ML20205J117

From kanterella
Jump to navigation Jump to search

Forwards Rev 1 to BAW-2325, Response to RAI Re RPV Integrity, Per GL 92-01,Rev 1,Suppl 1, Reactor Vessel Structural Integrity. Rev Includes Corrected Values in Calculations
ML20205J117
Person / Time
Site: Davis Besse 
Issue date: 03/29/1999
From: Campbell G
CENTERIOR ENERGY
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
2584, GL-92-01, GL-92-1, TAC-MA0540, TAC-MA540, NUDOCS 9904090185
Download: ML20205J117 (3)


Text

r

.-.- i.

t kh Davis-Besse Nudoor Power Station 5501 North State Route 2 m

Oak Harbor, ohio 43449-9760 Guy G. CampbeH 419-321 8588 Mce President-Nudear Fax:419421-8337 Docket Number 50-346 License Number NPF-3 Serial Number 2584 March 29, 1999 United States Nuclear Regulatory Commission Document Control Desk Washington, D. C. 20555-0001

Subject:

Revised Response to NRC Request for Additional Information regarding Reactor Pressure Vessel Integrity - Davis-Besse Nuclear Power Station, Unit No.1 (TAC No. MA0540)

Ladies and Gentlemen:

.I By letter dated April 9,1998 (Toledo Edison Log Number 5246), the Nuclear Regulatory Commission (NRC) issued a request for additional information (RAI) regarding Generic Letter 92-01, Revision 1, Supplement 1, " Reactor Vessel Structural Integrity," to the Davis-Besse Nuclear Power Station (DBNPS). The DBNPS responded to the RAI by letter (Serial Number 2545) dated August 10,1998, which included the Babcock and Wilcox Owners Group (BWOG) Topical Repon BAW-2325, " Response to Request for j

Additional Information (RAI) Regarding Reactor Pressure Vessel Integrity."

During the NRC staff's review of Topical Report-2325, the staff had several additional questions. These questions were submitted by the NRC staff directly to Framatome Technologies, Inc. (FTI), the preparers of BAW-2325.

While developing responses to these additional NRC staff questions, FTI identified that i

~ the hyperbolic tangent (TANH) curve fit had been improperly applied to several f

calculations. The calculations for seven reactor vessels were affected, including those for the DBNPS reactor vessel.

As a result of the above information, the BWOG has issued Revision 1 (dated January n

1999) to B AW-2325. This revision includes the corrected values in the calculations.

o#

Therefore, the reported results for the DBNPS have changed from those provided in BAW-2325, Revision 0. The chemistry factor values found on pages 4-45 through 4-47 changed as a result of revised application of the TANH curve fit process employed by

' C q' q y' 9904090185 990329

~'"

PDR ADOCK 05000346 P

PDR a

E,...

Docket Number 50-346 License Number NPF-3 l

Serial Number 2584 Page 2 of 3 FTI. These changes resulted in a decrease in the inside diameter Adjusted Reference Temperature (ART), the 1/4T ART, and the 3/4T ART values. Decreases in these values provide an even greater margin for the integrity of the reactcr vessel. These char.ges are reflected in the revised Table I for the DBNPS, found on pages 3-16 throupt 3-18.

Similar to that previously reported in DBNPS's letter Serial Number 345, these values are less than the values used in the development of the DBNPS T;ennical Specifications 21 Effective Full Power Year (EFPY) Pressure-Temperature Limit curves and the reported end of life Pressurized Thermal Shock (PTS) Reference Temperature (RTers).

Accordingly, the EFPY Pressure-Temperature Limit curves and the previously reported RT rrs remain valid. Also, the table shows that the limiting material for the DBNPS Reactor Vessel remains the WF-182-1 Upper to Lower Shell Circumferential Weld.

The calculated End of Life Inside Diameter Adjusted Reference Temperature (EOL ID ART) for the DBNPS reactor vessel has decreased from 193.0 F (BAW-2325, Revision

0) to 191.3 F (BAW-2325, Revision 1). This lower value remains acceptable as it is significantly below the PTS screening criterion of 300 F, as specified by 10 CFR 50.61.

Should you have any questions or require additional information, please contact Mr.

James L. Deels, Manager-Regulatory Affairs, at (419) 321-8466.

Very truly yours, i

DRB/drb attachment ec:

S. J. Campbell, DB-1 NRC (Acting) Senior Resident Inspector, without attachment J. E. Dyer, Regional Administrator, NRC Region III, without attachment A. G. Hansen, DB-1 NRC/NRR Project Manager, without attachment Utility Radiological Safety Board, without attachment

F.,,

Docket Number 50-346 l'

License Number NPF-3

[.

Serial Number 2584 Page 3 of 3 REVISED RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION

'FOR NRC GENERIC LETTER 92-01 FOR THE DAVIS-BESSE NUCLEAR POWER STATION i

j UNIT NUMBER 1

]

I, Guy G. Campbell, state that (1) I am Vice President - Nuclear of the FirstEnergy Nuclear Operating Company, (2) I am duly authorized to execute and file this l

certification on behalf of the Toledo Edison Company and The Cleveland Electric l

Illuminating Company, and (3) the statements set forth herein are true and correct to the l

best of.my knowledge,information and belief.

i By:

e.

Guy G. Ca mpbell, Vice President - Nuclear Affirmed and subscribed before me this 29th day of March,1999.

A 3%

Notary Public, St/te of Ohio l

Nora Lynn Flood l

My Connaission expires September 4, 2002.

BAW-2325, Revision 1 January 1999 l

Reactor Vessel Nor'kingsroup I

i m-I Response to Request for Additional l

Informantion (RAl) Regarding g

Reactor Pressure Vessel Integrity i

I

[

[

[-

[

r M

F R AM ATO M E E

T E C tl N O L 0 G 1 E S

[jfp(

(,

)LGj)f)

BAW-2325. Revie:on 1 January 1999 j

I Response to Request for Additional Information (RAI)

Regarding Reactor Press:fre Vessel integrity I

B&W Owners Group - Reactor Vessel Working Group I

l Prepared by:

M.J.DeVan I

FTl Document No. 43-2325-01 (Section 6 for document signatures.)

Prepared for B&W Owners Group Reactor Vessel Workino Group Commonwealth Edison Company Duke Energy Corporation Entergy Operations, Inc.

l Florida Power Corporation Florida Power & Light Company GPU Nuclear, Inc.

l Toledo Edison Company Virginia Power Wisconsin Electric Power Company Prepared by Framatome Technologies, Inc.

3315 Old Forest Road I

P. O. Box 10935 Lynchburg, Virginia 24506-0935 I

9hnmu

I Record of Revisions l

Revision Description l

00 Original Release.

01 Section 3: Table 1 has been updated using revised Chemistry Factors based on surveillance data as determined in Section 4.

Changes were made for Arkansas Nuclear One Unit 1, Davis-Besse, Oconee Unit 1 and 3, Point Beach Unit 1, and Surry Unit 1 and 2.

Section 4: Identified errors in TANH fitted surveillance data have been corrected, and Chemistry Factor assessments have been revised using the corrected surveillance data.

Section 5: Included additional references for data using in the Chemistry Factor assessments.

I I

I I

I

'I

I fmmem I

I I

Table of Contents 1.0 I n t rod u c t i o n.................................................................................

2.0 O rg anization of Re spon se.............................................................................. 2-1 l

3.0 Request for Additional Information Regarding Reactor Vessel Integrity Assessment of Best-Estimate Chemistry......................................................... 3-1 3.1 Weld Wire Heat Copper and Nickel Chemical Composition Analyses for High-Copper Linde 80 Weld Metals................................................. 3-1 l

3.2 High-Copper Linde 80 Weld Wire Heat Best-Estimate Copper and Nickel C hemical Compositions.............................................................. 3-2 3.3 Assessment of Linde 80 Weld Wire heat Best-Estimate Copper and Nickel Chemical Compositions.............................................................. 3-9 4.0 Request for Additional Information Regarding Reactor Vessel Integrity Evaluation and Use of Surveillance Data......................................................... 4-1 4.1 Surveillance Data Credibility Assessment............................................. 4-1 4.2 C redible S u rveillance Data.................................................................... 4-2 4.3 Non-C redible S u rveillance Data............................................................ 4-3 4.4 Use of Weld Wire Heat Surveillance Data............................................ 4-3 4.5 Assessment of Weld Wire Heat Surveillance Data............................... 4-5 4.5.1 Weld Wire Heat Number 299L44 (Use of B&W NSSS Data Only)................................................. 4-6 4.5.2 Weld Wire Heat Number 299L44 (Use of Westinghouse NSSS Data Only)...............,................... 4-8 1

4.5.3 Weld Wire Heat Number 299L44 (Use of All Su rveillance Data)............................................ 4-10 I

l M/.em iii

I l

Contents (Cont'd) 4.5.4 Weld Wire Heat Number 406L44 (Use of B&W NSSS Data Only)............................................... 4-13

)

I 4.5.5 Weld Wire Heat Number 406L44 (Use of Westinghouse NSSS Data Only)................................. 4-16 4.5.6 Weld Wire Heat Number 406L44 l

(Use of All Surveillance Data)................................................. 4-18 4.5.7 Weld Wire Heat Number 61782 I

(Use of Westinghouse NSSS Data Only)................................. 4-21 4.5.8 Weld Wire Heat Number 61782 (Use of All Surveillance Data).................................................. 4-23 4.5.9 Weld Wire Heat Number 71249 (Use of Westinghouse NSSS Data Only)................................. 4-25 I

4.5.10 Weld Wire Heat Number 72105 (Use of B&W N SSS Data Only)................................................ 4-27 4.5.11 We:d Wire Heat Number 72105 l

(Use of Westinghouse NSSS Data Only)................................. 4-30 1

j 4.5.12 Weld Wire Heat Number 72105 (Use of All Surveillance Data)............................................... 4-33 I

4.5.13 Weld Wire Heat Number 72442 (Use of B&W NSSS Data Only)................................................ 4-36 l

4.5.14 Weld Wire Heat Number 72445 (Use of B&W NSSS Data Only).............................................. 4-38 4.5.15 Weld Wire Heat Number 72445 I

(Use of Westinghouse NSSS Data Only)................................ 4-40 4.5.16 Weld Wire Heat Number 72445 (Use of All Su rveillance Data).................................................. 4-42 4.5.17 Weld Wire Heat Number 821T44 (U se of B&W NSSS Data Only)................................................ 4-45 I

4.5.18 Weld Wire Heat Number T29744 (Use of Westinghouse NSSS Data Only)................................. 4-48

- I 4.5.19 Rotterdam Dockyard Fabricated Weld:

Weld Wire Heat Number 0227................................................4-50 5.0 R e f e re n c e s...............................................................................................

1 6.0 C e rti fi cat i o n................................................................................................

I iv MNM

lI l

Contents (Cont'd) ig

'E Appendix A: Best-Estimate Copper and Nickel Contents for High-Copper Linde 80 Welds Used in the Reactor Vessel Beltline Regions of the B&W Reactor Ve s sel W o rking G rou p.............................................................. A-1 Appendix B: Base Metal Surveillance Data Used in the Reactor Vessel Beltline g

Regions of the B&W Reactor Vessel Working Group........................... B-1 l

List of Tables I

3-1.

B&WOG Reactor Vessel Working Group Reactor Vessel Beltline Welds.... 3-4

,g 3-2.

Best-Estimate Copper and Nickel Chemical Compositions For B&WOG

E Reactor Vessel Working Group Reactor Vessel Beltline Welds................... 3-5 4.4-1.

Summary of Surveillance Data Reassessments for the B&WOG Reactor g

Vessel Working Group Reactor Vessel Beltline Welds................................ 4-4 4.5.1-1. Surveillance Data for Weld Wire Heat Number 299L44 Using B&W g

NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor B

veSSe'Inte9rity 4-6 3

4.5.1-2. Credibility Assessment for Weld Wire Heat Number 299L44 Using B&W g

NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor E

Ve s s e l I n i e g rity............................................................................................ 4 -

4.5.1-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire

'l Heat Number 299L44 Using B&W NSSS Surveillance Data Only................ 4-7 4.5.2-1. Surveillance Data for Weld Wire Heat Number 299L44 Using lg Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI

'3 Regarding Reactor Vessel Integrity......................................................... 4-8 4.5.2-2. Credibility Assessment for Weld Wire Heat Number 299L44 Using I

Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity............................................................. 4-8 4.5.2-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 299L44 Using Westinghouse NSSS Surveillance Data Only.. 4-9 l

4.5.3-1. Surveillance Data for Weld Wire Heat Number 299L44 Using All Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel Integrity. 4-10 4.5.3-2. Credibility Assessment for Weld Wire Heat Number 299L44 Using All 3

Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel Integrity. 4-11 4.5.3-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 299L44 Using All Surveillance Data..................................... 4-12 I

fIMMM v

. I-

I

<l List of Tables (Cont'd) 4.5.4-1. Surveillance Data for Weld Wire Heat Number 406L44 Using B&W I

NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Ve s s e l I nie g ri ty........................................................................................... 4 - 1 3 I

4.5.4-2. Credibility Assessment for Weld Wire Heat Number 406L44 Using B&W NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Ve s s e l I nt e g ri ty............................................................................................ 4-1 4.5.4-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 406L44 Using B&W NSSS Surveillance Data Only.............. 4-15 I

4.5.5-1. Surveillance Data for Weld Wire Heat Number 406L44 Using Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity......................................................... 4-16 l

4.5.5-2. Credibility Assessment for Weld Wire Heat Number 406L44 Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity............................................................ 4-16 4.5.5-3 Weld Wire Heat Number 406L44 Chemistry Factor Calculation for Assessment of B&W NSSS Reactor Vessels (Cold Leg Temperature at I

556 F) Using Westinghouse NSSS Surveillance Data Only....................... 4-17 4.5.6-1. Surveillance Data for Weld Wire Heat Number 406L44 Using All Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel Integrity. 4-18 1

l 4.5.6-2. Credibility Assessment for Weld Wire Heat Number 406L44 Using All Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel Integrity. 4-19

,g 4.5.6-3. Table Chemis'ry Factor Non-Conservatism Assessment for Weld Wire E

Heat Number 406L44 Using All Surveillance Data.................................... 4-20 4.5.7-1. Surveillance Data for Weld Wire Heat Number 61782 Using l

Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integ rity........................................................... 4-21 4.5.7-2. Credibility Assessment for Weld Wire Heat Number 61782 Using I

Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity......................................................... 4-21

,I

' 4.5.7-3. Weld Wire Heat Number 61782 Chemistry Factor Calculation for Assessment of Westinghouse NSSS Reactor Vessel (Point Beach Unit 1 Cold Leg Temperature at 538 F) Using Westinghouse NSSS

,g S u rveillance D ata Only............................................................................... 4-22 4.5.8-1. Surveillance Data for Weld Wire Heat Number 61782 Using All Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel integrity. 4-23 I

4.5.8-2. Credibility Assessment for Weld Wire Heat Number 61782 Using All Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel Integrity. 4-23 I

I f

vi MNM I

1 List of Tables (Cont'd) 4.5.8-3.

Weld Wire Heat Number 61782 Chemistry Factor Calculation for I

Assessment of B&W NSSS Reactor Vessels (Cold Leg Temperature at 556 F) Using All Surveillance Data.......................................................... 4-24 4.5.8-4.

Weld Wire Heat Number 61782 Chemistry Factor Calculation for Assessment of Westinghouse NSSS Reactor Vessel (Point Beach Unit 1 Cold Leg Temperature at 538 F) Using All Surveillance Data....... 4-24 4.5.9-1.

Surveillance Data for Weld Wire Heat Number 71249 Using Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI I

Regarding Reactor Vessel Integrity......................................................... 4-25 4.5.9-2.

Credibility Assessment for Weld Wire Heat Number 71249 Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity.......................................................... 4-25 4.5.9-3.

Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 71249 Using Westinghouse NSSS Surveillance Data I

Only.........................................................................................................4-26 4.5.10-1. Surveillance Data for Weld Wire Heat Number 72105 Using B&W I

NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Ve s s e l I n i e g ri ty......................................................................................... 4 -2 7 4.5.10-2. Credibility Assessment for Weld Wire Heat Number 72105 Using B&W

,l NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor 1

Ve s s e l I n ie g ri ty......................................................................................... 4 -2 8 4.5.10-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire I

Heat Number 72105 Using B&W NSSS Surveillance Data Only.............. 4-29 4.5.11-1. Surveillance Data for Weld Wire Heat Number 72105 Using I

Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity.......................................................... 4-30 a

4.5.11-2. Credibility Assessment for Weld Wire Heat Number 72105 Using g

Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel integrity........................................................ 4-31 g

4.5.11-3. Weld Wire Heat Number 72105 Chemistry Factor Calculation for 5

Assessment of B&W NSSS Reactor Vessels (Cold Leg Temperature at 556 F) Using Westinghouse NSSS Surveillance Data Only.................... 4-32 l

4.5.11-4. Weld Wire Heat Number 72105 Chemistry Factor Calculation for Assessment of Westinghouse NSSS Reactor Vessel (Turkey Point

,g Unit 4 Cold Leg Temperature at 546 F) Using Westinghouse g

Su rveillance D ata Only............................................................................. 4-32 4.5.12-1. Surveillance Data for Weld Wire Heat Number 72105 Using All I

Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel I nie g ri ty..................................................................................................... 4 - 3 3 s

fEMM vii I

L

I List of Tables (Cont'd)

I 4.5.12-2. Credibility Assessment for Weld Wire Heat Number 72105 Using All Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel I n t e g ri ty....................................................................................................

I 4.5.12-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 72105 Using All Surveillance Data..................................... 4-35 4.5.13-1. Surveillance Data for Weld Wire Heat Number 72442 Using B&W l

NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Ve s s e l i n te g ri ty........................................................................................ 4 4.5.13-2. Credibility Assessment for Weld Wire Heat Number 72442 Using B&W NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor i

Ve s s e l I nie g ri ty......................................................................................... 4 -3 4.5.13-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 72442 Using B&W NSSS Surveillance Data Only.............. 4-37 4.5.14-1. Surveillance Data for Weld Wire Heat Number 72445 Using B&W I

NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Ve sse l I n ie g ri ty......................................................................................... 4 - 3 8 lg 4.5.14-2. Credibility Assessment for Weld Wire Heat Number 72445 Using B&W NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Ve s s el I n te g rity......................................................................................... 4-3 8 l

4.5.14-3. Weld Wire Heat Number 72445 Chemistry Factor Calculation for Assessment of B&W NSSS Reactor Vessels (Cold Leg Temperature at

,'g 556 F) Using B&W NSSS Surveillance Data Only................................... 4-39 5

4.5.15-1. Surveillance Data for Weld Wire Heat Number 72445 Using l

Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI l

.Regarding Reactor Vessel Integ rity......................................................... 4-40 4.5.15-2. Credibility Assessment for Weld Wire Heat Number 72445 Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI ll Regarding Reactor Vessel Integrity........................................................ 4-40 4.5.15-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire l

Heat Number 72445 Using Westinghouse NSSS Surveillance Data....... 4-41 l

4.5.16-1. Surveillance Data for Weld Wire Heat Number 72445 Using All lg Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel I n t e g ri ty.................................................................................................... 4 -4 2 4.5.16-2. Credibility Assessment for Weld Wire Heat Number 72445 Using All Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel I

I n t e g ri ty..................................................................................................... 4 -4 3 4.5.16-3. Weld Wire Heat Number 72445 Chemistry Factor Calculation for I

Assessment of B&W NSSS Reactor Vessels (Cold Leg Temperature at 556 F) Using All Surveillance Data.......................................................... 4-44 viii UWM I

List of Tables (Cont'd) 3 4.5.16-4. Weld Wire Heat Number 72445 Chemistry Factor Calculation for Assessment of Westinghouse NSSS Reactor Vessel (Surry Unit 1 and 2 Cold Leg Temperatures at 542 F) Using All Surveillance Data...... 4-44 4.5.17-1. Surveillance Data for Weld Wire Heat Number 821T44 Using B&W NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Ve ss e! I nte g ri ty......................................................................................... 4 -4 5 4.5.17-2. Credibility Assessment for Weld Wire Heat Number 821T44 Using B&W NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Ve s s el I nteg ri ty....................................................................................... 4 -4 6 I

4.5.17-3. Weld Wire Heat Number 821T44 Chemistry Factor Calculation for Assessment of B&W NSSS Reactor Vessels (Cold Leg Temperature at l

556 F) Using B&W NSSS Surveillance Data Only................................... 4-47 4.5.18-1. Surveillance Data for Weld Wire Heat Number T29744 Using Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI I

Regarding Reactor Vessel Integrity.......................................................... 4-48 3

4.5.18-2. Credibility Assessment for Weld Wire Heat Number T29744 Using I

Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity.......................................................... 4-48 4.5.18-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number T29744 Using Westinghouse Surveillance Data Only....... 4-49 4.5.19-1. Surveillance Data for Rotterdam Dockyard Fabricated Weld:

I Weld Wire Heat Number 0227 (Table 2 of the RAI Regarding Reactor Ve s s e l i n te g ri ty......................................................................................... 4 - 5 0 4.5.19-2. Credibility Assessment for Rotterdam Dockyard Fabricated Weld:

I Weld Wire Heat Number 0227 (Table 3 of the RAI Regarding Reactor Ve s s e l I n teg ri ty........................................................................................ 4 - 5 0 4.5.19-3. Rotterdam Dockyard Fabricated Weld: Weld Wire Heat Number 0227 I

Chemistry Factor Calculation for Assessment of Surry Unit 2 Reactor Vessel.....................................................................................................4-51 I

A-1.

Copper and Nickel Contents Source Means for Weld Wire H eat N u mbe r 2 99 L44................................................................ A-2 A-2.

Copper and Nickel Contents Source Means for l

W eld Wire He at N u mbe r 4 06L44................................................................ A-6 A-3.

Copper and Nickel Contents Source Means for Weld Wire Heat N umber 61782.................................................................. A-8 A-4.

Copper and Nickel Contents Source Means for Weld Wire Heat Nu mbe r 71249................................................................ A-10 l

A-5.

Copper and Nickel Contents Source Means for l

Weld Wire Heat Numbe r 72105............................................................... A-13 m

-m I

List of Tables (Cont'd)

~

A-6.

Copper and Nickel Contents Source Means for Weld Wire Heat Nu mbe r 72442................................................................ A-20 A-7.

Copper and Nickel Contents Source Means for W eld Wire He at N u mbe r 7244 5................................................................ A-22 A-8.

Copper and Nickel Contents Source Means for W eld Wire H eat N u mbe r 821 T44.............................................................. A-24 A-9.

Copper and Nickel Contents Source Means for Weld Wire Heat Number T29744............................................................. A-25 l

A-10.

Copper and Nickel Contents Source Means for Weld Wire Heat Nu mber 1 P0661.............................................................. A-26 A-11.

I Copper and Nickel Contents Source Means for Weld Wire Heat N umber 1 P0815............................................................ A-27 A-12.

Copper and Nickel Contents Source Means for l

Weld Wire Heat N u mbe r 1 P0962.............................................................. A-28 A-13.

Copper and Nickel Contents Source Means for Weld Wire Heat Numbe r 8T1554.............................................................. A-29 A-14.

Copper and Nickel Contents Source Means for Weld Wi re H e at N u mbe r 8T 1762.............................................................. A-30 I

A-15.

Copper and Nickel Contents Source Means for Weld Wire Heat Number 8T3914............................................................. A-31 B.1.1-1.

Surveillance Data for Base Metal Heat Number C5114-1 (Table 2 of the I

RAI Regarding Reactor Vessel Integrity)..................................................... B-3 B.1.1-2.

Credibility Assessment for Base Metal Heat Number C5114-1 (Table 3 of the RAI Regarding Reactor Vessel integrity............................................ B-3 B.1.1-3.

Table Chemistry Factor Non-Conservatism Assessment for Base Metal H e at N u mb e r C 51 14 - 1....................................................................

B.1.2-1.

Surveillance Data for Base Metal Heat Number C4344-1 (Table 2 of the RAI Regarding Reactor Vessel Integrity)..................................................... B-5 B.1.2-2.

Credibility Assessment for Base Metal Heat Number C4344-1 (Table'3 of the RAI Regarding Reactor Vessel Integrity............................................ B-5 B.1.2-3.

Base Metal Heat Number C4344-1 Chemistry Factor Calculation for Crystal River Unit 3 Reactor Vessel............................................................ B-6 l

B.1.3-1.

Surveillance Data for Base Metal Heat Number SP4086 (BCC 241)

(Table 2 of the RAI Regarding Reactor Vessel Integrity)...........................B-7 B.1.3-2.

Credibility Assessment for Base Metal Heat Number SP4086 (BCC 241)

(Table 3 of the RAI Regarding Reactor Vessel Integrity.............................. B-7 B.1.3-3.

Table Chemistry Factor Non-Conservatism Assessment for Base Metal Heat Number 5P4086 (BCC 241 )................................................................ B-8 l

l x

fI W M I

I

{

h List of Tables (Cont'd).

I B.1.4-1.

Surveinance Data for Base Metal Heat Number C3265-1 (Tab'a 2 of the RAl Regarding Reactor Vessel Integrity).................................................... B-9 B.1.4-2.

Credibility Assessment for Base Metal Heat Number C3265-1 (Table 3

)

l of the RAI Regarding Reactor Vessel Integrity............................................ B-9 B.1.4-3.

Table Chemistry Factor Non-Conservatism Assessment for Base Metal I

H e at N u mbe r C 3 2 6 5-1...............................................................

B.1.5-1.

Surveillance Data for Base Metal Heat Number 3P2359 (AAW 163)

(Table 2 of the RAI Regarding Reactor Vessel Integrity)..........................B-11 l

B.1.5-2.

Credibility Assessment for Base Metal Heat Number 3P2359 (AAW 163)

(T2 Ne 3 of the RAI Regarding Reactor Vessel Integrity............................B-11 B.1.5-3.

I Table Chemistry Factor Non-Conservatism Assessment for Base Metal He at N u mba r 3 P235 9 (AAW 163)............................................................. B-12 B.1.6-1.

Surveillance Data for Base Metal Heat Number 522314 (AWS 192)

(Table 2 of the RAI Regarding Reactor Vessel Integr;ty).......................... B-13 B.1.6-2.

Credibility Assessment for Base Metal Heat Number 522314 (AWS 192) i (Table 3 of the RAI Regarding Reactor Vessel Integrity............................B-13 1

B.1.6-3.

Table Chemistry Factor Non-Coriservatism Assessment for Base Metal Heat Number 5 22314 ( AW S 192 ).......................................................

B.1.7-1.

Surveillance Data for Base Metal Heat Number 522194 (ANK 191)

(Table 2 of the RAI Regarding Reactor Vessel Integrity).......................... B-15 g

B.1.7-2.

Credibility Assessment for Base Metal Heat Number 522194 (ANK 191) 3 (Table 3 of the RAI Regarding Reactor Vessel Integrity............................B-15 B.1.7-3.

Base Metal Heat Number 522194 (ANK 191) Chemistry Factor Calculation for Oconee Unit 3 Reactor Vessel.......................................... B-16 l

B.1.8-1.

Surveillance Data for Base Metal Heat Number C2789-2 (Table 2 of the RAI Regarding Reactor Vessel Integrity)................................................... B-17 B.1.8-2.

Credibility Assessment for Base Metal Heat Number C2789-2 (Table 3 of the RAI Regarding Reactor Vessel Integrity......................................... B-17 B.1.8-3.

Table Chemistry Factor Non-Conservatism Assessment for Base Metal H e at N u mbe r C 2 7 8 9-2..................................................................

B.1.9-1.

Surveillance Data for Base Metal Heat Number A9811-1 (Table 2 of the l

RAI Regarding Reactor Vessel Integrity).................................................. B-19 B.1.9-2.

Credibility Assessment for Base Metal Heat Number A9811-1 (Table 3 I

of the RAI Regarding Reactor Vessel integrity........................................ B-19 B.1.9-3.

Base Metal Heat Number A9811-1 Chemistry Factor Calculation for Point Beach Unit 1 Reactor Vessel......................................................... B-20 l

B.1.10-1. Surveillance Data for Base Metal Heat Number C1423-1 (Table 2 of the RAl Regarding Reactor Vessel Integrity)................................................ B-21

==

I

I List of Tables (Cont'd) l g

B.1.10-2. Credibility Assessment for Base Metal Heat Number C1423-1 (Table 3

~

of the RAI Regarding Reactor Vessel Integrity.......................................... B-21 l

B.1.10-3. Base Metal Heat Number C1423-1 Chemistry Factor Calculation for Point Beach Unit 1 Reactor Vessel......................................................... B-22 B.1.11-1. Surveillance Data for Base Metal Heat Number 123V500 (Table 2 of the RAI Regarding Reactor Vessel Integrity).................................................. B-23 B.1.11-2. Credibility Assessment for Base Metal Heat Number 123V500 (Table 3 i

of the RAI Regarding Reactor Vessel Integrity....................................... B-23 B.1.11-3. Table Chemistry Factor Non-Conservatism Assessment for Base Metal H e at N u mb e r 123 V5 0 0.....................................................................

g B.1.12-1. Surveillance Data for Base Metal Heat Number 122W195 (Table 2 of the a

RAI Regarding Reactor Vessel Integrity)................................................ B-25 B.1.12-2. Credibility Assessment for Base Metal Heat Number 122W195 (Table 3 of the RAl Regarding Reactor Vessel Integrity...................................... B-25 B.1.12-3. Base Metal Heat Number 122W195 Chemistry Factor Calculation for Point Beach Unit 2 Reactor Vessel......................................................... B-26 8

B.1.13-1. Surveillance Data for Base Metal Heat Number C4415-1 (Table 2 of the RAI Regarding Reactor Vessel Integrity)............................................... B-27 l

B.1.13-2. Credibility Assessment for Base Metal Heat Number C4415-1 (Table 3 of the RAI Regarding Reactor Vessel Integrity.......................................... B-27 g

B.1.13-3. Base Metal Heat Number C4415-1 Chemistry Factor Calculation for g

S u rry U nit 1 Re acto r Ve s sel................................................................... B-28 B.1.14-1. Surveillance Data for Base Metal Heat Number C4339-1 (Table 2 of the g

RAI Regarding Reactor Vessel Integrity)............................................ B-29 B.1.14-2. Credibility Assessment for Base Metal Heat Number C4339-1 (Table 3 of the RAI Regarding Reactor Vessel Integrity......................................... B-29 I

B.1.14-3. Base Metal Heat Number C4339-1 Chemistry Factor Calculation for S u rry U nit 2 R e acto r Ve ss el................................................................. B-30 B.1.15-1. Surveillance Data for Base Metal Heat Number 123P461 (Table 2 of the RAI Regarding Reactar Vessel Integrity)................................................. B-31 B.1.15-2. Credibility Assessmant for Base Metal Heat Number 123P461 (Table 3

'I of the RAI Regarang Reactor Vessel Integrity...................................... B-31 B.1.15-3. Base Metal Heat Number 123P461 Chemistry Factor Calculation for Turkey Point Unit 3 Reactor Vessel..................................................... B-32 B.1.16-1. Surveillance Data for Base Metal Heat Number 123S266 (Table 2 of the RAI Regarding Reactor Vessel Integrity).................................................. B-33 B.1.16-2. Credibility Assessment for Base Metal Heat Number 123S266 (Table 3 of the RAI Regarding Reactor Vessel Integrity..................................... B-33

==

I

I List of Tables (Cont'd) l B.1.16-3. Base Metal Heat Number 123S266 Chemisiry Factor Calculation for Turkey Point Unit 3 Reactor Vessel.......................................................... B-34 B.1.17-1. Surveillance Data for Base Metal Heat Number 122S180 (Table 2 of the RAI Regarding Reactor Vessel Integrity)................................................... B-35 B.1.17-2. Credibility Assessment for Base Metal Heat Number 122S180 (Table 3 of the RAI Regarding Reactor Vessel Integrity........................................ B-35 B.1.17-3. Base Metal Heat Number 122S180 Chemistry Factor CE!culation for Turkey Point Unit 4 Reactor Vessel........................................................... B-36 I

I I

I I

I I

I I

I I

I I

<s=m

I

.I I

~

g

1. Introduction This report provides responses to requests for additional information (RAl) issued by the

.I U. S. Nuclear Regulatory Commission (NRC) regarding reactor pressure vessel integrity.

Responses are provided for the following B&W Owners Group (B&WOG) Reactor Vessel l

Working Group (RVWG) plants:

Plant Owner Arkansas Nuclear One Unit 1 Entergy Operations, Inc.

Crystal River Unit 3 Florida Power Corporation Davis-Besse Toledo Edison Company g

Oconee Unit 1 Duke Energy Corporation Oconee Unit 2 Duke Energy Corporation Oconee Unit 3 Duke Energy Corporation Point Beach Unit 1 Wisconsin Electric Power Company Point Beach Unit 2 Wisconsin Electric Power Company Surry Unit 1 Virginia Power g

Surry Unit 2 Virginia Power Three Mile Island Unit 1 GPU Nuclear, Inc.

l Turkey Point Unit 3 Florida Power & Light Company Tt rkey Point Unit 4 Florida Power & Light Company I

l lI lI I

I fmm.m g

lI l

'I g

j

2. Organization of Response i

I The requests for additional information regarding reactor pressure vessel integrity were uniformly drafted for the RVWG plants. There were some variations from letter-to-letter depending upon some differences in plant-to-plant information requests; however, the information requests generally included the following:

Section 1: Assessment of Best-Estimate Chemistry

1. An evaluation of the chemical composition data provided oy letters frorn Mr. Matthew J. DeVan (FTI) to Mr. Barry J. Elliot (NRC) dated June 6,1997 (INS-97-2262), June 19,1997 (INS-97-2450), and July 10,1997 (INS l 2741); and an assessment of their applicability to the determination of the best-estimate chemistries for the reactor vessel beltline region welds. Based I

on the reevaluation, supply information necessary to complete the requested data in Table 1, addressing the predicted adjusted reference temperature (ART) and/or the pressurized thermal shock reference temperature (RTers).

In addition, provide a discussion for the copper and nickel contents used in the determination of the best-estimate values including what heat-specific

)

data were included and excluded in the analysis, and tile analysis method used to determine the copper and nickel content best-estimate values.

Section 2: Evaluation and Use of Surveillance Data I

2. Provide (1) information requested to complete Table 2 and Table 3 in order to I

calculate the chemistry factor from surveillance data for each weld wire heat where surveillance data is available

.id a revision in the reactor vessel integrity analysis (i.e., current licensing basis) is needed, or (2) a certification that previously submitted evaluations remain valid.

I I

i 2-1 IM M M I

I Section 3: PTS /PT Limit Evaluation I

3. If the limiting material changes or if the adjusted reference temperature for the limiting materialincreases as a result of the above evaluation, provide revised RTpTs value for the limiting reactor vessel beltline material in accordance with 10 CFR 50.61. In addition, if the adjusted RTwor value increased, provide a scheduie for revising the pressure-temperature (P-T) and (LTOP) limits.

Section 3 of this document provides the applicable information requested in item 1 above for the RVWG reactor vessels. In this section an assessment of best-estimate copper and nickel contents for high-copper Linde 80 welds is described along with the data necessary to complete Table 1 for each of the RVWG reactor vessel beltline j

materials.

The information requested in item 2 above for the RVWG reactor vessel beltline materials are presented in Section 4. Table 2 and Table 3 are comp,eted for each weld wire heat for the high-copper Linde 80 welds located in the RVWG reactor vessel beltline regions. In addition, an assessment of the available high-copper Linde 80 weld metal surveillance data in accordance with 10 CFR 50.61 and Regulatory Guide 1.99, Revision 2 is presented.

The utility owner that holds the nuclear power plant-operating license will provide the response to item 3.

j I

I' I

I I

I fmmm 22 I

i I

I I

l

3. Request for Additionalinformation Regarding Reactor Vessel integrity Assessment of Best-Estimate Chemistry I

The standard welding practice used by the Babcock & Wilcox Company (B&W) to l

fabricate reactor pressure vessels included the automatic submerged-arc (ASA) process with copper-plated manganese-molybdenum-nickel (Mn-Mo-Ni) filler wire and Linde 80 flux. The composition range (weight percent) of the filler wire was as follows:

Carbon (C) 0.10 - 0.14 Silicon (Si)'

O.10 max l

Manganese (Mn) 1.75 - 2.25 Nickel (Ni) 0.50- 0.70 Phosphorous (P) 0.020 max Molybdenum (Mo) 0.35-0.55 Sulfur (S) 0.020 max The copper plating was used to promote electrical conductance during welding and I

corrosion resistance during storage. The copper concentration in the as-deposited weld metal results from the combination of the copper plating and the base filler wire alloy copper concentration. However, the principal source is the copper plating.

Thirty speciiic copper-plated wire /Linde 80 flux combinations were used in the l

fabrication of the RVWG reactor vessel beltline regions. These combinations were produced using 15 different heats of filler wire and 19 separate lots of Linde 80 flux.

Table 3-1 presents the listing of the RVWG reactor vessel beltline region weld metals I

fabricated using copper-plated wire and Linde 80 flux sorted by wire heat number.

I 3.1 Weld Wire Heat Cupper and Nickel Chemical Composition Analyses for I

High-Copper Linde 80 Weld Metals I

Over the years, extensive chemical analyses have been performed on available as-deposited weld metals fabricated with copper-plated filler wires and Linde 80 flux.

i 3-1 IPWM I

I I

These data have been reported in BAW-1500, " Chemistry of 177-FA B&W Owners' Group Reactor Vessel Beltline Welds,"* BAW-1799, "B&W 177-FA Reactor Vessel h

Beltline Weld Chemistry Study,"* and BAW-2121P, " Chemical Composition of B&W Fabricated Reactor VesselBeltline Welds."* The sources for these weld metals include weldments in the form of nozzle belt forging dropouts, Midland reactor vessel beltline region cutout, surveillance program test blocks and test specimens, weld qualifications, and reanalysis of original weld qualification chemistry samples. An NRC I

Inspection of Framatome Technologies, Inc. (Inspection Report No.: 99901300/97-01 dated January 28,1998) identified additional data relevant to the determination o1 the best-estimate copper and nickel chemical contents for the high-copper Linde 80 weld metals during the review process. However, n the Inspection Report, it was determined I

that the best-estimate copper and nickel che.nical contents previously used were conservative in most cases because eitN,, (a) the licensee's copper and nickel data were conservative relative to the raw data or (b) when included in the calculations, the formerly unconsidered data had a negligible effect. The listing of the raw copper and nickel chemical composition data for the high-copper Linde 80 weld metals is presented in Appendix A.

I 3.2 High-Copper Linde 80 WcId Wire Heat Best-Estimate Copper and Nickel Chemical Compositions

.I The best-estimate copper and nickel chemical compositions for the high-copper Linde

-I 80 weld metals were determined by first establishing the mean for each particular material source (i.e., nozz!a belt dropout, Midland reactor vessel beltline region cutout, surveillance block / specimen, weld qualification, and weld qualification retest). These material source means were then used to calculate the mean for the weld wire heat (e.g., mean-of-the-mearis).

I For certain weld wire heats, individual measured copper and/or nickel chemical compositions are considered suspect and are not used in the determination of the best-

,I estimate chemical compositions for that weld wire heat. These data are identified with sh8ded cells in the weld wire heat copper and nickel chemical composition tables presented in Appendix A. The basis for excluding the individual measured copper and/or nickel chemical compositions in the best-estimate calculation are based on one or more of the following criteria:

I f

3-2 ff W M I

I The suspect composition data point is lower / higher than the expected range based on other measured data points from the same particular weld wire heat; a chemical analysis retest on the sample yields a chemical composition that is more representative of the expected range.

I The suspect composition data point is lower than the expected range based on other measured data points from the same particular weld wire heat; I

chemical composition data point not used for conservatism.

The suspect composition data point falls outside the expected range based on other measured data points from the same particular weld wire heat; the chemical analysis may have been performed in the base metal region of the sample.

j Further information for excluding the individual measured copper and/or nickel chemical contents are provided in Appendix A.

I Table 3-2 summarizes the best-estimate copper and nickel chemical compositions for ig the high-copper Linde 80 weld metals. In addition, the individual copper and nickel l5 chemical compositions for each of the weld wire heat sources are also presented.

!I l

l I

I I

I I

I f"MNM I'

3-3 I

I Tablo 3-1. B&WOG Reactor Vessel Working Group Reactor Vessel Beltline Welds Wire Weld Metal Flux Heat Designation Lot Reactor Vessel 299L44 SA-1526 8596 Surry 1. TMI-1 I

WF-25 8650 Oconee-1, Oconee-2. TMl-1 406L44 WF-112 8688 ANO-1 WF-154 8720 Oconee-2 I

61782 SA-847 8350 Point Beach-1 SA-1135 8457 Oconee-1 71249 SA-1101 8445 Point Beach-1, Turkey Point-3, Turkey Point-4 r

SA-1229 8492 Ocor.ee-1 g

SA-1769 8738 Crystal River-3 72105 WF-70 8669 Crystal River-3, Oconee-3, TMI-1, Turkey Point-4 l

72442 SA-1484 8579 Point Beach-2, Turkey Point-3 I

WF-67 8669 Oconee-3, Turkey Point-4 72445 SA-1585 8597 Oconee-1, Surry-1, Surry-2 SA-1650 8632 Surry-1 821T44 WF-182-1 8754 ANO-1, Davis-Besse I

WF-200 8773 Oconee-3 T29744 WF-233 8790 Davis-Besse 1P0661 SA-775 8304 Point Beach-1 I

1P0815 SA-812 8350 Point Beach-1 1P0962 SA-1073 8445 Oconee-1 8T1554 SA-1494 8579 Surry-1, TMI-1 I

WF-169-1 8754 Crystal River-3 BT1762 SA 1426 8553 Oconee-1, Point Beach-1 SA-1430 8553 Oconee-1 SA-1493 8578 Oconee-1 i

SA-1580 8596 Crystal River-3 WF-4 8597 Surry-2 WF-8 8632 Crystal River-3, Surry-2, TMI-1 l 3 WF-18 8650 ANO 1, Crystal River-3 j

i g

_8T3914 WF-232 8790 Davis-Besse I

lI l I I

I 1I f_

G C e, o6oe g I

I Table 3-2. Best-Estimate Copper and Nickel Chemical Compositions For B&WOG Reactor Vessel Working Group Reactor Vessel Beltline Welds Weld Wire W eld ID Flux Source of No. of Observ.

Source Mean I

Heat Number Number Lot No.

Weldment Cu Ni Cu Ni 299L44 SA-1526 8596 Weld Qualification 1

1 0.46 0.60 CR-3 Nonle Dropout 13 13 0.37 0.70 WF-19 8650 Weld Qualification 1

1 0.29 0.72 I

Surry-1 RVSP Weld 11 11 0.23 0.64 WF-25 8650 Weld Qualification 4

3 0.32 0.71 TMI-1 RVSP Weld 10 9

0.33 0.67

. I ONS-3 Nonle Dropout 2

2 0.36 0.70 j

TMI-2 Nonle Dropout 122 121 0.33 0.67 Weld Wire Heat Best-Estirnate 0.34 0.68 (Mean of the Sources) 406L44 WF-112 8688 Weld Qualification 3

3 0.30 0.58

I ONS-1 RVSP Weld 22 23 0.32 0.59 i

WF-154 8720 Weld Qualification 0

3 0.26 0.59 WF-183 8754 Weld Qualification 1

1 0.21 0.59 E

WF-193 8773 Weld Qualification 2

3 0.28 0.60

,g ANO-1 RVSP Weld 9

9 0.27 0.58 i

i Point Beach-2 RYSP Weld 1

1 0.25 0.59 Wold Wire Hest Best Estimate 0.27 0.59 (Mean of the Sources) 61782 SA-847 8350 Weld Qualification 1

0 0.20 l

l SA-848 8373 Weld Qualitication 1

1 0.22 0.49 l"

SA-948 8408 Weld Qualification 1

1 0.18 0.55 SA-1014 8436 Weld Qualification 1

1 0.23 0.46

)l SA-1036 8436 Weld Qualification 1

1 0.31 0.64 l3 ONS-1 Nonle C. opout 12 12 0.20 0.49 REG RVSP Weld 10 10 0.24 0.52 lg SA-1118 8443 Weld Qualification 1

1 0.22 0.52 lg SA-1135 8457 Weld Qualification 1

1 0.17 0.50 1

ONS-2 Nonle Dropout 29 29 0.27 0.59 SA-1346 8504 Weld Qualification 1

1 0.20 0.51 I

SA-1779 8738 Weld Qualification 1

1 0.28 0.45 SA-1788 8754 Weld Qualification 1-1 0.29 0.47 l

Weld Wire Heat Best-Estimate

'0.23 0.52

\\

(Mean of the Sourc!s) l I

i I

f 3-5 UWM I

1 I

Table 3-2. (Cont'd) Best-Estimate Copper and Nickel Chemical Compositions For B&WGG Reactor Vessel Working Group Reactor Vessel Beltline Welds Weld Wire WeldID Flux Source of No of Goserv.

Source Mean Heat Number Number Lot No.

Weldment Cu Ni Cu Ni I

)

71249 SA-1094 8457 Weld Qualification 1

1 0.23 0.55 TP-4 RVSP Weld 4

1 0.29 0.60 SA-1101 8445 Weld Qualification 1

1 0.21 0.57 I

ONS-1 Nozzle Dropout 37 36 0.19 0.59 TP-3 RVSP Weld 6

1 0.33 0.57 SA-1229 8492 Weld Qualification 1

1 0.20 0.57 I

SA-1344 8504 Weld Qualification 1

1 0.21 0.62 SA-1706 8669 Weld Qualification 1

1 0.21 0.55 SA-1769 8738 Weld Qualification 1

1 0.19 0.66 W Surv. Weld 41 36 0.28 0.62 I

Weld Wire Heat Best-Estimate 0.23 0.59 (Mean of the Sources) 72105 WF-70 8669 Weld Qualification 3

1 0.31 0.58 MD-1 Nozzle Dropout 78 78 0.39 0.58 MD-1 Beltline Weld 54 54 0.28 0.57 i

WF-113 8688 Weld Qualification 3

3 0.29 0.60 WF-209 8773 Weld Qualification 2

1 0.37 0.59 WF-209-1 8773 Weld Qualification 3

2 0.37 0.59 g[

ONS-2 RVSP Weld 7

7 0.35 0.58 i

CR-3 RVSP Weld 4

4 0.36 0.61 ONS-3 RVSP Weld 53 53 0.29 0.56 MD-1 RVSP Weld 12 12 0.36 0.59 lml ZN-1 RVSP Weld 19 19 0.25 0.54 ZN-2 RVSP Weld 22 22 0.25 0.55 Wold Wire Heat Best-Estimate 0.32 0.58 (Mean of the Sources) 72442 SA-1450 8467 Weld Qualification 1

1 0.25 0.60 I

SA-1484 8579 Weld Qualification 1

1 0.25 0 64 CR-3 Nozzle Dropout 18 18 0.26 0.59 WF-67 8669 Weld Qualification 4

3 0.32 0.58 I

MD-1 Nozzle Dropout 27 27 0.22 0.60 Weld Wire Heat Best-Estimate 0.26 0.60 (Mean of the Sources)

'I I

I I

f 3-6 f!MWM I

I I

Table 3-2. (Cont'd) Best-Estimate Copper and Nickel Chemical Compositions For B&WOG Reactor Vessel Working Group Reactor Vessel Beltline Welds Weld Wire WeldID Flux Source of No. of Observ.

Source Mean Heat Number Number Lot No.

Weldment Cu Ni Cu Ni 72445 SA-1263 8504 Weld Qualification 1

1 0.24 0.47 PB-1 RVSP Weld 2

2 0.23 0.62 I

SA-1471 8578 Weld Qualification 1

1 0.18 0.54 SA-1582 8596 Weld Qualification 1

1 0.25 0.49 SA-1585 8597 Weld Qualification 1

1 0.25 0.51 ANO-1 Nozzle Dropout 32 32 0.22 0.59 I

SA-1650 8632 Weld Qualification 1

1 0.20 0.47

{

WF-9 8632 Weld Qualification 1

1 0.17 0.60 l

WF-101 8688 Weld Qualification 0

1 0.60 Weld Wire Heat Best Estimate 0.22 0.54 (Mean of the Sources) 821T44 WF-182 8754 Weld Qualification 3

3 0.26 0.61 WF-182-1 8754 Weld Qualification 5

4 0.22 0.63 TMI-2 RVSP Weld 4

4 0.28 0.63 i

DB-1 RVSP Weld 6

6 0.22 0.63 WF-195 8773 Weld Qualification 1

0.18 0.63 WF-200 8773 Weld Qualification 1

a 0.26 0.64 i

Weld Wire Heat Best-Estimate 0.24 0.63 (Mean of the Sources) i g-T29744 WF-233 8790 Weld Qualification 4

3 0.25 0.63 i

l 3 KORl-1 RVSP Weld 13 10 0.21 0.67 l

WF-282 8806 Weld Qualification 1

1 0.16 0.66 ll Weld Wire Heat Best-Estimate 0.21 0.65 (Mean of the Sources) l

!g l

1P0661 SA-775 8304 Weld Qualification 1

1 0.19 0.63 3

SA-1060 8446 Weld Qualification 1

1 0.14 0.65 Weld Wire Heat Best-Estimate 0.17 0.64 (Mean of the Sources)

I I

I E

f 3-7 IMMM I

1 l

Table 3-2. (Cont'd) Best-Estimate Copper and Nickel Chemical Compositions For B&WOG Reactor Vessel Working Group Reactor Vessel Beltline Welds Weld Wire WeldID Flux Source of No. of Observ.

SourEe Mean I

Heat Number Number Lot No.

Weldment Cu Ni Cu Ni 1P0815 SA-806 8304 Weld Qualification 1

1 0.25 0.48 SA-812 8350 Weld Qualification 1

1 0.12 0.52 I

SA-1366 8544 Weld Qualification 1

1 0.13 0.57 Weld Wire Heat Best-Estimate 0.17 0.52 (Mean of the Sources)

I 1P0962 l SA-1073 l8445 Weld Qualification l

1l 1

0.21 0.64 Weld Wire Heat Best-Estimate 0.21 0.64 (Mean of the Sources) 8T1554 SA-1174 8479 Weld Qualification 1

1 0.19 0.60 I

SA-1413 8504 Weld Qualification 0

0 SA-1494 8579 Weld Qualification 1

1 0.14 0.45 WF-69 8669 Weld Qualification 1

1 0.15 0.61 I.

WF-169-1 8754 Weld Qualifiestion 3

3 0.16 0.61 Weld Wire Heat Best-Estimate 0.16 0.57 (Mean of the Sources) l l5 8T1762 SA-1426 8553 Weld Qualification 1

1 0.18 0.61 SA-1430 8553 Weld Qualification 1

1 0.16 0.60 SA-1493 8578 Weld Qualification 1

0 0.22

- SA-1580 8596 Weld Qualification 1

1 0.22 0.60 WF-4 8597 Weld Qualification 1

1 0.17 0.53 WF-8 8632 Weld Qualification 1

1 0.20 0.61 WF-18 8650 Weld Qualification 0

1 0.45 Weld Wire Heat Best-Estimate 0.19 0.57 (Mean of the Sources) t 8T3914 WF-232 8790 Weld Qualification 2

3 C.18 U 66 WF-252 8806 Weld Qualification 0

1 0.59 Weld Wire Heat Best-Estimate 0.18 0.62

?

(Mean of the Sources) l I

I t

3-8 IMMM I

3.3 Assessment of Linde 80 Weld Wire Heat Best-Estimate Copper and Nickel Chemical Compositions Based on the evaluation of the raw data for the high-copper Linde 80 weld metals and the establishment of their best-estimate copper and nickel chemical contents, these data have been used to complete " Table 1" of the request for additional information for the RVWG reactor vessel beltline materials. The following tables provide the RVWG plant-specific information requested in " Table 1" of the request for additional information regarding reactor pressure vessel integrity.

a 3-9 IMSNRM

W 1

M

' m g

t n

M nis esi 7

9 r n s r

a 3

ue M<

CcB 2

U M

I r

o sl T

4 0

5 5

1 2

5 8

5 R no T E 6 1

5 1

5 1

4 6

4 A Rt 8 4

2 4

3 9

9 3

9 1

1 1

1 1

1 2

1 a

0 1

n ig 8 0

0 0

0 3

5 5

5 r

4 4

4 4

4 8

8 8

8 a 6 3

3 3

3 4

6 6

6 M

M 0

0 0

0 0

0 0

0 0

a 7 7

7 7

7 4

8 8

8 c

1 1

1 1

1 1

2 2

2 s

la ir n

e e, 0 0

0 0

0 7

7 7

7 1

0 0 0

0 9

9 9

9 o

t 3

1 1

1 1

i a

s M

s u

)

aom l

l r

c e

3 0

0 0

0 5

5 5

5 s

x s

iiT w i

t no

+

1 1

1 1 o InR T s

R D

M it lc i

e

(

nWV n

U e

o t

a i

r g

t e&

f e

u oin a

i t

nk a

s H

s dn le le le le le D.

le le le Oc s o

i b

b b

b b

omF b

b b

a a

a a

a y

a a

a p

e hrC oc e

e T

T T

T T

r r

t T

T T

r a

r et m

i u

le P

Me S

a D

o W

b 1

cB r

C d

u o

l

)

e Nr dl yF e

0 t

la M

c eat C r

l e

a nis(

0 8

6 8

6 3

4 6

4 c

W b

s r 1

ri r

i gemo 0

2 5

2 5

8 2

2 2

a a u e

m h

3 t

i saet 2

2 0

2 0

5 5

8 5

T st R sMhc 1

1 1

1 1

1 1

1 nc A Ca e

c F

h a

aa n

kf o

C E

M r u r

An d e) l D c"0 3 1

1 8

8 0

7 5

6 e

o a

e I. n 7

7 5

5 9

0 3

0 k

f t

t e1 yM s

co 8

8 8

8 7

6 8

6 c

d 0

0 0

0 0

0 0

0 t

e EMw i

e i l N

e u

M l

s i

cs q

e l d

U as e

t

. ae) n F e R smk%

t 0

5 2

5 2

3 7

9 7

a V

eict 7

5 5

5 5

6 5

5 5

a t

n Bts N (w i

0 0

0 0

0 0

0 0

0 r

a o

E e

D p

it d

a e

p r

n t

. ae) o m

s m p% 0 1

1 1

1 2

1 2

1 a

t p

3 7

5 7

5 4

9 7

9 C

t r

ei o

Bt ow 0 0

0 0

0 0

0 0

0 d

sC(

e o

M l

le t

f E

t n

a h

I t

m e

d M

i le W

s hS E

s M

ign r

c i

g e

ir n'

ig t

s n

p d

C s

ly o

p le ld U

h e

e a

ro W

e W

eo F

o S

t i

t h

B n

Rt t

t )

ig g

t c

lt e

e e

te a

e%

i A

e l

e M

lt L lz le le le le r

t t

t in o B la

!a la la B0 n

e n

a f

0 o

o l

e P

P P

P e1 L) w L) e 3

o 4

o B

z l

l l

l lnd le%

H e

(

!e%

L l

n n

n o

h h

h h

ol h0 o

h0 e

it i

io t)

S 0 o

o N

S S

S S Ne S 0 rW 1

r 1

r r

r r

r r

e%

t r

r i

e e

e e

e e.

eh eh c

s c

M w

p p

w w

we pt p0 wt W

e s

e r

o o

o p

p o

o oi p

p0 oB S

S B

1 L

U U

L L

LC U(

U(

L(

i d

tc e

le s

e t

e e

la i 1

)

e WS D

S i

)

r t

)

1 M

VeWt P M a

3 2

2 1

1 2

)

2

)

de 01 48 28 41 28 Rel H 6

0 4

0-4 41 61 41 61 se 3N 2

1 2

1 T -

7 1

1 1

1 F

F-L F F

8Y aW 2A 1

1 6

1 5

5 5 5 2W TW 0W TW B

5(

C C C C 8( 8(

1

(

8(

M

]

jlllll M

1 h

g Y R

M t

n P

nis esiF 5

3 N

r n sE -

r a

uecB 1

1 3

2 M

CiL M

h Y

TP RF 9 6

6 1

2 9

5 0

4 AE 2 4

0 4

0 8

3 1

3 T2 8 2

1 2

2 6

7 1

7 1

1 1

1 1

1 2

1

% @3 M

ig 8 0

0 0

0 3

5 5

5 n

r 4

4 4

4 4

8 8

8 8

a 6 3

3 3

3 4

6 6

6 M

0 0

0 t.

