ML20236H733

From kanterella
Jump to navigation Jump to search
Reactor Containment Bldg Integrated Leak Rate Test
ML20236H733
Person / Time
Site: Brunswick Duke Energy icon.png
Issue date: 05/31/1987
From: Blessing J, Shirk R
CAROLINA POWER & LIGHT CO.
To:
Shared Package
ML20236H726 List:
References
NUDOCS 8708050316
Download: ML20236H733 (124)


Text

_ - _ . _-. -

) l

\'

i ,

4 BRUNSWICK' STEAM ELECTRIC PLANT UNIT NO. 1 REACTOR CONTAINMENT BUILDING INTEGRATED LEAK RATE TEST MAY 1987 ..

l CAROLINA' POWER & LIGHT COMPANY

'l

'l Prepared by: John J. Blessing Reviewed by: E. S 4dk-ILRT Engineer Approved by: '[z1/I. Mdev' f %SM kl Q

n \

P

-t _j

TABLE OF CONTENTS Sect. Item Title Page 1.0 SYNOPSIS 1

2.0 INTRODUCTION

3 3.0 GENERAL, TECHNICAL, AND TEST DATA 4 3.1 GENERAL DATA 4 3.2 TECHNICAL DATA 4 3.3 TEST DATA 4 4.0 f CCEPTANCE CRITERIA 6 4.1 TECHNICAL SPECIFICATION ACCEPTANCE CRITERIA 6 4.2 REDUCED DURATION TESTING ACCEPTANCE CRITERIA 6 5.0 TEST INSTRUMENTATION 7 5.1

SUMMARY

OF INSTRUMENTS 7 5.2 SCHEMATIC ARRANGEMENT 8 5.3 CALIBRATION CHECKS 8 5.4 INSTRUMENTATION PERFORMANCE 8 5.5 VOLUME WEIGHTING FACTORS 9 5.6 SYSTEMATIC ERROR ANALYSIS 10 5.7 SUPPLEMENTAL VERIFICATION 13 6,0 TEST PROCEDURE 14 6.1 PREREQUISITES 14 6.2 GENERAL DISCUSSION 14 6.3 TEST PERFORMANCE 16 7.0 METHODS OF ANALYSIS 18 7.1 GENERAL DISCUSSION 18 7.2 STATISTICAL EVALUATION 21 8.0 DISCUSSION OF RESULTS 23 0.1 RESULTS AT P 23 8.2 SUPPLEMENTAL" TEST RESULTS 26 8.3 AS FOUND ANALYSIS 27 9.0 REFE RENCES 28

p, gj

( ,'. 1 ,

m-l.

l- <:, : TABLE OF. CONTENTS (Cont'd)'

i. .

APPENDICES

, 'A -

SCHEMATIC-ARRANGEMENT OF TEST INSTRUMENTATION B. - REDUCED TEST DATA C.- - . LEAKAGE RATE TEST GRAPHS D' -- COMPUTER'RESULTS

'E- -

SUMMARY

OF MEASURED DATA F -

AS FOUND ANALYSIS l i-4 S

\\

s 1

1 I

1.0 SYNOPSIS The Brunswick Steam Electric Plant Unit No. 1 reactor containment building was subjec*ed to a periodic integrated leak rate test during the period of May 18 to May 19, 1907. The purpose of this test was to demonstrate the acceptability of the building leakage rate at an internal pressure of 49.0 psig (P ). Testing was performed in accordance with the requirements of 10CFR50 Appendix J, ANSI N45.4-1972, Bechtel Topical Report BN-TOP-1 and Brunswick Steam Electric Plant Unit No. 1 Technical Specifications.

The Mass Point method of analysis resulted in a r.easured leakage rate of ,

0.087% by weight per dag at 50 psig. The leakage rate at the upper bound I of the 95% confidence intercal was 0.094% by weight per day. A correction factor of 0.010 percen* by weight per day for 11 penetrations which were not vented for the test must be added to the test results.

Therefore, the leakage rate at the upper bound of the 95 percent [

l confidence interval is 0.104 percent by weight per day which is below the allowable leakage rate of 0.375 percent by weight per day, j Utilizing the Total Time method of analysis, the calculated leakage rate was found to be 0.069% by weight per day and 0.205% by weight per day at the upper bound of the 95% confidence interval at the 50' psig pressure I

level. The mean of the measured leak rates based on the total time calculations for the last five hours of the test was 0.101% by weight per day. Yith the addition of the Type C penalty the leakage rate at the upper bound of the 95 percent confidence interval is 0.215 percent by weight per day. All total time analyses are below the allowable leakage l rate of 0.375 percent by weight per day and meet the criteria set forth  !

in Bechtel Topical Report BN-TOP-1 for conduct of a reduced duration integrated leakage rate test.

Using the minimum pathway leakage analysis to determine the "as found" reactor containment integrated leakage rate indicates that the acceptance criteria would have been exceeded. This was due to two penetrations that could not be pressurized during local leakage rate testing and required maintenance to be performed.

The supplemental instrumentation verification test at P demonstrated an agreement between measured reactor containment building" integrated leakage rates of 3% using the Mass Point method and 3.4% using the Total Time method which are within the 25% requirement of 10CFR50, Appendix J, Section III A.3.b.

i

i e

L: 2

!4 Testing was performed by Carolina Power and Light Company with the technical assistance of United Energy Services Corporation. . Procedural

. :- and calculational methods were witnessed by Nuclear Regulatory Commission personnel.

p 6

N 1

--__._-m-,.-.,.---.-- . - ,

3

2.0 INTRODUCTION

The objective of the . integrated leak rate test was the establishment of the degree of overall leak' tightness of the reactor containment building- '

at the calculated design basis accident pressure of 49.0 psig. The allowable leakage is defined by the design basis' accident applied in the safety analysis in accordance with site exposure guidelines specified by 1DCFR100. For Brunswick Steam Electric Plant Unit No.1, the maximum allowable integrated leak' rate at the. design basis accident pressure of 49.0 psig . (P,) is 0.5% by weight per day (L,) .

Testing was performed in accordance with the procedural requirements as stated in Brunswick Steam Electric Plant Integrated Primary Containment Leak Rate Test Procedure PT-20.5. This procedure received two independent. technical _ safety reviews and was approved by the Manager, Technical Support prior to the ecmmencement of the test.

Leakage rate testing was accomplished at the pressure level of 49.7 psig for a period of 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />. The 8 hour9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> period was followed by a one hour stabilization period and 5 hour5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> supplemental. test for a verification of test instrumentation.

I

4-3.0' GENERAL, TECHNICAL, AND TEST DATA

' 3 .1 GENERAL DATA Owners Carolina Power & Light.

L Docket No. 50-325 ,

f Locations Southport, North Carolina Type . Mark 1, BWR-4 Containment

Description:

Steel line'd, reinforced concrete,

' light bulb' shaped drywell with torus shaped suppression chamber connected by a vent system. Va cuum breakers are provided between.the suppression chamber'and both the drywell and reactor building.

Date' Test' Completed: May 19, 1987 3.2 TECHNICAL DATA

-Containment Net Free Volume 294,981 cubic feet Design Pressure: 62 psig 1

Design Temperature: 300 F (drywell), 220 F.(suppressio?.

chamber)

Calculated Accident Peak.

Pressure: 49.0 psig Calculated Accident Peak Temperature 297 F 3.3 TEST DATA

. Test Method: Absolute Data Analysis: Mass Point and Total Time Test Pressures 64.4 psia Max Allowable Leakage Rate (L,): 0.500 wt % per day

_________________._.-_m._ ._______m

y_. . . .

? i; -

E 5: i i

F

. .- 3. 3 TEST DATA (Cont'd) -

i Measured Leakage Rates f'l Mass Point 0.087 wt % per day Total Time- 0.069 wt % per day 1

-Measured Leakage' Rate at UCL: I Mass Point 0.094 wt % per day

-Total Time 0.205 wt % per day

t. Supplemental Test Flow Rate 0.505 wt % per day l-
j. Supplemental Test Measured Leak Rates.

Mass Point 0.577 wt % per. day Total Time 0.557 wt % per. day Supplemental Test and L'""

Agreement:

' Mass Point: 3%

Total Time 3.4%

I l

l

.1 6

I 4.0- ACCEPTANCE CRITERIA l'

4.1 . TECHNICAL SPECIFICATION ACCEPTANCE CRITERIA .

i Acceptance criteria established prior to the test and as specified by .{

10CFR50, Appendix 'J, ANSI N45.4-1972 and the Brunswick Steam Electric 1 Plant Unit No. 1 Technical Specifications are as follows:

[ '

1. The measured leakage rate (L ) at the calculated' design accident -

pressure of 49.0 psig (P ) s$$11 be less than 7';% of the maximum allcwable leakage rate (6 ), specified as 0.5% by weight of. the building atmosphere per da,y. The acceptance. criteria is determined uns follows:

L, = 0.5%/ day 0.75 L, = 0. 37 5%/ day.

2. The test instrumentation shall be verif'ed i by.means of a supplemental testa . Agreement between the containment inakage measured during the type A test and the containment leakage measured during the supplemental test shall be within 25% of.L,.

.. 4.2 REDUCED DURATION TESTING ACCEPTANCE CRITERIA In addition to the acceptance criteria mentioned above, the following

, ' reduced duration testing acceptance criteria contained in Bechtel Topical Report BN-TOP-.1, Revision 1 dated November 1, 1972, was used:

1. The trend report based on total time calculations shall indicate ,

that the magnitude of the calculated leak rate is tending to

~

stabilize at a value loss than the maximum allowable leak rate (0.75 L,).

2. The end of test upper 95% confidence limit for the calculated leak l rate based on total time calculations shall be; less than the maximum allowable leak rate.
3. The mean of the measured leak rates based on total time calculations over the last five hours of test or last 20 data points, whichever provides the most data, shall be less than the maximum allowable leak rate. ,
4. JLt least 20 data points shall be provided for statistical analysis.

i

r

'F r

7

)

5.0 TEST INSTRUMENTATION

' 5.1

SUMMARY

OF INSTRUMENTS -

Test instruments. employed are described, by system, in the following subsections.

~

5 1 1 Temperature Indicating System-Components :

1. Resistance Temperature Detectors:

Quantity 23 i Manufacturer Rosemount Type 78-S 100 ohm platinum Range, F 0 to 400 Ac cura cy , F 1,0.1 l Sensitivity, F +0.1-

]

I L. 2. Digital Temperature' Scanner / Printers  ;

  • l

. Quantity 1 Manufacturer Fluke Type Model 2285B i Accuracy, F +0.2 l

' Repeatability, F }I,0.1 5.1.2 Dewpoint Indicating System

1. Dewcell Elements:

i Quantity 10 )

Manufacturer Foxboro Type Model-2781 Range, F 0 - 150 dewpoint Accuracy, F +2 Sensitivity, F }[0.5

2. Digital temperature Scanner / Printer:

Quantity 1 Manufacturer Fluke ,

Type Model 2285B Accuracy, F +0.2

' Repeatability, F 1,0.1 k;

I j

l c

< 1 i

.jl  ;

ut

+

8 l

  • 5.1.3 Pressure Monitoring System Precision Pressure Gauges

-Quantity. 2

. Manufacturer Heise. >

' Type Series 10 iwith angular. readout)

Range, psia 0 - 75 Accuracy, psia 0.0005% f.s.+0.0065% of reading

. Sensor sensitivity, psia 0.001% of full scale Repeatability, psia. 0.0005% of. full scale 5'.l.4 Supplemental Test Flow Monitoring System Flowmeter Quantity 1 .;

Manufacturer Brooks l Type Model 1110

Range, scfm ~1.33 - 13.3 'j Accuracy. +2% of full scale 5;2' SCHEMATIC ARRANGEMENT

-The arrangement of the four measuring. systems summarized'in1Section 5.1 is depicted in Appendix A. j Drybulb temperature sensors were placed throughout the' reactor containment vessel volume to permit monitoring of internal. temperature variations at'24 locations. Dewcells were placed at ten locations to i{

permit monitoring of the reactor containment partial pressure-of water vapor.

g,

- 5.3 CALIBRATION CHECKS Temperature, dewpoint, and pressure measuring systems were checked'for calibration before the test as recommended by ANSI N45.4-1972,  !

Section 6.2 and 6.3. The results of the calibration. checks are on file at Brunswick Steam Electric Plant. The supplemental test at 49.0 psig confirmed the instrumentation acceptability.

5.4' INSTRUMENTATION PERFORMANCE During the pressurization phase, one RTD exhibited abnormal behavior and

~

was not used for the test. The remaining ten dewcells, 23 RTDs, two precision pressure gauges, and flow meter performed satisfactorily throughout the performance of the integrated leak rate test and provided more than adequate coverage of the containment.

i s

!- i a

l J

n

i 1

I J

9 l

5.5 VOLUME WEIGHTING FACTORS l l

Weighting factors were assigned to each drybulb temperature sensor and ]

dewpoint temperature sensor based on the calculated volume of the reactor containment building each sensing device monitored. Drybulb and dewpoint .

temperature sensors elevation and weighting factors for the test were as follows:

Elevation / Temperature Weighting Azimuth Element Factor 93/0 TE 1 .0264 93/180 TE 2 .0264 78/270 TE 3 .0187 78/90 TE 4 .0187 66/0 TE 5 .0115 66/180 TE 6 .0115 54/270 TE 7 .0136 54/90 TE 8 .0136 46/300 TE 9 .0194 46/0 TE 10 .0194 46/180 TE 11 .0194 33/0 TE 12 .0500 33/120 TE 13 .0500 33/240 TE 14 .0500 16/0 TE 1$ .0577 16/270 TE 16 .0577 16/180 TE 17 .0577 16/90 TE 18 .0577 Torus /60 TE 20 .08412 Torus /120 TE 21 .08412 Torus /180 TE 22 .08412 Torus /240 TE 23 .08412 Torus /300 TE 24 .08412 93/270 DPE 1 .0527 78/90 DPE 2 .0489 54/0 DPE 3 .0386 .

46/180 DPE 4 .0583 33/270 DPE 5 .1502 i 16/90 DPE 6 .2309 Torus /0 DPE 7 .1051 Torus /90 DPE e .1051 Torus /180 DPE 9 .1051 Torus /270 DPE 10 .1051

10  !

5.6 SYSTEMATIC ERROR ANALYSIS Systematic error, in this test, is induced by the operation of the temperature indicating system, dewpoint indicating system, and the pressure indicating system. i l

Justification of instrumentation celection was accomplished, using manuf acturer's sensitivity and repeatability tolerances stated in Section 5.1, by computing the instrumentation selection guide (ISG) formula.

