RVSP Matl.

Point Beach Unit 1: Capsule R 0.23 0.62 172.4 540 1.213 181 181 0

SA-1263: Plant Specific RVSP Matl.

Point Beach Unit 1: Capsule T 0.23 0.62 172.4 540 1.217 181 182

-1 SA 1263 Plant Specific RVSP Matt.

Surv. Avg 0 23 0 62 172 4 540 E l

l where Predicted ARTuor = (Slopebest nd * (Fluence Factor) and Slopebest at = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,149.5) j These data are credible since the scatter is less than 128 F for all surveillance capsule data points.

4-40 fMYNRM

)

Table 4.5.15-3. Weld Wire Heat Number 72445 Chemistry Factor Calculation for Assessment of Westinghouse NSSS Reactor Vessels (Surry Unit 1 and Unit 2 Cold Leg Temperature at 542 F) f Using Westinghouse NSSS Surveillance Data Only irred.

Meas.

Temp. & Chem.

I Capsule Cu Ni Chem.

Temp.

Fluence ARTwot Adjusted Designation wt%.

wt%

Factor

('F)

Factor

('F)

ARTuor (*F)

Point Beach Unit 1: Capsule V 0.23 0.62 1724 540 0.872 107 96 SA-1263-Plant Specific RVSP Matt.

Point Beach Unit 1: Capsule S 0.23 0.62 172.4 540 0.947 165 149 SA-1263 Plant Specific RVSP Matl.

Point Beach Unit 1: Capsule R 0.23 0.62 172.4 540 1.213 181 164 SA.1263: Plant Specific RVSP Matt.

Point Beach Unit 1: Capsule T 0.23 0.62 172.4 540 1.217 181 164 SA-1263: Plant Specific RVSP Matl.

Vessel Best-Estimate 0.22 0 54 1580 542 CFsurv. sata = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e., CFsurv.eata = 135.4) 4-41 f"<MORM

l 4.5.16. Weld Wire Heat Number 72445 (Use of All Surveillance Data)

Table 4.5.16-1. Surveillance Data for Weld Wire Heat Number 72445 Using All Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measured Data Used in Capsule ID -

Cu

. Ni Temperature Fluence ~

ARTway Assessing Vessel 2

tincluding source) '

wt%

wt%

- (*F)

(x10 n/cm )

(*F)

(Y or N)

B&WOG: Capsule CR3-LG1 0.22 0.59 556 0 510 141 Y

SA-1585: ANO-1 Nonle Belt Dropout Matl.

B&WOG: Capsule CR3-LG2 0.22 0.59 556 1.67 156 Y

SA-1585: ANO-1 Noule Bett Dropout Matt.

Point Beach Unit 1: Capsule V 0.23 0.62 540 0.634 107 Y

i 1

SA-1263: Plant Specific RVSP Material Point Beach Unit 1: Capsule S 0.23 0.62 540 0.829 165 Y

SA-1263: Plant Specific RVSP Material Point Beach Unit 1: Capsule R 0.23 0.62 540 2.19 181 Y

i SA-1263: Plant Specific RVSP Material Point Beach Unit 1: Capsule T 0.23 0.62 540 2.23 181 Y

'A-1263: Plant Specific RVSP Material j

)

i 1

1 l

l 1

f.fMTNRP.'i 4-42

Table 4.5.16-2. Credibility Assessment for Weld Wire Heat Number 72445 Using All Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel integrity)

Predicted (Adjusted -

Irrad.

Meas.

Adjusted ARTnar from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor ARTuor Best Fit Line ARTwor Designation wt%

wt%

Factor

('F)

Factor

('F)

(*F)

(*F)

(*F)

B&WOG: Capsule CR3-LG1 0.22 0 59 165.5 556 0.812 141 156 121 35 SA-1585: ANO-1 Nonle Belt Dropout Matt B&WOG: Capsule CR3-LG2 0.22 0.59 165 5 556 1.141 156 171 170 1

SA-1585: ANO-1 Nonle Belt Dropout Mati Point Beach Unit 1 Capsule V 0.23 0.62 172.4 540 0.872 107 100 130

-30 SA-1263 Plant Specific RVSP Matt Point Beach Unit 1: Capsule S 0 23 0.62 172.4 540 0.947 165 158 141 17 SA-1263 Plant Specific RVSP Matt Point Beach Unit 1: Capsule R 0.23 0.62 172.4 540 1.213 181 173 181

-8 SA 1263 Plant Specific RVSP Matl.

Point Beach Unit 1: Capsule T 0.23 0 62 172.4 540 1.217 181 173 181

-8 SA-1263-Plant Specific RVSP Matt.

Surv Ava 0227 0610 170 0 545 3 where Predicted ARTuor = (Slopesestnd * (Fluence Factor) and Slopesest nt = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e.,149.1)

These data are not credible since the scatter is greater than 28 F for two surveillance capsule data points.

4-43 f"MNM

i l

Table 4.5.16-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 72445 Using All Surveillance Data Temp. &

Table Capsule

^ Chem.

(Adjusted -

Capsule Chem. Factor Fluence Adjusted Predicted Predicted)

Designation (Sury. Avg )

- Factor ARTwot (*F)

ARTuot (*F)

ARTNOT ('F)

J B&WOG: Capsule CR3-LG1 170.0 0.812 156 138 18 SA-1585: ANO-1 Nozzle Belt Ort. ' 2 Matl.

B&WOG; Capsule CR3-LG2 170.0 1.141 171 194

-23 SA-1585: ANO-1 Nozzle Bel' O ooout Matt.

i Point Beach Unit 1: Capsule V 170.0 0 872 100 148

-48 l

SA 1263: Plant Specific RVSP Matl.

Point Beach Unit 1: Capsule S 170.0 0.947 158 161

-3 I

SA-1263: Plant Specific RVSP Matt.

Point Beach Unit 1: Capsule R 170.0 1.213 173 206

-33 SA-1263: Plant Specific RVSP Matt.

Point Beach Unit 1: Capsule T 170.0 1.217 173 207

-34 SA-1263 Plant Specific RVSP Mati where Predicted.dRTuoT = (Table Chem. Factor) * (Capsule Fluence Factor)

(

l Since the scatter for all data points does not exceed 2 standard deviations (56 F), the Table chemistry factor is conservative. Therefore, the Table chemistry factor based on j

the weld wire heat best-estimate copper and nickel contents is used in the assessment of reactor vessel integrity.

i i

1

(

l 1

l I

l 4-44 f."<^ M N R M

4.5.17. Weld Wire Heat Number 821T44 (Use of B&W NSSS Data)

Table 4.5.17-1. Surveillance Data for Weld Wire Heat Number 821T44 Using B&W NSSS Surveillance Data (Table 2 of the RAI Regarding Reactor VesselIntegrity)

Irradiation Measured Data Used in Capsule ID Cu N1 Temperature

. Fluence ARTwor Assessing Vessel (including source) wt%

wt%

('F) ~

(x10 n/cm')

-(*F)

(Y or N)

Davis Desse:: Capsule TE1-F 0.22 0.63 556 0.229 108 Y

WF-182-1: Plant Specific RVSP Material Davis-Besse : Capsule TE1-B 0.22 0.63 556 0.592 110 Y

WF 182-1: Plant Specific RVSP Material Davis-Besse:: Capsule TE1-A 0 22 0.63 556 1.29 164 Y

WF-182-1: Plant Spectfic RVSP Material Davis-Besse:: Capsule TE1-D 0.22 0 63 556 0.962 142 Y

WF-182-1: Plant Specific RVSP Material TMI-2: Capsule TMl2-C 0.28 0.63 556 0.168 120 Y

WF-182-1: Plant Specific RVSP Material TM12: Capsule TMl2-E 0.28 0.63 556 0.174 110 Y

WF-182-1: Plant Specific RVSP Material 4-45 f."MNRM

f Table 4.5.17-2. Credibility Assessrnent for Weld Wire Heat Number 821T44 Using B&W NSSS Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Adjusted -

Irrad, Meas.

Adjusted ARTwor from Predicted)

Capsule Cu Ni Chem.

Temp..

Fluence ARTwor ARTwot Best Fit Line ARTwor i

Designation wt%

wt%

Factor

('F)

Factor

(*F)

('F)

(*F)

(*F) l Davts-Besse:: Capsule TE1-F 0.22 0.63 172.0 556 0.602 108 112 96 15 WF-182-1: Plant Specific RVSP Matt.

DIvis-Besse:: Capsule TE1 B 0.22 0.63 172.0 556 0.853 110 114 136

-22 WF-182-1: Plant Specific RVSP Matl.

I D:vis-Besse:: Capsule TE1-A 0.22 0.63 172.0 556 1.071 164 170 171

-1 WF-182-1: Plant Specific RVSP Matl.

Davis-Besse:: Capsule TE1-D 0.22 0.63 172.0 556 0.989 142 147 158

-11 l

WF-182-1: Plant Specific RVSP Mati TM1-2: Capsule TMl2-C 0.28 0 63 191.7 556 0.529 120 111 85 26 WF-182-1: Plant Specific RVSP Mati TM12: Capsule TM12-E 0.28 0.63 191.7 556 0.537 110 102 86 16 WF-182-1: Plant Specific RVSP Matl I

Surv. Avg 0 24 0 63 1780 556 l

where Predicted ARTuor = (Slopebestnd * (Fluence Factor) and I

Slopebestrit = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e.,160.0) l These data are credible since the scatter is less than 128 F for all surveillance capsule data points.

l l

4-46

" ^ YN R.M

Table 4.5.17-3. Weld Wire Heat Number 821T44 Chemistry Factor Calculation for Assessment of B&W NSSS Reactor Vessels (Cold Leg Temperature at 556'F)

Using B&W NSSS Surveillance Data Only irrad.

Meas.

Chem.

Capsule Cu Ni.

Chem.

Temp.

Fluence

. ARTwor Adjusted Designation -

wt%.

wt%

Fador

('F)-

Factor

(*F)

ARTwor (*F)

Davis-Besse:: Capsule TE1-F 0.22 0.63 172.0 556 0.602 108 112 WF-1821: Plant Specific RVSP Matt.

Davis-Besse:: Capsule TE1-B 0.22 0.63 172.0 556 0 853 110 114 WF-182-1: Plant Specific RVSP Matl.

Davis-Besse:: Capsule TE1 A 0.22 0.63 172.0 556 1.071 164 170 WF-1821: Plant Speedic RVSP Matt.

Davis-Besse:: Capsule TE1-D 0.22 0.63 172.0 556 0.989 142 147 WF-1821: Plant Specific RVSP Mati TMI-2: Capsule TM12-0 0.28 0.63 191.7 556 0.529 120 111 WF-182-1: Plant Specific RVSP Matt.

TMl2: Capsule TM12-E 0.28 0.63 191.7 556 0.537 110 102 WF-182-1: Plant Specific RVSP Matl.

Vessel Best-Estimate 0 24 0 63 1780 556 CFsurv. sata = best fit line relating Adjusted ARTnDr to the Fluence Factor (i.e., CFsury. data = 160.0) 4-47 L"MNM

1 l

1 4.5.18. Weld Wire Heat Number T29744 (Use of Westinghouse NSSS Data)

Table 4.5.18-1. Surveillance Data for Weld Wire Heat Number T29744 Using Westinghouse NSSS Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measured Data Used in Capsule ID '

cu

- NI Temperature Fluence ARTuor Assessing Vessel 2

(including source) wt%

wt%

(*F)

(x10" n/cm )

(,p) gy g, g)

KORI Unit 1: Capsule V CJ1 0.67 545 0.484 191 Y

i WF-233: Plant Specific RVSP Material KORI Unit 1:Capsuhs T 0.21 0.67 545 1.158 187 Y

WF-233: Plant Specific RVSP Material j

KORI Unit 1: Capsule S 0.21 0.67 545 1.227 210 Y

WF-233-Plant Specific RVSP Material KORI Unit 1: Capsule R 0.21 0.67 545 2.704 237 Y

WF-233: Plant Specrfic RVSP Material

{

Table 4.5.18-2. Credibility Assessment for Weld Wire Heat Number T29744 Using Westinghouse NSSS Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Adjusted -

Irrad.

Meas.

Adjusted ARTuor from Predicted)

Capsule Cu

. Ni Chem.

Temp.

Fluence ARTuor ARTuor Best Fit Line ARTuor Designation wt%

wt%

Factor

('F)

Factor

(*F)

('F)

(*F)

(*F)

KORI Unit 1: Capsule V 0.21 0,67 175.6 545 0.798 191 156 35 WF-233: Plant Specific RVSP Matt.

KORI Unit 1: Capsule T 0.21 0.67 175 6 545 1.041 187 204

-17 WF-233: Plant Specific RVSP Matt.

KORI Unit 1: Capsule S 0,21 0 67 175.6 545 1.057 210 207 3

WF 233: Plant Speerfic RVSP Matl.

KORI Unv.1: Capsue R 0.21 0.67 175.6 546 1.266 237 248

-11 WF 233: Plant Specific RVSP Mat!.

Surv. Avg 0 21 0 67 175 6 545 where Predicted ARTuor = (Slopebest nd * (Fluence Factor) and Slopesestat = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,195.8)

These data are not credible since the scatter is greater than 128 F for one surveillance caprule data point.

1 4-48 f"AWRM

Table 4.5.18-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number T29744 Using Westinghouse NSSS Surveillance Data Table Capsule (Adjusted.

Capsule '

Chem. Factor Fluence Measured Predicted Predicted)

Designation (Sury. Avg.) '

Factor ARTurn (*F)

ARTsor (*F)

ARTwet (*F)

KORI Unit 1: Capsule V 175.6 0.798 191 140 51 WF-233 Plant Specific RVSP Matl.

KORI Unit 1: Capsule T 175.6 1.041 187 183 4

WF-233: Plant Specific RVSP Matt.

KORI Unit 1: Capsule S 175.6 1.057 210 186 24 WF-233: Plant Specific RVSP Matl KORI Unit 1: Capsule R 175.6 1.266 237 222 15 WF.233 Plant Specific RVSP Matl.

where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

Since the scatter for all data points does not exceed 2 standard deviations (56 F), the Table chemistry factor is conservative. Therefore, the Table chemistry factor based on the weld wire heat best-estimate copper and nickel contents is used in the assessment of reactor vesselintegrity.

4-49 f."< M 'P M

4.5.19. Rotterdam Dockyard Fabricated Weld: Weld Wire Heat Number 0227 Table 4.5.19-1. Surveillance Data for Rotterdam Dockyard Fabricated Weld:

Weld Wire Heat Number 0227 (Table 2 of the RAI Regarding Reactor VesselIntegrity)

Irradiation Measured Data Used in Cu l < t41Temperature Fluence ARTwor Assessing Vessel Capsule ID '

(including source) wt*,

wt%*

(*F)

(x10 n/cm')

(*F)

(Y or N)

Surry Unit 2: Capsule X 0.19 0.55 537.5 0.302 96 Y

SA-1526; Plant Specific RVSP Material Surry Unc 2: Capsule V 0.19 0.55 537.5 1.88 142 Y

SA-1526: Plant Specific RVSP Material q

  • Mean value based on two measurements,1) RVSP baseline chemistry and 2) surveillance specimen W14.

Table 4.5.19-2. Credibility Assessment for Rotterdam Dockyard Fabricated Weld:

Weld Wire Heat Number 0227 l

(Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Adjusted -

- Irrad.

Meas.

Adjusted ARTwor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor ARTwor Best Fit Line ARTuor Designation wt%*

wt%*

Factor

(*F)-

Factor

(*F)

(*F)

(*F)

(*F)

Surry Unit 2: Capsule X 0.19 0.55 149.3 537.5 0 672 96 85 11 SA-1526: Plant Specific RVSP Matl.

Surry Unit 2: Capsule V 0.19 0.55 149.3 537.5 1.173 142 148

-6 SA-iS26 Plant Specine RVSP Matt 1

Surv. Avo 0 19 0 55 149.3 537 5

  • Mean value based on two measurements,1) RVSP baseline chemistry and 2) surveillance specimen W14.

where Predicted ARTuor = (Slopebestng) * (Fluence Factor) and Slopebest nt = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,126.5)

I These data are credible since the scatter is less than i28 F for all surveillance capsule data points.

4-50 f."AWRM

L Table 4.5.19-3. Rotterdam Dockyard Fabricated Weld: Weld Wire Heat No. 0227 Chemistry Factor Calculation for Assessment of Surry Unit 2 Reacter Vessel irrad.

Meas.

Capsule Cc Ni Chem.

Temp.

Fluence ARTuor Designation wt%*

wt%*

Factor L(*F)

Factor

(*F)

Surry Unit 2: Capsule X 0.19 0.55 149.3 537.5 0.672 96 SA-1526: Plant Specific RVSP Matt.

Surry Unit 2: Capsule V 0.19 0.55 149.3 537.5 1,173 142 SA-1526: Plant Specific RVSP Matt.

Vessel Best-Estimate 0.19 0.55 149.3 543**

  • Mean value based on two measurements,1) RVSP baseline chemistry and 2) surveillance specimen W14.

" For conservatism no temperature adjustment was made to the measured data.

CFsurv. sata = hest fit line relating Adjusted ARTuor to the Fluence Factor (i.e., CF urv. data = 126.5)

S 4-51 h"MNaW '

5. References 1.

K. E. Moore and A. S. Heller, " Chemistry of 177-FA B&W Owners' Group Reactor Vesse/ Beltline Welds," BAW-1500. Babcock & Wilcox, Lynchburg, Virginia, September 1978.*

2.-

K. E. Moore and A. S. Heller, "B&W 177-FA Reactor Vessel Beltline Weld Chemistry Study," BAW-1799, Babcock & Wilcox, Lynchburg, Virginia, July 1983.*

3.

L. B. Gross,

  • Chemical Composition of B&WFabricated Reactor Vessel Beltline Welds," BAW-2121P B&W Nuclear Technologies, Inc., Lynchburg, Virginia April 1991.*

4.

Letter from John F. Stolz, Director PWR Project Directorate #6 Division of PWR Licensing-B, to Walter S. Wilgus, Vice President, Nuclear Operations Florida Power Corporation,

Subject:

Projected Values of Material Properties For Fracture Toughness Requirements For Protection Against Pressurized Thermal Shock Events, dated September 4,1986.

5.

U. S. Nuclear Regulatory Commission, " Radiation Damage to Reactor Vessel j

Material," Reaulatorv Guide 1.99. Revision 2, May 1988.

6.

Code of Federal Regulations, Title 10, " Domestic Licensing of Production and Utilization Facilities," Part 50.61, " Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock," Federal Register, December 19, 1995.

i l

I l

5-1 fWSM

6. Certification This report accurately responds to the request for additional information regarding reactor pressure vessel integrity for the B&W Owners Grvap Reactor Vessel Working Group.

$h /W

$2Gl9W M. J. D'eVan, Engineer IV Date Materials & Structural Analysis Unit This report has been reviewed for technical content and accuracy.

$'- N-7$

J A. Hall, Engineer ill Date Materials & Structural Analysis Unit Verification of independent review.

$50 E-$h

/k.'E. MoNe, Manager Date '

~

Materials & Structural Analysis Unit This report is approved for release.