0 0

0 0

0 ae 7 7

7 7

7 4

8 8

8 1

1 1

1 1

1 2

2 2

s M

, 0 0

0 0

0 7

7 7

7 n

l a

ir e

1 0

0 0

0 9

9 9

9 e

3 1

1 1

1 o

t i

a s

M l

r s

)

m l

iaor u

Ta e, 3 0

0 0

0 5

5 6

5 c

e x

it

+

1 1

1 s

s InR T 1 o i

R s

it i e

(

D lc UW V n

n M

g e

oi a

o t

f n

a i

r ta t

e&

din le le le le le e

e s

le i

u omF b

b b

b b

D.

lb b

b s

H nk hrC a

a a

a a

y a

a a

s Oc e

T T

T T

T r

T T

T o

t s

et p

e o

u

)

r e

Me S

r c

D d

a m

r i

e P

W b

't lcB n

a o

)

r dl yF C

d r

u o

eat C t

nis(

0 8

6 8

6 3

4 8

4 e

l c Nr l

ri r

0 2

5 2

5 8

2 2

2 a

1 c

gemo

(

it 2

2 0

2 0

5 5

8 5

c W

M e

a saet 1

1 s

1 1

1 1

1 1

1 1

i r

sMhc a u e

A Ca m

h 3

3 st R F

b nc e

c l

aa n

h a

a kf o

Y eP C

E T

r u cF96 5

5 7

7 6

6 3

5 r

An d TnE0 7

2 2

1 1

7 6

0 6

l e

1 4

5 5

5 5

4 3

5 3

e o

a e

%u2 f

l 0

0 0

0 0

0 0

0 0

k t

F @3 (x yM s

c d

t e

e i

i lie u

N l

s M

cs q

e l d

U t

as e

- ae) 0 5

2 5

2 3

7 9

7 n

tsmk%

Fe R a

eict 7

5 5

5 5

6 5

5 5

a t

V Bts N (w i

0 0

0 0

0 0

0 0

0 n

r a

E o

e D

M p

it d

a e

p r

n tae) o m

te i p% 0 1

1 1

1 2

1 2

1 3

7 5

7 5

4 9

7 9

a smp C

t ro Bt ow 0

0 0

0 0

0 0

0 0

d sC(

e o

f E

M t

n a

h i

t m

e M

d it n

le s

e h

W E

s S

M ign q

U le l

W B

n i

s r

c t

n g

e i

d l

r s

y o

n p

d C

l e

a p

p eo o W

l e

e Ri F

o t

t h

A t )

t S

t t

e a t

c le te l

o B la te te e

e%

g g

a l

m lt L in l

la la B0 n

a.

n e

3.

f t

a 0

o o

o 4

e P

P P

P s

L)

L)

H 1

e lz n

l le e

zd l

c n

n n

B z

e le l

n lz( le%

L H

N e

o o

o o

h h

h h

ol h0 o

G N

S S S S Ne S 0 r

it i

it t

rW i

1

)

c s

c r

r r

r r

r

  • m W

e s

e e%

r m

e e

e e

e e.

pt p0

  • c S

u S

eh w

p p

w w

we o

p0 o

p p

o o

oi p

r B

eB d

L u U L L LC U(

U (1 L(

c l

e e

e s

e e

W S

D S

i t

tire

)

m t i 1

)

)

1 VeWt P M a

3 2 2 1

1 2

)

2

)

de 01

- 48 28 41 28 Rel H 6 0 4 0 4 41 61 41 61 se 3N 2 1

2 1

T L F-F-

7 1

1 1

1 F

F aW 8Y 1

1 6

1 5 5 5 5 2W TW 0W TW 2 A B

5( C C C C 8( 8(

4(

8(

m

1 W_

g Y N=

t n P nisF esi 2

r n sE 5

r a

6 M

e 1

u cB 3 1

CiL Y

Y TP RF 6

5 9

1 6

1 0

5 0

AE 6

2 2

2 2

8 6

3 6

T2 7

9 8

9 9

2 3

6 3

3 1

1 1

1 ing 9 0

0 0

0 3

5 5

5 r

2 4

4 4

4 8

8 8

8 a 6 3

3 3

3 4

6 6

6 M

3 0 0

0 0

0 0

0 0

0 e 7 7

7 7

7 4

8 8

8 1

1 1

1 1

1 2

2 2

s l

a i

0 0

0 0

0 7

7 7

7 n

r e

1 0

0 0

0 9

9 9

9 o

e 3

1 1

1 1

t i

a s

M s

)

rm u

n la o

c l

i 3

0 0

0 0

5 5

5 5

e Tw e, x

it

+

1 1

1 s

s InR T 1 o i

R D

s c

l

(

i e

it n

nWV t

g o

U f

n a

a e

oi t

it e

e&

r n

aD le le le i

nk omC le lb b

b b

b b

b s

H u

F b

le le le di e

s h

a a

a a

a y

a e

a o

Oc s

et u

p e

r t

e T

T T

T T

r T

T o

r c

e Me S

)

r d

a r

D m

i W

b P o

't lcB r

e a

n dl yF C

d

)

o u

o eat C r

l t

nis(

0 8

6 8

6 3

4 6

4 e

2 l

c Nr ri a

c gemo it 2

2 0

2 0

5 5

8 5

c W

r 0

2 5

2 5

8 2

2 2

(

1 e

a saet 1

1 1

1 1

1 1

1 i

1 s r sMhc A Ca m

h 3

a u e

e st R F

b nc e

c l

aa n

h a

a kf o

Y C

E T

eP) r u c F" 3

1 1

8 8

3 3

3 3

l r

An d TnE0 7

9 9

8 8

7 3

8 3

e o

e 1

1 1

1 1

1 1

1 1

1 a

e

%u2 f

k t

l 3 x 0

0 0

0 0

0 0

0 0

M s

Fg(

iN y

c d

e t

e il s

l e

u ics q

d U

e as e

t l n

ae) a F e R smk% 7 5

5 5

5 6

5 5

5 a

t 0

5 2

5 2

3 7

9 7

t eict a

V B s N (w t i 0

0 0

0 0

0 0

0 r

n e

D o

E p

t d

i p

a n

e o

r m

t a e) a t

p 3

7 5

7 5

4 9

7 9

C s m p%

r t

0 1

1 1

1 2

1 2

1 d

ei o

Bt ow 0 0

0 0

0 0

0 0

0 e

o f

sC(

t n

E a

h t

m e

I M

i l

d t

le le s

W E

s hS i

s r

c t

n g

e r

s y

i n

p d

C d

l o

ig l

e p

l e

a ign r

U le le W

B n

eo o

W o

Ri F

t h

A t

i t

t e

e e

l )

t S

t e a tt o B te t

t t

e%

g g

a c e e

le P

la la la B0 n

e n

e 3.

f r

ln a

o o

4 0

o lt l

P P

P iL L) w L)

H e1 n

n n

l o

l l

n lnd B

n

(

n le le e

le%

L N%

e it i

it e

o o

o e

o h

h h

h ol h0 o

h 0 r

N S

S S

S Ne S0 t

S 0 i

rW c

s c

1 r) 1 W

e s

e e%

r r

r r

r r

r e

e e

e e

e.

pt p0 wt S

u S

eh eh w

p p

w w

wc o

o o

p p

o o

oi pB p0 r

oB d

L U

U L

L LC U(

U (1 L(

c e

s e

le e

e i

WS D

S lla i 1

)

e

)

r t

)

1 VeWt P M a

3 2

2 1

1 2

)

2

)

de 01 48 28 41 28 6

0 4

0 4

41 61 41 61 Rel H 3N 2

1 2

1 T -

7 F-L F-F 7 -

se 1

1 1

1 F

8Y 1

1 6

1 aW 2A C

C C C 2W TW 0W TW 5

5 5

5 B

$(

8(

8(

4(

S(

}

- M M

g t

n nis M

esi 9

W s

r n 8

a rue 2

CcB U

. M h

ro sL T TO 0

7 1

9 9

4 A

7 7

5 8

RpE 2

4 8

7 2

3

/

5 5

2 0

T 6

5 9

0 6

2 N

1 1

3 1

A Rt 1

1 1

1 1

2 2

2 2

2 0

a 1

M ign 7

0 0

0 0

0 A

5 5

0 5

r 0

7 4

4 4

6

/

8 8

6 8

a 7

1 3

3 3

5 N

6 6

5 6

M

. M 0

5 0

0 0

0 0

0 0

0 0

a 7 8

7 7

7 8

8 8

8 8

8 s

1 1

1 1

2 2

2 2

2 2

s l

a i

0 0

0 0

0 0

7 7

7 0

7 ir e

0 0

0 0

0 9

9 9

0 9

n 1

e 3

1 1

1 1

o t

i a

s M

)

s laom M

t u

it w

3 0

0 0

5 0

5 5

5 6

5 l

iT

+

2 2

1 4

1 2

c e

x InR T

+

+

+

+

s s

R o

i s

lc D

(

i e

WV n

M it g

3 e

oin a

o t

f a

t i

r n

a e

t b

le le le e

le le e

e e

u omF le di D

lb b

b b

lb b

b lb b

s H

i 4

nk s

hrC a

v.

a a

a a

a a

a a

a T

T T

T T

T T

T T

o Uc s

et u

t e

T r

o p

e c

e Me S

M r

r D

m i

e r

b P W

v ia o

1 RB r

)

dl yF C

d o

r eat C l

la :r l

e e

3 t

nis(

0 8

8 6

6 6

9 4

4 3

4 a

ri c

M W

gemor 4

5 1

2 2

7 3

2 2

9 2

l t

b s e a

9 1

4 8

8 6

4 5

5 9

5 c

1 t

i r

saet 1

1 1

1 1

1 1

1 i

a yu e

sMhc m

h 3

A Ca T

r R

F t

Cc e

c a

n h

a e)

C E

f o

M i n d yu ID c"0 6 n

0 6

6 6

6 6

6 6

0 r

t 0

A 9

9 6

9 l

ia e

Ou 8

0 0

0 0

8 N

9 9

0 8

e o

Le1

/

l f

1 1

1 1

1 x 0 0

0 L

0 k

c t

elf (

c d

aM s

Fl e

e iN e

u e

s M

s q

ae) d U

t l s

e smk%

t 2

4 4

8 8

9 7

7 7

8 7

eict 7

5 5

5 5

5 5

5 5

5 5

n a

e R Bts N (w i

0 0

0 0

0 0

0 0

I) 0 0

a t

V

~

r a

n E

e D

o p

M i

e d

t r

a e) p t

a n

e i p%

t 3

0 0

2 2

3 6

9 9

2 9

smp o

m 1

2 2

1 1

2 1

1 1

3 1

a t

r Bt ow 0 0

0 0

0 0

0 0

0 0

0 C

sC(

d E

o e

o f

t n

a h

t i

n n

m e

e e

d h

h le i

M S

S t

W s

r r

n m

p p

ld d

E s

g e

e le r

le t

s c

- m ign o

)

p p

i d

i e

o g

U U

W W

C r

W s

y n

eo F

o) o%

it it l

t e

e a

t Ri 0

g g

h t

t e a lte tte0 tt c B te e

te te e6 n

n S

g B

n i

t l

o la la la la B4 BD o

o r

n in L

L e

o t

A e

P P

P P

eD m

ttL ln eo l

l o

n%

e 3.

f l

w L) a I(

e n

O n

n lud l

(

le e

nd e

e e

e e

o 4

B o

h h

h h

ol ol h

h L

h0 S 0 H

N S

S S

S Ne Ne S

S o

n n

n rW rW r%

e% e%

eh e

i o

o t )

)

r) 1 r

r r

r r

r r

e e

o e

e e

e e

e. we p0 p0 p0 wt i

t i

it w

p p

w w wc r

o p

p o

o oi oi p0 p0 p0 o

r r

c s

c oB W

e s

e m

la ir L

U U

L L

LC LC U (1 U (1 U(

L(

1 S

u S

d l

c e

)

l e

e s

t

)

1 e

)

VeWt 0) 9 e

i e

1 2

1 2

6 9

0 WS D

S F M a 94 7

7

)

)

8 46 2) 28 0

2 de 1 9 4

4 7

9 51 68 61 57 6

5 m

Rel H VJ 4

4 4

4 4 -

1 1

5 -

7 -

7 -

0 -

7 -

se F

F F

F 3Z 3

3 3

3 2A 1

1 1

1 1

A aW 2A 4

4 4

4 1 S TW TW TW 2W T S B

C C C C

7(

8(

8(

8(

7(

S(

1 (

m

M g Y i

'F.

tnis P n

esiF 9

r n sE -

M R

a 2

rue 5

0 cB L

N Ci 1

2 4t Y

^

M TP RF 2 7

1 4

4 7

A 3

3 7

9 f

AE 0 4

9 9

4 6

/

3 3

3 8

T5 3 1

4 7

3 6

N 6

6 6

5 1 1 1

1 1

1 1

1 1

1 M

ign 7

0 0

0 0

0 A

5 5

0 5

r 0 7

4 4

4 6

/

8 8

6 8

a 7

1 3

2 3

5 N

6 6

5 6

M M

0 5 0 0

0 0

0 0

0 0

0 ac 7 8

7 7

7 8

8 8

8 8

8 1

1 1

1 2

2 2

2 2

2 s

l n 0 0

0 0

0 0

7 7

7 0

7 M

a e

0 0

0 0

0 9

9 9

0 9

1 i

3 1

t 1

1 r

n e

t o

)

a la

,o, e m

i r

s M

i r

it 3

0 0

0 5

0 5

5 5

6 5

s M

T e

+

2 2

1 4

1 2

u InRT

+

+

+

+

le R

c x

(

s o

is s

lc i

e g

D f

n a

WV oi M

it din a

n t

3 e

omF le e

le le le le le le le e

o t

D.

lb b

b b

b b

b b

lb i

b a

r hrC a

y a

a a

a a

a a

a a

t e

t e

T u

et u

T T

T T

T T

T T

T r

i nk s

H s

Me S

Uc s

D o

c e

p e

o M

)

r r

d e

r

't vb P dl yF m

)

i o

W r

n ia eat C RB r

nis(

0 8

8 6

6 6

9 4

4 3

4 C

d ri o

o gemor 4

5 1

2 2

7 3

2 2

9 2

it 9

1 4

8 8

6 4

5 5

9 5

l c lar t

saet 1

1 1

1 1

1 1

1 l

c sMhc a

e 4

(

M A Ca t

1 s e a

F c

W 1

r y u e

i Ct R m

h 3

e r

c Y

l eP) e c

b a

n c F" 8

1 1

1 1

8 3

3 1

3 h

a a

Tn 2

0 0

0 0

2 A

8 8

0 5

f o

%eE0 2 3

3 3

3 2

N 2

2 3

2 C

E T

yu M

1

/

t n d lu5 x 0 0

0 0

0 0

0 0

n 0

l r

i 1

a e

F@(

e o

l ic t

k f

aM s

c d

Fl e

e l N

i e

e u

t t ae) s Y

s q

smk% 2 4

4 8

8 9

7 7

7 8

7 eict 7

5 5,

5 5

5 5

5 5

5 5

d U

s e

Bts N (w i

0 0

0 0

0 0

0 0

0 0

d n

M e R E

a V

a t

n r

a o

e e

D M

r i

ta e) p t

3 0

0 2

2 3

6 9

9 2

9 p

d te i p%

smp a

2 2

1 1

2 1

1 1

3 1

o t

1 n

m Bt ow 0

0 0

0 0

0 0

0 0

0 0

a sC(

C E

ro d

f e

o n

l ta h

i le t

m e

h ne d

S h

le t

r S

M i

e W

s r

n g

p e

E s

M ign o

n p

p d

c i

i eo o

o U

le ld g

U p

r d

r e

C le t

s W

s y

W o%

W

)

t )

n l

Ri F

lt e

e a

t t

0 4

t.

h B

n e a le te e

te e

e0 lt t

B4 e6 g

g S

it s

g c

in t

t o B n

n n

t M

lt L la la la la B D o

o e

o A

r eD i

le P

P P

P lnd L) a eo L

L w

I e

l l

(

f l

B u

ll H

le le l

e 3

o 4.

(

l n

o nd le e

L le%

e e

ol o

h h

h h

ol h

h h 0 H

N S

S S S Ne Ne S) S) o S 0 n

n n

rW rW t )

1 e

o o

o r

r r

r r

r%

e% e%

eh r

it i

it r

r r

e e

e e

e e

e.

e w

p o

w w

w c. wc p0 p0 p0 wt i

r r

o o

p p

o o

oi oi p0 p0 p0 c

s c

M la ir

)

oB W

e s

e L

U U L L LC LC U( U1 U (1 L(

1

(

S u

S d

l c

e e

le s

e e

t e

WS D

S

)

1 i

VeWt 0) 9

)

9 0

M a

1 2

1 2

6

)

)

P 94 46 2) 28 0

i M

8 de 1 9 4 4 7 7 9 51 66 61 57 6

7 5

Rel H se VJ 4 4 4 4 4 7 1 1

0 -

7 -

aW 3Z 3 3 3 3 1 F F

F F

2A 1

1 1

1 A 2A 4 4 4 4 1S TW TW TW 2W T S B

C C C C 7( 8(

1 (

B( 8( 7(

S(

M

M M

e h

g Y t

f t

n P o

nisF 2

d esi en r n sE

'N 1

t o a

7 ci ru e 5

CcB 1

et a 1

ff r U @

aed ei bs n t

Y oo TP n c I

RF 4

3 6

9 9

A 2

8 8

6 4

t ldu AE 9

7 5

9 4

/

8 7

7 6

4 uo N

oh T5 0

8 1

5 1

1 2

2 1

2 t

wi i

1 1

1 1

1 1

1 1

is e w

s M

ip d

yt la a n

nh r

7 0

0 0

0 A

5 5

5 0

5 aa r

b 7

4 4

4 8

8 8

6 8

/

v k

1 3

3 3

N 6

6 6

5 6

s e a7 M

ir is M

ic e t r si tu i

0 5

0 0

0 0

0 0

0 0

0 l

a a

br c 7 8

7 7

7 8

8 8

8 8

8 1

1 1

1 2

2 2

2 2

2 ae bpcm t

s pe M

t l

0 0

0 0

0 0

7 7

7 0

7 c

ic n n

a m

0 0

0 0

0 9

9 9

0 9

fi e 1

c ir 3

1 1

1 1

e e e

pr o

t se i

f a

t e

s

)

l n

iamw la s

M r

M d

pe u

it a

3 0

0 0

5 0

5 6

5 6

5 T

+

2 2

1 4

1 2

l t

InR T

+

+

+

+

as c

e R

f u s

x s

ojd i

(

o s

i e

lsa D

lc tu e M

WV g

sh n

f n

a e

t oi t

rf o

t n

a o

3 e

di le D.

le le le le le le le le le e

i a

omF h n t

r b

b b

b b

b b

b b

b e

it t io hrC a

y a

a a

a a

a a

a a

i u

s H

t e

T t t r

T T

T T

T T

T T

T nk s

et u

aa hl o

Uc s

D c

p e

Me S

u t

M oc e

hl r

)

r ca d

e r

uc m

i W

b P

)

s e o

't v

ia dl yFr eh n

RB r

eat C C

d r t nis(

0 8 8 6

6 6

9 4

4 3

4 a o o

la :r o

ri l

4 5

1 2

2 7

3 2

2 9

2 st gemt l

e 5

c t

it o 9 1

4 8

8 6

4 5

5 9

5 et a

M c

saet 1

1 1

1 1

1 1

1 iu sMh c t p c

W

(

r 1

t e

a A Ca eni i

s 1

r F

p yu e

3 m

h ols e

r R

r t

a pi e

c Cc l

r b

Y se h

a a

n eP) 7 7

7 it t C

E a

f o

c F" 9

9 9

9 3

3 9

a M

i n d

%e 2

dm 0

0 0

0 A

2 1

T yu TnE0 8

0 0

0 n

r 8

9 t

1 a

e lu5 0

1 1

1 1

N 0

1 1

1 0

ae l

x 0 0

0 0

0 0

0 0

0 0

h h e

o l

1 t

f F@(

i g

k cM t

u e, a

s or c

d Fl e

no e

i ef N

. M e

s e

u e l we t

r ae) smk%

loh d

U s

q t

2 4

4 8

8 9

7 7

7 8

7 eict 7

5 5

5 5

5 5

5 5

5 5

is s

e T

n e R Bts N (w a

i 0

0 0

0 0

0 0

0 0

0 0

a t

V E

le s e

D st n

e r

a dn M

o we p

r i

e d

lep p

r t

ta e) a p

3 0

0 2

2 3

6 9

9 2

9 se n

s m p%

t sb o

t 1

2 2

1 1

2 1

1 1

3 1

e a

m eiBt ow 0 0

0 0

0 0

0 0

0 0

0 v o C

r sC(

t ind d

o E

f l

e e

o

_ M ar t

t e a

h n

ed t

i l

n m

e l

mi s

e e

d n

h h

le do M

it S

S lec W

ws s

r r

e a

E s

n n

p p

ld d

la w ).

g e

e le i

d M

ign o i

e r

i p

p c

r U

U W

W C

le l 4 t

s o

g eo F

o) o%

it it l

W ipa e s

y

)

l e c t

e tyt l

n e

a t

Ri 0

g g

h t

Ame B n

s t

t te t

t a

e t

t te e

e le0 le6 n

n S

g f

r e

t c

ode n

B a

l la la B4 B D L

L e

o eee a

o o

r n

l f

t A

o l

P P

P lz(

M ttL lz R

n le e

zd zd h

h L

e P

eD z(

l I

w L) cwR a

f eO l

e l

n I

l l

nl e

3 o

4 z

e e

e Ie o

le%

eae B

o h

h h

h ol ol h0 r ce H r

N S

S S

S Ne Ne S

S) o S 0 upS n

n n

i rW rW r )% e% e%

eh t )

1 cy(

e o

o o

r r

r r

r r

r r

e ct e

e e

e e

e.

e.

o A l.

r it i

it c we p0 p0 p0 wto w

p p

w w wi a

i M

p0 p0 p0 oB o

c s

c o

p p

o o

r r

t f

W e

s e

e e oi L

U U

L L

LC LC U (1 U (1 U(

L(

h 1

yt m S

u S

tli fi d d

ib yle l

c l

e e

e la i 0)

)

at w eWS is r

bn t

)

1

)

e e

VeWt 9

o al 0

9

)

8 l

pf 5

a ic a 1

2 1

2 6

D S

M a 94 46 2) 28

)

2 r

M i ic 0

P de 7

1 9 4

4 7

7 9

51 68 61 57 6

1 1

ic Rel H VJ 4

4 4

4 4 -

5 -

7 -

7 -

7 enp 0

F F

F F

p h igty se 3

3 3

3 2A 3Z A

y 1

1 1

1 1

aW 2A C

C C

C 7(

8(

8(

8(

7(

8(

A 4

4 4

4 1 S TW TW TW 2W T S TsA t

B 1 (

M

M 1

D

. M g

M-t n

nis 1

esi r n s 5

r a

9 M

e u cB 1

Ci L

I r

o sL R nO 0

8 6

A 3

T 1

T E 6 3

0 2

/

1 7

7 9

4 N

9 A Rt 0

a 1

1

_ M 1

n i

1 g

5 4

5 A

0 r

3 6

0 8

/

8 1

2 2

6 N

2 a

M

_ M 0

0 0

0 0

0 7

7 7

8 8

4 e

1 1

1 2

2 1

s

_ M l

a i

e e, 0 0

0 7

7 0

n r

0 0

0 9

9 0

o t

1 1

i a

s M

s M

)

u n

l l

n u a

r c

o e

it 0

0 0

5 5

2 u e ix s

s i T a

s nRTi 5

2 5

+

t o

i

+

+

+

t lc R

D I

e

(

Si M

rWV n

o t

e e

g a

i f

w&

r oin a

t e

t i

u din a

s H

ok s

omF le le le le le D.

o b

b b

b b

Pc s

hrC a

a a

a a

y p

e o

e T

T T

T T

r t

. M le P

D S

m c

e et r

r u

i a

r Me b

W a

o 1

cB r

C d

u o

)

l t

dl yF e Nr l

c eat C a

e 6

r M

W l

e nis(0 0

0 3

3 3

c b

er a

ri 1

gemo 6

6 0

7 2

8 i

r a

su e

saet it 2

2 2

5 7

5 m

h 3

T st R sMhc 1

1 1

ec A Ca e

C F

Ba n

h a

f o

C E

M isu e

r v n d IDc90 l

7 7

5 A

7 e

o aa e

n0 5

f t

Le1 DM s

Ou 1

0 0

1 0

k

/

1 1

0 N

1 c

d x 0 elf (

e e

i le u

N

. M iys q

d Us t

e s

e t i

- at) n lie R

smk% 6 7

8 6

6 6

a t

t 8

7 1

2 5

3 a

c eict aV n

Bts N (w i

0 0

0 0

0 0

r a

F o

E e

D

. M p

it d

a e

p r

n t

- ae) o m

smp% 0 0

0 1

2 2

C p

4 4

2 8

1 4

a t

ei t

r d

ow 0 0

0 0

0 0

t o

BsC(

e o

f E

t n

a h

i t

m e

ld M

i e

t W

s E

s M

ign S

S l

s y

c i

r t

l i

t s

n le le C

o h

h l

eo r

r) l e

a e

e h

B n

p%

Ri g

g g

e n

n in p) t S

e a ig ig g

1 p%

p9 o

o o

D t

A c

_ M lt L in U9 U

a r

r r

o f

e 3

o 4.

l F

F F

oD oO H

e i

l t

t B

lt le le lt I

(

lt (

c L

l ed n

n n

e ed B

h h

Be Be o

e io o

io l

S S

t eW MW r )%

r e

t i

t r

r M

lz e

e i

l e

c s

c z.

z.

W e

s e

z p

w zt ze p0 o

p o

oir oi p0 r

N U

L NC NC U(

S 1

i S

t d

c l

e e

s e

t e

e ie W

S D

S i

a t ir

)

)

)

1

)

M VeWt 3

1

)

)

P M a

0 4 3 7

4 2

3 2

2 4 3 6 2 43 43 48 1

de 3 2 2 8 1 2 42 41 Rel H YB XJ 0C 9 -

7 -

se T -

3D 3K 4C 3F 9 F F

aW 2A 1

W 2 A 7E T

( 2W 2W i

B 1 (

(

T( 8(

1 (

M

M 1

M g Y t

n P

M nis esiF N

5 r n sE -

a 5

rue 1

1 cB 2 M

Ci L

M Y

I TP RF 0 0

8 AE 7 0

0 A

7 9

/

9 1

T1 6

6 8

N 1

5 1

1

% @2 M

n ig 5 0

4 A

5 0

r 0

5

/

8 8

a 8 N

6 2

2 1

M

- M 0

0 0

0 0

0 ac 7 7

7 8

8 4

1 1

1 2

2 1

s l

- M a

i i 0 0

0 7

7 0

n r

e t

- 0 0

0 9

9 0

e o

1 1

i a

s M

laeer u

r ui s

)

- M n

l o

es it 0

0 0

5 5

2 c

i T 5

2 5

ix

+

s nRT

+

+

+

t o

I i

a s

R t

l e

D c

(

SirWV n

. M g

o t

f e

e oin a

a w&

t i

r n

a t

e ok omF le le le lb b

u di e

le i

D.

s H

b b

b s

hrC a

a a

a a

y o

Pc s

et t

e T

T T

T T

r o

u p

e c

e Me

)

r r

d a

r D

S b

m i

't e

P W

a o

n lcB r

)

dl yF C

d o u o

eat C r

c Nr l

t nis(

l ri 0

0 0

3 3

3 a

e

(

c gemo 6

6 0

7 2

8 c

W r

7 e

- M it 1

er a

saet 2

2 2

5 7

5 1

sMhc i

su e

1 1

1 A

Ca m

h 3

e st R F

l b

ec e

c a Ba n

h a

f o

Y eP C

E T

su cF9

_ M 5

5 7

7 7

r in d

TnE0 6

1 v

3 3

A 3

1 l

t u1 0

4 4

/

6 e

o aa e

%e 1

N 0

4 f

0 0

k 0

0 0

F @2 (x DM s

l c

d e

i e

le u

N s

y

- M t s q

e l d

U t

is e

+ ae) l t

8 7

1 2

5 3

n ie R

smk%

a eict 6

7 8

6 6

6 a

t cV Bts N (w i

0 0

0 0

0 0

a n

r a

F o

e D

E M

p it d

a e

p r

n tae) o m

s m p% 0 0

0 1

2 2

C t

p 4

4 2

8 1

4 a

r ei t

o Bt ow 0 0

0 0

0 0

d sC(

e o

f E

t M

n a

h i

t m

e M

i d

t le s

W E

s i

. M io le le i

s y

n l

l c

t s

r C

e a

l h

h l

gn S

S le B

n eo r

r)

Ri g

g g

e p%

e n

A t

t a

n m

p) e in ig g

1 S

p%

p9 a

c g

n ltL o o

o D

e e

3.

f r

U9 U tio r

r r

o 4

F F

F oD oO w

H e

l l

t I(

(

t o

n n

n B

lt le le tted lt L

h h

l eld e

o o

o eB S

S Be Be o

r i

i it t

t i

eW teW r%

W e

s e

e

)

c s

c r

r g

lz e

e l

e z.

z.

z p

w ze zc p0 N

U L

NC NC U1 d

S u

S o

p o

oi oi p0 r

r c

(

l e

e s

e e

e W

S D

S i

l l

e a r

)

)

1

)

t i 3

1

)

)

g

)

VeWt P M a

0 4 3 7

4 2

3 2

e 2

4 3 6 2 43 43 48 1

R e 'd. H 3 2 2 8 12 42 41 se YB XJ 0C 4 -

7 - T -

aW 2A 2A P C TW 2W 2W, 3D 3K 4C 3F 9 F F

1 B

1 (

1 (

S( 8( T( 8(

g

e 1

M g Y n P t

N nisF esi 4

sE nn a 1

W e

1 1

u cB 2 CiL e

I Y

TP RF 6

8 6

A 3

6 AE 9

6 0

1

/

7 1

5 4

7 N

7 1

T1 m

2 ing 8 4

3 A

6 0

r 3

0 0

8

/

a 4 N

5 2

1 1

M 0

0 0

0 0

0 ac 7 7

7 8

8 4

1 1

1 2

2 1

e e

0 0

0 9

9 0

s la 0

0 0

7 7

0 n

ir c

e o

1 1

t i

a s

s M

)n u

l t

iiTeamt c

n l

0 0

0 5

5 2

o e

t 5

2 5

+

s ix s

nR T +

+

+

i t

o I

a s

R D

t lc

(

e a

rWV Si n

t g

o e

oin a

a f

e&

i ta t

e r

w u

omF le le le lb b

dn e

le i

D.

s H

i b

b b

ok s

hrC a

a a

a a

v o

Pc s

et u

p e

T T

T T

T r

e t

o r

e Me S

)

r d

a r

D m

i c

W b P o

't lcB r

y )F C

d e a n

dl u

o eatrC l

l e

8 m

(1 t

nis(

0 0

0 3

3 3

a c N :r c

gemo 6

6 0

7 2

8 c

ri W

r 1

e it er a

saet 2

2 2

5 7

5 i

1 1

1 3

sMhc m

h su e

a A C F

)

st R e

c ib ec

t Ba n

h a

f o

Y C

E MT isu c F" 9

9 9

l eP) 3 3

r 5

5 A

2 v n d TnE0 2

/

2 e

o 2

5 aa e

%e t

lu1 0

1 1

N 0

1 k

1 f

2 x 0

0 0

0 0

c d

DM s

Fg(

e i

e N

s le u

y d

U t s q

e t

t 8

7 1

2 5

3 n

a is e

ae)

-smk%

t lie R

6 7

8 6

6 6

a t

eict caV B s N (w a

t i 0

0 0

0 0

0 r

n E

e D

M F

o p

d it p

a e

n o

r

.t e) a m

a 4

4 2

8 1

4 e i p% 0 0

0 1

2 2

d smp C

t r

t o

Bt ow 0 0

0 0

0 0

e o

M sC(

t s

f E

n a

h t

m e

i M

i d

t le s

W E

s i

s e

ts y

r n

l l

i e

a le le C

l o

h h

ign S

S i

B n

eo r

r) te Ri g

g g

e) e%

h t

t A

M te tt le le a n n

n p

p1 S

i p%

p9 r

f a

e i

ig g

c g

r r

i L o

o o

D e

e 3

o 4.

n U9 U

i o r

F F

F oD oO w

H t

t o

n n

n t I t

(

l

(

B t

l led t

L h

h l

ed e

o o

o eB Be Be o

r it i

it l

S S

M lz e

e t

i c

s c

eW eW r )%

W e

s e

e r

r e

l l

z.

z.

z p

w zc ze p0 o

p o

oi oi p0 S

u S

r r

N U

L NC NC U1 d

c

(

l e

e s

e e

e i

W S

D S

l M

la ire

)

t

)

)

1

)

3 1

)

)

VeWt P M a

0 4 3 7

4 2

3 2

2 4 3 G 2 43 43 48 1

de 3

2 2 8

1 2-42 41 Rel H YB XJ 0C 9

7 -

T -

se 3D 3K 4C 3F 9F F

1 aW 2A 2A P B TW 2W 2W B

1 (

1(

S{

8(

T(

8(

m

7 M

1 1

D M

g t

n

'N nis esi 4

r n s 4

r a

1 uecB 2

CiL b"

M ro sl T ro 5

5 8

3 1

1 9

8 8

A 0

5 3

3 RrE 7

2 7

5 6

6 6

1 2

/

0 8

0 0

2 3

2 2

T 2

6 2

4 3

3 0

2 N

A Rt 2

2 2

1 2

2 1

a 1

1 1

1 1

1 1

D M

I in 7 6

6 6

6 6

3 5

0 A

5 3

5 5

g r

0 3

3 3

3 3

8 8

6 8

8 8

8

/

a 7 6

6 6

6 6

4 6

5 N

6 4

6 6

M 0

0 0

0.

0 0

0 0

0 0

0 0

0 0

3 7

7 7

7 7

7 4

8 8

8 8

4 8

8 c

1 1

1 1

1 1

1 2

2 2

2 1

2 2

s la ir n

e ci 0 9

9 9

9 9

7 7

0 6

7 7

7 7

1 6

6 6

6 6

9 9

0 0

9 9

9 9

o t

3 2

2 2

2 2

1 1

2 1

1 1

1 i

a s

M s

)

u iaom l

l r

c e

it u

3 1

1 1

1 1

5 5

0 7

5 5

5 5

x s

s T

+

+

+

+

+

+

1 1

o s

nR T

+

i it c R

D I

l e

(

niUWV n

o t

e g

a i

n r

f o&

n e

oi ta a

t t

i u

a a

n e

le le le le le D

le le s

H F

D le le le le di lb b

b b

b b

b b

b b

b b

o ik s

omC ta c h

s a

a a

a a

a y

a a

a a

y a

a o

e T

T T

T T

T r

T T

T T

r T

T p

e r

t tSc e

et u

u r

r Me S

S m

i W

rb P D

a a o

n eB r

C d

o i

lc :r

)

l t

dl yF l

r e

9 a u c

eat C a

M nis(

3 5

0 0

5 5

1 6

6 6

4 0

4 4

c W

e ri 1

lb Nr a

gemor 9

4 5

3 4

4 1

0 7

0 2

6 2

2 i

it c

u e

saet 1

0 6

8 7

7 4

7 6

2 5

4 5

5 3

m h

T et R sMhc 1

1 1

1 1

2 1

1 1

1 ec A Ca e

c F

na n

h a

of o

C E

M cu e) r On d D c"0 l

8 6

4 4

8 8

8 8

6 3

8 9

9 e

o I

n 1

9 0

0 6

6 1

2 9

A 2

6 2

2 f

a e

Le1

M s

ou 1

7 9

9 8

8 1

6 7

N 7

8 7

7 k

t

/

elf (

i d

x 0 0

0 0

0 0

0 0

0 0

0 0

0 c

y e

e t l e u

N M

i s

lis q

c e l d

U s

e t

- ae) n a e R smk%

5 0

0 0

3 3

2 4

9 8

7 4

7 7

a t

V eict 6

5 5

6 6

6 5

6 5

6 5

5 5

5 a

t F

n Bts N (w i

0 0

0 0

0 0

0 0

0 0

0 0

0 0

r a

o E

e D

p i

t d

a e

p r

n ta e) o m

s m p%

p 6

5 0

2 1

1 3

1 3

4 9

2 9

9 a

t C

t 1

1 1

1 1

1 2

2 2

3 1

2 1

1 r

ei d

o Bt ow 0 0

0 0

0 0

0 0

0 0

0 0

0 0

sC(

e o

M f

E t

n a

h t

I m

e d

d d

it M

le le le le s

d m.

W W

W W

E s

c i

r it e

t g

s n

n e) n C

C le C

ld le l

g r

r e

t i

i d

i e

r d

s y

o ig te n%

o ign e

a r

a H

n L

e e

W i

W W

o o0 l

S S

r S

ig ig t

F Pl eo R

0 h

h e

B n

Rit l

t L

1 le h

t t

e a 4

le e

e e

e lt g

A

(

c e t

t t

t e

h r

r n

d n

n n

a f

l o B h

la la la la Bl S

e e

r i

S e

p p

o e

o o

e 3

o 4

tt L lz t

n n

le le z.

i0

)

e P

P P

P e

e) p p

l) w l

D L

L lzW e

I H

ta%

U U

e l

l

!e%

o le e

n n

n B

z i

h h

h h

oc d 0 o) o%

h0 h

h e

it i

it a

e e

L o

d r

t.

t.

S 0 o

o o

o N

e S

S S

S Ni e1 rC mh m%

m3 S)

S) r t )

9 1

m r

r r

r r

eh e% e% e%

c s

c 1

r r

r r

i e

e e

e e

en r t r 6 r

M e

eD pt p0 w0 w0 W

e s

e r

w e

p p

w w

we eo tnI Ino 0

0 o

t p

p0 p

p o

o oh t

D o

t nB B

o o1 n

S u S L

I U

U L

L LS 1

1 U(

U(

L(

L(

i(

I (

(

d c

e le s

e l

e e

e la i

)

5 3

9 3

5 6

0 WS D S

i r

t

)

)

)

)

)

)

)

VeWt P M a

1 4 2

1 1

1 2

3 2 7 2

)

9 8

2 3

de 65 8

7 5

8 0

0 2

6 0 2

45 2

2 2

1 4

5 4

4 Rel H 2R 9

6 7

0 0

8 -

9 42 6

5 6

6 se 9 1 1

1 1

1 1

1 7 -

4 -

7 7

4 -

L 7A 0A 2A 9 F 1

2 2

8 8

H aW VA 2

3 3

2 2

A 4A A

A 1

1 1

1S P S 1 S 9W T S 2S T S T S B

Z(

C C

C C C 6(

1(

7(

2(

8(

7(

B(

8(

M

1 1

M Y_

g t

n P nis esiF 0

7 r n sE M

0 r

a 1 0

uecB 2 2

CiL I

Y TP RF 1

7 9

3 1

1 3

0 8

7 2

0 0

AE 9

8 2

6 9

9 5

4 4

A

/

7 0

8 8

0 3

1 2

1 1

8 7

8 N

6 5

6 6

T1 1

1 1

1 1

1 1

1 1

1 1

1

% @2 in 7 6

6 6

6 6

3 5

0 A

5 3

5 5

gr 0

3 3

3 3

3 8

8 6

8 8

8 8

/

a 7

6 6

6 6

6 4

6 5

N 6

4 6

6 M

3 0 0

0 0

0 0

0 0

0 0

0 0

0 0

e 7 7

7 7

7 7

4 8

8 8

8 4

8 8

1 1

1 1

1 1

1 2

2 2

2 1

2 2

s la i

i 0

9 9

9 9

9 7

7 0

6 7

7 7

7 n

r s

1 6

6 6

6 6

9 9

0 0

9 9

9 9

e o

3 2

2 2

2 2

1 1

2 1

1 1

1 t

i a

s M

s

)n r n u

l laor e

i uo 3

1 1

1 1

1 5

5 0

7 5

5 5

5 c

x it T w

+

+

+

+

+

+

1 s

s InR T

+

i 1

o R

s D

t c

(

l e

ini UWV n

g o

t f

e oin a

a a

i n

r t

t o&

a a

t e

din ie le le le le le D le le le le D

le le i

u F

b b

b b

b b

omC r

a a

a a

a a

v.

b b

b b

b b

s H

ik s

h t

a a

a a

y a

a o

a c t

e T

T T

T T

T r

T T

T T

T T

s et u

u p

e r

o

)

t d Sc e

Me S

S r

r D

m i

't rb P o

W n aa

)

r yF eB dl r C

d c

lc:

t nis(

3 5

0 0

5 5

1 6

6 6

4 0

4 4

a c

o eat C l

l ri e

0

(

r c

gemo 9

4 5

3 4

4 1

0 7

0 2

6 2

2 c

W 2

u r

e t

a Nr a

isaet 1

0 6

8 7

7 4

7 6

2 5

4 5

5 i

sMhc 1

u e

1 1

1 1

1 2

1 1

1 1

A Ca m

h 3

e et R F

ec e

c lb na n

h a

T cu eP)

C E

c of o

Y 4

8 5

5 0

0 4

5 8

6 0

9 9

r c F "0 On d Tn 1

1 7

4 A

l E

5 4

9 9

8 8

5 1

8 1

1 3

e o

a e

%u1 e

1 0

3 3

3 3

3 0

2 3

N 3

3 3

f

/

0 0

0 0

0 0

0 k

t l 2 x 0

0 0

0 0

0 M

s F@(

c d

y e

e i

t l ie u

N l

s is q

e l d

U c

t s

e

- ae) n a

tsmk%

5 0

0 0

3 3

2 4

9 8

7 4

7 7

a e R eict 6

5 5

6 6

6 5

6 5

6 5

5 5

5 a

t F V Bts N (w n

i 0

0 0

0 0

0 0

0 0

0 0

0 0

0 r

a o

e D

E p

it d

p a

e n

r

.t e) o m

a a

e i p%

6 t

5 0

2 1

1 3

1 3

4 9

2 9

9 smp C

t 1 1

1 1

1 1

2 2

2 3

1 2

r 1

1 d

o Bt ow 0 0

O 0

0 0

0 0

0 0

0 0

0 0

e o

sC(

f E

t n

a h

t i

m e

ld M

it d

s e

i h

d W

e le E

s le W

W s

i e

m.

W r

i e

t r

n g

r e

s y

n e) t C

i d

r d

d l

o e

e C

l e

e a

t g

l n

l e

C le le g

ign i%

n le le W

le r

t 0

o h

l W

W B

n eo o

ia Ri F

P o 0 L

A S

h t

t u

S t

h t

t t

t 1 e a lt tt e(

e g

S g

g a

f l

o B h

te e

e e

r l

c e e

n e

r t

t t

i a

la la la Bld h

n n

n e

3 o

4 p

e r

tt L S

l P

P P

e S

p p

o e

o o

)

p L

w L

L H

e le P

leW e%

U U

n%

o n

n e

l n

n n

)

B n

t n

le le e n.

i a

e l

n ta e

L e

e e

it i

io o

o h

h h

h oc 0

o

)

o o%

h0 h

h r

M-r d 0

t. %

)

S0 o

N S

S S

S Ni e1 t.

S)

S) t i

rC t )

9 1

c s

c e

e e

e e

ei mh m1 m3 eh e%

r%

e%

W e

s e

r i

r r

r r

l r

r6 r

r r

r e

r w

e p

p w

w we e o e

eD pt p0 w0 w0 S

u S t

0 0

o p0 o1 o

d p

p o

o oh D

L I

U U

L L

LS InB InI Ino p

t t

o t

t B

n U(

U1 L(

L(

c 1

(

(

(

(

l e

e s

e e

e WS D S

i l

e la i

)

5 3

9 3

5 6

0 r

t

)

)

)

)

)

)

)

VeWt P M a 1 4 2

1 1

1 2

3 2 7 2

)

9 8

2 3

8 7

5 8

0 0

2 6 0 2

45 2

2 2

de 65 1

4 5

4 4

9 42 6

5 6

6 Rel H 2R 9

6 7

0 0

8 -1 91 4 -

L -

7 -

4 -

7 -

1 1

1 1

1 7

se 7A 0A 2A 9 F H

1 2

2 8

8 A

1A A

4A aW V A C

C C C C 6(

1 (

7(

2(

B(

7(

8(

8(

1 1

2 3

3 2

2 S

P S 1 S 9W T S 2S T S T S B

1 Z(

i 1

N g Y t

n P nis esiF 1

N r n sE -

6 r

a uecB1 4

2 1

CiL "A

I Y

TP RF 7 3

7 6

7 7

0 5

1 3

0 5

5 AE 7 3

5 5

0 0

4 4

/A 5

1 4

1 1

8 1

9 0

0 0

6 3

N 6

3 1

3 3

T1 1

1 1

1

% @2 1

1 1

1 1

1 ing 0 6

6 6

6 6

8 5

A 5

5 3

5 5

r 5 3

3 3

3 3

5 8

/

8 8

8 8

8 a 6 6

6 6

6 6

4 6

N 6

6 4

6 6

M 3 0 0

0 0

0 0

0 0

0 0

0 0

0 0

e 7 7

7 7

7 7

4 8

8 8

8 4

8 8

s 1

1 1

1 1

1 1

2 2

2 2

1 2

2 la ir e

ei 0 9

9 9

9 9

7 7

0 6

7 7

7 7

n 1

6 6

6 6

6 9

9 0

0 9

9 9

9 o

t 3

2 2

2 2

2 1

1 2

1 1

1 1

i a

M ss

)

lamm u

le t io c

x InRTis 3

1 1

1 1

1 5

5 0

7 5

5 5

5 i

s iT 1

+

+

+

+

+

+

o s

1 s

R

+

i it c D

l e

(

niUWV n

g e

f o

t n

r oin a

a i

o&

a t

t t

u dn a

e s

omF le le le le le le D

le le e

le a

i ik i

b b

b b

b b

D le le s

H hrC a

a a

a a

a y.

b b

bl b

b b

ta c a

a a

a v

a a

o s

t e

T T

T T

T T

r

)

o t

T T

T T

r T

T p

e d Sc e

et u

r Me u

r D

S S

i

't rb P m

n aa o

W o

eB r

)

o dl yF C

d c

lc:

t eat Cr l

(

r nis(

l u

c ri 3

5 0

0 5

5 1

6 6

6 4

0 4

4 a

e 1

a Nr a

gemo e

r W

2 it 9

4 5

3 4

4 1

0 7

0 2

6 2

2 c

u e saet i

1 0

6 8

7 7

4 7

6 2

5 4

5 5

i sMhc 1

1 1

1 1

2 1

1 1

1 e

et R m

h 3

A CaF ec l

b na n

e c

h a

a of o

Y T

cu eP)

C E

On d c F" 6

4 4

8 8

7 7

8 r

8 6

5 8

6 6

a e

Tn l

8 9

A 2

1 3

1 1

eE0 2

4 4

3 3

e o

1

%u1 1

9 0

1 1

1 1

1 0

0 N

1 1

1 1

1 k

f 1

/

t

M s

l 2 (x 0 0

0 0

0 0

0 0

0 0

0 0

0 c

d y

F e

9 t l i

e e

u N

i l

s is q

c e l d

U s

e t

a e R smk%

ae) n t

5 0

0 0

3 3

2 4

9 8

7 4

7 7

a F V eict 6

5 5

6 6

6 5

6 5

6 5

5 5

5 a

t n

Bts N (w i

0 0

0 0

0 0

0 0

0 0

0 0

0 0

r a

o E

e D

it p

a p

d e

t r n

m

. ae) o a

s m p%

t r

p 6

5 0

2 1

1 3

1 3

4 9

2 9

3 C

ei t

1 1

1 1

1 1

2 2

2 3

1 2

1 1

d o

f Bt ow 0

0 0

0 0 0 0 0

0 0

0 0

0 0

e o

s sC(

E n

ta h

I t

m e

M d

it d

le d

s le W

le e

i W

E s

m.

W r

t s

e i

g r

n n

te) t i

C d

i le le e

a r

c r

d d

s y

o g

e i

g C

l le C

t in%

n le h

n l

ign o l

eo F P

o0 o

l l

W r

a e

W W

B n

t 0 L h

S it h

ig ig a

f Ri N

S e

t t

t e a lt ll e te e

e t 1 t

A e

e te(

e r

g S

c t

t t

n B

h l

P P P r

e) n n

n il o S

la l

la Bld h e

a a

p o

e o

o e 3 o 4

r p%

e S p

e P

lt L ln i h h h h oe i0 o) oD h0 h

h e

it i

it eW 9 L w

L e

a n%

o tt L

)

p

)

l H

te% U U3 l

e t

l n n N n.

a le e e e n

n n

B e

L e

le o

N W

o o o

r d 0

t. %
m. O t

S S S S Ni e

S0 o

S) S) r rC

n. 1 m1 t

r

(

1

)

r r

r r i

e m

e e e e en r%

e% e%

W e s e

r r

r c s c

h d

eh e

6 w

e p p w w we e o te el pt p0 r

.t r

0 w0 w0 o

t p p o o oh t

t e po p0 o

o1 S u S

n 0

0 L

I U U L L LS InB In1 InW U( U(

8

(

L(

d B

1 1

(

(

c e

l l

e s

e e

e l

s WS DS i

a t ir

)

)

)

3 5

6 0

VeWt

)

)

)

)

)

5 3

9 1 4 2 1

1 1 2 M

a de 65 3 2 7 2

)

P 45 2 9 8 2 2 5

6 4 2 3 8

7 5 8 0 0 2

6 0 2

1 Rel H 2R 9 6 7 0 0 8

9 4 - L - 7 9

42 6 4 5

6 4 1

1 1

1 1

se 1

1 4

7 7

1 2 2 8 8 H

2 3 3 2 2 7A 0A 2A 9 F

-A 4 A-aW V 1

A 1

A 1

A S P S 1 S 9W B

1 T

2$ T S T Z( C C C C C 6( I (

7( 2( 8(

S ~7 (

S 8( 8(

1 I

M-dgen W

e sis Bo si 8

n s 3

op e a 1

To icB 2

rPL I

ro sL T rO 9

0 4

0 6

6 6

8 6

A 0

0 5

5 R eT E 7 4

8 6

7 7

5 3

5

/

6 5

4 4

A Rt 2

N 0

8 0

0 1

6 2

4 3

3 9

12 2

2 1

2 2

1 1

1 1

1 1

D a

I n

ig 7 6

6 6

6 6

3 5

0 A

5 3

5 5

r 0

3 3

3 3

3 8

8 6

/

8 8

8 8

a 7

6 6

6 6

6 4

6 5

N 6

4 6

6 M

0 0

0 0

0 0

0 0

0 0

0 0

0 0

a 7 7

7 7

7 7

4 8

8 8

8 4

8 8

c 1

1 1

1 1

1 1

2 2

2 2

1 2

2 s

la i

r n

e i 0 9

9 9

9 9

7 7

0 6

7 7

7 7

o e

1 6

6 6

6 6

9 9

0 0

9 9

9 9

ta 3

2 2

2 2

2 1

1 2

1 1

1 1

is M

su

)

l l

r n.

c n

e a er 3 1

1 1

1 1

5 6

0 7

5 5

5 5

s x

s it io 1

o iT w

+

+

+

+

+

+

1 i

s InRT

+

it c R

D l

e ni

(

UWV n

e o

ta g

n r

f o&

i t

u oin ta a

s H

a a

e i

t k

s din e

le w D

le le le lb a c omF le lb b

b le le it e

D.

le le b

b o

b b

b s

hrC a

a a

a a

a y.

b b

b a

a a

a v

a a

p e

t o Sc e

t e

T T

T T

T T

r T

T T

T r

T T

r et u

u m

r i

Me S

S rb P D

W aa o

b r

1 leB C

d o

)

l c:

t dl yF e

2 l

e u

c eat C a

r r

W 2

e nis(

3 5

0 0

5 5

1 6

6 6

4 0

4 4

c lb Nr a

ri gemor 9

4 5

3 4

4 1

0 7

0 2

6 2

2 i

u e

i t

a m

h 3

1 0

6 8

7 7

4 7

6 2

5 4

5 5

saet et R sMhc 1

1 1

1 1

2 1

1 1

1 T ec A Ca e

c na n

F h

a cu C

E of o

r On d e) l D c"0 6

I n

8 8

2 2

0 0

6 5

4 4

9 7

7 e

o a

e 8

7 3

3 3

3 3

5 4

A 9

9 6

6 k

f Le1 t

7

M s

Ou 0

8 9

9 9

9 0

6 8

/N 7

8 7

7 c

d y

e elf (x 0 0

0 0

0 0

0 0

0 0

0 0

0 i

e t l e

u N

i s

l is q

c e l d

U s

e t

a e R smk%

ae) n a

t 5

0 0

0 3

3 2

4 9

8 7

4 7

7 a

t F V eict 6

5 5

6 6

6 5

6 5

6 5

5 5

5 n

Bts N (w i

0 0

0 0

0 0

0 0

0 0

0 0

0 0

r a

i E

e D

o p

t d

p a

e n

r

.t e) o m

a a

ts m p%

p 6

5 0

2 1

1 3

1 3

4 9

2 9

9 C

r ei t

1 1

1 1

1 1

2 2

2 3

1 2

1 1

d o

Bt ow 0

0 0

0 0

0 0

0 0

0 0~

0 0

0 e

o f

sC(

E t

n a

h i

t m

e d

M i

d d

t le le le le d

s m.

W W

W e

W E

s i

r it e

t s

g n

n g

i r

e r

i d

i d

n C

C le C

le ld s

y o

r e

e) r t

g in%

o l

t ign e

e a

ro la u

n F

P o 0 L

e e

W W

W eo 1

te h

B n

n t 0 t

S S

e S

it t

Ri h

h e

t lt le te e

te te a

l t

t i

t A

e le(

h r

r c e g

g g

t S

e e

n n

n a

n l

o B h

la la la la Bld f

S e

p p

o M

o o

e 3

o 4.

i e

P P

P P

tt L lz e

e) p p

L) w L

L lzW e

e a%

U U

n%

o n

t H

t B

z t

n n

n n

n n

n e

L e

le a

e e

e e

z.

i0

)

o i

h h

h h

oe d 0 o) o%

h0 h

h e io o

ito d

N r

e S

S S

S Ni e1 t.

t.

S0 o rC mh m% m3 S)

S) r t) 9 1

t i

m r

r r

r r

i eh e% e% e%

W e s e

1 r

r r

r c s c

e r

e e

e e

en r t r 6 r

pt p0 w0 w0 w

e p

p w

w we eo e

eD o

p0 o1 o1 S

u S

0 0

o t

p p

o o

oh D

t t

p t

L I

U U

L L

LS InB InI InO n

B U(

U1 L(

L(

d

(

(

(

(

c

)

e le s

e e

e ll WS D S

i e

a t ir

)

)

)

)

)

)

)

VeWt

)

5 3

9 3

5 6

0 P M a

1 4 2

1 1

1 2

3 2 7 2

9 8

2 3

)

de 65 Rel H 8

7 5 8 0 0

2 6 0 2

45 2 2

2 1

4 5

4 4

9 42 6

5 6

6 se 2 R 9 6 7 0 0

8 -

1 9 1 1

1 1

1 1

7 4 -

L 7

7 4 -

1 2 2 8 8

7A 0A 2A 9 F H

aW V A C C C C C 6(

1 (

7(

1A 4A A

A 1

1 2 3 3 2 2

Z(

S P S S 9W B

1 1

T S 2S T S T S 2( 8(

7(

8( B(

1 1

M dg Y N

en P

e sisF Bo si 1

n sE 3

op e 3

a 0

To cB 3 2

d riPL @

U

.Y TP 0

6 8

6 6

3 3

1 6

4 1

RF 1

1 A

5 5

4 4

AE 8

0 9

4 7

7 4

1 3

/

0 5

1 3

2 2

8 9

0 N

8 6

8 8

T3 1

1 1

1 1

1 1

2 1

1 1

1 3

in 7

6 6

6 6

6 3

5 0

A 5

3 5

5 g

0 3

3 3

3 3

8 8

6 8

8 8

8

/

ra 7

6 6

6 6

6 4

6 5

N 6

4 6

6 M

0 0

0 0

0 0

0 0

0 0

0 0

0 0

ac 7 7

7 7

7 7

4 8

8 8

8 4

8 8

1 1

1 1

1 1

1 2

2 2

2 1

2 2

s la i

e ci 0

9 9

9 9

9 7

7 0

6 7

7 7

7 n

r 6

6 6

6 6

9 9

0 0

9 9

9 9

o 1

t 3

2 2

2 2

2 1

1 2

1 1

1 1

i a

s M

s n

u

)

l laern c

e it 3

1 1

1 1

1 5

5 0

7 5

5 5

5 s

s iT e x

+

+

+

+

+

+

1 1

i InR T

+

o s

R D

t c l

e ini n

(

UWV o

t e

g a

i f

a t

n r

oin a

t i

o&

e ta a

u dn e

le D

le e

e le ik s

odF le le le le lb b

b lb lb b

b b

D le le s

H b

b b

b o

ta c hrC a

a a

a a

a y

a a

a a

v a

a r

T T

p e

s

)

t o

e e T

T T

T T

T r

t T

T T

T r

r t

u u

d Sc e

Me S

S m

i r

W D

't rb P o

n aa r

C d

n leB

)

c o

dl yF l

r l

c:

t eat C e

3 a

(

r c

nis(

3 5

0 0

5 5

1 6

6 6

4 0

4 4

c W

2 u

ri e

gemo 9

4 5

3 4

4 1

0 7

0 2

6 2

2 r

b Nr a

it i

saet 1

0 6

8 7

7 4

7 6

2 5

4 5

5 3

u e

sMhc m

h i

1 1

1 1

1 2

1 1

1 1

et R A Ca ec e

c e

F b

na n

h a

l c

of o

Y C

E T

cu eP r

On d cF9 6 6

l 8

6 6

5 5

5 2

1 6

4 4

1 7

7 7

7 0

2 A

9 5

7 7

e o

8 8

Tn a

e

%eE0 4

4

/

f M

s lu3 0

5 5

5 5

5 0

4 5

N 4

5 4

4 k

t 1

3 x 0

0 0

0 0

0 0

0 0

0 0

0 C

c d

y e

F@(

e iN s

t l l

e u

i is q

d U

c e l n

a s

e t

a e R smk% 6 5

5 6

6 6

5 6

5 6

5 5

5 5

a ae) 5 0

0 0

3 3

2 4

9 8

7 4

7 7

a t

t F

V.

eict n

Bts N (w i

0 0

0 0

0 0

0 0

0 0

0 0

0 0

re D

o E

p d

it p

a n

e o

m r

a t

- ae) 6 5

0 2

1 1

3 1

3 4

9 2

9 9

C e i p%

tsmp r

t 1

1 1

1 1

1 2

2 2

3 1

2 1

1 d

o Bt ow 0 0

0 0

0 0

0 0

0 0

0 0

0 0

e o

f sC(

t n

E a

h t

m e

I M

i d

t d

le ld s

W E

s e

le

.c W

i m.

W i

e t -

s r

g r

C i

d i

le le e

a t

d d

s y

r c

n n

e) i l

C le C

r i

e t

g le le W

le t

A l

o g

t In%

n l

l W

W B

n ign o la r

0 o

h eo F

P o0 L

e(

l S

h h

t t

Ri tt n

t t

1 S

i i

i t

t le e

r e a e e

e e

e e

r g

S g

g a

f l

t t

t t

c B h

a l

l Bld h

e n

n n

i o S

la l

P P

ln a

a p

p o

e o

o e

3 o

4 r

p%

)

e S

e P

P p

L) w L

L H

lt L lz te leW te%

U1 U

n%

o le le

)

l l

n n

n n

n n

n z

e a

6 e

L z

a.

e e

e e

z.

B o

h h

h h

oc i0 o

)

h 0 h

h e

it i

it o

o o

o%

d r

d 0 t. D S 0 o

S)

S) r t

N e

S S

S S

Ni e1 I

t )

rC 9

1 i

m( m3 r

r r

r c

s c

m eh e% e% e%

W e

s e

mh rd r

r r

r r

e e

e e

eu e

r r t teD pt p0 w0 w0 r

0 0

w e

p p

w w

we eo ele o

p0 t

p p

o o

oh t

t o1 o

S u

S p

o InW InO L

I U

U L

L LS InB B

1 n

U(

U(

L(

L(

d 1

C

(

(

e le s

e e

e WS D S

i lla i

)

5 3

9 3

5 6

0 e

r t

)

)

)

)

)

)

)

V eWt 1 4 2

1 1

1 2

3 2 7 2

9

- 5 2

2

)

8 2

3 M

a 7

5 8

0 0

2 6 0 2

45 2

65 PRede 1

4 4

4 1

1 7 1 5

6 6

9 42 6

8 l H 1

se 2 R 9

6 7

0 0

8 -

1 1

1 9

4 -

L 7

7 -

4 -

F 1

2 2

8 8

7A 0A 2A 9

H A

4A A

1 A 1

1 aW V A C

C C C C

6(

1 (

7(

2(

8(

7(

8(

8(

2 3

3 2

2 1S P S 1S 9W T S 2S T S TS B

Z(

M 1

1 M

dg Y M

en P

e sisF W

Bo si 0

n sE 8

op e 3

a 8

To cB 3 rPU @

f Y

TP RF 8

6 4

8 8

8 8

5 3

1 8

8 8

s A

5 6

6 4

4 AE 6

2 2

2 7

7 2

8

/

8 2

0 1

0 0

6 4

N 8

4 2

4 4

T3 1

1 1

1 1

1 1

1 1

1 1

% @3 M

ing 8 6

6 6

6 6

3 5

A 5

5 3

5 5

r 4

3 3

3 3

3 5

8

/

8 8

8 8

8 a 6 6

6 6

6 6

4 6

N 6

6 4

6 6

s M

i M

0 0

0 0

0 0

0 0

0 0

0 0

0 0

.c 7 7

7 7

7 7

1 8

8 8

8 4

8 8

1 1

1 1

1 1

1 2

2 2

2 1

2 2

s M

la ir 0

9 9

9 9

9 7

7 0

6 7

7 7

7 n

e or 1 6

6 6

6 6

9 9

0 0

9 9

9 9

o t

3 2

2 2

2 2

1 1

2 1

1 1

1 i

a s

M s

M u

)

m l

laer e

c r

x e 3 1

1 1

1 1

5 5

0 7'

5 5

5 5

s s

itIi T,T.

1 o

+

+

+

+

+

+

1 i

nR

+

D s

it c R

l e

ni

(

UWV n

M o

t e

g a

f i

n r

o&

oin a

a t

e t

t i

u dn le le le e

e e

i D.

le le le' le a

aD le le s

H k

s omF b b

b lb lb lb it s

hrC a

a a

a a

a y

a a

a a

v.

b b

o b

b b

b a c r

T T

T T

r T

T p

e a

a o

e T

T T

T T

T

)

t t

M d Sc e

et u

u r

r Me S

S m

i

't rb P D

W n

aa o

r o

eB C

d o

)

dl yF c

lc :r l

r l

t eat C e

4

(

a u

c nis(

M ri 3

5 0

0 5

5 1

6 6

6 4

0 4

4 c

W 2

e r

b Nr a

gemo 9

4 5

3 4

4 1

0 7

0 2

6 2

2 i

it u

e saet 1

0 6

8 7

7 4

7 6

2 5

4 5

5 i

3 m

h sMhc e

et R 1

1 1

1 1

2 1

1 1

1 A

CaF e

c ec lb na n

h a

T cu Y

C E

a of o

M eP) r On d c F" 6

6 l

8 9

9 9

9 7

0 8

2 2

2 e

o 7

7 a

e TnE0 8

0 0

0 0

4 A

9 7

0 7

7 f

1 1

/

k e

%u3 0

1 2

2 2

2 0

1 N

1 1

2 1

1 t

1

M s

l 0

0 0

0 0

0 0

0 0

0 0

0 0

c d

F @3 (x y

e i

e t l ie u

N s

lis q

d U

c s e

e l n

a tae) a e R smk%

F t

5 0

0 0

3 3

2 4

9 8

7 4

7 7

a t

V eict 6

5 5

6 6

6 5

6 5

6 5

5 5

5 r

a n

Bts N (w i

0 0

0 0

0 0

0 0

0 0

0 0

0 0

e D

o E

M p

it d

a p

n e

o m

t e)

C r

a a

e i p%

tsnp 6

5 0

2 1

1 3

1 3

4 9

2 9

9 r

d r

t 1

1 1

1 1

1 2

2 2

3 1

2 1

1 e

o o

s f

Bt ow 0

0 0

0 0

0 0

0 0

0 0

0 0

0 t

M sC(

n a

h E

t i

m e

M i

d t

d s

d le le E

s l

W e

i c

W m

W ir^

t s

e g

r r

c s

y n

n e) it i

C le C

ld le l

d i

e r

d i

e t

g C

l W

l io g

t e

a In%

n l

e r

gn o

la W

W B

n 0

o le h

n eo F

P o

t 0 L

h S

it h

ig g

a f

e t

t A

Ri r~

g S

e t

e e

e e

l 1 t

e a

!t n

t n

S n

B h

a te e

t e(

e t

t r

e) n n

n e

3 o

4.

c l

e P

la la la Bld h

e p

o e

o o

r i o S

l P

P P

p%

e S

p tt L lz t

l l

le le z.

9 L) w L

L H

e p

lzW e

e%

U U3

)

l l

n n

n e

t l

l l

le%

o n

le e

o o

o t

z a

e e

a L

e B

o i

n h

h h

oe i0 o) oD h0 h

h r

it i

it d

r d 0 S0 o

t N

e S

S S

S Ni e1

t. % m. o S)

S) rC i

t )

c s c

(

1 m

r%

e% e%

W e s e

e e

e e

en mh m1 r

r r

r r

r r

r M

e r

r6 rd eh e

r w

e p

p w

w we e o e

el pt p0 w0 w0 S u S

t 0

0 e

p o p0 o

o d

p p

o o

oh nB In10 o

t t

t t

InW U(

U(

L(

L(

C B

n L

I U

U L

L LS 1

1 1

i(

(

l e

e s

e e

e W S D S

i lla i

)

5 3

9 3

5 6

0 e

r t

)

)

)

)

)

)

)

VeWt 1 4 2

1 1

1 2

3 7

2

)

M a

9 8

2 2

2 3

65 2

P 8

7 5

8 0

0 2

6 0 2

45 2

de 4

5 4

4 1

9 42 6

5 6

6 Rel H 2R 9

6 7

0 0

8 -

1 1

1 1

1 1

1 9

4 -

L F-7 -

4 -

7 7 -

se 1

2 2

6 8

7A 0A 2A 9

H 1A 4A 1A A

aW V A C

C C C C

6(

1 2

3 3

2 2

S 9W T S 2S T S TS 1S P S 1

B Z(

1 (

7(

2(

8(

7(

8(

S(

W

l l

l!