Containment leakage determined by the Absolute Method requires accurate '

measurement of small changes in containment pressure with suitable corrections for temperature and water vapor. Since the Absolute Method utilizes the change in a reading (i.e., pressure and temperature) to calculate leak rate, the repeatability, sensitivity, and readability of the instrument system is of more concern than the accuracy. To perform the ISG calculation, the sensitivity error of the sensor and the repeatability error cf the measurement system must be used.

Sensitivity is defined as "the capability of a sensor to respond to i change." Sensitivity is usually a function of the system measuring the sensor output. When the sensor energy state is raised or lowered an amount equal to the smallest value which the entire system will process,-

a change of indication will occur. To determine sensitivity for ILRT .

sensors, it is necessary to analyze the smallest value of the analog sensor output which will cause a one digit change in the digital display.

Repeatability is defined as "the capability of the measurement system to reproduce a given reading from a constant source."

i Utilizing the methods, techniques, and assumptions in Appendix G to ANS 56.8-1981, the ISG formula was computed for the Absolute Method as follows:

1. Conditions:

L, = 0.5%/ day P = 64.4 psia T = 544 R drybulb T = 78 F dewpoint dp t = 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> I

1

( f

{'

-11 I

2.' Tota 1' Absolute Pressures e P

No.'of sensors = 2 Range = 0 - 75 psia Sensor sensitivity error (E ) = +0.001% of full scale Measurement system error.(c ) . = +0.0005% of full scale  ;

e =

P -+[EP) + (cp) / [no. of sensors) !

e.--

P (0.00075)2 + (0.000375)2 -/ [2]1/2 e = -+0.0006 .)

p- j

3. Water Vapor Pressures e pv '

No. of sensors =--10 Sensor sensitivity error (E ) = +0.5 F

' Measurement system error (cPV ) , - 0

' excluding sensor ,g37 At a dewpoint temperature of 78 F,.the equivalent' water vapor pressure change (as determined from steam tables) is 0 0157 psia / F E = +0.5 F (0.0157 psia / F) py E = +0.00785 psia l p c = +0.1 F (0.0157 psia / F) y I

= +0.00157 psia py _

i

12 1

I e

pv

=+- ( pv) + (c pv) / (no. of sensors) !

1/2 1/2 e

pv

=+-

(0.00785)2 + (0.00157)2 / (10)

I e = +0.00253 psia

4. Temperatures e T

No. of sensors = 23 Sensor sensitivity error (E )

T a

+0.1 F = 10.1 R Measurement system error (cT)# o o excluding sensor = +0.1 F = +0.1 R

_. 1/2 1/2 ,

eT =+ (E T)2 + ("T)2-- / (no. of sensors) F

~ 1/2 1/2 eT =+ (0.1) + (0.1) / (23) e = +0.0294 R T

5. Instrument Selection Guide (ISG):

I  !

ISG = + -

t 2( pE) + 2( ES) p

+

2( T) 2400 0.0006 2 0.00253 2 0 1/2 ISG = 1 8 64.4 64.4

  1. I .0294 544 2

-10 ~9 1/2 ISG = + 300 (1.736 x 10 + 3.087 x 10 + 5.841 x 10-9]

ISG = + 0.029%/ day

1 1

R 13 The ISG value does~not exceed 0.25 L (0.125%/ day) and it is therefore

. concluded that the instrumentation s$lected was acceptable for use in determining the reactor containment integrated leakage rate.

5.7 SUPPLEMENTAL VERIFICATION In addition to the calibration checks described in Section 5.3, test

' i instrumentation operation was verified by a supplemental test subsequent to the completion of the 8.0 hour0 days <br />0 hours <br />0 weeks <br />0 months <br /> leakage rate test.- This. test' consisted of imposing a known calibrated leakage rate'on the reactor containment building. .~After the flow rate was established,.it was.not altered for

' the duration of the test.

During the supplemental test, the measured leakage rate was:

L =- L'- + L c v o Where:

L =- Measured composite leakage rate consisting of the reactor ,

containment building leakage rate plus the imposed leakage i rate L = Imposed leakage rate L ' = . Leakage rate of the reactor containment building during the f supplemental test phase Rearranging the;above equation, i L'y

= L - L The reactor containment building leakage during the supplemental test can  !

be calculated by subtracting the known superimposed leakage. rate frcan the $

measured composite leakage rate.

The reactor containment building leakage rate during the supplemental test (L ')y was then compared to the measured reactor containment building q i

1eakage rate during the preceding 8.0 hour0 days <br />0 hours <br />0 weeks <br />0 months <br /> test-(L to determine instrumentation acceptability. Instrumentation is"Eo)nsidered acceptable if the difference between the two building leakage rates is within 25% of )

the maximum allowable leakage rate (L,). ]

l l

l l

l l

l

L 14 6.0 TEST PROCEDURE p 6.1 PREREQUISITES l

Prior to commencement of reactor containment building pressurization, the following prerequisites were satisfied:

1. Proper operation of all test instrumentation was verified.
2. All reactor containment building isolation valves were closed using the normal mode of operation. All associated system valves were placed in post-accident positions.
3. Portions of fluid systems, which under post-accident conditions become extensions of the containment boundary, were drained and vented to the extent possible or the Type C penalty taken as appropriate.
4. Type B and C testing was completed with a leakage value less than 0.6 L ,

a

5. Containment pressurization system was operational.  ;

-6. Four drywell coolin*g fans were in operation.

7. Potential pressure sources were removed or isolated from the containment.
8. An inspection of the accessible interior and exterior surfaces of the containment was completed.

6.2 GENERAL DISCUSSION Following the satisfaction of the prerequisites stated in Section 6.1, the reactor containment building pressurization was initiated at a rate ] !

of approximately 7.0 psi per hour. After the containment was stabilized, f leak rate testing was initiated at the 49.0 psig pressure level. For the

{

duration of the 8.0 hour0 days <br />0 hours <br />0 weeks <br />0 months <br /> leak test and the 5.0 hour0 days <br />0 hours <br />0 weeks <br />0 months <br /> supplemental test, i average internal containment temperature remained within a band of

+0.35 F.

During the test the following occurred at 15 minute intervals (see  !

Appendix B - Reduced Leakage Data) :

l

1. Readings indicated by the precision pressure gauges were recorded I and entered into the computer. ,

l j

I

15

2. Readings indicated by the 23 RTDs were recorded and entered into the computer. The computer program calculated the weighted average containment building drybulb temperature by use of a weighting factor that was assigned to each RTD. This value was subsequently converted to degrees Rankine for use in the ideal gas law equation j to calculate containment building weight of air. i
3. Readings indicated by the ten dewpoint temperature sensors were recorded and entered into the computer. The computer program converted the readings to dewpoint temperatures and then calculated the average containment dewpoint temperature by use of a weighting factor assigned to each sensor. This weighted average dewpoint temperature was then converted to a partial pressure of water vapor.

The use of water vapor pressure (P , temperature (T), and the total pressure (P ) is described in more de) tail in Section 7.1.

Data was entered into an IBM AT Portable Computer located at the leak rate instrumentation room. The ILRT computer program utilized for the test had been previously checked with sample data of known results and certified prior to the test. The computer program then calculated the following at 15 minute intervals:

1. Total weight of containment air.
2. Mass point least squares fit leakage rate.
3. Mass point 95% upper confidence level leakage rate.
4. Observed total time leakage rate.
5. Total time mean leakage rate.
6. Total time least squares fit leakage rate.
7. Total time 95% upper confidence 1evel leakage rate.

A plot of weighted average containment temperature, containment total pressure, containment average dewpoint temperature, and weight of air was performed for each 15 minute data set (see Appendix c).

Immediately following the 8.0 hour0 days <br />0 hours <br />0 weeks <br />0 months <br /> leak test, a superimposed leakage rate was established for a one hour stabilization period and 5.0 hour0 days <br />0 hours <br />0 weeks <br />0 months <br /> test period. During this time, temperature, pressure, and vapor pressure were monitored as described above.

l' i

16 i

6.3 TEST PERFORMANCE l

6.3.1 Pressurization and Stabilization Phase Pressurization of the reactor containment building was started at approximately 0530 on May 18, 1987. The pressurization rate was approximately 7 psi per hour. When containment internal pressure reached 50 psig at approximately 1300 on May 18, 1987, pressurization was secured. By 1730 on May 18, temperature stabilization criteria had been met.

6.3.2 Integrated Leak Rate Testing Phase At 1730 on May 18, 1987, 15 minute frequency test data collection was initiated. At approximately 1800 a leak was discovered at a fitting going into H,0 2 Monitor 4410. At this time it was decided to not repair the leak untIl adequate data could be collected and a building leakage rate established. By 2330 on May 19 the mass point leakage rate was at 0.385% by weight per day with an upper confidence leakage of 0.396% per day and slowly increasing. Total time measurements were 0 353% per day with an associated upper confidence of 0.545% per day and also slowly increasing. By 0000 on May 19, 1987, the decision was made to repair the fitting at Monitor 4410 since the leakage rate was still increasing and the addition of type C penalties would put all measured leakages over the acce'ptance criteria.

Following the sequence of events mentioned above, an acceptable leakage rate was obtained from 0115 on May 19, 1987, until 0915 on May 19.

Utilizing the Total Time method of analysis, the measured leakage rate was 0.069% per day and 0.205% by weight per day at the upper bound of the 95% confidence interval. The mean of the measured leak rates based on total time calculations over the last five hours of test was 0.101% by weight per day. Utilizing the Mass Point method, the measured leakage rate was 0.087%/ day with an associated 95% confidence interval of 0.007%

by weight per day.

6.3.3 Supplemental Leakage Rate Test Phase Following completion of the 8 hour9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> integrated leak rate test, a leakage rate of 4.35 scfm was imposed on the containment building through a calibrated flow meter at 0915 on May 19. After a one hour and fifteen minute stabilization period, leakage rate data was again collected at 15 minute intervals for a period of 5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />. With an imposed leak rate of 0.505% per day a measured composite leakage rate of 0.557% per day was obtained using the Total Time method. This results in a containment building leakage rate agreement of 3.4% of L, with the results of the 8 hour9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> test. Using the Mass Point method of analysis, the mcasured composite leakage rate was 0.577% per day, resulting in an agreement of j 3% of L with the results of the 8 hour9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> test. These values are both well within $he acceptance limit of 25% of L,.

17 6.3.4 Depressurization Phase Af ter all required data was obtained and evaluated, containment building depeesurization to O psig was started. A post test inspection'of the drywell and torus revealed no unusual findings.

l R

l t

i

k t-18 7.0 METHODS OF ANALYSIS 7.1 GENERAL DISCUSSION The Absolute Method of leakage rate determination was employed during testing at the 49.0 psig pressure level. The ILRT computer code calculates the percent per day leakage rate using both the mass point and total time methods.

The Mass Point method of computing leakage rates uses the following ideal gas law equation to calculate the weight of air inside containment for each 15 minute intervals g, 144 PV- ,

KP RT 'R Where:

W= Mass of air inside containment, lbm

"~ ~ "'

K= 144 V/R = 7.96199 x 10 g P= .PartialLpressure of air, psia T= Average internal containment temperature, R V= 294,981 ft Ibf - ft I R= 53.35 lbm oR The partial pressure of. air, P, is calculated as follows:

P= P -P T

Where P Total containment pressure T

P = Partial pressure of water vapor determined by averaging the nine dewpoint temperatures and converting to partial pressure of water vapor, psia i

...-.b__-g}s. e_

19 The average internal containment temperature, T, is calculated as

'follows:

=

1 T

I fi iT g The weight of air is plotted versus time for the 8 hour9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> test and for the 5 hour5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> supplemental test. The ILRT computer code fits the locus of these points to a straight line using a linear least squares fit. The equation of the linear least squares fit line is of the form W = A + B, where A is the slope in lbm per hour and B is the initial weight at time zero.

The least squarcs parameters are calculated as follows:

p , N, , ( i i)

( i) ( i)

'xx B = -I II ( II ~ I II ( 1 iI XX Where:

S = N (It ) - (It )

The weight percent leakage per day can then be determined from the following equation:

g ,

-2400 A am B where the negative sign is used since A is a negative slope to express the leakage rate as a positive quantity.

7.1.2 Total Time Analysis The total time method utilizes the following equation to determine the -

leakage rate of the reactor containment building:

3 ,

2400 ,

1 2 t T

_, 2 1_

-20 Where:

' l- = Mtea. red leak rate in weight percent per day t = Time interval, in hours, between measurements' T y,T = Average internal containment temperature, R, at the 1 2

beginning and the end of the test interval respectively.

P ,P = Average. ntainment pressure (corrected for water vapor y 2 pressure) at the beginning and end of the test interval j respectively.

The mean total time leakage rate is derived from the abpve individual total time calculations. The equation for the mean leakage rate is in the form:

g, i i n

Where:

Ly = Individual total time leakage rates n = Number of total time leakage rates The individual leakage rates are then plotted aginst time for the duration of the 8 hour-test. The ILRT cnmputer code fits the locuc of these points to a straight line using a linear least squares fit. The equation is of the form L = L + L y t where Ly is the slope in percent per hour and L is the initial leSkage rate at time zero. The laast squares parameters are calculated as follows:

Ity 2 EL - Etg ILg

~

o S XX It EL g - It TL .  ;

N 1 S f XX

..____ Where:

S = N It - (It )

Y __ _ _ ' _ - . - - _ _ _ _ _ _ _ _ _

+ , I 1

v -

~

)

21 7.2 STATISTICAL EVALUATION 7.2.1 General I After performing the least squares fit, the ILRT computer code calculates the following statistical. parameters:

- 1. - Limits of the 95%-confidence interval for the mass point leakage-rate-(C ).

3

2. Limite of the 954 confidence interval for the total time leakage rate (C ).

These statistical parameters are then used to determine that the measured-g leakage rate plus'.the 95 UCL meet the acceptance criteria.

7.2.2 Mass Point Confidence

.The upper 95% confidence limit for the mass point leakage rate-is calculated as follows:

C M

= 00 t 95 I8A/B)

Where i C = Upper 95% confidence limit M

t 95

SWden a t dstdudon WM N-2 degrees of freedm S

Standard deviation of the. slope of tne least squares fit line B = Intercept of the least squares fit line The standard deviation of the slope of the least squeras fit line (S ) is calculated as follows:

S = s (N)1/2

[N(It g2) -

(It ) )

Where:

S = Common standard deviation of the weighted from the least squares fit line

'N = Number of data points tg= Time interval of the ith data point.

i 22 The common standard deviation (S) is defined by: i I(Wi - W) g , g 1/2 1

)

N-2 Where:

W = Observed mass of air W = Least squares calculated mass of air The ILRT computer code calculates an upper 95% confidence leakage rate as follows:

UCL = L + 2400 t 95 I8A! '

This UCL talue is then used to determine that the measured leakage rate at the upper 95% confidence limit meets the acceptance criteria.