D. L. H'o'well Sh

?$

bDP

'Date Program Manager 6-1 I'"MNaM

APPENDIX A Best-Estimate Copper and Nickel Contents for High-Copper Linde 80 Welds Used in the Reactor Vessel Beltline Regions of the B&W Owners Group Reactor Vessel Working Group I

A-1 f."<^.TNR Y.E

Tabin A-1. Copper and Nickel Contants Sourco Msans for Wald Wiro Haat Numbar 299L44 l Flux l Wold Metal Analysis Source Cu Ni l l

Wold ID l Lot l Source Reference wt%

wt% l Notes l

SA-1526 8596 Weld Qualification Barberton WQ' Lab No 67239 3

06 Source Mean 0.46

0. 6 SA-1526 8596 CR-3 Nozzle Dropout l Mt Vernon Lab No. 29818 0.36 0 70 lCR 3 Nozzle Dropout l Mt Vemon Lab No. 29819 0 37 0.701 l

lCR-3 Nozzle Dropout l Mt. Vemon Lab No. 29820 0 38 0 71 l l

lCR-3 Nozzle Dropout l Mt. Vemon Lab No. 29821 0 39 0.71 l l

l CR-3 Nozzle Dropout l Mt. Vemon Lab No. 29822 0.37 0 70 l l

l CR-3 Nozzle Dropout lMt. Vemon Lab No 29823 0.39 0 71 l l

l CR-3 Nozzle Dropout l Mt. Vemon Lab No. 29824 0 38 0.71 l l

lCR-3 Nozzle Dropout l Mt. Vernon Lab No. 29825 0.37 0.71 l l

l CR-3 Nozzle Dropout l Mt. Vemon Lab No. 29826 0.36 0.71 l l

l CR-3 Nozzle Dropout l Mt. Vernon Lab No. 29827 0.37 0 71 l l

l CR-3 Nozzle Dropout l Mt. Vemon Lab No. 29828 0.38 0 65 l l

l CR-3 Nozzle Dropout l Mt. Vemon Lab No 28793 0.36 0.70 l l

CR-3 Nozzle Dro out 3

0.70 Source Mean 0.37 0.70 SA-1526 8596 l Surry-1 Surv. Weld RVSP Baseline Chemistry 0 25 0 68 l Surry-1 Surv. Weld l CVN Specimen: W-10 0 24 0 64 l l

l Surry-1 Surv. Weld l CVN Specimen: W-1 0 25 0 66 l l

l Surry-1 Surv. Weld lCVN Specimen: W 5 0 26 0.67 l l

[ Gurry-1 Surv. Weld l CVN Specimen: W-9 0 24 0 66 l l

l Surry-1 Surv. Weld l CVN Specimen: W-16 0 24 0 65 l l

lSurry-1 Sury Weld lCVN Specimen W-1 0 21 0 66 l l

l Surry-1 Surv. Weld l CVN Specimen: W-5 0 22 0 65 l l

l Surry-1 Sury. Weld lCVN Specimen W-9 0 20 0 64 l l

l l Surry-1 Surv. Weld l CVN Specimen: W 16 0 20 0 65l l

j Su 1 Surv. Weld CVN S cimen W-22 3

0 Source Mean 0.23 0.64 WF-19 8650 Wold Qualification Mt. Vemon WO Lab No. 5207 3

0 72 WO test r ed Source Mean 0.29 0.72 WF-25 8650 Weld Qualification Mt Vernon WO: Lab No. 53%

0 29 0.71 l

l Retest of WO Sample 0 32

- l l

l l Retest of WQ Sample 0 34 0 71 l l

Retest of WO Sam le 3

0 72 Source Mean 0.32 0.71 WF-25 6650 TMI-1 Surv Weld d Mt Vemon Lab No 30538 0 27 0 63 l TMI-1 Sury. Weld lMt Vernon Lab No 30539 0 29 0 63 l l

l TMI-1 Surv. Weld l Mt Vernon Lab No. 30540 0 29 0 63 l l

l1MI-1 Surv. Weld I Mt Vernon Lab No 30541 0 33 0 64 l l

l TMI-1 Sury. Weld l Mt Vernon Lab No. 30534 0.36 0 69l l

l TMl-1 Surv. Weld l Mt Vemon Lab No. 30535 0 37 0 70l l

lTMI 1 Surv Weld l Mt Vemon Lab No. 30536 0 36 0 69 l l

l TMI-1 Surv. Weld lMt Vemon Lab No 30537 0 35 0.70 l l

TMi-1 Surv. Weld CVN Specimen CC-018 0 34 0.43 Ni content lower than expected range and analyses on same production weld; retest performed; Ni content not used in source mean calculation.

TMI-1 Surv. Weld CVN S cemen CC-018 Retest M

0.71 Source Mean 0.33 0.67 WF-25 8650 ONS-3 Nozzle Dropout Mt. Vemon Lab No 28818 0 36 0 70 ONS-3 Nozzle Dro out Mt Vemon Lab No 28818 3

0.7 Source Mean 0.36 0.7 A-2 I!M%^7M l

Tcbb A-1 (csntinusd). Capper cnd Nick:1 Centents Sourcs Mrna far Wald Wire Hnt Numb::r 299L44 Flux l Wold Metal -

Analysta Source Cu Nl Weld ID Lot

~' ~ Source

' Reference wt%

Wt%

Notes WF-25 8650 TMl-2 Nozzle Dropout Mt. Vemon Lab No 28819 0 35 0 69 TMI-2 Nozzle Dropout 0 35 0.70 TMI-2 Nozzle Dropout Mt Vemon Lab No. 30632 0 34 0 67 TMI-2 Nozzle Dropout Mt Vernon Lab No. 30631 0.36 0.70 TMI-2 Nozzle Dropout Mt Vemon Lab No. 30630 0 37 0.70 TMI-2 Nozzle Dropout Mt Vernon Lab No. 30629 0 38 0.70 TMI-2 Nozzle Dropout Mt Vemon Lab No. 30628 0 40 0.70 TMI 2 Nozzle Dropout Mt Vemon Lab No. 30627 0.38 0.71 TMi-2 Nozzle Dropout Mt Vemon Lab No. 30626 0.38 0 71 312 Nozzle Dropout Mt Vemon Lab No. 30625 0.36 0 67

_T" 2 Nozzle Dropout Mt Vernon Lab No. 30624 0.37 0 62 TMI-2 Nozzle Dropout Mt Vemon Lab No. 30623 0 34 0 60 TMI-2 Nozzle Dropout Mt Vemon Lab No. 30622 0.32 0 60 TMI-2 Nozzle Dropout Mt Vemon Lat, No. 30621 0.33 0 64 TMI-2 Nozzle Dropout Mt Vemon Lab No. 30620 0.36 0 69 TMI-2 Nozzle Dropout Mt Vemon Lab No. 30619 0.36 0 70 TMI 2 Nozzle Dropout Mt Vemon Lab No. 30618 0 36 0.70 TMI-2 Nozzle Dropout Mt Vemon Lab No 30617 0.35 0.71 TMI-2 Nozzle Dropout Mt Vernon Lab No. 30616 0 34 0 66 TMI-2 Nozzle Dropout Mt Vemon Lab No. 30615 0 32 0 60 TMI-2 Nozzle Dropout Mt Vemon Lab No. 30614 0 31 0 60 TMI-2 Nozzle Dropout Mt Vemon Lab No. 30613 0 36 0 68 TMI-2 Nozzle Dropout Mt Vemon Lab No. 30612 0.37 0.70 TMI-2 Nozzle Dropout Mt Vemon Lab No. 30611 0 36 0.70 TMI-2 Nozzle Dropout Mt Vemon Lab No. 30610 0 34 0.70 TMI-2 Nozzle Dropout Mt Vernon Lab No. 30609 0.34 0.70 TM1-2 Nozzle Dropout Mt Vemon Lab No 30608 0 36 0.70 TMi-2 Nozzle Dropout Mt Vemon Lab No. 30607 0 35 0 69 TMi-2 Nozzle Dmpout Mt Vemon Lab No. 30606 0.38 0 69 TMi-2 Nozzle Dropout Mt Vemon Lab No 30605 0.35 0.70 TMi-2 Nozzle Dropout P/t Vemon Lab No. 30604 0 33 0.71-TMI-2 Nozzle Dropout h5 Vemon Lab No. 29274 0.34 0.69 TMI-2 Nonle Dropout Mt Vemon Lab No. 29275 0.36 0.70 TMI-2 Nozzie Dropout Mt Vernon Lab No. 29276 0 37 0.70 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29277 0.37 0.70 TMI-2 Nozzle Dropout Mt Vemor. Lab No. 29278 0.40 0.71 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29279 0.38 0.71 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29280 0.36 0.70 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29281 0.35 0 61 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29282 0 34 0 60 TMi-2 Nozzle Dropout Mt Vernon Lab No. 29283 0 32 0 59 TMI-2 Nozzle Dropout Mt Vernon Lab No 29284 0.31 0 62 TMl-2 Nozzle Dropout Mt Vemon Lab No. 29285 0.36 0 68 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29286 0 36 0 69 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29287 0 35 0 69 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29288 0 35 0 71 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29289 0 33 0 70 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29290 0.30 0 61 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29291 0.30 0 62 TMI-2 Nozzle Dropout Mt Vernon Lab No 29292 0 35 0 68 TMI-2 Nozzle Dropout Mt Vemon Lab No 29293 0 35 0 70 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29294 0 35 0.70 TMi-2 Nozzle Dropout Mt Vemon Lab No. 29295 0.34 0.70 TMI-2 Nozzle Dropout Mt Vemon Lab No 29296 0 35 0 69 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29297 0 36 0 70 TMI-2 Nozzle Dropout Mt Vemon Lab No 29298 0 37 0 69 TMi-2 Nozzle Dropout Mt Vemon Lab No. 29299 0 35 0 69 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29300 0 36 0 69 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29301 0.35 0 70 TMI-2 Nozzle Dropout Barberton Analysis Section FF 0 33 0.69 TMI-2 Nozzle Dropout Barberton Analysis Section EE O 34 0 69 A-3 UN'M

Tcbb A-1 (c:ntinu:d). C:pper and Nick:1 C:ntents S:urcs Mzn3 fer Wild Wire Hrt Number 299L44 j

Flux Wold Metal Analysts Source Cu N1 Wold ID Lot Source Reference wt%

Wt%

Notes WF 25 8650 1Mi-2 Nozzle Dropout Barberton Analysis Section CC 0.33 0 69 TMi-2 Nozzle Dropout Barberton Analytis Section BB 0.34 0 69 f

TMI-2 Nozzle Dropout Barberton Analysis Section AA 0.32 0 69 I

TMI-2 Nozzle Dropout Barberton Analysis Section Z 0 32 0.70 TMl-2 Nozzle Dropout Barberton Analysis Section Y 0.30 0.69

(

TMI-2 Nozzle Dropout Barberton AnalysisSection X 0.32 0 63 j

TMi-2 Nozzle Dropout Barberton Analysis Section W 0 31 0 60

)

TMI-2 Nozzle Dropout Barberton AnalysisSection V O 31 0 60 TMI-2 Nozzle Dropout Barberton Analysis Section U 0 28 0 59 TMi-2 Nozzle Dropout Barberton Analysis Section T 0 30 0.69 TMI-2 Nozzle Dropout Barberton Analysis Section S 0 33 0.70 TMi-2 Nozzle Dropout Barberton Analysis Section R 0.33 0.70 g

TMi-2 Nozzle Dropout Barberton Analysis Section O O 32 0.71 TMI-2 Nozzle Dropout Barberton Analysis Section P O 32 0 70 TMI-2 Nozzle Dropout Barberton Analysis Section O O 33 0.70 TMI-2 Nozzle Dropout Barberton Analysis Section N 0.32 0 69 TMI-2 Nozzle Dropout Barberton Analysis Section M 0 27 0 60 TMI-2 Nozzle Dropout Barberton Analysis Section L 0 26 0 58 TMI-2 Nozzle Dropout Barberton Analysis Section K 0 31 0 65 TMI-2 Nozzle Dropout Barberton Analysis Section J 0.32 0 69 TMi-2 Nozzle Dropout Barberton Analysis Section 1 0 33 0 70 TMI-2 Nozzle Dropout Barberton Analysis Section H 0 31 0 69 TMI-2 Nozzle Dropout Barberton Analysis Section G 0 31 0 70 TMI-2 Nozzle Dropout Barberton Analysis Section F 0 29 0 69 1Mi-2 Nozzle Dropout Barberton Analysis Section E 0.32 0.70 TMI-2 Nozzle Dropout Barberton Analysis Section 0 0 34 0.70 TMI-2 Nozzle Dropout Barberton Analysis Section C 0 32 0 66 TMl-2 Nozzle Dropout Barberton Analysis Section B 0 30 0 65 1

TMI-2 Nozzle Dropout Barberton Analysis Section A 0.30 0 66 TMI-2 Nozzle Dropout Round Robin Sample LRC 0.32 0 67 Analysis TMI-2 Nozzle Dropout Round Robin Sample LRC 0.32 0.72 Analysis TMi-2 Nozzle Dropout Round Robin Sample Mt. Vernon 0.34 0.69 Analysis: Lab No. 28774 TMI-2 Nozzle Dropout Round Robin Sample Mt. Vemon 0.34 0.68 Analysis: Lab No. 28774 TMI-2 Nozzle Dropout Round Robin Sample Mt. Vernon 0.35 0.69 Analysist Lab No 28775 TMI-2 Nozzle Dropout Round Robin Sample Mt. Vernon 0.35 0.69 Analysis Lab No. 28775 g

TMI-2 Nozzle Dropout Round Robin Sample Barberton 0.27 0.67 Analysis TMI-2 Nozzle Dropout Round Robin Sample Barberton 0.29 0 68 Analysis TMI-2 Nozzle Dropout Round Robin Sample LRC 0.29 0 66 Analysis TMI-2 Nozzle Dropout Round Robin Sample LRC 0 36 0 69 Analysis TMI-2 Nozzle Dropout Round Robin Sample LRC 0.33 0.59 Analysis TMI-2 Nozzle Dropout Rounr1 Robin Sample LRC 0.35 0 58 Analysis TMI-2 Nozzle Dropout Round Robin Sample LRC 0.34 0.59 Analysis TMI-2 Nozzle Dropout Round Robin Sample LRC 0.34 0.70 Analysis TMI-2 Nozzle Dropout Round Robin Sample LRC 0.33 0.68 Analysis TMI-2 Nozzle Dropout Round Robin Sample J&L Steel 0.33 0 68 Cornpany Analysis TMI-2 Nozzle Dropout Round Robin Sample ORNL 0.28 0 65 I

Anatysis

~

g

Tablo A-1 (continusd). Coppar and Nickel Contants Source Means for Wold Wiro Haat Numbsr 299L44 l Flux l Wold Metal l

Analysis Source Cu Ni l l

WeldID I Lot i Source l

Reference wt%

Wt% l Notes l

WF-25 6650 lTMI-2 Nozzle Dropout l Round Robin Sample Y-12 0.24 0.72 l l

l l Analysis l

l l TMi-2 Nozzle Dropout lRound Robin Sample Y-12 0.24 066l l

l l Analysis l

l l TMI-2 Nozzle Dropout l Round Robin Sample NBS 0.31 0.68 lMean of 4 analyses.

l l

l Analysis - 63W l

l lTMI-2 Nozzle Dropout l Round Robin Sample NBS 0.31 0.69l Mean of 4 analyses.

l l

l Analysis - 63W l

l l TMI-2 Nozzle Dropout j Round Robin Sample NBS 0.31 0 69lMean of 4 analyses.

l l Analysis - 63W l

l l TM1-2 Nozzle Dropout l Round Robin Sample NBS 0.30 0 68lMean of 4 analyses.

l l Analysis - 63W l

l l TMi-2 Nozzle Dropout l HSST Specimen ID: 63W-258 0 28 0 57l l

l TM1-2 Nozzle Dropout l HSST Specimen ID: 63W-259 0 26 0 51 l l

lTMI-2 Nozzle Dropout l HSST Specimen ID: 63W-262 0.34 0 58 l l

lTMt 2 Nozzle Dropout l HSST Specimen ID: 63W-291R 0.24 0 46 l l

lTMI-2 Nozzle Dropout l HSST Specimen ID: 63W 209 0 24 0 64 l l

l TMi 2 Nozzle Oropout i HSST Specimen ID: 63W-209 0 29 0 66 l l

l TMI-2 Nozzle Dropout l HSST Specimen ID: 63W-289 0.29 0.68 l l

l TMI-2 Nozzle Dropout l HSST Specimen ID: 63W 291C 0 32 0 68 l l

TMi 2 Nozzle Dropout HSST Specimen ID. 63W 291C 0.35 1.04 Ni content higher than expected range and analyses on same production we!d, Ni content not used in source mean calculatio A-5 L"MNM

Tabin A-2. Coppsr and Nickel Contsnts Sourco Mgann for i

Wald Wira Host Numbar 406L44 Flux l Wold Metal Analysis Source Cu Ni l l

Weld ID Lot l Source Reference Wt%

Wt% l Notes l

WF-112 8688 Weld Qualification Mt. Vernon WO: Lab No. 7278 0.22 0.58 Cu content lower than WO retest analysis and analyses on production welds; Cu content not i

used in source mean calculation l

l Retest of WO sample 0 26

- l l

l l Retest of WO sample 0 32 0.58 l l

Retest of WO sam le 0 31 0.5 Source Mean 5 0.58 WF-112 8688 ONS-1 Surv. Weld l Mt Vernon Lab No. 30072 0 31 0.591 l ONS-1 Sury. Weld l Mt Vemon Lab No. 30073 0.32 0 59 l l

l ONS-1 Surv. Weld j Mt Vernon Lab No. 30074 0 31 0 59I l

lONS-1 Surv. Weld l Mt Vemon Lab No. 30075 0.33 0 60 l l

l ONS-1 Sury. Weld l Mt Vemon Lab No. 30076 0 31 0 60 l l

lONS-1 Sury Weld l Mt Vemon Lab No. 30077 0.32 0.59 l l

j lONS-1 Surv. Weld l Mt Vemon Lab No 30078 0 32 0 59 l l

l l ONS-1 Surv. Weld l Mt Vemon Lab No. 30079 0.34 059l l

l ONS-1 Surv. Weld l Mt Vemon Lab No. 30080 0 32 0 60 l l

lONS-1 Surv. Weld l Mt Vernon Lab No. 30081 0 31 0 60 l l

l ONS 1 Sury. Weld l Mt Vemon Lab No. 30082 0.30 0 58 l l

l ONS-1 Surv. Weld l Mt Vemon Lab No. 30483 0 30 0 58 l l

l ONS-1 Surv. Weld l Mt Vemon Lab No. 30484 0 30 0 58 l l

lONS-1 Surv. Weld l Mt Vemon Lab No. 30485 0 31 0 58 l l

l ONS-1 Surv. Weld l Mt Vernon Lab No. 30486 0.31 0 58 l l

l ONS-1 Surv. Weld 1 Mt Vemon Lab No. 30487 0 32 0.58 l l

lONS-1 Sury. Weld l Mt Vemon Lab No. 30488 0 33 0.59 l l

l ONS-1 Surv. Weld l Mt Vernon Lab No. 30489 0 33 0 581 l

lONS-1 Surv. Weld i Mt Vernon Lab No. 30490 0.34 0 59 l l

l ONS-1 Surv. Weld l Mt Vernon Lab No. 30491 0.32 0.59 l l

l ONS-1 Surv. Weld l Mt Vernon Lab No. 30492 0.32 0.58 l l

ONS-1 Surv. Weld CVN Specimen: OC1-025 0.16 0.47 Cu & Ni contents lower than analyses en same production

]

weld; Cu & Ni contents not used in source mean calculation ONS-1 Sury Weld CVN Specimen' OC1-034 0.17 0.56 Cu content lower than analyses on same production weld; Cu content not used in source mean calculation ONS 1 Surv Weld 3

05 Source Mean 0.32 0.5 WF-154 8720 Weld Qualification Mt. Vernon WO: Lab No. 8151 0.20 0.59 Cu content lower than WO retest analysis and analyses on production welds: Cu content not used in source mean calculation l

l Retest of WO sample 0 25

-- l l

l l Retest of WO sample 0 27 0.591 l

Retest of WO sam le 3

06 Source Mean 0.26 WF-183 8754 Weld Qualification Mt. Vemon WO Lab No 9300 g

test eted Source Mean 0.21 0.5 A-6 h"NM

Tabla A-2 (continued). Coppar and Nickci Contants Source Moans for Wold Wiro Hoat Number 406L44 Flux l Weld Metal l

Ana!ysis Source Cu Nil l

Weld ID Lot l Source j

Reference '

wt*/.

wt% l Notes l

WF-193 8773 Weld Qualification Mt. Vernon WQ: Lab No. 9374 0.19 0.59 Cu content lower than WQ retest analysis and analyses on production welds; Cu content not used in source mean calculation l

l Retest of WQ sample 0 28 060l l

l l Retest of WQ sample 0.27 0 60 l l

Retest of WQ sample: Lab No.