M l

M g

t n

nis esi 3

M 4

r n s 7^-

r a

8 e

u cB 1

CiL M

M r

ff o sl T to 4

1 2

9 1

RETE 4 1

9 7

7 A Rt 6 7

5 3

7 a

2 1

1 DI M

ig 7 7

5 5

5 n

r 0

5 9

8 d

a 7

2 1

6 6

M M

0 0

0 0

0 a 7 7

7 8

8 c

1 1

1 2

2 s

M la i

, 0 0

0 7

6 e

1 0

0 9

0 n

r 3

1 2

e o

t i

a s

)

M l

t nn.

s M

a er 3 0

0 5

7 u

it e

o l

T

+

2 2

c i

e x

R T.

+

+

s R

s 1

2 o

(

i s

it c D

l e

ni M

UWV g

n f

n o

t e

oi a

n e

t i

n r

di o&

u omF le le le le lb e

b b

b b

i hrC a

a a

a a

s H

ik s

t t

e T

T T

T T

o a c et s

Me p

e o

M tSc e

D r

m i

r rb P W

aa o

)

a eB r

dl yF C

d r

o eat C i

lc :r l

t nis(

0 0

0 6

6 e

5 ri l

e u

c gemor 5

6 0

2 0

a M

W it b Nr a

saet 9

2 2

8 2

c e

l 2

1 2

sMhc i

a u

e A

Ca m

h 3

F et R T

ec e

c na n

h a

C E

e of o

D c") 2 7

9 2

9 W

cu I

n0 4

5 1

4 1

r On d le1 8

9 9

8 9

e o

l a

e ou x 0 0

0 0

0 f

t elf (

k

M s

c d

y e

e i

it l N

W l

e u

el s

t

. ae) is q

6 5

0 9

8 d

U tsmk%

c s e

eict 7

7 8

5 6

n a e R Bts N (w i

0 0

0 0

0 a

F a

t V

E n

r a

o e

D M

i e

p r

d t

t ae) p te i p%

3 4

2 7

4 a

smp n

t 1

0 0

2 3

o m

ow 0 0

0 0

0 a

B 's C (

C r

E d

o e

o m

f l

t n

p ld a

h i

t m

e e

e W

h M

i S

t r

c s

g e

r n

n p

i E

s p

C i

io ig l

U l

t s

gn r

o e

s y

o eo F

g g

t h

e l

Ri t lt i

g e%

n a

a c e g

in t)

S B

n e

r n

l o B o

o B0 e

i r

r A

t 0

w e

tt L lz n

n lz(

e F

F e1 e

o a

f B

z e

e zd L

e 3

o 4.

o h

h ol o

H N

S S

Ne n

n n

t rW r%

e o

o o

)

r r

r e

e e

e.

e w

p w

we p0 r

i i

it t

o p

o oi p0 c

s c

r i

g t

e l

L U

L LC U (1 W

e s

e e

S u

S d

t c

e a

3 4

e s

e r

)

)

t i

)

e e

VeWt 27 6

6

)

W S

D S

i M

a 4

)

P d e 87 91 51 45 45 g

3 5

8 Rel H TX 3W 8 G 41 42 L -

L -

se W 6 F 9 F 3M 2A aW 2A P A P A 0W 9W 1

B 1 (

3(

4( 4(

2(

g l1.11

-1l

E g

Y A

t n

P nis P

esi F 1

R r n s E -

E 1

r a

ue 9

0 cB 2

N Ci 1

L T^-

Y TP E

6 5

2 5

f RF 1 AE 9 7

8 9

9 3

5 4

8 1

T9 1

1 2

% @t E

nig7 8

2 5

5 r 0 8

4 8

8 a 7 1

1 6

6 M

M 3 0 0

0 0

0 c 7 7

7 8

8 1

1 1

2 2

s l

i 0 0

0 7

6 M

a e

1 0

0 9

0 i

3 1

2 r

n e

o t

)

i a

l t

n s

m M

ia e s

InR Tee 3 0

0 5

7 M

l it u

T

+

2 2

+

+

e R

c x

2o s

s

(

s i

lc D

it e

g ni f

UWV oin n

M o&

e dn le le b

le le o

t i

i n

r omF b

b b

b b

a hrC a

a a

a a

it e

u e

T T

T T

T s

H t

ik et s

Me tac s D

o d Sc e

p e

o

)

t r

M m

r

't rb P dl yF iW

)

n aa eat C o

r o

eB r

nis(

0 0

0 6

6 C

d ri o

gemor c

lc :r it 5

6 0

2 0

l l

t saet 9

2 2

8 2

(

a e

u c

sMhc 6

W 2

e 1

2 a Nr a

A Ca c

M F

i u

e i

e et R m

h 3

ec Y

e c

lb na n

eP h

a c F ") 2 6

1 2

1 a of o

Tn E0 2

6 5

2 5

C E

T cu

%u9 M

e 3

3 3

3 3

r 1

On d l 1 x 0 0

0 0

0 l

a e

F@(

e o

t k

f M

s

y c

d e

i t

e e

i l t l N

e u ae) s l

m is q

smk%

t 6

5 0

9 8

d U

c s e eict 7

7 8

5 6

a Bts N (w i

0 0

0 0

0 n

e R a

F V E

a t

n r

a o

e D

e 3

p i

r t

t

- ae) 3 4

2 7

4 p

d te i p%

a smp n

1 0

0 2

3 o

t m

Bt ow 0 0

0 0

0 a

r sCf C

E o

d f

e o

t g

le le n

a h

I t

l d

m e

M i

W h

t S

s n

g e

E s

r e

o n

p ir g

ign i

r g

p C

t s

U ll s

y r

eo o e

e l

Ri F g

g o

h a

t t

m n

t )

S B

n e a t n c le g

g i

e%

l r

A lio B o

o B0 e

t r

r g

ltl 0

w a

f e

F e

iz l

F e1 o

e 3

o 4

l lz(

B z

le le zd L

H o

h h

ol o

n n

n N

S S

Ne t

rW r%

r io o

it e

o

)

r r

r e

e e

e.

e t

i w

p w

we p0 i

c s

c W

e s

e o

p o

oi p0 r

g l

e e

e L

U L

L C U (1 d

S u

S c

l l

V%Wt e

s ir

)

)

e 3

4 e

W S

D S

i

)

)

2 7 6

6 4

)

a87 9 1 51 45 45 P

o e 3 5

g Rel HT X 3 W 8G 41 42 8

L -

L -

se 3M2A W

F 9 F 1

6 aW

_ A P A P A 0W 9W

_2 B

1 (

3

(

4(

4(

2(

g

}

i{

M g

Y A

M t

n P

nis esiF 1

M r n sE 7

r a

4 ue 9

N CcB 1

1 U @

M Y

M TP RF 3

8 7

4 6

I AE 6

4 8

5 5

1 4

3 4

1 6

T9 1

1 i

M ig 7 4

3 5

5 n

r 0

2 8

8 9

a 7

1 6

6 M

M 0

0 0

0 0

o 7 7

7 8

8 1

1 1

2 2

s M

l i

0 0

0 7

6 a

c 0

0 9

0 1

i 3

1 2

r n

e o

t

)

i a

laer s

n r g s

M M

it s

,. +

2 2

i o 3 0

0 5

7 T

d nR T

+

+

le R

e I

s s

x

(

2 o i

it c s

D l

e g

ni foin n

M UWV dn le le ie le le o

t e

i F b

b b

b b

a omC i

n r

o&

t h

r a

a a

a a

e e

T T

T T

T s

H i

t u

et ik s

Me o

ta c s

D o

p e

)

t m

'd Sc e

r m

i r

t b P dl y )F W

r n

aa eat C o

r o

eB r

nis(

0 0

0 6

6 C

d ri gemor o

t 5

6 0

2 0

l c

lc :r i

l t

saet 9

2 2

8 2

1 2

a e

7

(

u c

sMhc mi W

2 e

A Ca c

a Nr a

F i

u e

m h

3 e

ot R ec Y

e c

l b

na n

eP) h a

c F "0 7

3 8

7 8

1 3

2 1

2 C

E a

of o

Tn mT E

cu

%u9 e

1 1

1 1

1 1

r On d l i x 0 0

0 0

0 l

a e

Fj(

e o

I f

t C

k M

s ic d

y e

e t l e

t l N

ie u

m ae) s l

is q

smk%

t 6

5 0

9 8

eict 7

7 8

5 6

d U

c s e

Bts N (w i

0 0

0 0

0 n

a e R E

a ta F V r

a no e

D g

e p

r i

t t a e) d t

p 3

4 2

7 4

p a

s m p%

n t

1 0

0 2

3 o

ei m

Bt ow 0 0

0 0

0 a

sC(

C r

E d

o e

o a

f t

s n

a h

t i

d l

le im e

le M

W h

t S

E s

s r

e n

g e

ir g

ign r

i n

p o

i p

l t

s C

g U

le l

s y

eo o

R!

F g

g t

h e

a o

t n

n S

B n

e a n ig g

t )e%

c e i

l r

mo B o

o B0 e

t A

r r

g hL lz l

l 0

w a

e F

F e1 f

o e

3 o

4.

e lz(

B z

le le zd L

H o

h h

ol o

N S

S Ne n

n n

t rW r%

e o

o o

)

r r

r e

e e

e.

e r

it i

it w

p w

we p0 i

c s

c g

W e

s e

o p

o oi p0 r

L U

L LC U(

1 S

u S

d c

t l

e e

t e e

s a

r

)

)

e e

t i

)

)

W S

D S

3 4

i VeWt P M a 27 6

6 4

)

g de 87 91 51 45 45 3

5 8

Rel H se T X 3W G

41 42 8

L -

L -

W 6 F 9 F aW 3M 2A 1

P P

0W 9W 2A 3 (A 4 (A B

4(

2(

1 (

g

2Il ill!lll ll)

M dgen e sis Bo si 4

s M-8 opn a

7 e

To cB 2

r i

PL M

ro sl I

T to 9 5

7 8

5 ReE 3 0

8 6

4 T

A Rt 6 7

5 3

7 1

2 2

a DI n

ig 7 2

4 5

5 r

0 5

9 8

8 a 7 2

1 6

6 M

0 0

0 0

0 a 7 7

7 8

8 c

1 1

1 2

2 s

la i

, 0 0

0 7

6 e

1 0

0 9

0 n

r 3

1 2

e o

t i

a s

)

M lae%

t s

3 0

0 5

7 u

it e

l

+

2 2

iT c

e InR T

+

x s

R s

2 o

(

i s

it c D

l e

niUWV g

n f

n t

e oi o

a n

r dn le le le lb b

i o&

i b

b b

le t

e e

u omF i

hrC a

a a

a a

s H

ik s

t t

e T

T T

T T

o a c et s

o Me p

e tSc e

D r

m i

r W

rb P o

aa b

eB

)

r dl yF C

d r

o eat C 1

lc:

t l

nis(

0 0

0 6

6 ri l

r r

5 6

0 2

0 a

e 8

2 u

c gemo Mh W

2 it e

9 2

2 8

2 c

l Nr a

saet 1

2 sMhc i

u e

A Ca m

h 3

c et R F

T ec e

c na n

h a

of o

C E

e 0 c")

M cu 5

2 3

5 0

1 n0 3 0

9 3

7 r

On d le1 8

9 8

8 8

e o

l a

e ou x 0 0

0 0

0 f

t elf (

k M

s y

c d

e e

i t l W

l e

u e

N i

s t t

. ae) is q

6 5

0 9

8 d

U c

smk%

t s

e eict 7

7 8

5 6

n a e R Bts N (w i

0 0

0 0

0 a

F a

t V

E n

r a

o e

D W

e p

i r

t

.t e) d t a 3

4 2

7 4

p e i p%

a smp n

1 0

0 2

3 o

t m

Bt ow 0 0

0 0

0 a

r sC(

C E

d o

e o

f W

'h t

n d

a i

t u

le m

e e

W h

M i

S t

r e

s g

e r

n m

p i

E s

W ign C

i o

p l

t s

g U

l s

y ro e

eo F

g g

o h

e a

l Ri t

t n

ta i

m S

t )

B n

c ie g

g e

e%

r l

nio B r

r o

o B0 e

A t

0 w

W lt L ln l

e F

F e1 o

a f

l e

n n

(

ud L e

3 o

4.

B e

e o

h h

ol o

N S

S Ne H

n n

n t

rW r )%

e o

o o

r r

r e

e e

e e.

p0 r

it i

it w

p w

we o

p o

oi p0 c

s c

r i

W l

e l

L U

L LC U (1 W

e s

e S

u S

d l

c e

e a

r

)

)

3 4

e s

t i

)

e e

VeWt P M a 27 6

6

)

W S

D S

i 4

)

de 87 91 51 45 45 W

3 5

Rel H TX 3W 8G 41 42 se 8

L - L -

W 6 F 9 F 3M 2A aW 2A P A P A 0W 9W 1

B 1 (

3(

4( 4( 2(

W l

l l

M k

D dg Y en P

e sisF Bo si 4

M n sE 8

W-op e 3

a 4

To cB 3 2

ri PL M

Y TP I

RF 2

5 4

3 9

AE 1

3 3

2 4

5 6

5 1

4 T3 1

2 2

% @3 M

ig n

7 8

7 5

5 r

0 1

6 8

8 a

7 2

1 6

6 M

M 3 0 0

0 0

0 e 7 7

7 8

8 1

1 1

2 2

s M

0 0

0 7

6 la o

1 0

0 9

0 i

3 1

2 r

n e

o t

)

i a

n s

M l

r n M

a or s

it w o 3 0

0 5

7 u

iT w

+

2 2

InR T

+

+

c le R

x s

s

(

2 o i

s D

it c l

e g

M UWV ni f

n oi n

n e

le le le o

t di le lb b

b b

i a

e F

b omC n

r o&

t a

a a

a a

e h

r i

u et t

e T

T T

T T

s H

ik s

Me o

ta c s

D t o p

e M

'd

)

r Sc e

m i

r W

)

t rb P dl r C yF o

n aa eat r

nis(

0 0

0 6

6 C

d c leB ri o

gemo 5

6 0

2 0

r l

it l

c :r e

9 t

saet 9

2 2

8 2

M (i

a c

u c

sMh 1

2 W

2 e

A Ca c

b Nr a

F i

u e

m h

3 a et R ec Y

e c

lb na n

eP) h a

c F "0 6

7 2

6 8

1 5

5 1

3 C

E MT c of o

Tn E

cu

%e 1

5 5

5 5

5 r

On d lu3 l

3 x 0

0 0

0 0

e o

a e

F@(

f t

k M

s c

y e

i d

e e l N

t W

i le u

s tae) l s

q smk% 6 5

0 9

8 t

eict 7

7 8

5 6

d U

ic s e

a Bts N (w i

0 0

0 0

0 n

a e R E

a t

F V n

r a

o e

D W

e p

r i

t a e) d t

t 3

4 2

7 4

p a

s m p%

n eipt 1

0 0

2 3

o m

Bt ow 0 0

0 0

0 a

sC(

C E

r d

o e

o W

f t

n a

h t

d i

l le m

e le M

h W

i t

S s

n g

e i

E s

r c

W ign r

i n

p p

C s

o ig l

ts y

U le r

eo o

l Ri F

g g

t h

e a

o t

t )

S B

n n

n e a lt ig g

c e t

le%

r in A

l o B o

o B0 e

t r

r W

lt L 0

w a

f e

F F

e1 o

e 3

o 4

e lz l

l lz(

B z

le le zd L

H o

h h

ol o

n n

n N

S S

Ne t

rW r )%

it i

it o

o o

r r

r e

r e

e e

e.

w p

w wc p0 i

W o

p o

oi p0 c

s c

L U

L LC U1 W

e s

e r

(

S u

S d

c l

l e

o s

e e

la i

)

)

e e

r

)

)

VeWt W

S D

S i

t 3

4 P M a 27 6

6 W

4

)

d e 87 91 S1 45 45 3

5 B G 41 42 Rel H TX 3W B

L -

L -

se W

6 F 9 F 3M 2A I

aW 2A P A P A 0W 9W B

1 (

3(

4(

4(

2(

W

M dg Y M

en P

e sisF Bo si 6

sE -

A opn 9

M a

8 e

3 To cB 3 1

PL M

ri M

Y TP RF 4

8 8

6 9

M I

AE 6

9 2

4 6

2 4

4 6

8 T3 1

1 1

3 M

ign 7

9 4

5 5

r 0

4 1

8 8

a 7 1

1 6

6 M

M 0

0 0

0 0

.c 7 7

7 8

8 1

1 1

2 2

s l

, 0 0

0 7

6 M

1 0

0 9

0 a

e i

3 1

2 r

n e

o t

i a

)

n.

s M

it r p l er 3 0

0 5

7 u

a s

M l

iT e +

2 2

InR T

+

+

c e

x R

s s

2 o

(

i s

it lc D

e ni g

UWV n

n f

M oi n

e o

t e

di lb b

lb lb b

t omC le e

e le a

i n

r F

o&

e h

a a

a a

a u

i r

t e

T T

T T

T s

H ik s

et ta c Me o

s o

D p

e

)

t d Sc e

r M

m i

r

't rb P W

)

n aa dl yF o

r r

eat C o

eB nis(

0 0

0 6

6 C

d o

ri c

lc :r gemo 5

6 0

2 0

e 0

r l

l t

it

(

u c

saet 9

2 2

8 2

a b Nr a A Ca c

W 3

e sMhc M

1 2

F i

u e

1 e

et R m

h 3

ec e

c l

Y b

na n

eP) h a

C E

a of o

cF" 8

2 1

8 5

T cu TnE0 8

0 0

8 9

M On d

%e 1

1 2

2 1

1 r

l a

e lu3 0

0 0

0 0

e o

3 x Fg(

k f

t M

s i

d c

y e

e it l M

l e u e !

N s

tae) is q

6 5

0 9

8 d

U c

smk%

t s e eict 7

7 8

5 6

n a e R Bts N (w i

0 0

0 0

0 a

F a

t V

E n

r a

o e

D M

i e

p d

r t

ta e) p a

tei p%

3 4

2 7

4 n

smp 1

0 0

2 3

o m

t a

ow 0 0

0 0

0 C

tesc (

r E

d o

e o

f t

M fe ld n

a h

t i

h W

im e

t e

M t

S s

n n

p i

E s

r e

g e

r i

M ign o

i p

C t

s g

U l

s y

l ro e

l eo o

e a

Ri F

g g

h t

S B

n t

e a lt n

n t )

i i

le%

c e g

g r

A n

o o

B0 e

t io B

r r

0 w

a l

e F

F lnd M

lt L ln e

n l

e1 f

o e

3 o

4

(

B e

le L

H o

h h

ol o

n n

n N

S S

Ne t

e o

o o

rW r%

r i

i it

)

r r

r e

e a

e.

e t

w p

w we p0 i

c s

c W

e s

e o

p o

oi p0 r

M ll L

U L

LC U(

1 S

u S

d c

l e

e e

s e

a e

e r

)

)

W S

D S

i t i

)

)

3 4

VeWt P M a 27 6

6 4

)

d e 8 7 91 51 45 45 3

5 8

Rel H TX 3W G

41 42 se 8

L L -

W 6 F F

3M 2A 1

aW 2 A P A P A 0W 9W 9

B 3(

4(

4( 2(

1

(

M

M 1

A N

M g

t n

nis esi 4

N 4

r n s r

a u e 3

cB 2

CiL M

h" ro sl T ro 6

4 8

1 2

A ReE 4

9 3

3 8

/

T 6

0 7

9 3

N A Rt M

I 1

1 1

2 a

D ing 7

0 9

3 5

0 r

0 4

6 8

8 6

M a 7 3

1 4

6 5

M 0

0 5

0 0

0 a 7 7

8 4

8 8

n 1

1 1

2 2

s M

l a

ir n

e ei 0 0

0 7

7 0

o 1

0 0

9 9

0 t

i 3

1 1

a s

M l

r r 3

0 0

5 5

6 s

M su

)n l

t c

es ia or x

3 o it n o T w

+

4 4

2 i

s inR T

+

+

D it c R

l e

M UWV ni

(

n o

t e

a i

g n

r f

o&

t u

oi t

t ta e

n a

a i

n a

a a

s H

ik s

di

a. D D

D le lbe t

t b

o o

F a c s

hmC r

a y.

v.

v a

a p

e M

o t

r Sc e

t e

T r

r r

T T

et u

u u

m i

r Me S

S S

b P D

W raa o

a r

C d

i leB o

l

)

c:

t dl yF e

l M

a 1

e u

c eat C r

r W

3 e

b Nr a

nis(

0 0

4 3

0 3

c l

ri a

u e

gemo 6

6 7

8 0

9 r

i m

h 3

it 9

3 1

5 8

9 saet et R sMh c 1

1 1

T ec A Ca e

c na n

F h

a M

of o

C E

cu r

On d e) l D c"0 e

o 6

9 1

6 1

a e

I n

2 3

0 2

0 A

k f

t le1 8

9 9

8 9

N c

d

M s

ou

/

y x 0 0

0 0

0 e

elf (

e i

e u

N it l M

i s q

d U

s l

c e

s e

t l n

a e R smk%

- ae) a t

1 3

6 3

0 8

a t

F 9

7 7

6 6

5 V

eict i

0 0

0 0

0 0

r a

n Bts N (w e

D M

o E

p i

t d

p a

e n

r o

m ta e) a

-e i p%

3 1

2 4

6 2

C tsmp 0

0 2

2 3

d r

t 1

o Bt ow 0

0 0

0 0

0 e

o M

f sC(

t E

n a

h t

I m

e l

d M

i le le M

s t

W e

h W

E s

M io i

p i

c S

i r

u s

g e

r t

n n

C a

e a

s y

r p

l g

U l

C r

gn o

le l

B n

eo o

F g

g h

le Ri t

n n

t lt ig g

lt )

a A

c e i

S h

t M

lt L le F F

iz(

in r

r e%

S a

e r

l o B o o

B0 e

r f

0 w

e e

3 o

4 B

z ll ll e1 o

w H

e z e e

zd L

o n

n n

L) o h h

ol o) o%

e it i

it o

o o

N S S

Ne rW r%

t 5 i

c s

c t

r M

r r

r 5

r2 W

e s

e e e e

e. e e

w p

w we p7 pD o

p o

oi pD pO S

u S

r L

U L

LC UI U(

d

(

c l

e e

s e

e e

P M a

9 0)

W S

iD S

l m

l e

a t ir

)

)

2 VeWt 1

9 de 4

41 40 7

0)

)

1 Rel H S

9 42 26 57 1

K T -

se 0

0 3

1 4

2W 2N F 4 F F

8 aW 6 2A 2A 2W 2W 2W 1

1 B

4 5(

5(

8(

7(

7(

m

I M

g Y

R t

n P

nisF 5

N est r n sE 0

r a

1 9

uecD 2 1

W CiL Y

f TP RF 8 5 5

5 2

1 3

5 5

5 A

AE

/

4 9

6 5

9 N

T1 1

1 1

2 n

ig 7 7

7 3

5 0

r 0

6 2

8 8

6 a

7 2

1 4

6 5

M 0

0 5

0 0

0

.c 7 7

8 4

8 8

1 1

1 2

2 s

la i

0 0

0 7

7 0

n r

e 1

0 0

9 9

0 e

o 3

1 1

t i

a s

M l

r s

)

m u

l iaor x

it u o 3 0

0 5

5 6

c e

T w

+

4 4

2 s

s inR T

+

3 o R

(

i s

D it c

(

nil e

UWV n

g o

t f

e oin a

a a

it a

n r

o&

dn le a ta a

e le i

t t

e u

i b

d.

D D

l b

s H

k omF b

it s

hrC a v y.

v a

a o

a c t

e T

r r

r s

et u

u u

p e

T T

o

)

t d Sc e

Me S

S S

r r

D m

i

't rb P W

n aa o

)

o eB r

dl yF C

d o

eat C r

c lc :r l

t nis(

0 0

4 3

0 3

a 2

l ri e

(

u c

gemro 6 6

7 8

0 9

c W

e a Nr a

saet 9

3 1

5 8

9 it 3

sMhc i

i u

e A Ca m

h 3

1 1

1 e

et R F

ec e

c l

b na n

h a

a of o

Y T

cu eP)

C E

c F "0 8

5 0

8 0

r On d Tn l

E 4

9 8

4 8

A e

o e

1 3

3 3

3 3

N f

a e

%u1

/

t l 2 x 0

0 0

0 0

k

M s

F@(

c d

y e

e i

ti le u

N s

li s q

e d

U c

t l s

e

- ae) 1 3

6 3

0 8

n a

e R smk%

t a

9 7

7 6

6 5

a t

F eict V

Bts N (w i

0 0

0 0

0 0

a n

r E

o e

D i

p t

d p

a e

n r

t a e) o t

m s m p%

a p

3 1

2 4

6 2

t 1

0 0

2 2

3 C

r ei d

o Bt ow 0 0

0 0

0 0

sC(

e o

f E

t n

a h

i t

m e

l ld i

M t

le e

le E

s d

s W

h S

W i

p t

s r

e n

9 e

i c

s ly r

io p

C ri e

g l

C a

gn U

le l

B n

eo O

o Rt F

g g

h le i

t A

t )

S h

t e a lt n n

i i

e%

S a

f l

c e

g g

n r

l o B o

o B0 e

r i

r r

e 3

o 4

lt L o

w H

e1 w

e 0

e le F F

n n

n l

B n le le l

l

(

nd L o

L) e o

o o

o h h

ol o) o%

r it is c

N S S

Ne t

it rW r%

i t

5 c

W e

s e

r r

r e e e

e e5 r2 e

w p

w we p7 pD S

u S

o p o

oi pD pO d

r L U L

LC U(

I U(

c l

e e

e s

e e

W S

D S

i fl e

a r

)

t i 2

)

VeWt 1

P M a

9 0) 9

)

)

de 41 41 40 7

0 Rel H S

9 42 26 57 1

K T -

se 0

3 1

4 2W 2N F 4 F F

8 aW 6 2A 2A 2W 2W 2W 1

1 B

4 5(

5( 8(

7( 7(

m 1

M-W a

g Y

t n

P nisF 6

esi sE 7

r n

r a

4 uecB 2 1

1 CiL m

I Y

TP RF 4

5 9

0 6

5 AE 8

5 6

7 0

6 1

7 5

1 5

2 T1 m

1 1

1 1

2 n

ig 7 8

3 5

0 4

r 0

7 8

8 6

m 0

a 7

1 4

6 5

M 0

0 5

0 0

0 ac 7 7

8 4

8 8

1 1

1 2

2 m

s la i

i 0

0 0

7 7

0 n

r 1

0 0

9 9

0 o

o a

e 3

1 1

t i

a s

m l

t s

M

)

m u

a ere 3 0

0 5

5 6

c l

it e

+

4 4

2 s

T x

inR T

+

+

s 3 o s

R D

i I

m it c

(

l e

ni n

UWV t

g o

e oi t

t ta a

f n

a a

it n

r D

D D

l e

o&

u omF lb y

a a

o n

a a

a e

e i

di e

hrC a

y.

v b

lb s

H ik s

ta c t

e T

r r

r T

T e

m

't s

et u

u u

p o

r

)

t e

Me S

S S

d Sc r

D m

i W

rb P o

n aa eB dl yF C

d

)

r o

lc :r r

l o

eat C c

l e

3 t

nis(

0 0

4 3

0 3

a mi ri

(

W 3

u c

gemo 6

6 7

8 0

9 c

r e

it a Nr a

saet 9

3 1

5 8

9 i

3 sMhc 1

1 1

A Ca m

h u

e e

et R F

e c

ec na n

h a

l bb Y

C E

a of o

eP)

T cu c F" 6

4 8

6 8

8 r

l On d TnE0 2

4 3

2 3

3 e

o e

1 1

1 1

1 1

1 f

a e

%u1 k

l 2 x 0

0 0

0 0

0 t

M s

Fg(

c d

y e

N s

i e

m i l t

e u

lis q

e l d

U c

t s

e ae) n a

1 3

6 3

0 8

smk%

a e R t

9 7

7 6

6 5

a t

eict F V Bts N (w a

i 0

0 0

0 0

0 r

n E

e D

m it 3

o p

d a

e n

r t

t a e) a m

s m p%

p 3

1 2

4 6

2 r

ei t

1 0

0 2

2 3

d o

Bt ow 0

0 0

0 0

0 e

o m

sC(

t f

E n

a h

t m

e i

M i

l ld t

d s

le e

le E

s h

W m

S i

W s

r e

n g

e ir t

c s

ly n

p C

ir o

e g'

p l

C a

i U

le B

n gn r

eo o

Ri F

g g

h lle o

A M

l L t

t t

n n

t ) S h

ac lt i

ig S

a f

e e%

l e

g r

n e

3 o

4 io B o o

B0 e r

r r

0 w e

tt o

w H

e F F

e1 n

n n

e tz l

l lz(

B r le le zd L

o L) e i

o o

o o h h

ol o) o%

i t

i i

r N S S

Ne t

rW r%

t M

c s

c t 5 W

r r

r r2 e5 e

e s

e e e e

e. p7 pD S

u S

w p

w we o p o

oi pD po d

r L U L

LC UI U(

c

(

l 7

e e

s e

e i

WF D

S l

M la ir

)

e

)

t 2

1

)

VeWt 9

P M a

9 0

)

)

de 41 41 40 7

0 Rel H S

9 42 26 57 1

K T -

4 0

se 0

3 1

8 2W 2N 1 F 4 F F

1 aW 6 2A 2A 2W 2W 2W D

4 5(

5(

8( 7(

7(

m

1 M

dgen e sis M

Bo si 8

opn s

5 a

e 3

To icB 2

M rPL r

I o sL T tO 9 8 6

1 8

A RPTE 3 8 3

2 5

/

A 6 0 7

9 3

N Rt 1

1 1

2 a

D I

n ig 7 0

8 3

5 0

r 0 4 6

8 8

6 a

7 3

1 4

6 5

M 0

0 5

0 0

0 a 7 7

8 4

8 8

c s

1 1

1 2

2 la i

r n

e 0

0 0

7 7

0 o

e 1

0 0

9 9

0 ta 3

1 1

is M

su

)

l n

e l

r n c

aer x

3 0

0 5

5 6

s s

it 3 o i T e +

4 4

2 i

s nRT

+

+

c U 'N V

(

D it I

nil e

R n

e o

ta n

r f

g i

o&

t n

a a

a e

u oi ta t

t i

ik s

dn e

a a

s H

t i

b D.

le le D

D a c omFl b

b o

s hrC a Sc e

'e e T

ry.

y ry a

a p

e o

t r

T T

r r

t u

u u

Me S

S S

m i

rb P D

b aa o

W r

eB C

d o

i lc:

t y) hT l

l r

dl rF e

u c

eat C a

e 4

W e

lb Nr a

n i. is( 0 0 4

3 0

3 c

3 u

e gemo 6 6 7

8 0

9 r

i a

itsaet 9 3 1

5 8

9 m

h 3

et R sMh c 1

1 1

ec A Ca e

c F

na n

h a

of o

cu C

E On d r

e l

D c ") 7 0 8

7 9

e o

a e

I n0 0 9 8

0 5

A k

f Le1 8 8 8

8 8

N c

d t

M s

Ou

/

y x 00 0

0 0

e elf (

i

~

t l e

e u

N i

M l

s is q

t l d

U c

e s

e a

t ae) n e R smk% 9 7

7 6

6 5

1 3

6 3

0 8

a F

a t

V eict n

Bts N (w i

0 0

0 0

0 0

r a

o E

e D

M p

it p

d a

e n

t r m

- ae) o a

te i p%

3 1

2 4

6 2

C smp r

0 0

2 2

3 d

1 t

o Bt ow 0

0 0

0 0

0 e

o f

sC(

M E

t n

a h

I t

m e

l d

M i

le le d

ts h

W leW E

s S

M ign U

le le i

r e

o p

ir t

s y

e n

p C

i e

e s

y r

3 l

O l

C a

eo o

Ri F

g g

h l

B n

t t

n m

S h

t e a lt i

g t )

r S

A e%

l M

le ln le l

lnd L o

n n

n c e g

a in o D o o

B0 e r

r r

B l

F e1 w e

e 3.

f uL e F 0

o 4

o w

H l

(

e L) o h h

ol o) o%

e it i

it o

o o

N S S

Ne rW r%

t r

t 5

r r

r r

i e5 e2 M

c s

c e e e

e. p7 pD W

e s

e w

p w

we o

p o

oi pD pO S

u S

r L U L

L CU I( U d

(

c l

e e

s e

t e

e ta ir

)

W S

D S

e i

t W

2

)

VeWt 9

1

)

M a

9 0

)

)

P de 41 4 1 4 0 7

0 Rel H S 9 4 22 6 5 7 1

K T -

se 0

3 1

4 - 0 F-8 2W 2N F 4 F aW 1

1 6 2A 2A 2W2 W2 W B

4 5( 5

(

8 ( 7 7

(

(

W i

lll l

M 1

M-M dg Y en P

e sisF 7

  • M Bo si sE opn a 1

1 e

3 To icB 3 2

rPL M

I' Y

TP RF 1

0 0

9 7

A AE 1

0 9

0 1

/

5 0

6 7

1 N

M T3 1

1 1

2 3

in 7

0 5

3 5

0 g

M r

0 0

4 8

8 6

a 7

3 1

4 6

5 M

0 0

5 0

0 0

a c 7 7

8 4

8 8

M l

1 1

1 2

2 s

a i

i 0

0 0

7 7

0 n

r c

0 0

9 9

0 1

o e

3 1

1 t

i a

s M

M laor s

)n r n u

l it wo 3

0 0

5 5

6 c

e x

iT u

+

4 4

2 s

s inR T

+

+

3 o i

R s

D it c

(

M UWV l

e ni n

g o

t f

e oin a

a a

a i

t din a

t t

n r

o&

a a

t e

D D

D le e

i u

omF le ik s

hrC a

y v

v.

b lb s

H b

a a

o t

M

't a c t

e T

r r

r T

T s

et u

u u

p e

o

)

t d Sc e

Me S

S S

r r

D m

i rb P W

n a a o

eB dl yF C

d

)

ro eat C r

l c

lc :r Mb l

e 5

t nis(

0 0

4 3

0 3

a ri

(

u c

gemo 6

6 7

8 0

9 c

r W

3 e

it Nr a

saet 9

3 1

5 8

9 i

sMhc A Ca m

h 3

u e

1 1

1 i

et R F

e e

e c

lb n

n h

a MT c

o f.

o eP)

C E

Y cu cF" 9

0 9

9 2

r On d l

Tn 9

5 4

9 3

A e

o a

e

%eE0

/

1 4

5 5

4 5

N k

f t

lu33 x 0

0 0

0 0

M s

F@(

c d

y e

i e

M l

e u

N s

ti l is q

e l d

U c

t s

e ae) n a

a e R smk%

1 3

6 3

0 8

t 9

7 7

6 6

5 a

t F

eict V

Bts N (w i

0 0

0 0

0 0

r a

n M

E e

D o

p t

d i

p a

e n

r o

t m

ae) a

-e i p%

3 1

2 4

6 2

t C

smp t

1 0

0 2

2 3

d r

M o

Bt ow 0 0

0 0

0 0

e o

sC(

s f

E t

n a

h t

m e

i M

i d

t u

l d

s e

e le E

s M

W h

S W

i r

c s

n i

p ir t

c s

y g

e io r

C i

e a

r l

p l

C g

U le l

B n

gn r

eo o

o h

le M

lt L 0

w e

Ri F

g g

t A

t t

in c lt n ig a

i n

t)

S h

le%

S a

f e

e g

r B0 e

r e

3 o

4.

r r

o B o o

e F F

e1 w

H le lz l

lz( o n

n n

L o

B z le

!e zd L) e it i

io o

o o h h

ol o) o%

r N S S

Ne M

t rW r%

t 5 t

i c

s c

W e

s e

r r

r e5 r2 e e e

e. p7 pD S

u S

e w

p w

we o p o

oi pD po d

r L

U L

LC U(

U(

c I

l e

e e

s e

e WS D

S i

M la i 2

l er

)

t

)

1

)

VeWt 9

P M a

9 0

)

)

41 41 40 7

0 de Rel H S

9 42 26 57 1

K T -

4 0 -

se 0

3 1

8 2W 2N F 4 F F

1 1

aW 6 2A 2A 2W 2W 2W B

M 4

5(

5(

8(

7(

7(

1 M-dg Y en P

e sisF 5

Bo si r i

'M n sE -

4 op e 3

a 6

T o cB 3 1

PL Y

I TP 0

8 8

5 8

RF 1

AE 6 1 9

9 4

1 2 8 5

2 6

4 T3

% @3 1

1 1

1 n

ig 7 5 9

3 5

0 r

0 0

a 7 2

9 8

8 6

4 6

5 M

0 0

5 0

0 0

ac 7 7

8 4

8 8

1 1

1 2

2 s

la i

r 0

0 0

7 7

0 n

r o

1 0

0 9

9 0

e o

3 1

1 t

i a

s M

s

)n t n u

l iaer e

't' o 3 0

0 5

5 6

c x

i T.

u +

4 4

3o s

2 s

InR T

+

+

R i

it c s

l e

D

(

niUWV n

g o

t f

e oin ta ta a

a a

a a

n r

o&

t i

u din te t

e D

D D

le e

i ik omF b v.

v.

b lb s

H t

s hrC a v a

a o

a c t

e T

s et u

u u

p e

r r

r T

T

)

o t

d Sc e

Me S

S S

r r

D m

't rb P W

i n

aa o

o eB r

)

dl yF C

d o

eat C r

c lc:

t nis(

0 0 4

3 0

3 a

e l

l

(

r ri u

c gemo 6

6 7

8 0

9 c

6 r

W e

b Nr a

saet 9

3 1

5 8

9 it 3

u e

sMhc 1

i 1

1 1

A Ca m

h 3

e et R F

ec e

c lb na n

h a

c of o

Y eP)

C E

T cu c F" 1

0 9

1 3

3 r

On d TnE0 8

0 9

8 9

9 le o

a e

%u3 e

2 1

1 1

1 f

1 1

M s

l 3 x 0

0 0

0 0

0 k

t

y F@(

c d

t e

i e

i le u

N s

lis q

e l d

U c

t s

e

- ae) 1 3 6

3 0

8 n

a t

e R smk%

a eict 9 7 7

6 6

5 a

t F V Bts N (w n

i 0 0 0

0 0

0 a

r o

e D

E p

i d

ta e

p n

r t a e) o s t m

s m p *. 3 1 2

4 6

2 a

1 0 0

2 2

3 C

ei p*t r

d o

Bt ow 0 0 0

0 0

0 sC(

e o

s f

E t

n a

h i

t m

e M

le ld it l

e le E

s d

s W

h S

W i

io n

p ir t

s r

e n

g e

i e

s y

g p

C ir l

e I

C a

U Ie l

B n

gn r

eo o

o Ri F

g g

h le t

A t

t n

n t ) S h

t e a le ig g

c i

le%

r S

a f

in r

r o D o o

B0 e

r e

3 o

4 lt L 0

w e

e F o

w H

l lz l

F e1 e

l n

n n

lz(

B z le le zd L) e it i

it L

o o

o o

o h h

ol o) o%

r N S S

Ne rW r%

5 c

s c

t t

i e e e

e. e5 e2 W

e s

e r

r r

r w

p w

we p7 pD o

p o

oi pD pO d

S u

S r

t U L

LC UI U(

c

(

l e

e e

s e

e W

S D

S i

t t

e a

r

)

t i 2

)

VeWt 1

M a

9 0) 9

)

)

P de 41 41 40 7

0 Rel H S 9 42 26 57 1

K T -

se 0

3 1

4 F-0 -

2W 2N F 4 F

8 aW 6 2A 2 A 2W 2W 2W 1

1 B

4 5( 5( 8( 7( 7(

M

(

8

( 2

( 2 (2

(

M l

A1 A9 A9 8

7 C C C C (A2 B

W9 WT (W2 F

ST S 9 S 9 1

F1 F

2 3

7 7

R3 Wa 3

3 2

2 F 9 1

u 5

- L L

- L

- 7 0

5 0

8 8

YS Hl eR es e

1 1

1 n

4 5 4

4 24 86 75 1

7 9

9 4 ed 4

5 4

5 S

D S W

4 54

) 2 0

5 M P c

9 2

2 5

)

)

1 1

2 1

9 4 aWeV e

4 6

6 e

e i

t

)

)

)

)

s e

v i t e

e al el r

l a

M c

d u

l S

u S

e e

s e W s

( L

(

a Oo I L

(

L

(

U (B U CL L

L U

U L

c s

c i

e Dw 3w 0w 0p tp

c. w w

w p

p w

1 1

Do 0o 0p o p io o

o p

p o

r r

ti o oi e b

6r 7e

%r

./* e he e

e e

e e

e i

t r

e o_

e r

r Wr r

r r

r r

a 3 S %r n

n n

1

)

) t M

S S

o 0S eN S

S S

S N

s H

e

)

h 0h l o h

h h

h o

4' o 3

e d

el e

e o

%e

)

h h

L l

dz e

n L

l l

) l

( z l

e B

f a

o l

l l

w L

el l

ll el ei z

1 l

l z

e t

o L

L e

o 0

l P

P P

el Ltl P

l A

r oi a

n o

o n

0B a

al al l

B c

)% el e

t t

a n

n B

n g

n n

S g

t e

e t

el t

t t

a e e

a e

.i g

l v

i g

h t

a t

t i R M

s t

l W

ti el W

o ng o

F oe t

l U

y s

ai el el el e.

p n

n W

W C

e r

a s

E li d

r l

p g

oi i

d a

i b

t d

d e

g i

s y

r W

M t

S o

e i

M h

f l

el e

m 9

d th a

3 l

i 5

n t

o e

f E

o d

CsB

(

C 0

0 0

0 0

0 0

0 0

0 0

r wot m

a 1

3 3

3 3

1 1

0 0

0 tp ri e M

o 6

4 4

4 9

2 1

2 9

9 8

%pns 1

n

) e at a

p d

t r

p e

t i

D e

o a

r E

n witNsB V

(

t a

0 0

0 0

0 0

0 0

0 0

0 R e M

a 6

6 5

5 5

5 5

5 7

cie n

5 6

t kms

% eat e

s 7

8 8

8 7

8 0

5 7

7 2

U d

q sF

)

l t e s

N u

ea e

e l

c i

d c

s Mi

(

l 2

k 8 F t

i M

f

(

l E e

at o

e 0

0 0

0 0

0 0

0 0

0 x7uO d ny N

7 1 7e r

/

7 7

8 7

7 7

8 8

7 l

0EnL u

E C

A 0

0 8

1 1

8 8

1 1

8 "FcI o

1 6

6 3

6 8

3 3

6 6

aT f

ped n

a h

)

h C

e Y

c

)

r 3

h m

R M3 e

T t

e u e a

chMs c

eM l

i W

F r

c aC A a

b 1

2 2

2 1

1 a

4 2

2 2

5 9

7 8

5 5

5 7

e r

t e (r m :i si t

i e d

C 9

0 0

2 9

3 2

8 8

1 l

3 0

o l

isg o

l Be 6

6 6

4 3

0 0

0 0

0 1

sin r

W o

Ct lae aI W

r Fy d

P bl s m

)

r ca i

e p

e r

on D

s o

eM s

kcd H

s T

T T

T T

T T

T T

T T

et u

U t

e W

e a

a a

a a

a a

a a

a a

i Cr h r

&n t

b a

l b

b b

b b

b b

b b

b Fmo i

i e

t o

e l

el el l

el el el el el el nd e

e n

ni o V Wti g

e i 1 f

l D

c s

o i

W s

s (R

e x

c T RIn i

u 2

+

+

+

+

+ w Ti 5

7 7

7 5

6 1

1 1

1 3

ou ti s

n r l

M s

r oa n

a i

)

t o

e W

n r

1 2

2 2

1 2

2 2

2 3

i a

9 0

0 0

9 0

6 6

6 6

m 1

9 7

6 6

6 7

0 9

9 9

0 ls W

2 2

2 2

2 2

1 1

1 1

1 8

8 8

8 8

8 7

7 7

7 7

a s

0 0

0 0

0 0

0 0

0 0

0 M

N 6

6 6

6 5

6 6

6 6

7 a

9 9

9 8

6 3

3 3

3 0

r M

/A 5

5 5

5 0

6 6

6 6

gi 7

n I

a D

2 2

2 2

2 1

1 1

1 1

R A t

N 6

6 5

0 1

3 4

1 1

2 MI r

1 8

0 2

9 9

0 E T 1

1 7

e R

/A 6

6 0

8 6

0 3

0 Or T 1

3 Ls o

E=

MW L

BcC i

2 2

e u a

r 6

6 s nr M

2 2

ise sinnt g

M o

m

( 8

( 2

( 2

(

2

(

8

(

S T S 9 S9 7 C C C C (A B

W9 WT W2 1

A1 A9 A9 3 3 2 2 2

F1 F 2 3 7 7 R3 Wa m

l 9

2 2

F 9 1

5 -

L -

L

- L 0 5 0 8 8 YS Hl eR 1

1 1

es F

5 4

4 24 86 75 4 4 5 4 5 4 54

) 2 0 9

4 1

7 9 5

ed u

M P

)

9 4 5

e 4

6 6

)

1 1

2 1

aWeV n

)

)

)

)

S D S W

t c

i t r a e

e e

el i

e s

e v

l m

e al

( L

( L

( L

(

c ld u

I 1

1 U i w w w p p

w S

u S e

Oo Do o

B U CL L L U U L

(

0 0p op o o o p p

o s

Dw w 0w 0p e

s e W

r tp e.

e 3e c

s c

a 6r 7r )%e %e he e e e e e

e i

r r

Wr r

r ti i

ti r

e 3

r r r

r r

S %S S

t

)

1

%h o o o e

b 0S eN S S S S N

)

h h

o 0h l o h h h h o

)

M n

n n

a el e

el L

l dz el

)%el ( z l

el l

u z

4 o

3 e

d o

o o

w L

el P l

el e

z B

s l

n l

o H

e L

L L

a t.

i i

g

%e t

al P P el el 1

e o

0 l

P l

Ltl f

a o

n n

r e

n 0S a t

e n

B n

S i

)ti e

t at al B oi A

n g

g c

r n

t.

t! c e

e e

t i

t.

t a e h

t t

W W

W e

o F iR v

l e

e l

W o oe a

M l

e a

l U

y s

a d

d dl C

d p

i oi e

l el p

g ng r

d n

a i

e g

n s

t r

i b

c r

s E

i S

s l

W i

h ty M

o l

el a

t M

i f

d l

e m

9 th a

3 i

5 t

n o

e

(

E f

CsB o

d 0

0 0

0 0

0 0 0 0

0 0

wot C

1 3

3

.3 1

3 1

1 0

0 0 tpmsi e r

M a

6 4

4 4

9 2

1 2

9 9

8

%p m

o n

) e at -

p rt d

e a

p t

i D

e o

a r

E n

0 0

0 0,

0 0

0 0

0 0

0 witNsB V

(

t a

M a

5 6

6 6

5 5

5 5

5 5

7 t

c ie R e kms n

7 8

8 8

7 8

0 5

7 7

2 % e a t.

e s

U d

l t

)

e q

sF s

N u

ea e

i l

d c

e ci

@F s

Ml M

k 1 l t

f 0

0 0

0 0

0 0

0 0

0

(

i o

e N

2 3

3 3

3 2 x.7 u %

e at l

/

2 2

3 3

r A

8 8

1 2

8 1

1 2

2 8

0 nT d ny 1 7e E

C 4

4 1

4 5

1 1

4 4

5 "E c u

T Fe o

faT a a

h P *

)

n c

e Y

ch b M3 h

m R

r t

l e

e F

e u

e i

W aC A a

3 c

r 1

1 2

2 2

1 1

chMs e M (c a

4 2

2 2

5 9

7 8

5 5

5 t

8 e

3 0

0 0

2 9

3 2

8 8

1 c

l omasi t

r t

6 6

4 3

0 0

0 C

0(r

i 9

6 eg d

C sin Bel o ir o

M Ct ae r

n o

W r

Fy l d aI P

s t

m

)

blca d'

i r

re p

e

)

D on o

eM s

cd H

s T

T T

T T

T T

T T

T T

e e s

t k

M a

a a

a a

a a

a a

a a Cr u

U t

e i

i l

e el al el e

el e

el el el Fmh t

b b

b b

b bl b

bl b

b b

&n l

o r

a e

t o

id e

i n

V Wt io n

n f

D e

i 1 g

lc s

E (R

i e

i o

s s

x c

TRn u

2

+

+

+

+

+

sIi l

eei 5

7 7

7 5

6 1

1 1

1 3

t s

M a

s mt l

a i

)

o t

E 6

6 6

7 0

9 9

9 s

U e

n 1

2 2

2 1

2 2

2 r

9 0

0 0

9 0

6 6

6 t.

a i

7 l

s E

8 8

7 7

7 7

2 2

2 2

2 2

1 1

1 1

8 8

8 8

0 0

0 s

0 0

0 0

0 0

0 M

N 6

6 6

6 5

6 6

6 6

7 a

E

/

9 9

9 8

6 3

3 3

3 0

r A

5 5

5 5

0 6

6 6

6 5

i g

n 1

7 N

2 2

2 1

1 1

1 1

1 1

T

/

0 0

1 6

6 1

2 0

0 0

7 A

7 7

2 8

1 4

0 4

4 7

E A f

0 TR 4

4 4

6 0

3 4

7 7

F

?

P M

Y N

L 1

i 7BcC M

2 eu 7a 1

r s nr 2

Eise Fsinnt P

g Y

M

( 8

( 2

( 2

( 2

( 8

(

7 C

C C

C (A2 Wa 1

ST S9 S9 W9 WT W2 B

3 3

2 2

A1 A9 A9 F

F1 F

2 3

7 7

R3 9

1 5

- L L

es

- L

- 7

- 0 5

0 8

8 YS Hl eR M

l 9

2 2

1 1

1 5

4 4

24 86 75 1

7 9

9 4 ed F

4 4

5 4 5 4 54

) 2 0

5 M P 5

u aWeV

)

)

1 1

2 1

9 4 e

4 6

6 t

)

)

)

)

nc i t S

D S W

r a

e el e

e i

l e

s e

v e

a M

c l

( L (I L

( L

(

ld u

U (B U CL L

L U

U L

S u

S e

oo Do o

1 1

p io o

o p

p o

s Dw w 0w 0p o

r e

3e 0

0p tp cw w

w p

p w

e s

e W a

6r 7r

%e %re he

.e e

e e

e e

c s

c r

r Wr r

r r

r r

r ti i

ti r

e 3

i S

%S S

t

)

)

10S eN S

S S

S N

%h o

o o

e b

h h

o 0h l

o h

h h

h o

)

)

s l

e ei L

l

( z l

e el e

z B

a el n

t o

l dz e

l l

H z

4 w

)%e n

n n

M o

3 e

d o

o o

H e

L L

L L

el P

l al al B

oi a

o n

n n

e n

0B al P

P P

el e

1 l

l o

0 Ltl l

n g

g g

g

%el et a

t t

e! c f

n r

t e

e a e e

A t

t.

t.

t.

S t.

)

a i

i i

i t

t o

F iR h

t n

B n

W W

W e

r ng a

a l

W o oe l

U M

l e

el el el C

d p

r oi v

el p

g y

s ai d

d d

i e

g n

n s

al e

r t

r b

S is E

th i

W n

s y

t l

e e

M o

H d

i M

f e

m 9

t 3

i h

a n

5 t

E f

o e

CsB o

O. '

(

d 0

0 0

0 0

0 0

0 0

0 wot 1

3 3

3 1

3 1

1 0

0 0

tp ie r

C a

6 4

4 4

9 2

1 2

9 9

8 %p ms o

eat m

M

)

n e

a t

r p

d t

i p

D e

o E

n a

r (witNsB V

0 0

0 0

t a

0 0

0 0

0 0

0

%ims R e cie M

5 6

6 6

5 5

5 5

5 5

7 t

a n

7 8

3 8

7 8

0 5

7 7

2

-eat e

s

)

U d

l e q

sF t

s N

u ea l

e e

c i

@F s

Mi d

c 1 l t

l i

k

(

M 1.

e at f

0 0

0 0

0 0

0 0

0 0 x7u%

ny o

e N

7e d

1 1

1 1

1 1

1 1

1 1

/

l nT u

T r

0 A

0 1

1 0

1 1

1 1

0 0

3 3

3 8

4 3

3 8

8 4

'E c E

C

)' PFe o

aT f

a a

h n

Y ch b c

e r

l R

t e

e M3 h

m e

u e F

r aC A a

1 i

3 W

chMs e M (c c

1 2

2 2

1 1

a 4

2 2

2 5

9 7

8 5

5 5 t easi c

r 9

e 3

0 0

0 2

9 3

2 8

8 1

omteg t

i l

sin Bel o 9

6 6

6 4

3 0

0 0

0 0 (r o

l ir d

C Ct lae r

n M

o Fy d

aI r

P bl W

s t

)

r ca d'

m i

e

)

r on e

p D

s cd o

eM H

s T

T T

T T

T T

T T

T T

a e s

k t

a a

a a

a a

a a

a a

a Cr h u

U t

M a

e el el el el el e

el el Fmo r

&n i

e t

l b

b b

b b

bl el el b

b b

b b

id e

i i

n V Wt o

nio t

n g

f e

i 1 cl D

s o

i s

M (R

x s

T Ri e

c n

aTi l

2

+

+

+

+

+

u 5

7 7

7 5

6 1

1 1

1 3

ati M

a s

n l

a s

)

i t

o e

M r

n 1

2 2

2 1

2 2

2 2

3 i

9 0

0 0

9 0

6 6

6 6

1

,o a

7 6

6 7

0 9

9 9

9 0

l 6

s 2

2 2

2 2

2 1

1 1

1 1

M

.c 8

8 8

8 8

8 7

7 7

7 7

0 0

0 0

0 0

0 0

0 0

0 M

6 N

6 6

6 5

6 6

5 5

6 a

8

/

9 9

8 6

2 3

9 9

5 r

.M g

5 A

5 5

5 0

8 6

9 9

7 in 1

1 1

1 1

1 7

WI T

N 1

7 2

/

5 6

3 1

9 0

8 8

9 A

4 A

5 0

2 4

6 0

6 6

0 E R 1

5 0

9 9

9 3

F 4

9 0

T

?

P Y

MW g s L

1 i

7BcC e u M

1 7a r

nr 6

s 0

Eise Fsinnt P

g

_M Y

M 9

M M

g N

t n

nis esi 0

r n s 9

r a

8 uecB 2

Ci M

L E

ro sL T tO 0

8 7

1 6

A 3

4 R eT E 2 8

1 8

4

/

3 6

5 5

0 9

2 N

7 2

A Rt 1

1 1

1 2

2 2

D a

I ing0 4

4 5

5 5

0 3

M r

4 6

6 8

8 8

6 8

a 3 5

5 6

6 6

4 M

0 5

5 0

0 0

0 0

3 7 8

8 8

8 8

8 4

s e

M 1

2 2

2 2

1 la ir n

e t

ei 0

9 9

7 7

7 0

7 o

0 6

6 9

9 9

0 9

i a

2 2

1 1

1 M

1 s

M su l

)n c

e lae i rm s

1 x s

0 1

1 5

5 5

0 5

e o

it t

i 5

+

+

1 s

i T

l e

nR T

+

+

D nc I

R M

WV

(

n Ui o

t tn e

a i

la&

r g

t e

f n

a a

t s

H i

u oi a

t t

Pk s

din le a a

D D

le le le le a

o c

D.

F b

s omC p

e h

a y.

y.

b b

b b

r o r

a a

a a

y r

a c e

t e

T r

r T

T T

T m

r i

r et u

u u

eb W

P Me S

S S

lca D

o 1

uB r

C d

N:

o l

l e

t

)

o M

r c

dl yF a

0 W

4 l

r h e a

nis(

0 3

8 4

2 6

6 3

eatC c

b cr ri i

a au e

gemr 7

9 5

2 8

7 7

1 m

h 3

it o

7 7

3 5

3 5

6 6

T et R saet sMhc e

c 1

1 1

1 1

Bc A Ce h

a a

n T

t f o

C E

M ion d nu r

l e

e o

D c ")

Pa e

3 0

f I

n0 6

6 5

1 3

A 1

3 k

t M

s Le1 6

8 4

6 8

4 6

N 2

1 ic d

/

Ou x 0 2

2 1

e elf (

N 0

e yl M

i s e

e n

it e u

s l

s q

d U

c a

t l e R ae) a t

2 6

7 7

2 4

9 2

a t

F V smk%

eict 8

0 0

5 5

6 5

5 a

r n

Bts N (w i

0 0

0 0

0 0

0 0

e D

M o

E p

i t

d a

p n

e o

m r

t e) a 1

0 2

9 7

7 3

3 C

a smp%

t r

2 2

d 2

1 1

1 1

o ei pt 1

M e

o f

Bt ow 0

0 0

0 0

0 0

0 sC(

t n

a h

E t

i m

e n

i M

t e

d d

s h

le le l

E s

M t

W W

le S

i G

h s

t io e

i t

t S

le e

a n

a i

g r

l d

g i

d s

y t

gn 1s e

n n

e o

o w

W B

n Ri F

m L

L eo y

o)

A re) l l

L%

i t

t t

n n

tn%

le le in h

te e a e

g c

w 0

h h

o0 n

a f

ttL F PlaIo0 S

S l

o v S t 0 o

e 3

o 4 e(

L 1

e t

te t 1 H

e e

t n

(

H B

te a e tted a

ta) t iad n

n n

l e

B d

h i

Be d) d%

de h

e io o

i l

i i

o e

S eW e% e3 e

S) r z.

m7 m7 mW e

t i

t g

lz m r

r 2 r

r

. e%

i r

c s

c l

e w0 W

e s

e r

o oi D teD e e 0

z e w

ze te r

o t

r t

N I

L NC Int InO i

o S

u S

n InC L(

d 1

(

(

c e

e le s

e l

e la i 7

6

)

)

1

)

WS D

S i

e r

m t

)

)

VeWt 1

1 2

P M a

3 2

52 5

0 7

1 4

1 de 2

1 3

6 1

6 7 1

4 Rel H P

1 2

7 8 8 6 7 9

2 8 1

1 4 -

8 -

se 2

8 4

1 A

0A 0A 2A 7A aW 2

9 1

TS P S P S(

7(

6(

1 S 1 S B

A C

8(

1 (

1 1

M

M 1

M Y

g P t

M n

nisF esiE 4

R r n s 8

7 a5 rue 5

^

cB3 2

E Ci 2

L M

M Y

I P

T F 4 4 2

4 8

7 8

R E 3 4 6

1 8

A 7

7 A 5 2 4 9

4 9

/

4 9

N 2

1 T

1 1 1

1 3

%2 M

nig0 4 4

5 5

5 0

3 r

4 6 6

8 8

8 6

8 M

a 3 5 5

6 6

6 5

4 M

3 0 5 5

0 0

0 0

0 s

o 7 8 8

8 8

8 8

4 1

2 2

2 2

1 la i

r n

0 9 9

7 7

7 0

7 o

e m 0 6 6

9 9

9 0

9 ta 2

2 1

1 1

1 is M

s u

)

l n

e l

rm c

1 x s

ia o

t o it s

e 0 1 1

5 5

5 0

5 s

inR Ti 5 +

+

T 1

i

+

+

D ic s

nli e

R M

UWV

(

n e

o t

tn a

g i

la&

r f

a t

n a

t ta i

e u

oi ta a

k n

le D D

te le le le a

s H

Pc s

di F

b a

a a

a y

D o

omC r

a v v.

b b

b b

p e

s h

r o M

)d ac e

t e

T r

r T

T T

T r

r et u

u r

Me S

S m

u i

eb P D

S

't lc a o

W no uB ro C

d

)

c N :r t

dl yF l

l c

eat C a

e r

(

1 nis( 0 3

8 4

2 6

6 3

c W

4 h e a

r ri 1

cr gemo it 7

9 5

2 8

7 7

1 i

e au e

s a e *c m

h 3

7 7

3 5

3 5

6 6

et R sMh 1

1 1

1 1

A a

l C F e

c c

b Ba n

h a

a f

o T

nu C

E t

M Y

r in d o

eP l

cF) e o

e Pa T n E"0 6

2 5

6 8

f t

5 5

2 A

5 0

k

M s

6 4

3

%ue51 3

8 yl e

l 3 x 0

0 0

1 ic d

1 9

/

1 N

1 1

0 e

it e u

F2(

N m

l s

q s

d U

ic s e

n a e R a

c t

FV e l r

a tae) n smk%

t 2

6 7

7 2

4 9

2 8

0

(

5 5

6 5

5 e

D o

m 1

eict Bts N (w i

0 0

0 0

0 0

0 0

p i

ta E

p dn m

o a

r e

C r

t a e) d t

o e

o s m p%

1 0

2 9

7 7

3 3

f m

1 2

1 1

1 t

eipt 1

2 2

n a

h Bt ow 0

0 0

0 0

0 0

0 i

sC(

m e

t E

M i

t l

s h

l d

E s

le d

m t

W W le s

y i

S e

le l

t s

e h

l n

a t

t.