7.2.3 Total Time confidence The 95% confidence limit for the total time leakage rate is calculated as follows:

+1n +

(t - t) 1/2 C = t 88 I(tg - t)Z L 95 Where t = Total time interval It t =

n t

y

= Time interval for each data point n = Number of individual total time leakage rates

_______-.________u

23 8.0 DISCUSSION OF RESULTS .

8.1 RESULTS AT P, 8.1.1 Mass Point Method of Analysis Data obtained during the leak rate test at P indicated the following changes (highest to lowest) during the 8 hour9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> test.

Variable Maximum Change P 0.184 psia T

P 0.017 psia T 0.615 F The method used in calculating the Mass Point leakage rate is described in Section 7.1.1. The results of this calculation is a. mass point leakage rate of 0.087%/ day (see Appendix D).

The 95% confidence limit associated with this leakage rate is 0.007% per day. Thus, the leakage rate at the upper bound of the 95% confidence level becomes:

UCL = .087 + .007

[

UCL = 0.094%/ day Additional leakage rates must be applied to the measured leakage rate at the upper 95% confidence level to account for penetration paths not i exposed to the test pressure and for changes in the net free volume of the containment due to water level changes. Penetration paths not exposed to the test pressure and the corresponding leakage rates based on analysis of minimum pathway local leakage rate testing are as follows:

Minimum Pathway Containment Local System Isolation Valves Leakage Rate (SCFH)

Drywell Drains 1-G16-F003/F004 0 Drywell Drains 1-G16-F019/F020 0 Feedwater (RCIC 1-B21-F032B, O Injection Line B) 1-E51-V88, 1-E51-F013, 1-B21-F010B, 1-G31-F042 j

\

l l

24 1

.f Minimum Pathway Containment Local System Isolation Valves Leakage Rate (SCFH)

Feedwater (HPCI 1-B21-F032A, 0 .

Injection Line A) 1-E41-F006, j 1-B21-F010A 1 Reactor Building 1-RCC-V28/V52 3.515 ]

Cooling Water RXS-SV1222B/C 0 j i

CRD Purge to Reactor 1-B32-V24/V22, O

{

Recirc Pumps V30 j 1-B32-V32/V22, 0.8

]

V30 '

i Recire Sample 1-B32-F019/F020 c 159 ')

RHR Suction 1-E11-F008/F009 0 Reactor Water 1-G31-F001/F004 0.421 i Cleanup The total applicable local leakage rete is 5.095 scfh which is equivalent to a leakage rate of 0.010%/ day.

Water level changes in the containment during the 8 hour9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> integrated leakage rate test are summarized below:

Reactor Vessel Water Level:

0115 5-19-87 198.6 inches 0915 5-19-87 195.7 inches Torus Water Level:

i 0115 5-19-87 -28.0 inches i I

0915 5-19-87 -28.0 inches l During the test, no makeup water was introduced into the reactor vessel.

Therefore, the volume change associated with the change in reactor vessel water level showed an increase in the net free volume of 62.6 cubic feet.

This corresponds to a reduction in the measured containment leakage rate of 0.064%/ day. However, it is conservatively assumed that the water level decrease in the rea'ctor vessel was not lost out of containment and i therefore no change in net free solume occurred.

_ ._ . _ - _ _ _ - _ _ _ ~

l 25 The total containment leakage rate at the upper 95% confidence level (UCL) is calculated as follows UCL = L

  • 95% confidence limit + Type C leakage +

changes in net free volume UCL = 0.087%/ day + 0.007%/ day + 0.010%/ day + 0.0004/ day l UCL = 0.104%/ day This value is well below the acceptance criteria leakage rate of l'

0.37 5%/ day ( .75L,) .

8.1.2 Total Time Method of Analysis The method used in calculating the total time leakage rates is defined in Section 7.1.2. The results of these calculations are as follows:

1. The measured total time leakage rate for the 8 hour9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> test was 0.069% by weight per day.
2. The 95% confidence limit associated with this leakage rate is 0.136% per day. Thus, the leakage rate at the upper bound of the 95% confidence level becomes:

UCL = 0.069 + 0.136 UCL = 0.205%/ day

3. The mean of the measured leakage rates based on the last five hcurs of the test was 0.101 percent by weight per day.

The corrected containment leakage rate at the upper 95% confidence level (UCL) for Type C penalties and changes in net free volume is calculated as follows:

UCL = L + 95% confidence limit + Type C leakage + changes in net free volume.

UCL = 0.069%/ day + 0.136%/ day + 0.010%/ day + 0.000%/ day UCL = 0.215%/ day

26 The total time measured leakage rate, the measured leakage rate at the upper bound of the 95% confidence level and the mean of th'.i measured i leakage rates based on the last five hours of testing are below the acceptance criteria of 0.375%/ day.

Therefore, the reactor containment building leakage rate, based on both the mass point method and total time method of* analysis, at the  ;

calculated design basis accident pressure (P ) of 49.0 psig is acceptable.

l 8.2 SUPPLEMENTAL TEST RESULTS After conclusion of the 8 hour9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> test at 49.0 psig (P,), the flowmeter was placed in service and a flow rate of 4.35 scfm was established. This flow rate is equivalent to a leakage rate of 0.505% per day. After the flow rate was established it was not altered for the duration of the supplemental test. The measured leakage rate (L ) dur.ng the supplemental test was calculated to be 0.577% per day using the Mass Point method of analysis and 0.557% per day using the Totial Time method.

The building leakage rate during the supplemental test is then determined as follows:

Mass Point Total Time L =L -L L =L -L L = 0.577 - 0.505 L = 0.557 - 0.505 Ly = 0.072%/ day Ly = 0.052%/ day Comparing this leakage rate with the building leakage rate measured during the 8 hour9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> tett yields the following:

L -L' I v l.087 - .0728l am = 0.03 Mass Point = .

L, 0.5 L -L' Total Time = am v , l.069- .052l = 0.034 ]

L 0.5 j using the Mass Point  !

The methodbuilding and 3.4%leakage usingrates Totalagree Time within which 3%

are of wellL,below the acceptance criteria of 25%. ,

I i

1 l


___--a

27 6 _

Using the formulation of ANS 56.8-1981,

'(L,+

L,,- 0.25L,) f L, I (L, + b,,+ 0.25L,)

'(0.505 + 0.069 - 0.125) $ L 5 (0.505.+ 0.069 + 0.125)

.c . .

0.449 3 L j 0.699

'Since L was measured to be 0.557%/ day, this value. falls within the acceptable range of 0.449% to 0.699% per day. Therefore, the acceptability of the test instrumentation is considered to have been verified.

8.3 AS FOUND ANALYSIS To determine the as-found containment leakage rate, an analysis was performed to evaluate any leakage savings from repairs or maintenance to containment isolation barriers. Leakage savings are realized when containment isolation barrier repairs or maintenance result in a lower minimum pathway leakage than that which existed prior to the repair or maintenance.

The result's of the analysis are presented in Appendix F. The total leakage savings due.to performing Type B and C tests prior to the Type A test indicates .that the acceptance criteria (L,) would have been excecded due to two penetrations that could not be pressurized.

I 1,

k 1

~

l l

i

)

E

I i

l i

28

9.0 REFERENCES

1. PT-20.5, Integrated Primary Containment Leak Rate Test.
2. Brunswick Steam Electric Plant Unit No. 2 Final Safety Analysis Report.
3. Code of Federal Regulations, Title 10, Part 50, Appendix J.
4. ANSI N45.4-1972, Leakage Rate Testing of Containment Structures for Nuclear Reactors, American Nuclear Society (March 16, 1972).
5. ANS-56.8-1981, Containment System Leakage Testing Requirements, American Nuclear Society.
6. ILRT Computer Code, Gilbert / Commonwealth, Inc.
7. Steam Tables, American Society of Mechanical Engineers, 1967.
8. BN-TOP-1, Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plants, Revision 1, November 1, 1972.

I l

1 l

APPENDICES

\ l

t s

l APPENDIX A SCHEMATIC ARRANGEMENT OF TEST INSTRUMENTATI0iv I

1

-I i

i 1

APPEND 3X A

.u.

SCHEMATIC ARANGEMENT OF TEST INSTRUMENTATION

. ( 3 COMPRESSED ELEY. 93' AlR LN m -

O'- 180'.270' ELEV.i8' 270* 90' 90' I ELEV. 66' 0* 180*

VE E11 F021A ELEV. 54' E TE ort 1

7 8 8 O

- PRECISION E11 270' 90' 0*

PRESSURE F016A ELEV.46*

GAUGES TE.TE TE DPE 9 10 11 4 300* 0* 160* 150' 00R ELEV.16'

    • ~ m TORUS

. -M DR M R ELEV.O'. 4" i i L- - .

_ * ( j O' 90' 150* 270' 0' 60* 120' 180* 240' 300*

TE TEMPERATURE ELDiENT(RTD)

DPE

  • DEWPOLNT ELE.SiENT(DEWCELL) l 1
  • Not used for test i

- _ _ - - _ _ _ - _ _a

l l

i APPENDIX B TGDUCED TEST DATA l

3 1

1 1

I i

I I

DRUNSWICK UNIT I REDUCED ILRT TEST DATA LDATE TIME PAVG PWV TAVG MASS WEIGHT 5-19-87 11D 64.43? 3.4901 C'4. 599 75 55_ . 't i 130 f.4.429 C.4917 84.US1 93S32 09 I l

145 M .126 G.4902 84.,SS? 93FI 1, 0 7 200 64.424 0.4905 81.543 9353_: M 215 61.412 3.4917 .Ed.540 "M ,;

220 64.421 3. qa9~s G4.535 9 '>3; . DS 245 64.123 0.4901 84.535- 7 JS ?:/ 16 3ZO 64.410 0.4e62 84.521 7 3'2 ~.. 8 2

?15 64.415 O.4900 G4.513 U S S; ".. O i 330 64.417 C.4912 84.501 9352,,94 345 64.411 0.493G 84.491 ' P 21.  !

64.409' 400 O.4882 G4 481 9 3S2' . ~.3 415 64.108 0.4895 G4.477 93522.01 4~i a 64.106 0.4094 84.468 '?3322. F2

'445 64.404 0.4905 94.4D3 93517.49

'GO 64.40? 0.4873 34.447 5 3'52;',. 7 51 F. 64.400 C.4GE? G4.441 S N c.,v 530 64.309 Z.4850 G4,391 ?T 51 ?_ . 4 /-c 5-15 64.3)o D.1546 G4.319 c " ! ^ 15 620 64. F 0,4795 84,27F 9351..C2 6JG 64.MS 0.4785 G4.252 93S10.2a 630 64.365 2.4810 G4.231 93514.91 6"3 64.363 3.4706 84.213 755 ' m e- 3 7G0 64.361 2.4G33 04.271 7' ". .1, . ; 1

~s 4. e-.> a , . -ce a.o .,u . n n ,,.,,c ,, mo . 1 ~ .->u e

. r a. .. . e. .a .,

730 M ,35 a 0. 4 7c .3 04.103 "1

, . , .W

,w v,

, , . i 2,. n__.a- v.iI e, m_.

, i 9 4 .1 E-; q- <=..n.~.<., . f-903 64.359 0.479' S4.164  ? 3P1 2 v.

nn .t 4 . .;-.r 4.

e.u s.

ca .1, do c,4 4 .e.ra co..2r.3.% .. . c.1 530 64.350 0.4792 8'.140 93'% E.4.2 S45 6 4. ! *,7 C.4708 84.126 WEDE. ~

937 64.344 0.4764 94.115  ?!510.49 c, 4.ea .e.1. ..4 m n, n . f, i s,,. g 4. 4a '1 t mn.s ac  ;

VERIFICATION TEST DATA

- .4 Lm.s u e 4 . ua a . s, ,, e ar

.v m l. n 6 a, r_ . r _.o = . ,_a

  • 1045 64.317 0.d736. 94.06? 93475.'9 1130 44.313 0.4767 84.Z60 77'471,23 1115 44.307 0.4774 84.060 93467.13 i i

1100- 64.304 0.4771 G4.064 931.f/.13 l 1145 64.297 0.4768 84.047 93454.94 1203 64.293 0.4775 84.370 93446.1G ,

1215 64.298 0.4746 G4.019 93447.02 1230 64 283 0.4755 G4 . 01 '., 'J 4 a D j -'

BRUNSWICK UNIT I

~ VERIFICATION TEST DATA I

DATE TIME PAVG PWV TAVG MASS WEIGHT 5i19-87 1245 64.277 c. 4743 93.997 93435,50-1300 64.273 3.4'765 0".9?2 93426.90 1315- 64.268 0.4751 G3.984 93423.7e 1333 61.264 2.4733 83.985 934:7.40 1345 64.242 0.4755 33 994 93111.7' 1400 AS.259 0.4714 0:f . 999 93435.0; 1415 64.255 0.4755 84.22G 93399,95 1430 64.'252 0.4772 S4.310 93392.23 1445 64.251 3.4769 81.222 93389.57 1500 64.250 0.4776 84.039 93383.3e 1515 64.249 O.4900 G4.Sia tj3375 ee 1530 '64.251 'O.4312 G4,10; 93359.25

?

,i q'

l l

l l

1 l _ - _ -_--- __.- -_-._-------_ - - - -- )

1 1

i 1

I APPENDIX C LEAKAGE RATE TEST GRAPHS 1

8 HOUR ILRT e

- .----..-.___m _._,,______ _

_,__7- - _ - _ _ _ _ _ . _ _ _ _

L% CA3 D= Z -

CC> # co F s.2 u a c#.s

--3 - . . N ".JC -.4 f-iQ

>< os Lro E -* - - cr . - - c.c r.a a t--s -

c::: --i E- e 5::4 Ex."1 -4 N W C A::::  :::::a F.s4 W 5:::::t 1 --

4  % C :s L'C EW C Lr 3 't:lf' E 4 Lll21-4 O C [#N C -- 4 4 E --s C u'*

R1-e C.O A CD E==-4 CD 6-- - C:Z:::

E a--*

w

".C w 0%

E--*

n'

_ f -

,s*

.g.4 -.

8

,.h ~

4 .

n' .

"u,

' ~

.( -

b

ll=

i -.4 -

p p e**

gfg

  • _ _ _ _- -~__

e' - M E --4 D

1:;: '8 -

M q,p *,.,.* -

e N '"**.