0.016 0.91 Cu & Ni contents dissimilar 16451 compared to retest WQ analyses and on production welds: Cu & Ni contents not used in source mean calculation Retest of WQ sample 0.014 Cu & Ni contents dissimilar compared to retest WQ analyses and on production welds; Cu & Ni contents not used in source mean calculation Retest of WO sample 0.018 0.90 Cu & Ni contents dissimilar compared to retest WQ analyses and on production welds; Cu & Ni contents not used in source mean calculation Retest of WQ sample 0.017 0.91 Cu & Ni contents dissimilar compared to retest WQ analyses and on production welds; Cu & Ni contents not used in source mean culation WF-193 8773 ll ANO-1 Surv. Weld ll Mt Vemon Lab No. 30040 0 26 0 59 l ANO-1 Surv. Weld lMt Vernon Lab No. 30041 0 27 0 60l l

[ANO-1 Surv. Weld I Mt Vernon Lab No. 30042 0 27 0 59 l l

l ANO-1 Surv. Weld l Mt Vernon Lab No. 30043 0 27 0 59 l l

I ANO-1 Surv. Weld l Mt Vernon Lab No. 30059 0.27 0.58 l l

l ANO-1 Surv. Weld l Mt Vernon Lab No. 30060 0 30 0 58 l l

l ANO-1 Sury. Weld l Mt Vernon Lab No. 30061 0 28 0.58 l l

l ANO-1 Surv. Weld l Mt Vemon Lab No 30062 0.28 0 581 l

ANO-1 Surv. Weld CVN S ecimen ID: GG-027 y

05 Source Mean 0.27 0.58 WF-193 8773 PB-2 Surv. Weld 1 RVSP Baseline Chemist y

0 59 Source Mean 0.25 0.59 A-7 h" M M

l l

Tablo A-3. Coppar and Nickel Contants Source Means for i

Wald Wiro Heat Number 61782 l

l Flux Wold Metal Analysis Source Cu Ni l l

Weld ID I Lot Source Reference wt% Wt%l Notes l

SA-847 8350 Weld Qualification Barberton WO 0.20 0.39 Ni content lower than analyses on other WQs and production welds; Ni content not used in source mean J

Source Mean 0.20 SA-848 8373 Weld Quakfication Barberton WO 0.22 0 49 Source Mean 0.22 0.49 SA-948 8408 Weld Quahfication Barberton WO O 18 0.55 l

Source Mean 0.18 0.55 i

SA-1014 8436 Weld Quahfication Barberton WO 0.23 0.46 Source Mean 0.23 0.46 l

l SA-1036 8436 Weld Qualification Barberton WO O 31 0 64 Source Mean 0.31 0.64 l

SA-1036 8436 ONS 1 Nozzle Dropout Specimen No. U 0.15 0 49 l ONS-1 Nozzle Dropout Specimen No. T 0.15 0 49l l

l ONS-1 Nozzle Dropout Specimen No S 0 17 0 501 l

l ONS-1 Nozzle Dropout Specimen N1 R 0.16 0 491 l

l lONS-1 Nozzle Dropout Specimen No O O 16 0 49 l l

i l

lONS-1 Nozzle Dropout Specimen No P O 21 0 48 l l

lONS-1 Nozzle Dropout Specimen No. O 0.22 0 48 l l

i lONS-1 Nozzle Dropout Specimen No N O 23 0 49 l l

l ONS-1 Nozzle Dropout Specimen No. M 0 22 0 49 l l

l ONS-1 Nozzle Dropout Specimen No L 0 24 0 49 l l

l ONS-1 Nozzle Dropout Specimen No K 0 27 0 49 l l

ONS-1 Nozzle Oro out E

O 49

{

Source Mean 0.20 0.49

)

SA-1036 8436 l REG Surv. Weld RVSP Baseline Chemistry 0 23 0.56 l REG Sury. Weld CVN Specimen ID. W-26 0 22 0.50 l l

[ REG Surv Weld CVN Specimen 0 25 0.57 l l

l REG Surv. Weld CVN Specimen 0 25 0.52 l l

l REG Surv. Weld CVN Specimen 0 27 0.58 l l

l REG Surv. Weld CVN Specimen 0 22 0 45l l

l REG Surv. Weld CVN Specimen 0 23 050l l

l REG Surv. Weld CVN Specimen 0 23 0 50 l l

l REG Surv. Weld

~CVN Specimen 0.21 0 461 l

REG Surv. Weld M

0.53 Source Mean 0.24 0.52 SA-1118 8443 Weld Qualification Barberton WO M

0 52 Source Mean 0.22 0.52 SA-1135 8457 Weld Quakfication Barberton WO E

O5 Source Mean 0.17 0.5 A-8 f." M N R M

Tabla A-3 (continusd). Coppar and Nickel Contsnts Sourco Msans for Wald Wiro Host Number 61782 l Flux l Weld Metal

-l Analysis Source Cu Ni l l

WeldID l Lot i Source l

Reference -

wt%

Wt% l Notes l

SA-1135 8457 lONS-2 Nozzle Dropout l Mt Vernon Lab No. 30691 0.17 0.59 l l

lONS-2 Nozzle Dropout l Mt Vemon Lab No 30690 0 23 0 60 l l

l ONS-2 Nozzle Dropout I Mt Vemon Lab No. 30689 0 21 0 591 l

lONS-2 Nozzle Dropout l Mt Vernon Lab No. 30688 0 23 0 60 l l

[ONS-2 Nozzle Dropout l Mt Vemon Lab No. 30687 0.22 0 60]

l l ONS-2 Nozzle Dropout l Mt Vemon Lab No. 30686 0 22 0.60 l l

l ONS-2 Nozzle Dropout l Mt Vemon Lab No. 30685 0 26 0 58l l

lONS-2 Nozzle Dropout lMt Vemon Lab No. 30684 0 33 0 59l l

l ONS-2 Nozzle Dropout l Mt Vemon Lab No. 30683 0.34 059l l

l ONS-2 Nozzle Dropout l Mt Vemon Lab No. 30682 0 34 0 59l l

[ ONS-2 Nozzle Dropout l Mt Vernon Lab No. 30681 0.31 0 59]

{

l ONS-2 Nozzle Dropout l Mt Vernon Lab No. 30680 0.32 0 58 l l

lONS-2 Nozzle Dropout lMt Vemon Lab No. 30679 0 31 0.59 l l

l ONS-2 Nozzle Dropout l Mt Vemon Lab No. 30678 0 22 0 58l l

lONS-2 Nozzle Dropout l Mt Vernon Lab No. 30677 0 22 0 59l l

lONS-2 Nozzle Dropout l Mt Vernon Lab No. 30676 0 25 0 58 l l

lONS 2 Nozzle Dropout lMt Vernon Lab No. 30675 0 24 0 58 l l

lONS-2 Nozzle Dropout l Mt Vernon Lab No. 30674 0 29 0 581 l

IONS-2 Nozzle Dropout lMt Vernon Lab No. 30673 0.28 0 59l l

l ONS-2 Nozzle Dropout l Mt Vemon Lab No. 30672 0 29 0.58 l l

l ONS-2 Nozzle Dropout l Mt Vernon Lab No. 30671 0.28 0 58 l l

l ONS-2 Nozzle Dropout l Mt Vernon Lab No. 30670 0 27 0 581 l

l ONS-2 Nozzle Dropout lMt Vernon Lab No. 30669 0 29 0 58l l

lONS-2 Nozzle Dropout l Mt Vemon Lab No. 30668 0.28 0 581 l

lONS-2 Nozzle Dropout lMt Vemon Lab No. 30667 0.27 0 58l l

l ONS-2 Nozzle Dropout l Mt Vernon Lab No. 30666 0 27 0.58 l l

lONS-2 Nozzle Dropout lMt Vemon Lab No. 30665 0.31 0 581 l

l ONS-2 Nozzle Dropout l Mt Vemon Lab No. 30664 0.31 0.58 l l

ONS-2 Nozzle Dro out Mt Vemon Lab No 30663 g

0.58 Source Mean 0.27 0.

SA-1346 8504 I Wald Qualification Barberton WO y

0 51 i

Sour:e Mean 0.20 0.

SA-1779 1 8738 I Weld Qualification i Barberton WQ Lab No. E-77051 y 0 45 Source Mean 0.28 0.45 SA-1788 8754 Weld Qualification Barberton WQ Lab No. E-77355 y 0 47 Source Mean 0.29 0.47 A-9 U<WM

i Tabla A-4. Copper and Nicksi Contsn!s Sourco Msans for i

Wald Wira Hect Numb r 71249 Weld Metal l

Analysis Source Cu Ni l l

WeldID I Flux l l

Lot I Source i

Reference wt%

wt% l Notes SA-1094 8457 Weld Qualification Barberton WO

,y 0 55 Source Mean 0.23 0.55 SA-1094 8457 TP-4 Sury Weld h RVSP Baseline Chemistry 0 30 0 60 lTP-4 Surv Weld l CVN Lpecimen 0 27

- l l

l TP 4 Surv. Wek1 l CVN Specimen 0 29

-l l

3 TP-4 Surv Weld CVN S cimen Source Mean 0.29 0.60 SA-1101 8445 Weld Qualification Barberton WO y

0 57 Source Mean 0.21 0.57 SA-1101 8445 ONS-1 Nozzle Dropout Specimen No I O 23 0 52

{ ONS-1 Nozzle Dropout l Specimen No H 0 20 0.54 l l

l

{ ONS-1 Nozzle Dropout l Specimen No G 0 20 054l l

1ONS-1 Nozzle Dropout l Specimen No F 0 17 054l l

ONS 1 Nozzle Dropout l Specimen No. E O 15 0 55 l l

ONS-1 Nozzle Dropout l Specimen No D 0 19 0 54 l l

ONS 1 Nozzle Dropout l Specimen No C 0 18 0 55 l l

lONS-1 Nozzle Dropout l Specimen No. B 0.15 0 54 l l

l ONS-1 Nozzle Dropout l Specimen No A 0.16 0 55 l l

0.19 063l l

lONS 1 Nozzle Dropout lRound Robin Sample Mt. Vernon l Analysis' Lab No 28772 l

l 0.19 061l l

l lONS-1 Nozzle Dropout lRound Robin Sample Mt Vernon l Analysis l

l ONS-1 Nozzle Dropout lRound Robin Sample Mt Vernon 0 17 062l l

l Analysis: Lab No 28773 l

l ONS-1 r4ozzle Dropout l Round Robin Sample Mt. Vemon 0.18 062l l

l #aalysis l

l l ONS-1 Nozzle Dropout l Round Robin Sample Barberton 0.16 0.60 l l

l l Analysis l

l I

Round Robin Sample Barberton 0.16 0 61 l l

l IONS 1 Nozzle Dropout l Analysis l

l l

0.18 062l l

IONS-1 Nozzle Dropout lRound Robin Sample LRC l Analysis l

l l

lONS-1 Nozzle Dropout l Round Robin F a.nr# L'.C 0.29 0 67 l l

l I

l 1

l Anatysis 0.18 0.54 l l

lONS 1 Nozzle Dropout lRound Robin w..o LRC 1

l Analysis l

l Round Robin Sample LRC 0 19 0.53 l l

lONS-1 Nozzle Dropout l Analysis I

l l

l Round Robin Sample LRC 0.18 0.64 l l

lONS-1 Nozzle Dropout l Analysis l

l l

0.23 0 64 l l

lONS-1 Nozzle Dropout lRound Robin Sample LRC l Analysis l

l

[ONS 1 Nozzle Dropout lRound Robin Sample LRC 0.23 0 65 l l

l l Analysis l

l 0.17 062l l

l ONS-1 Nozzle Dropout l Round Robin Sample J&L Steel l Company Analysis l

l lONS-1 Nozzle Dropout l Round Robin Sample ORNL 0.18 0 61l l

1

] Analysis 1

l lONS-1 Nozzle Dropout l Round Robin Sample Y-12 0.18 0.65 l l

l l Analysis l

l 7.13 0.63 l l

lONS-1 Nozzle Dropout l Round Robin Sample Y 12 l Analysis l

l 0.17 0.62 l l

lONS 1 Nozzle Dropout l Round Robn Sample NBS l Analysis - 62W l

l Round Robin Sample NBS 0.17 0.61 l l

l ONS-1 Nozzle Dropout l Analysis - 62W l

1 l

l 0.17 0.62 l l

lONS-1 Nozzle Dropout l Round Robin Sample NBS l Analysis - 62W l

l A-10 h"MM

Tablo A-4 (continund). Coppar and Nickel Contents Source Means for Wold Wiro Haat Numbsr 71249 l Flux l Wald Metal Analyals Source Cu Ni l Weld 10 l Lot l Source Reference wt%

Wt% l Notes SA-1101 6445 lONS-1 Nozzle Dropout Round Robin Sample NBS 0.18 0 62 l l

AnaYsis. 62W l

lONS-1 Nozzle Dropout HSST Specimen ID 62W-309 0 17 0 52 l lONS-1 Nozzle Dropout HSST Specimen ID 62W-359 0 17 0 481

[ONS-1 Nozzle Dropout HSST Specimen ID' 62W-202 0 18 0 57 l 1ONS-1 Nozzle Dropout HSST Specimen ID 62W 223 0 18 0 58l l

lONS 1 Norzle Dropout HSST Specimen ID: 62W-223 0.15 0 62 l lONS-1 Nozzle Dropout HSST Specimen ID-62W-276 0 19 0 59 l ONS-1 Nozzle Dropout HSST Specimen ID. 62W-276 0.32 1.03 Ni content higher than expected range and analyses on same production weld, Ni content not used in source mean calculation Source Mean 0.19 0.59 SA-1101 8445 l TP-3 Surv. Weld i RVSP Baseline Chemistry 0 31 0 57 l TP-3 Surv. Weld Retest RVSP Baseline Chemistry 0 33 l

l TP-3 Sury. Weld Retest RVSP Baseline Chemistry 0 32 l

l TP-3 Surv. Weld CVN Specimen ID: W-17 0 35 l

l TP-3 Surv. Weld CVN Specimen ID W 19 0 34

- l TP-3 Surv. Weld M

y Source Mean 0.33 0.57 l SA-1229 1 8492 Weld Qualification Bart>erton WQ 0.20 0 57 Source Mean 0.20 0.5 1 SA-1344 8504 Weld Qualification Barberton WQ 0 21 0 62 k

Source Mean 0.21

0. ti2 l SA-1706 8669 Weld Quahfication i Barberton WO Lab No. E-70325 0 21 0 55 M

Source Mean 0.21 0.5 i SA-1769 8738 Weld Quahfication Barberton WQ Lab No. E-76488 0.19 0 66 Source Mean 0.19 0.66 SA-1769 8738 W Surv. Weld Mt Vernon Lab No. 29652 0 29 0 63 lW Surv Weld Mt Vernon Lab No 29651 0 31 0 63 l l W Surv. Weld Mt Vemon Lab No 29650 0 31 0 63 l l W Surv. Weld Mt Vemon Lab No. 29649 0 27 0 63 l l W Surv. Weld Mt Vemon Lab No 29648 0 28 063l

} W Surv. Weld Mt Vemon Lab No. 29647 0 28 062l l W Surv. Weld Mt Vemon Lab No. 29646 0.31 0 621 lW Surv Weld Mt Vemon Lab No. 29645 0 29 062l l W Surv. Weld Mt Vemon Lab No. 29644 0.28 062l l W Surv. Weld Mt Vernon Lab No 29643 0.34 063l l W Surv. Weld Mt Vemon Lab No 29642 0.30 0 63 l l W Sury. Weld Mt Vemon Lab No 29641 0 29 063l

[W Sury. Weld Mt Vemon Lab No. 29640 0 27 062l l W Surv, Weld Mt Vemon Lab No. 29639 0 28 0621 l W Surv. Weld Mt Vemon Lab No 2%38 0 28 0 62 l l W Sury. Weld Mt Vemon Lab No. 29637 9 24 0 62 l l W Surv. Weld Mt Vemon Lab No. 29636 0.26 0 62 l lW Surv. Weld Mt Vemon Lab No. 29635 0 27 0 63 l l W Sury. Weld Mt Vemon Lab No. 29634 0.28 0 63 l l W Surv. Weld Mt Vemon Lab No. 29633 0 28 064l lW Sury. Weld Mt Vemon Lab No. 29632 0 31 0 64 l l W Surv. Weld Mt Vemon Lab No. 29631 0 28 064l l W Sury. Weld fr Vemon Lab No. 29630 0 28 064l lW Surv Weld Mt Vemon Lab No 29629 0.27 0 64 l lW Surv. Weld Mt Vemon Lab No 29628 0 '7 064l l W Surv. Weld Mt Vemon Lab No. 29627 0 31 064l A-11 f"M WA

Tchl] A-4 (centinu;d). Ccpper cnd Nick:1 C:ntents Scurco M::cn3 f:r W;ld Wiro H:ct Number 71249

]

)

l Flux l Weld Metal j'

Analysis Source Cu Ni Weld ID ] Lot i Source l

Reference wt%

Wt%

Notes l

SA 1769 8738 lW Sury. Weld l Weld HSST 61W Westinghouse 0 31 0.63 l

1 Analysis lW Sury. Weld l Weld HSST-61W Westinghouse 0.28 0.62 l

l

[

I Analysis I

l l Weld HSST-61W Westinghouse 0.26 0.62 l

l W Surv. Weld l Analysis l

lW Sury. Weld l Weld HSST-61W Westinghouse 0.28 0.64 l

l 1

l Analysis I

j lW Surv. Weld l Weld HSST-61W Westinghouse 0.27 0.64 l

l l Analysis l

J W Sury. Weld HSST Specimen ID: 61W-232 0.39 OA7 Ni content lower than expected l

range and analyses on same production weld; Ni content not used in source mean calculation lW Surv. Weld l HSST Specimen (D: 61W-276 0 24 0 59 l

W Surv. Weld HSST Spect.aq ID: 61W-246 0.21 0.45 Ni content lower than expected range and analyses on same I

production weld; Ni content not used in source mean calculation W Surv. Weld HSST Specimen ID: 61W-225 0.35 0.44 Ni content lower than expected l

range and analyses on same production weld; Ni content not used in source mean calculation lHSST Specimen ID-61W-222 0.24 0 52 l

lW Sury Weld lW Sury. Weld l HSST Specimen ID: 61W-270 0 24 0 54 l

lW Sury. Weht l HSST Specimen ID: 61W-270 0 28 0 62 l

l W Surv. Weld lHSST Specimen ID 61W-270 0.26 0 59 l

W Surv. Weld HSST Specimen ID 61W-270 0 36 0.97 Ni content higher than expected l

rance and analyses on same q

production weld; Ni content not used in source mean calculation W Sury. Weld HSST Specimen ID. 61W 234 0.19 0.43 Ni content lower than expected range and analyses on same production weld; Ni content not l

used in source mean calculation Source Mean 0.28 0.62 l

l

(

i i

A-12 f."MNRM

Table A-5. Copper and Nickel Contents Source Moans for Weld Wiro Hsat Number 72105 Flux Wold Metal l

Analysis Source Cu Ni l

Wold ID Lot Source l

Reference wt%

wt%

Notes l

WF 70 8669 Weld Qualification Mt. Vemon WO. Lab No. 6595 0 27 0.46 Ni content lower than WQ retest analysis and analyses on production welds; Cu content not used in source mean calculation l

l Retest of WO Sample 0 31

- l l

Retest of WO Sam le 0 34 0 58 Source Mean 5

0. 5 WF 70 8669 MD-1 Nozzle Dropout [ Mt Vemon Lab No 30418 0 44 0 60 lMD-1 Noule Dropout lMt Vernon Lab No 30417 0 47 0 61 l l

l MD-1 Nozzle Dropout l Mt Vemon Lab No. 30416 0 49 0 61 l l

lMD-1 Nozzle Dropout l Mt Vemon Lab No 30415 0 47 0 61 l l

l MD-1 Nozzle Dropout lMt Vemon Lab No 30414 0 47 0 60 l l

lMD-1 Nozzle Dropout l Mr Vernon Lab *Jo 30413 0 48 059l l

l MD-1 Nozzle Dropout lMt Vernon Lab No 30412 0 36 0 59l l

lMD-1 Nozzle Dropout l Mt Vernon Lab No. 30411 0 37 059l l

l MD-1 Nozzle Dropout lMt Vemon Lab No 30410 0 39 0 581 1

l MD-1 Nozzle Dropout l Mt Vemon Lab No 30409 0 35 0 58 l l

lMD-1 Nozzle Dropout lMt Vemon Lab No 30408 0 35 0 58 l l

1MD-1 Nozzle Dropout l Mt Vemon Lab No. 30407 0 39 059l l

l MD 1 Nozzle Dropout lMt Vernon Lab No 30406 0 40 059l l

l MD-1 Nozzle Dropout l Mt Vernon Lab No 30405 0 42 0 59 l l

lMD-1 Nozzle Dropout lMt Vernon Lab No 30404 0 43 059l l

l MD-1 Nozzle Dropout l Mt Vemon Lab No 28869 0 46 0 60 l l

l MD-1 Nozzle Dropout l Mt Vemon Lab No 28868 047 0 60 l l

lMD-1 Nozzle Dropout lMt Vernon Lab No 28867 0 49 0 60 l l

lMD-1 Nozzle Dropout l Mt Vemon Lab No. 28866 0 48 0 60(

l lMD-1 Nozzle Dropout l Mt Vernon Lab No. 28865 0 50 0 59l l

lMD-1 Nozzle Dropout l Mt Vemon Lab No. 28864 0 37 059l l

lMD-1 Nozzle Dropout l Mt Vemon Lab No 28863 0 40 059l l

l MD-1 Nozzle Dropout lMt Vemon Lab No 28862 0 38 0 58 l l

l MD 1 Nozzle Dropout { Mt Vemon Lab No. 28861 0 34 0 58 l l

lMD-1 Nozzle Dropout l Mt Vernon Lab No 28860 0 38 0 58l l

lMD-1 Nozzle Dropout l Mt Vemon Lab No. 28859 0 39 0 58 l l

l MD-1 Nozzle Dropout lMt Vernon Lab No 28858 0 46 0 58 l l

lMD-1 Nozzle Dropout lMt Vemon Lab No 28857 0 41 0 58 l l

l MD-1 Nozzle Dropout l Barberton Analysis Bik ID:

0 42 0.56 l l

l l MS294-1 AWC l

l l MD-1 Nozzle Dropout l Barberton Analysis Bik 10.