S e

o te i

ig g

r ld a

d i

B n

e eo gPla

+

n n

e ign L

L o

o w

W A

t

_ g in o o S la In%

le ll L%

i e

3 o

4.

a Rt i

ll e te) l o) t a

f i

n a

e g e e

g t

c h

r 0

h h

o0 n

H t L F P

o0 S

S t 0 o

e l

t 1 e1 L n

n n

lt B

lt te le it te ta)

(

e t (

ff r

it i

it e

o o

o iad e a ed a

i l

e B d h l

d) d% de h i

i Be g

c s

c e

S)

W e

s e

e S eW e% e3 mW e m n7 m7 r%

r l

z e

r z

r2 r

r e

e w0 d

S u

S r

o te w z e. t D teD e e 0

z n

o oi t r r

c N I L NC Int ino i o l

e e

InC L(

e s

1

(

(

e i_

e W

S D.

S v e a

t ir

)

)

VeWt 7

6

)

)

1

)

M a

1 1

3

- 2 2 5 2 5

0 7

P de 2 1 3 6 1

4 1

7 1

4 Rel H P 1 2 7 8 8 6 7 9 2 8 1

6 1

1 se

- 8 -

2 8 4 A 0A 0 A 2A 7A aW 2 9 1 TS P S P S 1

1 B

g 1

S S

A C 8( 1 ( 1 (

1 7( 6(

J 1

N' Y

g P t

n nisF esiE 5

r n s 9

N a5 r

CcB3 1

ue 2

2 U

"I' Y

T P F 3 1

4 4

6 2

0 R E 4 7

8 5

A 3

1 3

A 0

2 8

1

/

8 1

6 5

N T

1 2

1 1

1 1

3

%2 ing 2 4

4 6

5 5

0 3

r 7

6 6

6 8

8 6

8 a 2 5

5 6

6 6

4 M

n 05 5

0 0

0 0

0 s

o 7 8 8

8 8

8 8

4 1

2 2

2 2

1 la ir n

p 0 9 9

7 7

7 0

7 o

e t

e, 0 6 6

9 9

9 0

9 i

a 2

2 1

1 1

1 s

M su

)

l n

r p.

c e

laoe m

1 x r 0 1 1

5 5

5 0

5 s

s it t o iTi 5 +

+

1 i

s InR T

+

+

D icnli e

R UWV

(

n o

t t

e a

n i

g la&

r f

t n

a a

a e

u oi ta a

t i

t D

D.

le le le le a

s H

k n

le Pc s

di D

b b

b b

o F

b omC s

a y.

y a

a a

a y

p e

h r o r

d ac e

t

)

r e

T r

r T

T T

T r

et u

u u

m i

r Me S

S S

W eb P D

't lc a o

n r

uB C

d e

o

)

l c N:

t dl yF e

2 r

l r c eat C a

(

W 4

nis(

0 3

8 4

2 6

6 3

c h e a

ri 1

cr gemor i

it 7

9 5

2 8

7 7

1 e

m h

3 a au saet 7

7 3

5 3

5 6

6 et R sMhc 1

1 1

1 1

c A Ca e

c l

h Ba n

h a

F c

f o

C E

t T

nu Y

r io n d eP l

cF) e o

e T n E"0 Pa f

1 5

2 1

A 3

2 9

k t

7

M s

%ue51 0 6

6 7

4 6

3 c

d

/

yl e

l 3 x 0

0 0

0 N

0 0

0 i

e t e u

F2(

N s

s q

8 i

d U

l i s e

n c

a a e R e l r

a a

t FV t

. ae) n smk%

t 2

6 7

7 2

4 9

2 8

0 0

5 5

6 5

5 e

D eict o

Bts N (w i

0 0

V 0

0 0

0 0

p i

d t

E a

p n

o m

a r

e C

r

- ae) d t

o te i p%

t 1

2 1

1 1

3 3

e o

1 0

2 9

7 7

smp f

i.

2 2

t n

Bt ow 0

0 0

0 0

0 0

0 a

h sC(

t i

m e

E M

i t

c le d

le le l

s S

e l

E s

h d

i s

t W

W h

s y

te t

S le B

n l

d e

a n

i g

r io e

ia t

g e

t n

n e

gn la o

o w

W A

eo g P n.

L t

t o) i a

f Ri t n

t e) n n

t tn%

e e

L%

g e

3 o

4 a

i e

n c g

e t

e i o o S la i0 h h

o0 n

h r

t 0 o

H ltL F P

o0 S S

e( L n

n n

l t 1 1

e e

e t

n e

o o

o e

n 5

t

(

E e ta e leld t

ta) iad e

r i

i it a

i h i e. 7 B

d Be d) i % dle h i

tc s

c e S eW e%

e S)

W e

s e

mW 3

e m z e w re.

m7 r

r%

lz l

e z

r2 n

r.

e 0 S

u S

r 0 teD e e w0 d

e o

t r

r o

oi t

t i o

c N I L NC In1 InO n

InC L(

e s

e e

1 l

(

(

e e

W S

D S

i l

l e

a r

t i 6

)

)

1

)

)

)

VeWt 7

M a 3

- 2 5 2 5

0 7

1 1

m 2

P 1

de 2 1 3 6 1

67 1

4 4

1 Rel N P 1

2 7 88 6 7 9 2 8 1

1 4 so 2 8 4 1A 0A 0A 2A 7A aW 2 9 1

T S PS P S 1 S 1

B S

1 A C 8( 1 ( 1 (

7( 6(

4 x

liI!

l t

m_

M g

t n

nis esi 4

W s

9 r n r

a 7

uecB 2

Ci L

r a

I o sL T rO 0

4 0

2 0

Re E 8 9

1 3

9 T

A Rt 3 4

1 5

8 1

1 1

1 2

D a

I n

ig 0 0 0

5 5

r 4

4 7

5 8

a 3 3

1 6

6 M

0 0

5 0

0

. 7 7

8 8

8 c

1 1

2 2

gn s

ir l

e a

0 0

0 0

7 i

e r

e 0 0

0 7

9 n

n e

o 1

1 ig a

s t

i nE M laer n

s

)

r n u

0 0

0 6

5 l

it e 4 4

4 5

c n

e iT 2

InRT

+

+

+

s o

s R

i it it s

D

(

ns e Uu V n

b g

o t

t f

nm e

oin a

a t

i din a

t r

D le le e

lao u

omC le le i

F b

b h

a a y.

b b

s H

PC s

r a

a o

t e

T T

r T

T r

s et u

p e

t a&

e Me S

r D

m i

ex r

W o P o

lc c C

d 1

ul r

)

dl yF i

o r

l NWt eat C l

o 3

e nis(

0 0

8 5

0 a

ri c

r W

4 b h gemo 6

8 2

0 0

l c

it 7

5 4

7 8

c&

a saet i

1 1

a a

e sMhc m

h 3

A Ca k R T

e c F

e c

Bo n

h a

e)

C E

t c

o D c"0 inb 0

2 5

0 r

I 7

l o a d n

7 7

Le1 5

1 6

5 5

e o

P B e

Ou 3

2 2

k f

x 0 0

t elf (

c d

s

r i

e e

ye N

s t r u

e i

t t d

U l

u q

ae) i t e

s m k */.

3 0

2 0

0 t

7 7

7 7

6 n

cc eict a

aa R Bts N (w i

0 0

0 0

0 a

t Ff n

E r

a u

e D

n o

p a

t r

d i

e a

a e) p t

n M

smp%

1 9

5 8

6 t

p o

t 1

0 0

1 2

a m

ei ow 0 0

0 0

0 C

t BsC(

d l

r e

E e

o o

s f

t s

n l

m e

a h

e t

I V

le h

l t

M S

l i

e s

e h

n n

t S

E s

g a

i i

io ig d

r e

e t

s r

eo g F g

m w

s y

gn o

l r

o) e a

Ri t n

l n

e)

L%

B n

l i

tn%

e a ig e g

r i0 o0 c

h r

n A

i o o S o

t0 t

tt L F F

o0 i

e t 1 1

e(

a tiad e

3.

f e

lt t

te tt t

(

l o

4 a

ed B

e i

h B

d Be de H

l e

S e

n n

n leW mW e m r

r.

e io o

. e c i

t i

io ln e

e w nc r

r r

t o

t o

oir t

i c

s c

InC W

e s

e n

N I

L Nc S

u S

d l

c la ire l

e e

e s

t

)

5 4

e e

V eWt 2 0

9 W

S D

S i

P M a

5 0

8 1

4 de 3

5 5

2 Rel H V V W 1

3 4 -

se 3

3 2

9 4A aW 2

2 2

1 2 S B

1 1

1 2

7(

Y g P t

n nis F M

esi E 4

r n s 8

r a 5 ue 5

cB 3 2

R Ci 2

L 9

N T

YP

^

T F 92 4 7 6

M R E 68 3 5 8

A 1 3 0 0 5

5 T

. 1 1 1

1 2

3

%29

~

ig 00 0 5 5

n r 4 4.

7 5 8

a 33 1

6 6

M 0 0 5 0 0

no 7 7 8

8 8

g 1 1 2

2 in s

r l

e a

t 0 0 0

0 7

i a 0 0 0

7 9

e r

1 1

n n

e t

o ig i

a s

n laer

)

E M n

l i

s r n.

n it i e 0 0 0

6 5

u T

InRTi 4 4 4

5 2

e c

+

+

+

it io s

R s

(

i s

t e

D n s Uu V g

n b

foin a

o t

tnm e

dn t

ao u

hmF le le a

a D. le e

i r

i b

b l

t o

e b

b i

rC a a v

a a

s H

lP C s

ete T

T r

T T

t u

o s

Me S

a&

e D

p e

r

)

r d

't e x r

m i

o P W

l yF o

)

n c c eis(

C d

r lat C r

ul i

o c NWt i ri 0

0 8

5 0

l gemo 6 8

2 0

0 a

e r

t l

c

(

saet 7

5 4

7 8

h W

4 c &.

a sMhc 1

1 c

1 e

A Ca 4

i F

a ak ec R m

h 3

l e

c b Bo n

Y h

a c

c o

eP C

E t

T nb cF) ia d

T n E"0 6 6

r 7

5 9

5 l

9 oB e

%ue51 1 4

3 1

3 e

o P

t i3 x 0 0

1 k

f 1

1 s

r2(

c d

r ye e

i t r u

N es i

u q

l c

e e

d U

i tc

!l t ae) n a

R smk%

a a

3 0 2

C 0

a t

7 7 7 7 6

Ff eict u

n Bts N (w i

0 0 0 0 0

r a

n o

E e

D p

i a

ta p

d M

e o

n m

r tae) a 9 5 8 6

C l

te i p% 1 smp r

e t 1 0 0 1

2 d

s o

f Bt ow0 0 0 0 0

e o

sC(

s n

t E

a h

e I

t V

m e

l i

M l

t e

s h

l E

e S

le i

n n

te h

t s

g i

a S

s y

o g

d r

i e

l ign o

e e

a r

eo aF g m w

B n

Ri o) r r

n t

.n i e) L %

A t

. e a

e a in c s. h g tn o OS oI 0 o0 f

r t 0 e

3 o

4 iL F

F o 0 t

e (1 H

e l

t 1 B

tt te le lt t

t

(

Bd h ld ia d n

n n

eia e

e o

o l

d e e

r it i

io B e e S Wm W.

e e

i t

m c

s c

r lz r

lz W

e s

e e

r z e w z e e e ot n o o i t r r

NI L N cI C d

S u

S i

n c

le e

s e

e e

l WS D

S i

la e

. t ir V eWt 20

)

5 4

M a

9 8

P 50 de 35 5

2 1

4 R el H VV W

1 se 3

4 33 2 9 4 A aW 22 2

1 2 S B

1 1 1

2 7

(

r L

ll l

Y i

g P tnisF P.

n esiE 5

R r n s 9

a5 r

1 uecB3 2

N Ci 2

L M

YP T

6 1

3 4

f F 1 R E 0 5 4

6 9

A 5 0 2 9

7 1

T 1

1 2

3

.%2 n

ig 0 0 0

5 5

r 4

4 7

5 8

a 3 3

1 6

6 M

~

0 0

5 0

0 o 7 7

8 8

8 1

1 2

2 gn s

i r l

0 0

0 0

7 e

a

, 0 0 0

7 9

e e

r 1

1 i

n n

e o

ig a

s t

i

)

n laer m

s E M r

0 0

0 6

5 u

l it e 4 4

4 5

T c

n e inR T

+

+

+

2o s

R s

I i

(

i it t s

D n s e

Uu V g

n b

f oin a

o t

t nm e

.dn le le t

lao u a

a i

D le le it e

r omF b b

hrC a a v.

b b

i a

a s

H P C s

et u

o t

e T

T r

T T

e D

p e

s Me S

a&

r r

)

m d

i

't le x r

W o P o

)

dl yF n

c c r

a ul eat C C

d r

i o

nis(0 0

8 5

0 ri l

c NWt gemo 6

8 2

0 0

a r

l e

5 it c

saet 7

5 4

7 8

W 4

(

h c

1 c&

a sMhc 1

1 A Ca i

e m

h 3

F e

ak R ec e

c lb Bo n

Y h

a c

c o

cF)

C E

eP t

T nb T r E"0 a

9 7

2 9

2 r

ia d l

oB e

%ue51 0

6 6

0 6

e o

0 0

0 0

0 f

P t

l 3 x k

F2(

s c

d

r g

ye e

e i

t r u

N s

i u q

d U

l e

i t

e c c t l n

- ae) a t

R smk%

3 0

2 0

0 a a a

t 7

7 7

7 6

eict Ff i

0 0

0 0

0 r

a u

n Bts N (w n

o E

e D

p i

d a

t p

a n

M e

t r o

m

- ae) a 1

9 5

8 6

C te i p%

smp l

r t

1 0

0 1

2 d

e o

Bt ow 0

0 0

0 0

e o

s s

f sC(

t E

s n

a h

e t

I m

e V

le M

l i

t h

l s

S le E

s i

g e

h n

m t

S t

s a

i s

y io g

d r

l r

e e

e a

e gn o

eo g F g

m w

B n

o)

Ri ig e ig r

t n n n

e) l o o S o in% L%

t A

e a t

c h

r r

0 o0 a

in f

t 0 ltL F F

o0 e

3 o

4.

e(

1 t 1 e

H t

e u

(

B tt ta e

tt iad n

n n

eld e

i Be de e

it i

it l

o o

o B

d h

e S e

leW mW.

W e

s e

r e m r

i lz c

s c

e z.

r r

z e w

ze e c ir o t o

oi t

r InC S

u S

n N I L NC d

c e

le s

e l

e e

W S

D S

la i 5

4 e

i r

t

)

VeWt 2 0 P M a

9 8

5 0 de 3 5 5

2 1

4 Rel H V V W 1

se 3

4 -

r aW 3 3 2 9 4A B

2 2 2 1

2 S 1 1 1

2 7(

1 l

l

J g

T M

)

g t

n nis 7

L esi 7

M r n s 4

r a

ue 3

cB Ci 2

L M

"h ro sL T tO 5 6

6 9

0 6

8 3

A 6

1 R,E 5 1

1 9

1 1

6 3

/

2 5

T A Rt 2 4

3 4

3 7

8 2

N 8

4 M

ID a

1 1

1 1

1 1

1 2

1 2

n ig 0 0

0 0

0 8

5 3

A 5

5 r 4 4

4 7

4 8

8 8

/

8 8

a 3 3

3 1

3 6

6 4

N 6

6 M

M 0

0 0

5 0

0 0

0 0

0 0

d 3 7 7

7 8

7 0

8 4

4 8

8 r

s e

1 1

1 1

2 2

1 1

2 2

M a

l y a i

k r

n c

e 0

0 0

0 0

0 7

7 7

7 6

o o

t

, 0 0

0 0

0 0

9 9

9 9

0 i

e D

a 2

1 1

1 1

2 s

M s

ml u

)

a e

laor s

n.

c r n d

s it no 0 0

0 0

0 0

5 5

5 5

7 r

s inR T +

+

+

i T u 4

1 2

e D

e t

i R V

t M

n o

(

R e

o ta r

g i

f t

e d

u oi t

t t

s H

n a

a a

i 1 n s

dn lb b

b b

b v.

b b

e a

a a

.F le D le le le D

D le le odC o

a s

r M

it p

e h

a a

a v

a a

a v

a a

nx e

C t

r T

T T

r T

T T

r r

T T

r e

m Uo P M

u u

u iW S

S S

c C

o yli r

rWt C

d 1

o r

e u

l

)

l c

dl yF eat C a

e l

6 M

r b S&

a nis(

1 5

5 0

0 0

9 8

8 9

6 W

4 c

ri a

k e

gemo 6

3 3

5 3

2 3

7 7

3 0

r i

m h

3 T

yc R saet it 7

7 7

8 7

5 4

3 3

4 2

t o sMhc 1

1 1

1 1

2 i c n

A Ca e

c F

h a

lib o

c C

E M

a a B d r

e) l F

e ID c"0 e

o 7

7 0

0 0

3 3

3 3

0 A

8 4

k f

n 0

t 0

0 r

s le1 3

5 5

5 5

3 6

2

/

0 0

3 N

5 5

c d

ou e

e elf (m 0 3

3 3

3 0

0 i

r e

u u

N M

s t

q d

U c

e e l a

a R ae) n t

tsmk%

4 5

5 0

0 0

7 4

4 7

8 a

t f

eict 7

5 5

5 5

1 5

5 5

5 6

r a

u n

Bts N (w i

0 0

0 0

0 0

0 0

0 0

0 n

o E

e D

M a

i t

p d

M a

p n

e m

o r

l ta e) a e

tsmp%

1 1

1 1

1 3

6 2

2 6

4 C

r s

o ei pt 1

1 1

1 1

3 1

2 2

1 3

d s

f Bt ow 0 0

0 0

0 0

0 0

0 0

0 e

o M

sC(

t e

n E

a h

V I

t le e

c im e

M l

t h

ld i

C E

s r

r e

C i

s S

M ign la la e

n n

t W

ll l

d i

e e

le t

s a

o te e

i 4

h h

ld le s

y t

d g

S S

e W

e a

l r

r o

e e

W B

n P P m

eo L

g t

n d u e) t it w

w Ri r

i o o S S la la In%

ll o

o t

g A

a i

c g

e e

te te t

e L

L) g n

t e

M tt L F P

P o0 S o) o%

o L

e 3.

f h h 0 h n

o a

n l

r te%

le n

n n

t L

o 4

B lt te e

t l

t 1 a4 te0 l

H e) e

(

i i

e l

t 0

6 n ta%

i MO e

a a

l le leld t

a e

h i 0 iD h e

it i

it B

d d h h

Be d 0 dD S) S o

o o

e e S S

eW e1 eI r

e m

m

(

r) r r

mh m(

e%

e%

M lz r

r r

i l

c s

c e

e z

0 w0 W

e s

e rd sd z

e e

w w

z c_ teto ele r

te le w0 o0 o

t tn o

o oir t

N In I

L L

NC InB o

InW iW L( L(

d S

u S

n 1

1

(

c l

e l

e s

e e

la ire e

)

)

)

)

)

W S

D S

i t

VeWt M

9 4

5 0

4 6

1 2

1 2

9 8

5 9

2 M

a 0 4

P 1

6 6 5 5

7) 5 4 5

6 4 4

de 5

5 5 4 5

Rel H V 2 2 1

1 6 5 4

4 1

1 1

1 1

1 5

L se 2

- 2 3 3 4 4

0 1

7 A 4A 4A aW 2 4 4 4 4

5 T S 2S 2S TS 9 S A 9A 1

B C C C C 2( 8( 7( 7( 8( 2(

J 1

M

j M

Y g

P t

n nisF esiE 4

r n s

'M 8

a8 ruecB8 2

2 Ci 2

L Y

h T P 8

8 7

2 0

4 3

4 7

F 1 R E 6 2

2 9

2 3

7 6

A 3

5 A

1 3

2 3

2 5

6 0

/

6 1

T 6 1

1 1

1 1

1 1

2 N

1 2

9

%2 n

ig 0 0

0 0

0 8

5 3

A 5

5 r

4 4

4 7

4 3

8 8

8 8

/

a 3 3

3 1

3 6

6 4

N 6

6 M

0 0

0 5

0 0

0 0

0 0

0 a

d c 7 7

7 8

7 8

8 4

4 8

8 r

s 1

1 1

1 2

2 1

1 2

2 a

l y a i

k r

, 0 0

0 0

0 0

9 9

9 9

0 o

0 0

0 0

0 0

7 7

7 7

6 n

c e

e o

t 2

1 1

1 1

2 i

D a

s M

s ml

)

l w

u iam w c

a e

0 0

0 0

0 0

5 5

5 5

7 s

d s

it eT w 4 1

2 r

s InR T

+

+

+

i e

R D

e t

(

V n

t o

o t

R e

g it r

f a

n a

a a

e oi ta t

t i

d u

dn.

le lb lb b

b b

v a

a p

e a

a e

e D

D le le s

H D

le le le i n s

i b

omF hrC a

a a

r a

a a

y b

b o

a s

)

it t

d nx e

e e T

T T

n T

T T

r r

T T

r t

u u

u r

Me S

S S

m i

o

't Uc P D

W o

n yi r

l C

d Wt o

o r

)

dl yF r

c u

eat C e

7 l

r l

(

c nis(

a S&

a gemo 6

3 3

5 3

2 3

7 7

3 0

i W

4 ri 1

5 5

0 0

0 9

S.

8 9

6 c

r 1

it k

e saet 7

7 7

8 7

5 4

3 3

4 2

m h

3 e

yc R sMhc 1

1 1

1 1

2 A Ca l

t o b i c n

h a

F e

c l

a ib o

a Y

C E

T caB d eP r

l cF) e o

F e

T n E"0 7

7 6

5 5

5 5

5 A

2 2

k 9

9 f

t 8

8 6

r s

%ue61 1

1 1

1 1

1 3

9

/N 3

3 c

d e

e l 9 7.

0 2

2 2

2 0

0 0

0 i

1 r

F2(

e g

N u

u s

t q

d U

c e

n a R e l a

t a

f tae) u n

smk%

4 5

5 0

0 0

7 4

4 7

8 r

a t

7 5

5 5

5 1

5 5

5 5

6 e

D n

o eict Bts N (w i

0 0

0 0

0 0

0 0

0 0

0 p

a i

t d

M a

r E

s n

m o

l a

e r

e C

r s

o tae) d te i p%

1 1

1 1

1 3

6 s 2

2 6

4 e

o smp s

f t

1 1

1 1

3 1

2 2

1 3

t 1

e n

Bt ow 0

0 0

0 0

0 0

0 0

0 0

a h

V sC(

i t

E m

e M

it n

s h

l e

c E

s c

e d

r r

e i

S e

C C

t s

n t

W e

n n

s y

d e

e le a

l e

o e

te ia d

h h

le d

W B

n t

d g

S S

ign la la e

n r

r t

o e

e W

ig A

eo g

P P m

L w

w t

a Ri r

t n

e a r

n n

c g

e e

te te te) l o

o d

f tio o S

S la la In% le L

g n

e 3

o 4

L )'

r h

h 0 h n

n o

H lt L F P P o0 S o) o%

o L

n n

n te%

te% te0 le r

i i

it t

t L

e e

t 1

)

l e

o o

o B

le t

t n

n led e

t t (

0 6

n a

a e

e a

a4 a

e h

t i

i Be i0 i

iD h

B d

d h h

l d 0 dD d i

c s

c W

e s

e e

e S S leW e1 et eO S) S e

)

m m

n n(

m( r%

r%

r r

ln t

t e

e e

S u

S e

e w

w ne nh nd rd e

r r

e t ele e l w0 w0 d

o o

t e 0

c N

In In o

o oir tnB(

o1 o0 t

l e

InW InW L( L (1 e

s e

L L NC I

e e

W S

D S

i l

la ire t

)

)

)

)

)

VeWt 9 4

5 0

4 6

1 2

1 2

9 8

5 9

2 P M a 0 4

de 4

5 5

5 4 4 5 1

6 6 5 5 7) 5 4 5

6 Rel H V 2

2 1

1 4

6 5 1

1 1

1 1

se 1 4 -

5 L -

2 3

3 4 4 0 2 7

A 4A 4A aW 2

4 4 4 4 5 T S 2S 2S TS 9 S 1

A 9A 1

B C C C C 2 (J 8( 7( 7( 8( 2(

1

~

M 1

M Y

g P t

n nisF M

esiE 1

r n s 8

r a8 ue 3

cB8 N

Ci 1

2 L

h" YP T

9 9

7 5

4 8

8 5

8 F 1 R E 3 2

2 6

2 9

2 A

8 9

3 A 6 9 1

0 1

0 1

3

/

6 2

6 N

1 1

1 T

1 1

1 1

1 1

9

%2 M

n ig 0 0

0 0

0 4

5 A

3 5

5 r

4 4

4 7

4 6

8

/

8 8

8 a 3 3

3 1

3 6

6 N

M 4

6 6

M 0

0 0

5 0

0 0

0 0

0 0

3 d

c 7 7

7 8

7 8

8 4

4 8

8 r

s 1

1 1

1 2

2 1

1 2

2 M

a l

y a i

k r

n c

e 0

0 0

0 0

0 7

7 7

7 6

o t

e, 0 0

0 0

0 0

9 9

9 9

0 o

D a

2 1

1 1

1 2

is M

s M

ml u

)

a e

aow c

r l

d s

i s

t uo 0 0

0 0

0 0

5 5

5 5

7 r

s iT w 4

1 2

i e

InR T

+

+

+

D e

R t

M V

t

(

o n

R e

o t

a r

g i

f t

d u

oin a

ta a

i e

t t

D le le le a

a s

H 1 ns

dn le le le a

o i F b b

b b

b b

D.

le le D

o a

s hmC b

b d

it r

a a

a y

a a

a v

y a

a p

e M

)

nx e

t e

T T

T r

r T

T T

r et u

u u

r r

T T

m o

i

't Uc P Me S

S S

i o

W D

n yl r

rWt C

d o

o r

y) c o dl l

rF l

c eat C a

e 8

M

(

S&

ri 1

5 5

0 0

0 9

8 8

9 6

c W

4 nis(

a 1

gemo 6

3 3

5 3

2 3

7 7

3 0

r k

e i

it b

yc R sMhc m

h 3

saet 7

T 7

8 7

5 4

3 3

4 2

t o A Ca 1

1 1

1 1

2 F

e c

b l

c n

i h

a c

ib o

M a

C E

T caB d Y

r eP l

F e

o e

cF) 7 7

T n E"0 9

2 2

2 2

9 6

7 3

3 k

f t

r s

0 0

0 0

3 A

2 2

2 c

d 6

6

%e61 r

lu 0

8 8

8 8

e e

0 N

7 1

1 i

1

/

0 0

0 0

0 9 x e

0 0

0 0

0 N

u u

F2(

M s

t q

c e

d U

a R n

a f

e a

t u

n t l

- ae) r a

tsmk% 4 5

5 0

0 0

7 4

4 7

8 n

o i

7 5

5 5

5 1

5 5

5 5

6 e

D M

eict a

t Bts N (w i

0 0

0 0

0 0

0 0

0 0

0 p

M a

E p

dn m

o l

a e

r C

e s

o r

d ta e) e o

M s

f te i p%

s smp 1

1 1

1 1

3 6

2 2

6 4

t e

n t

1 1

1 1

1 3

1 2

2 1

3 a

h V

Bt ow 0 0 0

0 0 0 0

0 0

0 0

I sC(

m e

t E

M i

ts n

E s

M e

i e

d h

l ir l

t s

S e

C le l

s y

W l

h e

n te l

e a

i a

o te te i

t h

S ld d

B n

d g

S r

le M

ign la'la e

n e) e A

r t

m e

w W

W a

f o

eo P P r

L g

w o%

t Ri n le l

e ta Io0 S o) t 0

t i

e 3

o 4

e a i

l le ta l

0 h oD n

n e) l o

L 6 g

g H

n% le L

e i

t c gr h h

!n o o S S l

n n

n t

o o

L F P P t 1 I

O te% te% e( L L

e it i

it t

lt t

l o

o o

B rt te te I

l ted

)

e Ie le t (

0 id l

l r

a e a B d ia l

d 0 dD de h h

Be l

e le i

M lu r

6 w w u e.

et a

a4 c

s c

s M

h h i0 i

W e

s e

S S e

e S) S) leW e1 eI mh m( m W.

e n r

r e% e%

d S

u S

r r

r e e d

r r

r e

ee w0 w0 e

e 0

0 c

tele o o oir o

o t

l t ir t

n n o1 o e

s N

I I

L L NC InB InW InC L( L (1 e

e

(

WS D

S i

M la i

)

)

)

)

)

l er t

VeWt 5

4 5

0 4

6 0

1 2

1 2

9 8

5 9

2 PM a

4 de 1

6 6 5 5

7) 5 4 5

6 4 4 5 5

5 5 4 Rel H V 2 2 1

1 6

1 4

2

- 4 1 4 - 5 1

1 se 1

5 1

- L -

2 3 3 4 4 0 7 A 4A 4A aW 2 4 4 4 4 5 T S 2S 2 S T S 9S M

1 1

A 9A B

C C C C 2( 8( 7( 7( 8( 2(

J 1

1 j

M g

t n

nis 7

esi 2

N s

r n 5

r a

3 e

u cB 2

CiL I

ro sL T rO 7

2 5

4 9

1 2

4 A

1 4

4 A

R rT E 4

4 1

6 4

6 7

0

/

5 0

0

/

1 3

1 4

9 7

6 0

N A Rt 1

0 0

N 1

1 1

1 1

1 2

2 2

2 a

DI in 0 0

0 0

0 8

3 5

A 8

5 5

A gr 4

4 4

4 7

8 8

8 8

8 8

/

/

a 3 3

3 3

1 6

4 6

N 4

6 6

N M

0 0

0 0

5 0

0 0

0 0

0 0

0 a

7 7

7 7

8 8

4 8

4 4

8 8

8 d

c 1

1 1

1 2

1 2

1 1

2 2

2 r

s a

l y a i

k r

n c

e 0

0 0

0 0

0 7

7 7

0 7

7 7

o o

t et 0 0

0 0

0 0

9 9

9 0

9 9

9 i

D a

2 1

1 1

2 1

1 s

M s

ml u

)

m c

a e

l r

ia or s

d s

it uo 0

0 0

0 0

0 5

5 5

0 5

5 5

i r

s T w 3

1 2

3 1

D InR T e

e

+

R t

V t

n

{

o R

e o

t a

g i

r f

t a

a e

d u

oin a

a t

t i

t t

a a

s H

2 n s

din le le le le D. le e

a a

e le le D

D D

l o

omF l

b b

b b

b b

b b

b a

s hrC a

a a

a y

a y

a y

y a

a a

p e

itnx e

t e

T T

T T

r T

T r

r T

T T

r et u

ru u

u m

i r

Me S

S S

S Uo P D

o W

k yi r

C d

1 Wt r

o

)

l r

e u

dl yF e

9 l

c eatC a

r W

lb S&

a 4

nis(

8 0

4 3

2 5

8 4

8 2

4 4

4 c

ri a

k e

gemo 5

3 3

7 6

0 7

2 7

5 2

2 2

r i

m h

3 it saet 7

8 7

0 6

6 3

5 3

2 5

5 5

T yc R sMhc 1

1 1

1 1

1 1

1 1

it o A Ca e

c l

c n

F h

a ib o

C E

c a r

aB d De) l c

8 8

7 7

7 7

e o

F e

I n "0 2

2 2

2 9

9 9

A 2

f 9

9 9

A k

Le1 r

s Ou 2

5 5

5 5

2 6

6 N

3 t

5 6

6 N

c d

/

/

x 0 3

3 3

3 0

0 0

0 0

i e

e elf (

e ru u

N s

t q

d U

e c

e

- ae) n t l a

a R smk% 7 6

5 5

5 1

5 5

5 5

5 5

5 a

2 0

4 5

4 0

4 7

4 6

7 7

7 a

t t

f eict u

n Bts N (w i

0 0

0 0

0 0

0 0

0 0

0 0

0 r

n o

E e

D p

a i

t d

M a

e n

p t

o r

m t a e) a l

s m p%

p 1

2 1

5 1

5 2

9 2

9 9

9 9

C e

r ei t

1 1

1 1

1 3

2 1

2 1

1 1

1 d

s o

Bt ow 0

0 0

0 0

0 0

0 0

0 0

0 0

e o

s f

sC(

E t

e n

a h

I t

V m

e l

d it M

le d

l e

h l

e d

r i

s S

e W

le C

E s

t W

i W

ll d

d t

i e

t s

a e

o' n

i t

g t

h le le ld s

y e

i l

t te d

g n

g S

W W

e e

a ign la la e

n o

n r

l L

W B

n r

eo o

L o

e it it Ri g

P P

m L

le ll o

n%

l w

g g

t t

A n

d l

e) le h

e L

n n

it e a ig e

le te e

t g

c t

a n

r h

h a

0 h

S h

o o

r f

i o o

S S

la l

Io0 S

S o

L L

o e

3 o

4 ltL l

F P

P e

)

le le

!e) t te%

l l

L I

H a

a e

l t 1 e

B le t

te

(

te t

e e

t n

le lted ia ia ta) n n

n i

Be i

a0 h

h i

h%

e it i

it o

o o

B d

G h

h l

d d) d%

d0 S

S) e e

S S

e) e r%

S r

leW m% m%

e0 e1 e

)

7 r%

e3 r3 i

c s

c m

m 0

m5 m(

r r

ln e

W e

s e

e e

e e

w w nc r 0 e

d e

r5 r

r r

r w0 w6 wD D

teD tele o0 oD oO S u S

e0 o

t t

o o

oi r t

t N

I I

L L

NC In1 InI InO InW L(

LI L(

d n

n 1

(

(

(

(

c e

l s

e e

e i e

l WS D S

la i 3

5 5

)

2) 2)

2) e r

t

)

)

VeWt P M a

2 2

2 1

8 8

0 2) de 3

9 8

9

)

5 5

8 Rel H V

i3 3

0 3

5 7

5 64 5

0 64 64 68 1

1 3

4 -

7 -

4 -

70 7 -

7 -

7 -

se 3

3 3

2 3

7 F

F F

F 7

4A 4A 23 1

aW 2

4 4

4 4

2 1

1 1

L 2S TW 2S 2R TW TW TW B

C C

C C

4(

7(

8(

7(

0(

8(

8(

8(

1

J.

1 1

M Y

g P t

n nisF esiE 4

r n s 7

r a4 8

ueB9 M

c 2

Ci 2

2 L

R L"

YP T F 5 2

6 5

9 6

4 6

0 6

C.

R E 5 4

2 3

6 6

8 9

A 0

9 9

A A

0 2

0 3

8 5

4 7

/

0 7

7

/

1 T

. 1 1

1 1

1 1

1 N

2 1

1 N

0

%3

~

3

. 0 0

C.

0 0

8 3

5, A

8 5

5 A

W 4 4

4 4

7 8

8 8

/

8 8

8

/

Y

)

3 3

3 3

1 6

4 6

N 4

6 6

N M

P FE

(

a 0 0

0 0

5 0

0 0

0 0

0 0

0 s

d c 7 7

7 7

8 8

4 8

4 4

8 8

8 a

r r

s 1

1 1

1 2

1 2

1 1

2 2

2 e

a l

y y a r,

i e

k r

i 0 0

0 0

0 0

7 7

7 0

7 7

7 ow n

c e c 0 0

0 0

0 0

9 9

9 0

9 9

9 p

o o

t 2

1 1

1 2

1 1

1 i

D a nu s

M s

f ml

)

e a

v u

v liaom it a

e c

c d s it ao 0 0

0 0

0 0

5 5

5 0

5 5

5 fe s

T a 3

1 2

3 1

r InR T

+

f i

s e

R e

D e

t 8

(

V t

8 n

o 2

R e

g h

a o

t r

f i

n oi a

a a

a g

t e

d u

dn a

t t

t u

i t

D le aD le a

a 2n s

omF le le le le l

l le o

s H

e e

i b

b b

b D

a s hrC a

a a

a y.

b b

t D.

r b

b b

h o

a y

a v

a a

a t,

p e

d it t

e T

T T

T r

T r

T n

)

n x e et u

u u

u r

T T

T 5

r r

Me S

S S

S 8

m o

i

't Uc P D

o W

5 1

n yl r

A C d

r i o

rWt

)

dl yF S

c u eatC ld l

r l

e a

e 0

c

(

nis(

S&

ri 8

0 4

3 2

5 8

4 8

2 4

4 4

w c

W 5

a gemor 1

it 5

3 3

7 6

0 7

2 7

5 2

2 2

la k

e saet 7

8 7

0 6

6 3

5 3

2 5

5 5

it i

m h

3 e yC R sMhc 1

1 1

1 1

1 1

1 1

A Ca lb t o F

n c n e

e c

i b

o e h a

r c

l i

T c a Y

m C E

f a B d eP u

r cF) l F

e T n E"0 c

e o

2 5

5 5

5 2

5 5

5 5

ic k

r 8

2 2

A 5

t 8

2 2

A f

r s

%e11 1

1 1

1 1

1 4

4 N

e

/

1 4

4 N

/

u 2

2 2

2 n

c d

e e

0x 0

0 0

0 2

l 0

0 i

r F3(

e h

u u

g N

s s

t q

re d

U c

e w

a R e l lo n

a f

ae) o a

t t

u n

smk% 2 0

4 5

4 0

4 7

4 6

7 7

7 r

a t

t eict 7

6 5

5 5

1 5

5 5,

5 5

5 5

e e

D n

o n

Bts N (w i

0 0

0 0

0 0

0 0

0 0

0 0

0 h

a i

p t

E s

M a

e o

d m

o n

ts l

a e

r e

d C

r tae) e s

o d

m e

o tsmp%

t 1

2 1

5 1

5 2 s 9

2 9

9 9

9 s

f eipt 1

1 1

1 1

3 2

1 2

1 1

1 1

e t

r e n Bt ow 0 0 0 0

0 0 0

0 0

0 0

0 0

n a

h sC(

V E

i, m

e i

t l

M ia i

r t

e s

n ta E

s te it e

d e

h l

d i

m r

i S

e le C

t s

W W

le d

it s

y g

l n

e i

i g

i h

td le d

i e

l n

a t

e a

t o

e t

g n

g S

ign la la s

n o

n W

W l

m B n

t e

i L

W l

A r

o L

o e

it.

t eo g P P m

L tt t

o g

ig i

it i

t Ri w

n e

3 o 4.

a r

t n

l e a i n l

e e

e) n e

t f

tn%

e h

te L

n n

g c g e e

t t

r h h a

S) h o

o n

U n

l P la i0 h H

i o o S S l

P o0 S S

o L

L o

y n n n

e%

lt L F t

)

l l

L r

e a is l

t 1 e e l

(

B lt t

t le le lt te t 0 e e% le le u

e o

o o

r e

ia5 a) s0 h h

lle)

S r

it i

it t

t eld a

B n

e-h h e

S S Be d d D d% e(0 i

i i

h%

n c

s c

eW e) eI S

S)

W e s e

S e0 r%

e 1

m% m( m5 n

)

7 o

r r r r% e3 r3 lz i m e e l

rd d

e e

d S

u S

z.

r0 zo te e w w ze r

w0 w6 wD e d e

el 0 t o eD 6le o0 oD oO a

t o o oir t

s c

t nW InO n n N

I I

L L NC In1 InW L( LI L(

l e

e 1

(

b e

s

(

I

(

e e

W S D S

i e

lla e u

t ir la

)

)

V VeWt 3 2 2 2 1

5 5

M a 0

- 9

)

5 2)

,8

)

8 P

t e 3 1

9 8 5

8 2) 2) 2)

RekH V 3 3 0 3 5 3 4 7 5 64 5 0 64 64 68 1

1 se 4 -

70 7 7 -

3 3 3 2 3 7 4A 1F 4A 23 1F 1F 1F 7

aW 2 4 4 4 4 2L 2S TW 2S 2R TW TW TW B

CC CC 4 (

7( 8( 7( 0 (

8( 8( B(

1 7

il l!'

1 3

M Y

M g

P t

n nisF esiE 1

W r n s 8

r a4 ueB9 8

c 1

Ci 2

L M

h YP T F 0

8 8

5 0

2 3

3 2

9 9

R E 2

1 2

4 9

3 4

A 4

6 1

A A

1 8

0 8

0 6

2 1

/

1 6

4

/

4 T 1 1

1 1

1 N

1 1

1 N

M 1

0

%3 n

M ig 0 0

0 0

0 1

3 A

3 8

5 A

5 r

6 4

4 4

7 8

8 8

8 8

/

/

8

)

a 2 3

3 3

1 6

4 N

4 4

6 N

6 Y

M P

FE

(

s 0

0 0

0 5

0 0

0 0

0 0

G.

0 a

r d

c 7 7

7 7

8 8

4 8

4 4

8 8

8 a

M r

s 1

1 1

1 2

1 2

1 1

2 2

2 e

y a

l y a re i

k r

i 0

0 0

0 0

0 9

9 9

0 9

9 9

p o

w n

0 0

0 0

0 0

7 7

7 0

7 7

7 o

c e

a o

t 2

1 1

1 2

1 1

1 l

i D

a lu s

M M

s f

e ml v

u

)

a e

l rm it c

a c

o, inR Ts 0

0 0

0 0

0 5

5 5

0 5

5 5

e s

s o it d

s iT e

3 1

2 3

1 f

i f

r s

+

e R

D e

e M

8 t

(

V 8

n to 2

o t

R e

g h

a i

f n

a a

a a

g t

r e

oin a

a t

t u

i t

t d

u a

a D

D le le le o

s H

2 n s

omF le le le lb b

di e

D le D

le r

)

i s

hrC a

a a

a y

a v.

b v.

b b

b h

o b

b b

M a

a v

a a

a t,

p e

t t

e T

T T

T r

T r

T r

r T

T T

5 r

d nx e

et u

u u

u m

8 i

r Me S

S S

S 5

W o

't Uc P D

o 1

n yl r

A C d

i S

nWt o

o

)

dl yF M

l l

c u

eat C le r

d e

1 a

5 c

nis(

W

(

S&

a gemo ri 8

0 4

3 2

5 8

4 8

2 4

4 4

w c

r 1

it 5

3 3

7 6

0 7

2 7

5 2

2 2

k e

saet 7

8 7

0 6

6 3

5 3

2 5

5 5

l i

3 m

h ia sMh c 1

1 1

1 1

1 1

1 1

t e

yc R A Ca n

e c

l it o F

e b

l c

n h

a r

M e

a ib o

m C E

f T

c a

Y u

r aB d eP l

c e

o cF) 7 7

F e

T n E"0 r

9 9

9 9

8 8

9 8

8 6

9 9

9 9

5 A

5 9

5 A

5 ic f

7 7

r s

%e11 0

7 7

7 3 0

1 N

1 7

1 N

1 ll k

t 6

/

/

c d

e e

lu e

0 x 0

0 0

0 0

0 0

0 0

h e

0

. M i

r F3(

N s

u u

s r

t q

e d U

c e

w to n

a R e l t

a f

t o

a t

- ae) 2 0

4 5

4 0

4 7

4 6

7 7

7 l

r a

u n

smk%

t M

eict 7

6 5

5 5

1 5

5 5

5 5

5 5

le e

D n

o Bts N (w i

0 0

0 0

0 0

0 0

0 0

0 0

0 h

p a

i s

t E

d M

a te p

n m

ia o

a l

e d

C e

r r

e d

. M t

t a e) s o

1 2

1 5

1 5

2 9

2 9

9 9

9 m

e o

smp%

r t

s f

1 1

3 2

1 2

1 1

1 1

e a

h ei pt 1

1 1

e n

Bt ow 0 0

0 0

0 0

0 0

0 0

0 0

0 i

m e

t V

sC(

n t

I E

la i

M ir t

e s

M le d

le le C

t t

l c

a E

s i

h l

d d

m i

S e

ir s

g n

t W

W W

le d

d i

e a

e l

n s

y l

M io t

te i

a d

l h

le d

le it a

m d

g g

g S

W le W

l B

n e

r i

gn la la e

n n

n o

o o

e W

i t

A P

P m

L L

L w

it eo g

l le e

e a

l l

e) l l

R o

g L

it i

a t

r g

n e 3.

f Ri r

t n

t ig e

c h

h la In%

le le e

L n

g n

U o

4 e

r 0

h h

h o

n o

H t

l o o S

S la t

n s

i P

P o0 S

S S

L o

L y

n n

n i

M lt L F e) l L

l rr e

t 1 l

u e

o o

o B

lt t

te l

le leld te te ta)

(

e ta%

le l

le e

le l

t i

h h

i d) d%

c 0 h

e h)

S r

it i

it e

ia a

a a

i d0 S

S%

n i

Be d

i B

d d

h) c s

c W

e s

e e

e S

S e) e%

e0 e(

S%

eW 1

)

r7 o

e m

m r%

r3 z.

m%

m0 m5 md r

r lz D teD e

w0 e6 c3 l

e d

S u

S e

e r 0 r 5 r

r le o0 oD oO a

e e

r r

w D

e d z

e te w

w ze te0 e

t s

c o

t r

o o

oi t

N I

I L

L NC In1 InI InO l

InW L(

L(

L(

e s

n n

1 I

b

(

(

(

e e

WS D S

i eu l

la la i 3

2 2

2 1

e r

V t

)

)

VeWt 5

5 P M a 0 2) 8 8

)

5 5

8 2) 2)

2) de 3

1 9

8 9

)

5 64 5

0 64 64 68 Rel H V

3 3

0 3

53 4 -

7 -

4 -

70 7 -

7 -

7 -

7 1

1 m'

se 3

3 3

2 3

7 F

F F

F 7

4A 4A 23 1

1 aW 1

1 2

4 4

4 4

2 L 2S TW 2S 2R TW TW TW B

C C

C C

4(

7(

8(

7(

0(

8(

B(

8(

1

M W

g t

n M

nis esi 7

r n s 9

r a

e 2

u cB W

CiL M

r h

o sl 2

5 2

4 6

TR no TE 6

5 1

8 8

A Rt 3 7

0 8

7 1

1 1

2 D

a M

I ing 0 0

0 5

0 r

4 7

7 8

6 a 3 1

1 6

5 M

M 0

5 5

0 0

a 7 8

8 8

8 c

1 2

2 s

M la i

i 0

0 0

7 0

r c 0 0

0 9

0 n

e o

1 t

i a

s M

M

)

s lamm u

i 0

0 0

5 0

l c

it e

5 4

3 1

e T

x s

nR T +

+

+

+

s I

o R

i s

D

(

c li e

M WV n

g t

n a

a o

f 3

e oi a

t t

i r

dn lb a

a t

e e

e omC D. D le lb s

H it i

u i F b

nk s

h r

a y

v a

a e

T r

T T

o Uc s

et u

u t

p e

M ioa o

oc e

Me S

S r

t D

m i

n r

b P W

dl yF C

l 1

PB r

)

d o

r eat C e

y:

t nis(

2 6

7 0

6 a

2 l

e

. M r

c ri e

c W

gemor 5

4 2

0 7

l e

a 5

b k

t i

7 1

4 6 6

saet r

i a

r 1

1 e

sMhc m

h 3

T uu A Ca Tt R F

c e

c a

n h

a e)

C E

M il f

yu o

D c"0 9

9 r

t I

n 2

4 4

4 l

n d 2

a e

ou 3

7 7

3 7

e o

le1 i

f x 0 2

2 0

2 k

c t

elf (

c d

aM s

Fl e

e i

e u

N M

s e

t l d

U s

q

- ae) t s

e smk% 8 0

7 0

9 eict 6

7 6

6 5

n a

e R Bts N (w i

0 0

0 0

0 a

t V

n E

r a

e D

M ito p

e d

r t a e) p t

a p

1 6

8 6

3 n

m s m p%

ei t

1 0

0 2

2 o

a r

Bt ow 0

0 0

0 0

C sC(

d E

o e

o M

f t

s n

a h

t I

l m

e le h

l i

M S

le ts n

n te h

a S

E s

- M ign o

i i

o ig d

r e

e t

s r

g F

g m

w s

y eo l

r o) e a

Ri t n

ll n

e) e a ig e

ig n% L%

B n

t o o S

o I 0 o0 c

r h

r t 0 t

A in tt L F F

o0 1

e(

a f

t 1 le t

te t

(

iad e

3 o

4.

B le ia

!e

! eld l

B d

Be de H

h e

S e

z. mW n

n n

eW e

m r

e o

o o

lz l

e r.

r z

te w

ze e e r

it i

it r

i o

o oir t

M fa i 6

1 6

4 1

c s

c ni W

e s

e n

N I

L NC iC S

u S

d

/

c e

l e

e s

e r

t

)

)

e e

VeWt W

S D

S i

P M a

4 6

6 8

0 M

4 1

d e 1

4 2

2 9

Rel H S

P S

4 -

4 -

1 1

se 2

3 3

4A 2A aW 2

2 2

2 S 1 S B

1 1

1 7(

7(

m

M M

g Y

t n

P nis esiF 5

M rn sE 2

r a

M ue 0

5 cB 2 2

CiL M

Y M

TP I

1 5

7 RF 1

AE 9

1 2

7 4

1 7

9

~

4 T0 1

1 2

% @2 M

ig 0 6

0 5

9 n

r 4

5 7

8 6

a 3 1

1 6

5 M

M 0

5 5

0 0

aa 7 8

8 8

8 1

2 2

s M

l 0

0 0

7 0

a e, 0 0

0 9

0 i

n r

1 o

o i

i a

)n.

s M

r n s

laoor 0 0

0 5

0 u

it T w 5

4 3

1 l

iInR T +

+

+

+

c e

x R

s s

o

(

i s

lc D

i e

g WV n

m a

n M

it f

oi t

m a

o t

n e

3 e

di lb b

b t

r onF D

D le le a

i e

u hnCk y.

v a

a i

T T

s H

t nk s

et u

u e

r r

o S

S o

Uc s

D p

e J

f o

)

c e

r t

d n

r m

i W

b P

't ioa

)

dl yF o

n r

PB r

eat C nis(

C d

o o

ri 2

6 7

0 6

gemor l

c y:

t l

5 4

2 0

7

(

e c

saet 7

1 4

8 6

a e

it r

3 M

W 5

k e sMh c 1

1 c

a A Ca 1

r F

i r

e uu e

Tt R m

h 3

l e

c c

Y ba a

n eP) h a

7 7

7 C

E f

o c F" 7

7 T

y u T

M l

n d

%u0 n

2 2

i eE0 2

2 2

r t

1 1

1 l

1 1

1 l 2 0

0 e

o F @ (x a

e i

f c

t k

aM s

c d

Fl e

e iN e

u e l d

U s

M t

- ae) s q

tsmk%

8 0

7 0

9 s

e eict 6

7 6

6 5

n e R Bts N (w i

0 0

0 0

0 a

a t

V E

n r

a o

e D

M i

e p

r d

t t

- ae) p a

te i p%

1 6

8 6

3 n

smp 1

0 0

2 2

o m

t a

Bt ow 0

0 0

0 0

C r

sC(

E d

o e

o f

M in a

h s

t ll t

h l

im e

e M

t S

le s

n n

te h

g E

s a

S M

ign o

i o

ig d

r i

t s

e e

r g

F g

m w

s y

eo l

o) e Ri a

r t

n l

n e) io o

S o In% L%

B n

e a i

le g

c g

i t

0 o0 r

h r

n A

t 0 t

M tt L F F

o0 l

t 1 b(

a f

1 B

lt te l

t

(

iad e

3 o

4.

e le le!

e a

i h

k B

d Be de H

l e

S e

n n

n e

z. mW.

r it i

it

%W e

o o

o e

m r

lz r

r o

te w

ze ee z

i ir n

oir t

c s

c r

InC W

e s

e M

l d

N I

L NC S

u S

/

c l

e l

a e

e s

e t ir e

)

)

e VeWt WS D

S i

6 1

4 1

M a

6 8

0 4 6 Y

4 1

P de M

1 1

Rel H S P 9

1 1

se 4 -

2 3 A

2A aW 2 2 7 ' 5 1S B

1 1

7(

7(

l M

_ M A

l N

g Y t

M n

P nis esiF 4

r n sE 0

r a

0 uecB 2 2

0 N.

Ci L

Y TP I

RF 1

6 5

6 2

AE 4

3 1

3 1

9 6

8 1

0 T0 1

2 2

M in g0 8

0 8

0 r

2 1

7 5

6 a 2 1

1 6

5 M

M 0

5 5

0 0

an 7 8

8 8

8 1

2 2

M s

l i

0 0

0 7

0 a

e0 0

0 9

0 i

n r

1 e

o t

i a

s

)

_ M ow s

M i wo 0

0 0

5 0

u r

la t

T u 5

4 3

1 l

inR T +

+

+

+

c e

I R

s x

s

(

i o

s lc D

i e

g n

WV f

n a

a oi n a

t o

t t

a 3

e di le D

D le le a

i r

omF b y.

b b

t e

it u

h rC a

y a

a i

e T

r r

T T

s H

t nk s

et u

u o

Uc s

Me S

S e

. M

'd o

D p

r e

i

)

t c

m N

n r

ib P

)

oa dl yF o

t r

n PB r

eat C C

d nis(

2 6

7 0

6 o

o ri l

gemo 5

4 2

0 7

e r

M1 l

c y:

t

(

e c

saet 7

1 4

8 6

a 4

it r

W 5

sMh c k e a

A Ca ic 1

1 r

r F

e u u e

m h

3 R

t Tc e

c lb Y

a n

eP) h a

MT l

n d

%e 0

0 C

E a

1 1

f o

cF" 1

1 1

yu TnE0 5

0 0

5 0

ia e

lu0 0

5 5

0 5

l r

t i

1 2 x 0

0 0

0 e

o 0

f F@(

k c

t aM s

c d

i Fl e

e

_ M N

s e

u e l d

U tae) s q

smk%

t 8

0 7

0 9

s e

eict 6

7 6

6 5

n i

0 0

0 0

0 a

e R Bts N (w a

t V

E a

r n

M e

D o

p i

e d

r t

t t a e) p a

1 6

8 6

3 n

s m p%

p 1

0 0

2 2

o m

a t

eiBt ow 0 0

0 0

0 C

r sC(

d E

. M o

e o

f t

n a

h t

i le l

m e

M h

l i

t S

le s

. M ign o

n n

te h

g E

s i

a S

i o

g d

r t

i s

r e

e m

w s

y eo g

F g

l o) e a

Ri r

t n

l n

)

te% L%

B n

e a i

le ig g

n o0 lnx r

h r

. M 0

t 0 t

A o

S o Io0 i

F F

e (1 a

f tte' t

te l

t 1 (

tiad e

3 o

4 B

le a

le lted B

d h

l d le H

i Be n

n n

e S

e leW mW e

it i

i e

o o

o m

r ln e

e w

n e.

r.

e c r

r M

t i

ir c

s c

o t

oi t

r InC W

e s

e n

o.

N I

f NC S

u S

d c

l e

e s

e l

la i 6

1 6

4 1

e r

t

)

)

e e

W S

D S

VeWt i

M P M a

4 6

6 8

0 de 4

1 1

4

?

2 9

Rel H S

P S 4 -

4 -

1 1

se 2

3 3

4A 2A aW 2

2 2

2S 1 S B

1 1

1 7(

7(

M

FI I

Table 4.5.13-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 72442 l

Using B&W NSSS Surveillance Data l

Table Capsule (Adjusted -

l Capsule Chem. Factor Fluuce Measured Predicted Predicted) l Designation (sury. Avg.)

Factor ART,c (*F)

AHT,c ('F)

ARTn g l

B&WoG: Capsule CR3-LG1 167.0 0.851 167 144 23 i

WF-67: MD1 Nozzle Belt Dropout Matl.

B&WoG: Capsule CR3-LG2 167.0 1.182 138 197

-59 1

j WF-67: MD1 Nozzle Belt Dropout Mat!

where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

The above assessment results indicates that the generic Table chemistry factor for the surveillance data over-predicts the adjusted measured data for one data point while the l

other data point is within 2 standard deviations (i.e.,56 F). Therefore, the Table 1

I chemistry factor calculated using the weld wire heat best-estimate copper and nickel contents is considered conservative.

1

I iI lI I
I I

I I

f"MNRF.'i f-4-37 I

E 4.5.14. Weld Wire Heat Number 72445 (Use of B&W NSSS Data Only)

I Table 4.5.14-1. Surveillance Data for Weld Wire Heat Number 72445 Using B&W NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ART,er Assessing Vessel

~

(including source) wt%

wt%

(*F)

(x10 n/cm')

(*F)

(Y or N)

I B&WOG: Capsule CR3-LG1 0.22 0.59 556 0.510 139 Y

SA 1585: ANO-1 Nonle Belt Dropout Matt.

B&WOG: Capsule CR3-LG2 0.22 0.59 556 1.67 164 Y

I SA-1585: ANO-1 Nonle Belt Dropout Matl.

l Table 4.5.14-2. Credibility Assessment for Weld Wire Heat Number 72445 Using B&W NSSS Surveillance Data Only (Tabla 3 of the RAI Regarding Reactor VesselIntegrity)

Predicted (Meas..

1rrad.

Meas.

Adjusted ART,or from Predicted)

I Capsule Cu Ni Chem.

Temp.

Fluence ART.e, ART,or Best Fit Line ART,er Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F)

B&WOG: Capsule CR3-LG1 0.22 0.59 165.5 556 0.812 139 124 15 g

SA-1585: ANO-1 Nonle Belt Dropout I

Mati l

D&WOG. Capsule CR3-LG2 0.22 0.59 165 5 556 1.141 164 174

-10 SA-1585: AS!41 Nonle Belt Dropout Matl Surv. Avg O 22 0 59 165 5 556 where Predicted ARTuor = (Slopebestnd * (Fluence Factor) and I

Slopebest nt = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,152.9)

I These data are credible since the scatter is less than 28 F for both surveillance capsule data points.

I I

I I

f"NM 4-38 I-I

'I I

l Table 4.5.14-3. Weld Wire Heat Number 72445 Chemistry Factor Calculation i

i for Assessment of B&W NSSS Reactor Vessels ig (Cold Leg Temperature at 556*F) i Using B&W NSSS Surveillance Data Only I

frrad.

Meas.

Chem.

Capsule Cu Ni Chem.

Temp.

Fluence ARTc Adjusted Designation wt%

wt%

Factor

(*F)

Factor

(*F)

ARTe (*F)

B&WOG: Capsule CR3-LG1 0.22 0.59 165 5 556 0.812 139 133

I
  • A 1585: ANO-1 Nozzle Belt Dropout Matt B&WOG. Capsule CR3-LG2 0.22 0.59 165.5 556 1.141 164 157 1

SA 1585: ANO-1 Nozzle Belt Dropout Matt.

l Vessel Best-Estimate 0.22 0 54 1580 556 CFsurv.eata = best fit line relating Adjusted ARTuor to the Fluence Factor I

(i.e., CFsury. data = 146.0) 1 j

I I

l I

l lI I

I I

I I

I f."MNRY.\\

?

4-39

1-I l

4.5.15. Weld Wire Heat Number 72445 (Use of Westinghouse NSSS Data Only)

I Table 4.5.15-1. Surveillance Data for Wold Wire Heat Number 72445 Using Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor VesselIntegrity) i Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ART.ov Assessing Vessel i

(including source)

~

wt%

wt%

(*F)

(x10" n/cm')

('F)

(Y or N) l 3 Point Beach Unit 1: Capsule V 0.23 0.62 542*

0.634 107 Y

g SA-1263: Plant Spectric RVSP Material Pc nt Beach Unit 1: Capsule S 0.23 0.62 542' O.829 165 Y

SA-1263: Plant Specific RVSP Material l

Point Beach Unit 1: Capsule R 023 0.62 541.6*

2.19 155 Y

SA-1263. Plant Specific RVSP Material 1

Point Beach Unit 1: Capsule T 0.23 0 62 533.4*

2.23 181 Y

SA-1263: Plant Specific RVSP Material R JSP capsule temperatures derived from Point Beach Unit 1 irradiation history.

lI Table 4.5.15-2. Credibility Assessment for Wold Wire Heat Number 72445 ig Using Westinghouse NSSS Surveillance Data Only isu (Table 3 of the RAI Regarding Reactor VesselIntegrity)

I Predicted (Meas. -

l Irrad.

Meas.

Adjusted ARTuor from Predicted) i Capsule Cu Ni Chent Temp.

Fluence ART.or ART.or Best Fat Line ARTwer Designation wt%

wt%

Factor (aF)

Factor

(*F)

('F)

(*F)

(*F) l Point Beach Unit 1: Capsule V 0.23 0 62 172 4 542*

O872 107 124

-17 l

SA.1263 Plant Specific RVSP Matl Point Beach Unit 1: Capsule S 0 23 0 62 172 4 542*

0947 165 135 30 SA.1263 Plant Specific RVSP Matl i

Point Beach Unit 1: Capsule R 0.23 0.62 172 4 541.6*

1.213 155 173

-18 lj

)

SA-1263 Plant Specific RVSP Ma

I i

Point B, ach Unit 1: Capsule T 0.23 0 62 172.4 533 4*

1.217 181 174 7

SA-1263-Plant Specific RVSP Matl Surv. Avo 0 23 0 62 172 4 M

RVSP capsule temperatures derived from Point Beach Unit 1 irradiation history.(8) i where Pred'icted ARTuor = (Slopebest nd * (Fluence Factor) and Slopebestnt = best fitline relating Measured ARTuor to the Fluence Factor (i.e.,142.7) lI These data are not credible since the scatter is greater than i28*F for one surveillance capsule data point.