,4=ie

3ll C::

osy ---.  %

.c::: */ ,-s-

"llC -

~

s':l>

' ..g - -i-

'. L -

+

m d"*

4~ =o

  • />
  • ' ~ -

s# , e pens &

,an'*"f

  • A'

.d , -

c.:

"* e &p f e" . Lf"lB Ma

. e s- es=*4 a

a. s -4 .** ~

L . s 7.0I W G3 m CD 1.r";s frI A - - -

s-.s N CG c%3 u :s L% -l;iE*.

! "A C'*? C'N1 H C2 f-a4 l ,: Lr7 u :s Lr :s n v B":s 8D" s **") s;lv:> C'".a CN QS crs crw cr. U's its c.s

P-a IJ") W 2l". -

co ess co Os.1La 3 us o- 3 -- N " iC H E 4

> sr. L -- E--s - - cr3 - - M Es.a t- -

C H ClD E- -s M Gr.3 ==-4 M Lt") C 52:~, m Ds 3 tr*.s

I =- <>cE--*\ Z W %C) 2: .% H
":> Lem W ;I E -4 C t#:s W ---4 C l4: - *--*C'*.

i--e CD -- 4 C:t-. u:n 5::24 G E-s C3 lllC s.--4 llIC E--4 4 -

I -

t 1

w a ow 6

I 4

l

+

5

'4.3 2 s,.

2": ,.

b4 -

.'y --

8 e.1 p. _ .y

> f C

-F -: -

M hll _. +4-L' I C

a. 9

=- m, m . ._

C

-. -a->

I ss.

l n

f -

1 A o

eo w a s==s "F -'

M I -

.= _

c t.14 &

4[

N -.-i y

a .1-- e a _a - a s- - a .,

4 CD cc so er:ti N p.=.;g

e - - - . gw Lt*> 't::!* rce q ge g C3 CQ co co cc i s:.;A l v Inff I/I ca b

1" % 1J""> W 2l" -

CC Ca.3 Co Dr.J n oc

=- 1 -=  % 3C -4 !~.z Z g).4 cs c%. r--* - - c 5 - - TE.; Ps.3 E--. -

c H C3 E-4 Z Er 3 --4 (W Lt a C I:r.:l  ::=:2 Ex'l Lrt s ::4 5 -= C CC E -

  • N 3C. ==--4 ' Jt'J Z EW -

o r.r 3 'c8* M E-- e c Lt J *-- a -1 <c ~2:*: .--* -m E==

  • C 3 -4 A 0 0 A C D E--4 C 3 E s--* 3;"l E- a
j. _

. 9 4

u h

.L -_,

g _

2" 4 _

[-==8 - _

.m + - . ..

. s- J _

i

~M .d -@

cr.:l .a _e ra

+l::s .J

>=> i -]..

,y 2

'ud y - '

.> - 4-e=

-% - _, . ws g

=,.

..L Q

_l  !

,4- -

--: p,, a p

t, '

v I-u

_. g,y

.L ..

~

,.,_ W*

= e==4 X f sir, /-

epse <

Lf"a -w

_.'.--4 CC n ., 4 +w.

- t _ L gg g

.e9 CC rw wo uo @ Ex4 -

l i-o - - - - . g W W W m2* w r 5.c 'JJ so i.,o so pa v

W I,#1 11a

!"- e

,01 -

PSD0I0 MI M .

- l

-4  !

.. l l

e.  !
l
.- l

+-  !

-  : I i

%  : l l

! l

_U-1 t

o

_ l

_ +"

- L_

I p

t e"' n I

_ i

~

I r

p

_ I o

-~

.. l

- t

_ +-  !

)

+ I P

(

.~ l r

/[

~.

o i ,

,/ r t s' r I

i

' g A.

g x e

(

l

\ 'i j

o 1, 5 t

\ 4..s !1

- B . . - . - - 2 )

0 R 5 4 3 2 1 E 0

q 0 0

0 T

N E

(

s s

e r

P

E==4 E"w =v--I rw. Z .

CC G CO 1.a4 Lc:s :,,*:n

) 8 -- N . :[-' .,-g E a4

) CT'* CO E s - . s3*, - - m t;za p

$ W *-4 E-.a Z M -1 p.r.J t.t".s C f.c:",  ::: ..3 f.r4 L.r".n

) 5 - -

C c::E---s % lll"4" W '- .:n f ) ll2 ::" lll.~ -i

> EJ"".5 "fi 4 H C2:: LJ' s --a s:%3 <::::: 2lll" w s a s::rs 1G H l'1-4 U".3 A G E==4 CS;E "J"l u -a

. *'"E'; t- a m* e.em t > >

i s .__

e4,e m.m m L - ,

3 y -,.

A l

}

3

> l,.W. f i

3 o

J.

1 m

l. _l n

! 1 -*

I t

i m

$2.,

1 .

T - - O

.p i . .

g e%

.{. - - A

,s'  %#

.T y A j- -! o g

-4.-

.- A .w s"* *M s, ,

s1.s

, f * ,.

~ ~

/ Lg .s ,c.*

+".___- J g g " ' IN Aw JL I A 1. a I - -

g O CO < .a":s  %?' c:sa F.zQ

- - - . . g

  • -4 O CD CSE G '~22 M

v M

M c.s A

{

d 4

5 HOUR VERIFICATION?!

t' i'

Y94 7:9: RE T A13 TgE1E0 OR U E0 D -  : OgT/M3 JC N M3 O55 L7A5I9 AN I I5 T01 P3D0I1 MI -

M T1

. i

+

s_ i

~

+ i

~

+

i

_- i

+

~ i

~

~

e E , 1 M

I i

I _

c -

s + i v t

- o T

H .

  • t l

p G . i I

E

, t 4 .

- n 1

+ i i

S _

~

r p

S i A

M

~ i t

)

o

+

~

P

(

+

s i r

~ o

+ i

~

t i

i

. x

_ i e

- o

' i0 t 3

9 )

M

- Li - .

r . - L 1 R B 0 0 0 0 0 E

, , T L , . ,

0 N 0, 5 0 5 E

f 5 5 4 4 3 3 3 3 3 (

9 9 9 9 9 s

s e

r P

WG W Z -

CO Lf"J CCs E.aG Ls > it.c

-- I -- N JE" H F-sJ

>e cr .T E- * - - Cr = = 5::E:l Ez.3 E-s =

c --4 M E-* fllC; Fa2 ~4 Ca.3 CD C ClC;  ::::1 M CD

. s::s I -- C> a E-* % lMC:7.s  % a: :: Z :sii::l ct>

O Lt> lt".5 4 E-4 CC Ls";s e--* CD ' cZ - 6-- s W L7

'b-sC53 H Clt e a:,o 4::a G E-e r--t Z a-- s lEll Em = -4

%e.,

's

  1. e l

I m

N I

1 M i llIE"l -<

tsn M-

l:b- .. ._ C e::= . I m s 4 -

s.:::::

t

/ +

c:

' N. t ~- -*

. l A a .g. -  %

I

~

o

,e

  • l' A

~

, C:E-e j v T -'~

A o

l mM 9

4'-

e O

_l. _ C53 -4 *

[.;E., CD a a CC;B A s . _a .

.m - E a Fa4 g=ni W -

C s".*

CNE

--4 ClD E34 g--.

T =clt* M* 'cr* W Z co cc co co C*::s M L/1 8/l CLs A

I:2 l

1

T 70 7 N .

85 8

/

E5S M1E _

Y94 T:9: RE T .

A13 TRE1E0 OR U E0 D -  : OAT /M3 JC N M3 O55 LTA5I9 AN I I5 T01 PSD0I1 MI M I1 i

i _

. i

i
i

- i

i E

M i I -

T .- i l

s i i E t R o _

l i

S S

_r i l

p E t R n P

i i

r p

E i Y

A -

~- i t

)

o -

~

i P

(

+ i r

- o .

  • i t
  • - i i

x e

o i0 t 3

A 9 )

I

- . ' . - r '- - 1 R S 7 6 5 4 3 E P . , , . . I 4 4 4 4 4 N 6 6 6 6 6 E

(

s s

e r

P

' I lll>

Y94 T:9: RE T -

A13 TRE1E8 OR U E0 D -  : OAT /M3 JC N M3 O55 LTA5I9 AN I J5 T01 PSD0T1 MI M T1 4 i

- i 4_ -

i

~

= .' i E

N  ; i I

I s .+ T i

v --

E  : i T

A -

R .

E t G o A  :: i K -

- l p

A E  :  !

t L n I

- _ i N + s.. i r

p I

O o P + i t

S _

- )

S * ,  !

A -

P M

s~ -

(

r

  • i s o L

,.s ,

^+-

t i

- x

,+ I e

- - o

~'

' - i 0 t Y ~ 3 0 )

A . - - . - i - 7 1 R D 6 E

/ 9 8  ?

. I 1 0 0

O 0 N E

(

s s

e

~ r P

~ .

~ - - - - - - _ - - - - - - , , , , - _ , _ - - - - , - - - .

r--.

r"=CD L" - 2:" -

coua co I z.4 Lr::cr.s

-- 8 -- N E .- 4 M

>4 Cr*. @ E--* - - Cr=. - - '~4 E s.4 E--* =

c H CO E-- e M N ---4 Ps.3 Cll2 oog m Dr.a c!3 A I -- O c E--* N::E:: es e %r) :2::: 3E::cc:s C u > u-> :3E-4 C Lta - CD a *:c: .--a - tr:s E==4 G ---4 A VJ sl ::4CD E-4 -s "K"" w 3C E- * --4 M M W f

Pa lllIC . _ __

E.""4 tri

> l N

s

~ -

w G

IOC: ...

O

  • a -- -

o X m a l pr.J _ __

Ps3 - -

p

st.

-. g m F= e

... _  :::;n t,,

M g

,4 C

E=** }e - ..- A C A E--* ,a,a v e

A g' *

/

/ . -

/

/ .w

.~ ~ W o.

/..s' Cs. ~

  • "* cv>

G CE;I A e n .

g - R -

3 - ,

N 8lN3 iC.D m s cs 44 X - - - - F.

---I -4 CD C!D 2ll:

Ps:4 v

I/8 t/s C4 Oe

-g--- .- ,

4 APPENDIX D COMPUTER RESULTS e

i 4

ok a 9

4;.

8 HOUR ILRT 4

'.1 3

I

, . INTEGRATED. LEAK Ri4TE TE57 REGULTS

( -by ' G1 LBERT/ COMMONWEAL ~T H 1hC.

P DATE : 05-19-1987 tit 1E : 915 MASS ~ POINT AN AL V S I S TIME- GBS. UEICHT 005, t !I N. CALC.

' INTERVAL ( LEO , LLD )

0 93536.7! 2.67028743315 % 54

.25 93532.09 -1.1989LO218918027

.5' -94534.57 2.221267129010612

.73- 93532.66 1,1S3006976937G31

, .1. '93529.13 1'.52162817513333 1.25 93531.88 '2.071174172193t9 1.5 93529.16 . '190414 0 ~2622S2E2 1.75 93533.82 5.703276669649S43 2- 93525.99- --1.383606203122433 2.25 93522.94 -3.490920935494594 2.5 93522.54 -3.043554087567574 2.75 93525.22 .4897382603612641 3 93522.01 1.' 6832E?2917117 $ a 3.25- 93522.52 .224 %170437828777

.3. 5 93519.69 ~7.10566719505SSD3 3.75 93522.07 .7401361523711114 4 93517.99- -2.515625

'4.25 93516.46 -3.?2010726520'7298 4.5 93514.15 - 4.66'7770304144112 4.75 93521.32 3.033032043782875 5 93518.G4 1.71133439171171a

'S.25 93314.91 -1 3725567603612tA 5.5- 93S16.63 1.199E14007567571 5.75 93514.44 .141G535645G5406 i- C35J5.72 3,56516G783421614 6.25 93514.94 1.943155631350452

6. 5 93512.97 .9139609792774716 6.75- 93522.26 1. 0535255272:a631 7 9~4510.6i . 2G24 4 Gd 75133e:.2% )

7' 25

. 93508.92 . 59050 697 t,93183 : 'c., '

7.5 9350G.19 .479679629d108119 7.75 9351G 18 2.6557G52169162E.5 8 93503.es -1.3109124331SF'34 3

~ WO = 93534.04065006655 LG W1 = ~3.39320939171123 L D / HF. 4 i

LEAKAGE RATE = -G.681013E-02 ". PER DAY UFPER LIMIT OF THE 957. CONFIDENCE LEVEL m 9.113294E-G2 *

.FEF Di-W 11NCLUDES LEAKAGE RATE)

.--_.--------_.--.-------------------------------------J

p, p

1' C h,

.s

( #4 *

  • 1 T C3 T A L. ' -- TIF1E ANAL.YG15 *
  • d' TXs .OBS.-LEAKAGE RATE
. 25 ,,4746799364120147 t ,5: .1050499177169865
J . '75. .1387153695257041

.1. ' .1944423726011G9 1,25 .0991054732103347 1 -. S .129227336792348

'1.75 4.238213717964179D-02 2 .138G 15617"~,529175 -

2.'25 .1570684549351202

'2s5. .145453912947G643

!2.75 .1071528726237099 3 .1237527646G5727 3.25 .10956-18813592171 23.5L .12915G9720G12061 23.75 .10001420/3228449 4 .1200731764825935-4.25 .1222546100139035 4.C .12G6452410245722 4.75- G.474015934524179D-02

~

5' 9.172669041475IS5D'02 5.25 .1065642566381953 5.5 9.366764719746631D-02

-5.75 9.935647905216095D-02 6,

S.973749363742005D-02

-6.25 8.977223932548561D 6.5- 9. 372091519984 G94 D- 6.75 9.2952214775370790-02.

7 .0955602647084259 7.25- 9.,S!4708757091501D-02 7.5 .0975G20071982092 17.75 G 633566839970979D-02 8 9.957654493777507D-C2 LO * .1781996775964832 % PER DAY L1 = - 1. 37092GS6423220aD-O'2 7. PER DAi THE 5 HOUR ME AN LEAID2E RAT E  : .1211985 '

. PER DM CALCULATED LEAKADE RATE- =- 5. 552) O.l E C'2

~

< ~ 24. HRS UFPER. L IMIT OF THE 95% CONFILc1NCE LEVEL = .2046719 ". PER Z.

(INCLUDE 5 LEAKAGE PATE)

> :24 HRS UPFER LIMIT OF THE 95". LCNFILEr.tCE LEVEL = .1129736 % PER LF.Y (INCLUDES LEAKAGE RATE)

+

(.