0 41 056l l

l MS:'941 AWC l

l l MD-1 Nozzle Dropout l Barberton Analys:s Blk ID:

0 41 0.56 l l

l l MS294-1 AWC l

1 lMD-1 Nozzle Dropout lBarberton Analysis Bik ID:

0 39 0.56 l

l l MS294-1 AWC l

lMD-1 Nozzle Dropout l Barberton Analysis Bik ID.

0 39 0.56 l

l l MS2941 AWC l

l MD-1 Nozzle Dropout l Barberton Anafysis Blk ID:

0.39 056l l

l MS294-1 AWC l

l l MD-1 Nozzle Dropout l Bart>erton Analysis Blk ID:

0 44 056l l

t l MS294-1 AWC l

l lMD-1 Nozzle Dropout l Barberton Analysis Bik ID:

0 42 0.55 l l

l l MS294-1 AWC 1

1 IMD-1 Nozzle Dropout lBarberton Analysis Bik ID:0.42 0.56 l l

l MS294-1 AWC l

1 lMD-1 Nozzle Dropout lBarberton Analysis Bik ID:

0.42 0.56 l l

l l MS294-1 AWC l

t lMD-1 Nozzle Dropout l MS294-1 AWCBarberton Analysis Bik ID:

0.40 0 59l l

l l

l l

lMD-1 Nozzle Dropout lBarberton Analysis Blk ID:

0.40 0.59 l l

l l MS294-1 AWC l

l l MD-1 Nozzle Dropout l Barberton Analysis Bik ID:

043 0.57 l l

l l MS2941 AWC l

l A-13 WWM

l Tcbla A-5 (c:ntinu:d). C:pper cnd Nick:1 C:ntents S:urca M;;na far i

W:Id Wire He:t Number 72105 1

Wt%l l

{

Flux Wold Metal.

l Analysis Source Cu Ni 1

Notes l

Weld ID Lot Source

-l Reference wt%

WF-70 8669 MD-1 Nozzle Dropout lBarberton Analysis Bik ID.

0 42 060l l

l MS294-1 AWC l

l l MD-1 Nozzle Dropout l Barberton Analysis Bik ID.

0 35 0 54 l l

l l

l MS294-1BWC l

l I

l Barberton Analysis Bik ID:

0.38 056l l

IMD-1 Nozzle Dropout l MS294-1BWC l

l lMD-1 Nozzle Dropout l Barberton Analysis Bik ID.

0.38 056l l

l l MS294-1BWC I

l t

l MD-1 Nozzle Dropout { Barberton Analysis Bik ID:

0.31 0.57 l l

l l MS294-1BWC l

l lMD-1 Nozzle Dropout lBarberton Analysis Bik 10.

0 34 0.56 l l

{

l l MS294-1BWC l

l l MD 1 Nozzle Dropout lBarberton Analysts Blk ID:

0.37 0.57 l l

l l MS294-1BWC l

l l MD-1 Nozzle Dropout l Barberton Analysis Bik ID:

0 40 0.57 l l

l l MS294-1BWC l

l l Barberton Analysis Bik ID:

0.38 0.56 l l

lMD-1 Nozzle Dropout l MS2941BWC l

l l MD-1 Nozzle Dropout l Barberton Analysis Bik ID:

0.36 0.58 l l

l l MS294-1BWC l

l lMD-1 Nozzle Dropout l Barberton Analysis Blk ID:

0 35 0.57 l l

l MS2941BWC l

l lMD-1 Nozzle Dropout l Barberton Analysis Bik 10.

0 46 0.55 l l

i l MS2941CWC l

l lMD-1 Nozzle Dropout l Barberton Analysis Bik ID:

0.45 0 55l l

{

l l MS294-1CWC l

l l MD-1 Nozzle Dropout l Barberton Analysis Blk 10.

0 45 0.56[

l l MS294-1CWC l

l i

MD-1 Nozzle Dropout l Barberton Analysis Blk ID-.

0 45 0.56 l l

{

l MS294-1CWC 1

i lMD-1 Nozzle Dropout l Barbonon Analysis B!k ID.

0.46 0.57 l l

l l MS294-1CWC l

l l MD-1 Nozzle Dropout l Barberton Analysis Bik ID.

0.47 0.58 l l

i l MS294-1CWC l

l

)

lMD-1 Nozzle Dropout l Mt Vernon Lab No. 28799 0 40 0.58 l l

l MD-1 Nozzle Dropout l Mt Vernon Lab No. 28799 0 40 059l l

[MD-1 Nozzle Dropout l Mt Vernon Lab No. 28801 0 38 0 59l l

l MD-1 Nozzle Dropout l Mt Vernon Lab No. 28801 0.38 059l l

l lMD-1 Nozzle Dropout IORNL Analysis Block No 3-1 0 29 056l l

l MD-1 Nozzle Dropout lORNL Analysis Block No. 3-1 0 20 0 58 l l

l MD-1 Nozzle Dropout lORNL Analysis Block No 3-1 0 15 0 59l l

lMD-1 Nozzle Dropout iORNL Analysis Block No. 3-1 0 37 0 61l l

l MD-1 Nozzle Dropout lORNL Analysis Block No 3-1 0 46 0 59 l l

lMD-1 Nozzle Dropout l ORNL Analysis Block No. S-1 0 37 0 561 l

l MD-1 Nozzle Dropout l ORNL Analysis Block No. 3-1 0 38 056l l

lMD-1 Nozzle Dropout l ORNL Analysis Block No. 3-1 0 41 0 56 l l

l MD-1 Nozzle Dropout 1ORNL Analysis Block No 3-4 0 30 0 56 l l

lMD-1 Nozzle Dropout l ORNL Analysis Block No. 3-4 0.19 0 58 l l

l MD-1 Nozzle Dropout l ORNL Analysis Block No. 3-4 0 14 0 58 l l

lMD-1 Nozzle Dropout lORNL Analysis Block No. 3-4 0 23 0 60 l l

lMD-1 Nozzle Dropout l ORNL Analysis Block No. 3-4 0 42 0.58 l l

lMD-1 Nozzle Dropout lORNL A;ialysis Block No. 3-4 0 38 0 57 l l

l MD-1 Nozzle Dropout lORNL Analysis Block No 3-4 0 39 0 56 l l

i!d l

1 A-14 f"MMW!

r Tablo A-5 (continusd). Coppsr end Nickel Contsnts Source Manns for

[

Wald Wiro Hast Numbar 72105 Flux Wold Metal Analysis Source Cu NI Weld ID Lot Source Reference wt% Wt%

Notes WF-70 8669 MD-1 Belthne Weld Barberton Analysis Bik ID:

0 26 0 56 MS304-1WC MD-1 Belthne Weld Barberton Analysis Bik ID:

0 26 0.57 MS304-1WC MD-1 Beltline Weld Barberton Analvsis Bik 10:

0.25 0 56 MS304-1WC l

MD-1 Belthne Weld Barberton Analysis Bik ID:

0.26 0.57 MS304-1WC MD-1 Belthne Weld Barberton Analysis Bik ID:

0.25 0.57 MS304-1WC MD-1 Beltline Weld Barberton Anatysis Bik ID:

0.25 0.57

'~

MS304-1WC MD-1 Belthne Weld Barberton Analysis Bik ID.

0.27 0.55 MS304-3WC MD-1 Betthne Weld Barberton Analysts Bik ID.

0.27 0.56 MS304-3WC MD-1 Beltline Weld Baterton Analysis Bik ID:

0.28 0.56 MS304 3WC MD-1 Berthne Weld Barberton Analysis Blk ID:

0.27 0.56 MS304-3WC MD 1 Belthne Weld Barberton Analysis Bik 10:

0.27 0.57 MS304-3WC MD-1 Beltkne Weld Barberton Analysis Bik ID:

0.28 0.56 MS304-3WC MD-1 Belthne Weld Barberton Analysis Bik ID:

0.35 0.55 MS304-4WC MD-1 Beltline Weld Barberton Analysis Blk ID; 0.36 0.56 MS304-4WC MD-1 Beltkne Weld Barberton Analysis Bik 10:

0 35 0 56 MS304-4WC MD-1 Belthne Weld Barberton Analysis Bik JD:

0.36 0.56 MS304-4WC MD-1 Belthne Weld Barberton Analysis Bik ID:

0.36 0.58 MS304-4WC MD-1 Belthne Weld Barberton Analysis Bik ID:

0 35 0.56 MS304-4WC MD-1 Belthne Weld Barberton Analysis Bik ID; 0.35 0.57 MS304-4WC MD-1 Berthne Weld Barberton Analysis Bik ID.

0.36 0.56 MS304-4WC MD-1 Belthne Weld Barberton Analysis Blk ID:

0.36 0.56 MS304-4WC MD-1 Belthne Weld Barberton Analysis Blk ID:

0.35 0.59 MS304-4WC MD-1 Belthne Weld Barberton Analysis Blk ID:

0.35 0.60 MS304-4WC MD-1 Belthne Weld Barberton Analysis Bik ID:

0 35 0.58 MS304-4WC MD-1 Belthne Weld Barberton Analysis Bik ID:

0.36 0.59 MS304-4WC MD-1 Belthne Weld Barberton Analysis Bik ID:

0.34 0.58 MS304-4WC MD-1 Beltime Weld ORML Analysis Block ID: 1-9 0.24 0.58 MD-1 Belthne Weld ORNL Analysis Block ID: 1-9 0 22 0 56 MD-1 Beltline Weld ORNL Analysis Block ID: 1-9 0.27 0 57 MD 1 Beltline Weld ORNL Analysis Block ID: 19 0 22 0 57 MD-1 Belthne Weld ORNL Analysis Block ID: 1-9 0.22 0 62 MD-1 Belthne Weld ORNL Analysis Block ID: 1-9 0.30 0 56 MD-1 Beltline Weld ORNL Analysis Block ID 1-9 0 27 0.56 MD-1 Belthne Weld ORNL Analysis Block ID: 1-9 0.34 0.57 MD-1 Belthne Weld ORNL Anatysis Block ID: i-11 0 23 0 57 MD-1 Belthne Weld ORNL Analysis Block ID: 1-11 0 23 0 57 MD-1 Belthne Weld ORNL Analysis Block ID: 1-11 0 24 0 58 A-15 h"A M M

l Tcbin A-5 (continu:d). Coppar and Nicksi Contsnts Source Manns for 1

Wald Wiro Hset Numbar 72105 i

S/ eld Metal l-Analysis Source.

Cu Ni l l

l l Flux Lot Sourt;e l

Reference wt% Wt% l ~

Notes l

l Wold ID WF 70 8669 iMD-1 Beltline Wet l ORNL Anatyr.is Block ID 111 0 25 0 58 l l

l MD-1 Bettline Weld l ORNL AnalyNs Block ID' 1-11 0 26 0 56 l l

l l MD-1 Beltline Weld iORNL Analysis Block ID: 1-11 0 25 0 571 l

l MD-1 Bettline Weld iORNL Analysis Block 10: 1-11 0 29 057l l

l MD-1 Beltline Weld l ORNL Analysis Block ID-1 11 0 31 056 l l

1 MD-1 Battline Weld l ORNL Analysis Block (D 1 13 0 24 0 58 l l

l MD-1 Beltline Weld 1ORNL Anatysis Block ID-1 13 0 21 0 61 l l

[MD-1 Beltline Weld lORNL Analysis Block ID: 1 13 0 22 0 63 l l

lMD-1 Beltline Weld lORNL Analysis Block 10: 1-13 0 25 0 60 l l

l MD-1 Bettline Weld iORNL Analysis Block ID 1-13 0 32 0 60 l l

l MD-1 Beltline Weld lORNL Anatysis Block lD: 1-15 0 29 0 581 l

l MD-1 Behline Weld lORNL Analysis Block ID' 1-15 0 28 0 57l l

l MD-1 Beltline Weld lORNL Analysis Block ID 1-15 0 25 0 57 l l

lMD-1 Bettline Weld lORNL Anatysis Block ID: 1-15 0 22 056l l

[MD-1 Beltline Weld lORNL Analysis Block ID: 1-15 0 22 057l l

l lMD-1 Beltline Weld lORNL Analysis Block ID: 1 15 0 27 0 55l l

MD-1 Beltline Weld g 0 57 Source Mean 0.28 0.57 l

WF-113 8688 Weld Qualification Mt.Vemon WQ: Lab No. 7277 0.21 0 59 Cu content lower than WQ retest analysis; Cu content not used in source mean calculation l

l Retest of WO Sample:

0.28

- l l

l l Lab No. 7278 l

l l

l Retest of WO Sample:

0.30 0.591 l

I ILab No. 7278 l

l Retest of WQ Sample:

0.30 0.61 Lab No.7278

0. 6 Source Mean 0.29 WF-209 8773 W :d Qualification 0 Mt. Vemon WO~ Lab No 9837 0 32 0 59

. 0,,,4,1, Source Mean 0.37 0.5 WF-209-1 8773 Weld Qualification Mt. Vemon WQ. Lab No.10029 0.30 0.48 Ni content lower than WO retest analysis and analyses on l

production welds; Ni content not used in source mean calculation l

l Retest of WO Sample 0 41 0.59]

l Retest of WO Sam le 3 05 l

Source Mean 0.37

0. 5 WF-209-1 8773 0 ONS-2 Surv. Weld Mt Vernon Lab No. 30050 0 35 0 59 I ONS-2 Surv. Weld l Mt Vernon Lab No 30051 0.36 0.58 l l

l ONS-2 Surv. Weld l Mt Vemon Lab No. 30052 0 35 0 58 l l

I ONS-2 Surv. Weld l Mt Vemon Lab No 30053 0.36 0 58l l

l ONS-2 Sury. Weld l Mt Vemon Lab No. 30054 0 36 0 58l l

lONS-2 Surv Weld l Mt Vemon tab No. 30055 0.36 0 57 l l

ONS-2 Surv. Weld CVN S cemen ID. EE-016 g 06 Source Mean 0.35 0.58 WF-209-1 8773 CR-3 Sury. Weld l Mt Vemon Lab No 30550 0.37 0.59 ICR-3 Surv. Weld l Mt Vemon Lab No 30551 0 35 0 61l l

l CR-3 Surv. Weld l Mt Vemon Lab No. 30552 0.37 060l l

CR-3 Surv Weld Mt Vemon Lab No. 30553 g 0 62 Source Mean 0.36 0.

A-16 f."M M M

L Tablo A-5 (continued). Coppsr end Nickel Contants Sourco Moans for Wcld Wiro Host Numbsr 72105 Flux Wold Metal Analysta Source Cu N1

)

Weld ID Lot Source Reference wt% Wt%

Notes WF-209-1 8773 ONS-3 *urv Weld Mt Vemon Lab No. 30056 0 29 0 57 ONS-3 Surv Weld Mt Vernon Lab No 30057 0 30 0 58 ONS-3 Surv. Weld Mt Vemon Lab No. 30058 0 29 0 57 ONS-3 Surv Weld Mt Vemon Lab No 30014 0 29 0 58 ONS-3 Sury. Weld Mt Vernon Lab No 30015 0 30 0 58 ONS-3 Surv. Weld Mt Vemon Lab No 30016 0.28 0 58 f

ONS-3 Sury. Weld Mt Vernon Lab No. 30566 0 32 0 59 ONS 3 Sury. Weld Mt Vernon Lab No. 30567 0 32 0 59 ONS-3 Sury Weld Mt Vernon Lab No 30568 0 31 0 59 ONS-3 Surv Weld Mt Vemon Lab No. 30569 0 32 0 59 I

ONS-3 Surv, Weld Mt Vernon Lab No 30570 0.30 0 58 ONS-3 Surv. Weld Mt Vemon Lab No. 30571 0 31 0 58 ONS-3 Sury. Weld Mt Vemon Lab No. 30572 0 32 0 58 ONS-3 Surv. Weld Mt Vemon Lab No. 30573 0 31 0 58 ONS-3 Sury. Weld Mt Vernon Lab No 30558 0 31 0.58 ONS-3 Sury. Weld Mt Vemon Lab No. 30559 0 30 0.58 ONS-3 Surv. Weld Mt Vernon Lab No 30560 0 31 0 58 ONS 3 Surv. Weld Mt Vemon Lab No 30561 0 30 0 58 ONS-3 Sury. Weld Mt Vernon Lab No 30562 0 28 0 59 ONS-3 Sury Weld Mt Vernon Lab No 30563 0 28 0 59 ONS-3 Surv. Weld Mt Vernon Lab No 30564 0 30 0 58 ONS-3 Sury. Weld Mt Vernon Lab No 30565 0 30 0 59 ONS-3 Surv. Weld Mt Vernon Lab No. 30574 0 27 0 58 ONS-3 Surv Weld Mt Vernon Lab No. 30575 0 30 0 58 ONS-3 Surv. Weld Mt Vernon Lab No. 30576 0 31 0 58 ONS-3 Surv. Weld Mt Vernon Lab No. 30577 0 32 0 58 ONS 3 Sury. Weld Barberton Analysis Bik 10.

0.30 0.53 MS293 WC-1 ONS 3 Sury. Weld Barberton Analysis Blk ID:

0.29 0.52 MS293 WC-1 ONS-3 Sury. Weld Barberton Analysis Bik ID:

0.30 0.53 MS293 WC-1 ONS-3 Surv. Weld Barberton Analysis Bik 10.