I I

f"M7D 4-40 h

I

Table 4.5.15-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 72445 Using Westinghouse NSSS Surveillance Data Table Capsule (Adjusted -

Capsule Chent Factor Fluence Measured Predicted Pri+oicted)

Designation (Surv. Avg )

Factor ART,c, (*F)

ART,c, (*F)

ART.e, (*F)

Point Beach Und 1: Capsule V 172.4 0.872 107 150

-43 SA-1263: Plant Specife RVSP Matt.

Point Beach Und 1:Capst.le S 172.4 0.947 165 163 2

SA-1263: Plant Speerfic RVSP Matt.

Posnt Beach Und 1: Capsue R 172.4 1.213 155 209

-54 SA-1263: Plant Specsfc RVSP Matt i

Point Beach Und 1: Capsule T 172.4 1.217 181 210

-29 SA 1263-P' ant Specific RVSP Matl.

where Predicted ARTnor = (Table Chem. Factor) * (Capsule Fluence Factor)

Since the scatter for all data points does not exceed 2 standard d6viations (56 F), the Table Chemistiy factor is conservative.

1 l

l I

I l

E

=

~

E l

l fm.m sm

(

~,

g

)

4.5.16. Weld Wire Heat Number 72445 (Use of All Surveillance Data)

Table 4.5.16-1. Surveillance Data for Weld Wire Heat Number 72445 I

Using All Surveillance Date (Table 2 of the RAI Regarding Reactor VesselIntegrity)

I Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ART,or Assessing Vessel (including source) wt%

wt%

(*F)

(x10" n/cm')

(*F)

(Y or N)

B&WOG: Capsule CR3-LG1 0.22 0.59 556 0.510 139 Y

i SA-1585: ANO-1 Nozzle Belt Dropout Matl.

B&WOG: Capsule CR3-LG2 0.22 0.59 556 1.67 164 Y

1 SA-1585: ANO-1 Nozzle Bett Dropout Matt.

I Point Beach Unit 1: Capsule V 0.23 0.62 542*

0.634 107 Y

SA-1263: Plant Spectic RVSP Material Point Beach Unit 1: Capsule S 0.23 0.62 542*

0.829 16$

Y SA-1263: Plant Specific RVSP Material I

Point Beach Unit 1: Capsule R 0.23 0.62 541.6*

2.19 155 Y

SA-1263: Plant Specific RVSP Material 1

Point Beach Unit 1: Capsule T 0.23 0.62 533 4*

2.23 181 Y

SA 1263; Plant Specific RVSP Matenal

  • RVSP capsule temperatures derived from Point Beach Unit 1 irradiation history.*

I I

I I

I E

h 6

1.".^TNP.M 4-42 f

I

Table 4.5.16-2. Credibility Assessment for Weld Wire Heat Number 72445 Using All Surveillance Data (Table 3 of the RAI Regarding Reactor VesselIntegrity)

Predicted (Adjusted.

I Irrad.

Meas.

Adjusted ART e, from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTeor ART er Best Fit Une ART,or Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F)

B&WOG: Capsule CR3-LG1 0.22 0.59 165.5 556 0812 139 154 118 36 SA-1585: ANO-1 Nonle Belt Dropout

.I Matt B&WOG. Capsule CR3-LG2 0.22 0.59 165.5 556 1.141 164 180 166 14 SA-1585: ANO-1 Nonle Belt Dropout Matt.

I Print Beach Unit 1: Capsule V 0.23 0.62 172.4 542*

0.872 107 102 127

-25 1

SA-1263 Plant Speer6c RVSP Matt.

Point Beach Unit 1: Capsule S 0.23 0 62 172.4 542*

0.947 165 160 138 22 SA-1263 Plant Speci6c RVSP Matl.

I Point Beach Unit 1: Capsule R 0.23 0.62 172.4 541.6*

1.213 155 149 176 27 SA.1263: Plant Specine RVSP Matl Point Beach Unit 1; Capsule T 0.23 0.62 172.4 533 4*

1.217 181 167 177

-10 SA 1263 Plant Speci6c RVSP Matt.

I Surv. Avg 0227 0 610 170 0 545 2 EE

  • RVSP capsule temperatures derived from Point Beach Unit 1 irradiation history.*

where Predicted ARTuor = (Slopebest nd * (Fluence Factor) and Slopeseatnt = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e.,145.2)

Five of the six surveillance data points are credible (i.e., the scatter is less than 128 F).

3 As documented in the meeting summary of the public meeting between the staff, NEl, and industry representatives held on November 12,1997,(8) this data set is considered credible.

I I

I I

I I

f."M.^7RM f

4-43 I

Table 4.5.16-3. Weld Wire Heat Number 72445 Chemistry Factor Calculation l

for Assessment of B&W NSSS Reactor Vessels (Cold Leg Temperature at 556*F)

Using All Surveillanco Data trrad.

Meas.

Capsule Cu Ni Chem.

Temp.

Fluence ART.e, Adjusted Designation wt%

wt%

Factor

('F)

Factor

('F)

ART.e, ('F)

B&WOG: Capsule CR3-LG1 0.22 '

O.59 165.5 556 0.812 139 133 SA-1585: ANO-1 Nozzle Belt Dropout Matl.

B&WOG: Capsule CR3-LG2 0.22 0.59 165.5 556 1.141 164 157 SA 1585 ANO.1 Nozzle Belt Dropout Matt.

Point Beach Unit 1: Capsule V 0.23 0.62 172.4 542" 0.872 107 85 SA-1263: Plant Specific RVSP Matl.

Point Beach Unit 1: Capsule S 0 23 0.62 172.4 542*

0,947

.165 138 SA-1263: Plant Specific RVSP Matl.

Point Beach Unit 1: Capsule R 0.23 0.62 172.4 541.6*

1.213 155 129 SA 1263 Plant Spectre RVSP Mati Point Beach Unit 1: Capsule T 0.23 0 G2 172.4 533.4*

1.217 181 145 Vessel Best-Estimate 0 22 0 54 1580 556 ___

  • RVSP Capsule temperatures derived from Point Beach Unit 1 irradiation history

CFsurv. sata = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e., CF urv. data = 125.5)

S 1

Table 4.5.16-4. Weld Wire Heat Number 72445 Chemistry Factor Calculation for Assessment of Westinghouse NSSS Reactor Vessel

{

(Surry Unit 1 and 2 Cold Leg Temperatures at 542 F)

Using All Surveillance Data arrad.

Meas.

Capsule Cu Ni Chem.

Temp.

Fluence ART.e7 Adjusted Designation wt%

wt%

Factor

('F)

Factor

(*F)

ART.cv ('F)

B&WOG: Capsule CR3-LG1 0.22 0.59 165.5 556 0.812 139 146 SA 1585-ANO-1 Nozzle Belt Dropout Matl.

B&WOG: Capsule CR3-LG2 0.22 0.59 165 5 556 1.141 164 170 SA 1585 ANO 1 Nozzle Bert Dropout Matl Point Beach Unit 1: Capsule V 0.23 0.62 172.4 542*

0.872 107 98 SA.1263: Plant Specific RVSP Matt Point Beach Unit 1: Capsule S 0.23 0 62 172.4 542' 0947 165 151 SA-1263-Plant Spec (c RVSP Matl Point Beach Unit 1: Capsule R 0.23 0.62 172.4 541.6*

1.213 155 142 SA 1263 Plant Specific RVSP Matt Point Beach Unit 1: Capsule T 0.23 0.62 172.4 533.4*

1.217 181 158 SA-1263 Plant Spec (e RVSP Matl.

Vessel Best-Estimate

'O 22

'O 54 1580 '

542

  • RVSP Capsule temperatures derived frcm Point Beach Unit 1 irradiation history.)

CFsurv. data = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e., CFsur, e.ra = 'I37.8) l 4-44 h"MM

r-

'I l

l 4.5.17. Weld Wire H.at Number 821T44 (Use of B&W NSSS Data) l Table 4.5.17-1. Surveillance Data for Weld Wire Heat Number 821T44

)

Using B&W NSSS Surveillance Data (Table 2 of the RAI Regarding Reactor VesselIntegrity)

Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ART,ev Assessing Vessel (including source) wt%

wt%

('F)

(x10" n/crn')

(*F)

(Y or N) l Davis-Besse:: Capsule TE1-F 0.22 0.63 556 0.196 104 Y

WF-182-1: Plant Specifc RVSP Material i

Davis-Bef.se:: Capsule TE1-B 0.22 0.63 556 0.592 107 Y

WF 182-1: Plant Speedic RVSP Material um Davis Besse:: Capsule TE1-A 0.22 0.63 556 1.29 162 Y

l WFo1821: Plant Gpecfic RVSP Material l

Davis-Besse:: Capsule TE1-D 0.22 0.63 556 0.962 140 Y

WF-182-1: Plant Specife RVSP Material TMI-2: Capsule TM12-C 0.28 0.6',

556 0.168 120 Y

I WF-182-1: Plant Specific RVSP Material TM12: Capsule TM12-E 0.28 0.63 556 0.174 110 Y

WF-182-1: Plant Specific RVSP Material

\\E

,I I

I I

I I

I fm.e.m

~5 g

l Table 4.5.17-2. Credibility Assessment for Weld Wire Heat Number 821T44 Using B&W NSSS Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel Integrity)

I Predicted (Adjusted -

Irrad.

Meas.

Adjusted ARTeer from Predicted)

I Capsule Cu Ni Chem.

Temp.

Fluence ART,ev ART.or Best Fit Line ART.or Designation wt%

wt%

Factor

(*F)

Factor

(*F)

('F)

(*F)

(*F)

Davis-Besse:: Capsule TEt-F 0.22 0.63 172.0 556 0565 104 108 89 19 WF-182 *: Plant Specific RVSP Matt.

Davis-Bet.e:: Capsule TE1-B 0.22 0.63 172.0 556 0.853 107 til 135

-24 I

WF-182-1: Plant Specific RVSP Matl.

Divis-Besse:: Capsule TE1 A 0.22 0.63 172.0 556 1.071 162 168 170

-2 WF 182-1: Plant Spec (c RVSP Matt.

j Divis-Besse:: Capsule TE1-D 0.22 0.63 172.0 556 0.989 140 145 156

-11 I

WF-1821: Plant Spec (ic RVSP Matl.

TMA 2: Capsule TMl2.C 0.28 0.63 191.7 556 0.529 120 111 84 27 WF 182-1: Plant Specific RVSP Matl.

TMl2. Capsule TMl2 E 0.28 0 63 191.7 556 0.537 110 102 85 17 I

WF-182-1 Plant Spec (ie RVSP Mati Surv. Avo 0 24 0 63 1780 556

~

where Predicted ARTuor = (Slopebest nt) * (Fluence Factor) and Slopebest nt = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e.,158.3)

I I_

These data are credible since the scatter is less than 28 F for all surveillance capsule data points.

I I

I I

I I

I I

f"NM 4-46 h

E

iI Table 4.5.17-3. Weld Wire Heat Number 821T44 Chemistry Factor Calculation for Assessment of B&W NSSS Reactor Vessels I

(Cold Leg Temperature at 556*F)

Using B&W NSSS Surveillance Data Only

{

' B trrad.

Meas.

Chem.

Capsule Cu Ni Chem.

Temp.

Fluence ARTm Adjusted I

Designation wt%

wt%

Factor

(*F)

Factor

(*F)

ART.m (*F)

Davis-Besse:: Capsule TE1-F 0.22 0.63 172.0 556 0.565 104 108 I

WF.182-1: Plant Spectfc RVSP Matt.

)

Davis-Desse:: Capsule TEi-B 0.22 0.63 172.0 556 0.853 107 111 WF 1821: Plant Specific RVSP Matl I

Davis-Besse:: Capsule TE1-A 0.22 0.63 172.0 556 1.071 162 168 1

WF-182-1: Plant Specife RVSP Matl.

I j

Davis-Besse:: Capsule TE1-D 0.22 0.63 172.0 556 0.989 140 145 WF-182-1: Plant Specific RVSP Matt.

TMi 2: Capsule TMi2-C 0.28 0 63 191.7 556 0 529 120 111 WF-182-1: Plant Specife RVSP Matl.

I TM12: Capsule TMl2-E 0.28 0.63 191.7 556 0.537 110 102 Vessel Best-Estanate 0 24 0 63 1780 556 CFsurv. cata = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e., CFSurv.esta = 158.3)

I I

I I

I I

I I

I f"MMM I=

4-47 I

4.5.18. Weld Wire Heat Number T29744 (Use of Westinghouse NSSS Data) l Table 4.5.18-1. Surveillance Data for Weld Wire Heat Number T29744 Using Westinghouse NSSS Surveillance Data (Table 2 of the RAI Regarding Reactor VesselIntegrity) frradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTm Assessing Vessel (including source) wt%

wt%

(*F)

(x10" n/cm')

(*F)

(Y or N)

KORI Und 1: Capsule V 0.21 0.67 545 0.484 190 Y

WF-233: Plant Specific RVSP Material KORI Und 1: Capsule T 0.21 0.67 545 1.158 184 Y

WF-233: Plant Specifc RVSP Material KORI Und 1: Capsule S 0.21 0.67 545 1.227 209 Y

WF-233: Plant Specific RVSP Material KORI Unit 1: Capsule R 0.21 0.67 545 2.704 231 Y

WF-233: Plant Specife RVSP Material Table 4.5.18-2. Credibility Assessment for Weld Wire Heat Number T29744 Using Westinghouse NSSS Surveillance Data (Table 3 of the RAI Regarding Reactor VesselIntegrity)

Predicted (Meas. -

Irrad.

Meas.

Adjusted ARTc from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTc ARTc Best Fd Line ARTe Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F)

KORI Unit 1: Capsule V 0.21 0 67 175 6 545 0.798 190 154 36 WF-233: Plant Specific RVSP Matt.

XORI Unit 1: Capsule T 0.21 0 67 175 6 545 1.041 184 201

-17 WF-233 Plant Specific RVSP Matt.

KORI Unit 1: Capsule S 0.21 0 67 175.6 545 1.057 209 204 5

WF.233: Plant Specific RVSP Matl KORI Unit 1: Capsule R 0.21 0.67 175.6 545 1.266 231 244

-13 WF-233 Plant Specific RVSP Matt.

Surv Ava 0 21 0 67 175 6 545 where Predicted ARTuor = (Slopebestnt) * (Fluence Factor) and Slopesess nt = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,192.9) k These data are not credible since the scatter is greaier than 28 F for one surveillance capsule data point.

[f"<^M'M

[

4-48

Table 4.5.18-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number T29744 l

Using Westinghouse NSSS Surveillance Data Table Capsule (Adjusted.

l Capsule Chem. Factor Fluence Measured Predicted Predcted)

Designation (Sury. Avg.)

Factor ARTc {*F)

ARTc (*F)

ARTc (*F)

KGhe @t 1: Capsule V 175.6 0.798 190 140 50 WF-233-Plant Specife RVSP Matt KORI Una 1: Capsule T 175.6 1.041 184 183 1

WF-233 Plant Specife RVSP Matt.

KORI Una 1: Capsule S 175.6 1.057 209 186 23 WF-233: Plant Specife RVSP Matt.

KORI Unit 1: Capsule R 175.6 1.266 231 222 9

WF-233 Plant Specife RVSP Matt.

where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor) 1 Since the scatter for all data points does not exceed 2 standard deviations (56*F), the 3

Table chemistry factor is conservative.

I I

I I

l I

I I

1 I

I me me.sT m 3

L l

[

4.5.19. Rotterdam Dockyard Fabricated Weld: Weld Wire Heat Number 0227 Table 4.5.19-1. Surveillance Data for Rotterdam Dockyard Fabricated Weld:

Weld Wire Heat Number 0227 (Table 2 of the RAI Regarding Reactor VesselIntegrity)

Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTc Assessing Vesset (including source) wt%*

wt%*

(*F)

(x10 n/cm )

('F)

(Y or N) 8 Surry Unit 2: Capsule X 0.19 0.55 537.5 0.302 96 Y

SA-1526: Plant Specife RVSP Material Surry Unit 2: Capsule V 0.19 0.55 537.5 1.88 140 Y

SA-1526: Plant Specife RVSP Material

  • Mean value based on two measurements,1) RVSP baseline chemistry and 2) surveillance specimen W14.

Table 4.5.19-2. Credibility Assessment for Rotterdam Dockyard Fabricated Weld:

Weld Wire Heat Number 0227

[

(Table 3 of the RAI Regarding Reactor VesselIntegrity)

Predicted (Meas.-

Irrad.

Meas.

Adjusted ARTc from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTc ARTc Best Fit Une ARTe Designation wt%*

wt%*

Factor

('F)

Factor

(*F)

('F)

('F)

(*F)

Surry Unit 2: Capsule X 0.19 0.55 149.3 537.5 0.672 96 84 12 SA 1526-Plant Specife RVSP Matl Surry Und 2: Capsule V 0.19 0 55 149.3 537.5 1.173 140 147

-7 1

SA-1526 Plant Specific RVSP Matl Surv. Avo 0 19 0 55 149 3 537 5

  • Mean value based on two measurements,1) RVSP baseline chemistry and 2) surveillance specimen W14.

where Predicted ARTuor = (Slopesestnc) * (Fluence Factor) and Slope,t ne = best fit line relating Measured ARTuor to the Fluence Factor se (i.e.,125.2)

These data are credible since the scatter is less than i28*F for all surveillance capsule data points.

r 4 50 f."M S M

I I

Table 4.5.19-3. Rotterdam Dockyard Fabricated Weld: Weld Wire Heat No. 0227 Chemistry Factor Calculation for Assessment of Surry Unit 2 Reactor Vessel I

Irrad.

Meas.

Capsule Cu Ni Chem.

Temp.

Fluence ARTc Designation wt%*

wt%*

Factor

(*F)

Factor

(*F)

Surry Unit 2: Capsule X 0.19 0.55 149.3 537.5 0.672 96 SA-1526: Plant Specific RVSP Matl.

I-Surry Unst 2: Capsule V 0.19 0.55 149.3 537.5 1.173 140 SA-1526: Pla_nt Specirc RVSP Matl i

Vessel Best-Estimate 0 19 0 55 149.3 54 3**

I

  • Mean value based on two measurements,1) RVSP baseline chemistry and 2) surveillance specimen W14.
    • For conservatism no temperature adjustment was made to the measured data.

CFsurv. data = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e., CF urv.eata = 125.2)

S I

I I

I l

I I

I I

f."AWNRY.'i f

4-51 I

f l

5. References l

1.

K. E. Moore and A. S. Heller, " Chemistry of 177-FA B&W Owners' Group Reactor Vessel Beltline Welds," BAW-1500. Babcock & Wilcox, Lynchburg, Virginia, September 1978.*

2.

K. E. Moore and A. S. Heller, "B&W 177-FA Reactor VesselBeltline Weld Chemistry Study," BAW-1799, Babcock & Wilcox, Lynchburg, Virginia, July 1983.*

3.

L. B. Gross, " Chemical Camposition of B&W Fabricated Reactor Vessel Beltline Welds," BAW-2121 P. B&W Nuclear Technologies, Inc., Lynchburg, Virginia April 1991.*

l 4.

Letter from John F. Stolz, Director PWR Project Directorate #6 Division of PWR Licensing-B, to Walter S. Wilgus, Vice President, Nuclear Operations Florida Power Corporation,

Subject:

Projected Values of Material Proper 1ies For Fracture Toughness Requirements For Protection Against Pressurized Thermal Shock Events, dated September 4,1986.

5.

U. S. Nuclear Regulatory Commission, ' Radiation Damage to Reactor Vessel Material," Reaulatory Guide 1.99. Revision 2, May 1988.

6.

Code of Federal Regulations, Title 10, " Domestic Licensing of Production and Util.'zation Facilities,"Part 50.61, " Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock," Federal Register, Dece ber 19, i

m 1995.

7.

E. P. Lippincott, " Westinghouse Surveillance Capsule Neutron Fluence l

Reevaluation,"WCAP-14044. Westinghouse Electric Corporation, Pittsburgh, Pennsylvania, April 1994.

8.

Letter from Bob Link, Vice President, Wisconsin Electric and Power Company to 1

i Document Control Desk, U. S. Nuclear Regulatory Commission, " Dockets 50-266 g

and 50-301, Request for AdditionalInformation Regarding n'RC Review of Point l

Beach Response to GL 92-01, Revision 1, Point Beach Nuclear Plant, Units 1 i

and 2," dated November 1,1993.

I

5-1 I'WW'5 I

I l

9.

Memorandum from Keith R. Wichman to Edmund J. Sullivan,

Subject:

Meeting Summary forNovember 12,1997, Meeting with Owners Group Representatives

'I and NEi Regarding Review of Responses to Generic Letter 92-01, Revision 1, Supplement 1 Responses, dated November 19,1997.

I I

'I I

lI I

I lI 1

I I

I f"Af*D'S I'

l 5-1

I I

g

6. Certification This report accurately responds to the request for additional information regarding reactor pressure vessel integrity for the B&W Owners Group Reactor Vessel Working Group.

~746)0iW 5~/zht l

M. J. D'eVan, Engineer IV Date Materials & Structura' Analysis Unit i

This report has been reviewed for technical content and accuracy.

I O60)RL s.x-re l

J A. Hall, Engineer ill Date Materials & Structural Analysis Unit Verification of independent review.

I Kfdn -

sam M.'E. Mo"ote, Manager Da'te ~

Materials & Structural Analysis Unit I

This report is approved for release.

I

%%)}

skdM I

D. L. H'o'well

'Date Program Manager I

I f"Ma*ID I'

6-1 I

I lI Revision i The report provides revisions to the surveillance data Chemistry Factor assessments for the Linde 80 weld metals and provides reactor pressure vesselintegrity evaluation updates for the B&W Owners Group Reactor Vessel Working Group.

D ik l~)l-99 M. J. DeVan, Engineer IV Date

{

Materials and Structural Analysis I

Revisions have been reviewed and were found to be an accurate description of the work reported.

I I

Q, b.

l--))- 79 fB. Hall, Engineer Ill Date Materials and Structural Analysis Verification of independent review.

I K. E. Moore, Manager -

1 -2f D

Materials and Structural Analysis Unit This report has been approved for release.

I U2t/97 D. L. Howell, Program Manager Date B&W Owners Group - RV Integrity Program I

,I f"WD l

I' <

6-2 I

I I

1

'I I

I I

I I

l APPENDIX A g

Best-Estimate Copper and Nickel Contents for High-Copper Linde 80 Welds Used in the Reactor Vessel Beltline Regions of the l

B&W Owners Group Reactor Vessel Working Group I

I I

I I

I i

I I

L,-

A-1

Tcblo A-1. Coppsr and Nick:1 Cont:nts Sourco Mnans for Wald Wiro H: t Number 299L44 I

Flux l Wold Metal l

Analysis Source Cu Ni l Weld ID Lot l Source l

Reference wt%

wt%l Notes SA-1526 8596 Id Quair6 cation Barberton WO: Lab No. 67239 3 0 60 Source Mean 0.46 0.

SA-1526 8596 CR-3 Nonle Dropout Mt. Vemon Lab No 29818 0.36 0.70 E

] CR-3 Nonle Dropout l Mt. Vemon Lab No. 29819 0.37 0 701 I

lCR-3 Nonle Dropout l Mt. Vemon Lab No. 29820 0.38 0.71 l lCR 3 Noule Dropout l Mt. Vemon Lab No. 29821 0.39 0 71 l lCR-3 Nonle Dropout lMt. Vemon Lab No 29822 0 37 0.70 l lCR 3 Nonle Dropout l Mt. Vemon Lab No. 29823 0 39 0.711 I

l CR-3 Nonle Dropout l Mt. Vemon Lab No. 29824 0.38 0 71 l l CR-3 Nonne Dropout l Mt. Vemon Lab No. 29825 0.37 0.71 l l CR-3 Nonle Dropout j Mt. Vemon Lab No 29826 0.36 0.71 l lCR 3 Nonle Dropout l Mt. Vemon Lab No. 29827 0 37 0 711 lCR 3 Nonle Dropout l Mt. Vemon Lab No. 29828 0.38 0 65 l I

lCR-3 Nonle Dropout l Mt. Vernon Lab No 28793 0.36 0 70l lCR 3 Nonle Dropout 0 36 0 70 l p

Source Mean 0.37 0.70 E milEl E

I SA-1526 8596 Surry-1 Surv. Weld RVSP Basehne Chemistry 0 25 0 68 l Surry-1 Sury. Weld lCVN Specimen W-10 0 24 0 6a l l Surry-1 Surv. Weld l CVN Specimen: W 1 0 25 0 66l l Surry-1 Surv. Weld lCVN Specimen W 5 0 26 0 67 l I

l Surry-1 Surv. Weld lCVN Specimen W-9 0 24 0 661 lSurry 1 Surv Weld I CVN Specimen-W-16 0 24 0.651 l Surry-1 Sury. Weld lCVN Specimen W 1 0 21 0 66 l l Surry-1 Sury. Weld lCVN Specimen: W 5 0 22 0 65l I

l Surry-1 Sury. Weld l CVN Specimen: W-9 0.20 0 641 I Surry-1 Sury. Weld l CVN Specimen: W-16 0 20 0 65 l

{

lSu

-1 Sury. Weld CVN Specimen: W-22 0.18 0 49

}_.

I Source Mean 0.23 0.64 I

WF-19 8650 Weld Quali6caton Mt. Vemon WO: Lab No. 5207 0 29 0.72 WO test re ected Sl' Source Mean 0.29 0.72

'~l I

WF-25 8650 Weld Qualification ll Mt. Vemon WO: Lab No. 5396 0 29 0.71I!

l 1 Retest of WO Sample 0.32

-l l

l Retest of WO Sample 0 34 0.71 l l

Retest of WO Sample 0 33 0 72 [

I R M Source Mean 0.32 0.71

'~^'^:^^T' 5 E' E

WF 25 8650 TMI-1 Surv. Weld Mt Vemon Lab No. 30538 0 27 0 63 l I

} TMI-1 Surv. Weld l Mt Vemon Lab No 30539 0 29 0 63 l lTMI-1 Surv. Weld l Mt Vemon Lab No. 30540 0 29 0 631 l TMI-1 Sury. Weld j Mt Vemon Lab No. 30541 0 33 0 64 l l TMI-1 Surv. Weld l Mt Vernon Lab No. 30534 0 36 0 69 l l TMI-1 Surv. Weld l Mt Vemon Lab No. 30535 0 37 0.70 l I

l TMI-1 Surv. Weld l Mt Vemon Lab No. 30536 0 36 0 69 l l TMI-1 Sury. Weld l Mt Vernon Lab No. 30537 0.35 0.70)

TMI-1 Sury. Weld CVN Specimen CC-018 0.34 0.43 Ni content lower than expected I

range and analyses on same production weld; retest performed; Ni content not used in source mean calculation.

TMI-1 Surv. Weld VN cimen CC-018 Retest 0 35 0.71 i

Source Mean 5 0.6 WF-25 8650 ONS-3 Nonle Dropout Mt. Vemon Lab No. 28818 0.36 0.70 NS 3 Nonle

t. Vemon Lab No. 28818 0.35 0.70 Source Mean 0.36 0.70 I

fmmmm g

m

I Tcbl] A-1 (c:ntinued) C:pper cnd Nick:I C:ntents S:urce Mun3 f r Weld Wire Heat Number 299L44 I

Flux 7 eld Metal Analysis Source Cu N1 Weld ID Lot Source Reference wt% Wt%

Notes WF-25 8650 TMi-2 Nozzle Dropout Mt. Vernon Lab No. 28819 0 35 0.69 I

TMl-2 Nozzle Dropout 0 35 0.70 TMI 2 Nozzle Dropout Mt Vemon Lab No. 30632 0.34 0 67 TMi-2 Nozzle Dropout Mt Vemon Lab No. 30631 0.36 0.70 TMI-2 Nozzle Dropout Mt Vemon Lab No. 30630 0 37 0.70 I

TMI-2 Nozzle Dropout Mt Vemon Lab No. 30629 0.38 0.70 TMI-2 Nozzle Dropout Mt Vernon Lab No. 30628 0.40 0.70 TMI-2 Nozzle Dropout Mt Vemon Lab No. 30627 0.38 0.71 TMI-2 Nozzle Dropout Mt Vemon Lab No. 30626 0.38 0.71 I

TMI-2 Nozzle Dropout Mt Vemon Lab No. 30625 0.36 0.67 TMi-2 Nozzle Dropout Mt Vernon Lab No. 30624 0 37 0.62 TM!-2 Nozzle Dropout Mt Vemon Lab No. 30623 0.34 0 60 TMi-2 Nozzle Dropout Mt Vemon Lab No. 30622 0 32 0.60 I

TMI-2 Nozzle Dropout Mt Vemon Lab No. 30621 0 33 0 64 TMi 2 Nozzle Dropout Mt Vemon Lab No. 30620 0.36 0 69 TMI-2 Nozzle Dropout Mt Vemon Lab No. 30619 0 36 0.70 TM1-2 Nozzle Drocout Mt Vemon Lab No. 30618 0.36 0.70 TMI-2 Nozzle Dropout Mt Vemon Lab No. 30617 0.35 0.71 TMI-2 Nozzle Dropout Mt Vernon Lab No. 30616 0.34 0 66 TMI-2 Nozzle Dropout Mt Vernon Lab No. 30615 0.32 0 60 TMi-2 Nozzle Dropout Mt Vemon Lab No. 30614 0 31 0.60 I

TMI-2 Nozzle Dropout Mt Vemon Lab No. 30613 0.36 0 68 TM1-2 Nozzle Dropout Mt Vernon Lab No. 30612 0 37 0.70 TMI-2 Nozzle Dropout Mt Vemon Lab No. 30611 0.36 0.70 TMI-2 Nozzle Dropout Mt Vernon Lab No. 30610 0.34 0.70 I

TMI-2 Nozzle Dropout Mt Vernon Lab No. 30609 0 34 0.70 TMI-2 f uzzle Dropout Mt Vemon Lab No. 30608 0 36 0 70 TMI-2 Nozzle Dropout Mt Vemon Lab No 30607 0.35 0 69 TMI-2 Nozzle Dropout Mt Vemon Lab No. 30606 0 38 0 69 TMI-2 Nozzle Dropout Mt Vemon Lab No. 30605 0.35 0.70 I

TMI-2 Nozzle Dropout Mt Vernon Lab No. 30604 0 33 0.71 TMI-2 Nozzle Dropout Mt Vemon Lab No 29274 0.34 0 69 TMI-2 Nozzle Dropout Mt Vernon Lab No. 29275 0 36 0.70 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29276 0 37 0.70 I

TMI-2 Nozzle Dropout Mt Vernon Lab No. 29277 0 37 0.70 TMI-2 Nozzle Dropout Mt Vernon Lab No. 29278 0 40 0 71 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29279 0.38 0 71 TM1-2 Nozzle Dropout Mt Vemon Lab No. 29280 0 36 0.70 I

TMI-2 Nozzle Dropout Mt Vemon Lab No. 29281 0 35 0 61 TMi-2 Nozzle Dropout Mt Vemon Lab No. 29282 0 34 0 60 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29283 0 32 0.59 TMi-2 Nozzle Dropout Mt Vemon Lab No 29284 0 31 0 62 I

TMI-2 Nozzle Dropout Mt Vemon Lab No. 29285 0.36 0 68 TMI-2 Nozzle Dropout Mt Vernon Lab No. 29286 0 36 0 69 TMI-2 Nozzle Dropout Mt Vernon Lab No. 29287 0.35 0.69 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29288 0 35 0.71 I

TMI-2 Nozzle Dropout Mt Vemon Lab No. 29289 0.33 0.70 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29290 0.30 0 61 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29291 0 30 0 62 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29292 0.35 0.68 I

TMI-2 Nozzle Dropout Mt Vernon Lab No. 29293 0.35 0.70 TMI-2 Nozzle Dropout Mt Vernon Lab No. 29294 0.35 0.70 TM1-2 Nozzle Dropout Mt Vemon Lab No. 29295 0.34 0.70 TMl-2 Nozzle Dropout Mt Vemon Lab No. 29296 0.35 0 69 I

TMI-2 Nozzle Dropout Mt Vernon Lab No. 29297 0.36 0.70 TMl-2 Nozzle Dropout Mt Vemon Lab No. 29298 0 37 0 69 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29299 0 35 0 69 TMI-2 Nozzle Dropout Mt Vernon Lab No. 29300 0.36 0 69 I

TMI-2 Nozzle Dropout Mt Vemon Lab No. 29301 0 35 0.70 TMI-2 Nozzle Dropout Barberton Analysis Sectson FF 033 0.69 TMi 2 Nozzle Dropout Barberton Analysis Section EE 0.34 0 69 I

A-3 h"<%^N

I Tcbla A-1 (c:ntinu:d). C::pp:r end Nick:1 Cent;nts Scurcs M :n3 f:r W:Id Wire Hnt Numb:r 299L44 lh Flux Weld Metal Analysis Source Cu NI

'E Weid lD Lot Source Reference wt% Wt%

Notes WF-25 8650 TMI-2 Nozzle Dropout Barberton Analysis Section CC 0 33 0.69 I

j' TM1-2 Nozzle Dropout Barberton Analysis Section BB 0 34 0 69 TMI-2 Nozzle Dropout Barberton Analysis Section AA 0.32 0 69 TMI-2 Nozzle Dropout Barberton Analysis Section Z 0 32 0 70 TMi-2 Nozzle Dropout Barberton Analysis Section Y 0.30 0.69 TMI-2 Nozzle Dropout Barberton AnalysisSection X 0.32 0 63 TMI-2 Nozzle Dropout Barberton Analysis Section W 0.31 0.60 g

TMI-2 Nozzle Dropout Barberton AnalysisSection V O 31 0 60 TMI-2 Nozzle Diopout Barberton Analysis Section U 0 28 0.59 TMI-2 Nozzle Dropout Barberton Analysis Section T 0 30 0 69 I

TMI-2 Nozzle Dropout Barberton Analysis Section S 0.33 0.70 TMi-2 Nozzle Dropout Barberton Ana4 sis Section R 0.33 0.70 TMI-2 Norzte Dropout Barberton Analysis Section 0 0 32 0.71 TMI-2 Nozzle Dropout Barberton Analysis Section P 0.32 0.70 I

TMI-2 Nozzle Dropout Barberton Analysis Section O O 33 0.70 TMI-2 Nozzle Dropout Barberton Analysis Section N 0.32 0 69 TMI-2 Nozzle Dropout Barberton Analysis Section M 0.27 0 60 TMI-2 Nozzle Dropout Barberton Analysis Section L 0.26 0.58 I

TMI-2 Nozzle Dropout Barberton Analysis Section K 0 31 0 65 TMI-2 Nozzle Dropout Barberton Analysis Section J 0 32 0 69 TMI-2 Nozzle Dropout Barberton Analysis Section 1 0 33 0.70 TMI-2 Nozzle Dropout Barberton Anatysis Section H 0 31 0 69 I

TMl-2 Nozzle Dropout Barberton Analysis Section G 0.31 0.70 TMI-2 Nozzle Dropout Barberton Analysis Section F 0 29 0 69 TMI-2 Nozzle Dropout Barberton Analysis Section E O 32 0.70 TMI-2 Nozzle Dropout Barberton Analysis Section D 0.34 0.70 I

TMI-2 Nozzle Dropout Barberton Analysis Section C 0.32 0 66 TMI-2 Nozzle Dropout Barberton Analysis Section B 0 30 0 65 TMI-2 Nozzle Dropout Barberton Analysis Section A 0.30 0 66 TMI-2 Nozzle Dropout Round Robin Sample LRC 0.32 0.67 I

Analysis TMl-2 Nozzle Dropout Round Robin Sample LRC 0.32 0.72 Analysis TMI-2 Nozzle Dropout Round Robin Sample Mt. Vemon 0 34 0.69 Analysis: Lab No. 28774 I

TMI-2 Nozzle Dropout Round Robin Sample Mt. Vernon 0.34 0.68 Analysis: Lab No. 28774 TMl-2 Nozzle Dropout Round Robin Sample Mt. Vernon 0.35 0.69 Analysis: Lab No 28775 I

TMI-2 Nozzle Dropout Round Robin Sample Mt. Vernon 0.35 0.69 Analysis: Lab No. 28775 TMI-2 Nozzie Dropout Round Robin Sample Barberton 0.27 0.67 Analysis I

TMI-2 Nozzle Dropout Round Robin Sample Barberton 0 29 0.68 Analysis TMl-2 Nozzle Dropout Round Robin Sample LRC 0.29 0.66 Analysis I

TMi-2 Nozzle Dropout Round Robin Sample LRC 0.36 0.69 Analysis TMI-2 Nozzle Dropout Round Robin Sample LRC 0.33 0.59 Anatysis TMl-2 Nozzle Dropout Round Robin Sample LRC 0.35 0.58 I

Analysis TM1-2 Nozzle Dropout Round Robin Sample LRC 0.34 0.59 Analysis TM1-2 Nozzle Dropout Round Robin Sample LRC 0.34 0.70 l

Analysis TMI-2 Nozzle Dropout Round Robin Sample LRC 0.33 0.68 Analysis l

TMI-2 Nozzle Dropout Round Robin Sample J&L Steel 0.33 0.68 I

Company Ana%

l M-2 Nozzle Dropout Round Robin Sampic ORNL0.28 0.65 j

l Analysis I

f--

4 l

fI Tchla A-1 (cantinu d). Ccpper cnd Nick:1 C:ntents Sourco Muns for Weld Wire Heat Number 299L44 Flux Wold Metal Analysis Source Cu Ni Wetd ID Lot Source Reference wt%

Wt%

Notes WF.25 8650 TMl-2 Nozzle Dropout Round Robin Sample Y-12 0.24 0.72 I

Analysis TMif Nozzle Dropout Round Robin Sample Y.12 0.24 0.66 Ana%is TMI-2 Noule Dropout Round Robin Sample NBS 0.31 0.68 Mean of 4 analyses.

I Analysis - 63W TMl-2 Nozzle Dropout Round Robin Sample N8S 0.31 0.69 Mean of 4 analyses.

Analysis - 63W TMI-2 Nozzle Dropout Round Robm Sample NBS 0.31 0.69 Mean of 4 analyses.

I Analysis. 63W TMl-2 Nozzle Dropot.t Round Robin Sample NBS 0.30 0.68 Mean of 4 analyses.

Analysis 63W TMI-2 Nozzle Dropout HSST Specimen ID: 63W-258 0.28 0.57 I

TMI-2 Nozzle Dropout HSST Specimen ID: E3W-259 0.26 0.51 TMI-2 Nozzle Dropout HSST SpecoTren ID: 63W-262 0 34 0.58 TMI-2 Nozzle Dropout HSST Specimen ID: 63W-291R 0 24 0 46 TMI-2 Nozzle Dropout HSST Specimen ID: 63W-209 0 24 0.64 I

TMI-2 Nozzle Dropout HSST Specimen ID: 63W 209 0.29 0 66 TMl-2 Nozzle Dropout HSST Specimen ID: 63W-289 0 29 0.68 TMi-2 Nozzle Dropout HSST Specimen ID: 63W-291C 0.32 0 68 TMI-2 Nozzle Dropout HSST Specimen ID: 63W-291C 0.35 1.04 Ni content higher than expected I

range and analyses on same production weld; Ni content not MlM F^

Source M 0.67

^

_. g m........ -

._ean,0.33 I

I I

I I

lI I

I f==

&s t

1 Tablo A-2. Coppsr and Nickel Centsnts Sourca Manns for Wald Wira H:at Numb:r 406L44 I

Flux Weld Metal l

Analysis Source Cu Ni l

)

Weld ID Lot Source l

Reference Wt%

Wt% l Notes WF 112 8688 Weld Qualification Mt. Vernon WO: Lab No. 7278 0.22 0.58 Cu content lower than WO retest I

analysis and analyses on production welds; Cu content not used in source mean calculation j

l Retest of WO samsle 0.26 l

l l Retest of WO sample 0.32 0.58 l l

Retest of WO sa le 0.31 0.

Source Mean 0.30 0.58 WF 112 8688 ONS-1 Surv. Weld Mt Vemon Lab No. 30072 0 31 0.59 I

l ONS-1 Surv. Weld l Mt Vemon Lab No. 30073 0.32 0.59 l

{ ONS-1 Surv. Weld l Mt Vemon Lab No. 30074 0 31 0.591 lONS-1 Sury Weld I Mt Vemon Lab No. 30075 0 33 0 601 l ONS-1 Surv. Weld 1 Mt Vemon Lab No. 30076 0 31 0.60 l I

l ONS-1 Surv. Weld l Mt Vemon Lab No. 30077 0.32 0.59 l lONS-1 Surv. Weld l Mt Vernon Lab No. 30078 0.32 0.59 l l ONS-1 Sury. Weld l Mt Vernon Lab No. 30079 0 34 059l l ONS-1 Surv. Weld l Mt Vernon Lab No. 30080 0.32 0 601 I

lONS-1 Sury. Weld l Mt Vemon Lab No. 30081 0.31 0 60 l l ONS-1 Surv. Weld l Mt Vernon Lab No. 30082 0.30 0.58 l l ONS-1 Sury. Weld l Mt Vernon Lab No. 30483 L 30 0 58 l l ONS-1 Surv. Weld l Mt Vernon Lab No. 30484 0 30 0.58 l I

l ONS-1 Sury. Weld lMt Vernon Lab No. 30485 0 31 0 58 l lONS-1 Sury Weld l Mt Vemon Lpb No. 30486 0.31 0.58 l l ONS-1 Surv. Weld l Mt Vemon Lab No. 30487 0 32 0.58 l lONS-1 Sury. Weld l Mt Vernon Lab No. 30488 0 33 0.59 l I

IONS-1 Surv. Weld lMt Vernon Lab No 30489 0 33 0 58 l l ONS-1 Sury. Weld l Mt Vemon Lab No. 30490 0 34 0 59l lONS-1 Surv. Weld l Mt Vemon Lab No. 30491 0.32 0 59l l ONS.1 Surv. Weld

( Mt Vemon Lab No. 30492 0.32 0.58 l I

ONS-1 Sury. Weld CVN Specimen: 0C1-025 0.16 0.47 Cu & Na contents lower than analyses on same productic.

weld; Cu & Ni contents not u;..w in source mean calculation ONS-1 Sury. Weld CVN Specimen: 001034 0.17 A Cu content lower than analyses on I

same production weld; Cu content not used in source mean

. calculation l

l ONS 1 Sury. Weld l CVN Specimen 0.32 0.59 l

)

I

- - - _~.k Source Mean 0.32 0.59~^

^

_L _ J

. M L

WF-154 8720 Weld Qualificatson Mt. Vemon WO: Lab No. 8151 0.20 0.59 Cu content lower than WO retest analysis and analyses on I

production welds; Cu content not used in source mean calculation l

l Retest of WO sample 0 25

- l l

l Retest of WO sample 0 27 0.59!

l$_

Retest of WO sa le 0 26 0 60 Source Mean 0.28 0.

Ik E WF-183 8754 Weld QuaVication Mt. Vemon WO: Lab No. 9300 0 21 0.59 test ' cad Source Mean 5 0.

I I

I f=.w g

I Tcbl3 A-2 (continusd). Coppsr end Nick:1 Contants Sourca Mczns fo:

Weld Wire Heat Number 406L44 Flux Wold Metal Analysis Source Cu NI Weld ID Lot Source Reference wt%

wt%

Notes I

WF-193 8773 Weld Qualificaton Mt. Vemon WQ: Lab No. 9374 0.19 0.59 Cu content lower than WQ retest analysis and analyses on production welds; Cu content not used in source mean calculation I

l Retest of WO sample 0.28 0.60 l Retest of WQ sample 0 27 0.60 Retest of WQ sample: Lab No.

0.016 0.91 Cu & Ni contents dissimilar 16451 compared to retest WQ analyses I

and on production welds; Cu & Ni contents not used in source mean calculation Retest of WQ sample 0.014 Cu & Ni contents dissimilar compared to retest WQ analyses I

and on production welds; Cu & Ni contents riot used in source mean calculation Retest of WQ sample 0.018 0.90 Cu & Ni contents dissimilar I

compared to retest WO analyses and on production welds; Cu & Ni contents not used in source mean calculation Retest of WQ sample 0.017 0.91 Cu & Na contents dissimilar I

compared to retest WQ analyses and on production welds; Cu & Ni contents not used in source mean calculation Source Mean 0.26 0.60 WF-193 8773 ANO-1 Sury. Weld Mt Vemon Lab No. 30040 0.26 0.59 ANO-1 Surv. Weld l Mt Vemon Lab No. 30041 0.27 0.60 I

ANO-1 Surv. Weld lidt Vernon Lab No. 30042 0.27 0.59 ANO-1 Surv. Weld 1 Mt Vemon Lat, No. 30043 0.27 0.59 ANO-1 Surv. Weld l Mt Vemon Lab No. 30059 0.27 0.58 ANO-1 Surv. Weld l Mt Vernon Lab No. 30060 0.30 0.58 I

ANO-1 Surv. Weld l Mt Vernon Lab No. 30061 0.28 0 58 ANO-1 Surv. Weld l Mt Vemon Lab No. 30062 0.28 0.58 ANO-1 Sury. Weld VN cimen ID: GG-027 0.23 0.57

_ __ _____ _ _ _ ___So_urce_Mean_.__ 0.Z1

_0._58 I

WF-193 8773 PB-2 Surv. Weld RVSP Bass;ine Chemist 0 25 0 59 Source Mean 0.25 0.59 I

I I

I I

I f

.e.s

Tablo A-3. Coppsr end Nicksi Contsnts Sourco Moans for Weld Wire Heat Number 61782 Flux Wold Metal Analysis Source Cu NI Weld ID Lot Source Reference wt%

Wt%

Notas SA-647 8350 Weld Quakfication Bareerton WQ 0.20 0.39 Na contentlowerthan ana /ses on I

other WOs and production welds; Ni con.ent not used in source mean emulation 0.20 SA-848 8373 Weld Qualr6 cation i Barberton WQ g 0.4 Source Mean 0.22 0.

[

I SA-948 8408 Weld Ouah6 cation Barberton WQ 3 0.5 Source Mean 0.18 0.

L' Sa-1014 8436 Id Qualification rberton WQ 0.23 0.46 i

Source Mean 0.23 04 E

SA-1036 8436 Weld Qualification Barberton WO 0.31 0 64 I

1IldlllEIEllI $

W M

SA-1036 6436 ONS-1 Nozzle Dropout Specimen No. U 0.15 0 49 l l ONS-1 Nozzle Dropout l Specimen No. T 0.15 0 49l lONS-1 Nozzle Dropout l Specimen No S 0.17 0.50 l I

l ONS-1 Nozzle Dropout l Specimen No. R 0.16 049l l ONS-1 Nczzle Dropout l Specimen No. O O 16 049l lONS-1 Nozzle Dropout l Specimen No. P 0.21 0 48 l lONS-1 Nozzle Dropout l Specimen No. O 0 22 0 48 l I

lONS-1 Nozzle Dropout l Specimen No. N 0.23 049l l ONS-1 Nozzle Dropout l Specimen No. M 0 22 049l l ONS-1 Nozzle Dropout l Specimen No. L 0.24 049I IONS-1 Nozzle dropout iSpecimen No K 0.27 0 491 I

Source Mean 0.20 0.49__

-~^^M l ONS-1 Nozzle Dropout l Specimen No J 0 27 0491 I

l REG Suv Weld lCVN Specimen ID: W-26 0.22 0 Sol l REG Surv. Weld i CVN Specimen 0 25 0.57 l l REG Sury. Weld l CVN Specimen 0 25 0 52 l l REG Surv. Weld l CVN Specimen 0.27 0 58i I

)

] REG Surv Weld l CVN Specimen 0 22 0451 l REG Sury. Weld l CVN Specimen 0 23 0 50l l REG Surv. Weld l CVN Specimen 0 23 0 50 l l REG Surv. Weld l CVN Specimen 0 21 0 46 l I

REG Sury. Weld CVN Specirren 0.25 0.53 T.__ i Source Mean 0.24 0.5 E

SA-1118 6443 Weld Qualif: cation Barberton WO O 22 0 52 I

Source Mean 5 0.52

'SA-1155 ' 8457 Weld Quahfication Barberton WO O 50 Source Mean 0.17 0.50 l

I I

E I

f= =

I Tabla A-3 (centinu:d). Copper end Nicksi Centents S:urca Mens for Weld Wire Heat Number 61782 I

Flux Wold Metal

.l Analysis Source Cu Ni l Weld ID Lot Source l

Reference wt%

Wt% l Notes SA-1135 8457 ONS-2 Nozzle Dropout lMt Vemon Lab do 30691 0.17 0.59 j I

ONS-2 Nozzle Dropout l Mt Vemon Lab No. 30690 0.23 0 60l ONS-2 Nozzle Dropout l Mt Vemon Lab No 30689 0.21 0.59i ONS-2 Nozzle Dropout j Mt Vernon Lab No. 30688 0.23 0.60 l ONS-2 Nozzle Drapout l Mt Vemon Lab No. 30687 0.22 0 60l I

ONS-2 Nozzle Dropout l Mt Vemon Lab No. 30686 0.22 0.60 l ONS-2 Noz2le Dropout lMt Vemon Lab No. 30685 0.26 0.58 l 1

ONS-2 Nozzle Dropout lMt Vemon Lab No. 30684 0.33 0 59l ONS-2 Nozzle Dropout l Mt Vemon Lab No. 3%83 0.34 0.59 l I

ONS-2 Nozzle Dropout l Mt Vemon Lab No. 30682 0 34 0.59I ONS-2 Nozzle Dropout l Mt Vemon Lab No. 30681 0.31 0.59)

ONS-2 Nozzle Dropout l Mt Vemon Lab No. 30680 0.32 0.58 l ONS-2 Nozzle Dropout i Mt Vemon Lab No. 30679 0.31 0.591 I

ONS-2 Nozzle Dropout l Mt Vemon Lab No. 30678 0.22 0.58 l ONS-2 Nozzle Dropout lMt Vemon Lab No. 30677 0.22 0.591 ONS-2 Nozzle Dropout lMt Vemcn Lab No. 30676 0 25 0.58 l ONS-2 Nozzle Dropout l Mt Vemon Lab No. 30675 0 24 0 58i I

ONS-2 Nozzle Dropout l Mt V. mon Lab No. 30674 0 29 0 58 l ONS-2 Nozzle Dropout lE Vemon Lab No. 30673 0.28 0.591 j

ONS-2 Nozzle Dropout lMt Vemon Lab No. 30672 0 29 0 58 l ONS-2 Nozzle Dropout l Mt Vernon Lab No. 30671 0.28 0.58 l I

ONS-2 Nozzle Dropout j Mt Vemon Lab No. 30670 0.27 0.58 l t

ONS-2 Nozzle Dropout l Mt Vernon Lab No. 30669 0.29 0.58 l ONS-2 Nozzle Dropout l Mt Vemon Lab No. 30668 0.28 0.58I ONS-2 Nozzle Dropout l Mt Vemon Lab No. 30667 0.27 0 58l I

Ohd-2 Nozzle Dropout l Mt Vemon Lrnb No. 30666 0.27 0.58 l ONS-2 Nozzle Dropout lMt Vemon Lab No. 30665 0 31 0.58l ONS-2 Nozzle Dropout l Mt Vernon Lab No. 30664 0.31 0 58 l ONS-2 Nozzle Dropout Mt Vemon Lab No. 30663 0.27 0.58 Source Mean 0.27 0.59 SA-1346 8504 Weld Qualification on WO R

0.51 M

Source Mean 0.20 0.51

\\

I

"'~

J j

SA-1779 8738 Weld Qualification Barberton WO Lab No. E-77051 0 28 0 45 Source Mean 5 0.

~

I SA-1786 8754 Weld Oustification Barberton WO Lab No E-77355 0 29 047 Mll Source Mean 5 0.47 MiE' I

I I

I I

I I

.m w

-l Tr.bb A-4. Copp: rand Nicksi Contsnts Sourco Morns for W:Id Wira H:st Numb:tr 71249 I

WeldID I Flux Wold Metal l

Analysis Source Cu NI Lot Source l

F.eference wt*/.

wt%

Notes SA-1094 l 8457 Weld Qualification Barberton WO 0.23 0 55 Source Mean 0.23 0.55 I

SA-1094 8457 TP-4 Sury. Weld RVSP Baseline Chemistry 0 30 b 60 l TP-4 Surv. Weld l CVN Specimen 0.27 l TP-4 Sury. Weld l CVN Specimen 0.29 I

TP-4 Sury. Weld

} CVN Specimen 0.30 Source Mean 0.29 0.60 Z

SA-1101 8445 Weld Qualification Barberton Wu O 2t 0.57 Source Mean 0.21 0.57 SA 1101 8445 ONS.1 Nonle Dropout 0 Sprumen No I b 23 0 52 '

l ONS-1 Nonle Dropout l Specimen No. H 0 20 0 54 I

l ONS.1 Nonle Dropout l Specimen No G 0 20 0 54 l ONS." Nonle Dropout l Specimen No. F 0 17 0 54 l ONS-1 Nonle Dropout l Specimen No. E 0.15 0 55

[ ONS-1 Nonle Dropout l Specimen No. D 0 19 0 54 I

lONS-1 Nonle Dropout l Specimen No. C 0.18 0.55 l ONS-1 Nonle Dropout l Specimen No. B 0.15 0 54 l ONS.1 Nonle Dropout l Specimen No A 0.16 0.55 1 ONS.1 Nonle Dropout l Round Robin Sample Mt. Vernon 0.19 0.63 I

I Analysis Lab No. 28772 I ONS.1 Nonle Dropout l Round Robin Sample Mt. Vernon 0.19 0.61 i

l Ana'ysis l ONS-1 Nonle Dropout l Round Robin Sample Mt. Vernon 0.17 0.62 l

l Analysis: 1ib No. 28773 I

l ONS.1 Nonle Dropout l Round Robin Sample Mt. Vernon 0.18 0 62 l

l Analysis j

lONS-1 Nonle Dropout l Round Robin Sample Barberton 0.16 0.60 l Analysis I

ONS-1 Nonle Dropout l Round Robin Sample Barberton 0.16 0.61 l Analysis l ONS 1 Nonle Dropout l Round Robin Sample LRC 0.18 0.62 l

l Analysis I

I ONS-1 Nonle Dropout l Analysis Round Robin Sample LRC 0.29 0 67 l

lONS-1 Non!e Dropout l Round Robin Sample LRC 0.18 0.54 l

l Analysis I

l ONS-1 Nonle Dropout l Round Robin Sample LRC 0.19 0 53 l

l Analysis l ONS-1 Nonle Dropout l Round Robin Sample LRC0.18 0.54 l Analysis

?

lONS-1 Nonle Dropout l Round Robin Sample LRC 0.23 0.64 l

l Analysis ONS.1 Nonle Dropout l Round Robin Sample LRC 0.23 0.65

( Analysis lONS-1 Nonle Dropout l Round Robin Sample J&L Steel 0.17 0 62 I

I l Company Analysis l ONS-1 Nonle Dropout l Round Robin Sample ORNL 0.18 0.61 l Analysis l ONS-1 Nonle Dropout Round Robin Sample Y-12 0.18 0.65 I

l Analysis lONS-1 Nonle Dropout l Analysis Round Robin Sample Y-12 0.13 0 63 l

I lONS.1 Nonle Dropout l Round Robin Sample NBS 0.17 0 62 I,

I l Analysis 62W lONS-1 Nonle Dropout Round dobin Sample NBS 0.17 0.61 l

Analysis - 6?W IONS-1 Nonle Dropout l Round Robin Sample NBS0.17 0.62 I

l Analysis - 62W A-10 h"MM I

I Tabis A4 (continusd). Coppsr end Nickel Centents Sourca Mesna for Weld Wire Heat Number 71249 Flux Wold Metal Weld lD Lot Source Analysis Source.

Cu h,'

l Reference wt%

Wt%

Notes I

SA-1101 6445 ONS-1 Nozzle Dropout Round Robin Sample NBS 0.18 0.62 j

}

Analysis - 62W l

ONS 1 Nozzle Dropout HSST Specimen ID: 62W-309 0.11 0.521 ONS-1 Nozzle Dropout HSST Specimen 10: 62W-359 0.17 0 48i I

ONS-1 Nozzle Dropout HSST Specimen 10: 62W 202 0.18 0.57 l ONS-1 Nozzle Dropout HSST Specimen ID: 62W-223 0.18 0.58 l ONS-1 Nozzle Dropout HSST Specimen ID: 62W-223 0.15 0.621 1ONS-1 Nozzle Dropout HSST Specimen ID: 62W-276 U,19 0.59 l I

ONS-1 Nozzle Dropout HSST Specimen ID: 62W-276 0.32 1.03 Ni content higher than expected range and analyses on same production weld; Ni content not used in source mean calculation Source Mean 0.19 0.59 I

SA-1101 6445 TP-3 Sury. Weld RVSP Basehne Chemistry 0 31 0 57 l TP-3 Sury. Weld Retest RVSP Basehne Chemistry 0.33

- l l TP-3 Surv. Weld Retest RVSP Baseline Chemistry 0.32 l

I l TP-3 Sury. Weld CVN Specimen ID: W-17 0.35

- l l TP-3 Surv. Weld CVN Specimen ID: W-19 0.34

- l TP-3 Surv. Weld g

Source Mean 0.33 0.57 bA-1229 8492 Weld Quahfication Barberton WO 0.20 05 Source Mean 0.20 0.5 I

SA-1344 I 8504 I Weld Quahfication Barberton WO 0.21 0 62 Source Mean 0.21 0.62 SA-1706 8669 Weld Oushfication Barberton WO Lab No. E-70325 0.21 0$

I Source Mean 0.21 0.5 SA-1769 8736 Weld Quahfication Barberton WO Lab No. E-76488 0 19 0.66 Source Mean 0.19 0.66 SA-1769 8738 0 W Sury. Weld Mt Vemon Lab No. 29652 09 0.63 lW Surv. Weld Mt Vernon Lab No 29651 0 31 0 63)

I I W Surv. Weld Mt Vemon Lab No. 29650 0 31 0 631 l W Sury. Weld Mt Vernon Lab No. 29649 0 27 0 631 l W Surv. Weld Mt Vernon Lab No. 29648 0.28 0.63 l lW Surv. Weld Mt Vemon Lab No. 29647 0.28 0 62 l I

l W Surv. Weld Mt Vernon Lab No. 29646 0 37 0 62 l l W Sury. Weld Mt Vemnn Lab No. 29645 0 29 0 62) l W Surv. Weld Mt Vernon Lab No.19644 0.28 0 62 l l

l W Surv. Weld Mt Vemon Lab No. 29643 0.34 0 63 l l

lW Surv. Weld Mt Vernon Lab No. 29642 0 30 0 631 I

lW Surv Weld Mt Vemon Lab No 29641 0 29 0 631 l W Surv. Weld Mt Vemon Lab No. 29640 0.27 0.621 l W Surv. Weld Mt Vemon Ls5 No. 29639 0.28 0 62 l l W Surv. Weld Mt Vemon Ltb No. 29638 0.28 0 621 I

l W Surv. Weld Mt Vemon Lab No. 29637 0 24 0 621 lW Sury. Weld Mt Vemon L ab No 29636 0.26 0 621 l W Surv. Weld Mt Vemon Lab No. 29635 0 27 0 63 l l W Sury. Weld Mt Vernon Lab No. 29634 0 28 0.631 I

lW Surv. Weld Mt Vemon Lab No. 29633 0 28 0 64 l lW Sury. Weld Mt Vemon Lab No. 29632 0.31 0 64I

)

l W Surv. Weld Mt Vernon Lab No. 29631 0.28 0 641 I

l W Surv. Weld Mt Vernon Lab No. 29630 0 28 0 64 l I

l W Surv. Weld Mt Vemon Lab No. 29629 0.27 0 64 l lW Surv. ' ' eld Mt Vernon Lab No. 29628 0.27 064l lW Surv. Weld Mt Vemon Lab No 29627 0 31 0 64 l l

I f"<WM A-11 I

1 Tcbla A-4 (centinu:d). Cepper cnd Nick 21 C ntents S:urca M:rna far W:Id Wire Hut Number 71249 I

Flux Wold Mi.1 Analys:s Source Cu NI Weld ID Lot Source Reference wt%

Wt%

Notes i

SA-1769 8738 W Sury. Weld Weld HSST-61W Westinghouse 0.31 0.63 Analysis I

W Sury. Weld Weld HSST41W Westinghouse 0.28 0.62 Analysis W Sury. Weld Weld HSST-61W Westinghouse 0.26 0.62 Analysis I

W Sury. Weld Weld HSST-61W Westinghouse 0.28 0.64 Analysis W Surv. Weld Weld HSST-61W Westinghouse 0.27 0.64 Analysis I

W Sury. Weld HSST Specimen ID. 61W-232 0.39 0.47 Na content lower than expected range and analyses on same production weld; Ni content not used in source metin calculation W Surv. Weld HSST Specimen ID: 61W-276 0.24 0 59 I

W Sury. Weld HSST Specimen ID: 61W-246 0.21 0.45 Ni content lower than expected range and analyses on same production weld; Ni content not used in source mean calculation I

W Sury. Weld HSST Specimen ID; 61W-225 0.35 0.44 Ns content lower than expected range and analyses on same production weld; Ni content not used in source mean calculation W Surv. Weld HSST Specimen ID: 61W-222 0 24 0 52 I

W Sury. Weld HSST Specimen ID: 61W-270 0 24 0 54 W Surv. Weld HSST Specimen ID: 61W-270 0.28 0 62 W Surv. Weld HSST Specimen ID: 61W-270 0.26 0.59 W Surv. Weld HSST Specimen ID: 61W-270 0.36 0.97 Na content higher than expected I

range and analyses on same production weld; Ni content not

)

used in source mean calculation

! W Sury. Weld HSST Specimen ID: 61W-234 0.19 0.43 Ni content lower than expected I

range and analyses on same production weld; Ni content not used in source mean calculation E

.s

.. g gg

......, _..,s g.,,ig -

Source Mean 0.28 0.62

  • 1 '?