1'r I $

'l i,

5 HOUR VERIFICATION l

4 r

l l

i 4

_ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ . _ J

4

i. .

k.l JtJTECROTEDf. LEAK RATE TEGT ' .REEULT5 _ ii 1

) 69)GILDERT/ cot 01CNUEnLTJ1 liiC. 3

DrJE1 05-19 1907 TIME
>1S32
      • M t'-h S S . fo O I (14 T A t' I A L V G .I S ***

TJ ME '

ODS.<UEICHT- GCS. ilIN. CALC.

c1NTERVA'c (LB) (LD) h

u, Of 934 53. c G ' '

.1:'16144480512157 i

.25- 93475.79 -2.4 40012173317t:2

.5' 93473.24 . 6.14 3 49512997655G I L c ., 7 5 - 93167.12 .'1221127435070841

'l 93450.12. .l.26034902597340.5 L1.25' 934 S 't . 5 4 +.9243607954540491

.1' , 5 9344d.49 ,

r 1. 66M 97564 934 c 16 1.75- . 93447.02 2.481990465S84017 2i 93440.13 1.21641639110425

~.2 . 2 3 . 93435.82 2.505S29626623684

=2.5 93426.99 '

.697544642851883 2.75 93427,78: 1,716S6850766255 1 3- .

-93417.'4' .75099431C1819831 3.25/ 93411.72 .8962%754873141L3

/3.5- 93405.0L ~,.15016s?20:771499 3.75 93397,93- ,3308340097402E34

.4 93392.24 --1. 74 411525c/7402G3

4.25 933G9.57 1.2096LO4707791S 4 ~. 5 933G3.31 . 51067 37012985.G32
  • 4.75~ 933?5.a -1,329922568191984
5. 033L9.2$ .. 259537337650731 00 = 93433.05120190B05' LC

- W1 a -22.4599S292207?92 LD/HR

L.E(WAEE RATEi = .571342E *

. PSR Dnv

. UPPER LIMIT OF THE 9G7. CGI'FIDENCE L EVE'L " "

..Gil194 ?. W R Da.

'(INCLUDES LEAknCE RATE) l 1

3 i

1

'l I

      • T cst pr.L_ -

TIME A . N f N L.. v' O .T. S 4: WA

' ,,, . - .e; -a. , E. a. . ,. , ,.t.,.. t:

RnTE

. ^5 .3107015650230837 -

.ea . uv ,a; ,a. ,:,

.ca 11w a ,...,G.m 1

.,e ,

.a , arm <., .c .7 ~c o, na,,7 o. 9 9 r 4 .s. l, 1

. c~,3m.I LD471 7 u.a.o o,,,:..

C D 2 2 ? G 7 ',1 5 3 .l

., , m rea . co.7e 1.5 . L rj)2j.77 es r i n;.3. e i tn.

1.75 .5378708136;,567616 2 . 5SG 987 9 fi 50617197

, .e s . s. a , a. a A. i n. .,

. ., . 4c.1l?., ,; ;,, .: '. cs i ..,

.t. .x-l s, ,

. . r:a . ea 6. .aa  !".31. "..T. C. ..) 4. '":n r v.:asa .;.C ~i ,: 4 m,7a 4 a . n va e .,,18 , e,a 14 ,, mrs. , - ,., ,r a, 7 .5572113055161463 3,.25 . G683032672MG5 %

...ea

_w . c...o ,6, o, .c. .

,, ,r. ,, ,l u. i. v, L,,1 m.

y c ~/ 4e u.3. ys. m.ovw.u.1er .

. Iwa . , . a.s FJ..I n..

4 .53691723527S1518 4.25 .

56E,4 8S'.513 4 576 P 4 A.-a , ca ,r1a . -c, c. ,

. :.; ,. % ,.- . n. , ~. ~ .r, 3

  • t e

. ,/ w/ w' C ./ .J L ,T-I.,', w, . A ' ' h k.

e. n m ., n" 4 , 1, .;,

e . '

w 3- 4 . -

i, P e c* . # .J I :/ vs ; .nh.4.1.s .,t "'l

., r ,' 4 4 w 6. a

1. 0 = .31?.923i;O2312797.:  % F ER* D(W

.i s .

. , 6) .,. 2.4 ,,,,,.,z.u

,,,_..u L...4 .

., c... e .c., si r.

THE 5 HOUR MEf..'4 lei^ .!EE RM E = SU;573 . PE:R D A; cp ;Lc., ov m n iu mn . ,. .c. ,,.A. ,r, r:mE rc i 4. .r.c.

. a:c ,. ., . u. . . .;r c. c

- , c,I l.,c ., .: ,J.c ,f; L f ,, L I ,'11,, m e. ec. t.-m.; ._ , ,

s w, r: 7. m;it 4- J, . .. , , . . .., .

.-_ _ s.;. .7. .< ,.

t- - c. ,.s .

o,

. .,. . . L 4'. t . I . i ,.i._

,,.4 C I ..i4L

,.k , . ,a, u, t' y' f .s i..iFu ,/

24 HRG UPTER LIMIT C .- T!:C ^; " . cut !F ::E;'E E LE .'EL .

- . ); ' ! .W / ". PE.F; .

t ll4CLULES L EAGOE I': , TE )

7 1

i i:

s j

l APPENDIX E SUMf4ARY OF MEASURED DATA I

r _ _-. _ _ _ - - - _ _ __ ___ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

I'

.a l

4 4

i i

l i

l 8 HOUR ILRT i I

4 m

I

/

l 1

+

9

7. <

t

SUMMARY

OF ILRT MEASURED-LATA CLIENT : CP&L-

- PL A14T ' SITE : ' BRL8MSW I CK -

. UtJIT ~ n 1 READItJC TAKEN'AT title PERIOD-:

115 DATE t . 00-19-iciG7 RTD 1 91.55 R1 D 16 87.57-RTD 2 91.62 RTD -17' 87.05 RTD 3 94.23001 RTD- 10 86.62

.RTD 4 94.51999- RTD 19 78.78

RTD 5 09.46 RTD 20 '80.51.

.RTD~ 6 89.12 HTD 21 G0.39 RTD 7~ 88.55 RTD- 22 80.13 RTD RfD 23

-t- G G7.98001 79.99 RTD. 9 83.26 RTD. 24 79.79 RTD 10 87.39 RTD 25 0

'RTD 11 188.45 .RTD 26 0 RTD 12 97.29 RTD 27 O RTD 13 86.9 RTD 20 0 RTD 14 G7.93 RTD 29 0 RTD 15 86.39 RTD 30 B l

-THE AVE RTD'WITH WEIGHTING-FACTORS IS = S4.04865 IN F

= 544.2886 IN R PRESS 1 44.43299 PRESS 2 64.43215

' PRESS 3- 0

-THE AVE PRESSURE IS = 64.432S7 PSIA DEWCELL3 tJERE CON'.'ERTED TO DEWPOINT

'DEWPT 1 89.10093 DEWPT 6 G1.0024 DEWPT 2 '82.95'115 DEWPT 7 77.99026 DEWPT 3 83.19201 DELJPT S 68.50100 DEWPT 4 81.90639 DEWPT 9 74.42007 DEWPT 5 80.G3431 DEWPT 10 77.90205 THE' AVE DEWPOINT WITH WEIGHT 1HG FACTORS IS = 75.9E873 THE PWV IS = .4901228 P6IA

.,_ THE" MASS NEIGHT'IS = 93536.7109375- LOM

- ._.___.______1_______________---____m

1 SUMtlARY DF ILRT I'iEAGURED' DATA 1

' CLIENT : CP&L PLANT SITE :

'DRUNSWICI'

' UNIT 1-READING TAKEtJ AT TIME PERIOD : 130 DATE : 05-19-1987 RTD 1 91.53 RTD 16 87.55 RTD' 2 91.57' RTD 17 G7 RTD' 3 94.25' RTD 18 86.58999 RTD 4 '94.54 RTD 19 78.94 RTD 5 89.47 RTD 20 80.49 RTD '6 89.12 RTD 21 80.37 RTD 7. 68.54 RTD 22 80.12 RTD 8 88 RTD 23 79.89 RTD 9 38.23001 RTD 24 79.8 RTD 10 87.35 R fD 25 0 RTD 11 88.45 RtD 26 0 RTD 12. 8 ~7. 25 RTD 27 0 RTD 13 86.87 .RTD 28 0 RTD 14 G7.G7 RTD 29 0 RTD 15 86.36 RTD 30 0 T}lE AVE RTD tJITH kEIGHTI!1G FACTOR 5 IG * .G4.SE066 IN F

= 544.2727 1N R PRESS 1 64.42923 FRESS 2 64.42845 PRESS 3 0 THE AVE FRESSURE IS = 64.42583 PSIA DEWCELLS WERE CONVERTED TO DEWPOINT DEWPT 1 88.97114 DEWPT 6 81.3872 DEWPT 2 82.95715 DEWPT 7 78.E._142

.DEWPT 3 82.56775 DEWPT 8 69.47389 DEWPT 4 91 50498 DEWPT 9 '74.55454 DEWPT 5 80.7G052 DEWPT 10 77.87596 L

L. THE AVE DEWPOINT WITH WEIGHTING FACTORS IS = 79.0841

.. THE PWV.IS = .4916584 PSIA THE MASS WEIGHT IS = 93332.0859375 LBt1

J f

SUMMARY

'CF ILRT 11EASURED DATA CLIENT. . CP3<L FLANT SITE : BRUNSWICZ

.' . UNIT : 1

' READING TAKEN AT tit 1E PERIOD  : 145 DA'lE ' 05-19-1987 i

RT D ' l 91.49 R1 D 16 87.51

-RTD 2 91.56 RTD 17 E6.97 RTD 3 94.24 RTD 18 86.54.

RTD 4 91.55 RTL 19 79.15 RTD 5 G7.45 RTD 20 80.48001 RTD 6 89.12 RTD 21 GO.36 RTD 7 88.51 RTD 22 60.1 RTD B' 87.93 RTD 23 79.37

, RTD 9 88.2 RTD 24 79.78 RTD. 10 G7.33999 RTD 25 0 RTD~ 11 88.42 RTD 26 0 RTD 12 , S7.19 RTD 27 0' RTD 13 86.8 RTD 2G 0 .

MTD - 14. .G7.83999 RTD 29 0 RTD. 15- 86.33999 RTD- 30 0 THE AVE RTD WITH WEIGHTING FACTORS IS = 84.5532i IN F

= 544,2433 ~ 1N R PRESS l' 64.42622 PRES 5 2 64.42548 FRESS 3 0 THE AVE PRESSLIRE IS = 64.42585 PSIA

. DEWCELLS WERE CONVERTED TO DEtJPOINT DEWPT.1 89.03294 DEWPT 6 80. E:881 DEWPT 2 83.31543 DEWPT 7 18.11801 DEWPT'3 82.40086 DEWPT S 68.46031 DEWPT 4 81.85695 DEWPT 9 74.56126 DEWPT 5 G1.00913 DEWPT 10 77.90285 THE AVE DEWPOINT WITH WEIGHTING FACTORS IS = 78.9931 THE PWV 15 = .4901925 PSIA THE MASS WEIGHT IS = 93534.5703125 LDM

. .]

w__-_________ __ _ _ b

.: +.

I i

EUMMARY OF ILRT t1EASURED C ATA H CLIENT.: CP&L

. PLANT' SITE :

BRUNEWICK

. UNIT. . 1 READING'fAKEN AT. TIME PERIOU : 200 DATE': 05 19-1987-- .. j

?

'RTD 1- 191.47 RTD .16 87.49 ,.,

'RTD 2. 191.54 RTD 17 86.96 i RTD 3 94.26 RTD 18 -86.54 RTD.~4 94.56 RTD 19 79.36 ,,

.RTD 5 89.42 RTD 20 '80.47 '

I

-RTD 6 69.07 RfD 21 S0. '3S RTD 7 88.491 '

RTD' 22. 80.1 j RTD 8 87.96 RTD' 23 -79.SS- I RTD 9. 89.,19 RTD 24 79.75 <

RTD 10 Er7. 31 RTD' 25 0 RTD 11 68.39 RTD 26 0 RTD. 12 G7.2 RTD 27- O' RTD l'3 86.81 RTD 28. O RTD 14 87.83999 R'l D .29 O RTD 15- 86.33 RTD 32 0 THE AVE RTD WITH WEICHTING FETOR $ 1E- n -84.543 1N-F 1

' - S44.2331 IN R . l

.p.

I}

PRESS 1 64.42396- . PRESS'2 64.42325 PRESS 3 0 ,

THE AVE PFE55URE 'IS.m e4.4236 PSIA.

DEWCELLS WEFC CONVERTEC 10 MJPO I NT

.DEWPT 1 80.9G351 DEWPT 6 SO.G1414 DEWPT 2 83.37745 DEWPT 7 78.4004 DEUPT 3 82.61101 DEWPT E 68.4535 DEWPT 4 82.02383 DEWPT 9 .74.95123 DEWPT'5' EO.65277 DEWPT 10 77.88941  ;

THE AVE DEWPOIt4T WITH WEIGHTING FACTORS IS = 79.0693 'i THE PWV IS = .4904534 PSIA n

l THE MASS WEIGHT IS.= 93532.65625 LDM

g _ .

i 7 Y'

y{[

, EUMMARY CF ILRT MEASURED ~ DATA' CLIENT 4 CP&.L

- PLANT. SITE : BRUT 45 WICK

-UtIT : 1 READING TAKEN' AT T IriE PERIOD :

215 .DATE . 05-19-1987 i

l i:

RTD 1 91.46 RTD 16 87.48001 RTD 2 91.53 RTD 17 86.97 '

RTD 3- . 94 a 2679'? RTD 18- 66.51999 RTD 4~ 94.55 RTD 19 7 9. /!

RTD - 5: 39.43 RTD 20 80.47 RTD- 6 .G9.1 RTD 21 EO.34

-n RTD 7 '89.49 RTD 22 80.09 RfD G G7.98001. RTD 23 79.G5 RTD 9 83.19 RTD 24 79.75 RTD '10- 87.33 RTD -25 0 RTD 11 G8.43 RTD 26- 0 RTD 12 97,19- RTD- 27 0 RTD 13 86.79. RTD 28 0 RTD 14 87.83999 -RTD 29 0 RTD 15 86.33999 RTD 30 'O Tile As'E RTD WITH WEIGHTING FACTORS :IS =' G4.54046 IN F

= 544.2305 1N R PRESS 1 64.42246 FRESS 2 64.421'77 PREGS 3 0 I

.THE AVE PRESSURE.IG = 64.42211 FSIn DEWCELLS WERE CONVERTED TO DEWPOINT DEWPT 1 88.760'19 DENPT 6 B1.25121 DEWPT 2- 83.23528' DEWPT 7 '78.31972 DEWPT 3 83.24146 DEWPT O 68.33119 DEWPT'4 81.86212 DEWPT 9 74.64195 i

DEWPT 5 80.87465 DEWPT 10 '77.88268 THE AVE DEWPOINT WI1H WEIGHTING FACTORS IS = 79.00528 l THE PWV IS = .4916772 PSIA I

l' THE MASS WEIGHT IS = 93529.1328125 LBM

____________.___________________U

w .

l . 1 m 7 1 l

1d n . .