0.30 0.53 MS293 WC-1 ONS-3 Surv. Weld Barberton Analysis Blk ID:

0.30 0.54 MS293 WC-1 ONS-3 Sury. Weld Barbarton Arwysis Blk ID.

0.27 0.54 MS293 WC-,

ONS-3 Surv. Weld Barberton Analysis Bik 10:

0.26 0.54 MS293 WC-1 ONS-3 Sury. Weld Barberton Analysis Bik ID:

0.26 0.55 MS293 WC-1 ONS-3 Surv. Weld Barberton Analysis Bik ID.

0.30 0.54 MS293 WC-2 ONS-3 Sury. Weld Barberton Anatysis Bik ID:

0.29 0.54 MS293 WC-2 ONS-3 Sury. Weld Barberton Analysis Blk ID.

0.29 0.54 MS293 WC-2 ONS-3 Sury. Weld Barberton Analysis Bik 10.

0.30 0.55 MS293 WC-2 ONS-3 Sury. Weld Barberton Analysis Bik ID:

0.26 0.54 MS293 WC-2 ONS-3 Surv. Weld Barberton Analysis Bik ID:

0.29 0.56 MS293 WC-2 ONS-3 Surv. Weld Barberton Analysis Bik ID:

0.29 0.55 MS293 WC-2 ONS-3 Sury. Weld Barberton Analysis Bik ID:

0.25 0.52 MS293 WC-2 ONS-3 Sury. Weld Barberton Analysis Blk ID.

0.30 0.55 MS293 WC-3 ONS-3 Surv. Weld Barberton Analysis Bik ID.

0.29 0.55 MS293 WC-3 A-r7 WWM

Tchla A-5 (centinu:d). Copp::r cnd Nick:1 Centents Scurca M::na for W:Id Wira H:ct Number 72105 Wt% lI.

l Nl.

l Flux l Wold Metat l

Analysis Source -

Cu Notes l

I Wold ID l Lot l Source ~

l Reference --

wt%

WF-209-1 6773 lONS-3 Sury. Weld Barberton Analysis Bik ID:

0.30 0.55 l l

l MS293 WC-3 l

1 1 ONS-3 Surv. Weld l Barberton Analysis Bik ID:

0.30 0 56l l

{

l l MS293 WC-3 l

l

{

ONS-3 Surv. Weld lBarberton Analysis Bik 10:

0.29 0.54 l l

1 MS293 WC-3 I

l lONS-3 Sury. Weld l Barberton Analysis Bik 10.

0.28 0.55) l f

l l MS293 WC-3 1

l l ONS-3 Sury. Weld Barberton Analysis Bik ID:

0.30 0.56 l l

l MS293 WC 3 l

l ONS-3 Surv. Weld l Ba;t>erton Analysis Bik ID:

0.30 0.55 l l

j l MS293 WC-3 l

l ONS-3 Surv. Weld l GE Analysis Block ID'9-18 0 26 0.55 l l

l ONS-3 Sury. Weld l GE Analysis Block 10 9-18 0.25 0 57 l l

ONS-3 Surv. Weld M

O 58 j

Source Mean 0.29 0.56 WF-2091 8773 MD-1 Sury. Weld Mt. Vernon Analysts Lab No.

0.32 0.58 l 31585 l

lMD-1 Surv. Weld lMt. Vernon Analysts Lab No.

0.34 0.59 l

l 131586 l

l MD-1 Sury. Weld l Mt. Vernon Analysis Lab No.

0.37 0.59 l l

131587 l

l lMD-1 Surv. Weld lMt. Vernon Analysis Lab No.

0.37 058l l

f l31588 l

l l MD-1 Surv. Weld l Mt. Vernon Analysis Lab No.

0 41 0 58 l

l l31589 l

MD-1 Sury. Weld lMt. Vernon Analysis Lab No.

0.35 0.58 l l

131590 1

l l MD-1 Sury. Weld l Mt. Vernon Analysts Lab No.

0.36 0.59 l

l 131591 l

l MD-1 bury. Weld lMt. Vernon Analysis Lab No.

0.35 0 59 l l

1 131592 l

l l MD-1 Surv. Weld l Mt. Vernon Analysis Lab No.

0.38 0.59 l

l 131593 l

l MD-1 Sury. Weld l Mt. Vernon Analysis Lab No.

0.35 0.59 l l

1 I31594 l

l l

l lMD-1 Surv. Weld lMt. Vernon Analysis Lab No.

0.37 0 59 l

l l31595 l

MD-1 Sury, Weld Mt. Vernon Analysis Lab No.

0.36 0.59 l

31596

{

Source Mean 0.36 0.5 i

A-18 f."MNRM'i

Tablo A-5 (continund). Copper end Nickel Contsnts Sourco Moans for Wald Wiro Heat Numbar 72105 l Flux l Wold Metal l

Analysis Source Cu Wt*4 l l

Ni J

Wold ID l Lot l Source l

Reference wt%

i Notes l

WF-2091 8773 lZN-1 Sury. Weld l RVSP Baseline Chemistry 0 35 057l l

lZN-1 Surv Weld lCVN Specimen ID W-25 0 22 0 531 l

lZN-1 Sury. Weld lCVN Specimen ID W-25 0 27 0 57l l

1 lZN-1 Swv Weld lCVN Specimen ID W-28 0.22 0 SSI l

lZN-1 Surv Weld lCVN Specimen ID W 28 0 25 0 49 l l

lZN-1 Surv Weld l CVN Specimen ID: W-26 0 26 0 56 l l

lZN-1 Sury Weld lCVN Specimen ID W 27 0 26 0 54 l l

[

[ZN-1 Surv Weld l CVN Specimen 10: W-29 0 24 0 55 l l

lZN-1 Sury Weld lCVN SpeoAen ID W 30 0 26 0 531 l

lZN-1 Surv. Weld lCVN Specimen ID W-31 0 28 056 l l

lZN-1 Surv. Weld lCVN Specimen ID W-32 0 25 054l l

iZN-1 Sury Weld l OVN Specimen ID: W-49 0.25 0 55l l

lZN-1 Surv. Weld lCVN Specimen ID W 00 0 22 0 55l l

lZN-1 Sury Wald l CVN Specimen ID: W-51 0 22 0.54 l l

lZN-1 Sury. Weld l CVN Specimen ID: W-52 0 23 054l l

lZN-1 Surv Weld l CVN Specimen ID: W-53 0 23 0 54 l l

lZN-1 Surv. Weld lCVN Specimen ID: W-54 0 22 054l l

lZN 1 Surv Weld l CVN Specimen ID W-55 0 24 0 551 l

ZN-1 Sury. Weld CVN S ecimen ID W 56 g

0 53 Source Mean 0.25 0.54

' WF-209-1 8773 ZN-2 Surv Weld RVSP Baseline Chemistry 0 28 0 55 lZN-2 Surv Weld lCVN Specimen ID W-37A 0 19 0 52 l l

l ZN-2 Surv. Weld l CVN Specimen ID W-378 0 23 0 52 l l

l ZN-2 Surv. Weld lCVN Specimen ID W-378 0 26 0 531 l

lZN-2 Surv. Weld

! CVN Specimen ID. W-38A 0 23 0 54 l l

[ZN-2 Surv. Weld l CVN Specimen ID: W-388 0 25 0 531 l

lZN-2 Surv. Weld l C'/N Specimen ID-W 388 0 31 0 52 l l

lZN-2 Surv Weld l CVN Specimen ID: W 39A 0 27 0 5-31 l

lZN-2 Surv. Weld l CVN Specimen ID: W-39B 0.21 0 48 l l

l ZN-2 Surv. Weld l CVN Specimen ID: W-39B 0 28 0 551 l

l ZN-2 Sury. Weld l CVN Specimen ID: W-33A 0 26 0 54 l l

l ZN-2 ".ury. Weld l CVN Specimen ID: W-34A 0.23 0 47 l l

l ZN-2 burv. Weld l CVN Specimen ID: W-35A 0 22 0 52 l l

l ZN-2 Surv. Weld l CVN Specimen ID: W-36A 0 20 0 56 l l

ZN-2 Sury. Weld CVN Specimen ID: W-40A 0.17 0.53 Cu & Ni contents suspect; specimen may have been notched in the base metal; Cu & Ni contents not used in source mean calculation ZN-2 Surv. Weld CVN Specimen ID: W-408 0.10 0.74 Cu & Ni contents suspect; specimen may have been notched in the base metal; Cu & Ni contents not used in source mean calculation ZN-2 Surv. Weld CVN Specimen ID: W-40B 0.09 0.76 Cu & Ni contents suspect; specimen may have been notched in the base metal; Cu & Ni contents not used in source mean calculation 52 Surv. Weld l CVN Specimen ID. W-50 0 26 0 571 I

lZN-2 Surv. Weld l CVN Specimen ID: W-55 0.27 0 60 l l

l ZN-2 Surv. Weld l CVN Specimen ID: W-49 0 26 0 59I l

lZN-2 Sury. Weld l CVN Specimen ID: W-51 0 28 060l l

(ZN-2 Sury. Weld l CVN Specimen 10: W-52 0 26 0 60 l l

1ZN-2 Surv. Weld lCVN Specimen ID: W-53 0.27 0 60 l l

lZN-2 Surv. Wald l CVN Specimen ID: W-54 0.26 0 56 l l

ZN-2 Surv. Weld VN cimen (D: W-56 0.23 0 59 Source Mean 5 0.55 A-19 IMMM

Tcbis A-6. Coppsr and Nickci Contsnts Sourco Mocna for Wald Wiro Heat Numbsr 72442 l

l Flux l Wold Metal -

Analysis Source Cu Ni l Wold ID l Lot l Source Reference.

wt%

wt%l Notes l

SA-1450 Weld Qualification rberton WO 3

06 Source Mean 0.25 0.6 l

l SA-1484 8579 Wald Qualification Barberton WO 3

0 64 Source Mean 0.25 0.64 SA.1484 8579 CR-3 Nozzle Dropout ll Mt Vemon Lab No 29799 0 24 0 57 lCR-3 Nozzle Dropout l Mt Vernon Lab No 29800 0 23 0 60 l l

~

l CR 3 Nozzle Dropout l Mt Vernon Lab No 29801 0 24 059l l

l CH-3 Nozzle Dropout l Mt Vemon Lab No 29802 0 24 060l l

l l CR-3 Nozzle Dropout l Mt Vemon Lab No 29803 0 27 060l l

l l CR 3 Nozzle Dropout l Mt Vernon Lab No. 29804 0 22 060l l

[ CR-3 Nozzle Dropout l Mt Vernon Lab No. 29805 0 26 0 60 l l

lCR-3 Nozzle Dropout l Mt Vernon Lab No 29806 0 27 0 59 l l

l CR-3 Nozzle Dropout l Mt Vernon Lab No 29807 0 23 0 60]

l l

l CR-3 Nozzle Dropout l Mt Vemon Lab No. 29808 0 28 0 59l l

(

l CR-3 Nozzle Dropout l Mt Vernon Lab No 29809 0 29 0 59 l l

lCR-3 Nozzle Dropout l Mt Vemon Lab No 29810 0 29 0 59l l

lCR 3 Nozrte Dropout l Mt Vemon Lab No 29811 0 30 0 60 l l

lCR-3 Nozzle Dropout lMt Vernon Lab No 29812 0 31 0 60 l l

{ CR 3 Nozzle Dropout l Mt Vemon Lab No. 29813 0 30 0 59l l

lCR 3 Nozzle Dropout l Mt Vernon Lab No 29814 0 26 059l l

1 CR-3 Nozzle Dropout l Mt Vernon Lab No 29815 0 24 0 60 l l

j CR-3 Nozzle Dro out Mt Vernon Lab No 29816 R

t Source Mean 0.26 0.5 WF-67 8669 Weld Quahfication lMt Vemon WO Lab No 6556 0 27 0 57 l

l l

l Retest of WO Sample 0 33 l

l Retest of WO Sample 0 35 0.58 l l

Retest of WO Sam le R

0 58 Source Mean 0.32 0.58 WF-67 8669 llMD-1 Nozzle Dropout l Mt Vemon Lab No. 30431 017 0 61 l MD-1 Nozzle Dropout l Mt Vernon Lab No. 30430 0 15 0 61 l l

lMD-1 Nozzle Dropout 1Mt Vemon Lab No. 30429 0 15 0 60l l

l MD-1 Nozzle Dropout l Mt Vemon Lab No. 30428 0 15 0 61]

l

(

[MD-1 Nozzle Dropout l Mt Vemon Lab Nr. 30427 0 18 0 611 l

l MD-1 Nozzle Dropout lMt Vemon Lab Na 30426 0 20 0 60 l l

l MD-1 Nozzle Dropout l Mt Vernon Lab Wo 30425 0.25 0 60 l l

l MD-1 Nozzle Dropout l Mt Vemon Lat No. 30424 0 25 0 601 l

I lMD-1 Nozzle Dropout l Mt Vernon Lrio No. 30423 0 23 0 621 l

l MD-1 Nozzle Dropout j Mt Vernon Lab No 30422 0 21 0 60 l l

lMD-1 Nozzle Oropout lMt Vemor Lab No. 30421 0 26 0 60 l l

l MD-1 Nozzle Dropout l Mt VeW Lab No. 30420 0 33 0 60 l l

l MD-1 Nozzle Dropout l Mt VerEob Lab No. 30419 0 35 0 59 l l

lMD-1 Nozzle Dropout l Mt Vemon Lab No 28880 0.16 0 60 l l

l MD-1 Nozzle Dropout IMt Vemon Lab No. 28879 0 13 0 60l l

l MD-1 Nozzle Dropout l Mt Vemon Lab No 28878 0 15 0 60 l J

j l MD-1 Nozzle Dropout lMt Vernon Lab No 28877 0 19 0 60 l l

lMD-1 Nozzle Dropout l Mt Vemon Lab No 28876 0 21 0 60 l l

l MD-1 Nozzle Dropout l Mt Vernon Lab No. 28875 0 24 0 59 l l

lMD-1 Nozzle Dropout l Mt Vemon Lab No 28874 0 22 0 60 l l

lMD-1 Nozze Dropout l Mt Vemon Lab No. 28873 0 21 0 59 l l

o l MD-1 NoziQ', it l Mt Vemon Lab No. 28872 0 32 0 58 l l

lMD-1 Nr gD;og Jt l Mt Vemon Lab No. 28871 0 34 0 58]

l l

l f.f."MNRM A-20

Table A-6 (continued). Copper and Nickel Contents Source Means for Wold Wiro Heat Number 72442 l WeldID l Lot l Flux Wold Metal l

Analysis Source l Cu l N1 l l

Source l

Reference l wt% l wt% l Notes l

WF-67 8669 lMD-1 Nonle Dropout l Mt Vernon Lab No. 28P')0 l0.24l 0.59l l

l MD-1 Noule Dropout [ Mt Vernon Lab No. 28800 l025l 0.60l l

lMD-1 Nonle Dropout l Mt Vernon Lab No. 28802 l0.21l 0 60l l

MD-1 Noule Dropout l Mt Vemon Lab No. 28802 0.23 0 60 Source Mean 0.22 0.60 A-21 I"ATNRM

1 Table A-7. Copper and Nickel Contants Source Moans for 1

Wald Wire Hoat Number 72445 l Flux l Wold Metal Analysis Source Cu Ni l

]

We'.d ID } Lot l Source Reference wt%

wt*/. l Notes J

SA 1263 8504 Weld Quatrfica5n l Barberton WO g

0 47i Source Mean 0.24 0.47 SA 1263 8504 PB-1 Surv' Weld ll RVSP Basehne Chemistry 0 24 0 57 PB 1 Surv Weld CVN S cimen ID WW-23 0 22 Source Mean 0.23 0.62 i

SA-1471 8578 Weld Qualdication Barberton WO y

0 54 Source Mean 0.18 0.54 SA-1582 8596 Weld Qualification Barberton WO Lab No. E-68303 3 0 49 Source Mean 0.25 0.49 SA-1585 8597 Weld Quahfication Barberton WO Lab No. E-68379 3 05 Source Mean 0.25 0.51 y

SA-1585 8597 ANO-1 Nozzle Dropout Mt Vernon Lab No 30662 0 24 0 59 l ANO-1 Nozzle Dropout lMt Vemon Lab No. 30661 0 22 0 60 l l ANO-1 Nozzle Dropout l Mt Verron Lab No 30660 0 26 0 60 l l

l ANO-1 Nozzle Dropout lMt Vernon Lab No 30659 0 23 0 61 l l ANO-1 Nozzle Dropout l Mt Vernon Lab No 30658 0 20 0 61 l l ANO-1 Nozzle Dropout l Mt Vernon Lab No 30657 0 19 060l

[

l ANO-1 Nozz!e Dropout l Mt Vemon Lab No. 30656 0 24 0 59 l j

l ANO-1 Nozzle Dropout lMt Vemon Lab No 30655 0 23 059l l ANO-1 Nozzle Dropout l Mt Vemon Lab No. 30654 0 22 0 60 l l ANO-1 Nozzle Dropout l Mt Vernon Lab No 30653 0 21 0 59 l l ANO-1 Nozzle Dropout lMt Vernon Lab No. 30652 0 21 0 59l l

l ANO-1 Nozzle Dropout l Mt Vemon Lab No 30651 0 22 0 59l l ANO-1 Nozzle Dropout lMt Vemon Lab No 30650 0 18 059l l ANO-1 Nozzle Dropout l Mt Vemon Laib No 30649 0.18 060l l ANO-1 Nozzle Dropout l Mt Vemon Lab No. 30648 0.18 0.59 l l ANO-1 Nozzle Dropout lMt Vemon Lab No 30647 0 19 0.59 l l ANO-1 Nozzle Dropout l Mt Vemon Lab No 30646 0 29 0 60 l l

l ANO-1 Nozzle Dropout l Mt Vemon Lab No. 30645 0 21 0 60 l l

J ANO-1 Nozzie Dropout l Mt Vernon Lab No. 30644 0 20 0.60 l l

ANO-1 Nozzle Dropout lMt Vemon Lab No. 30643 0 18 0 59l l

(

ANO-1 Nozzle Dropout l Mt Vemon Lab No. 30642 0 18 0 59l l

ANO-1 Nozzle Dropout lMt Vemon Lab No 30641 0.20 059l l

ANO-1 Nozzle Dropout l Mt Vemon Lab No. 30640 0 20 0 59 l l

ANO-1 Nozzle Dropout l Mt Vemon Lab No. 30639 0 21 0 59 l l

ANO-1 Nozzle Dropout l Mt Vemon Lab No 30638 0 22 0 59 l l

ANO-1 Nozzle Dropout l Mt Vemon Lab No 30637 0 21 0 58 l l

ANO-1 Nozzle Dropout l Mt Vernon Lab No 30636 0 24 058l l

ANO-1 Nozzle Dropout l Mt Vernon Lab No. 30635 0 23 0 59]

l I

l ANO-1 Nozzle Dropout lMt Vemon Lab No 30634 0 23 059l l

l ANO-1 Nozzle Dropout l Mt Vemon Lab No. 30633 0 23 059l l

l ANO-1 Nozzle Dropout l Mt Vemon Lab No. 28798 0 24 0 58 l l

ANO-1 Nozzle Dro out Mt Vemon Lab No. 28798 3

0 59 f

Source Mean 0.22 0.