L. ~'.

I I

I I

I I

I ff!MTNP.M g

A-12

Tcbla A-5. Cepp;rcnd Nick:1 Crntents Scurca Mnna for Weld Wire Heat Number 72105 Flux Wald Metal Artalysis Source Cu Ni l

Weld ID Lot Source Reference wt%

wt*/.

Notes WF-70 8669 Weld Qualification Mt. Vemon WQ: Lab No. 6595 0.27 0.46 Ni content lower than WO retest analysis and analyses on production welds; Ni content not used in source mean calculation Retest of WO Sample 0 31 Retest of WQ Sample 0 34 0.58 m5 XXXX Source Mean 0.31 0.58 N

W

~ ~ ~ ~ ' ' ' ~

EE

___.__.__..__A_

WF-70 8669 MD 1 Nozzle Dropout Mt Vemon Lab No. 30418 0 44 0 60 MD-1 Nozzle Dropout lit Vemon Lab No. 30417 0 47 0 61 MD-1 Nozzle Dropout Mt Vemon Lab No. 30416 0 49 0 61 MD-1 Nozzle Dropout Mt Vernon Lab No. 30415 0 47 0 61 MD-1 Nozzle Dropout Mt Vemon Lab No. 30414 0 47 0 60 MD 1 Nozzle Dropout Mt Vemon Lab No. 30413 048 0.59 MD-1 Nozzle Dropout Mt Vernon Lab No. 30412 0 36 0.59 MD-1 Nozzle Dropout Mt Vemon Lab No. 30411 0 37 0.59 MD-1 Nozzle Dropout Mt Vernon Lab No. 30410 0 39 0 58 MD-1 Nozzle Dropout Mt Vernon Lab No. 30409 0 35 0 58 MD-1 Nozzle Dropout Mt Vernon Lab No 30408 0 35 0 58 MD 1 Nozzle Dropout Mt Vernon Lab No. 30407 0 39 0.59 MD-1 Nozzle Dropout Mt Vemon Lab No. 30406 0 40 0 59 MD-1 Nozzle Dropout Mt Vernon Lab No 30405 0 42 0 59 MD-1 Nozzle Dropout Mt Vernon Lab No. 30404 0 43 0 59 MD-1 Nozzle Dropout Mt Vernon Lab No. 28869 0 46 0 60 MD-1 hozzle Dropout Mt Vernon Lab No. 28868 0 47 0 60 MD 1 Nozzle Dropout Mt Vernon Lab No. 28867 0 49 0 60 MD-1 Nozzle Dropout Mt Vernon Lab No 28866 0 48 0 60 MD-1 Nozzle Dropour Mt Vernon Lab Nc. 28865 0 50 0 59 MD-1 Nozzle Dropout Mt Vernon Lab No. 28864 0 37 0 59 MD-1 Nozzle Dropout Mt Vernon Lab No. 28863 040 0 59 MD-1 Nozzle Dropout Mt Vernon Lab No 28862 0.38 0 58 MD-1 Nozzle Dropout Mt Vernon Lab No. 28861 0 34 0 58 MD-1 Nozzle Dropout Mt Vernon Lab No. 28860 0 38 0.58 MD-1 Nozzle Dropout Mt Vemon Lab No 28859 0.39 0 58 l

MD 1 Nozzle Dropout Mt Vernon Lab No. 28858 0 46 0 58

]

MD-1 Nozzle Dropout Mt Vemon Lab No. 28857 0 41 0 58 MD 1 Nozzle Dropout Barberton Anatysis Bik ID:

0.42 0.56 MS2941 AWC MD-1 Nozzle Dropout Barberton Analysis Bik ID.

0.41 0.56 MS294-1 AWC MD-1 Nozzle Dropout Barberton Analysis Blk ID:

0.41 0.56 MS2941 AWC MD-1 Nozzle Dropout Barberton Analysis Bik ID:

0.39 0.56 MS294-1AWC MD-1 NozLe Dropout Barberton Analysis Blk ID:

0 39 0.56 MS294-1AWC MD-1 Nozzle Dropout Barberton Analysis Blk ID:

0.39 0.56 MS294-1AWC MD-1 Nozzle Dropout Barberton Analysis Bik ID:

0.44 0.56 MS7941 AWC "AD-1 Nozzle Dropout Barberton Analysis Bik ID:

0.42 0.55 MS294-1AWC MD-1 Nozzle Dropout Barberton Analysis Bik ID:

0.42 0.56 MS294-1AWC MD-1 Nozzle Dropout Barberton Analysis Bik ID:

0.42 0.56 MS294-1AWC MD-1 Nozzle Dropout Barberton Analysis Bik ID:

0.40 0.59 MS294-1AWC MD-1 Nozzle Dropout Barberton Analysis Bik ID:

0.40 0.59 j

MS294-1 AWC MD-1 Nozzle Dropout Barbeaon Analysis Bik ID:

0 43 0.57 MS294-1AWC A-13 h"<WM

Tcbl3 A-5 (:entinu d). C pp;rcnd Nick:1 Centents S:urca Mzna far W;ld Wire Hrt Number 72105 I

Flux Weld Metal Analysis Source Cu NI Weld ID Lot source Reference wt% Wt%

Notes WF-70 8669 MD-1 Nozzle Dropout Barberton Analysis Bik ID:

0.42 0.60 MS294-1AWC I

MD-1 Nozzle Dropout Barberton Analysis BIk ID:

0.35 0.54 MS294-1BWC MD-1 Nozzle Dropout Barberton Analysis Bik 10:

0.38 0.56 MS294-1BWC I

MD-1 Nozzle Dropout Barberton Analysis Bik ID:

0.38 0.56 MS2941BWC MD-1 Nozzle Dropout Barberton Analysis Bik ID:

0.31 0.57 MS2941BWC I

MD-1 Nozzle Dropout Barberton Analysis Bik ID:

0.34 0.56 MS294-1BWC MD-1 Nozzle Dropout Barberton Analysis Blk ID:

0.37 0.57 MS2941BWC MD-1 Nozzle Dropout Barberton Analysts Bik ID:

0.40 0.57 I

MS294-1BWC MD-1 Nozzle Dropout Barberton Analysis Bik ID:

0.38 0.56 MS294-1BWC MD-1 Nozzle Dropout Barberton Analysis Bik ID:

0.36 0.58 I

MS294-1BWC MD-1 Nozzle Dropout Barberton Analysis Blk ID:

0.35 0.57 MS294-1BWC MD-1 Nozzle Dropout Barber 1on Analysis Bik ID:

0.46 0.55 I

MS294-1CWC MD-1 Nozzle Dropout Barberton Analysis Blk ID:

0.45 0.55 MS294-1CWC MD-1 Nozzle Dropout Barberton Analysis Blk ID:

0.45 0.56 I

MS294-1CWC MD 1 Nozzle Dropout Barberton Analysis BIk 10:

0.45 0.56 MS294-1CWC MD-1 Nozzle Dropout Barberton Analysis Blk ID:

0.46 0.57 MS294-1CWC I

MD-1 Nozzle Dropout Barberton Analysis Bik ID:

0.47 0.58 MS294-1CWC MD-1 Nozzle Dropout Mt Vernon Lab No. 28799 0 40 0 58 MD-1 Nozzle Dropout Mt Vernon Lab No. 28799 0 40 0.59 I

MD-1 Nozzle Dropout Mt Vernon Lab No. 28801 0.38 0 59 MD-1 Nozzle Dropout Mt Vernon Lab No. 28801 0.38 0.59 MD-1 Nozzle Dropout ORNL Analysis Block No. 3-1 0.29 0 56 MD-1 Nozzle Dropout ORNL Analysis ulock No. 3-1 0 20 0 58 I

MD-1 Nozzle Dropout ORNL Analysis Block No. 3-1 0.15 0 59 MD-1 Nozzle Dropout ORNL Analysis Block No. 3-1 0.37 0 61 MD-1 Nozzle Dropout ORNL Analysis Block No. 3-1 0 46 0 59 MD-1 Nozzle Dropout ORNL Analysis Block No. 3-1 0.37 0 56 I

MD-1 Nozzle Dropout ORNL Analysis Block No. 3-1 0.38 0.56 MD-1 Nozzle Dropout ORNL Analysis Block No 3-1 0 41 0.56 MD-1 Nozzle Dropout ORNL Analysis Block No. 3-4 0.30 0.56 MD-1 Nozzle Dropout ORNL Analysis Block No 3 4 0.19 0 58 I

MD-1 Nozzle Dropout ORNL Analysis Block No. 3-4 0.14 0 68 MD-1 Nozzle Dropout ORNL Analysis Block No. 3-4 0.23 0 60 MD-1 Nozzle Dropout ORNL Analysis Block No. 3-4 0.42 0 58 MD-1 Nozzle Dropout ORNL Anatysis Block No. 3-4 0.38 0.57 I

MD-1 Nozzkr Dropout ORNL Analysis Block No. 3-4 0.39 0 56 MD-1 Nozzle Dro >out ORNL Analysis Block No. 3-4 0.38 0.56 l

Source Mean 0.39 0.58 I

s.-

I f"MM b

A-14

I l

Tcbl2 A-5 (centinu:;d). C:pper end NICkil C:ntents S urca M:cn3 fsr Weld Wire Heat Number 72105 l

Flux Wold Metal Analysis Source Cu Ni Weld lD Lot

' Source Reference wt%

Wt%

Notes I

WF-70 8669 MD-1 Belthne Weld Barberton Analysis Bik ID:

0.26 0.56 MS304-1WC MD-1 Belthne Weld Barberton Analysis Bik ID:

0 26 0.57 MS3041WC I

MD-1 Belthne Weld Barberton Analysis Bik ID:

0.25 0.56 MS304-1WC l

MD 1 Be!!hne Weld Barberton Analysis Bik ID:

0.26 0.57 MS304-1WC MD-1 Beltline Weld Barberton Analysis Bik ID:

025 0.57 I

MS304-1WC MD-1 Belthne Weld Barberton Analysis Bik ID:

0.25 0.57 MS304-1WC MD-1 Belthne Weld Barberton Analysis Bik ID:

0.27 0.55 I

~MD-1 Beltkne Weld Barberton Analysis Bik ID:

0.27 0.56 MS304-3WC l

MS304-3WC MD-1 Belthne Weld Barberton Analysis Blk ID:

0.28 0.56 I

MS304-3WC MD-1 Belthne Weld Barberton Analysis Bik ID:

0.27 0.56 MS304-3WC MD-1 Belthne Weld Barbe ton Analysis Bik 10:

0 27 0.57 I

MS304-3WC MD-1 Belthne Weld Barberton Analysis Bik ID:

~0.28 0.56 MS304-3WC MD-1 Belthne Weld Barberton Analysis Blk ID:

0.35 0.55 MS304-4WC I

MD-1 Belthne Weld Bartetton Analysis Bik 10:

0.36 0.56 MS3044WC MD-1 Beltline Weld Barberton Analysis Blk ID:

0.35 0.56 MS304-4WC I

MD-1 Belthne Weld Barberton Analysis Blk ID:

0.36 0.56 MS3044WC MD 1 Belthne Weld Barberton Analysis Bik ID:

0.36 0.58 MS3044WC I

MD-1 Belthne Weld Barberton Analysis Bik ID:

0.35 0.56 MS304-4WC MD-1 Beltline Weld Barberton Anatysis Bik 1D:

0.35 0.57 MS3044WC I

MD-1 Belthne Weld Barberton Analysis Bik ID:

0.36 0.56 MS304-4WC MD-1 Belthne Weld Barberton Analysis Bik ID:

0.36 0.56 MS304-4WC MD-1 Belthne Weld Barberton Andlysis Bik ID:

0.35 0.59 MS3044WC MD-1 Beltline Weld Barberton Analysis Bik ID:

0.35 0.60 MS304-4WC MD 1 Belthne Weld Barberton Analysis Bik ID:

0.35 0.58 I

MS304-4WC MD-1 Belthne Weld Barberton Analysis Bik ID.

0.36 0.59 MS304-4WC MD 1 Beltline Weld Barberton Analysis Bik ID:

0.34 0.58 I

MS304 4WC MD-1 Betthne Weld ORNL Analysis Block ID: 1-9 0 24 0.58 MD-1 delthne Weld ORNL Analysis Block ID: 13 0 22 0 56 l

MD-1 Belthne Weld ORNL Analysis Block ID: 1-9 0.27 0 57 MD-1 Betthne Weld ORNL Analysis Block ID: 19 0 22 05/

MD-1 Beltline Weld ORNL Analysis Block ID: 19 0.22 0 62 i

MD-1 Betthne Weld ORNL Analysis Block ID: 1-9 0.30 0.58 MD 1 Betthne Weld ORNL Analysis Block ID: 19 0.27 0.56 MD 1 Belthne Weld ORNL Analysis Block ID-1-9 0.34 0 57 MD-1 Betthne Weld ORNL Analysis Block ID: 1-11 0 23 0.57 MD-1 Belthne Weld ORNL Analysis Block ID: 1-11 0 23 0.57 MD-1 Belthne Weld ORML Analysis Block ID: 1-11 0.24 0.58 lI I

.m

Tablo A-5 (continund). Coppar and Nicksi Contsnts Sourca Maans for Wald Wira Host Numb:r 72105 I

WeldID I Flux l Wold Metal l

Analysis Source Cu NI j Lot l Source l

Reference wt%

Wt% l Notes WF 70 8669 lMD-1 Beltline Weld lORNL Analysis Block 10: 1 11 0 25 0.58 l l MD-1 Beltline Weld lORNL Analysts Block ID: 1 11 0 26 0.56 l I

l MD-1 Bettline Weld lORNL Analysis Block ID: 1-11 0.25 0.57 l lMD-1 Beltline Weld lORNL Analysis Block ID: 1-11 0.29 0 57 l l MD-1 Beltline Weld lORNL Analysis Block 10: 1 11 0.31

.56 l l MD-1 Beltline Weld lORNL Analysis Block ID: 1-13 0.24 0.58 l I

l MD-1 Beltline Weld lORNL Analysis Block ID: 1-13 0.21 0 61 l l MD-1 Beltline Weld lORNL Analysis Block ID: 1-13 0 22 0 631 l MD-1 Beltline Weld lORNL Analysis Block ID: 1-13 0.25 0 60 l l MD-1 Beltline Weld lORNL Analysis Block 10: 1 13 0.32 0 60 l I

l MD 1 Beltline Weld l ORNL Analysis Block ID: 1-15 0 29 0.58 l l MD-1 Beltline Wald lORNL Analysis Block (D: 1 15 0.28 0.57 l l MD-1 Beltline Weld lORNL Analysis Block ID: 1-15 0.25 0 57 l l MD-1 Bettline Weld iORNL Analysis Block ID: 1-15 0.22 0.56 l I

lMD 1 Beltline Weld lORNL Analysis Block 10: 1-15 0.22 0.57 l l MD-1 Bettline Weld lORNL Analys:s Block ID-1 15 0 27 0 55 l I MD-1 Beltline Weld lORNL Analysis Block ID: 1-15 0.25 0.57 l MM Source Mean 0.28 0.57 5

l WF-113 8688 Weld Qualification Mt. Vernon WQ: Lab No. 7277 0.21 0.59 Cu content lower than WQ retest analysis; Cu content not used in source mean calculation I

l l Retest of WQ Sample:

0.28 l

l l Lab No. 7278 f

l l Retest of WQ Sample:

0.30 0.59 l I

I Lab No. 7278 l

I l

l Retest of WQ Sample:

0.30 0.61 l I

I Lab No. 7278 I

Source Mean 0.29 I

WF 209 8773 iWeld Qualification O Mt Vemon WO Lab No. 9837 0 32 0.59 l Retest of WQ Sample 0.41 M

Source Mean 0.37 0.59 m,

w,.

I WF 209-1 8773 Weld Qualification Mt. Vemon WQ: Lab No.10029 0.30 0.48 Ni content lower than WO retest analysis and analyses on production welds; Ni content not used in source mean calculation l

Retest of WO Sample 0 41 0.59 l I

Retest of WO Sample 0 40 0 59 M

Source Mean 0.37 0.59

...llnt WF-209-1 8773 0 ONS-2 Sury. Weld

[ Mt Vernon Lab No. 30050 0 35 0 59 I

l ONS-2 Surv. Weld l Mt Vernon Lab No. 30051 0 36 0 58l t

l ONS-2 Surv. Weld l Mt Vemon Lab No. 30052 0 35 0.58 l l ONS-2 Surv. Weld l Mt Vernon Lab No. 30053 0.36 0.58 l l ONS-2 Sury. Weld l Mt Vernon Lab No 30054 0.36 0.581 I

l ONS-2 Sury. Weld l Mt Vernon Lab No. 30055 0.36 0.57 l 1 ONS-2 Surv. Weld CVN S ecimen ID: EE-016 g

0.60 Source Mean 0.35 0.5 I

WF-209-1 8773 lCR-3 Surv Weld Mt Vernon Lab No. 30550 0.37 0.59 l CR-3 Sury. Weld l Mt Vemon Lab No. 30551 0 35 0 61 l l CR 3 Surv. Weld l Mt Vernon Lab No. 30552 0.37 0 60 l CR-3 Sury. Weld Mt Vemon Lab No. 30553 g

0 62 I

Source Mean 0.36 0.61 I

I f"MM g

h<

A-16

F I

Tablo A-5 (c ntinuid) C:pper cnd Nick;l C:ntents S:urc) Mrn3 fsr Weld Wire Heat Number 72105 Flux Weld Metal Analysis Source Cu NI Weld ID Lot Source Reference wt% Wt%

Notes WF-209-1 8773 ONS-3 Sury. Weid Mt Vemon Lab No. 30056 0.29 0.57

(

I ONS-3 Surv. Weld Mt Vemon Lab No. 30057 0.30 0.58 ONS-3 Sury. Weld Mt Vemon Lab No. 30058 0 29 0.57 ONS-3 Sury. Weld Mt Vemon Lab No. 30014 0.29 0.58 ONS-3 Sury. Weld Mt Vemon Lab No. 30015 0.30 0.58 I

j ONS-3 Surv. Weld Mt Vemon Lab No. 30016 0.28 0.58 ONS.3 Surv. Weld Mt Vemon Lab Mo. 30566 0 32 0.59 j

ONS-3 Sury. Weld Mt Vemon Lab No. 30567 0.32 0.59 ONS-3 Sury. Weld Mt Vemon Lab No. 30568 L, 31 0.59 I

ONS-3 Surv. Weld Mt Vemon Lab No. 30569 0.32 0.59 ONS-3 Sury. Weld Mt Vemon Lab No. 30570 0.30 0 58 ONS-3 Surv Weld Mt Vemon Lab No. 30571 0 31 0.58 ONS-3 Surv. Weld Mt Vemon Lab No. 30572 0 32 0.58 I

ONS-3 Surv. Weld Mt Vemon Lab No. 30573 0.31 0.58 ONS-3 Sury. Weld Mt Vernon Lsb No. 30558 0.31 0 58 ONS 3 Surv. Weld Mt Vemon Lab No. 30559 0 30 0.58 s

ONS-3 Surv. Weld Mt Vernon Lab No. 30560 0 31 0.58 I

ONS-3 Sury. Weld Mt Vemon Lab No. 30561 0.30 0.58 j

ONS-3 Surv. Weld Mt Vemon Lab No. 30562 0.28 0.59 i

ONS-3 Surv. Weld Mt Vemon Lab No. 30563 0 28 0.59 l

ONS-3 Surv. Weld Mt Vernon Lab No. 30564 0.30 0 58 1

ONS-3 Surv. Weld Mt Vemon Lab No. 30565 0 30 0.59 ONS-3 Surv. Weld Mt Vemon Lab No. 30574 0 27 0.58 ONS-3 Sury. Weld Mt Vemon Lab No. 30575 0 30 0 58 ONS-3 Sury. Weld Mt Vernon Lab No. 30576 0 31 0.58 I

ONS-3 Surv. Weld Mt Vemon Lab No. 30577 0.32 0.58 ONS-3 Sury. Welo Barberton Analysis Bik ID:

0.30 0.53 MS293 WC-1 ONS-3 Surv. Weld Barberton Analysis Bik 10:

0.29 0.52 I

MS293 WC 1 ONS-3 Surv. Weld Barberton Analysis Blk (D:

0.30 0.53 MS293 WC-1 ONS-3 Surv. Weld Barberton Analysis Bik 10:

0.30 0.53 MS293 WC-1 I.

ONS-3 Sury. Weld Barberton Analysis Bik ID:

0.30 0.54 MS293 WC 1 ONS-3 Surv. Weld Barberton Analysis Bik ID:

0.27 0.54 MS293 WC 1 I

ONS-3 Surv. Weld Barberton Analysis Blk ID:

0.26 0.54 MS293 WC-1 ONS-3 Sury. Weld Barberton Analysis Bik ID:

0.26 0.55 MS293 WC-1 I

ONS-3 Surv. Weld Barberton Analysis BI'. ID:

0.30 0.54 MS293 WC-2 ONS-3 Surv. Weld Barberton Analysis Bik ID.

0.29 0.54 MS293 WC-2 I

ONS-3 Surv. Weld Barberton Analysis Bik 10:

0.29 0.54 MS293 WC-2 ONS-3 Surv. Weld Barberton Analysis Bik 10:

0.30 0.55 MS293 WC-2 ONS-3 Sury. Weld Barberton Analysis Bik ID:

0.26 0.54 I

MS293 WC-2 ONS 3 Sury Weld Barberton Analysis Bik ID:

0.29 0.56 MS293 WC-2 ONS-3 Sury. Weld Barberton Analysis Bik ID:

0.29 0.55 I

MS293 WC 2 ONS-3 Sury. Weld Barberton Analysis Bik 10:

0.25 0.52 MS293 WC-2 l

ONS-3 Sury. Weld Barberton Analysis B!k ID:

0.30 0.55 MS293 WC-3 ONS-3 Surv. Weld Barberton Analysis Bik ID:

0.29 0.55 i

MS293 WC-3 1

f"WM h<

A-17

Tcbis A-5 (c ntinu::d). Copper end Nickel Cent:nts Scurca Mena for W:Id Wira Hut Number 72105 I

Flux Wold Metal Analysis Source Cu N1 Wold ID Lot Source Reference wt%

Wt%

Notes WF 209-1 8773 ONS-3 Surv. Weld Barberton Analysis Bik 10:

0.30 0.55 i

MS293 WC-3 I

ONS-3 Surv. Weld Barberton Analysis Bik ID:

0.30 0.56 MS293 WC-3 ONS-3 Surv. Weld Barberton Analysis Bik ID:

0.29 0.54 MS293 WC-3 ONS-3 Sury. Weld Barberton Analysis Bik ID:

0.28 0.55 MS293 WC-3 ONS 3 Surv. Weld Barberton Analysis Bik ID:

0.30 0.56 MS293 WC-3 I

ONS 3 Sury. Weld Barberton Analysis Bik ID:

0.30 0.55 MS293 WC-3 ONS-3 Sury. Weld GE Analysis Block 10 9-18 0.26 0.55 ONS-3 Surv. Weld GE Analysis Block ID.918 0.25 0.57 I

ONS-3 Surv. Weld CVN Specimen 10: JJ-091 0.29 0.58

, f ###', #','"

n.W

[ ~ ~ ~'

.2

... - -_.c :.c.

WF-209-1 8773 MD-1 Sury. Weld Mt. Vernon Analysis Lab No.

0.32 0.58 I

31585 MD-1 Surv. Weld Mt. Vernon Analysis Lab No.

0.34 0.59 31588 i

MD-1 Sury. Weld Mt. Vernon Analysis Lab No.

0.37 0.59 i

I 31587 MD-1 Sury. Weld Mt. Vernon Analysis Lab No.

0.37 0.58 31588 MD-1 Sury. Weld Mt. Vernon Analysis Lab No.

0.41 0.58 31589 I

MD-1 Surv. Weld Mt. Vernon Analysis Lab No.

0.35 0.58 31590 MD-1 Surv. Weld Mt. Vernon Analysis Lab No.

0.36 0.59 31591 I

MD-1 Sury. Weld Mt. Vernon Analysis Lab No.

0.35 0.59 31592 MD-1 Sury. Weld Mt. Vernon Analysis Lab No.

0.38 0.59 31593 I

MD-1 Sury. Weld Mt. Vernon Analysts Lab No.

0.35 0.59 31594 MD-1 Sury. Weld Mt. Vernon Analysis Lab No.

0.37 0.59 31595 MD-1 Surv. Weld Mt. Vernon Analysis Lab No.

0.36 0.59 I

31596 mg

--~m Source Mean 55'

~

~

'5 M M

,'&&& &:T~"f'~

l I

I I

I I

I f"N M g

h A-18

r-I Tcbl2 A-5 (centinu:d). Cepp:r cnd NICK:1 Contents ScurCs M: ens for Weld Wire Heat Number 72105 Flux Wold Metal l

Analysis Source Cu Ni l Weld ID Lot Source l

Reference wt%

Wt% l Notes WF-209-1 8773 ZN-1 Sury. Weld l RVSP Baselsne Chemistry 0.35 0.57)

I ZN-1 Sury. Wold l CVN Specimen ID: W-25 0.22 0.53 l ZN-1 Sury. Weld l CVN Specimen ID: W-25 0.27 0.57 l ZN-1 Sury. Weld l CVN Specimen ID: W-28 0 22 0.55 l ZN-1 Sury. Weld I CVN Specimen ID: W-28 0 25 0.49 l I'

ZN-1 Surv. WM lCVN Specimen ID: W-26 0.26 0 56 l ZN 1 Sury. Weld l CVN Specimen ID: W-27 0.26 0.54 l ZN-1 Sury. Weld l CVN Specimen 10: W-29 0.24 0.55l ZN-1 Sury. Weld l CVN Specimen ID: W-30 0.26 0.53 l I

ZN-1 Surv. Weld l CVN Specimen ID: W-31 0.28 0.561 ZN-1 Surv. Weld l CVN Specimen ID: W-32 0.25 0.54 l ZN-1 Sury. Weld l CVN Specimen ID: W-49 0.25 0.55 l ZN-1 Sury. Weld l CVN Specimen 10: W-50 0.22 0 55I ZN-1 Sury. Weld l CVN Specimen ID: W-51 0.22 0.54 l ZN-1 Sury. Weld l CVN Specimen ID: W-52 0 23 0 541 ZN-1 Surv. Weld l CVN Specimen ID: W-53 0 23 0.54 l 1

ZN-1 Surv. Weld l CVN Specimen ID: W-54 0.22 0.54 l I

'ZN-1 Surv. Weld _1 g

0 53 ZN-1 Surv. Weld lCVN Specimen ID: W-55 0 24 0.55)

}

Source Mean 0.25 0.

I WF-209-1 8773 ZN-2 Sury. Weld l RVSP Baseline Chemistry 0.28 0.55 ZN-2 Surv. Weld l CVN Specimen ID: W-37 A 0.19 U 62 ZN-2 Surv. Weld l CVN Specimen ID: W-378 0.23 0 52 ZN-2 Surv. Weld l CVN Specimen ID: W-378 0.26 0.53 I

ZN-2 Surv. Weld l CVN Specimen 10: W 38A 0 23 0.54 ZN-2 Sury. Weld l CVN Specimen ID: U-38B 0.25 0 53 ZN-2 Surv. Weld l CVN Specimen ID: W-388 0.31 0.52 ZN-2 Surv. Weld I CVN Specimen ID: W-39A 0.27 0.53 I

ZN-2 Surv. Weld lCVN Specimen ID: W 398 0.21 0 48 ZN-2 Surv. Weld l CVN Specimen ID: W-39B 0.28 0.55 ZN-2 Surv. Weld l CVN Specimen ID: W 33A 0.26 0 54 ZN-2 Sury. Weld l CVN Specimen ID: W-34A 0 23 0 47 I

Z,N-2 Surv. Weld l CVN Specimen ID: W-35A 0.22 0.52 ZN-2 Surv. Weld l CVN Specimen ID: W-36A 0.20 0.56 ZN-2 Sury, Weld CVN Specimen ID: W 40A 0.17 0.53 Cu & Ni contents suspect; specimen may have been notched I

in the base metal; Cu & Ni contents not used in source mean calculation ZN-2 Surv. Weld CVN Specimen ID. W-40B 0.10 0.74 Cu & Ni contents suspect; I

specimen may have been notched in the base metal; Cu & Ni contents not used in source mean calculation ZN-2 Sury. Weld CVN Specimen ID: W-40B 0.09 0.76 Cu & Ni contents suspect; I

specimen may have been notched in the base metal; Cu & Ni contents not used in source mean calculation ZN-2 Surv. Weld l CVN Specimen ID: W-50 0.26 0.57 I

ZN-2 Surv. Weld l CVN Specimen ID: W 55 0.27 0.60 ZN-2 Surv. Weld l CVN Specimen 10: W-49 0.26 0.59 ZN-2 Surv. Weid j CVN Specimen ID: W-51 0.28 0.60 ZN-2 Surv. Weld l CVN Specimen ID: W-52 0.26 0 60 I

ZN-2 Surv. Weld l CVN Specimen ID: W-53 0.27 0 60 ZN-2 Surv. Weld l CVN Specimen ID: W 54 0.26 0.56 ZN-2 Surv. Weld CVNS imen ID: W-56 _

0.23 0.59 i,l.;..

I Source Mean. 0.25 0.55 UE I

E fm =

Teblo A-6. Coppsr and Nick:1 Contants Sourcs Merna for Wald Wira H::t Numb:r 72442 I

l Flux l Wold Metal l

Analysis Source Cu Ni j Weld ID l Lot l Source l

Reference wt%

wt% l Notes SA-1450 8467 Weld Qualification Barberton WO 0.25 0.60 I

Source Mean 0.25 0.60 SA-1484 8579 Wald Quahfication Barberton WO O 25 0.64 Source Mean 0.25 0.64 g

I SA-1484 8579 f CR-3 Nozzle Dropout 0 Mt Vemon Lab No. 29799 B

0.24 0.57 l l CR-3 Nozzle Dropout l Mt Vemon Lab No. 29800 0.23 0 60 l l CR-3 Nozzle Dropout l Mt Vernon Lab No. 29801 0 24 0.591 l CR-3 Nozzle Dropout l Mt Vemon Lab No. 29802 0 24 0.60 l I

lCR-3 Nozzle Drorout l Mt Vemon Lab No. 29803 0.27 0 60 l l CR-3 Nozzle Dropout l Mt Vemon Lab No. 29804 0.22 0 60 l l CR-3 Nozzle Dropout l Mt Vemon Lab No. 29805 0.26 0 60 l l CR-3 Nozzle Dropout l Mt Vemon Lab No. 29806 0.27 0 59l I

lCR 3 Nozzle Dropout l Mt Vemon Lab No. 29807 0 23 0 60 l l CR-3 Nozzle Dropout l Mt Vemon Lab No. 29808 0 28 0.59 l l CR-3 Nozzle Dropout l Mt Vemon Lab No. 29809 0.29 059l l CR-3 Nozzle Dropout lMt Vemon Lab No 29810 0.29 0 59 l I

l CR 3 Nozzle Dropout l Mt Vemon Lab No. 29811 0.30 0 60 l l CR-3 Nozzle Dropout l Mt Vemon Lab No. 29812 0.31 0 60 l l CR-3 Nozzle Dropout l Mt Vemon Lab No. 29813 0.30 0 59 l lCR-3 Nozzle Dropout l Mt Vernon Lab No. 29814 0 26 059l I

l CR-3 Nozzle Dropout l Mt Vemon Lab No. 29815 0 24 060l l CR-3 Nozzle Dropout Mt Vernon Lab No. 20816 0.24 0 60

&l Source Mean 5 0.59 I

WF-67 8669 Weld Qualification Mt. Vemon WQ: Lab No. 6556 0 27 057l l

{ Retest of WO Sample 0 33

- l l

l Retest of WO Sample 0.35 0 58l Retest of WO Samo!e 0.33 0 58 E

l Source Mean 0.32 0.58 WF-67 8669 l MD 1 Nozze Oropout Mt Vemon Lab No 30431 0 17 0 61 lMD-1 Nozzle Drupout lMt Vemon Lab No. 30430 0 15 0 61 l I

lMD-1 Nozzle Dropout l tit Vernon Lab No. 30429 0.15 060l lMD-1 Nozzle Dropout l Mt Vemon Lab No. 30428 0.15 0 61 l lMD 1 Nozzle Dropout lMt Vemon Lab No 30427 0 18 0 61 l lMD-1 Nozzle Dropout IMt Vemon Lab No 30426 0.20 0 60 l I

lMD-1 Nozzle Dropout iMt Vemon Lab No 30425 0 25 0 60 l lMD-1 Nozzle Dropout l Mt Vemon Lab No 30424 0 25 0 60 l (MD 1 Nozzle Dropout MD-1 Nozzle Dropout lMt Vemon Lab No. 30423 0 23 0 62 l l

l Mt Vemon Lab No 30422 0 21 0 60 l lMD-1 Nozzle Orocout l Mt Vemon Lab No. 30421 0 26 0 60 l l MD-1 Nozzle Dropeut lMt Vemon Lab No 30420 0 33 0 60 l l MD-1 Nozzle Dropout IMt Vemon Lab No. 30419 0 35 059l l MD-1 Nozzle Dropout lMt Vemon Lab No 28880 0 16 0 60 l lMD-1 Nozzle Dropout l Mt Vemon Lab No. 28879 0 13 0 60l lMD-1 Nozzle Dropout l Mt Vemon Lab No 28878 0.15 0 60l lMD-1 Nozzle Dropout lMt Vemon Lab No 28877 0.19 0 60 l l MD-1 Nozzle Dropout lMt Vemon Lab No 28876 0 21 0 60l I

l MD-1 Nozzle Dropout I Mt Vemon Lab No. 28875 0 24 0 59i lMD-1 Nozzle Dropout l Mt Vemon Lab No. 28874 0 22 0 60 l l MD-1 Nozzle Dropout l Mt Vemon Lab No. 28873 0 21 0 59 l lMD 1 Nozzle Dropout l Mt Vemon Lab No. 28872 0 32 0.58 l I

l MD-1 Nozzle Dropout l Mt Vemon Lab No. 28871 0 34 0 58 l I

I f"WM h<

/-20

M g

t n

A nis esi 5

rn s W

9 r

a 2

uecB CiL ro I

sL T rO 4

4 7

4 A

6 RaE 6

6 3

8

/

8 T

2 2

5 8

N 7

A Rt 1

1 1

2 D

a M

I ing 0 0

9 5

A 0

r 4

4 8

6

/

a 3 3

8 6

N 5

M M

0 0

5 0

0 0

a 7 7

8 8

8 8

c 1

1 2

2 2

s la 0

0 0

7 0

0 i

i 0

0 0

9 0

0 n

r c

e o

1 t

i a

s M

M l

t g

)n s

l ia or u

0 0

0 5

6 0

e it wo c

T n 4

5 4

2 1

x InR T

+

+

+

+

s s

o R

i s

c D

(

e

'iWV n

gn a

o t

f 4

e oi a

t i

r a

din le le D

le le le t

e it i

u F

b b

omC b

b b

s H

nk s h

r a

a y

a a

a o

Uc s et u

t e

T T

r T

T T

o p

e c

e Me S

r t

D m

i n

r W

ib P

o oa dl yF C

d 1

PB r

)

o eat C r

l a

y:

t nis(

5 4

4 0

3 6

a l

e 5

r ri e

c gemo W

5 r

5 3

5 0

9 7

ib k e a c

t i

7 3

8 9

6 r

saet i

c r

1 1

1 e

sMhc T

uu A Ca m

h 3

t R

F Tc e

c a n h

a e

C E

f o

yu ID c ") 9 9

r t

n0 2

4 4

2 A

4 l

n d i

Le1 3

7 7

3 N

2 k

7 e

o l

/

a e Ou i

x 0 2

2 f

c t

0 El aM s F(

c d

Fl e

e i

e u N

e s

s q t l d

U

. ae) t 0

8 4

0 8

9 s e smk% 7 6

7 6

5 5

n eict a

e R Bts N (w i

0 0

0 0

0 0

a t

V a

E r

a M

c e

D p

i e

d t

tae) p r

a n

t 1

5 6

6 2

3 e i p%

smp o

m t

1 0

0 2

3 2

a r

Bt ow 0

0 0

0 0

0 C

sC(

d E

o e

o f

t n

a h

t i

I le

!e l

m e

h h

M S

S l

i t

le M

ign o

s e

e h

g n

n t

ta S

E s

i a

i i

i s

o g

d d

r e

t r

e e) eo g

F g m) m%

w s

y l

o) e a

t n

E n

e%

e3 Ri ig e

ig r

r L%

B n

e a t 7 t 3 In6 n

o0 c

h r

in r

lt L F F

oD I D l

o o S

o A

t 0 t

toO e (1 a

B lt te le lt lt e

l t I

(

t f

(

iad e

3 o

4.

e a

ed eld l

B G

h Be Be de H

l e

-r S

e eW mW n

n n

E leW r

e u e.

ec r

io o

io ln te w

n e.

m e

l r.

r t

i t

o o

oi oi t

r r

i i

c s

c InC W

e s

e n

N i

L NC NC S

u S

d l

l e

c a

l e

e r

e s

t i 9

1

)

VeWt e

e M

0 1

WS D

S i

)

)

M a 0 8

8 7

0 0

P de 3

4 1

26 57 9

1 Rel H S

P S 4

1 0 F-4 -

se F

4 3 2 4

2A 1

aW 2W 2W 1S 2

2 2 B

1 1

1 7(

7(

7(

M

1 M

g Y A

D t

n P

nis esiF 5

n sE -

r 2

M-r a

5 ue 0

_ M CcB 2 2

U @

M Y

TP I

RF 5 2

4 8

8 M

AE 8 9

1 5

A 2

/

0 1

5 4

N 4

T0 1

1 1

2 2

n ig 0 0

7 5

A 0

r 4 4

8

/

6 5

a 3 3

6 N

5 M

0 0

5 0

0 0

a c 7 7

8 8

8 8

1 1

2 2

2 s

l 0

0 0

7 0

0 a

i 0 0

0 9

0 0

e i

n r

1 e

o t

i a

i s

)

u M

lamr s

e 0 0

0 5

6 0

u it iT 4

5 4

2 1

l InR T

+

+

+

+

c e

x R

s s

o

(

i s

lc D

i e

g WV oin a

n f

ta o

t 4

e dn le le M

it D.

le le le a

i b

b i

omF r

b b

b t

e hrC a

a y

a a

a u

i e

T T

r T

T T

s H

t nk s

et u

Uc s Me S

o o

D p

e

)

c e

r t

d n r

m i

't ib P

W M

)

oa dl yF o

n r

PB r

eatC nis(

C d

o o

ri 5

4 4

0 3

6 gemor l

c y :r 5

3 5

0 9

7

(

e c

saet 7

3 8

9 6

a e

t l

it 6

W 5

sMhc e a 1

1 1

c k

A Ca 1

r F

i r

e e uu m

h 3

R t

Tc e

c lb Y

a n

eP) h a

a T yu o

cF" 2

2 2

TnE0 2

2 A

2 C

E f

2 2

2 2

r t

e n d

%u0

/

1 1

1 N

i l

1 1

l 0

0 e

o 1

l a

e F @2 (x i

f c

t k

aM s

c d

Fl e

e i

e u e l N

s tae) s q

0 8

4 0

8 9

d U

tsmk%

M s e eict 7

6 7

6 5

5 n

e R Bts N (w i

0 0

0 0

0 0

a a

t V

E n

r a

o e

D i

e p

r d

t t

m

- ae) p a

s m p%

t 1

5 6

6 2

3 n

eipt 1

0 0

2 3

2 o

m a

ow 0 0

0 0

0 0

C t

BsC(

r E

d o

e o

f t

n a

h

~

I t

le t

l m

e le h

h i

i M

t S

S te s

g te n

n ia te h

o g

d s

S E

s a

i i

6) t s

r ign o

e e

r r

w s

y g

F g m) eo r%

o) e l

i Ri n

n n

e%

e3 r

a t

L%

B n

a ig e ig tnG n

o0 n

r h

r 7

t e

3 c

lio o S o IoD o

A I

D t 0 t

lt L F F

o e(

a f

1 e

t t

B lt t

n ttt(

lt t

e

(

iad e

3 o

4 e

a e

ed ed B

i h l

Be de H

l n

Be l

S e

n n

n z. MW mW e

o o

o eW e

c r

lz rr l

e z.

r.

o te w

ze ze e e r

it i

it z

i r

n o

oi oir t

r i

c s

c InC W

e s

e N

I L NC NC M

ll S

u S

d c

e e

e l

a e

s t ir e

)

e VeWt W

S D

S i

9 1

0 1

P M a

)

)

0 8 8 7

0 0

de 3 4 1

1 26 57 9 Rel H S P S 4 1 M

4 -

se 4 3 2 4 F F

2A aW 1

2W 2W 2 2 2 B

1 S

1 1

1 7( 7( 7(

m

M g Y D-t n P M

nis esiF 4

r n sE -

0 M-r a

0 ue 0

CcB 2 2

U @

"M Y

TP I

RF 3 2

6 1

3 A

AE 3 3

8 7

9

/

8 0

4 N

8 9

T0 1

1

%2@

M ig 6 6

3 A

0 0

n r

1 6

/

4 N

6 6

a 2 2

5 5

M M

0 0

5 0

0 0

ac 7 7

8 8

8 8

1 1

2 2

2 m

s l

0 0

0 7

0 0

a t 0 0

0 9

0 0

e i

n r

1 e

o t

i a

)n s

M aeor m.

s l

0 0

0 5

6 0

u it l

iT u 4

5 4

2 1

e nR T

+

+

+

+

c i

x R

s s

o

(

i s

lc D

i e g

WV n

a n

foi t

n a

o t

4 e

diomF le le t

le le a

D b

i r

b b

hrC a

a v.

b b

b t

e it u

a a

a i

e T

T r

T T

T s

H t

nk s

et u

Uc s Me S

o N

')t ioa P o

D p

e c

e r

t d

n r

b m

i W

)

dl yF o

n r

PB r

eat C C

d nis(

a o

5 4

4 0

3 6

ri gemor l

M1 c

y:

t 5

3 5

0 9

7 l

(

e c

saet 7

3 8

9 6

a e

it r

7 W

5 k e sMhc 1

1 1

a A Ca c

r F

i r

a uu e Tc R m

h 3

t l

Y e

c b

a n

eP) h a

.c c F"o 1

1 C

E f

T yu o

1 1

1 8

8 8

A 8

Tn E

4

/

4 8

t n d

%elu0 0

4 4

N 0

4 r

t i

l 0

0 e

o 0

0 0

il a e

F @2 (x f

c t

k aM s

c d

Fl e

e M

i e u e l N

s tae) s q

0 8

4 0

8 9

d U

smk%

t s

e eict 7

6 7

6 5

5 n

e R Bts N (w i

0 0

0 0

0 0

a a

t V

E n

r a

M o

e D

i e

p r

d t

tae) p a

e i p%

t 1

5 6

6 2

3 n

smp 1

0 0

2 3

2 o

m t

a Bt ow 0 0

0 0

0 0

C r

sC(

M E

d o

e o

f t

n a

h i

t e

l m

e n

le h

h I

i M

S S

Ie s

t M

ign o

e e

h g

n n

a t

S E

s t

e i

e i

o g

d d

r t

s e

e e

r eo g F g

c) m%

w s

y n

)

l o) e Rie a e ig te%

r a

m n n

t i6 te3 7

L%

B n

ttL F F

oD In3 c

g n

o0 r h r

n o o S o

D A

t 0 t

oO e1 a

t e

t B

lt t

n lt1(

ied t (

f e

(

l l

id e

3 o

4 t

a e

a e

ed i

Be Be de H

B d h l

e re S e

n n

n iW m W.

leW e

e o

o o

r M

ln te w

n e.

n e. ec a

e r

r it i

it i

i o

o oi oi t

r r

r c

s c

InC W

e s

e n

N I

L NC NC S

u S

d v

c a e l

e e

s e

r t i 9

1 0

1 e

)

e M

VeWt W

S D

S i

M a

)

)

0 0 8 8 7

0 P

de 3 4 1

26 57 9 1

Rel H S P S 4 -

1 0F-4 -

se F

4 3 2 4 1

aW 2A 2 2 2 2W 2W B

1 S 1

1 1

7(

7( 7(

M

II I

l

'I

'l

4. Request for AdditionalInformation Regarding Reactor VesselIntegrity l

Evaluation and Use of Surveillance Data l

Both Regulatory Guide 1.99, Revision 2W and 10 CFR 50.61W require that surveillance data (if available) be considered in evaluating reactor vesselintegrity. The best-l estimate copper and nickel chemical compositions for both the weld wire heats and their weld metal sources are used in the evaluation of the surveillance data. The process of I

evaluating surveillance data includes a credibility assessment against five criteria and the calculation of the chemistry factor based on the surveillance data.

4.1. Surveillance Data Credibility Assessment l

For the RVWG reactor vessels, numerous surveillance data are available for evaluation l

of irradiation embrittlement. Each plant has their o./n plant-specific reactor vessel surveillance material. However, these plants also participate in the B&WOG Master l

Integrated Reactor Vessel Surveillance Program (MIRVP) established in 1989, making I

weld metal surveillance data available from several sources. The reactor vessels participating in the MIRVP include reactor vessels with B&W-designed nuclear steam i

supply systems (NSSS) and Westinghouse-designed NSSS.

iI When assessing credibility for surveillance data from several sources, the capsule data i

may have to be " adjusted"to accornt for the irradiation environment and chemical lgE composition differences. Because of the irradiation envircnment differences between the B&W-design NSSS and the Westinghouse-design NSSS, the capsule data are l

" normalized"using the mean irradiation temperature of the surveillance specimens.

I I

I f

4-1 INNA I

I ll The " normalized" temperature adjusted ARTwor is determined using the following i

i equation:

I Temperature Adjusted ARTsor,,,,,,,,u,, = ARTso7,,,,,,,,,s + 1.0 * ( T,,,,,,,

- T,,,,,,,,,,,, )

In addition, if the surveillance data are from multiple sourcas, it is necessary to adjust the capsule data for chemical composition (copper and nickel contents) differences. For

'l the credibility determination, the surveillance data are " normalized"to the mean copper and nickel contents of the surveillance materials using the following equation:

I

' CF,ua. s,,. n oc=-

Ratio Adjusted ART r

I C F,ua s.,,. or.

uor,,,, aa' "

i A best-fit line (least squares regression) is then determined from the adjusted ARTuor capsule surveillance data as a function of the capsule fluence factor.

I The data are considered credible if the difference between the adjusted ARTuor (i.e.,

temperature adjusted and/or chemistry adjusted) and the predicted ARTuor (from the best-fit line) for all the data are within 28 F for weld metals and 17 F for base metals.

I 4.2. Credible Surveillance Data in accordance with Regulatory Guide 1.99, Revision 2 and 10 CFR 50.61, credible surveillance. data are used to determine material-specific chemistry factor values for use in reactor vessel integrity assessments. The chemistry factor is determined from a best-fit line through the surveillance data adjusted to account for differences in chemical

'g composition (i.e., copper and nickel contents) and irradiation environment (i.e.,

E irradiation temperature) between the capsules and the vessel. The surveillance data are adjusted in the same manner as for the credibility determination except that the 30 ft-lb transition temperature values are " normalized"to the best estimate copper and i

nickel contents and the irradiation temperature of the vessel being assessed.

I I

f 4-2 UNN'S

I I

4.3. Non-Credible Surveillance Data if the surveillance data are determined to be non-credible, the chemistry factor value is calculated from the generic Tables in 10 CFR 50.61 and Regulatory Guide 1.99, Revision 2 unless the chemistry factor determined from the surveillance data is sianificantly areater than that from the generic Tables, indicating that the Table chemistry factor is non-conservative. To determine if the generic Table chemistry factor I

is non-conservative, the following steps are performed:

1.

Determine the chemistry factor from the generic Tables based on the surveillance specimen chemical composition; use this chemistry factor to determine the predicted ARTuor for each capsule:

(Predicted ARTuor = CFTWe, Surv. Avg. Chem.

  • ficapsule) 2.

Determine difference between the predicted ARTuor and the measured ARTuor.

If the difference between the predicted ARTwor and the measured ARTwor values exceeds 2 standard deviations (i.e., 56*F for weld metals and 34*F for base metals), the Table chemistry factor is considered non-conservative. When the Table chemistry

)

factor is determined to be non-conservative, the chemistry factor determined from the I

"non-credible" surveillance data is used in the assessment of reactor vesselintegrity using the " full" value of c3 n calculating the Margin term.

i 4.4. Use of Weld Wire Heat Surveillance Data

'I Based on the best-estimate copper and nickel chemical contents of the high-copper I

Linde 80 weld wire heats and their weld metal sources, the high-copper Linde 80 weld metal surveillance data have been evaluated in accordance with Regulatory Guide 1.99, Revision 2 and 10 CFR 50.61. Table 4.4-1 summarizes the results of the surveillance l

data evaluations for the RVWG reactor vessel beltline welds.

1

.I I

,I f

'M IWA 4-3 P

. E 1

M r

go f

nt a

a a a

oic t

t ta t

ta ta a

ta

_ E a

a d na le b le le t

a o aF D le D D le le D le le a

a a

a W

D le

.b b

b b

.b D.

le D

D n

.b b

b b

. b

. y a a

h b

a a a a v a v v a a mm T T

T T t

y a y.

y a

y.

r T r r T T

r T T eie T r r

T r u

u u u

u u

u u

r Me h S

S S S

S S

S S

D C E

I 1

y r

t r n

so 6 6

6 6 6 6 3 1 6

3 6 3 0 0 0 8 3

3 2 io imt 0 0

0 2 0 2 1

1. 7 9

2 9 0 6 8 7 8

2 5 c

s e a 2 2

2 8 7 8 6 4 6 9

0 9 8 4 5 3 5

7 2 iv hF 2 2

2 1 1 1 1 1 1 1

2 1 1 1 1 1 1

1 1 e

E R

C 5

23

. e 2 m tan v

e i) r G

W ho A Ct v r

eo Y Y Y Y

- Y -

- Y Y

- Y Y

- Y Y -

cr M

O B ea s

W lbFnY a

o(

T C

&Bs a

d e) el tal N M

b D.d r he i b N N N N Y N Y Y N N

Y N N Y N Y Y

N Y rW t

ye rY ruC(

oe S

f n

M sl i

r t t go f

nl e na a

ta ta t

ta t

t ta oicnt a

a a a a

a t

a a e

diF le le le le D D le le a

D le D le e a

a mB om b

b b

b

. b

. v a a

. b lb v.

b b

D D le D

le D r

a a a a v a v

. b b

h em T T

T T

r T

r r

T T

r T

T r

r T

r T

ru v a a v

a y

a v se tet l

e u

u u u

u u u

M Me s s D

S S S S

S S S

S hC e s se sV y

a r

t r r

e so 6

6 6

6 2

6 6

4 6

3 4

3 0

3 2

0 0

3 5

Rt imc 0 0

0 2

1 2

7 1

7 9

3 9

0 2

6 8

0 2

6 o

t e a 2 2

2 8

7 8

5 4

6 9

0 9

8 4

3 5

6 7

2 c

5 hF 2

2 2

1 1

1 1

1 1

1 2

1 1

1 1

1 1

1 a

2 t a 3

C 1

ae 2-DR W

. e A m v 4

M ep B

ft )

e r

C u h o aN 4

v no Ct r

eo Y

Y Y Y

- Y

- Y Y

- Y Y

- Y Y

cr l G lea ar s

l bFnY a

o(

i T

C eg M

v n r

i uk a

e)

Sr tal N o

D. b i r do N

N N N Y N Y Y N N

Y N N Y Y N Y

N Y foW ye M

rY ruC(

yl S

r e as ms

)S e

t S da mV M

Sl e 12 1 2 1

1 3

3 1

1 3

1 eH SSI 1

1 34 - 3 3

1 4

234 1

N ur

- OS

- B B

(We NNM S S

OS B 2 S

SI 1 2

- - - S S NN N BPP N R R NM P

- BPP N N So P

PTT T

PTT SS NDN D S tf r

OOT AO O

O C COT i _

n wW O O A O t

C la P

1a e M

4. R

)

)

4 e

e

)

)

)

e e

e s

s s

s s

e u

u u

u u

o o

o o

o l

e h

h h

h h

b c

g g

g g

g a

n n

n n

n n

a i

i i

i T

ie e

e e

e e

ll t

t t

ts ts s

s s

rv S W S W S W S S W S W S S a

ut S

S S

S S

S S S d

d d

Sa S

n S S d d

n S n S n

S n

S S D

e N a N a N a N N a N a N N lb e W e W e W e e W e W e e

_ g la s

s s

s s

s s

s i

S u & S

-o &

u &

u S

u & S S

u &

S u u a

S o B S Ni B o B o S

o B S S o B S

o o v

S h

h h

h g h S h

h h g h g h g

S g h S S

A N

n o N n o n o n N

n o g h S

g g

t t

t t

t i

N N n to t t N

n l

& e l W

i n

W i B( W i B( s s

i B i

W t B W W

t t

t i B r

s s

t

(

s s

(

e e

(

s s

e ll &

e lt e ll e g

e B

W A B W A W A W B

W A B B W A B

W W t

l e

r iWt 4

4 4

4

)

a 4

4 2

9 5

2 5

4 4

de a

le L

L 8

4 0

4 4

T 7 7M H

9 6

7 2

1 4

4 1

9 2D 9

0 1

1 2

2 2

2 2 2 R W

2 4

6 7

7 7

7 6

T 0(

_ g

I 4.5. Assessment of Weld Wire Heat Surveillance Data The following tables provide the surveillance data evaluation of the weld wire heats used in the RVWG reactor vessel beltline region. The data contained in these tables provide the information requested in " Table 2" and " Table 3" of the request for additional information regarding reactor pressure vessel integrity in addition to the determination of the chemistry factor for the weld wire heat.

Because the Linde 80 weld metals are most limiting with respect to irradiation l

embrittlement, an evaluation of the base metal surveillance data is not required in accordance with the requests for additional information regarding reactor pressure vesselintegrity for the RVWG plant. However, the evaluation of the base metal I

surveillance data is provided in Appendix B for completeness.

{

l NOTE: The original Charpy V-notch impact data are based on hand-fit Charpy curves using engineering judgment; these data were re-evaluated using a hyperbolic tangent I

curve fitting program to achieve consistency in the interpretation of the available surveillance test data.

I I

I I

I

'I I

I I

f l

45 IMMM

I 4.5.1. Weld Wire Heat Number 299L44 (Use of B&W NSSS Data Only)

I Table 4 5.1-1. Surveillance Data for Wold Wire Heat Number 299L44 I

Using B&W NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor VesselIntegrity)

I trradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ART.e, Assessing Vessel (including source)

Wt%

Wt%

(*F)

(x10" n/cm')

(*F)

(Y or N)

TMI-1: Capsule TM11-E 0.33 0.67 556 0.107 74 Y

I WF-25: Plant-Speerne RVSP Material TMI-1: Capsule 1M11-C 0 33 0.67 550 0.866 166 Y

WF-25: Plant Specific RVSP Material B&WOG. Capsule TM12-LG1 0.33 0 67 556 0.968 226 Y

I WF-25: TMI 2 Nonle Belt Dropout Matl.

B&WOG: Capsule TM12-LG1 0.37 0.70 556 0.830 216 Y

SA 1526: CR-3 NonM Belt Dropout Matt.

I B&WOG: Capsule CR3-LG1 0.36 0.70 556 0.779 202 Y

WF-25: ONS-3 Nonle Belt Dropout Matl.

1 Table 4.5.1-2. Credibility Assessment for Weld Wire Heat Number 299L44 Using B&W NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vesse! Integrity)

I Chem.

Predicted (Adjusted -

Irrad.

Meas.

Adjusted ART,ev from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ART,ev ART,er Best Fit Line ART.or Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F)

TMI-1: Capsule TM11-E 0.33 0 67 215.2 556 0.431 74 76 90

-14 E

WF-25 Plant-Specific RVSP Matl TMI-1: Capsule TMi1-C 0.33 0.67 215.2 556 0 960 166 171 200

-29 WF-25 Plant-Specific RVSP Matt I

B&WOG. Capsule TM12-LG1 0 33 0 67 215.2 556 0 991 226 233 207 26 WF-25. TMl-2 Noule Belt Dropout Matt B&WOG. Capsule TMl2-LG1 0.37 0 70 234 0 556 0 940 216 205 196 7

I SA-1526: CR 3 Nonle Belt Dropout Matt B&WOG: Capsule CR3-LG1 0.36 0.70 230.5 556 0.930 202 195 194 1

WF-25: ONS-3 Nonle Bett rkopout 1

Matl I

Surv Avo 0344 0682 222 1 556 where Predicted ARTuD7 = (Slopesestnf *(Fluence Factor) and Slopesest nt = best fit line relating Adjusted ARTuDr to the Fluence Factor (i.e., 208.7) 1 I

These data are not credible since the scatter is greater than 28 F for one surveillance l

capsule data point.

I fm.e.m 4.e I

I Table 4.5.1-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 299L44 i

Using B&W NSSS Surveillance Data Only Table Capsule (Adjusted.

Capsule Chem. Factor Fluence Adjusted Predicted Predicted)

I Designation (Surv. Avg )

Factor ARTem (*F)

ART,m (*F)

ARTem ('F)

TMI-1: Capsule TM11.E 222.1 0.431 76 96

-20 WF-25: Plant-Specific RVSP Matt I

TMI-1: Capsule TM11 C 222.1 0.960 171 213

-42 WF-25: Plant-Specific RVSP Matl l

B&WOG. Capsule TMl2-LG1 222.1 0.991 233 220 13 WF-25: TMl-2 Nozzle Belt Dropout Matl.

I

~B&WOG. Capsule CR3-LG1 222.1 0.930 195 207 12 B&WOG: Capsule TMl2-LG1 222.1 0.948 205 211

-6 SA-1526: CR 3 Nozzle Belt Dropout Matt.

l WF-25: ONS-3 Nozzle Belt Dropout Matl.

I where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor) lI l

Since the scatter for all data points is less than 2 standard deviations (56*F), the Table 3

chemistry factor is conservative.

lI l

lI.

1 lI lI I

I I

I I

f"MNRM f=

I 4-7

i 4.5.2. Weld Wire Heat Number 299L44 (Use of Westinohouse NSSS Data Oniv)

Table 4.5.2-1. Surveillance Data for Weld Wire Heat Number 299L44 Using Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor VesselIntegrity)

I Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ART er Assessing Vessel (including source)

Wt%

Wt%

(*F)

(x10" n/cm')

(*F)

(Y or N)

Surry Unit 1: Capsule T 0.23 0.64 538 0.281 171 Y

I SA-1526: Plant-Specific RVSP Material Surry Unit 1: Capsule V 0.23 0.64 538 1.94 250 Y

SA 1526. Plant-Specific RVSP Material Surry Unit 1: Capsule X 0.23 0.64 538 1.599 234 Y

SA-1526: Plant Specific RVSP Material I

Table 4.5.2-2. Credibility Assessment for Weld Wire Heat Number 299L44 Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity)

! E Predicted (Meas -

trrad.

Meas.

Adjusted ART,er from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ART,or ART.or Best Fit Line ART,cr Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F)

I Surry Unit 1: Capsule T 0.23 0 64 175.8 538 0.653 171 142 29 SA-1526' Plant Specific RVSP Mati Surry Unit 1: Capsule V O 23 0.64 175 8 538 1.181 250 256

-6 SA-1526 Plant Specific RVSP Mati I

Surry Unit 1: Capsule X 0.23 0 64 175 8 538 1.130 234 245

-11 SA-1526-Plant-Specific RVSP Matt Sury Ava 0 23 0 64 175 8 538 l

where Predicted ARTuor = (Slopesestnt) * (Fluence Factor) and Slopeses,nt = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 216.7)

These data are not credible since the scatter is greater than 28*F for one surveillance capsule data point.

I I

I I

f(c"MNM 4-8 I

I l

,h B

Table 4.5.2-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 299L44 g

Using Westinghouse NSSS Surveillance Data Only Table Capsule (Adjusted -

!g Capsule Chem. Factor Fluence Measured Predicted Predicted)

Designation (Surv. Avg )

Factor ART.m ('F)

ART.m (*F)

ART.m ('F)

Surry Unit 1: Capsule T 175.8 0.653 171 115 56 SA-1626: Plant Specific RVSP Matt.