SUMMARY

.OF ILRT MEASURED-DATA  ;

1 J

CLIENT-: CP&L- ,j

- PLANT SITE : .DRUNSUICK lj c . UN I T .. : _1  !

1 READING TAKEN AT TIME PERIOD : 230 DATE : 05 i ciG7 I l

LRT D ~ 1' 91.,45 RTD 16 G7.48001 RT9 2 91.51 RTD 17 86.97.

RTD '3  %. 29 RTD 18 86.51999 RTD 4~ 94.55 R FD 19- 79.4

'RTD .5 09.43 RTD 20 90.46 RTD 6 G9.1:1 RTD 21 80.34 RTD- 7 88.5 RTD 22 80.03 RTD- 8 ,E7.94 RTD 79.84 RTD 9: .88.13 RTD 24 79.'74 4

R TD- 10 87.31 RTD 25 0 RTD 11 88.39 RTD 26 0 RTDJ ;12 87.19 RTD 27 0

- RTD .13 .G6.8 RTD 28 0 RTD: 14. 37.82~ RTD 29 0-RTD- '15 56.36 RTD 30 0'  !

-THE (WE' R1 D WITH ' WEICHTING FACTORS I S' '~ 64.57501- IN F-

= 544.2251 IN R

]

' PRESS 1 64.42095 PRESS.2 64.42103 PRESS 3 0 THE-AVE PRESEURE IS = 64.42099 PSIA DEWCELL S WERE CON'XRT ED 10 DEWPOINT DEWPT 1 GG.7424$ DEWPT 6 CO.84776 CEWPT 2 83.20438 DEWPT 7 78.4S107 DEWPT 3 R2.679 DEWPT 8 60.4535 DEWPT 4- 81.49227 DEWPT 9 74.50747 DEWPT 5 60.7133 DEWPT 10 77.88941

'THE-~ AVE DEWPOINT WITH WEIGHTIN3 FACTORS 15 = 78.93845 THE PWV IS = .4693145 PGIA THE. MACS: WEIGHT IS = 93531.8228125 LBM

'.s

a SUMMAR OF ILRT' MEASURED DATA CLIENT : ' CP8<L:

' PO4NT : SITE': BRUNSWICK UNIT': 1.

READING TfEEN ' AT TIME PERIOD : 245 DATE : 05-19-1987 1

-l 1

RTD .1 91.41001 RTD 16 87.4G001 RTD- 2 91.48001 RTD 17 86.99 RTD 3 94.25 RTD 18 86.51999 RTD 4 94.56 RTD 19 79.31 RTD 5 89.42 RTD 20 80.44 i RTD 6 G9.12 RTD 21 60.33 RTD. 7 88.5 RTD 22 90.07 RTD 8 8'/ . 9 RTD 23 79.P3 RTD '9.

88.18 RTD 24. .79.73001 RTD 10 87.'3 RfD 25 0 RTD 11 88.35 R fD '26 La RTD l12 97.19 RTD 27 0 RTD' 13 86.81 RTD 28 0 RTD 14 , 87.85 RTD 29 0 RTD- 15 86.46 RTD 30 0 THE AVE RTD-WITH WEIGHTING FACTORS IS = E4.534E9 ' I!4 F

= 544.225 IN R PRESS 1 64.42021 PRESS 2 6 'l. 4 1 9 5 4 -

PRESS 3 .0-THE AVE PREESURE .IS = 64.41985 PSIA l

1 DEWCELLS WERE CONVERTED TO DEkiPCINT  !

DEWPT 1 88.60!-47 DEWPT 6 80.9G895 DEWPT 2 G3.14875 DEWPT 7 78.36006 DEWPT 3 83.13638 DEWPT 8 68.43311

'DEWPT 4 82.04856 DEWPT 9 74.53436 DEWPT 5 80.64605 DEWPT 10 77.66251 1

THE AVE DEWPOINT WITH WEIGHTING FACTORS IS = 78.98629 i THE PWV IS'= .4900826 FSIA THE MASS'WEICHT.IS = 93529.15625 LBM a

e

E '5UMMARY.OF ILRT t1EASURED DATA H

t CLIENT 's CP&L PLANT ~ SITE : CRUNSWICK UNIT': 1 READING,TAKEN AT. TIME' PERIOD : 300 DATE : 05--19-1987 o

RTD' 1 91.38 'RTD 16 87.48001

'RTD 2 91.45 RTD 17 56.97 RTD 3 94.29 RTD 18 .86.51999

RTD' 4 94.53 RTD 19 78.98001

'RTD 5 ~89.42 RTD -20 80.44 RTD 6 89.07 RTD 21 80.31 RTD- 7 88.5 RTD 22 80.06 RTD 8 87.93 RTD 23 79.81.

RTD 9 88.18 RTD 24 79.72 RTD 10 87.3. RTD 25 0 RTD 11 88.39 RTD 26 0 RTD 12 87.18 RTD 27 O-RTO 13 86.81 RTD 28 0 RTD- 14 87.81 RTD 29 0.

RTD -15 86.39 RTD 30 C.

THE AVE RTD WITH WEIGHTINO FACTORS IS = '

G4.52136 IU F '

= 544.2114' IN R PRESS 1 64.41795 PRESS 2 64.41731 PRESS 3 0 THE AVE FRESSURE I 5 c. 64.41763 PSIA

, DEWCELLS WERE CON'XRTED TO DEWPOINT DEWPT 1 88.67446 DEWPT 6 GO.2292 DEWPT 2- 83.1611 DEWPT 7 .78,2861 DEWPT 3 81.84458 DEWPT B 68.54185 DEWPT 4 81.70243 DEWPT 9 74.00075 DEWPT 5 80.67295 DEWPT 10 77.83563 THE AVE DEWPOINT WITH WEIGHTING FACTORS 15 u 78.74634'

.THE PWV IS'= .4862366 PSIA

. THE'HASS WEIGHT IS = 95533.8203125 LDM

n.

.):

1 SlS4 MARY DF'ILRT f4EASURED DATA j

JCLIEfjT. : CPEL' PL;^NT GI T :

-{

DRullSWICrs UNIT:: 1 READING TAKElJ AT TIfdE PERIOD : 315 DATE : 05--19 1907 RTD 1 91.36 RTO 16 87.47 RTD 2 91.43 RTD 17 86.9S

  • RTD- 3 94.26999 RTD 18 86.5  !

RTD 94.65 R FD 19 78.97 RTU 5 89.42- RTD 20 80.43 I RTD 6 89.07 RTD 21 80.31 RTD 7 88.48001 RTD 22 80.06

'RTD 8 87.94 R TD 23 79.81 RTD' 9 88.16001 RTD 24 79.71 RTD 10 87.29 RTD 25 0 RTD 11 88.4. RTD 26 0 RTD 12 87.38 RTD 27 0 RTD 13 86.78' RTD. 28 0 RTD 14 -87.81= RTD 29- 0 RTD 15 86.37 RTD 30 0 THE AVE RTD WITH WEIGHTING FACTORS IG e 94.51283 IN F . . .

= 544.2008 IN R PRESS 1 64.41495 PRESS 2- 64.41509 PRC.SS 3- 0 THE AVE PRESSURE IS = 64.41502 PS1A DEt1 CELLS WERE CONVERTED TO DEWPOIN'l

-DEWPT 1 G8.55G84 DEllP r 6 81.01585 DEWPT 2 82.76553 DEWPT 7 7J.04405 DEWPT 3 82.46648 CEWPT 8 68.51467 DEWPT 4 81.93111 DEWPT 9 75.00501 DEWPT 5 80.773G1 DELJPT - 10 77.88268 THE AVE DEWPOINT WITH WEIGHTING FACTORS IS = 78.98387 THE PWV I S :- .4900441 PSIA THE MASC WEIGHT.IS.= 93525.890625 LDM

Sulil1ARY OF ILRT T1EASURED DATA CLIENT : CP&.L PLANT SITE : DRUNSWICK UNIT : 1 RLADING TAF.EN AT TIf1E FERIOD : 330 DATE : 05-19-1987 l

l 1

RTD 91.33999 RTD 16 87.16 i RTD 2 91.43 RTD 17 86.94 I ATD 3 94.28 RTD 1G 86. 4 'r RTD 4 94.54 RID 19 79.60 RTD 5 89.41001 RTD 20 a0.42 RTD 6 89. W/ RTD 21 G0. "?

RTO 7 88.47 RTO 22 80.04 RTD 8 8'7.91001 R fD 23 79.G RTD 9 88.16001 RTD 24 79.7 RTD 10 87.29 RTD 25 6 RTD 11 88.41001 RTD 26 0 f:T D 12 87.17 RTD 27 0 RTD 13 86.78 RTD 28 O RTD 14 87.79 RTD 29 0 RTD 15 86.35 RTO 30 0 THE AVE RTD WITH WEIGHTING FACTURh I E .= 84.50.l26 IN F w S44.1912, IN R PRESS 1 64.41269 rRESS 2 64.41286 PRESS 3 0 THE ,WE PRESEURE 15 - J:4 . 4 1 2'/ 3 FEIA DENCELLS NERE CONVERTED TO DEUPOINT DEWPT 1 88.12721 DEUPT 6 51.31921 DEWPT 2 82.96332 DEWPT , /8.1449 DEWPf 3 32.53685 LENPT 8 e.,S . 5 6 2 2 3 DEWPT 4 Gl.51081 DEUPT 9 731.79659 DEWPT 5 86.95534 DEWPT 10 77.35579 Tile AVE DEWFOINT WITH WElGHTING FACTOR 3 lb u 39.05!8 THE FWV IE r .4911698 PGIA THE 11 ASS WEICHT 13 = 93322.937", LOM

SUMMARY

OF ILR f r1EASURED DAT A CLIENT : CP&L PLAf4T SITE : E:RUNSW I CK UNIT 1 READIt:0 tab.EN 4f TIrtE PERIOD : 345 DATE : 05 i cia 7 RTD 1 vi.J1 R1D 11 97.46 R fD 2 91.41k21 RfD 17 86.93 RTD 3 94.3 RTD 18 86.45001 RTD 4 94.57 RTD 19 77.3 RTD $ 69.4 Rl D 20 80.4 RTD 6 59.06 RTL 21 G3.27 RTD 7 88.47 RTD 22 80.34 RTD 8 87.93 RTD 23 ~9.77 RTD 9 88.11001 RTD 24 79.69 RTD 10 C7.28 RTD 25 0 RTD 11 88.18' RTD J% G RTD 12 87.1G RTD 27 0 RTD 13 96.76 RTD 28 0 RTD 14 87.79 flTD 29 0 RTD 15 86.33997 RTD 30 0 THE AVE RTD WI TH WEICHTING FACTGF S 15 = G1.491.x IN F

= 544.1C11 IN R PRESS 1 64.41119 PRESS 2 c4.41063 .

1 PRESS 3 0 i l

THE AVE PREESURE IS 54.41091 FSIA DEWCELLS WERE CONVERTED TO :EWPOINT DEWPT 1 GS.38196 DEWPT 6 81.4428' I DEWPT 2 G2.9077 DEWFT 7 78.23231 DEWPT 3 82.15981 DEWPT 8 68.43311 DEWPT 4 02.00528 DEWPT 9 ~ 4 . 65'71 DEWPT 5 80.55193 DEWPT 10 77.G2218 THE AVE DEWPOIt1T WITH WEIGHT IllG FACTORS IS = 19.02 Tai THE FWV IS = .4907781 PSIA THE MASS WEIGHT IS = 93b22.53906CS LBM

.f .

,E

-g;

SUMMARY

. 'CF ILRT MEASURED DATA CLIEllT: : .CP&L PLANT SITE : BRU145 WICK UNIT : ~

READING TAKEN'AT TIrlE PERIOD': 400 DATE : 05-)7-1967~

RTD 1- 91.29 RTD 16 87.44 R TD- 2 91.39. .RTO '17 G6.93 RTD 3 94.25 RTD 18 S t.,. 4 8 0 0 1-

'RTD 4' .94.57 RTD 19 79.36 RTD 5- -G9.38: RTD 20 50.39 RTD 6 89.05 RTD 21 83.26 RTD 7 88.44 -RTD 22 80.02

.RTD G 87.9 RID 23 79.78 L RTD- 9 88'13 RTD 24 79.68 RTD 10 97.26999 RTD 25 G RTD 11 88.35'- RTD 26 0 RTD 12 87.16001 RTL 2;7 'a RTD.1 13: 86.74 RTD 28 0-

'RTD 14 87.76999 RTD 29 0 RTD 15 86.38 -RTD 30 0 THE AVE RTO WITH iEIGHTING FACTORS IS.= E4.4G121 .IN F

= 544.1712 Ilj R PRESS 1. >64.40894 -PRESS 2 64.40915 PRESS 3 0 THE AVE PRESSURE IS ' 64.40905 PSIA i

I DEWCELLS WERE CONVERTED TO DEWPOINT' DEWPT 1 88.38396 DENPT 6 80.67295 i DEWPT 2 03.62468 DEWPT / /8.3331S DEWFT 3~ 82.15363 DEWFT 3 68.55545 DEWPT 4 81.887G4 DEWPT 9 74.64195 DEWPT 5 80.49142 LEWPT 10 77.82218 THE AVE DEWPOINT WI1H WEIGHTING FACTORS IS = 78.87143 THE PWV IS'= .4G82!G6 PSIA THE MASS WEIGHT IS = 93525.2265625 .LBM

'VT r j

~

s.

5UMMARY OF-ILRT f1EASURED' DATA J,

Cli1ENT : i CPfxL .