SA-1650 8632 Weld Qualnication 0 Barberton WO Lab No. E-70102 3 0 47 Source Mean 0.20 0.47 WF-9 8632 Weld Quahfication i Mt. Vernon WO g

0 60 Source Mean 0.17 0.60 A-22 fl%WRM

Table A-7 (continued). Coppar and Nickel Contants Source Means for Wald Wire Heat Numbar 72445 l WeldID l Lot l Flux l Wold Metal l

Analysis Source ;

Cu Ni l

l Source l

Reference Wt%

wt%

Notes l

WF-101 8688 Weld Quahfication Mt. Vernon WQ Lab No 7040 0.10 0 60 Cu content lower than other WQ analyses and production welds; Cu content not used in source mean calculation Source Mean 0.60 h

\\

A-23 f="^ TNR M

Tablo A-8. Coppsr and Nickel Contsnts Sourco Moans for Wald Wiro Haat Numbar 821T44 l Flux l Wold Metal Analysis Source Cu Ni l l

Weld ID I Lot ]

Source Reference wt*/.

wt%l Notes l

l WF-182 8754 Weld Qualification Mt. Vernon WQ: Lab No. 9201 0.18 0.59 su content lower than WO retest anatysis; Cu content not used in source mean calcubtion l

l l Retest of WO Sample 0 25

- l l

/

l l Rstest of WO Sample 0.27 0 61 l l

Retest of WO Sam le 0 27 0 63 uource Mean 0.26 0.61 WF-182-1 8754 l Weld Qualification l Mt. Vemon WO' Lab No. 9376 0 19 0 63 l

l Retest of WO Sample 0 22

-l l

l l Retest of WO Sample 0.24 0 62 l l

f l

l Retest of WO Sample 0 24 064l l

l Weld Qualification Mt Vernon WO: Lab No. 21956 R 0

Source Mean 0.22 0.63 i

WF-1821 8754 TMI-2 Surv. Weld I Mt Vernon Lab No 30542 0 26 0 62

(

l TMI-2 Surv. Weld l Mt Vemon Lab No. 30543 0.27 0 63 l l

l TMi-2 Surv. Weld l Mt Vernon Lab No 30544 0 28 0 62 l l

TMI 2 Surv. Weld Mt Vernon Lab No 30545 3

0 63 i

Source Mean 0.28 0.6 l

WF-1821 8754 DB-1 Surv. Weld I Mt Vernon Lab No. 30047 0 21 0 63 1 DB-1 Surv. Weld l Mt Vemon Lab No. 30048 0 22 0 63 l l

l DB-1 Surv. Weld l Mt Vernon Lab No. 30049 0 23 0 631 I

/

lDB-1 Surv Weld l Mt Vernon Lab No 30063 0 22 0 63 l l

l DB-1 Surv. Weld l Mt Vernon Lab No. 30064 0 21 0 63 l l

DB-1 Surv Weld Mt Vemon Lab No 30065 g

0 64

(

Source Mean 0.22 0.

WF 195 8773 Weld Qualification Mt. Vemon WO O 18 0 63 z

Source Mean 0.18 0.6 I

WF-200 8773 Weld Qualification Mt Vemon WO Lab No. 9533 3

0 64 Source Mean 0.26 0.

I A-24 f!MTNRM

Tablo A-9. Coppor and Nickel Contents Means for Wold Wiro Heat Number T29744 l Flux l Weld Metal Analysis Source Cu Ni l l

)

Wold ID l Lot l Source Reference wt%

wt% I Notes l

WF-233 8790 l Weld Qualification lMt Vernon WO Lab No 10274 0 22 0 55l l

i

]

l Retest of WO Sample 0 24

- l l

(

l l Retest of WO Sample 0 27 0 66 l l

)

Retest of WO Sam le 3

06 Source Mean 0 25

0. 6 WF-233 8790 KORI-1 Surv. Weld RVSP Baseline Chemistry 0 23 0 61 IKORI-1 Surv Weld lCVN Specimen ID KW-39 0 28 0 781 l

lKORI-1 Sury Weld lCVN Specimen 10: KW-43 0 33 0.751 l

l KORI-1 Surv. Weld l CVN Specimen ID: KW-46 0 30 0 76l l

l KORI-1 Sury. Weld

{ CVN Specimen ID KW 12 0.18

-l l

lKORI-1 Surv Weld lCVN Specimen ID KW-4 0 19

- l l

lKORI-1 Surv Weld l CVN Specimen ;D: KW-38 0 13

- l l

l KORI-1 Sury Weld l CVN Specimen 10 KW-28 0 23 0 65 l l

lKORI-1 Surv Weld lCVN Specimen ID: KW-35 0 19 0 691 l

lKORI-1 Surv Weld lCVN Specimen tD KW-27 0 14 0 69 l l

lKORI-1 Surv Weld I CVN Specimen ID-KW-5 0 20 0 70 l l

lKORI-1 Sury Weld lCVN Specimen 10: KW-13 0 25 060l l

KORI 1 Surs. Weld CVN Soecimen ID-KW 17 g

06 Source Mean 0.21 0.67 l WF-282 8806 Weld Quahfication Mt Vemon WO Lab No.12300 3 Source Mean 0.16

0. 6 A-25 I=" M W A

Tabla A-10. Coppor and Nicksi Contants Sourco Manns for Wald Wiro Hsat Numbar 1P0661 Wold Metal l

Analysis Source Cu Ni l l

l WoldID l Flux I

Lot source l

Reference wt%

wt% i Notes l

8304 } Weld Qualihcation Barberton WO g

06 Source Mean 0.19 0.63 0

I I

l

(

l i

I s

I l

l I

A-26 f!MYNRP.9

Tablo A-11. Coppar and Nickol Contents Source Means for Wald Wiro Heat Number 1P0815 l WeldID ll Flux l Wold Metal l

Analysis Source Cu Ni {

l Lot l Source l

Reference wt%

wt% l Notes l

SA-806 8304 Weld Qualification

{ Barberton WQ 0 25 0 48 Source f*ean 0.25 0.48 SA-812 8350 Weld Quatrfcation Barberton WO E

O5 Source Mean 0.12 0.52 SA-1366 8544 Weld Qualification Barberton WQ R

0 57 Source Mean 0.13 I

i

(

rI'"AND' A-27

Tcbla A-12. Coppsr and Nicksi Contants Source Means for Wald Wiro Hast Numbsr 1P0962 l WoldID ll Flux Wold Metal Analysis Source Cu Ni l l

Lot Source Refeience wt*/.

wt% l Notes l

j l

l l

l t

I I

i i

1 l

1 l

s 1

i l

I l

l fMTNRM5 A-28

Tablo A-13. Coppar and Nickel Contents Source Moans for Weld Wiro Heat Number 8T1554 l Flux l Wold Metal l

Analysis Source Cu Ni l Weld ID l Lot l Source l

Reference wt%

wt% i Ne'es SA.1174 8479 Weld Qualification Barberto.1 WO y 06 Source Mean 0.19

0. 6 SA-1413 8504 Weld Quahficahon Barberton WO

~

Source Menn

~

(

SA 1494 8579 Wekt Qual!fication I! Barberton WO g

0 45 i

Source Mean 0.14 0.4 WF-69 8669 Weld Quahfication Mt Vemon WO Lab No 65%

0 15 0 61 Source Mean 0.15 0.61 WF-169-1 8754 Weld Quahfication Mt. Vemon WO: Lab No. 9039 0.11 0 59 Cu content lower than WO retest analyses; Cu content not used in source mean calculation l

l Retest of WO Sample 0 15

- l l

l Retest of WO Sample 0 17 0 62 l l Retest of WO Sam le g

0 63 Source Mean 0.16 0.61 A-29 I"<^ TUR"A

Tablo A-14. Coppar and Nickel Contents Sourco Manns for Wold Wiro Heat Number 8T1762 l

I l Flux l Weld Metal l

Analysis Source Cu Ni l

Weld ID l Lot l Source l

Reference Wt%

wt%

Notes SA-1426 8553 Weld Qualification Barberton WO g

0 61 Source Mean 0.18 0.61 SA-1430 l 8553 Weld Qualification Barberton WO 3

0 60 Source Mean 0.16 0.60 SA-1493 8578 Weld Qualification Barberton WQ 0.22 0.43 Ni content lower than other WQ analyses; Ni content not used in source mean calculation Source Mean 0.22 i

SA-1580 8596 Weld Qualification Barberton WO Lab No E.68286 0 22 0 60 Source Mean 5 0.60 WF-4 l 8597 Weld Qualification Mt Vernon WO O 17 0 53 Source Mean 5 0.53

. WF-8 1 8632 Weld Qualification Mt. Vernon WO O 20 0 61

{

nource Mean 0.20 0.61 l

WF-18 8650 Weld Qualification Mt. Vernon WQ Lab No. 5206 0 11 0 45 Cu content lower than other WQ analyses; Cu content not used in source mean calculation Source Mean 0.45 1

i i

l 4

1 A-30 I!M T*JR M

l Tablo A-15. Coppsr and Nickel Contsnts Source Mnans for Wald Wiro Haat Number 8T3914 l WoldID l Flux l Weld Metal l

Analyste Source Cu Ni l l

l Lot l Source l

Reference wt%

wt% l Notes

]

WF 232 8790 Weks Qualification Mt. Vernon WQ. Lab No.10368 0.14 0 69 Cu content lower than WQ retest analyses; Cu content not used in source mean calculation l

l Retest of WO Sample 0 18 0 64 l l

etest of WQ S M

O 64 Source Mean 0.18 0.66 WF 252 8806 Weld Qualification Mt. Vemon WQ-Lab No.10925 0.10 0 59 Cu content lower than WO retest analyses; Cu content not used in source mean calculation Source Mesn 0.5 A-31 f." ^ %^7R M L__

APPENDIX B Base Metal Surveillance Data Used in the Reactor Vessel Beltline Regions of the B&W Owners Group Reactor Vessel Working Group B-1 I!MTNAM

B.1. Assessment of Base Metal Heat Surveillance Data The following tables provide the surveillance data evaluation of the base metal heats used in the RVWG reactor vessel beltline region. The data contained in these tables provide the information requested in " Table 2' and " Table 3" of the request for additional information regarding reactor pressure vessel integrity in addition to the j

determination of the chemistry factor for the base metal heat.

NOTE: The original Charpy V-notch impact data are based on hand-fit Charpy curves using engineering judgment; these data were re-evaluated using a hyperbolic tangent curve fitting program 17 achieve consistency in the interpretation of the available surveillance test data.

1

(

I I

I l

B-2 f!MTNRM

B.1.1. Base Metal Heat Number C5114-1 Table B.1.1-1. Surveillance Data for Base Metal Heat Number C5114-1 (Table 2 of the RAI Regarding Reactor VesselIntegrity)

Irradiation.

Measured Data Used in Capsule ID Cu N1 Temperature Fluence ARTwoy Assessing Vessel (including source) wt%

wt%

(*F)

(x10" n/cm')

(*F)

(Y or N)

ANO-1: Capsule AN1-E 0.15 0.52 556 0 073 18 Y

Plant-Specific RVSP Material (LT)

ANO-1: Capsule AN1-E 0.15 0 52 Sf6 0.073 44 Y

Plant Specific RVSP Material (TL)

ANO-1: Capsule AN1-A 0.15 0.52 556 1.03 47 Y

Plant-Specific RVSP Material (LT)

ANO-1: Capsule AN1-A 0 15 0 52 556 1.03 72 Y

Plant-Specific RVSP Material (TL)

ANO-1: Capsule AN1-C 0.15 0.52 556 1.46 53 Y

Plant-Specific RVSP Material (LT)

ANO-1: Capsule AN1 C 0.15 0.52 556 1.46 45 Y

Plant-Specific RVSP Material ( FL)

\\

Table B.1.1-2. Credibility Assessment for Base Metal Heat Number C5114-1 (Table 3 of the RAI Regarding Reactor VesselIntegrity)

Predicted (Measured -

Irrad.

Meas.

ARTuor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTway Best Fit Line ARTuor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

ANO-1: Capsule AN1-E 0.15 0.52 105.6 556 0.355 18 19

-1 Plant-Specific RVSP Material (LT)

ANO-1: Capsule AN1-E 0.15 0.52 105.6 556 0 356 44 19 25 Plant-Specific RVSP Material (TL)

ANO-1: Capsule AN1-A 0.15 0.52 105 6 556 1.008 47 53

-6 Plant-Speerfic RVSP Material (LT)

ANO-1: Capsule AN1-A 0.15 0.52 105.6 556 1.008 72 53 19 Plant-Specific RVSP Material (TL)

ANO-1: Capsule AN1-C 0.15 0.52 105.6 556 1.105 53 58

-5 Plant-Specific RVSP Material (LT)

ANO-1: Capsule AN1-C 0.15 0 52 105 6 556 1.105 45 58

-13 Plant-Specific RVSP Material (TL) where Predicted itRTuor = (Slopebestnt) * (Fluence Factor) and Slopebestnt = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 52.9)

These data are not credible since the scatter is greater than ii7 F for one surveillance capsule data point.

B-3 I"<WM

k Table B.1.1-3. Table Chemistry Factor Non-Conservatism Assessment for Base Metal Heat Number C5114-1 Table.

Capsule (Measured.

I Capsule

' Chern. Factor Fluence Measured Predicted Predicted)

I Designation (Sury. Avg.)

Factor ARTuor (*F)

ARTwor (*F)

ARTuor ('F)

ANO-1: Capsule AN1-E 105.6 0.356 18 38

-20 Plant-Specific RVSP Material (LT) j ANO-1: Capsule AN1-E 105.6 0.356 44 38 6

l Plant-Specific RVSP Material (TL)

ANO-1: Capsule AN1 A 105 6 1.008 47 106

-59 Plant-Specific RVSP Material (LT) l ANO-1: Capsule AN1-A 105.6 1.008 72 106

-34 Plant-SpecMc RVSP Material (TL)

ANO 1: Capsule AN1-C 105 6 1.105 53 117

-64 Plant-Specific RVSP Material (LT)

ANO-1: Capsule AN1-C 105.6 1.105 45 117

-72 Plant-SpecMc RVSP Material (TL) where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor) l The data indicate that several points exceed 2 standard deviations (34 F), however the generic Table chemistry factor based on the surveillance data over-predicts the measured data. Therefore, the Table chemistry factor calculated using the weld wire heat best-estimate copper and nickel contents is considered conservative and is used in the assessment of reactor vesselintegrity.

1 1

l B-4 fMTNRM

l B.1.2. Base Metal Heat Number C4344-1 Table B.1.2-1. Surveillance Data for Base Metal Heat Number C4344-1 I

(Table 2 of the RAI Regarding Reactor Vesse! Integrity)

- Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTwor Assessing Vessel I

(including source) wt%

wt%

(*F)

(x10 n/cm')

(*F)

(Y or N)

CR 3: Capsule CR3-B 0.20 0 54 556 0.117 39 Y

Plant-Spectic RVSP Material (TL)

CR-3: Capsule CR3-C 0.20 0 54 556 0.660 116 Y

Plant-Specific RVSP Material (TL)

'CR-3: Capsule CR3-D 0.20 0.54 556 0.750 102 Y

Plant-Specific RVSP Material (TL)

CR 3. Capsule CR3-F 0.20 0 54 556 1.08 116 Y

Plant-Speedic RVSP Material (TL)

Table B.1.2-2. Credibility Assessment for Base Metal Heat Number C4344-1 (Table 3 of the RAI Regarding Reactor Vessel integrity)

Predicted (Measured -

Irrad.

Meas.

ARTwor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor Best Fit Line ARTwor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

CR-3: Capsule CR3-B 0.20 0 54 141.8 556 0.449 39 52

-13 Plant-Specific RVSP Material (TL)

CR-3: Capsule CR3-C 0.20 0.54 141.8 556 0 882 116 102 14 Plant-Specific RVSP Matenal(TL)

CR-3. Capsule CR3-D 0.20 0.54 141.8 556 0.919 102 106

-4 Plant-Specific RVSP Matenal(TL)

CR-3: Capsule CR3-F 0.20 0 54 141 8 556 1.022 116 118 2

Plant-Specife RVSP Matenal(TL) where Predicted ARTuor = (Slopebest nd * (Fluence Factor) and Slopebest nt = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,115.8)

These data credible since the scatter is less than i17 F for all surveillance capsule data points.

B-5 I"<WM

(

Table B.1.2-3. Base Metal Heat Number C4344-1 Chemistry Factor Calculation for Crystal River Unit 3 Reactor Vessel irrad.

Meas.

{

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

CR-3: Cepsule CR3-B 0 20 0.54 141.8 556 0.449 39 Plant-Specific RVSP Material (TL)

CR-3; Capsule CR3-C 0.20 0 54 141.8 556 0.882 116 Plant-Speci5c RVSP Material (TL)

CR-3. Capsule CR3-D 0.20 0.54 141.8 556 0 919 102 Plant-Specific RVSP Material (TL) l CR-3: Capsule CR3-F 0.20 0.54 141.8 556 1.022 116 Plant-Specific RVSP Material (TL)

Vessel Best-Estimate 0 20 0 54 141 8 556 i

CFsurv. sau = best fit line relating Measured ARTuor to the Fluence Factor (i.e., CFsurv. data = 115.8) 1 l

l l

B-6 f."<MNR P.5

B.1.3. Base Metal Heat Number SP4086 (BCC 241)

I Table B.1.3-1. Surveillance Data for Base Metal Heat Number SP4086 (BCC 241)

(Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measured Data Used in -~

l Capsule ID Cu Ni Temperature Fluence ARTwor Assessing Vessel (including source) wt%

'wt%

(*F)

(x10 n/cm )

(*F)

(Y or N) 2 DB-1: Capsule TE1-:'

O.02 0.81 556 0.196 0

Y Plant-Specific P. VSP Material (TL)

DB-1: Capule TE1-B 0 02 0.81 556 0.592 0

Y Plant-Specific RVSP Material (TL)

DB-1: Capsule TE1.A 0.02 0.81 556 1.29 38 Y

Plant-Specific RVSP Material (TL)

DB-1: Capsule TE1-D 0.02 0.61 556 0.962 6

Y Plant-Specific RVSP Material (TL)

Table B.1.3-2. Credibility Assessment for Base Metal Heat Number SP4086 (BCC 241)

(Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured -

Irrad.

. Meas.

ARTworfom Predicted)

Capsule Cu Ni Chem.

Temp.

Fluen':e ARTuor Best Fit Line ARTuor Designation, wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

DB-1: Capsule TE1-F 0.02 0.81 20.0 556 0.565 0

8

-8 Plant-Specific RVSP Material (TL)

DB-1: Capsule TE1-B 0.02 0 81 20.0 556 0.853 0

12

-12 Plant-Specific RVSP Material (.1)

DB-1: Capsule TE1-A 0 02 0.81 20.0 556 1.071 38 16 22 Plant-Specific RVSP Material (TL)

DB-1: Capsule TE1-D 0.02 0.81 20.0 556 0.989 6

14

-8 Plant-Specific RVSP Material (TL) where Predicted ARTuor = (Slopesestnt) * (Fluence Factor) and Slopesest ne = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,14.7)

These data are not credibb since the scatter is greater than i17 F for one surveillance capsule data point.

B-7 f ="<WM

f Table B.1.3-3. Table Chemistry Factor Non-Conservatism Assessment for Base Metal Heat Number SP4086 (BCC 241)

Table Capsule (Measured -

l Capsule ~

Chem. Factor Fluence Measured Predicted Predicted)

Designation

' (Sury. Avg )

Factor ARTwor (*F)

ARTwot (*F)

ARTwot (*F)

DB-1: Capsule TE1-F 20.0 0.565 0

11

-11 Plant-Specific RVSP Material (TL)

DB-1: Capsule TEi-B 20.0 0.853 0

17

-17 Plant-Specific RVSP Material (TL)

DB-1: Capsule TE1-A 20.0 1.071 38 21 17

{

Plant-Specific RVSP Material (TL)

DB-1: Capsule TE1-0 20.0 0.989 6

20

-14 Plant-Speerfic RVSP Material (TL) where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

I l

Since the scatter for all data points is less than 2 standard deviations (34 F), the Table chemistry factor is conservative, therefore the Table chemistry factor based on the base metal best-estimate copper and nickel contents is used in the assessment of reactor vessel integrity.