Surry Unit 1: Capsule V 175.8 1.181 250 208 42 I

SA 1526: Plant-Specific kVSP Matt.

g Surry Unit 1: Capsule X 175.8 1,130 234 193 35 SA-1526: Plant-Specific RVSP where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

I Since the scatter for all data points does not exceed 2 standard deviations (56 F), the 3

I Table chemistry factor is conservative.

I I

'I I

I I

lI lI l

I 1

4-9 f."ATNRP.5 I

I 4.5.3. Weld Wire Heat Number 299L44 (Use of All Surveillance Data)

I Table 4.5.3-1. Surveillance Data for Weld Wire Heat Number 299L44 Using All Surveillance Data l

(Table 2 of the RAI Regarding Reactor VesselIntegrity)

I Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ART.or Assessing Vessel (including source)

Wt%

Wt%

(*F)

(x10" n/crn')

('F)

(Y or N)

TMI-1: Capsule TM11-E 0.33 0.67 556 0.107 74 Y

WF-25: Plant-Specific RVSP Material I

TMI-1: Capsule TM11-C 0.33 0.67 556 0.866 166 Y

WF-25: Plant-Specific RVSP Material B&WOG: Capsule TM12-LG1 0.33 0.67 556 0.968 226 Y

I WF-25: TMI-2 Nozzle Belt Dropout Matt.

B&WOG: Capsule TMl2 LG1 0.37 0.70 556 0.830 216 Y

SA-1526: CR-3 Nozzle Be!! Dropout Mrtl.

I B&WOG: Capsule CR3-LG1 0.36 0.70 556 0.779 202 Y

WF-25: ONS-3 Nozzle Belt Dropout Mati.

g Surry Unit 1: Capsule T 0.23 0.64 538 0.281 171 Y

SA-1526: Plant-Specinc RVSP Material I

Surry Unit 1: Capsule V 0.23 0 64 538 1.94 250 Y

SA-1526: Plant-Specific RVSP Matenal l

Surry Unit 1: Capsule X 0.23 0 64 538 1.599 234 Y

j SA-1526: Plant Specinc RVSP Material I

lI lI I

'I

.I I

I f"M7M f-4-10 I

1

I I

Table 4.5.3-2. Credibility Assessment for Weld Wire Heat Number 299L44 Using All Available Surveillance Data (Table 3 of the RAI Regarding Reactor VesselIntegrity)

Predicted (Adjusted -

lI trrad.

Meas.

Adjusted ARTc from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTc ARTc Best Fit Une ARTe Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F) l TMi-1: Capsule TM11 E 0.33

0. 6' 215.2 556 0.431 74 77 94

-17 WF-25: Plant Specific RVSP Matl.

TMA-1: Capsule TM11-C 0.33 0.67 215.2 556 0.960 166 164 209

-45 WF-25: Plant-Specific RVSP Matl.

B&WOG: Capsule TMl2-LG1 0.33 0.67 215.2 556 0.991 226 222 215 7

WF-25: TMI-2 Noule Belt Dropout

l t

M = tl,

' g B&WOG: Capsule TM12-LG1 0.37 0.70 234 0 556 0.948 216 195 206

-11 SA-1526: CR-3 Nonle Belt Dropout Matl.

B&WOG: Capsule CR3-LG1 0.36 0.70 230.5 556 0.930 202 185 202

-17 l

WF-25: ONS-3 Nonle Belt Dropout I

Mrti.

Surry Unit 1: Capsale T 0.23 0 64 175.8 538 0.653 171 186 142 44 l

SA-1526 Plant-Specific RVSP Mat!.

Surry Unit 1: Capsule V 0.23 0.64 175.8 538 1.181 250 278 757 21 SA-1526-Plant-Specific RVSP Matt Surry Unit 1: Capsule X 0.23 0.64 175.8 538 1.130 234 259 246 13 SA-1526 Plant Specific RVSP Mati Sury. Ava 0.301 0 666 204 7 549 25 where Predicted ARTuor = (Slopebearer) * (Fluence Factor) and l

Slopebestnt = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e., 217.3)

I g

These data are not credible since the scatter is greater than 28 F for two surveillance capsule data points.

I I

I l

I I

f"MNM I'

4-11 I

a I

l Table 4.5.3-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 299L44 Using All Surveillance Data Table Capsule (Adjusted -

I Capsule Chem. Factor Fluence Adjusted Predicted Predicted)

Designation (Sury. Avg.)

Factor ARTuo, (*F)

ART,ev ('F)

ART.e, (*F)

TMi 1: Capsule TM11-E 204.7 0.431 77 88

-11 WF-25: Plant Specific RVSP Matt.

TM1-1: Capsule TM11-C 204.7 0.960 164 197

-33 l1 I

WF-25 Plant-Specific RVSP Matt.

I B&WOG: Capsule TM12-LG1 204.7 0.991 222 203 19 WF.25: TMI-2 Nozzle Belt Dropout Mat!

B&WOG: Capsule TMl2-LG1 204.7 0.948 195 194 1

I SA-1526 CR-3 Nozzle Belt Dropout Matl B&WOG: Capsule CR3-LG1 204.7 0.930 185 190

-5 lj WF 25 ONS-3 Nozzle Belt Dropout Matl.

I Surry Unit 1: Capsule T 204.7 0653 186 134 52 I

SA-1526 Plant Specific RVSP Matt.

1 Surry Unit 1: Capsule V 204.7 1.181 278 242 36 SA 1526: Plant-Specific RVSP Matt Surry Unit 1: Capsule X 204.7 1.130 259 231 28 i

SA-1526 Plant Specific RVSP where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

I I

Since the scatter for all data points is less than 2 standard deviations (56 F), the Table

~

chemistry factor is conservative.

I

!I I

I I

I 5

I pf.".^.TNRM 4-12

l l

i 4.5.4. Weld Wire Heat Number 406L44 (Use of B&W NSSS Data Oniv) l Table 4.5.4-1. Surveillance Data for Weld Wire Heat Number 406L44 l

Using B&W NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity)

I arraduation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTa Assessing Vessel (including source) wt%

wt%

('F)

(x10" n/cm')

(*F)

(Y or N)

,I ANO-1: Capsule AN1-E 0.27 0.58 556 0.0727 99 Y

WF-193: Plant Specific RVSP Material J

ANO-1: Capsule AN1-A 0.27 0.58 556 1.03 144 Y

I WF 193: Plant Spectre RVSP Material ANO e: Capsule AN1-C 0.27 0.58 556 1.46 172 Y

WF 193: Plant Specife RVSP Material j

l Rancho Seco Urut 1: Capsule RS1-B 0.31 0.59 556 0599 114 Y

I WF-193. Plant Specife RVSP Material Rancho Seco Unit 1; Capsule RSI-D 0.31 0.59 556 0.660 146 Y

WF 193. Plant Specife RVSP Material I

Rancho Seco Unit 1: Capsule RSI-F 0.31 0 59 556 1.42 163 Y

WF-193: Plant Specific RVSP Material l1 I

Oconee Unit 1: Capsule OC1-E 0.32 0.59 556 0.150 80 Y

I WF 112: Plant Specife RVSP Material i

Oco JUnit 1: Capsule OC1 A 0.32 0.59 556 0.895 171 Y

WF-t12. Plant Specife RVSP Material Oconee Unit 1: Capsule OC1-C 0.32 0.59 556 0.986 190 Y

I WF-112: Plant Specife RVSP Material I

B&WOG: Capsule D814.G1 0.32 0 59 556 0.821 i-Y WF 112: ONS 1 RVSP Material I

I I

I I

I

'I

'I fmmY.em 4.m

l Table 4.5.4-2. Credibility Assessment for Weld Wire Heat Number 406L44 Using B&W NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor VesselIntegrity)

Predicted (Adjusted -

Irred.

Meas.

Adjusted ART m from Predicted)

I Capsule Cu Ni Chem.

Ts..tp.

F;uence ARTem ART m Best Fst Line ART.m i

Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F)

ANO-1: Capsule AN1-E 0.27 0.58 181.1 556 0.356 99 106 60 46 WF-193: Plant Specific RVSP Matt ANO-1: Capsule AN1 A 0.27 0.58 181.1 556 1.008 144 154 168 14 I

WF-193' Plant Specific RVSP Matt ANO-1: Capsule AN1-C 0 27 0.58 181.1 556 1.105 172 183 185

-2 WF-193 Plant Specife RVSP Matl.

g Rancho Seco Unit 1: Capsule RS1 B 0 11 0.59 136.7 556 0.745 114 112 124

-12 I

WF-193 Plant Specific RVSP Matt Rancho Seco Unit 1: Capsule RS1-D 0.31 0.5s 196.7 556 0.884 146 143 148

-5 WF 193 Plant Specife RVSP Matt Rancho Seco Unit 1: Capsule RS1-F 0.31 0.59

96.7 556 1.097 163 160 183

-23 I

WF-193-Plant Specife RVSP Matt.

Oconee Unit 1: Capsule OC1-E 0.32 0.59 2003 556 0.503 80 77 84

-7 WF-112: Plant Specife RVSP Matl Oconee Unit 1: Capsule OC1-A 0.32 0.59 200.7 556 0.969 171 164 162 2

I WF-112 Plant Specific RVSP Matt Oconee Unit 1: Capsule OC1-C 0.32 0.59 200.7 556 0.996 190

'83 166 17 WF-112: Plant Specific RVSP Matl-B&WOG: Capsule DB1-LG1

' 32 0.59 200 7 556 0.945 190 183 158 25 WF-112 ONS-1 RVSP Mati Sury. Avo 0302 0 587 193 1 556 M

where Predicted ARTuor = (Slopeseat nf * (Fluence Factor) and Slopeseat ne = best fit line relating Adjusted ARTuor to the Fluence Factor

\\

(i.e.,167,1).

j I

These data are not credible since the scatter is greater than f28 F for one surveillance Capsule data point.

I I

I I

I I

f"WD 4-14 I'<

I

II

'I Table 4.5.4-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 406L44 Using B&W NSSS Surveillance Data Only Table Capsule (Adjusted -

I Capsule Chem. Factor Fluence Adjusted Predicted Predicted)

Designation (Surv. Avg )

Factor ART,a (*F)

ARTc (*F)

ARTc (*F)

ANO-1; Capsule AN1-E 193.1 0.356 106 69 37 WF-193: Plant Specife RVSP Matl ANO-1: Capsule AN1-A 193.1 1.008 154 195

-41 i

WF 193: Plant Specife RVSP Matt ANO-1: Capsule AN1-C 193.1 1.105 183 213

-30 WF 193-Plant Specife RVSP Matt.

1 Rancho Seco Und 1: Capsule RS1-B 193.1

~

112 144

-32 I

0.745 WF-193 Plant Specific RVSP Matt.

Rancho Seco Und 1: Capsule RS1-D 193.1 0.884 143 171

-28 i

WF-193: Plant Specife RVSP Matt l

Rancho Seco Unit 1: Capsule RS1-F 193.1 1.037 160 212

-52 I

WF-193: Plant Specife RVSP Matl Oconee Unit 1; Capsule OC1-E 193.1 0.503 77 97

-20 l

WF-112 Plant Specific RVSP Matt.

Oconee Unit 1: Capsule OC1-A 193.1 0 d69 164 187

-23 I

WF-112 Plant Specife RVSP Matt Oconee Unit 1; Capsule OC1-C 193.1 0.996 183 192

-9 WF-112 Plant Specife RVSP Matl.

1 B&WOG. Capsule DB1-LG1 193.1 0.945 183 182 1

WF-112 ONS 1 RVSP Matt i

where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

I g

Since the scatter for all daia points is less than 2 standard deviations (56 F), the Table chemistry factor is conservative.

I I

I I

I I

I f(="MNM 4 4-15 I

I 4.5.5. Weld Wire Heat Number 406L44 (Use of Westinahouse NSSS Data Only)

Table 4.5.5-1. SurveilNce Data for Weld Wire Heat Number 406L44 l

Using Westiny.1ouse NSSS Surveillt.;1ce Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity)

I Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTe Assessing Vessel (including source) wt%

wt%

('F)

(x10" n/cm')

(*F)

(Y or N) j Point Beach Unit 2: Capsule V 0.25 0.59 542 0.650 167 Y

I WF-193: P. ant Specific RVSP Material Point Beach Unit 2: Capsule T 0.25 0.59 542 0.861 153 Y

WF-193: Plant Specife RVSP Material I

Point Beach Unit 2: Capsule R 0.25 0.59 542 2.20 223 Y

WF-193: Plant Specific RVSP Material Point Beach Unit 2: Capsule S 0.25 0.59 542 3.10 222 Y

WF-193: Plant Specific RVSP Material l

I Table 4.5.5-2. Credibility Assessment for Weld Wire Heat Number 406L44 Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vesselintegrity)

Predicted (Measured -

I Irrad.

Meas.

Adjusted ARTe from Predicted) l Capsule Cu Ni Chem.

Temp.

Fluence ARTe ARTe Best Fit Line ARTe j

Designation wt%

wt%

Factor

('F)

Factor

(*F)

(*F)

(*F)

(*F) j Point Be och Unit 2. Capsule V 0.25 0 59 174.6 542 0.879 167 154 13 WF-193-Plant Specife RVSP Mati I

Point Beach Unit 2: Capsule T 0 25 0.59 174 6 542 0.958 153 168

-15 WF-193 Plant Specife RVSP Matl Point Beach Unit 2: Capsule R 0.25 0.59 174.6 542 1.214 223 213 10 1

WF-193 Plant Specific RVSP Mati I

Point Beach Unit 2: Capsule S 0.25 0 59 174 6 542 1.298 222 228

-6 WF-193 Plant Specific RVSP Matt Surv Ave.

0 25 0 59 174 6 542 where Predicted ARTuor = (Slopebest nt) * (Fluence Factor) and Slopebest nt = best fit line relating Measured ARTuor to the Fluence Factor 1

(i.e.,175.7)

These data are credible since the scatter is less than 28 F for all surveillance capsule data points, l

'i 7"WM 4-16 I'<

I

Table 4.5.5-3. Weld Wire Heat Number 406L44 Chemistry Factor Calculation for Assessment of B&W NSSS Res-tor Vessels (Cold Leg Temperature at 556*F)

Using Westinghouse NSSS Surveillance Data Only irrad.

Mess.

Temp. & Chem.

Capsule Cu Ni Chem.

Temp.

Fluence ART.et Adjusted Designation wt%

wt%

Factor Factor

(*F)

ART.et (*F)

Point Beach Und 2: Capsule V 0.25 0.59 174.6 2

0.879 167 160 WF.193: Plant Specife RVSP Matt.

Point Beacn Unit 2: Capsule T 0.25 0.59 174.6 542 0.958 153 145 W

, F.193 Plant Specific RVSP Matt Point Beach Unit 2: Capsule R 0.25 0.59 174.6 542 1.214 223 218 WF.193: Plant Specife RVSP Matl.

Point Beach Unit 2: Capsule S 0.25 0.59 174.6 542 1.298 222 218

[

WF.193 Plant Specife RVSP Matt.

1

(

Vessel Best-Estimate 1 0 27 0 59 182 6 556 CFsurv. sata = best fitline relating Adjusted ARTuor to the Fluence Factor 3

(i.e., CFsurv. data = 170.6) f."^TNRM f

4-17

I 4.5.6. Weld Wire Heat Number 406L44 (Use of All Surveillance Data)

Table 4.5.6-1. Surveillance Data for Weld Wire Heat Number 406L44 I

Using All Surveillance Data (Table 2 of the RAI Regarding Reactor VesselIntegrity)

I arradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTm Assessing Vessel (includin9 source) wt%

wt%

(*F)

(x10" n/cm')

('F)

(Y or N)

ANO-1: Capsule AN1-E 0.27 0.58 556 0.0727 99 Y

I WF-193: Plant Specific RVSP Material ANO-1: Capsule AN1-A 0.27 0.50 556 1.03 144 Y

WF-193: Plant Specific RVSP Material I

ANO-1: Capsule AN1-C 027 0.58 556 1.46 172 Y

WF-193: Plant Speofic RVSP Material j

Rancho Seco Unit 1: Capsule RS1-B 0.31 0.59 556 t

0.399 114 Y

WF 193: Plant Specific RVSP Material I

Rancho Seco Unit 1: Capsule RS1-D 0.31 0.59 556 0 660 146 Y

WF 193: Plant Specife RVSP Material Rancho Seco Unit 1: Capsule RSI F 0.31 0 59 556 1.42 163 Y

I WF-193: Plant Specife RVSP Material 1

Oconee Unit 1: Capsule OC1-E 0.32 0.59 356 0.150 80 Y

WF 112: Plant Specife RVSP Material I

Oconee Unit 1: Capsule OC1-A 0.32 0.59 556 0.895 171 Y

WF-112: Plant Specific RVSP Material Oconee Unst 1: Capsule OC1-C 0.32 0.59 SG 0.986 190 Y

WF-112: Plant Specific RVSP Material 1

i B&WOG: Capsule DB1 LG1 0.32 0 59 556 0.821 190 Y

WF-112: ONS-1 RVSP Material Point Beach Unit 2: Capsule V 0.25 0.59 542 0.650 167 Y

I

, Point Beach Unit 2: Capsule T 0.25 0 59 542 0 861 153 Y

WF-193. Plant Specife RVSP Material WF-193: Plant Specific RVSP Material I

Point Beach Unft 2. Capsule R 0 25 0.59 542 2.20 223 Y

WF-193: Plant Specife RVSP Material Point Beach Unst 2: Capsule S 0.25 0.59 542 3 10 222 Y

WF-193. Plant Specife RVSP Material I

1 I

I I

I f."MNR".'i 4-18 f

I

f ll l

Table 4.5.6 2. Credibility Assessment for Weld Wire Heat Number 406L44

l Using All Available Surveillance Data (Table 3 of the RAI Regarding Reactor VesselIntegrity)
E Predicted (Adjusted -

trrad.

Meas.

Adjusied ART.er from Predicted)

!E Capsule Cu Ni Chem.

Temp.

Fluence ART.ev ART.e, Best Fit une ART or Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F)

ANO-1: Capsule AN1-E 0.27 0.58 181.1 556 0.356 99 107 61 46 WF 193: Plant Specife RVSP Matt.

ANO-1: Capsule AN1-A 0.27 0.58 181.1 556 1.008 144 154 173

-19 WF-193. Plant Specific RVSP Matl.

ANO-1: Capsule AN1-C 0.27 0.58 181.1 556 1.105 172 183 190

-7 1

WF-193 Plant Specific RVSP Matt.

.I Roncho Seco Unit 1: Capsule RS1-0 0 31 0.59 196.7 556 0.745 114 113 128

-15 WF-993 Plant Specific RVSP Matt.

Ranche Seco Unit 1: Capsule RS1-D 0.31 0.59 196.7 556 0.884 146 144 152

-8 WF-193: Plant Specific RVSP Matl.

Rancho Seco Unit 1: Capsule RS1-F 0.31 0.59 196.7 556 1.097 163 160 189 29 JVF 193 Plant Specific RVSP Matt.

Oconee Unit 1: Capsule OC1 E 0.32 0.59 200.7 556 0.503 80 79 86

-7 WF-912: Plant Specific RVSP Matl I

Oconee Untt 1: Capsule OC1-A 0.32 0.59 200.7 556 0.969 171 164 166

-2 WF-112-Plant Specific RVSP Matt.

1 Oconee Unit 1: Capsule OC1-C 0.32 0.59 200.7 5.,6 0.996 190 182 171 11 WF-112 Plant Specific RVSP Matt.

B&WOG: Capsule DB1-LG1 0.32 0.59 200.7 556 0 945 190 182 162 20 I

WF-912: ONS-1 RVSP Mati reint Beach Unit 2: Capsule V 0.25 0.59 174.6 542 0.879 167 169 151 18 WF-193 Plant Specific RVSP Mat!

Point Beach Unit 2: Capsule T 0.25 0.59 174.6 542 0.958 153 154 165

-11

' I Point Beach Unit 2: Capsule R HF-193-Plant Specife RVSP Matl 0.25 0.59 174.6 542 1.214 223 230 209 21 WF-193: Plant Specife RVSP Matt.

Point Beach Unit 2: Capsule S 0 25 0.59 174.6 542 1.298 222 228 223 5

I WF-193 Piant Specific RVSP Matl.

1 Sury. Avo 0287 0 588 188 2 552 where Predicted ARTuor = (Slopebestof * (Fluence Factor) and

'E Slopebest nt = best fit line relating Adjusted ARTuor to the Fluence Factor 3

(i.e.,171.9)

I I

These data are not credible since the scatter is greater than 28'F for two surveillance capsule data points.

I I

fI f"M'M I'

4-19 I

Table 4.5.6-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Mumber 406L44 Using All Surveillance Data Table Capsule (Adjusted -

Capsule Chem. Factor Fluence Adjusted Predicted Predicted)

Designation (Surv. Avg )

Factor ART.e, (*F)

ART.e, (*F)

ART,c, (*F)

ANO.1: Capsule ANI.E 188.2 0.356 107 67 40 WF-193: Plant Specific RVSP Matt.

ANO-1: Capsule AN1-A 188.2 1.008 154 190

-36 WF-193 Plant Specific RVSP Matl.

ANO-1: Capsule AN1-C 188.2 1.105 183 208

-25 WF.193 Plant Specific RVSP Matt.

g Rancho Seco Unit 1: Capsule RS1-B 188.2 0.745 113 140

-27 I

WF.193: Plant Specife RVSP Mati Rancho Seco Unit 1: Capsule RS1 D 188.2 0.864 144 166

-22 WF.193 Plant Specific RVSP Matt.

Rancho Seco Unit.. Capsule RS1-F 188.2 1.097 160 206

-46 lI WF-193 Plant Specife RVSP Matt.

l Oconee Unit 1: Capsule OC1-E 188.2 0.503 79 95

-16 WF.112: Plant Specific RVSP Matt Oconee Unit 1: Capsule OC1 A 188.2 0.969 164 182

-18 WF.112: Plant Specife RVSP Matt.

I Oconee Unit 1: Capsule OC1-C 188.2 0.996 182 187

-5 WF-112 Plant Specific RVSP Matt.

I B&WOG; Capsule DB1-LG1 188.2 0.945 182 178 4

WF 112 ONS.1 RVSP Matt i

Point Beach Ur.it 2: Capsule V 188 2 0.879 169 165 4

WF.193-Plant Specific RVSP Matl.

Point Beach Unit 2. Capsule T 188.2 0.958 154 180

-26 WF.193 Plant Specific RVSP Matl.

I Point Beach Unit 2: Capsule R 188.2 1.214 230 228 2

WF 193: Plant Specife RVSP Mati Point Beach Unit 2: Capsule S 188.2 1.298 228 244

-16 WF 193 Plant Specife RVSP Matt.

1 l

where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

Since the scatter for all data points is less thar. 2 standard deviations (56 F), the Table l

chemistry factor is conservative.

1 I

I l

p 1

4-20 h"MNM u

4.5.7. Weld Wire Heat Number 61782 (Use of Westinahouse NSSS Data Only)

Table 4.5.7-1. Surveillance Data for Weld Wire Heat Number 61782 1

Using Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor VesselIntegrity)

Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ART.or Assessing Vessel (including source) wt%

wt%

(*F)

(x10" n/crn')

(*F)

(Y or N)

I R. E. Ginna: Capsule V 0.24 0.52 545 0.556 146 Y

SA-1036: Plant Specirc RVSP Material R. E. Genna: Capsule R 0.24 0.52 545 1.15 167 Y

I SA-1036: Plant Specific RVSP Material R. E. G nna: C.psule T 0.24 0.52 545 1.97 169 Y

SA-1r. " Plant Specific RVSP Matenal I

R. E.

A Capsule S 0.24 0 52 545 3.87 223 Y

SA-1036. Plant Specife RVSP Material i

i I

Table 4.5.7-2. Credibility Assessment for Weld Wis e Heat Number 61782 I

Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor VesoelIntegrity)

I Predcted (Measured.

Irrad.

f aeas.

Adjusted ART.or from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ART,or ART.or Best Fit Line ARTm r Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F)

I R. E. Ginna. Capsule V

~

0.24 0.52 161.4 545 0.836 146 133 13 SA-1036: Plant Specife RVSP Matl.

R. E. Ginna: Capsule R 0.24 0.52 161.4 545 1.039 167 166 1

SA-9036: Plant Specife RVSP Matt.

R. E. Ganna: Capsule T 0 24 0.52 161.4 545 1.185 169 I

189 20 SA-S036 Plant Specife RVSP Mat!

I R. E. Ginna: Capsule S 0 24 0.52 161.4 545 1.349 223 215 8

SA-1036 Plant Speife RVSP Matl Surv. Ava 0 24 0 52 161 4 545 1

ME where Predicted ARTuor = (Slopebestnf * (Fluence Factor) and I

Slopebest m = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,159.2) 1 These data are credible since the scatter is less than i28 F for all surveillance capsule data points.

1 I

f."MNMh

?

4-21 I

1..

Table 4.5.7-3. Weld Wire Heat Number 61782 Chemistry Factor Calculation for Assessment of Westinghouse NSSS Reactor Vessel g

'(Point Beach Unit 1 Cold Leg Temperature at 538*F)

{

Using Westinghouse NSSS Ourveillance Data Only trrad.

Meas.

Temp. & Chem.

Capsule Cu Ni Chem.

Temp.

Fluence ART m Adjusted Designation wt%

wt%

Factor

(*F)

Factor

(*F)

ARTer (*F) i R. E. Gtnna: Capsule V 0.24 0.52 161.4 545 0.636 146 149 SA-1036: Plant Speciric RVSP Matl.

1 I

R. E. Ginna: Capsule R 0.24 0.52 161.4 545 1.039 167 170 SA-1036: Plant Specific RVSP Matl.

R. E. Ginna: Capsule T 0.24 0.52 161.4 545 1.185 169 172 SA-1036 Plant Spectric RVSP Matt.

R. E. Ginna: Capsule S 0.24 0.52 161.4 545 1.349 223 224 I

SA-1036 Plant Spectfic RVSP Matt.

M Vessel Best-Estimate 0.23 0 52 157.4 538'

  • Vessel temperatere derived from Point Beach Unit 1 irradiation history.(')

CFsurv. data = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e., CF ury, cata = 161.3)

S I

I E

I I

l I I

f('"MN=W 4-22

rI 4.5.8. Weld Wire Heat Number 61782 (Use of All Surveillance Data)

I Table 4.5.8-1. Surveillance Data for Weld Wire Heat Number 61782 Using All Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel '-tegrity)

Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTor Assessing Vessel (including source) wt%

wt%

(*F?

(x10 n/cm')

(*F)

(Y or N)

I B&WOG: Capsule DB1 LG1 0.27 0.59 55f.,

1.03 138 Y

SA-1135: oNS-2 Nonle Belt Dropout Matl.

1 R. E. Ginna: Capsule V 0.24 0.52 545 0.556 146 Y

SA-1036: Plant Specific RVSP Material I

R. E. Ginna: Capsule R 0.24 0.52 545 1.15 167 Y

SA-1036: Plant Specife RVSP Material I

R. E. Ginna: Capsule T 0.24 0.52 545 1.97 169 Y

SA 1036: Plant Specific RVSP Material R. E. Ginna: Capsule S 0.24 0.52 545 3.87 223 Y

SA 1036. Plant Specife RVSP Material 1

Table 4.5.8-2. Credibility Assessment for Weld Wire Heat Number 61782 Using All Available Surveillance Data I

(Table 3 of the RAI Re'garding Reactor Vessel integrity) redicted (Adjusted -

Irrad.

Meas.

Adjusted ART or from Predcted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwr ARTor Best Fit Line ART.or Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F)

R. E. Ginna: Capsule V 0.24 0.52 161.4 545 0 836 146 147 131 16 SA-9036. Plant Specific RVSP Matt.

I R. E. Ginna: Capsule R 0.24 0.52 161.4 545 1.039 167 169 162 7

SA 9036: Plant Specife RVSP Matt.

R. E. Genna: Capsule T 0.24 0.52 161.4 545 1.185 169 171 185

-14 SA-9036 Plant Specife RVSP Matt.

I R. E. Ginna: Capsule S

. 24 0.52 161.4 545 1.349 223 226 211 15 1

SA 1036: Plant Specific RVSP Matt.

B&WOG: Capsule DB1-LG1 0.27 0.59 182.6 556 1.008 138 133 158

-25 SA-9135. ONS-2 Nonle Bett Dropout M

I atl.

Surv. Avo 0246 0 534 165 4 547.2 where Predicted ARTuor = (Slopebestnd * (Fluence Factor) and Slopebestnt = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e.,156.3)

I These data are credible clnce the scatter is less than i28 F for all surveillance capsule data points.

f"MA'M h

4-23 I

E

~

Table 4.5.8-3. Weld Wire Heat Number 61782 Chemistry Factor Calculation for Assessment of B&W NSSS Reactor Vessels (Cold Leg Temperature at 556*F)

Using All Surveillance Data irrad.

Meas.

Temp. & Chem.

Capsule Cu Ni Chem.

Temp.

Fluence ARTe Adjusted 4

Designation wt%

wt%

factor

(*F)

Factor

(*F)

ARTeer (*F)

{

R. E. Ginna: Capsule V 0.24 0.52 161.4 545 0.836 146 132 i

SA.1036: Plant Specife RVSP Matt.

R. E. Ginna: Capsule R 0.24 0.52 161.4 545 1.033 167 152 SA 1036: Plant Specific RVSP Matt.

R. E. Ginna: Capsule T C e4 0.52 161.4 L ".5 1.185 169 154 SA-1036: Plant Spectre RVSP Matt.

I R. E. Ginna: Capsule S 0.24 0.52 161.4 545 1.349 223 207 SA-1036 Plant Specific RVSP Matl.

B&WOG: Capsule DB1-LG1 0.27 0.59 182.6 556 1.008 138 119 SA.1135: ONS-2 Nozzle Belt Dropout g

' Vessel Best-Estimate 0 23 0 52 157.4 556 CFsun.cata = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e., CFsurv. data = 141.1) 1 Table 4.5.8-4. Weld Wire Heat Number 61782 Chemistry Factor Calculation for Assessment of Westinghouse NSSS Reactor Vessel (Point Beach Unit 1 Cold Leg Temperature at 538 F)

Using All Surveillance Data irrad.

Meas.

Temp. & Chem.

Capsule Cu Ni Chem.

Temp.

Fluence ART,er Adjusted Designation wt%

wt%

Factor

(*F)

Factor

(*F)

ARTw (*F)

R. E. Ginna. Capsule V 0.24 0.52 161.4 545 0.836 146 149 SA 1036: Plant Specific RVSP Matl.

R. E. Ginna: Capsule R 0.24 0 52 161.4 545 1.039 167 170 1

SA-1036 Plant Specife RVSP Matl I

R. E. Ginna Capsule T 0.24 0 52 161.4 545 1.185 169 172 SA 1036 Plant Specife RVSP Matt R. E. Ginna: Capsule S 0.24 0.52 161.4 545 1.349 223 224 SA-1036 Plant Specife RVSP Matl B&WOG: Capsule DB1-LG1 0.27 0.59 182.6 556 1.008 138 135 SA 1135: oNS-2 Nozzle Belt Dropout Matt Vessel Best-Estimate 0 23 0 52 157 4 538*

  • Vessel temperature derived from Point Beach Unit 1 irradiation history.(7)

CFsun. cata = best fit line relating Adjusted ARTuor to the F. '1ce Factor (i.e., CF urv. data = 156.6)

S i

i I

i

'I f"M'M

\\

4 24 h<

I

I l

4.5.9. Weld Wire Heat Number 71249 (Use of Westinahouse NSSS Data)

Table 4.5.9-1. Surveillance Data for Weld Wire Heat Number 71249 Using Westinghouse NSSS Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel Integrity)

~

frradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTcr Assessing Vessel (including source) wt%

wt%

(*F)

(x10" n/cm')

(*F)

(Y or N)

I Turkey Point Unit 3: Capsule T 0.33 0.57 546 0.739' 166 Y

SA-1101: Plant Specife RVSP Material Turkey Point Unit 3: Capsule V 0.33 0.57 546 1.53*

179 Y

I SA-1101: Plant Specife RVSP Material Turkey Point Unit 4: Capsule T 0.29 0.60 546 0.708*

211 Y

SA.1094: Plant Specifc RVSP Material 1

  • Capsule fluence updated in accordance with WCAP-14044.'7)

I Table 4.5.9-2. Credibility Assessment for Weld Wire Heat Number 71249 Using Westinghouse NSSS Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel Integrity)

I{

Predicted (Adjusted -

Irrad.

Meas.

Adjusted ARTw from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTc ART,or Best Fit Line ARTe Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F)

Turkey Point Unit 3: Capsule T 0.33 0.57 201.3 546 0 916 166 163 172

-9 SA-1101: Plant Specife RVSP Matl.

I Turkey Posnt Unit 3: Capsule V 0.33 0.57 201.3 546 1,118 179 176 209 33 SA-1101: Plant Specife RVSP Matl 1

Turkey Point Unit 4: Capsule T 0.29 0.60 191.0 546 0.903 211 219 169 50 SA 1094 Plant Specife RVSP Matl Surv Avo 0317 0580 1980 546 where Predicted ARTuor = (Slopesestng) * (Fluence Factor) and Slopebest nt = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e.,187.4)

I These data are not credible since the scatter is greater than 28*F for two surveillance capsule data points.

I I

I f"MN=W L

4-25 I

i-

Table 4.5.9-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 71249 Using Westinghouse NSSS Surveillance Data Table Capsule (Adjusted -

Capsute Chem. Factor Fluence Adjusted Predicted Predicted)

Designation (Surv. Avg.)

Factor ART ev (*F)

ART,cr (*F)

ARTe (*F)

I Turkey Point Unit 3: Capsule T 198.0 0.916 163 181

-18 SA.1101: Plant Specife RVSP Matl.

Turkey Point Und 3: Capsule V 198.0 1.118 176 221

-45 SA-1101: Plant Specife RVSP Matl.

g Turkey Point Unit 4: Capsule T 198.0 0.903 219 179 40 SA-1094 Plant Specific RVSP Mati where P.edicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor) gW Since the scatter for all data points does not exceed 2 standard deviations (56 F), the Table chemistry factor is conservative.

lI I

lI lI II I

I I

f 4-26 IMYNRM l

i

TI 4.5.10. Weld Wire Heat Number 72105 (Use of B&W NSSS Data Only) l Table 4.5.10-1. Surveillance Data for Weld Wire Heat Number 72105 Using B&W NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor VesselIntegrity)

Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTa Assessing Vessel (including source) wt%

wt%

(*F)

(x10" n/crn')

(*F)

(Y or N)

I Oconee Unit 2: Capsule OCil-C 0.35 0.58 556 0.102 46 Y

WF-209-1: Plant Specife RVSP Material j

i Oconee Unit 2: Capsule OCil-A 0.35 0.58 550 0.337 107 Y

l WF-209-1: Plant Specife RVSP Material I

Oconee Unit 2: Capsule OCil-E 0.35 0.58 556 1.21 174 Y

WF-209-1: Plant Specific RVSP Materia!

Oconee Unit 3: Capsule OCille 0.29 0.56 556 0.081 15 Y

WF-209-1: Plant Specife RVSP Material Oconee Unit 3: Capsule OCill-B 0.29 0.56 556 0.312 70 Y

WF 209-1: Plant Specife RVSP Material I

Oconee Unit 3: Capsule OCill-D 0.29 0.56 556 1.45 142 Y

WF 209-1: Plant Specife RVSP Material 1

D&WOG: Capsule TMl2-LG1 0.39 0.56 556 0.585 122 Y

WF-70: MD1 Nonle Bett Dropout Matt.

I B&WOG: Capsule DB1-LB1 0.39 0.58 556 0 663 137 Y

WF-70: MD1 Nonle Belt Dropout Matl.

B&WOG: Capsule CR3-LG2 0.39 0.58 556 1.19 127 Y

I WF 70. MD1 Nonle Belt Dropout Matt 1

I I

I x

I I

I N=.Y.m i

E lI

\\

I Table 4.5.10-2. Credibility Assessment for Weld Wire Heat Number 72105 Using B&W NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor VesselIntegrity)

Predicted (Adjusted -

trrad.

Meas.

Adjusted ARTc from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence artie ARTe Best Fit Line ARTe I

Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F)

Oconee Unit 2: Capsule OCll-C 0.35 0.58 209.5 556 0.421 46 45 57

-12 WF-209-1: Plant Specific RVSP Matt.

Oconee Unit 2: Capsule OCll-A 0.35 0.58 209.5 556 0.701 107 106 94

-12 WF-209-1 Plant Specific RVSP Matt I

Occ, nee Unit 2: Capsule OCll-E 0.35 0 58 209.5 556 1.053 174 172 142 30 1

WF-209-1: Plant Specific RVSP Matl Oconee Unit 3: Capsule OCill-A 0.29 0.56 185.6 556 0.376 15 17 51 34 WF-209-1: Plant Specific RVSP Matt I

Oconee Unit 3: Capsule 0C111-B 0.29 0.56 185.6 556 0.680 70 78 92

-14 WF-209-1: Plant Specific RVSP Matt

{

Oconee Unit 3: Capsule OClli-D 0.29 0.56 185.6 556 1.103 143 1 ',8 149 9

WF-209-1: Plant Specific RVSP Matt I

B&WOG. Capsule TMl2-LG1 0.39 0.58 224.6 556 0850 122 112 115

-3 WF 70: MD1 Nozzle Belt Dropout Matt B&WOG: Capsule DB1 LB1 0.39 0.58 224.6 556 0 885 137 126 119 7

1 WF 70: MD1 Nozzle Belt Dropout I

Matt B&WOG. Capsule CR3-LG2 0.39 0.58 224.6 556 1.049 127 117 142

-25 WF 70: MD1 Nozzle Belt Dropout Surv. Avg 0343 0573 E 556 M

where Predicted 4RTuor = (Slopebest nt) * (Fluence Factor) and Slopebestnt = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e.,134.9)

I These data are not credible since the scatter is greater than 28 F for two surveillance capsule data points.

I I

I I

I 4 2e m

I

[I l

Table 4.5.10-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 72105 l

Using B&W NSSS Surveillance Data Only Table Capsule (Adjusted -

iI Capsule Chem. Factor Fluence Adjusted Predicted Predicted)

Designation (Surv. Avg.)

Factor ARTem (*F)

ARTem ('F)

ARTem ('F)

Oconee Unit 2: Capsule OCll-C 206.7 0.421 45 87 42 WF-209-1: Plant Spec (c RVSP Matt 1'

Oconee Unit 2: Capsule OCil-A 206.7 0.701 106 145

-39

'I WF-209-1: Plant Specific RVSP Matl.

Oconee Unit 2: Capsule OCll-E 206.7 1.053 172 218

-46 WF-209-1: Plant SpecTc RVSP Matt.

Oconee Unit 3: Capsule OClli-A 206.7 0.376 17 78

-61 WF-209-1: Plant Specife RVSP Matt.

Oconee Unit 3. Capsule OCill-B 206.7 0.680 78 141

-63 WF-209-1: Plant Specife RVSP Matl.

Oconee Unit 3: Capsule OClli-D 206.7 1.103 158 228

-70

)

I WF 209-1 Plant Specife RVSP Matt.

B&WOG: Capsule TM12-LG1 206.7 0.850 112 176

-64 WF-70 MD1 Nozzle Belt Dropout Mat!

B&WOG: Capsule DB1-LB1 206.7 0.885 126 183

-57 WF-70 MD1 Nozzle Belt Dropout Mati B&WOG Capsule CR3-LG2 206.7 1.049 117 217

-100 WF-70: MD1 Nozzle Belt Dropout Matt 1

)

where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

I The above assessment results indicates that the generic Table chemistry factor for the B&W NSSS surveillance data arossly over-predicts the adiusted measured data.

I Therefore, the Table chemistry factor calculated using the weld wire heat best-estimate copper and nickel contents is considered conservative.

I I

I g

I I f"WNM h<

4-29

iI 4.5.11. Weld Wire Heat Number 72105 (Use of Westinghouse NSSS Data Only)

Table 4.5.11-1. Surveillance Data for Weld Wire Heat Number 72105 i

l Using Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor VesselIntegrity)

I trradiation Measured Data Used in Capsule ID Cu Ni Ternperature Fluence ART m Assessing Vessel (including source) wt%

wt%

(*F)

(x10" n/ctn')

(*F)

(Y or N)

Zion Unit 1: Capsule T 0.25 0.54 529 4 0.310 108 Y

'I WF-209-1: Plant Specifc RVSP Material Zion Unit 1: Capsule U 0.25 0.54 529.4 1.02 190 Y

WF-209-1: Plant Specific RVSP Material I

Zion Unit 1: Capsule X 0.25 0.54 529 4 1.26 192' Y

WF-209-1: Plant Specific RVSP Material Zion Unit 1: Capsule Y 0.25 0.54 5294 1.56 202 Y

WF-209-1: Plant Specific RVSP Material Zion Unit 2: Capsulo U 0.25 0.55 529 4 0270 138 Y

WF-203-1: Plant Specific RV5P Material Zion Unit 2. Capsule T 0.25 0 55 529 4 0.779 179 Y

I WF-209-1: Plant Specific RVSP Material Zion Unit 2: Capsule Y 0.25 0 55 529 4 1 46 223 Y

WF-209-1: Plant Specific RVSP Material I

1 I

I I

I I

I I

fI 7"M^Wh 4-30

?

I Table 4.5.11-2. Credibility Assessment for Weld Wire Heat Number 72105 Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor VesselIntegrity)

Predicted (Adjusted -

I trrad.

Meas.

Adjusted ART.or from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTor ART,or Best Fit Line ART,er Designation wt%

wt%

Factor

('F)

Factor

(*F)

(*F)

(*F)

(*F)

Zion Unit 1: Capsule T 0.25 0.54 167.6 529.4 0.679 108 108 128

-20 WF-209-1: Plant Specific RVSP Matl.

I Zson Una 1: Capsule U 0.25 0.54 167.6 529.4 1.006 190 191 189 2

WF-209-1. Plant Specific RVSP Matl.

2 son Unit 1: Capsule X 0.25 0.54 167.6 529.4 1.064 192 193 200

-7 WF-209-1: Plant Specific RVSP Matl.

I Zeon Unit 1: Capsule Y 0.25 0.54 167.6 529 4 1.123 202 203 211

-8 WF-209-1: Plant Specific RVSP Matl Zion Unit 2: Capsule U 0.25 0.55 169.0 529.4 0.643 138 137 121 16 WF-209-1 Plant Specific RVSP Mati I

Kion Unit 2: Capsule T 0 25 0.55 1690 529.4 0.930 179 178 175 3

WF-209-1: Plant Specific RVSP Mati.

Zion Unit 2: Capsule Y 0.25 0.55 169.0 529.4 1.105 223 222 208 14 WF-209-1: Plant Specific RVSP Matl.

Surv. Avo 0.25 W 168.2 529 4 where Predicted ARTuor = (Slopebestnf * (Fluence Factor) and i

Slopebest nt = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e.,188.1) 1

'I These data are credible since the scatter is less than 28 F for all surveillance capsule data points.

I I

I I

I

-I I

f"W'aM h<

4-31 I

I 1

Table 4.5.11-3. Weld Wire Heat Number 72105 Chemistry Factor Calculation for Assessment of B&W NSSS Reactor Vessels j

(Cold Leg Temperature at 556*F)

.5 Using Westinghouse NSSS Surveillance Data Only I

Irrad.

Meas.

Temp. & Chem.

Capsule Cu Ni Chem.

Temp.

Fluence ART.e, Adjusted Designation wt%

wt%

Factor

(*F)

Factor

(*F)

ART.cr ('F)

Zion Unit 1: Capsule T 0.25 0.54 167.6 529.4 0.679 108 97 I

WF-209-1: Plant Specific RVSP Matt.

)

Zion Unit 1: Capsule U 0.25 0.54 167.6 529.4 1.006 190 194 WF-209-1: Plant SpecMc RVSP Mat!

Zion Unit 1: Capsule X 0.25 0.54 167.6 529.4 1.064 192 197 WF-20941: Plant SpecMc RVSP Matt.

)

.I Zion Unit 1: Capsule Y 0.25 0.54 167.6 529.4 1.123 202 209 1

WF-209-1: Plant SpecMc RVSP Matl Zion Unit 2: Capsule U 0.25 0 55 169.0 529 4 0643 138 131 WF-209-1: Plant SpecWie RVSP Matl

.I Zion Unit 2. Capsule T 0.25 0.55 1690 529 4 0.930 179 180 WF-209-1: Plant Specific RVSP Matt Zion Unit 2: Capsule Y 0.25 0.55 169.0 529.4 1.105 223 232 WF-209-1: Plant Specific RVSP Matt.

~

1 Vessel Best-Estimate 0 32 0 58 199 3 556 CFsun. cata = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e., CFsurv. data = 190.4) i I

Table 4.5.11-4. Weld Wire Heat Number 72105 Chemistry Factor Calculation for Assessment of Westinghouse NSSS Reactor Vessel I

(Turkey Point Unit 4 Cold Leg Temperature at 546 F)

Using Westinghouse NSSS Surveillance Data Only irrad.

Meas.

T emp. & Chem.

Capsule Cu Ni Chem.

Temp.

Fluence ART.e, Adjusted Designation wt%

wt%

Factor

(*F)

Factor

(*F)

ART.e, (*F)

I Zion Unit 1: Capsule T 0.25 0 54 167.6 529.4 0679 108 109 WF-209-1 Plant Specific RVSP Matl Zion Unit 1: Capsule U 0.25 0.54 167.6 529 4 1.006 190 206 WF 209-1: Plant Specific RVSP Mat!

Zion Unit 1: Capsule X 0.25 0.54 167.6 529.4 1.064 192 209 I

WF-209-1: Plant Specific RVSP Matt.

Zion Unit 1: Capsuis Y 0.25 0.54 167.6 529.4 1.113 202 220 i

WF-2091: Plant Specific RVSP Matt.

Zion Unit 2: Capsule U 0.25 0.55 169.0 529.4 0.643 138 143

.I WF-209-1: Plant Specific RVSP Matt.

Zion Unit 2: Capsule T 0.25 0.55 169.0 529.4 0.930 179 192 WF-209-1: Plant Specific RVSP Matt.

Zion Unit 2: Capsule Y 0.25 0.55 169.0

$29.4 1.105 223 243

.I

' WF 2091: Plant Specific RVSP Matt.

j Vessel Best-Estimate 0 32 0 58 199 3 546 CFsurv. sata = best fitline relating Adjusted ARTuor to the Fluence Factor

5 (i.e., CFsurv. data = 202.6)

!I f" wad I'<

4-32 I

FI I

i f

4.5.12. Weld Wire Heat Number 72105 (Use of All Surveillance Data) 1 I

Table 4.5.12-1. Surveillance Data for Weld Wire Heat Number 72105 Using All Surveillance Data (Table 2 of the RAI Regarding Reactor VesselIntegrity)

Irradiation Measured Data Used in Capsule ID Cu Ni Ternperature Fluence ARTem Assessing Vessel (including source) wt%

wt%

(*F)

(x10" n/cm')

(*F)

(Y or N) j I

Oconee und 2: Capsule OCil-C 0.35 0.58 556 0.102 46 Y

WF-200-1: Plant Specife RVSP Material Oconee Unit 2: Capsule OCil-A 0.35 0.58 556 0.337 107 Y

WF-2091: Plant Specific RVSP Material I

Oconee Unit 2: Capsule OCil-E 0.35 0.58 556 1.21 174 Y

WF-209-1: Plant Specific RVSP Material

)

Oconee Unit 3: Capsule OCill-A 0.29 0.56 556 0.001 15 Y

I WF 209-1: Plant Specific RVSP Material j

Oconee Unit 3: Capsule OCill-B 0.29 0.56 556 0.312 70 Y

WF 209-1: Plant Specific RVSP Material I

. WF-209-1: Plant Specific RVSP Material Oconee Unit 3: Capsule OCill-D 0.29 0.56 556 1.45 142 Y

1 B&WOG: Capsule TMl2-LG1 0.39 0.58 556 0.585 122 Y

WF-70. MD1 Nozzle Belt Dropout Matl.

I B&WOG: Capsule DB1-LB1 0.39 0.58 556 0 663 137 Y

WF-70. MD1 Nozzle Belt Dropout Matl.

B&WOG: Capsule CR3-LG2 0.39 0.58 556 1.19 127 Y

I WF-70: MD1 Nuzzle Belt Dropout Matt.

1 Zion Unit 1: Capsule T 0.25 0.54 529.4 0.310 108 Y

WF-209-1: Plant Specific RVSP Material I

Zion Unit 1: Capsule U 0.25 0 54 529.4 1.02 190 Y

WF 209-1: Plant Specific RVSP Material Zion Unit 1: Capsule X 0.25 0.54 529 4 1.26 192 Y

I WF-209-1: Plant Specific RVSP Material Zion Unit 1: Capsule Y 0.25 0.54 529 4 1.56 202 Y

W.~-209-1: Plant Specific RVSP Material I

Zion Unit 2: Capsule U 0.25 0.55 529 4 0.270 138 Y

WF-2091: Plant Specific RVSP Material Zion Unit 2: Capsule T 0.25 0.55 529.4 0.779 179 Y

WF-2091: Plant Specific RVSP Material Zion Unit 2: Capsule Y 0.25 0.55 529 4 1.46 223 Y

WF-209-1 Plant Specife RVSP Material 1

I I

I tI f

4-33 IMMM I

l I

ll Table 4.5.12-2. Credibility Assessment for Weld Wire Heat Number 72105 Using All Available Surveillance Data (Table 3 of the RAI Regarding Reactor VesselIntegrity)

Predicted (Adjusted -

Irrad.

Meas.

Adjusted Artier froin Predicted)

I Capsule Cu Ni Chern.

Ternp.

Fluence Artier ART,or Best Fit Line ART ev Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F)

Oconee Unit 2: Capsule OCal-C 0.35 0.58 209.5 556 0.421 45 52 70

-18 WF-209-1: Plant Specific RVSP Matt.

Oconee Unit 2: Capsule OCile 0.35 0.58 209.5 556 0.701 107 107 116

-9 I

WF-209-1: Plant Specific RVSP Matt.

l1 Oconee Unit 2: Capsule OCil-E 0.35 0.58 209.5 556 1.053 174 168 175

-7 WF-209-1: Plant Specific RVSP Matl.

Oconee Unit 3: Capsule OCill-A 0.29 0.56 185.6 556 0.376 15 27 62

-35 I

WF-2091: Plant Spec (c RVSP Matt.

1 Oconee Unit 3: Capsule OClli-B 0.29 0.56 185.6 556 0.680 70 83 113

-30 WF-209-1: Plant Specific RVSP Matl.

Oconee Unit 3: Capsule OCall-D 0.29 0 56 185.6 556 1.103 142 157 183

-26 I

WF-2091: Plant Specific RVSP Matl.

l B&WOG: Capsule TM12 LG1 0.39 0.58 224,6 556 0850 122 113 141

-28 T

WF-70: MD1 Nonle Belt Dropout Mati.

I B&WOG: Capsule DB1-LB1 0.39 0.58 224.6

~ %

0.885 137 126 147

-21 WF-70: MD1 Nonle Belt Dropout i

Matt.

B&WO. Capsule CR3-LG2 0.39 0.58 224.6 556 1.049 127 117 174 ~

-57 WF-70; MD1 Nonle Belt Dropout I

Matt.

Zion Unit 1: Capsule T 0.25 0.54 167I 9 9.4 0.679 108 105 112

-7 WF-209-1: Plant Specific RVSP Matl.

Zion Unit 1: Capsule U 0.25 0.54 167.6 529J 1.006 190 198 167 31 I

I WF-209-1: Plant Specife RVSP Matl.

Zion Unit 1: Capsule X 0 25 0.54 167.6 529 4 1.064 192 200 176 24 WF-209-1 Plant Specife RVSP Matt Zen Und 1: Capsule Y 0.25 0 54 167.6 529 4 1.123 202 212 186 26 I

WF-209-1: Plant Specific RVSP Matl.

t Zion Unit 2. Capsule U 0.25 0.55 1690 529 4 0 643 138 138 107 31 WF-209-1: Plant Specific RVSP Matl Zion Unrt 2: Capsule T 0.25 0 55 169 0 529 4 0 930 179 184 154 30 WF-209-1: Plant Specific RVSP Matl.

I Jion Unit 2: Capsule Y 0.25 0.55 1690 529.4 1.105 223 234 183 51 1

WF-2091: Plant Specic RVSP Matl.

Surv. Avg 0303 0561 189 7 544 4

/

where Predicted ARTnDr = (Slopesestnd * (Fluence Factor) and Slopesesent = best fit line relating Adjusted ARTnDr to the Fluence Factor g

(i.e.,165.8) 1 These data are not credible since the scatter is greater than i28 F for several surveillance capsule data points.

,lI I I f"WM 4-34 I' <

I

!I 1

,iI Table 4.5.12-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 72105 l

ll l

Using All Surveillance Data Table Capsule (Adjusted -

1 Capsule Chem. Factor Fle nce Adjusted Predicted Predicted)

Designation (Surv. Avg )

i-actor ARTe (*F)

ARTe (*F)

ART.or (*F)

Oconee Unit 2: Capsule OCil-C 189.7 0.421 52 80

-28 WF-209-1: Plant Specific RVSP Matt.

'I Oconee Unit 2: Capsule OCil-A 189.7 0.701 107 133

-26 WF-209-1: Plant Specife RVSP Matt Ocones Unit 2: Capsule OCil-E 189.7 1.053 168 200

-32 WF-209-1: Plant Specific RVSP Matt I

Oconee Unit 3: Capsule OClil-A 189.7 0 376 27 71

-44 WF-209-1: Plant Specife RVSP Matt.

Oconee Unit 3: Capsule OCill-B 189.7 0680 83 129

-46 WF 209-1: Plant Specific RVSP Matt i

I Oconee Unit 3: Capsule OCiti-D 189.7 1.103 157 209

-52 WF 2091: Plant Specific RVSP Matl.

j B&WOG: Capsule TM12-1 G1 189.7 0.850 113 161

-48 WF-70 MD1 Nozzle Belt Dropout Matl I

B&WOG: Capsule DB1-LB1 189.7 0.885 126 168

-42 WF-70: MD1 Nozzle Belt Dropout Matt.

B&WOG: Capsule CR3-LG2 189.7 1.049 117 199

-82 WF 70: MD1 Nozzle Belt Dropout Matt.

I Zson Unit 1: Capsule T 189.7 0.679 105 129

-24 I

I WF-209-1: Plant Specific RVSP Matt.

Zeon Unit 1: Capsule U 189.7 1.006 198 191 7

WF-209-1 Plant Specific RVSP Matt.

Zion Unit 1: Capsule X 189.7 1.064 200 202 2

I WF-209-1: Plant Specife RVSP Matl.

g Zion Unit 1: Capsule Y 189.7 1.123 212 213 1

WF 209-1: Plant Specife RVSP Matt.

Zeon Unit 2: Capsule U 189.7 0.643 138 122 16 I

WF-209-1: Plant Specife RVSP Matl.

Zion Unit 2: Capsule T 189.7 0930 184 176 8

WF-209-1: Plant Specific RVSP Matt.

Zion Unit 2: Capsule Y 189.7 1.105 234 210 24 WF 209-1: Plant Specific RVSP Matt where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

I The above assessment results indicates that the generic Table chemistry factor for the surveillance data over-predicts the adjusted measured data for one data point, and the rest of the surveillance data are less than 2 standard deviations (56 F). Because the Table chemistry factor over-predicts the adjusted measured data and the remaining data are within 56*F, me Table chemistry factor calculated using the weld wire heat l

best-estimate copper and nickel contents is considered conservative.

lI' f("MNM 4-35 I

1 l

t i

l 4.5.13. Weld Wire Heat Number 72442 (Use of B&W NSSS Data)

I Table 4.5.13-1. Surveillance Data for Weld Wire Heat Number 72442 Using B&W NSSS Surveillance Data (Table 2 of the RAI Regarding Reactor Vesselintegrity)

Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTc Assessing Vessel (including source) wt%

wt%

('F)

(x10 n/cm')

(*F)

(Y or N)

{

I B&WOG: Capsule CR3-LG1 0.22 0.60 556 0.609 167 Y

j WF-67: MD1 Nozzle Bett Dropout Matl.

B&WOG: Capsule CR3-LG2 0.22 0.60 556 1.95 138 Y

I WF-67: MD1 Nonle Belt Dropout Matt.

Table 4.5.13-2. Credibility Assessment for Weld Wire Heat Number 72442 Using B&W NSSS Surveillance Data (Table 3 of the RAI Regarding Reactor VesselIntegrity)

Predicted (Meas. -

Irrad.

Meas.

Adjusted ARTe from Predicted)

I Capsule Cu Ni Chem.

Temp.

Fluence ARTc ARTc Best Fit Line ARTe Designation wt%

wt%

Factor

(*F)

Fac tor

(.p)

(.p)

(.p)

(.F)

B&WOG: Capsule CR3-LG1 0.22 0 60 167.0 556 0.851 167 124 43 WF-67: MD1 Nozzle Belt Dropout I

Mati B&WOG: Capsule CR3-LG2 0.22 0.60 167.0 556 1.182 138 170

-32 WF-67: MD1 Nozzle Belt Dropout Matt Surv. Avg 0 22 0 60 167.0 556 where Predicted ARTuor = (Slopebest nt) * (Fluence Factor) and l

Slopebestnt = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,143.5)

I

~

These data are not credible since the scatter is greater than 128 F for both surveillance capsule data points.

I l

I i

I f"MSM 4-36 I

I I

1 i

I Tcblo A-6 (continusd). Coppar cnd Nickel Contants Sourca Msans for Weld Wire Heat Number 72442 l WoldID Flux Wold Meta!

l Analysis Source Cu NI l Lot Source l

Reference wt% wt%l Notes I

WF-67 8669 lMD-1 Nonne Dropout lMt Vernon Lab No. 28800 0.24 0.59 l l

lMD-1 Noule Dropout l Mt Vemon Lab No. 28800 0.25 0.60l l

lMD 1 Nonle Dropout l Mt Vernon Lab No. 28602 0.21 0.60 l l

I MD-1 Nonle Dropout Mt Vernon Lab NJ. 28802 0.23 0.60 Source Mean 0.22 0.60 I

I I

I I

I I

I I

I I

gfl%SNRPA A-21

I Tablo A-7. Coppsr and Nickel Contsnts Sourco Maans for Wald Wiro Hsat Numbar 72445 Flux l Wold Metal l

Analysis Source Cu Ni l I

Weld ID Lot l Source l

Reference wt% wt%l N >tes SA-1263 8504 l Weld Qual 6 cation Barberton WO g 0 47 Source Mean 0.24 0.47 SA-1263 8504 PB-1 Sury. Weld 0 RVSP Baseline Chemistry 0.24 0.57 PB-1 Surv. Weld CVN S cimen ID: WW-23 3 0 66 i

Source Mean 0.23 0.6 I

SA-1471 8578 I Weld QualMcation Barberton WO 0.18 0.54 Source Mean 5 0.

l E

I SA-1582 l 8596 Weld Qualification Barberton WO t ab No. E-68303 0.25 0 Source Mean 5 0.