1 PLANT SITE : BRUNSWICK '

- UNIT : 1 l

l l

' READING TfXEN AT TIME PERIOD : 415 DA~lE : 05-19-1987 'l

l. :

RTD- 1 91.26 'R1D 16 87.44 RTD 2 91.33999 R fD' 17 86.93 RTD 3 94.26999' RTD 18 86.48001, RTD 4 91.55 RTD 19 79.4 RTD .5 89.39 RTD 20 80.39 RTD 6 69.05 RTD 21 EO.26 RTD 7- 88.45 RTD 22 80.01 RTD 8 87.95' RTD 23 79.78 RTD 9 83.14 RTD 24 79.68 RTD 10 87.25 RTL 25 0 RTD '11 88.37 RTD 26 0 RTD 12- 57.15 RTD 27 0

[RTD 13 86.74 RTD 28- 0-RTD _14 87.76999 RTD 29 5 RTD- 15 86.33999 RTD 30 0 THE - AVE RTD WITH UEIGHTING F ACTORS IG = G4. 4 /cJa i ' IN'F

7 e=~ $44.1668 IN N k

PRESS Il 64.40743 PRESS 2 .64.40766

. PRESS 3 0 THE. AVE PRESSURE IO v 64.40755 FSIA DEWCELLS WERE CONVERTED TO DEWPOINT

',DE WP T 3 88.40249 DEUPT 6 81.2553 DEWPT 2 82.99425 DEWPT ? 77.9/1992 DEWPT 3 '82.56775 DEUPT B 68.49427 DEWPT 4 -31.72715 DEWPT 9 74.59488 f i

DEWPT 5 e0.5653e DeWeT 10. 77.a02 4

THE' AVE DEWPOINT WITH WE1GHTING FACTCRS IS = 78.9476';;

THE PW'd I S = .489461 PSIA L l 1

t THE' MASS WEICHT IS = 93522.0078125 LDM S

s  :.g

[EUMliARY--l0F'1LRT hEAGURED DATA.

? CLIElJTL : CP&L'

...  %.' PLANT SITE::

BRUf jSWI CK .

- . ~ .UM I T 1: ,

p ,

i READING ' TAKEN AT : TIME -FERIOD : A30 DATE : 05-19-1987 RTD-- 1- 91.24 RTD 16- 97.44 RT D 12 91.33999 RTD 17 E6.92.

RTD 3 94.26999 RTD 18 86.46 .j '

RTD  ; 4 94.54 RTD= 19 79,57 RTD $ 89.37 RTL 20- 80.38 RTD- 6 89?06 R1D' 21 E0.25 RTD 7' '88.45 R1D' 22 80.01

-RTD -S 87. 9 R TD 23 79.76

'RTD-19 88.14- RTD 24- 79.66001 .I RTD 10 G7.26999 RTD 25' 2,  ;

'l RTD l 'l - 88.37 RTD 26 - 'O RTD :12 87.14 R[D 27 .0 RTD 13 86.72 RID.-28' 0 -

RTD ?i4 87.79 RTD 29 0 RTD '15- S6.33999 RTD 30 0:

THE AVE RTD-WITH WEIGHTING FACTORS IS = S4.46E06 IN F

= $44.1581 1N R

~

' PRESS 1- 64.40S93 PRESG 2 -64.40618 PRESS 3 0 THE. AVE FREESURE IG m 64.40605 . PSIA l

l DEWCELLS WERE CONVERTED TO DEWPOlitT DEWPT 1 GG.32832 DEWPT 6 EB.894G2 DEWPT 2 G2.9695 DEWPT'7 7'7.9153 DEWPT 3 82.96332 DEWPT G 6G.49427 DEWPT'4 81.6158G DEWFT 9 74.53436 1 DEWPT 5 80.78052 DEWPT 10 '77.80873 L

l THEJAVE DEWPOINT WITH WEIGHTING FACTORS IS = 78.88353 l .THE F'WV 18 n .4884332. PSIA i }

'f a-

p

, THE. MASS WEIGHT 15 = 93522.8203125 LBM i

L; I ,

__.____._______J

&,Ma.-

4-Mw:@ gp m ..  ? M. Y.j yx,a  ;

h y m: g, W W ;cicFL W MM , 1 W :.4o <.

&v , ,o 4m s, 1

% ~ ' '

'b Wh Gi?)$O&<$,$$NgWn kk h,;  ?, gjg N

u<m<3; . Y:+W ,'

? b '

a rwa <\\

nahkh j / bi n# #p .

k y ~

p #

g; aw , p'g'1p fj ugql4; t

g;L ar

, 4'gn- %- ,

, r 4

[b_q . ym ,m", .< ',

1 4 4

5

, c a_

a > .

m

f u my me .e ,

, , u; , - ,1

.d. my...

e

.:4.%.

w _w h 2/

m ,. . x,

y.  !. -1 CMg v SM%n r ~%Mn , Mg J

SUMMARY

lCFl!jlLRTP, MEASURED?DATAl" , 'N W

W;% n%,g;i vc - a.; 2.JM.c wa c ,

a . fcy -  ;

1 . . .

3;rCLIENT)en4D, . . SCP&L,.1, ,.i p q 1

.-:E '

T ' O q s y  %- H' Rgh yMp%OCANTiG17E.L.3

  • F

-7

" TBRUNSWICK, A

^

r. ~
  • ,F*'

- M .- i' s

  1. -U NIT 3': A -11' 'v ();l 1

^

m- > -

  1. g<

"95<

w  ;;.

.p

- ~

r l; ... j c

, w; ,

b r cy ;p[%beu.. , ,,. ,
..# ',M /

3

, y. r. .p. a> . .

g

.m 3g ~

....=_..g .e ,

. . , e .

@d. ;, -..Dc A m y$ 'y4 READINGJTAKENZATfTIME',PERIODit] o1 -

'a 3.g < u < , ,'

4 - <-

(445l'DATE if05-19-1987 gh Q1 . q 4:,.-Q m .t i

.i o.s , w. : , 4,

'g 3 i

'j m ,qrg p g, f,; & -

s

< a. s.

);'

c i

, , ,, , # q. , 7 ns 1 ,

,  ; . k

Me S 4 .L. ,.. .> f On 7 . , . . -

,y. s

^9 TRTD ji? 591.'22; i RTD'L16'> J97.41601' Y M, ,

g:% On,f.h l . @...  ?

?IRTD M. 2, -9173".' '.' '

RTD.111 66.9 , ' l f.9.4.28 :RTD' .18 : 86,45

p. @ s s+-

ih[Wg 'g.!RTD;13ym

RTDIE4.' a. 194.l55L RTD 11 9 79.09 .

A Mn , 1;' 3 LRTO J i5, ,.89.39 , 2RTD1.20 .80.36 4

<y 4 p '

,(RTD,J ,6a , G9. 06' . ,  ;RTD 21 '. 380.24- ]

X+ t ;m& , h ,

, FRTDex7? '

188.'44?' .RTD .22- 79.991 J A , "g" 4 ,

RTD: 23:

ya .RTDLJi. ,..IG7787 ~ .

79.75-

,W.f , .

1RTD.M9o 88.13: ' RT Di 24 '79."66001

* !RTD M10L T 87.24 c TRTD]~25L 0
d

@4: @G E DA J W]f , : # ,

RTD)ill? x88.35; ' ,RTDL '26L .' O . :l

.i

  • l < t (RTD: 112?- :07.12C RTD . 27* 'O .
w. .c t, V.w.r~

c*.

'RTDt e 13,.L 4.86.69 .

,ERTD: 28 0! -

.ii

,',RTD1 11 4 .. ^ '

,m 4 < sv

, . G7 E74 RTD.29 -0; <

S 8o, , t Y wV, '"MTD: til j.86.361 ,.

c

RTD. 30- OL

%m: , -m M. 3 i ,v.. c 57- ,:

s , ..

< > .h.. . ,

p' 1, y ,' l Nji ... . :;; . 4 9 t

f ',-

.. n

~THE' AVE <RTDlWITH WEIGH' TING JACTORS-IS 4' t i

' ~ '

1/.45319 s $44,1432 11N R:

IN F' yf E.D / ;f N # ~

q, y 1

..s 3.t Q ' y -g; .w '

q! ' s

, 4 o

N x.. y . . >

A,i;. }-',

< ,M . _,<

}!

gg p s a. ,

,p gts s ti 64~.40367-

. PRESS 2 64.40396- u a.. , iPRESS?31:0 p,3,. ,

WM,k?

g r 1

,, s ,. .

F c' ,

+ y @ d g., ', .i Hi VE PRE 550RE'IBL= -

64.40361; PSIk l g,'pi n i e L, + -

'l -

.Q v >

y ,

j m 6J-t o

4c . . ,

i g44%::W. - , !DEWCELLS!WERE~ CONVERTED 410 DEWPDINT- )

, .)

n *v . .

7K..,

.L '.

. DEWPTL1~ 88.25416. DEWPTz 6 81.3254-

  1. e%m , , ,

, .DEWPTT2- 83.09313 ' DEWPT: 7? 79.60883 Y4  : EDEWPT!3- '82.09181? DEWPT:S 68.48069 1 W --DEWPT+4: =81.62825- DEWPT 9 74.66212 W[b 1N ,

.J

' s D E W P T .: 5 > C.G0.61916

'DEWP.T'10  : 77.79528' ,

/' , I-I A  :, [ 'y ".

.;y ' ;o  ;

y > 1,, .,

M

.->t

+

THE AVE DEWPOINT WITHLWEIGHTING FACTORS IS a- 79.01133  ;

q f ' '

, 'THE PWV!IS m . 4704G5G1 -. PSIA l g,

'nw,

, AY ,

l t j

< 9;,,j.4 c ,

y j

'l

~

N pc .. 1 & . , .

pgM iG;s JTHE' MASS'WEI6HT IS * . 93519.09375 LOM i e .h '

i

m. ., e t.x AWN, sa 4. w- a l Mgme 7,,G j Q ;>*s e,w
w i

j j

h s  !

r

[]

v ..~ .-,

g k kl,f *-

%. -[1 )

s 4 "

,* 'i -

y1 , .s .

p ,

r , EUl1M/,RY OF ILRT MEALl1 RED DATA Li"

['] 9'LIENTli;.CP6L; C

LPLANT SITE : DRUf 45 WICK!

l, p

UtJIT . s 1 t

READING T/*El4 AT TIME PERIOD : 500 DATE : Otr 1907 RTD 1 91.'19 RTD 16 27.41001 RTD 2 91.29 RTD 17 66.9-RTD. 3 94.32 RTD 18 Go.43 RTD 4 94.55 RTD 19 79.6 RTD 5' 89.2G RTD 20 80.36

./, 'RTD .6 3?.03 RTD - 21 80.23Z01

p'  ;RTD. 7 88.42,' RTD 22 79.90001

-RTD 6 87.E6 RTD. 23 79.75 RTD' 9 GS.12. RTD 24 79.o6001 RTD 10 87.23001 RTD 25 0 RTD. 11- 08.33 RTD 2> 0

-RTD- 12 ' G7.1 ;'. 27 RTD 4 RTD 131 G6.6G RTD 28 0 -

RTD 14 87.76 -

RTD 29 0.

RTD.'15' 86.31 .RTD 30 0

, , THE AVE RTD WITH WElGHrlf4E FACTORS 15 e- 84. 44 6SE If4 F

= 544.1366 lN R PRESS 1 64.40217 PRESS '.0 64.40173 PRESS 3 0 i THE AVE. PRESSURE IS 5 64.40195 PSIA DEWCELLS WERE CONVERTED TO DEWPOINT DEWPT 1 58.00109 DEWPT 6 EO.69313 DEWPT 2 .82.98186 DEWPT 7 78.19869 DEWPT 3 82.05564 DEWPT G 60.39913 DEWPT,4 G1.75805 DEWPT 9 '74.75625 DEWPT 5 80.60571 DEWPT 10 77.90873 TIiE AVE DEWPOlhT WITH WE1GitT1tJG FACTORS 15 =  ;'3.81571 THE PWV IS = .4G73463 . PSIA l' . THE 11 ASS WElGHT IS = 93522.09375 LBM <

1 L

[

L_= __

EUt1 MARY OF ILRT l1EAEURED DATA CLIEtJT : CP.i t FLANT EITE ; E'RLINGlJ I C K UNIl : 1 READI NG T A):.EN AT TIME PERIOD : 515 D A l'E : 05-19--1987 RTD 1 91.17 RTD 16 87.42 R 'I D 2 91.26999 RTD 17 86.87 RTD 3 94 26 Rl D 10 G6.43 RTO 4 94.51 RTD 19 79.6 l RTD 5 8'? 35 RTD 20 GO.35 RTD 6 G9.01 R1D 21 80.2.2 RID 7 88.42 RTD .22 79.99 RTD 9 87.06 R1D 23 79,?4 RTD 9 83.09999 RTD 24 79.65 RTD 10 37.21 RTD ;_5 0 RTD 11 E 8 . J, .' . RTD 26 0 1 RTD 12 07.1J RTD 27 a l RTD 13 66.7 RTD 28 0 R'I D 14 G7.71 RTD 29 r7 RTD 15 06.39 RTD 30 3 THE AVE RTD WITil WEI.Wii1NG FACTOR 5 17: = 54.4414i IN F

" $44.1315 lu R l

PRESS 1 64.39092 PRESS 2 64.48024 PRESE 3 El THE T.VE PRESSURE IS = 64.40058 PSIA DEWCEL L S WEFE CCIP.'ERTE D TO 1;EHPO I N T DEWPT 1 08.11817 IEWPT $

> GO.97551 DEWPT 2 82.,79613 DEWFT 7 78.13910 DEWPT 3 83.19201 L'EWPT E 68.37875 DEWPT 4 81.60353 EEWPT 9 'a 7G311 DEUPT 5 83.;133 DEUPT ;0 77.?S19-1 THE AVE DEWPOINT W1TH WElGHIING FF.CTOR5 15 = 75.91233 T H E F t .".' 3 0 =- .48eG955 PSIA Tl--!E MAE3 WElGHT IS - 9.-'.517.9921875 L I:f1

, . . _ . . . ,r Fw:

SUMMARY

OF-I'RT MEASURED DATA CLIENT : ' CP&L '

PLANT SITE ^: '

ERUNSWICK

~. UNIT : 1-1 READING TAKEN AT. TIME PERIOD : 530 DATE : 05-19-1987 RTD .1 91.15 RTD 16 87.36 RTD ~2 '? 1. 26 ' R1D 17 86.76 RTD- 3 94.25 RTD 18 86.26999 RTD 4 94.53 RTD 19 79.49 RTD 5 89.31 RTD 20 80.33 RTD 6 89.03- RTD 21 E0.22-RTD 7 88.37 RTD 22 79.97-N '

RTD' B 87.G7 RTD 23 79.73001 RTD. 9 88.06 RTD 24 79.61 RTD 10 87.08999 RTD 25 0 RTD 11 88.29 RTD 26 0 RTD 12 07.01999 RTD 27 .0 RTD. 13 86.5- Rl D 28 0 RTD. 14 97.66001 RTD 29 0 RTD 15 86.33999 RTD 30 0 THE AVE RTD WITH WEIGHT 1bG FACTORS IS = G4.3?1 IN F

= 544.081 IN-R

, \

. .(

PRESS 1 64.~3894 FRESS 2 64.36911

'RESS r 3 0 THE AVE FREELURE IS = S4.35925 POIA 1

t: DEWCELL.S WERE CONVERTED TO LEWPOINT 1

g DEWPT 1 0 8 . C -1 4 0 1 DEWPT 6 60,59226

, DEWPT 2 82.9695 DEWoT 7 78.24571 DEWPT 3 S2.41323 DEWPT G 6G.33110 DEWPT 4 81.2265 DEWPT 9' '74.24515 DEWPT 5 E0.35021 DEWPT 10 77.74E21 THE A'.'E DEWPOINT WITH WEIGHTING FACTORG 1s = 78.57083 THE PWV 15 = .4050333 PGIA l- THE HASS WEIGHT IS = 93516.4609375 LBM L

.c EUMMARY OF ILRT: MEASURED DATA CLIENT': : CP.kL PLANTLSITE : 'ERUNSWICK

. UNIT : 1

' READING TAKEN AT TIME PCF.IOD : S45 Du1E : "O5-19-1987 RTD 1 91.12. FTD 16 07.24 RTD -2 91.2 RTD- 17 '56.6 RTD 3 94.26' RTD 18 86.08 RTD 4 94.5 R1D 19 79.47 RTD 5 89.16001 RTD 20 00.32 RTD 6 G9. 01 : RTD ~21 GO.21 RTD 7 G8.25 R'l D n?2 79.95 RTD G 87.77001 RTD 23 7 9 . 7.1 RTD:. 9- 87.96 RTD 24' ~79. 61 RTD- 10 86.95 RTD 25 O.