YfMTNRM B-8

B.1.4. Base Metal Heat Number C3265-1 Table B.1.4-1. Surveillance Data for Base Metal Heat Number C3265-1 (Table 2 of the RAI Regarding Reactor VesselIntegrity) inadiation :

Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTuoy Assessing Vessel (including source) wt%

wt%

(*F)>

(x10 n/cm )

(*F)

(Y or N) 8 ONS-1: Capsule OC1-E 0.10 0.50 556 0150 55 Y

Plant-Specific RVSP Material (LT)

ONS-1: Capsule OC1-E 0.10 0.50 556 0.150 29 Y

Plant-Spectric RVSP Material (TL)

ONS-1: Capsule OC1-A 0.10 0.50 556 0.395 55 Y

Plant-Specific RVSP Material (LT)

ONS-1: Capsule OC1-A 0.10 0.50 556 0.895 28 Y

Plant-Specific RVSP Material (TL)

ONS-1: Capsule OC1-C 0.10 0.50 556 0.986 45 Y

Plant Specific RVSP Material (LT)

ONS-1: Capsule OC1-C 0.10 0.50 556 0.986 87 Y

Plant-Specific RVSP Material (TL)

Table B.1.4-2. Credibility Assessment for Base Metal Heat Number C3265-1 (Table 3 of the RAI Regarding Reactor Vessel integrity)

Predicted (Measured -

Irrad.

Meas, ARTuoT from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor Best Fit Line ARTuoy Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

ONS-1: Capsule OC1-E 0.10 0.50 65.0 556 0.503 55 29

-26 Plant-Specific RVSP Materi.sl (LT)

ONS-1: Capsule OC1-E 0.10 0.50 65.0 556 0.503 29 29 0

pt-Specific RVSP Matenal(TL)

ONS-1: Capsule OC1-A 0.10 0.50 65.0 5 X>

0.969 55 56

-1 Plant-Specific RVSP Material (LT)

ONS-1: Capsule OC1-A 0.10 0.50 65.0 556 0.969 28 56 28 Plant Specific RVSP Material (TL)

ONS-1: Capsule OC1-C 0.10 0.50 65.0 556 0.996 45 58 13 Plant-Specific RVSP Material (LT)

ONS-1: Capsule OC1-C 0.10 0.50 65.0 556 0.996 87 58 29 Plant Anecific RVSP Material (TL) where Predicted ARTuor = (Slopesest nt) * (Fluence Factor) and Slopesest nt = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 58.2)

These data are not credible since the scatter is greater than 17 F for several surveillance capsule data points.

B-9 I"<M'M

l Table B.1.4-3. Table Chemistry Factor Non-Conservatism Assessment for Base Metal Heat Number C3265-1 Table.

Capsule (Measured -

]

Capsule Chem. Factor Fluence Measured Predicted Predicted)

Designation (Sury. Avg.) '

Factor ARTwor (*F)

ARTwor (*F)

ARTwor (*F)

ONS-1: Capsule OC1 E 65.0 0.503 55 33 22 Plant-Specific RVSP Material (LT)

ONS-1: Capsule OC1-E 65.0 0.503 29 33

-4 I

Plant-Specific RVSP Material (TL)

ONS-1: Capsule OC1-A 65.0 0.969 55 63

-8 6

Plant-Specific RVSP Material (LT)

ONS-1: Capsule OC1-A 65.0 0.969 28 63

-35 Plant-Specific RVSP Material (TL)

ONS-1: Capsule OC1-C 65.0 0.996 45 65

-20 Plant-Specrfic RVSP Material (LT)

ONS-1: Capsule OC1-C 65.0 0.996 87 65 22 j

Plant-Specific RVSP Material (TL) where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

The data indicate that one data point exceeds 2 standard deviations (34 F), however the generic Table chemistry factor based on the surveillance data over-predicts this measured data point. Therefore, the Table chemistry factor calculated using the weld wire heat best-estimate copper and nickel contents is considered conservative and is used in the assessment of reactor vessel integrity.

1

(

1

)

B-10 f"MNRM

B.1.5. Base Metal Heat Number 3P2359 (AAW 163)

)

Table B.1.5-1. Surveillance Data for Base Metal Heat Number 3P2359 (AAW 163) l (Table 2 of the RAI Regarding Reactor VesselIntegrity)

Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTwor Assessing Vessel (including source)

- wt%

wt%

(*F)

(x10'n/cm )

(*F)

(YorN) 2 ONS-2: Capsule OCil-C 0.04 0.75 556 0.102 24 Y

Plant-Specific RVSP Material (LT)

ONS-2: Capsule OCil-C 0.04 0.75 506 0.102 0

Y Plant-Specific RVSP Material (TL)

ONS-2: Capsule OCll-A 0.04 0.75 556 0 337 0

Y Plant Specific RVSP Material (LT)

ONS-2: Capsule OCll-A 0.04 0.75 556 0.337 4

Y Plant-Specific RVSP Material (TL)

ONS-2: Capsule OCal-E 0.04 0.75 556 1.21 18 Y

Plant-Specific RVSP Material (LT)

ONS-2: Capsule OCll-E O 04 0.75 556 1.21 8

Y Plant-Specific RVSP Material (TL)

Table B.1.5-2. Credibility Assessment for Baso Metal Heat Number 3P2359 (AAW 163)

(Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured.

Irrad.

Meas.

ARTwor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor Best Fit Line ARTwor Designation wt%

wt%

Factor

(*F)

Factor

('F)

(*F)

('F)

ONS-2: Capsule OCll-C 0.04 0.75 26.0 556 0421 24 5

19 Plant-Specific RVSP Material (LT)

ONS-2: Capsule OCll-C 0 04 0.75 26 0 556 0.421 0

5

-5 Plant-Specific RVSP Material (TL)

ONS-2: Capsule OCil-A 0 04 0.75 26 0 556 0.701 0

8

-8 Plant-Specific RVSP Material (LT)

ONS-2: Capsule OCil-A 0.04 0.75 26.0 556 0.701 4

8

-4 Plant-Specific RVSP Material (TL)

ONS-2: Capsule OC' '-

0 04 0.75 26.0 556 1.053 18 12 6

Plaat-Specific RVSP IV.aterial (LT)

ONS-2: Capsule OCil-E 0.04 0 75 26 0 556 1.053 8

12

-4 Plant-Specific RVSP Material (TL) where Predicted ARTuor = (Slopebest nf * (Fluence Factor) and Slopebest nt = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,11.3)

These data are not credible since the scatter is greater than 17 F for one surveillance capsule data point.

B-11 I'"AMM

l Table B.1.5-3. Table Chemistry Factor Non-Conservatism Assessment for Base Metal Heat Number 3P2359 (AAW 163)

Table.

Capsule (Measured -

4

' Capsule Chem. Factor Fluence Measured Predicted Predicted)

I Designation (Sury. Avg.)

Factor -

ARTwor (*F)

ARTwor (*F)

ARTuor (*F)

ONS-2: Capsule OCll-C 26.0 0.421 24 11 13 Plant-Spec 6c 14 VSP Material (LT)

ONS 2: Capsule OCil-C 26.0 0.421 0

11

-11 i

Plant-Specific RVSP Material (TL)

ONS-2: Capsule OCil-A 26.0 0.701 0

18

-18 Plant-Specific RVSP Material (LT)

]

ONS-2: Capsule OCil-A 26.0 0.701 4

18

-14 Plant-Specific RVSP Material (TL)

ONS-2: Capsule OCil-E 26.0 1.053 18 27

-9 Plant-Specific RVSP Material (LT)

ONS-2: Capsule OCil-E 26.0 1.053 8

27

-19 i

I Plant-Specific RVSP Material (TL) where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

Since the scatter for all data points is less than 2 standard deviations (34 F), the Table chemistry factor is conservative, therefore the Table chemistry factor based on the base metal best-estimate copper and nickel contents is used in the assessment of reactor vessel integrity.

s l

1 i

B-12 f."MNRM

f B.1.6. Base Metal Heat Number 522314 (AWS 192)

Table B.1.6-1. Surveillance Data for Base Metal Heat Number 522314 (AWS 192) l

)

(Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measured Data Used in Capsule ID

. Cu Ni Temperature Fluence ARTuor Assessing Vessel (including source) wt%

wt%

(*F)

(x10 n/cm )

(*F)

(Y or N) 2 ONS-3: Capsule OClll-A 0.01 0.73 556 0.081 52 Y

Plant-Specific RVSP Material (TL)

ONS-3. Capsule 0C111-B 0.01 0.73 556 0.312 6

Y Plant-Specific RVSP Material (TL)

ONS-3: Capsule OClli-D 0.01 0.73 556 1.45 38 Y

Plant-Specific RVSP Material (TL)

Table B.1.6-2. Credibility Assessment for Base Metal Heat Number 522314 (AWS 192)

(Table 3 of the RAI Regarding Reactor VesselIntegrity)

Predicted (Measured -

Irrad.

Meas.

ARTwor from Predicted)

Capsule.

Cu Ni Chem.

Temp.

Fluence ARTwor Best Fit Line ARTwot Designation wt%

wt%

Factor

('F)

Factor

('F)

('F)

('F)

ONS-3: Capsule OCill-A 0.01 0.73 20.0 556 0.376 52 14 38 Plant-Specrfic RVSP Material (TL)

ONS-3: Capsule OCill-B 0.01 0.73 20.0 556 0 680 6

24

-18 Plant-Specific RVSP Material (TL)

ONS-3: Capsule OCill-D 0.01 0.73 20.0 556 1.103 38 40

-2 Plant-Specific RVSP Material (TL) where Predicted ARTuor = (Slopebestny * (Fluence Factor) and Slopebest nt = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 36.0)

These data are not credible since the scatter is greater than 17 F for one surveillance capsule data point.

B-13 f="MNM

E Table B.1.6-3. Table Chemistry Factor Non-Conservatism Assessment for Base Metal Heat Number 522314 (AWS 192)

Table Capsule (Measured -

Capsule Chem. Factor Fluence Measured Predicted Predicted) i Designation (Surv. Avg.)

Factor ARTwor (*F)

ARTuor (*F)

ARTwor (*F)

I i

ONS-3. Capsule OCiti-A 20.0 0.376

$2 8

44 Plant-Specific RVSP Material (TL)

ONS-3: Capsule OCill-B 20.0 0.680 6

14

-8 Plant-Specific RVSP Material (TL)

ONS-3: Capsule OClli-D 20.0 1.103 38 22 16 Plant-Specific RVSP Matarial (TL) where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

I Since the scatter from one data point exceeds 2 standard deviations (34'F), the Table chemistry factor is not conservative. The chemistry factor determined from best-fit line of the surveillance data (CFsurv. Data = 36.0 F)is used in the assesement of reactor l

vesselintegrity. In addition, the " full" value of o3 (17 F)is used in the calculation of the margin term.

I I

I I

I I

I I

f"NWA I

f=

B-14 I

f B.1.7. Base Metal Heat Number 522194 (ANK 191) l Table B.1.7-1. Surveillance Data for Base Metal Heat Number 522194 (ANK 191)

)

(Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measured Data Used in Capsule ID

,Cu Ni Temperature

' Fluence 6RTwor Assessing Vessel (including source) wt%

wt%

(*F)

(x10" n/cm )

(aF)

(Y or N) 2 ONS-3: Capsule OCill-A 0.02 0.76 556 0.081 12 Y

Plant-Specific RVSP Matenal(LT)

ONS-3: Capsule OCiti-A 0.02 0.76 556 0.081 7

Y Plant-Specific RVSP Material (TL)

ONS-3: Capsule OClll-B 0.02 0.76 556 0.312 4

Y Plant-Specific RVSP Material (TL)

ONS-3: Capsule OCill-D 0.02 0.76 556 1A5 22 Y

Plant Specific RVSP Material (TL)

Table B.1.7-2. Credibility Assessment for Base Metal Heat Number 522194 (ANK 191)

(Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured -

Irrad.

Meas.

ARTuor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwot Best Fit Lins ARTuoT Designation wt%

wt%

Factor

(*F)

Factor

(*F)

('F)

(*F)

ONS-3: Capsule OCill-A 0.02 0.76 20.0 556 0.376 12 7

5 Plant-Specific RVSP Material (LT)

ONS-3: Capsule OCill-A 0.02 0.76 20.0 556 0.376 7

7 0

Plant-Specific RVSP Material (TL)

ONS-3: Capsule OClli-B 0 02 0.76 20.0 556 0.680 4

12

-8 Plant-Specific RVSP Material (TL)

ONS-3: Capsule OClli-D 0.02 0.76 20 0 556 1.103 22 19 3

Plant-Specific RVSP Material (TL) where Predicted ARTuor = (Slopeseat110 * (Fluence Factor) and Slopesestrit = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,17.4)

These data are credible since the scatter is less than 17 F for all surveillance capsule data points.

B-15 I"NNA

Table B.1.7-3. Base Metal Heat Number 522194 (ANK 191) Chemistry Factor 4

Calculation for Oconee Unit 3 Reactor Vessel Irrad.

Meas.

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

ONS-3: Capsule OCill-A 0 02 0.76 20.0 556 0.376 12 Plant-Specific RVSP Material (LT)

ONS-3: Capsule OCill-A 0.02

" 76 20.0 556 0.376 7

Plant-Specific RVSP Material (TL)

ONS-3: Capsule OCill-B 0.02 0.76 20.0 556 0.680 4

Plant-Specific RVSP Material (TL) l ONS-3: Capsule OClli-D 0.02 0.76 20.0 556 1.103 22 Plant-Specific RVSP Material (TL)

Vessel Best-Estimate 0.02 0.76 20.0 556 CFsurv. sata = best fit line relating Measured ARTuor to the Fluence Factor (i.e., CFsurv. data = 17.4) l l

ff!MWNRP.E B-16

B.1.8. Base Metal Heat Number C2789-2 Table B.1.8-1. Surveillance Data for Base Metal Heat Number C2789-2 (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measured Data Used in Capsule ID.

. Cu NI Temperature Fluence

ARTwot Assessing Vessel (including source) wt%~

wt%

('F),

(x10n/cm )

(*F)

(Y or N) 2 TMI-1: Capsule TMl1-E 0.09 0.57 556 0.107 26 Y

Plant-Specific RVSP Material (LT)

TMi-1: Capsule TM11-E O 09 0.57 556 0.107 0

Y Plant-Specific RVSP Matenal(TL)

TMI-1: Capsule TMl1-C 0.09 0.57 556 0.866 14 Y

Plant-Specific RVSP Material (LT)

TMI-1: Capsule TMii-C 0.09 0.57 556 0.866 15 Y

Plant-Specific RVSP Material (TL)

Table B.1.8-2. Credibility Assessment for Base Metal Heat Number C2789-2 (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured -

Irrad.

Meas.

ARTwor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwot Best Fit Line ARTwot Designation wt%

wt%

Factor

('F)

Factor

(*F)

('F)

(*F)

TMI-1: Capsule TMl1-E 0.09 0.57 58.0 556 0.431 26 8

18 Plant-Specific RVSP Material (LT)

TMI-1: Capsule TMll-E 0 09 0.57 58.0 556 0.431 0

I ~

-8 Plant-Specific RVSP Material (TL)

TMI-1: Capsule TM11-C 0.09 0.57 58.0 556 0.960 14 17

-3 Plant-Specific RVSP Material (LT)

TMI-1: Capsule TMl1-C 0.09 0.57

$8.0 556 0.960 15 17

-2 Plant-Specific RVSP Material (TL) where Predicted J.c %r = (%pebestnt) * (Fluence Factor) and Slopebest et = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,17.6)

These data are not credible since the scatter is greater than 117 F for one surveillance capsule data point.

B-17 h"<WM

l Table B.1.8-3. Table Chemistry Factor Non-Conservatism Assessment for Base Metal Heat Number C2789-2 Table Capsule (Measured.

Capsule Chem. Factor Fluence Measured Predicted Predicted)

Designation (Sury. Avg.)

Factor ARTuor ('F)

ARTuor ('F)

ARTuor (*F)

TMI-1: Capsule TMl1-E 58.0 0.431 26 25 1

Plant-Specific RVSP Material (LT)

TML-1: Capsule TM11-E 58.0 0.431 0

25

-25 Plant-Specific RVSP Material (TD TMI-1: Capsule TM114 58 0 0.960 14 56

-42 Plant-Specific RVSP Material (LT)

TMl-1: Capsule TMI1-C 58.0 0.960 15 56

-41 Plant-Specific RVSP Material (TL) where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor) l l

The aata indicate that two data points exceed 2 standard deviations (34 F), however the generic Table chemistry factor based on the surveillance data over-predicts these

]

measured data points. Therefore, the Table chemistry factor calculated using the weld wire heat best-estimate copper and nickel contents is considered conservative and is used in the assessment of reactor vessel integrity.

l B-18

?."MNR Y.'

)

B.1.9. Base Metal Heat Number A9811-1 Table B.1.9-1. Surveillance Data for Base Metal Heat Number A9811-1 (Table 2 of the RAI Regarding Reactor Vesselintegrity)

Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTuor Assessing Vessel Oncluding source) wt%

wt%

(*F)

(x10 n/cm')

(*F)

(Y or N)

PB-1: Capsule V 0.20 0.06 540 0.634 81 Y

Plant-Specific RVSP Material (LT)

PB-1: Capsule S 0.20 0.06 540 0.829 87 Y

Plant-Specific RVSP Material (LT)

PB-1: Capsule R 0.20 0.06 540 2.19 93 Y

Plant-Specific RVSP Material (LT)

PB-1: Capsule T 0.20 0.06 540 2.23 82 Y

Plant-Specific RVSP Material (LT)

Table B.1.9-2. Credibility Assessment for Base Metal Heat Number A9811-1 (Table 3 of the RAI Regarding Reactor VesselIntegrity)

Predicted (Measured -~

frrad..

Meas.

ARTwor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor Best Fit Line ARTucy Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

('F)

PB-1: Capsule V 0.20 0.06 88.0 540 0.872 81 69 12 Plant-Specific RVSP Material (LT)

PB-1: Capsule S 0.20 0.06 88.0 540 0.947 87 75 12 Plant-Specific RVSP Material (LT)

PB-1: Capsule R 0.20 0.06 88.0 540 1.213 93 96

-3 Plant-Specific RVSP Material (LT)

PB-1: Capsule T 0.20 0.06 88.0 540 1.217 82 97

-15 Plant-Specific RVSP Material (LT) where Predicted ARTuor = (Slopesesf nt) * (Fluence Factor) and Slopesestat = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 79.3)

These data are credible since the scatter is less than i17 F for all surveillance capsule data points.

B-19 f="MNM

Table B.1.9-3. Base Metal Hect Number A9811-1 Chemistry Factor Calculation for Point Beach Unit 1 Reactor Vessel Irrad.

Meas.

Capsule Cu NI Chem.

Temp.

Fluence ARTwot Designation wt%

wt%

Factor

(*F)

Factor

'(*F)

PB-1: Capsule V 0.20 0.06 88.0 540 0.872 81 Plant-Specific RVSP Material (LT)

PB-1: Capsule S 0.20 0.06 88.0 540 0.947 87 l

Plant-Specific RVSP Material (LT)

PB-1: Capsule R 0.20 0.06 88.0 540 1.213 93 Plant-Specific RVSP Material (LT) i PB-1: Capsule T 0.20 0.06 88.0 540 1,217 82 Plant-Specific RVSP Material (LT)

Vessel Best-Estimate 0.20 0 06 88 0 542*

  • For conservatism no temperature adjustment was made to the measured data.

CFsurv. ssea = best fit line relating Measured ARTuor to the Fluence Factor 1

1 (i.e., CFSury. data = 79.3)

{

i B-20 f!MTNRM'i

B.1.10. Base Metal Heat Number C14231 Table B.1.10-1. Surveillance Data for Base Metal Heat Number C1423-1 (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTuor Assessing Vessel (including source) wt%

wt%

'(*F)

(x10 n/cm')

(*F)

(Y or N)

PB-1: Capsule V 0.12 0.07 540 0.634 41 Y

Plant-Specific RVSP Material (LT)

PB-1: Capsule S 0.12 0.07 540 0.829 43 Y

Plant-Specific RVSP Material (LT)

PB 1: Capsule R 0.12 0.07 540 2.19 28 Y

Plant-Specific RVSP Material (LT)

PB-1: Capsule T 0.12 0.07 540 2.23 45 Y

Plant-Specific RVSP Material" T)

Table B.1.10-2. Credibility Assessment for Base Metal Heat Number C1423-1 (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured -

Irrad.