'SA-1585 8597 Weld Qualmeatton Barberton WO Lab No, E 68379 b.25 0 51 M

Source Mean 5 0.51 SA 1585 f 597 ll ANO-1 Nozzle Dropout h Mt Vemon Lab No 30662 0 24 0 59 Q l ANO-1 Nozzle Dropout l Mt Vemon Lab No. 3%61 0.22 0.60 l l ANO-1 Nozzle Dropout l Mt Vemon Lab No. 30660 0 26 0 601 l ANO-1 Nozzle Dropout l Mt Vemon Lab No. 30659 0 23 0.61 l l ANO-1 Nozzle Dropout l Mt Vemon Lab No. 30658 0 20 0 61 l l ANO 1 Nozzle Dropout lMt Vemon Lab No. 30657 0 19 0 60l I

l ANO-1 Nozzle Dropout l Mt Vernon Lab No. 30656 0 24 0 59l l ANO-1 Nozzle Dropout lMt Vernon Lab No 30655 0 23 0 59 l l ANO-1 Nozzle Dropout lMt Vemon Lab No. 30654 0.22 0 60 l l ANO-1 Nozzle Dropout l Mt Vernon Lab No. 30653 0 21 059l l ANO-1 Nozzle Dropout lMt Vemon Lab No. 30652 0 21 0 59l l ANO-1 Nozzle Dropout l Mt Vemon Lab No. 30651 0.22 0 59 l 1 ANO-1 Nozzie Dropout lMt Vemon Lab No. 30650 0.18 0 59 l l ANO-1 Nozzle Dromut l Mt Vemon Lab No. 30649 0 18 0 60 l I

l ANO-1 Nozzle DropD lMt Vernon Lab No. 30648 0.13 0 59l l ANO-1 Nozzle Dropout l Mt Vemon Lab No. 30647 0 19 0 591 l ANO-1 Nozzle Dropout l Mt Vemon Lab No 30646 0 29 0 60 l l ANO-1 Nozzle Dropout lMt Vemon Lab No 30645 0 21 0 60 l l ANO-1 Nozzle Sopout l Mt Vemon Lab No. 30644 0 20 0 60 l l ANO-1 Nozzle Dropout lMt Vemon Lab No 30643 0.18 0.591 l ANO-1 Nozzle Dropout l Mt Vemon Lab No. 30642 0.18 0 59 l l ANO-1 Nozzle Dropout l Mt Vemon Lab No 30641 0 20 0 59l l ANO-1 Nozzle Dropout lMt Vemon Lab No. 30640 0.20 0 59 l I

l ANO 1 Nozzle Dropout l Mt %emon Lab No. 30639 0 21 0 59 l l ANO-1 Nozzle Dropout lMt Vemon Lab No. 30638 0 22 0 591 l ANO-1 Nozzle Dropout l Mt Vemon Lab No 30637 0 21 0 58 l l ANO-1 Nozzle Dropout lMt Vernon Lab No 30636 0 24 0 581 l ANO 1 Nozzle Dropout l Mt Vemon Lab No. 30635 0 23 0 59l 1 ANO-1 Nozzle Dropout l Mt Vemon Lab No. 30634 0 23 0 59l l ANO-1 Nozzle Dropout lMt Vemon Lab No,30633 0.23 059l

[ANO-1 Nozzle Dropout l Mt Vemon Lab No. 28798 0.24 0.58 l I

ANO-1 Nozzle Drcmf Mt Vemon Lab No. 28798 3

0 SW Source Mean 0.22 0.59 SA-1650 8632 Weld Qual 6 cation Barberton WO Lab No. E-70102 0 20 0 47 Source Mean 5 0.47 WF-9 I 8632 Weld Qualification I Mt. Vemon WO O 60 I

Source Mean 0.17 0.60 I

I f"NM h

A-22 I

Tebin A-7 (continusd). Coppar and Nicks! Centsnts Sourco Mcans for Weld Wire Heat Number 72445 l Flux Wold Metal Analysis Source lCu Nil l

WeldlD l Lot Source Reference l Wt%

wt% l Notes l

I WF-101 8688 Weld Quahfication Mt. Vernon WO Lab No. 7040 0.10 0.60 Cu content lower than otiter WQ analyses and production welds: Cu content not used in source mean calculation I

0.60 I

3 I

I I

I I

fIMTNRM A-23

Tcbin A-8. Coppar and Nickel Contsnts Source Msans for Wald Wiro Haat Numbsr 821T44 Flux Wold Metal Analysis Source Cu Ni l Weld ID Lot Source Reference wt%

wt% l Notes WF-182 8754 Weld Quahfication Mt. Vemon WQ: Lab No. 9261 0,18 0.59 Cu content lower than WO retest I

analysis; Cu content not used in source mean calculation l Retest of WO Sample 0.25

- l l Retest of WO Sample 0.27 0 611 Retest of WO Sa 0 27 0 63 Source Mean 0.26 0.61 WF 182-1 8754 Weld Quahfication Mt. Vemon WQ: Lab No. 9376 0.19 0.63 l Retest of WO Sample 0.22 I

1 l Retest of WO Sample 0.24 0.62 l l Retest of WO Sample 0.24 0 64 l Weld Quahfication Mt. Vemon WO: Lab No. 21956 3 0.61 Source Mean 0.22 0.63 I

WF-182-1 8754 TMI-2 Surv. Weld Mt Vemon Lab No. 30542 0 26 0 671 TMI-2 Surv. Weld l Mt Vernon Lab No. 30543 0 27 Of3(

TM1-2 Sury. Weld l Mt Vernon Lab No. 30544 0 28 0.62 l I

TMI-2 Surv Weld Mt Vemon Lab No. 30545 0 29 0 63 M!&l Source Mean 0.28 0.63

'WF-182 1 8754 08-1 Surv. Weld Mt Vemon Lab No. 30047 0 21 0 631 I

DB-1 Surv. Weld l Mt Vernon Lab No. 30048 0 22 063l DB-1 Surv. Weld l Mt Vemon Lab No. 30049 0.23 0 63 l DB-1 Sury. Weld l Mt Vemon Lab No. 30063 0.22 0.63 l DB-1 Surv. Weld l Mt Vernon Lab No. 30064 0.21 0.63 l I

3 y.

nn-Source Mean 0.22 0.6 DB-1 Surv. Weld t Vemon Lab No. 30065 g

0.64 WF-195 8773 Weld Quahfication

t. Vemon WO 0.18 0 63 Source Mean 0.18 0.6 WF 200 8773 Weld Quahfication MI
t. Vemon WO: Lab No. 9533 0.26 0

l

~. '

~

Sciurce Mean 0.26 0.

y M

A.a I

I I

f"M7M g

I-A-24

Tcbla A-9. Cepp; rand Nick:1 Cent 2 's M: ens for Weld Wire Heat Number T29744 Flux Weld Metal l

Analysis Source Cu Ni l l

Weld lD Lot Source l

Reference wt%

wt*/. I Notes l

WF-233 8790 Weld Quahfication lMt. Vemon WO: Lab No 10274 0 22 0.551 l

l Retest of WO Sample 0 24

- l l

l Retest of WO Samrie 0 27 0 66!

l etest of WO $

le 0 27 06 Source Mean 5 0.63 WF-233 8790 KORI-1 Surv. Weld RVSP Basehne Chemistry 0 23 0 61 KORI-1 Sury. Weld l CVN Specimen ID: KW-39 0.28 0 781 l

KORI-1 Sury Weld l CVN Specimen ID: KW-43 0 33 0.751 l

KORI-1 S,ry. Weld l CVN Specimen 10: KW-45 0.30 0.76 l l

KORl-1 Sury. We'd lCVN Specimen ID: KW-12 0.18

-l l

KORI-1 Surv. Weld l CVN Specimen ID: KW-4 0 19

- l l

KORI 1 Surv. Weld l CVN Specimen ID: KW-38 0.13

-l l

KORI-1 Sury. Weld l CVN Specimen ID: KW-28 0 23 0 651 l

KORI-1 Surv. Weld lCVN Specimen ID: KW-35 0 19 0 60 l l

KORI-1 Surv. Weld l CVN Specimen ID: KW 27 0 14 0 69 l l

KORI-1 Surv. Weld lCVN Specimen ID KW-5 0 20 0 70 l J

KORI-1 Surv. Weld l CVN Specimen ID: KW-13 0 25 0 601 1

KORI-1 Surv. Weld VN cimen 10: KW-17 0 10 0 60 l

[_;.;] ;"l Source Mean 0.67 WF-282 8806 Weld Quahfication

. Vernon VeQ: Lab No.12380 0 16 0 66 61 M !]EEEl Ei Sou ce Mea.1 0.16 0.66 4

A-25 f="<MNRM

L Tabla A-10. Coppar and Nickel Contents Sourco Mcans for Wald Wirs Host humbar 1P0661 l Flux l Weld Metal l

Analysis Source Cu Ni l Wold ID l Lot l Source l

Referer.co wt*/.

wt% l Notes SA.775 i 8304 Weld Qualification Barberton WO 3

0 63 Source Mean 0.19 0.63 SA-1060 8446 Weld Qualification rberton WO 0.14 0 65 Source Mean 5 0.65

[

f

[

u l

[

[

[

[

[

f."MNRM T

f A-26

)

Tab!, 411. Copper and Nickel Contsnts Sourco Means for Weld Wire Heat Number 1P0815 l Flux l Wold Metal l

Analysis Source Cu Ni l l

Wold ID l Lot l.

Source l

Reference wt%

wt% l Notes l

SA.806 8304 Weld Qualificaten Barberton WO g

0 48 Source Mean 0.25

.48 SA-812 Weld Oualification Barberton WO g

0 52 Source Mean 0.12 0.52 SA-1366 8544 Weld Quattfacation Barberton WO E

O 57 Source Mean 0.13 0.57 I

I I

I I

I I

I I

I I

I f"MMAM I' <

A-27

Tebla A-12. Coppar and Nickel Contents Source Maans for Wsid Wiro Haat Number 1P0962 l Flux l Weld Metal Analysis Source Cu Ni l Weld ID l Lot l Source Reference wt%

wt*/. l Notes SA-1073 8445 Qualification Barberton WQ R

0 64 I

Source Mean 0.21 I

I I

I I

I I

I I

I f.".^.S ^7R M'i l

f A-28

I Tabla A-13. Coppsr and Nickel Contsnts Sourco Moans for Weld Wire Heat Number 8T1554 I

Flux Wold Metal l

Analysis Source Cu wt%l Ni Weld ID Lot Source l

Referersco wt%

1 Notes SA 1174 7

Weld Qualification Barberton WO M

0 60 I

Source Mean 0.19 0.60 l SA-1413 8504 Weld Qualification Barberton WO Source Mean l SA-1494 l 8579 Weld Quairficatson l Barberton WO E

O 45 Source Mean 0.14 0.45 i

-69 1 8669 Weld Qualification l M'. Vemon WO: Lab No. 6596 0.15 0 61 WF Source Mean 0.15 0.61 I

WF 169-1 8754 Weld Qualification Mt. Venon WO: Lab No. 9039 0.11 0.59 Cu contentlower than WO retest analyses; Cu content not used in source mean calculation l

l Retest of WO Sample 0 15

- l I

l l Retest of WO Sample 0.17 0 621 1

Retest of WO Samole M

0 63 Source Mean 0.16 0.61 I

I I

I I

I I

I I

I fm-am

. 2,

Tablo A-14. Coppar and Nicksi Contants Source Means for Wold Wiro Heat Number 8T1762 I

l Flux l Wold Metal l

Analysis Source Cu N1 WeldID f Lot l Source l

Reference Wt%

wt*/

Notes SA.1426 8553 Weld Qualification Barberton WO g 0 61 Source Mean 0.18 0.61 SA.1430 8553 i Weld Qualification Barbertor WQ y 0 60 Source Mean 0.16 0.60 I

SA.1493 8578 Weld Qualification Barberton WQ 0.22 0.43 Ni content lower than other WQ analyses; Ni content not used in ource mean calculation Source Mean 0.22 SA-1580 8596 Weld Quatr6cstien Barberton WQ Lab No. E-68288 3 0 60 Source Mean 0.22 0.60 5kNb.

f.fi$h. 4' l WF.4 8597 l Weld Qualification i Mt. Vernon WO 0.17 0 53 t

'

  • Y :' '

Source Mean 0.17 0.53 WF-8 8632 Weld Qualification Mt. Vernon WO Ob 0 61 Source Mean 0.20 0,6 WF.18 8650 Welu Quakfication Mt. Vernon WQ Lab No. 5206 0.11 0.45 Cu content lower than other WO I

analyses; Cu content not used in source mean calculation is I

I I

I I

I I

I I

I f."<MMRM f

A-30

)

I Tcbis A-15. Coppsr and Nicksi Contsnts Sourco Manns for Weld Wire Heat Number 8T3914 l Flux l Wold Metal l

Analysis Source Cu Nil l

Weld ID l Lot I Source l

Reference wt%

wt%l Notes l

WF-232 8790 Weld Qualifestion Mt. Vemon WQ: Lab No.10368 0.14 0.69 Cu content lower than WQ retest I

analyses; Cu content not used in source mean calculation l

l Retest of WO Sample 0.18 0 64 l l

Retest of WO Sa 0.13 0 64 Source Mean 0.18 0.

WF-252 8806 Weld Qualificaton Mt. Vernon WO: Lab No.10925 0.10 0.59 Cu content lower than WQ retest anat,ses; Cu content not used in I

source mean calculation Source Mean 0.5 I

I I

I I

I I

I I

I I

I f."A"NR".'i f

A-31

I I

I l

I I

I I

I I

APPENDIX B l

Base Metal Surveillance Data Used in the Reactor Vessel Beltline Regions of the g

B&W Ownrars Group Reactor Vessel Working Group I

I I

I I

I I

I 4oeur.e.s e.,

B.1. Assessment of Base Metal Heat Surveillance Data The following tables provide the surveillance data evaluation of the base metal heats used in the RVWG reactor vessel beltline region. The data contained in these tables i

provide the information requested in " Table 2" and " Table 3" of the request for additionalinformation regarding reactor pressure vesselintegrity in addition to the determination of the chemistry factor for the base metal heat.

NOTE: The original Charpy V-notch impact data are based on hand-fit Charpy curves using engineering judgment; these data were re-evaluated using a hyperbolic tangent l

curve fitting program'to achieve consistency in the interpretation of the available surveillance test data.

I I

I I

l l

l l

1 L

  • E. D. Eason, J. E. Wright, and G. R. Odette, *lmproved Embrittlement Correlations for Reactor Pressure Ves NUREG/CR-6551. U. S. Nuclear Regulatory Commission, Washington DC, August 1998.

l B-2 IIMNRM

B.1.1. Base Metal Heat Number C5114-1 Table B.1.1-1. Surveillance Data for Base Metal Heat Number C5114-1 (Table 2 of the RAI Regarding Reactor VesselIntegrity)

Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTuor Assessing Vessel (including source) wt%

wt%

(*F)

(x10 n/cm')

(*F)

(Y or N)

ANO 1: Capsule AN1 E 0.15 0.52 556 0.073 18 Y

Plant-Specific RVSP Material (LT)

ANO-1: Capsule ANI-E 0.15 0.52 556 0.073 44 Y

Plant-Specific RVSP Material (TL)

ANO-1: Capsule AN1 A 0.15 0.52 556 1.03 47 Y

Plant-Specific RVSP Material (LT)

ANO-1: Capsule AN1-A 0.15 0.52 556 1.03 72 Y

Plant-Specific RVSP Material (TL)

ANO 1: Capsule AN1 C 0.15 0.52 556 1A6 53 Y

Plant-Specific RVSP Material (LT)

ANO-1; Capsule AN1-C 0.15 0.52 556 1A6 45 Y

Plant-Specific RVSP Material (TL)

Table B.1.1-2. Credibility Assessment for Base Metal Heat Number C5114-1 (Table 3 of the RAI Regarding Reactor VesselIntegrity)

Predicted (Measured -

Irrad.

Meas.

ARTuor fem Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor Best Fit Line ARTuot Designation wt%

wt%

Factor

('F)

Factor

(*F)

('F)

(*F)

ANO 1: Capsule AN1 E 0.15 0.52 105 6 556 0.356 18 19 1

Plant-Specific RVSP Material (LT)

ANO 1: Capsule AN1-E

0.
  • 5 0.52 105 6 556 0.356 44 19 25 Plant-Specific RV5P Material (TL)

ANO-1: Capsule AN1 A 0.15 0.52 105.6 556 1.008 47 53

-6 Plant-Spt;;ific RVSP Material (LT)

ANO-1: Capsule AN1-A 0.15 0.52 105.6 556 1.008 72 53 19 Plant Specific RVSP Material (TL)

ANO-1: Capsule AN1-C 0.15 0.52 105.6 556 1,105 53 58

-5 Ptnt-Specific RVSP Material (LT)

ANO-1: Capsule AN1-C 0.15 0.52 105.6 556 1.105 45 58 13 3 ant-Specific RVSP Material (TL) where Predicted ARTuor = (Slopeseatnd *(Fluence Factor) anc Slopeseatnt = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 52.9).

These data are not credible since the scatter is greater than i17*F for one surveillance capsule data point.

B-3 f."M M M i

I I

Table B.1.1-3. Table Chemistry Factor Non-Conservatism Assessment for Base Metal Heat Number C5114-1 I

Table Capsule (Measured.

Capsule Chem. Factor Fluence Measured Predicted Predicted)

Designation (Surv. Avg.)

Factor ARTuor ('F)

ARTuor ('F)

ARTuot (*F)

ANO-1: Capsule AN1-E 105.6 0.356 18 38

-20 I

Plant Specific RVSP Material (LT)

ANO-1: Capsule AN1-E 105.6 0.356 44 38 6

Plant-Specific RVSP Material (TL)

ANO 1: Capsule AN1 A 105.6 1.008 47 106

-59 I

Plant-Specific RVSP Matenal(LT)

ANO 1: Capsule AN1 A 105.6 1.008 72 106

-34 Plant Specific RVSP Material (TL)

ANO-1: Capsule AN1-c 105.6 1.105 53 117 64 Plant Specific RVSP Material (LT)

I ANO-1: Capsule AN1-C 105.6 1.105 45 117 7; '-

Plant Specific RVSP Material (TL)

{

where Predicted ARTuoF = (Table Chem. Factor) * (Capsule Fluence Factor)

\\

I The data indicate that several points exceed 2 standard deviations (34*F), however the I

generic Table chemistry factor based on the surveillance data over-predicts the measured data. Therefore, the Table chemistry factor calculated using the weld wire heat best-estimate copper and nickel contents is considered conservative and is used in the assessment of reactor vesselintegrity, i

I I

I I

I

. 8 l I I

f_!MTNRM B-4 I

B.1.2. Base Metal Heat Number C4344-1 Table B.1.21. Surveillance Data for Base Metal Heat Number C4344-1 (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTuor Assessing Vessel (including source) wt%

wt%

(*F)

(x10" n/cm*)

(*F)

(Y or N)

CR 3: Capsule CR3-8 0.20 0.54 556 0.117 39 Y

Plant-Specific RVSP Materia!(TL)

CR-3: Capsule GR3-C 0.20 0.54 556 0.660 116 Y

Plant Specific RVSP Material (TL)

CR-3; Capsule CR3-D 0.20 0.54 556 0.750 102 Y

Plant-Specific RVSP Material (TL)

CR 3: Capsule CR3-F 0.20 0.54 556 1.08 116 Y

Plant Specific RVSP Material (TL)

Table B.1.2-2. Credibility Assessment for Base Metal Heat Number C4344-1 (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted 3 (Measured -

Irred.

Meas.

ARTuor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor Best Fit Line ARTuot Designation wt%

wt%

Factor

('F)

Factor

('F)

('F)

('F)

CR 3: Capsule CR3-B 0.20 0.54 141.8 556 0.449 39 52 13 Plant Specific RVSP Material (TL)

CR 3: Capsule CR3-0 0.20 0.54 141.8 556 0.882 116 102 14 Plant-Specific RVSP Material (TL)

CR 3; Capsule CR3-D 0.20-0.54 141.8 556 0.919 102 106

-4 Plant-Specific RVSP Material (TL)

CR 3: Capsule CR3-F 0 20 0.54 141.8 556 1.022 116 118

-2 Pirnt-Specific RVSP Material (TL) wh:re Predicted ARTuor = (Slopeseatnf * (Fluence Factor) and Slopebeat nt = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,115.8)

Th se data credible since the scatter is less than 117'F for all surveillance capsule data points.

B-5 IMTNRM

Table B.1.2-3. Base Metal Heat Number C4344-1 Chemistry Factor Calculation for Crystal River Unit 3 Reactor Vessel irrad.

Meas.

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

I CR 3; Capsule CR3-8 0.20 0.54 141.8 556 0.449 39 Plant-Specific RVSP Mate.1al (TL)

CR-3: Capsule CR3-C 0.20 0.54 141.8 556 0.882 116 Plant Specific RVSP Material (TL)

I CR 3: Capsule CR3-D 0.20 0.54 141.8

$$6 0 919 102 Plant-Specific RVSP Material (TL)

CR-3. Capsule CR3-F 0.20 0.54 141.8 556 1.022 116 Plant-Specific RVSP Material (TL)

Vessel Best-Estimate 0 20 0 54 141.8 556 CFsurv. data = best fit line relating Measured ARTuor to the Fluence Factor (i.e., CF urv. data = 115.8)

S I

I I

I I

I I

N I

B-6

?."A"UR".4

B.1.3. Base Metal Heat Number SP4086 (BCC 241)

Table B.1.3-1. Surveillance Data for Base Metal Heat Number SP4086 (BCC 241)

(Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradaten Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTuor Assessing Vessel (including source) wt%

wt%

(*F)

(x10" n/cm )

(*F)

(Y or N) a DB 1: Capsule TE1-F 0.02 0.81 556 0.196 0

Y Plant-Specific RVSP Material (TL) 08-1: Capsule TE1-B 0.02 0.81 556 0.592 0

Y Plant-Specific RVSP Material (TL)

DB-1:Copsule TE1 A 0.02 0.81 556 1.29 38 Y

Plant Specific RVSP Material (TL)

DB 1: Capsule TE1-D 0.02 0.81 556 0.962 6

Y Plant-Specific RVSP Material (TL)

Table B.1.3-2. Credibility Assessment for Base Metal Heat Number SP4086 (BCC 241)

(Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured -

krad.

Meas.

ARTuor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor Best Fit Line ARTuor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

DB-1: Capsule TE1 F 0.02 0.81 20 0 556 0.565 0

8

-8 Pl+nt Specific RVSP Matenal(TL)

DB-1: Capsule TE1-0 0.02 0.81 20.0 556 0.853 0

12

-12 Plant-Specific RVSP Material (TL) 08-1: Capsule TE1-A 0.02 0.81 20.0 556 1.071 38 16 22 Plant Specific RVSP Material (TL)

DB-1: Capsule TE1-D 0.02 0.81 20.0 556 0.989 6

14

-8 Plant Specific RVSP Material (TL) where Predicted ARTuDr = (Slopebestnf * (Fluence Factor) and SI pesest nt = best fit line relating Measured ARTuDr to the Fluence Factor

/s a.,14.7)

Th:se data are not credible since the scatter is greater than i17*F for one surveillance capsule data point.

f 1

[

(

f(."Mb??.M B-7

I Table B.1.3-3. Table Chemistry Factor Non-Conservatism Assessment for Base Metal Heat Number SP4086 (BCC 241)

Table Capsule (Measured.

Capsule Chem. Factor Fluence Measured Predicted Predicted)

Designation (Sury. Avg.)

Factor ARTuor (*F)

ARTuor (*F)

MITuor ('F)

DB 1: Capsule TE1-F 20.0 0.565 0

11 11 I

Plant-Specific RVSP Matenal(TL)

DB-1; Capsule TE1 B 20.0 0.853 0

17 i

-17 Plant-Specific RVSP Material (TL)

DB-1: Capsule TE1 A 20 0 1.071 38 21 17 I

Plant-Specific RVSP Material (TL)

DB-1: Capsule TE10 20.0 0.989 6

20

-14 Plant-Specific RVSP Material (TL) where Predicted ARTnDr = (Table Chem. Factor) * (Capsule Fluence Factor) i Since the scatter for all data points is less than 2 standard deviations (34*F), the Table chemistry factor is consavative, therefore the Table chemistry factor based on the base metal best-estimate copper and nickel contents is used in the assessment of reactor vesselintegrity.

I I

I I

I I

I I

i iI I

t lI f.R,RT,%

l f

g.8

'I L

1 I

B.1.4. Base Metal Heat Number C3265-1 1

Table B.1.4-1. Surveillance Data for Base Metal Heat Number C3265-1 (Table 2 of the RAI Regarding Reactor VesselIntegrity)

Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTuor Assessing Vessel (including source) wt%

wt%

(*F)

(x10" n/cm )

(*F)

(Y or N) a ONS-1: Capsule OC1 E 0.10 0.50 556 0.150 55 Y

Plant Specific RVSP Material (LT)

ONS-1: Capsule OC1-E 0.10 0.50 556 0.150 29 Y

Plant Specific RVSP Material (TL)

ONS-1: Capsule OC1 A 0.10 0.50 556 0.895 55 Y

Plant-Specific RVSP Material (LT)

ONS 1: Capsule OC1-A 0.10 0.50 556 0895 28 Y

Plant-Specific RVSP Material (TL)

ONS-1: Capsule OC1-C 0.10 0.50 556 0.986 45 Y

Plant-Specific RVSP Material (LT)

ONS 1: Capsule OC1 C 0.10 0.50 556 0.986 87 Y

Plant Specific RVSP Material (TL)

Table B.1.4-2. Credibility Assessment for Base Metal Heat Number C3265-1 (Table 3 of the RAI Regarding Reactor VesselIntegrity)

Predicted (Measured -

Irrad.

Meas.

ARTwot from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor Best Fit Line ( ARTwey Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

' (*F)

ONS-1: Capsule OC1 E 0.10 0 50 65.0 556 0.503 55 29

-26 Plant-Specific RVSP Matenal(LT)

ONS-1: Capsule OC1-E 0.10 0.50 65.0 556 0.503 29 29 0

Plant-Specific RVSP Matenal(TL)

ONS-1: Capsule OC1-A 0.10 0.50 65.0 556 0.969 55 56 1

Plant-Specific RVSP Material fLT)

ONS-1: Capsule OC1 A 0.10 0.50 65.0 556 0.959 28 56

-28 Plant-Specific RVSP Material (TL)

ONS-1: Capsule OC1-C 0.10 0.50 65 0 556 0.996 45 58

-13 Plant-Specific RVSP Material (LT)

I ONS-1; Capsule OC1-C 0.10 0.50 65.0 556 0.996 87 58 29 Plant-Specific RVSP Material (TL) l l

where Predicted ART.Vor = (Slopesest nt) * (Fluence Factor) and SIOpesestnt = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 58.2)

I l

These data are not credible since the scatter is greater than 117 F for several y

surveillance capsule data points.

1"WD b<

B-9

Table B.1.4-3. Table Chemistry Factor Non-Conservatism Assessment for Base Metal Heat Number C3265-1 Table Capsule (Measured -

Capsule Chem. Factor Fluence Measured Predicted Predicted)

Dessnation (Surv. Avg.)

Factor ARTwot (*F)

ARTuot (*F)

ARTuot (*F)

ONS 1: Capsule OC1-E 65.0 0.503 55 33 22 Plant-Specific RVSP Material (LT)

ONS-1 Capsule Oct-E 65.0 0.503 29 33 4

Plant-Specific RVSP Material (TL)

~

ONS 1: Capsule OC1-A 65.0 0.969 55 63

-8 Plant Specific RVSP Material (LT)

ONS 1: Capsule OC1-A 65.0 0.969 28 63 35 Plant-Spectfac RVSP Material (TL)

ONS-1: Capsule OC1-C 65.0 0.996 45 65

-20 Plant-Specific RVSP Material (LT)

ONS-1; Capsule OC1-C 65.0 0 996 87 65 22 Plant-Specific RVsp Material (TL) where Predictedi1RTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

The data indicate that one data point exceeds 2 standard deviations (34 F), however the generic Table chemistry factor based on the surveillance data over-predicts this measured data point. Therefore, the Table chemistry factor calculated using the weld wire heat best-estimate copper and nickel contents is considered conservative and is used in the ase,emment of reactor vessel integrity.

f"MNRM c

L B-10 L

B.1.5. Base Metal Heat Number 3P2359 (AAW 163)

Table B.1.5-1. Surveillance Data for Base Metal Heat Number 3P2359 (AAW 163)

(Table 2 of the RAI Regarding Reactor VesselIntegrity)

Irradiation Measured Data Used in Capsuk ID Cu Ni Temperature Fluence ARTuor Assessing Vessel (including source) wt%

wt%

(*F)

(x10 n/ctn')

(*F)

(Y or N)

ONS 2; Capsule OCll-C 0.04 0.75 556 0.102 24 Y

Plant Spec 6c RVSP Material (LT)

ONS 2; Capsule OCil-C 0.04 0.75 556 0.102 0

Y Plant-Specific RVSP Material (TL)

ONS 2: Capsule OCil-A 0.04 0.75 556 0.337 0

Y Plant-Specific RVSP Material (LT)

ONS 2: Capsule OCll-A 0.04 0.75 556 0.337 4

Y Plant Specific RVSP Material (TL)

ONS 2: Capsule OCil-E D 04 0.75 556 1.21 18 Y

Plant-Specific RVSP Material (LT)

ONS-2: Capsule OCll-E 0.04 0.75 556 1.21 8

Y Plant-Specific RVSP Material (TL)

Table B.1.5-2. Credibility Assessment for Base Metal Heat Number 3P2359 (AAW 163)

(Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured.

Irrad.

Meas.

ARTuor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor Best Fit Line ARTuor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

ONS-2: Capsule OCal-C 0 04 0.75 26.0 556 0.421 24 5

19 Pl+nt-Specific RVSP Material (LT)

ONS-2: Capsule OCll-C 0 04 0.75 26.0 556 0.421 0

5

-5 PP.nt-Specific RVSP Material (TL)

ONS-2: Capsule OCll A 0.04 0.75 26.0 556 0.701 0

8

-8 Plant-Sneerfic RVSP Material (LT)

ONS-2: Capsule OCll-A 0.04 0 75 26.0 556 0.701 4

8

-4 Plant. Specific RVSP Materlat (TL)

ONS-2: Capsule OCil-E 0.04 0.75 26.0 556 1 053 18 12 6

PPnt-Specific RVSP Material (LT)

ONS-2: Capsule OCII-E 0.04 0.75 26.0 556 1.053 8

12

-4 Plant-Specific RVSP Material (TL) where Predicted ARTuor = (Slopeseatrie) * (Fluence Factor) and Slopeseatn = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,11.3)

Thtse data are not credible since the scatter is greater than i17 F for one surveillance capsule data point.

(

B-11 f."hWWA l

t.

Table B.1.5-3. Table Chemistry Factor Non-Conservatism Assessment for Base Metal Heat Number 3P2359 (AAW 163) t Table Capsule (Measured -

Capsule Chem. Factor Fluence Measured Predicted Predicted)

Designation (Surv. Avg )

Factor ARTuor (*F)

ARTwer ('F)

ARTuoy (*F)

ONS-2: Capsule OCil-C 26.0 0.421 24 11 13 Plant-Specific RVSP Material (LT)

ONS 2; Capsule OCil-C 26 0 0.421 0

11

-11 Plant-Specific RVSP Material (TL)

ONS 2: Capsule OCil-A 26.0 0.701 0

18 18 Plant Specific RVSP Material (LT)

ONS-2; Capsule OCll-A 26.0 0.701 4

'3

-14 Plant-Specific RVSP Material (TL)

ONS 2; Capsule OCil-E 16.0 1.053 18

-9

+

Plant Specific RVSP Material (LT)

ONS 2: Capsule OCil-E 26.0 1.053 8

27

-19 Plant. Specific RVSP Material (TL) where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

Since the scatter for all data points is less than 2 standard deviations (34*F), the Table chemistry factor is conservative, therefore the Table chemistry factor based on the base metal best-estimate copper and nickel contents is used in the assessment of reactor vessel integrity.

B-12 f." ^ M 7 8 M

i I

I B.1.6. Base Metal Heat Number 522314 (AWS 192)

Table B.1.6-1. Surveillance Data for Base Metal Heat Number 522314 (AWS 192)

(Table 2 of the RAI Regarding Reactor Vessel Integrity)

I arradiation Measured Data Used in Capsule ID -

Cu Ni Temperature Fluence ARTwor Assessing Vessel (including source) wt%

wt%

(*F)

(x10" n/cm')

(*F)

(Y or N)

ONS-3: Capsule 0C1184 0.01 0.73 556 0.081 52 Y

Plant-Specific RVSP Material (TL)

ONS 3. Capsule OCill-B 0.01 0.73 556 0.312 6

Y Plant-Specific RVSP Material (TL)

I ONS-3: Capsute OClli-D 0.01 0.73 556 1.45 38 Y

Plant-Specife RVSP Material (TL)

Table B.1.6-2. Credibility Assessment for Base Metal l

Heat Number 522314 (AWS 192)

(Table 3 of the RAI Regarding Reactor Vessel integrity)

I Predicted (Measured.

Irrad.

Meas.

ARTwot from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor Best Fit Line ARTuct Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

I ONS-3: Capsule OCill-A 0 01 0.73 20.0 556 0 376 52 14 38 Plant-Specific RVSP Material (TL)

ONS-3: Capsule OCill-B 0 01 0.73 20.0 556 0.680 6

24 18 Plant-Specific RVSP Material (TL)

ONS-3: Capsule OCall-D 0.01 0.73 20.0 556 1.103 38 40

-2 Plant Specific RVSP Material (TL)

I where Predicted ARTuor = (Slopebestnd * (Fluence Factor) and Slopebest nt = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 36.0)

These data are not credible since the scatter is greater than 17 F for one surveillance I

capsule data point.

I I

I f" MUM f

B-13

r 3

Table B.1.6-3. Table Chemistry Factor Non-Conservatism Assessment for Base Metal Heat Number 522314 (AWS 192)

Table Capsule (Measured -

Capsule Chem. Factor Fluence Measured Predicted Predicted)

Designation (Sury. Avg.)

Factor ARTwor (*F)

ARTwot ('F)

ARTwot (*F)

ONS-3: Capsule OCill-A 20.0 0.376 52 8

44 Plant-Specific RVSP Material (TL)

ONS-3: Capsule OCill-B 20.0 0.680 6

14

-8 Plant-Specific RVSP Material (TL)

ONS.3: Capsule OCill-D 20 0 1.103 38 22 16 Plant-Specific RVSP Material (TL) where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

Since the scatter from one data point exceeds 2 standard deviations (34 F), the Table chemistry factor is not conservative. The chemistry factor determined from best-fit line of the surveillance data (CFsurv.cata = 36.0 F)is used in the assessment of reactor vesselintegrity. In addition, the "fuir value of o3 (17*F) is used in the calculation of the margin term.

f f

1."MMRM L

f B-14

B.1.7. Base Metal Heat Number 522194 (ANK 191)

Table B.1.7-1. Surveillance Data for Base Metal Heat Number 522194 (ANK 191)

(Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measured Data Used en Capsule ID Cu Ni Temperature Fluence ARTuor Assessing Vessel (including source) wt%

wt%

(*F)

(x10 n/cm')

('F)

(Y or N)

ONS 3: Capsule OCilM -

0.02 0.76 556 0.081 12 Y

Plant-Specifec RVSP Material (LT)

ONS-3: Capsule OCill-A 0.02 0.76 556 0.081 7

Y Plant Specific RVSP Material (TL) -

ONS-3: Capsule OCill-B -

0.02 0.76 556 0.312 4

Y Plant Specific RVSP Materlat (TL)

ONS-3. Capsule OCill-D 0.02 0.76 556 1.45 22 Y

Plant-Specific RVSP Material (TL) f.

Table B.1.7-2. Credibility Assessment for Base Metal

[

Heat Number 522194 (ANK 191)

(Table 3 of the RAI Regarding Reactor Vessel integrity) f Predicted (Measured.

Irrad.

Meas.

ARTuor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor Best Fit Line ARTuor Designation '

wt%

wt%

Factor

('F)

Factor

(*F)

(*F)

(*F)

ONS-3: Capsule OCill-A 0.02 0.76 20.0 556 0.376 12 7

5 Plant-Specific RVSP Material (LT)

ONS 3: Capsule OCill-A 0.02 0.76 20.0 556 0.376 7

7 0

Plant-Specific RVSP Material (TL)

{

ONS-3: Capsule OCI'l-B 0.02 0.76 20 0 556 0.680 4

12

-8 Plont-Specific RVSP Material (TL)

ONS-3: Capsule OClli-D 0.02 0.76 20.0 556 1.103 22 19 3

Plant-Soecific RVSP Materi61(TL)

[

where Predicted ARTuor = (Slopesessnf *(Fluence Factor) and Slopesestnr = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,17.4)

These data are credible since the scatter is less than 17*F for all surveillance capsule dEta points.

[

{

b-B-15 f." ^ M 7 8 M

L Table B.1.7-3. Base Metal Heat Number 522194 (ANK 191) Chemistry Factor Calculation for Oconee Unit 3 Reactor Vessel i

irrad.

Meas.

Capsule Cu Ni Chem.

Temp.

Fluence ARTuot Designation wt%

wt%

Factor

(*F)

Factor

(*F)

ONS-3: Capsule OCill-A 0.02 0.76 20 0 556 0.376 12 Plant Specific RVSP Material (LT)

ONS 3: Capsule OCill-A 0.02 0 76 20.0 556 0.376 7

Plant-Specific RVSP Material (TL)

ONS 3: Capsule OClli-B 0.02 0.76 20.0 556 0 680 4

Plant-Specific RVSP Matenal(TL)

ONS 3: Capsule OCill-D 0.02 0,76 20.0 556 1.103 22 I

Vessel Best-Estimate !

0 02 0 76 20 0 556 EE CFsurv. data = best fit line relating Measured ARTuor to the Fluence Factor (i.e., CUsurv.cata = 17.4)

[

E

[

[

[

f.

=h E E se O&Oe e r

1 l

B.1.8. Base Metal Heat Number C2789-2 Table B.1.8-1. Surveillance Data for Base Metal Heat Number C2789-2 (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTuor Assessing Vessel (including source) wt%

wt%

(*F)

(x10"n/cm )

(*F)

(Y or N) 8 TMI-1: Capsule TMil-E 0.09 0.57

$56 0.107 26 Y

Plant-Specific RVSP Material (LT)

TMI-1: Capsule TM11-E 0.09 0.57 556 0.107 0

Y Plant-Specsfic RVSP Material (TL)

TMi 1: Capsule TM11-C 0.09 0 57 556 0.866 14 Y

Plant-Specific RVSP Material (LT)

TM1-1: Capsule TMi1-C 0 Od 0.57 556 0.866 15 Y

Plant Specific RVSP Material (TL)

Table B.1.8-2. Credibility Assessment for Base Metal Heat Number C2789-i (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured.

Irrad.

Meas.

ARTuor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor Best Fit Line ARTuor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

TMi-1: Capsule TMl1 E 0.09 0.57 58.0 556 0.431 26 8

18 Plant. Specific RVSP Material (LT)

TMI-1: Capsule TMll-E O 09 0.57 58.0 556 0.431 0

8

-8 Plant Specific RVSP Material (TL)

TMI-1: Capsule TMl1-C 0.09 0.57 58.0 556 0.960 14 17

-3 Plant-Specific RVSP Material (LT)

TMI-1: Capsule TMi1 C 0.09 0.57 58.0 556 0.960 15 17

-2 Plant-Specific RVSP Material (TL) l where Predicted ARTuor = (Slopesestne) *(Fluence Factor) and Slopesestnf = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,17.6)

Th*se data are not Credible since the scatter is greater than 117aF for one surveillance capsule data point.

B-17 f." M N M i

(

1 Table B.1.8-3. Table Chemistry Factor Non-Conservatism Assessment for Base Metal Heat Number C2789-2 Table Capsule (Measured -

Capsule Chem. Factor Fluence Measured Predicted Predicted)

Designation (Sury. Avg.)

Factor ARTuor ('F)

ARTuor (*F)

ART =e, ('F)

TMi-1: Capsule TM11-E 58.0 0.431 26 25 1

Plant Specific RVSP Material (LT)

TMi-1: Capsule TM11-E

$8.0 0.431 0

25

-25 Plant-Specific RVsP Material (TL)

TMI 1: Capsule TMil-C 58.0 0.960 14 56

-42 Plant-Speerfic RVSP Material (LT)

TMi-1: Capsule TM11-C 58.0 0.960 15 56

-41 Plant-Specific RVSP Material (TL) where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor) l l

1 The data indicate that two data points exceed 2 standard deviations (34 F), however I

the generic Table chemistry factor based on the surveillance data over-oredicts these I

measured data points. Therefore, the Table chemistry factor calculated using the weld wire heat best-estimate copper and nickel contents is considered conservative and is used in the assessment of reactor vessel integrity.

l l

l l

l l

l I

f B-18 f.".^.WNR M

(

B.1.9. Base Metal Heat Number A9811-1 Table B.1.91. Surveillance Data for Base Metal Heat Number A9811-1 (Table 2 of the RAI Regarding Reactor VesselIntegrity)

Irradiation Measured Data Used an Capsule ID Cu Ni Temperature Fluence ARTwot Assessing Vessel (including source) wi%

wt%

(*F)

(x10" n/cm )

(*F)

(Y or N) 8 PB 1; Capsule V 0.20 0.06 540 0.634 81 Y

Plant-Specific RVSP Material (LT)

PB-1: Capsule S 0.20 0.06 540 0.829 87 Y

Plant-Specific RVSP Material (LT)

PB-1: Capsule R 0.20 0.06 540 2.19 93 Y

Plant Specific RVSP Material (LT)

PB 1; Capsule T 0.20 0.06 540 2.23 82 Y

Plant bpecific RVSP Material (LT)

Table B.1.9-2. Credibility Assessment for Base Metal Heat Number A9811-1 f

(Table 3 of the RAI Regarding Reactor VesselIntegrity)

[

Predicted (Measured.

1rrad.

Mess.

ARTuor from Predicted) l Capsule Cu Ni Chem.

Temp.

Fluence ARTwer Best Fit une ARTwot Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

PB-1: Capsule V 0.20 0.06 88 0 540 0.872 81 69 12 Plant Specific RVSP Material (LT)

PB-1: Capsule S 0.20 0.06 88.0 540 0.947 87 75 12 PI nt-Specifre RVSP Material (LT)

PB-1: Capsule R 0.20 0.06 88.0 540 1.213 93 96

-3 Plent Specific RVSP Material (LT)

PB-1: Capsule T 0.20 0.06 88.0 540 1.217 82 97

-15 Plant Specific RVSP Material (LT)

{

where Predicted ARTuor = (Slopebest nd * (Fluence Factor) and Slopebestnt = best fitline relating Measured ARTuor to the Fluence Factor (i.e., 79.3)

{

These data are credible since the scatter is less than 17'F for all surveillance capsule d;ta points.

f 1

IMM7A"A B-19 L

Table B.1.9-3. Base Metal Heat Number A9811-1 Chemistry Factor Calculation for Point Beach Unit 1 Reactor Vessel irrad.

Meas.

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

PB-1; Capsule V 0.20 0.06 88.0 540 0.872 81 Plant-Specific RVSP Material (LT)

PB-1: Capsule S 0.20 0.06 82.0 540 0.947 87 Plan -Specific RVSP Material (LT) e PB-1: Capsule R 0.20 0.06 88.0 540 1.213 93 Plant-Specific RVSP Material (LT)

PB-1: Capsule T 0.20 0 06 88.0 540 1.217 82 Plant-Specif:c RVSP Matenal(LT)

Vessel Best-Estimate 0 20 0 06 88 0 542'

  • For conservatism no temperature adjustment was made to the measured data.

CFsurv. safa = best fit line relating Measured ARTuor to the Fluence Factor (i.e., CFsurv. data = 79.3)

B-20 f."MNRM

L-I

[

B.1.10. Base Metal Heat Number C1423-1 Table B.1.10-1. Surveillance Data for Base Metal Heat Number C1423-1 (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTuor Assessing Vessel (including source) wt%

wt%

(*F)

(x10" n/cm')

(*F)

(Y or N)

PB-1: Capsule V 0.12 -

0.07 540 0.634 41 Y

Plant Specific RVSP Material (LT)

PB-1: Capsule S 0.12 0.07 540 0.829 43 Y

Plant-Specific RVSP Material (LT)

PB-1: Capsule R 0.12 0.07 540 2.19 28 Y

Plant-Specific RVSP Material (LT)

PB-1: Capsule T 0.12 0,07 540 2.23 45 Y

Plant-Spect'ic RVSP Material (LT)

Table B.1.10-2. Credibility Assessment for Base Metal Heat Number C1423-1

(

(Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured -

Irrad.

Meas.

ARTuor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor Best Fit Line ARTuor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

PB-1: Caosule V 0.12 0.07 55.3 540 0.872 41 31 10 Plant Specific RVSP Material (LT)

PB-1: Capsule S 0.12 0.07 55.3 540 0.947 43 34 9

Pinnt-Specific RVSP Material (LT)

PB-1: Capsuk R 0.12 0.07 513 540 1.213 28 44

-16 Plant-Specific RVSP Material (LT)

PB-1: Capsule T 0.12 0.07 55.3 540 1.217 45 44 1

Plant-Specific RVSP Material (LT)

{

where Predicted ARTuor = (Slopekest m) * (Fluence Factor) and sesf m = best fit line relating Measured ARTuor to the Fluence Factor at 3e t., 35.8)

These data are credible since the scatter is less than 17 F for all surveillance capsule data prlInts.

L B-21 f."MNRM

I Table B.1.10-3. Base Metal Heat Number C1423-1 Chemistry Factor Calculation for Point Beach Unit 1 Reactor Vessel I

Irrad.

Meas Capsule Cu Ni Chem.

Temp.

Fluence ARTuor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

PB-1: Capsule V 0.12 0.07 55.3 540 0.872 41 I

Plant-Specific RVSP Material (LT)

~

PB-1: Capsule S 0.12 0.07 55.3 540 0 947 43 Plant-Specific RVSP Material (LT)

PB-1: Capsule R 0.12 0.07 55.3 540 1.213 28 I

Plant-Specific RVSP Material (LT)

PB 1: Capsule T 0.12 0.07 55.3 540 1.217 45 Plant-Specific RVSP Material (LT)

Ve.tselBest-Estimate YYYYMM I

  • For conservatism no temperature adjustment was made to the measured data.

CFsurv. data = best fit line relating Measured ARTuor to the Fluence Factor (i.e., CF urv. data = 35.8)

S I

I I

I I

I I

I I

I I

f."MNRM B-22 f

B.1.11. Base Metal Heat Number 123V500 Table B.1.11-1. Surveillance Data for Base Metal Heat Number 123V500 (Table 2 of the AAt Regarding Reactor VesselIntegrity)

I trradiation Meawred Data Used in Capsule ID Cu Ni Temperature Fluence ARTuor Assessing Vessei (including source) wt%

wt%

(*F)

(x10" Nun')

(*F)

(Y or N)

PB-2: Capute V 0.09 0.70 542 0.650 39 Y

i Plant-S9ecific RVSP Material (LT)

PM: Capsule T 0.09 0.70 542 0.861 62 Y

Plant-Specific RVSP Material (LT) l PB-2. Capsule R 0.09 0.70 542 2.20 88 Y

Fiant-Opecific RVSP Material (LT)

PB-2. Capsule S 0.09 0.70 542 3.10 iv.

Y Plant-Specific RVSP Material (LT)

Table B.1.11-2. Credibility Assessment for Base Metal Heat Number 123V500 (Table 3 of the RAI Regarding Reactor VesselIntegrity)

Predicted (Measured -

Irrad.

Meas.

ARTuor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor Best Fit Line ARTuor I

Designation wt%

wt%

FC: tor

(*F)

Factor

('F)

('F)

('F)

PB-2: Capsule V 0 09 0.70 58.0 542 0.879 39 60

-21 Plant-Specifr.RVSP Mater,LT)

PB-2: Capsule T 0.09 0.70 58 0 542 0358 62 66

-4 I

Plant-Specific RVSP Material (LT)

PB-2: Capsule R 0.09 0.70 58.0 542 1.214 88 83 5

Plant-Specific RVSP Material (LT)

PB-2: Capsule S 0.09 0.70.

58 0 542 1.298 101 89 12

. Plant-Specific RVSP Matenal(LT) l where Predicted ARTuor = (Slopesent nd * (Fluence Factor) and l

Slopebest n = best fit liae relating Measured ARTuor to the Fluence Factor (i.e., 68.4)

I

~

These data are not credible since the scatter is greater than 117*F for one surveillance capsule data point.

f"A"NR"A

~

f B-23 F

Table B.1.11-3. Table Chemistry Factor Non-Conservatism Assessment for Base Metal Heat Number 123V500 Table Capsule l

(Measured -

Capsule Chem. Factor Fluence Measured Predicted Predicted)

Designation (Surv. Avg.)

Factor ARTuor (*F)

ARTwer ('F)

ARTuor (*F)

PB-2: Capsule V

$8.0 0.879 39 51

-12 Plant-SpecMc RVSP Material (LT)

PB-2: Capsule T 58.0 0.958 62 56 6

Plant-SpecMc RVSP Material (LT)

PB-2: Capsule R 58.0 1.214 88 70 18 Plant-Specific RVSP Material (LT)

PB-2: Capsule S 58.0 1.298 101 75 26 Plant-Speci - RVSP Material (LT) 6 where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

Since the scatter for all data points is less than 2 standard deviations (34*F), the Table chemistry factor is conservative, therefore the Table chemistry factor based on the base metal best-estimate copper and nickel contents is used in the assessment of reactor vesselintegrity.

t l

l l

B-24 I"^ M'R M

1 B.1.12. Base Metal Heat Number 122W195 Table B.1.12-1. Surveillance Data for Base Metal Heat Number 122W195 (Table 2 of the RAI Regarding Reactor VesselIntegrity)

Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fit.ance ARTwor Assessing Vessel (including source) wt%

wt%

(*F)

(x10" n/cm')

(*F)

(Y or N)

PB-2: Capsule V 0.05 0.72 542 0.650 39 Y

Plant-Specific RVSP Material (LT)

PB-2: Capsuk T

~

0.05 0.72 542 0.861 35 Y

Plant-Specific RVS. 'Asial(LT)

PB 2: Capsule R 0.05 0.72 542 2.20 50 Y

Plant-Specific RVSP Material (LT)

PB 2: Capsule S 0.05 0.72 542 3.10 61 Y

Plant-Specific RVSP Material (LT)

Table B.1.12-2. Credibility Assessment for Base Metal Heat Number 122W195 (Table 3 of the RAI Regarding Reactor VesselIntegrity)

Predicted (Measured.

Irrad.

Meas.

ARTwor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwot Best Fit Line ARTuot Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*Fi _

PB-2: Capsule V 0.05 0.72 31.0 542 0.879 39 38 1

Plant-Specific RVSP Material (LT)

P8-2: Capsule T 0 05 0.72 31.0 542 0.958 35 41

-6 Plant-Specific RVSP Material (LT)

PB-2: Capsule R 0 05 0.72 31.0 542 1.214 50 52 2

Plant-Specific RVSP Material (LT)

PB-2: Capsule S 0.05 0.72 31.0 542 1.298 61 56 5

Plant-Specific RVSP Material fLT) l' where Predicted ARTnDr = (Slopebest n() * (Fluence Factor) and Slopebestnf = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 42.8)

These data are credible since the scatter is less than ii7 F for all surveillance capsule data points.

(

f ^TNRM f f= -

B-25 L

3 Table B.1.12-3. Base Metal Heat Number 122W195 Chemistry Factor Calculation for Point Beach Unit 2 Reactor Vessel Irrad.

Meas.

Capsule Cu Ni Chem.

Temp.

Fluence ARTwot Designation wt%

wt%

Factor

(*F)

Factor

(*F)

PB 2: Capsule V 0.05 0.72 31.0 542 0.879 39 Plant-Specific RVSP Matent'(LT)

)

PB-2: Capsule T 0.05 0.72 31.0 542 0958 35 Plant-Specific RVSP Material (LT) oB 2: Capsule R 0.05 0.72 31.0 542 1.214 50 Plant-Specific RVSP Material (LT)

PB-2: Capsule S 0.05 0.72 31.0 542 1.298 61 h____ Vessel Best Estimate 0 05 0.72 31.0 542 M CFsurv. sata = best fit line relating Measured ARTuor to the Fluence Factor (i.e., CFSurv. data = 42.8)

)

f L

I b

f"<MNRM l

B-26 f

Bv(-

B.1.13. Base Metal Heat Number C4415-1 Table B.1.13-1. Surveillance Data for Base Metal Heat Number C4415-1 (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiate Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTwot Assessing Vessel (including source) wt%

wt%

(*F)

(x10" n/cm')

(*F)

(Y or N)

S-1: Capsule T 0.11 0.50 538 0.281 50 Y

Plant Specific RVSP Material (LT)

S-1: Capsule V 0.11 0.50 538 1.94 113 Y

Plant-Specific RVSP Material (LT)

S-1: Capsule X 0.11 0.50 538 1.599 86 Y

Plant-Specific RVSP Material (LT)

Table B.1.13-2. Credibility Assessment for Base Metal Heat Number C4415-1 (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured -

t tirad.

Meas.

ARTwot from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwot Best Fit Line ARTwot Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

S-1: Capsule T 0.11 0.50 73.0 538 0.653 50 56

-6 Plant-Specific RVSP Material (LT)

S-1: Capsule V 0.11 0.50 73 0 538 1.181 113 100 13 Plant-Specific RVSP Material (LT)

S 9: Capsule X 0.11 C.50 73.0 538 1.130.

86 96 10 Plant-Specific RVSP Material (LT) where Predicted ARTuor = (Slopesestns) * (Fluence Factor) and Slopesestnt = best fit line relatir;g Measured ARTuor to the Fluence Factor (i.e., 85.0)

These data are credible since the scatter is less than 17'F for all surveillance capsule data points.

B-27 f"<MNRM

Table B.1.13-3. Base Metal Heat Number C4415-1 Chemistry Factor Calculation for Surry Unit 1 Reactor Vessel Temp.

Irrad.

Meas.

Measured Capsule Cu Ni Chem.

Temp.

Fluence ARTuor ARTwot Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

S-1: Capsule T 0.11 0.50 73.0 538 0.653 50 46 ~

Plant-Specific RVSP Material (LT) l S-1: Capsule V 0.11 0.50 73.0 538 1.181 113 109 Plant. Specific RVSP Material (LT) 1 S-1: Capsule X 0.11 0.50 73.0 538 1.130 86 82 Plant. Specific RVSP Material (LT)

Vessel Best-Estimate 0 11 0 50 73 0 542' MM l

  • For conservatism no temperature adjustment was made to the measured data.

g CFsurv. safa = best fit line relating Measured ARTuor to the Fluence Factor E

(i.e., CF urv. data = 85.0)

S l

I I

l l

l l

1 f."MO*RM f

B-28

B.1.14. Base Metal Heat Number C4339-1 f

Table B.1.14-1. Surveillance Data for Base Metal Heat Number C4339-1 (Table 2 of the RAI Regarding Reactor VesselIntegrity)

Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTuor Assessing Vessel (including source) wt%

wt%

(*F)

(x10 n/on )

g,F)

(Y or N) s S-2: Capsule X 0.11 0.54 537.5 0.302 58 Y

Plant-Specific RVSP Material (LT)

S-2: Capsule X 0.11 0.54 537.5 0.302 49 Y

Plant-Specific RVSP Material (TL)

S-2: Capsule V 0.11 0.54 537.5 1.88 CO Y

Plant-Specific RVS" Material (LT)

S-2: Capsule V 0.11 0.54 537.5 1.88 65 Y

Plant-Specific RVSP Material (TL)

Table B.1.14-2. Credibility Assessment for Base Metal Heat Number C4339-1 (Table 3 of the RAl Regarding Reactor Vessel Integrity)

Predicted (Measured -

Irrad.

Meas.

ARTuor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor Best Fit Line ARTuor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

S-2: Capsule X 0.11 0.54 73 4 537.5 0.672 58 44 14 Plant-Specific RVSP Material (LT)

S-2: Capsule X 0.11 0.54 73.4 537.5 0.672 49 44 5

Plant-Specific RVSP Material (TL)

S4: Capsule V 0.11 0 54 73.4 537.5 1.173 80 78 2

Plant-Specific RVSP Material (LT)

S-2: Capsule V 0.11 0.54 73 4 537.5 1.173 65 78

-13 Plant-Specrfic RVSP Material (TL) where Predicted ARTuor = (Slopebest nd * (Fluence Factor) and Slopebestn = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 66.2)

[

These data are credible since the scatter is less than ii7 F for all surveillance capsule data points.

r i

B-29 I"ATN M

I Table B.1.14-3. Base Metal Heat Number C4339-1 Chemistry Factor Calculation for Surry Unit 2 Reactor Vessel trrad.

Meas.

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor Designation wt%

wt%

Factor

('F)

Factor

(.F)

S 2: Capsule X 0.11 0.54 73 4 537.5 0.672 58 P! ant-Specific RVSP Material (LT)

S-2: Capsule X 0.11 0.54 73.4 537.5 0.672 49 Plant-Specific RVSP Material (TL)

S-2: Capsule V 0.11 0.54 73.4 537.5 1.173 80 Plant-Specific RVSP Material (LT)

S-2: Capsule V 0.11 0.54 73.4 537.5 1.173 65 Vessel Best-Estimate 0 11 0 54 73 4 542'

  • For conservatism no temperature adjustment was made to the measured data.

CFsurv. sat, = best fit line relating Measured ARTuDr to the Fluence Factor (i.e., CF ur,. data = 66.2)

S f."^TNRM f

B-30

B.1.15. Base Metal Heat Number 123P461 Table B.1.15-1. Surveillance Data for Base Metal Heat Number 123P461 (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiaton Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTuor Assessing Vessel (including source) wt%

wt%

(*F)

(x10 n/cm')

('F)

(Y or N)

TP-3: Capsule T 0.06 0.70 546 0.739 18 Y

Nnt-Specific RVSP Material (LT)

TP-3: Capsule S 0.06 0.70 546 1.72 13 Y

Plant-Specific RVSP Material (LT)

Table B.1.15-2. Credibility Assessment for Base Metal Heat Number 123P461 (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured -

Irrad.

Meas.

ARTuor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor Best Fit Line ARTuor Designaten wt%

wt%

Factor

(*F)

Factor

('F)

(*F)

('F)

TP 3: Capsule T 0.06 0.70 35.8 546 0.915 18 13 5

Plont-Specific RVSP Material (LT)

TP-3: Capsule S 0.06 0.70 35.8 546 1.149 13 17

-4 Pinnt Specific RVSP Material (LT) l

(

where Predicted ARTuor = (Slopebest nt) * (Fluence Factor) and Slopebest et = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,14.6)

These data are credible since the scatter is less than 17*F for all surveillance capsule data points.

B-31 E'"MNM

Tablo B.1.15-3. Base Metal Heat Number 123P461 Chemistry Factor Calculation for Turkey Point Unit 3 Reactor Vessel Irrad.

Meas.

Capsule Cu Ni Chem.

Temp.

Fluence ARTuot Designation wt%

wt%

Factor

(*F)

Factor

( F)

TP 3: Capsule T 0.06 0.70 35.8 546 0.915 18 Plant-Specific RVSP Material (LT)

TP 3: Capsule S 0.06 0.70 35.8 546 1.149 13 Vessei Eist-Estimate 0 06

---0 70 35 8 546 E

CFsurv. da:a = best fit hne relating Measured ARTuor to the Fluence Factor (i.e., CFsurv. data = 14.6) 1 1

{

L

[EMTNRM B-32

B.1.16. Base Matal Heat Number 123S266 Table B.1.16-1. Surveillance Data for Base Metal Heat Number 123S266 (Table 2 of the RAI Regarding Reactor Vessel integrity)

Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTuor Assessing Vessel (inclu3ing source) wt%

wt%

('F)

(x10 n/cm*)

(*F)

(Y or N)

TP-3; Capsule S 0.08 0.68 546 1.72 42 Y

Plant Sptrcific RVSP Material (LT)

TP-3: Capsule V 0.08 0.68 546 1.53 55 Y

Plant-Specific RVSP Material (LT)

Table B.1.16-2. Credibility Assessment for Base Metal Heat Number 123S266 (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured.

Irrad.

Meas ARTuct from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor Best Fit Line ARTuot Designation wt%

wt%

Factor

('F)

Factor

(*F)

(*F)

(*F)

TP.3: Capsule S 0.08 0 68 50.3 546 1.149 42 49

-7 Plant-Specific RVSP Material (LT)

TP-3: Capsule V 0 08 0.68 50.3 546 1.118 55 48 7

Plant-Specific RVSP Matenal(LT) wherc Predicted ARTuor = (Slopebestnf * (Fluence Factor) and Slopebestnt = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 42.7)

These data are credible since the scatter is less than 17'F for all surveillance capsule data points.

l B-33 f!MSNRM'i

Table B.1.16-3. Base Metal Heat Number 123S266 Chemistry Factor Calculation for Turkey Point Unit 3 Reactor Vessel irrad.

Meas.

Capsule Ou Ni Chem.

Temp.

Fluence ARTuot Designation w?%

wt%

Factor

(*F)

Factor

(.p)

TP.3: Capsule S 0.0t, 0.68 50.3 546 1.149 42 Plant Specific RVSP Material (LT)

TP 3: Capsule V 0.08 0.68 50.3 546 1.118 55 Plant-Specific RVSP Material (LT)

Vessel Best-Estimate 0 08 0 68 50 3 546 CFsurv. sata = best fit line relating Measured ARTuor to the Fluence Factor (i.e., CFsurv.esta = 42.7) l B-34 f." A T N R M 9

B.1.17 Base Metal Heat Number 122S180 Table B.1.17-1. Surveillance Data for Base Metal Heat Number 122S180 (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTuor Assessing Vessel (including source) wt%

wt%

(*F)

(x10" n/cm')

(*F)

(Yo!N)

TP-4: Capsule T 0.06 0.74 546 0.708 12 Y

Plant-Specific RVSP Material (LT)

TP4: Capsule S 0.06 0.74 546 1A3 0

Y Plant-Specif:c RVSP Material (LT)

,e f

Table B.1.17-2. Credibility Assessment for Base Metal Heat Number 122S180 (Table 3 of the RAI Regarding Reactor VesselIntegrity)

Predicted (Measured.

Irrad.

Meas.

ARTuor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor Best Fit Line ARTuor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

('F)

(*F)

TP-4: Capsule T 0.06 0.74 34 6 546 0.903 12 5

7 Plant-Specific RVSP Matenal(LT)

TP-4: Capsule S 0.06 0.74 34.6 546 1.099 0

6

-6 Plant-Specific RVdP Material (LT) where Predicted ARTuor = (SlopesestrJ * (Fluence Factor) and Slopesestm = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 5.4)

These data are credible since the scatter is less than 17 F for all surveillance capsule data points.

l f<

m

(

e.3e

f Table B.1.17-3. Base Metal Heat Number 122S180 Chemistry Factor Calculation for Turkey Point Unit 4 Reactor Vessel irrad.

Meas.

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor Designation wt%

wt%

Factor

('F)

Factor

(*F)

)

TP-4: Capsule T 0.06 0.74 34.6

$46 0.003 12 Plant-Specific RVSP Material (LT)

TP-4: Capsule S 0.06 0.74 34.6 546 1.099 0

Plant-Specific RVSP Material (LT)

Vessel Best bstimate 0 06 0 74 34 6 546 CFsurv. sata = best fit line relating Measured ARTuor to the Fluence Factor (i.e., CFsurv. data = 5.4)

)

i k

f i

I P A T M P. M "

B-36

.