Meas.

ARTwor from Predicted)

. Capsule Cu Ni Chem.

Temp.

Fluence ARTwor Best Fit Line ARTuor Designation wt%

wt%

Factor

(*F)

Factor

('F)

('F)

(*F)

PB-1: Capsule V 0.12 0.07 55.3 540 0.872 41 31 10 Plant-Specific RVSP Material (LT)

PB-1: Capsule S 0.12 0.07 55.3 540 0.947 43 34 9

Plant-Specific RVSP Material (LT)

PB-1: Capsule R 0.12 0.07 55.3 540 1.213 28 44

-16 Plant-Specific RVSP Material (LT)

PB-1: Capsule T 0.12 0.07 55.3 540 1.217 45 44 1

plt 9t-Specific RVSP Material (LT) where Predicted ARTuor = (Slopebestnd * (Fluence Factor) and Slopebest nt = best fit line relating Measured ARTuor to the Fluence Factor i.e., 35.8)

These data are credible since the scatter is less than 17 F for all surveillance capsule data points.

B-21 ffMMM

I Table B.1.10-3. Base Metal Heat Number C1423-1 Chemistry Factor Calculation l

for Point Beach Unit 1 Reactor Vessel i

Irrad.

Meas.

l Capsule Cu Ni Chem.

Temp.

Fluence ARTwor Designation wt%

wt%

Factor

('F)

Factor

(*F)

PB-1: Capsule V 0.12 0.07 55.3 540 0.872 41 Plant-Specific RVSP Material (LT) l PB-1: Capsule S 0.12 0.07 55.3 540 0.947 43 i

Plant-Specsfic RVSP Material (LT)

PB-1: Capsule R 0.12 0.07 55.3 540 1.213 28 Plant-Specific RVSP Material (LT)

{

PB-1: Capsule T 0.12 0.07 55.3 540 1.217 45 Plant-Specific RVSP Material (LT)

Vessel Best-Estimate 0 12 0.07 55.3 542*

  • For conservatism no temperature adjustment was made to the measured data.

CFsuw. sata = best fit line relating Measured ARTuor to the Fluence Factor (i.e., CF urv. data = 35.8)

S l

[ am f."MNRM

~

B-22

~

B.1.11. Base Metal Heat Number 123V500 Table B.1.11-1. Surveillance Data for Base Metal Heat Number 123V500 (Table 2 of the RAI Regarding Reactor Vessel Integrity) lNi'

. Irradiation Measured Data Used in Capsule ID Cu Temperature Fluence ARTuor Assessing Vessel (including source) wi% ' wt%

(*F)

(x10 n/cm )

(*F)

(Y or N) 8 PB-2: Capsule V 0.09 0.70 542 0.650 39 Y

Plant-Specific RVSP Material (LT)

PB-2: Capsule T 0.09 0.70 542 0.861 62 Y

Plant-Specific RVSP Material (LT)

PB-2: Capsule R 0.09 0.70 542 2.20 88 Y

Plant-Specific RVSP Material (LT)

PB-2: Capsule S 0.09 0.70 542 3.10 101 Y

Plant-Specific RVSP Material (LT)

Table B.1.11-2. Credibility Assessment for Base Metal Heat Number 123V500 (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured -

Irrad.

Meas.

ARTwor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor Best Fit Une ARTuor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

PB-2: Capsule V 0.09 0.70 58.0 542 0.879 39 60

-21 Plant-Specific RVSP Material (LT)

PB-2: Capsule T 0.09 0.70 58.0 542 0.958 62 66

-4 Plant-Specific RVSP Material (LT)

PB-2: Capsule R 0.09 0.70 58.0 742 1.214 88 83 5

Plant-Specific RVSP Material (LT)

PB-2: Capsule S 0 09 0.70 58.0 542 1.298 101 89 12 Plant-Specific RVSP Material (LT) where Predicted ARTuor = (Slopebest nt) * (Fluence Factor) and Slopebestnr = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 68.4)

These data are not credible since the scatter is greater than f17 F for one surveillance capsule data point.

B-23 I"MMM

i Table B.1.11-3. Table Chemistry Factor Non-Conservatism Assessment for Base Metal Heat Number 123V500 Table Capsule (Measured -

l

~ Capsule -

' Chem. Factor Fluence

Measured

' Predicted

' Predicted) i Designation (Sury. Avg.)-

Factor ARTuor (*F)

ARTuor ('F)

ARTuot (*F)

PB-2: Capsule V 58.0 0.879 39 51

-12 Plant-Specific RVSP Material (LT)

PB-2: Capsule T 58.0 0.958 62 56 6

l Plant-Specific RVSP Material (LT)

PB-2: Capsule R 58.0 1.214 88 70 18 Plant-Specific RVSP Material (LT)

{

PB-2: Capsule S 58.0 1,298 101 75 26 Plant-Specific RVSP Material (LT) where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor) i i

Since the scatter for all data points is less than 2 standard deviations (34*F), the Table chemistry factor is conservative, therefore the Table chemistry factor based on the base

{

metal best-estimate copper and nickel contents is used in the assessment of reactor vessel integrity.

l l

I l

B-24 f."<MNRM

B.1.12. Base Metal Heat Number 122W195 Table B.1.12-1. Surveillance Data for Base Metal Heat Number 122W195 (Table 2 of the RAI Regarding Reactor VesselIntegrity)

Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTuor Assessing Vessel (including source) wt%

wt%

('F)

(x10 n/cm')

(*F)

(Y or N)

PB-2: Capsule V 0.05 0.72 542 0.650 39 Y

Plant-SpecMc RVSP Material (LT)

PB-2: Capsule T 0.05 0.72 542 0.861 35 Y

Plant-Specific RVSP Material (LT)

PB-2: Capsule R 0 05 0.72 542 2.20 50 Y

Plant-Speedic RVSP Material (LT)

PB-2: Capsule S 0.05 0.72 542 3.10 61 Y

Plant-Specific RVSP Material (LT)

Table B.1.12-2. Credibility Assessment for Base Metal Heat Number 122W195 (Table 3 of the RAI Regarding Reactor VesselIntegrity)

Predicted (Measured -

Irrad.

Meas.

ARTuor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwot Best Fit Line ARTuor Designation wt%

wt%

Factor

(*F)

Factor

('F)

(*F)

('F)

PB-2: Capsule V 0.05 0.72 31.0 542 0.879 39 38 1

Plant-Specific RVSP Material (LT)

PB-2: Capsule T 0.05 0.72 31.0 542 0.958 35 41

-6 Plant-Specmc RVSP Material (LT)

PB-2: Capsule R 0.05 0.72 31.0 542 1.214 50 52

-2 Plant-Spec 6c RVSP Material (LT)

PB-2: Capsule S 0.05 0.72 31.0 542 1.298 61 56 5

Plant-Spec 6c RVSP Material (LT) where Predicted ARTuor = (Slopebest nt) * (Fluence Factor) and Slopebest nt = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 42.8)

These data are credible since the scatter is less than +17 F for all surveillance capsule data points.

B-25 E "<WM

l I

Table B.1.12-3. Base Metal Heat Number 122W195 Chemistry Factor Calculation for Point Beach Unit 2 Reactor Vessel trrad.

Meas.

Capsule

. Cu Ni Chem.

Temp.

Fluence ARTwot Designation wt%

wt%

Factor

('F)

Factor

('F)

PB 2; Capsule V 0.05 0.72 31.0 542 0.879 39 Plant-Specific RVSP Material (LT) l PB-2: Capsule T 0.05 0.72 31.0 542 0.958 35 Plant-Specific RVSP Material (LT)

PB 2: Capsule R 0.05 0.72 31.0 542 1.214 50 Plant-Specific RVSP Material (LT) l PB-2: Capsule S 0 05 0.72 31.0 542 1.29E 61 Plant-Specific RVSP Material (LT)

Vessel Best-Estimate 0.05 0.72 31.0 542 CFsurv. sata = best fit line relating Measured ARTuor to the Fluence Factor (i.e., CFsurv. data = 42.8) 1 l

l l

B-26 f!MWNRM

t f

B.1.13. Base Metal Heat Number C4415-1 Table B.1.13-1. Surveillance Data for Base Metal Heat Number C4415-1 (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measured Data Used in Capsule ID 1 Cu Ni Temperature Fluence ARTwor Assessing Vessel (including source) wt%'

wt%

(*F)

(x10" n/cm')

('F)

(Y or N)

S-1: Capsule T 0.11 0.50 538 0.281 50 Y

Plant-Specific RVSP Material (LT)

S-1: Cap:.ule V 0.11 0.50 538 1.94 113 Y

Plant-Specific RVSP Material (LT)

S-1: Capsule X 0.11 0.50 538 1.599 66 Y

Plant-Specific RVSP Material (LT)

Table B.1.13-2. Credibility Assessment for Base Metal Heat Number C4415-1 (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured -

Irrad.

Meas.

ARTwor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwot Best Fit Line ARTwot Designation wt%

wt%

Factor

(*F)

Factor

(*F)

('F)

-('F)

S-1: Capsule T 0.11 0.50 73.0 538 0.653 50 56

-6 Plant-Specific RVSP Material (LT)

S-1: Capsule V 0.11 0.50 73.0 538 1.181 113 100 13 Plant-Specific RVSP Materias (LT)

S-1: Capsule X 0.11 0 50 73.0 538 1.130 86 96

-10 Plant-Specific RVSP Material (LT) where Predicted ARTuor = (Slopebestm) * (Fluence Factor) and Slopesest rit = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 85.0)

These data are credible since the scatter is less than 17 F for all surveillance capsule data points.

B-27 f="MNM

l I

Table B.1.13-3. Base Metal Heat Number C4415-1 Chemistry Factor Calculation for Surry Unit 1 Reactor Vessel Temp.

Irrad.

Meas.

Measured Capsule Cu Ni Chem.

Temp.

Fluence ARTuor ARTwor Designation

- wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

S-1: Capsule T 0.11 0.50 73.0 538 0653 50 46 Plant-Specific RVSP Material (LT)

S-1: Capsule V 0.11 0.50 73.0 538 1.181 113 109 Plant-Specific RVSP Material (LT)

S 1: Capsule X 0.11 0.50 73.0 538 1.130 86 82 l

Plant-Specific RVSP Material (LT)

Vessel Best-Estimate 0 11 0.50 73 0 542*

  • For conservatism no temperature adjustment was made to the measured data.

CFsurv. sata = best fit line relating Measured ARTuor to the Fluence Factor (i.e., CF ury. data = 85.0) l S

t 1

i l

B-28 f."A %^JR M

B.1.14. Base Metal Heat Number C4339-1 Table B.1.14-1. Surveillance Data for Base Metal Heat Number C4339-1 (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measured Data Used in Capsule ID -

Cu Ni.

Temperature Fluence ARTuor Assessing Vessel (including source) <

wt% -

wt%

(*F)

(x10 n/cm )

(*F)

(Y or N) 2 S-2: Capsule X 0.11 0.54 537.5 0.302 58 Y

Plant-Specific RVSP Material (LT)

S-2: Capsule X 0.11 0.54 537.5 0.302 49 Y

Plant-Specific RVSP Material (TL)

S-2: Capsule V 0.11 0.54 537.5 1.88 80 Y

Plant-Specific RVSP Material (LT)

S-2: Capsule V 0.11 0.54 537.5 1.88 65 Y

Plant-Specific RVSP Material (TL)

Table B.1.14-2. Credibility Assessment for Base Metal Heat Number C43391 (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured -

Irrad.

Meas.

' ARTuor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor Best Fit Line ARTuor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

S-2: Capsule X 0.11 0.54 73.4 537.5 0.672 58 44 14 Plant-Specific RVSP Material (LT)

S-2: Capsule X 0.11 0.54 73.4 537.5 0.672 49 44 5

Plant-Specific RVSP Material (TL)

S-2; Capsule V 0.11 0.54 73 4 537.5 1.173 80 78 2

Plant-Specific RVSP Material (LT)

S-2: Capsule V 0.11 0.54 73.4 537.5 1.173 65 78

-13 Plant-Specific RVSP Material (TL) where Predicted ARTuor = (Slopebest n() * (Fluence Factor) and Slopebestnt = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 66.2)

These data are credible since the scatter is less than i17 F for all surveillance capsule data points.

B-29 f="< W M

1 Table B.1.14-3. Base Metal Heat Number C4339-1 Chemistry Factor Calculation l

for Surry Unit 2 Reactor Vessel Irrad.

Meas.

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor

. Designation wt*4 wt%

Factor

('F)

Factor

('F)

S-2: Capsule X 0.11 0.54 73.4 537.5 0.672 58 Plant-Specific RVSP Material (LT) i S-2: Capsule X 0.11 0.54 73.4 537.5 0.672 49 Plant-Specific RVSP Material (TL)

S-2: Capsule V 0.11 0.54 73.4 537.5 1.173 80 l

Plant-Specific RVSP Material (LT)

S-2: Capsule V 0.11 0.54 73.4 537.5 1.173 65 Plant-Specific RVSP Material (TL)

Vessel Best-Estimate I

  • For conservatism no temperature adjustment was made to the measured data.

I CFsurv. sata = best fit line relating Measured ARTuor to the Fluence Factor l

(i.e., CFSurv. dat, = 66.2)

(

l i

i i

l B-30 f."AYNRM

B.1.15. Base Metal Heat Number 123P461 Table B.1.15-1. Surveillance Data for Base Metal Heat Number 123P461 (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Capsule ID.

Cu.

Ni.

irradiation Measured Data Used in Temperature Fluence ARTuor Assessing Vessel (including source) wt%

wt%

(*F)

(x10 n/cm')

('F)

(Y or N)

TP 3: Capsule T 0.06 0.70 546 0.739 18 Y

Plant-Specific RVSP Material (LT)

TP-3: Capsule S 0.06 0.70 546 1.72 13 Y

Plant Specific RVSP Material (LT)

Table B.1.15-2. Credibility Assessment for Base Metal Heat Number 123P461 (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured -

Irrad.

Meas.

AR Tuor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor Best Fit Line ARTwor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

('F)

('F)

TP-3: Capsule T 0.06 0.70 35 8 546 0.915 18 13 5

Plant-Specific RVSP Material (LT)

TP-3: Capsule S 0.06 0.70 35.8 546 1.149 13 17

-4 Plant-Specific RVSP Material (LT) where Predicted ARTuor = (Slopesestnd * (Fluence Factor) and Slopebest nt = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,14.6)

These data are credible since the scatter is less than f17 F for all surveillance capsule data points.

B-31 f"MNM

I Table B.1.15-3. Base Metal Heat Number 123P461 Chemistry Factor Calculation for Turkey Point Unit 3 Reactor Vessel arrad.

Meas.

Capsule Cu Ni Chem.

Temp.

Fluence 4RTwot 5

Designation -

wt%

wt%

Factor

(*F)

Factor

(*F)

TP-3: Capsule T 0.06 0.70 35.8 546 0.915 18 Plant-Speerlic RVSP Material (LT) l TP-3: Capsule S 0.06 0.70 35.8 546 1.149 13 g

Plant-Specific RVSP Material (LT)

Vessel Best-Estirnate 0 06 0 70 35 8 546 Il CFsurv.eata = best fit line relating Measured ARTuor to the Fluence Factor 1

(i.e., CFsurv. data = 14.6)

I I

I I

I I

I I

f"MNM f=

B-32 I

B.1.16. Base Metal Heat Number 123S266 Table B.1.16-1. Surveillance Data for Base Metal Heat Number 123S266 (Table 2 of the RAI Regarding Reactor Vessel Integrity)

I Irradiation Measured Data Used in Capsule ID

. Cu Ni' Temperature Fluence

. ARTuor Assessing Vessel (including source) wt%

wt%

(*F)-

(x10 n/cm')

(*F)

(Y or N)

TP-3: Capsule S 0.08 0.68 546 1.72 42 Y

Plant Specific RVSP Material (LT)

TP-3: Capsule V 0.08 0.68 546 1.53 55 Y

Plant-Specific RVSP Material (LT)

Table B.1.16-2. Credibility Assessment for Base Metal Heat Number 123S266 (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured -

Irrad.

Meas.

ARTwor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor Best Fit Line ARTwor Designation -

wt%

wt%

Factor

('F)

Factor

(*F)

~(*F)

(*F)

TP-3: Capsule S 0.08 0.68 50.3 546 1.149 42 49 7

Plant-Speerfic RVSP Material (LT)

TP 3: Capsule V 0.08 0.68 50.3 546 1.118 55 48 7

Plant-Specific RVSP Material (LT) where Predicted ARTuor = (Slopebest nd * (Fluence Factor) and Slopebest nt = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 42.7)

These data are credible since the scatter is less than 117 F for all surveillance capsule data points.

B-33 E=" M A' M

Table B.1.16-3. Base Metal Heat Number 1233266 Chemistry Factor Calculation for Turkey Point Unit 3 Reactor Vessel irrad.

Meas.

Capsule Cu Ni Chem.

Temp.

Fluence ARTwot Designation wt%

wt%~

Factor

('F)

Factor

(*F)

TP-3: Capsule S 0.08 0.68 50.3 546 1.149 42 Plant-Specific RVSP Material (LT)

TP-3: Capsule V 0.00 0.68 50.3 546 1.118 55 Plant Specific RVSP Material (LT)

Vessel Best-Estirnate 0 08 0 68 50 3 546 CFsurv. sata = best fit line relating Measured ARTuor to the Fluence Factor (i.e., CFSurv. data = 42.7) l l

i

(

l l

I f."MNRM 1

f B-34

B.1.17 Base Metal Heat Number 122S180 Table B.1.17-1. Surveillance Data for Base Metal Heat dumber 122S180 (Table 2 of the RAI Regarding Reactor VesselIntegrity)

Irradiation Measured Data Used in Capsule ID

~ Cu

. Ni -

Temperature

. Fluence,

ARTwor Assessing Vessel (including source) -

.wt%

wt%

- (*F)

(x10 n/cm )

(*F)

(Y or N) 8 TP-4: Capsule T 0.06 0.74 546 0.708 12 Y

Plant-Specific RVSP Material (LT)

TP-4: Capsule S 0.06 0.74 546 1.43 0

Y Plant Specific RVSP Material (LT)

=>

Table B.1.17-2. Credibility Assessment for Base Metal Heat Number 122S180 (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured -

Irrad.

Meas.

ARTwor from Predicted)

Capsuk Cu Ni Chem.

Temp.

Fluence ARTwor Best Fit Line ARTuor Designa*4n wt%

wt%

Factor

('F)

' Factor

(*F)

(*F)

(*F)

TP-4: Capsule T 0.06 0.74 34.6 546 0.903 12 5

7 Plaat-Specific RVSP Material (LT)

TP4: Capsule 6 0 06 0.74 34 6 546 1.099 0

6

-6 Plant Specific RVSP Material (LT) where Predicted ARTuor = (Slope, trit) * (Fluence Factor) and se Slopesest rit = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 5.4)

These data are credible since the scatter is less than 17 F for all surveillance capsule data points.

?

B-35 I"MNM

Table B.1.17-3. Base Metal Heat Number 122S180 Chemistry Factor Calculation for Turkey Point Unit 4 Reactor Vessel Irrad.

Meas.

Capsule.

Cu.

Ni Chem.

Temp.

Fluence ARTunt Designation -

wt%

wt%

Factor

(*F)

Factor

(*F)

TP-4: Capsule T 0.06 0.74 34 6 546 0.903 12 Plant-Specific RVSP Material (LT)

TP-4: Capsule S 0.06 0.74 34.6 546 1.099 0

Plant-Specific RVSP Material (LT)

Vessel Best-Estimate '

Y CFsurv. sata = best fit line relating Measured ARTuor to the Fluence Factor (i.e., CFsurv. data = 5.4) 1 i

i l

l l

l l

i i

l f.fM%^JRtM B-36 l

1