RTD 11 89.16001 RTD 26 0 RTD 12- 86.97 RTD 27- 'O

'RTD 13 C6.26999 RTD 28 0 RTD 14 G7.51999 RTD 27 0 RTD. 15 86 3 F:1 D 30 G-THE. (WE' RTD WITH WEICHTItJG FACTOR 3 IE .c 84.31E.95 Ill F 544.007 I N F:

PRESS 1 64.37083 PRESS 2 64.37871 PREES 3 0 THE AVE FREGOURE 15 " $4.37E3 P5IA DEWCELLS UEPE COTWEP1ED TO AhrQ1!if DEWPT 1 07.99956 DEWPT b GO.6595

-DEWPT 2 82.35111 DEWPT 7 78.36006 DEWPT 3 81.7766 DEWPT S 6E.35157 DEWPT 4 81.35011 DEWPT ? 74.4873 DEWPT 5 EO.15524 DEWPT 10 77.73470

'lHE AVE DEWF OINT W1 TH UEIN IT ING F ACTORS 15 = 78.t4511 THE FWV IS n .4846221 FSIA THE MASS WE)GMT. IS = 93514.1489375 LDM

u.

t EUlit1ARY OF ILRT 11EASURED DATA -

CF&L CLIEtlT .:

PLANT SITE.0 DRUNEWICK UNIT : -1 READING TALEN AT TINE PERIDD : 600 DATE : 05-19-1'197-RTD- 1 '- 91.08999 RTD 16 87.15 RfD 2 91.2 RTD 17 .86.53 RTD 3. 94.22 RTD 18 85.98001 RTD 4 94.5 RTD 19 79.54 RTO- 5. 89.1- RTD 20 80;31

~ F;TD 6 88.94 RTD- 21 GO.2 R70 7 08.17. RTD 22 79.95 RTD '8 '87.67 RTD 23 79.7 CTD 9 .97.91001 RTD 24 79.6 RTD 10 86.83999 RTD 25 0 RTD 11 88.12 RTD 26 0-0 RTD 12 'D6.8 RTD 27 RTD 13 G6. I '7 RTD 28- 0 RTD 14 87..42 RTD 29 0 RTD 15 86.2 RT D' . 30 0 THE AVE RTD WITH WEIGHTING FACTORS IS

  • G-1. 2 74 79 IN F

= 543.9648- IN R PRESS 1 64.37287 PRESS 2 64.37352 FREGG 3 0 THE AVE PRESEURE IS = 64.3732 PSIA

.DEWCELLS WERE CONVERTED TO LEWPOINT DEWPT 1 87.92657 DEWPT 6 79.92665 DEWPT 2 82.11036 DEWPT 7 78.11128 DEWPT 3 81.28212 DEWPT 8 68.32439 DEWPT 4 80.63934 DEWPT 9 74.53436 DEWPT S 79.79216 DEWPT 10 77.74G21 THE AVE DEWPOINT Wi1H WEIGHTING IACTORS IS a 78.32283 THE PWV IG'= .4795118 PGIA THE t1 ASS.UElGHT IS = 93521.0234375 LGt1

a f

Si,4111ARY -DF~ ILRT MEA 51 : PED DATA

. CLIENT: CPLL PLANT.51TE :?  : DRUNSWICK LUNIT :.

1-READING-TAKEN AT tit 1E FERIOD : 615- DATE : 05--19-1987 RTD 1 91.07' RTG 16- 87.08999 RTD 2 91.17 RTD 17 C6.47 RTD 3- 94.21 RID 18 55.91301 RTD 4 94.5 RTD' 19 '79.56

[ .. RTD $ 89.07 RTD 20 80 31 RTD 6 G8.95 RTD 21 53,19

i
RTD. '7 08,13 RTD '22 7 9 . 9 4 RTD 8 8'7. 63 RTD 23 79.69 RTD 9 87.56 RTD 24 79.6-RTD 10 G6.8 .RTD 25 0-RTD 11 88.05 RTD- 26 0 RTD 12- 86.730241 RTT, 27 0 RTD' 13 -

G 6.' 1 1 RTD 28 9 '

29 RTD 14 8'? . 38 RTD 0 RTD 15 .86.26999 R1 D '30 - '0-

, 'THE AVE RTD WIT!i WEIGHTING F ACTOR 5 IG = 84. 25%id7 - IN F l

S43.9421 1N R 1

.. PRESS 1 64.36536 FREE 5 2 64.36837 PREGS'3 0 THE A'.'E PRES $URE 15 r- 64.36835 PSIA DEWCELLS UERE CONVERTED 0 DEWFOINT DEWPT'1 97.7535 DEUPT 6 79.G0561 L DEWPT 2 82.47504 DEWPT 7 77.95663 l- DEWPT 3 G1.60353 DEWPT 8 60.43311 i DEWPT 4 90.19558 DEWPT 9' 74.65539 l DEWPT 5 79.66442 DEWPT 10

~

77.74821 THE AVE DEWPOINT WITH WElGHTING FACTORS IS = 78.27884 THE FWV IS = .4789191 PGIA l THE MASS WEIGHT IS a f3518.8359375 LDM

3, ..

-si-

SUMMARY

OF ILRT '11EASURED D ATA :

LCLIENT : ~ CPlLL

' PLANT-ElTE' - Brut 45 WICK

UNIT : 1 READING TAREN AT TIME ~ PERIOD :. 633 DATE : 05-19-198/:

RTD. 1 91.'04' RTD 16 07.31' 99 b RTD 2 91,14 RTD 17 B6.44' RTD 3 >? 4. 21 RTD 18 85.7 RTD- 4. 94.46 ATD 19 79.57' RTD 5 '89.04 RTD- .23 80.31 RTD 6 GG.91231 RTD 21 EO.20

.RTD 7 68.3G RTD 22- 79.93 RTD G G7.6 RTD i3 79.69 RTD 9 G7. 81' RTD 24 -79 59 RTD- 13. 96.76999 RTL 2G 0-RTD 11. G8.01999 RTD e- 0 RfD 12 86.67 RTD 27 '

3 RTD 13 86.08999- RTD - 28 O RTD 14 87.35 RTD. 29 0 RTD 15 '06.24 RTD 33- 0 THE AVE RTD WITH WEIGHTING FACTORS-15 a 84 230$1 IN E

=. 543.'?20S .IN R PRESS 1~ 64.36536 PRESS 2 -64.36536

.PEESS 3 0 THE AVE PREEGURE. IS = 64.36536 PSIA DE! CELLS .WEPC CONVERTED TO LEWPOINT DEWPT 1 G7.72259 DEWPT 6 79.9400S DEWPT 2 82.45648 DEWPT 7 78.19869 DEWPT 3 G1.62207 DEWPT G 60.4535 DEWPT 4 31.04274 DEWPT.9 74.58143 DEWPT 5' 79.946G1 DEWPT 10 77.73476 THE AVE DEUPOINT WITH UEIGHTIllG FACTORS IS = 78.4102'6 THE FWV I$ = .4G10214 PSIA THE MASS t.'ElGHT IS = 93514.TO625 LEM

_2 _ _ _ _

C ;. ." {

SUMMARY

OF 'ILRT'MEASORED DAT'A x

J ~. CLIENT i _ CPLL '

,PLAIJT' GITE :

  • ERUNSWICK UNIT.n. 1 READING..TAKEN ATJTIME PERIOD : 645 DATE : '05-19-1987-RTD' l' '91.01 'RTD~'16 86.9.9 T- RTD 2 91.11: RTO 17- E6.42 RTD' 3 94.12 Rlb 10 85.87 RTD 4 94.45~ RTD :19 79.56 RTD 5 09.01 RTD 20 80.3 RTD 6 GO.91ee1 RTD 21 ee.17

'RTD 7 83.05 RTD 22 79.93 RTD. O G7.54 RTD 23 79.68 RTD '9 87.79 RTD '24- 79.59 RTD 10 '86.75 RTD 25 0-RTD -11 lG8.01 RTD 26 0

>RTD -32 96.69 RTD 27 0 RTD 13 06.05 OTD 28- -0 RTD- 14 '87.31 RTD 29 0:

RTD .15. 86.2 RTD 30 0 THE AVE'RTD WITH' WEIGHTING FACTORS'IG s 54. 2134 $. IN F

= :543.9035 IN R FRESS 1. 64.3631 FRESS 2 61.36317, PRESS-3 0.

THE AVE.PREESURE IS - '64.36311 PSIA DE(4 CELLS WERE CCNVERTED TO DEWPOINT DEWPT 1 87.65i61 DEWPT 6 79.98715

~D"'IPT 2 92.1103t DEL.PT 7- 78.13818 DN , 3 Sf.43665 DEWPT 8 68.31759 DEWPT 4 00.83431 DEWPT.9 74.30577 DEWPT 5 79.93336 DEWPT 10 77.66753 1

THE AVE DEWPOINT WITH WElGHTING FAClORS 1 E, = 78.33061 THE.PWV.IS a .4796348 PSIA l

THE MASS WElGHT-IS = 93516,6328125 - L Bi t

1 11 1 .

SUMMARY

Cfi IL.Rr MEASURED DATA-CLIENT : , CP&.L

'. PLANT SITE : BRUNSNICK'

UNIT :. 1:

q..

READItIG TAREN AT . TIME -FERIOD : 700 DATE : 05-19-1987

'RTD' 1 '90.99 RTD is 86.96 RTD 2 91.11 RTD 1 ~7 86.41031 .

RTD 3 94.14 RTD 1G 85.86 '{

RTD 4 94.43- RTD 19 79.52 RTD 5 88.98001- RTD 20 00.29 RTD 6 80.GG RTD 21 GO.1G RTD 7  : 0 8 . 0 1 9 9 9 '- R1D 22 79.93 RTD G '87.51999 RfD- 23 79.67 RTD 9 O'7.76999 RTD 24 79.57

'RTD 10 86.75 RTD .25 5 RTD 11- G7.95 RTD 26 0 RTD. 12- 66.66001 PTD 27 0

.hTD 13 06.05- RTD 28 0 RTD 14 87.26999 '

RTD '29 0 RTD 15 .. 86.2 RTD 30 0 THE AVE RTD WITH WEIGHTING FACTORS IS = .G4.2014S IN F

= 543.-8915 IN'R i

.FFESS 1 64.36005 PRESS 2 64.3609 PRESE'3 0 THE AVE PREEGLIRE IS = 64.36DG7 PSIA l

i DEWCELLS WERE CCtJVERTED TO DEUF01NT I

,. DEWPT 1 87.45682 DEWPT 6 80.23592  !

l- DEWPT 2 02,40085 DEWPT 7 78.17852 DEWPT 3- 91.43665 DEWPT.G 68.07975 j DEWPT 4 81.06965 DEWPT 9 74.33266 i l- DEWPT.5 79.G1906 DEUPT 10 77.68098 f

..THE AVE CEWPOINT WITH WEIGHTING FACTORS 10 = 78.37386 1,-

THE FWV IS,= .4202864 PSIA 1

1 THE MAGS WEIGHT IS = 93514.4453125 LEM O _ .__ _ _ _ _ _ _ _ - _ _ _ - - _ _ _ _ - _ _ __ _ _

l

i .

i ib j

SUMMARY

OF-ILRT. MEASURED DATA l

CLIENT <: CP&L.

PLANT SITE :- 'ORUNSWICK UNIT : 1-

~

715 DATE : 05-19--1987 L READING TAKEN AT TIME PERIOD :

RTD -1 90.96 RTD 16 85.93 RTD' 2 91.06. RTD 17 86.4

'RTD -3 94.15 RTD IS 85.85 t RTO 4 94.42 RTD 19 79.-18061 RYD u5 68.98001 RTD 20 80.29 RTD 6 88.82 .RTD 21 E0.17 RTD- 7 68.01999 RTD 22 79.91031 RTD 8 87.55 RTD 23 79.17 RTD' 9 87.75 RTD 24 79.57 RTD 10 86.7!001 RTD 25 0 ]

RTD .1 1 - 87.94 RTD 26 0 RTD 12 86.63- RTD 27 0 RTD 13- 86.05 RTD 28 0 RTD 14 87.28 RTD 29 0-RTD 15 86.25 RID 30' O THE AVE RTD WITH WEIGHTING FACTORE IS n

~

G4.19401 IN F-  !

= 543.2848 IN 'R j

i PF:ESS 1. 6il , 35935 PPESC 2 a4.35941 PRESS 3 -3 j 1HE AVE F REEGURE 15 u 64.3593G FSIA l i

DEWCELL.S WERE CONVERTED TO DEWPOINT-1 i

del!PT 1 87.39501 DEWPT . <- G3.0C36 -

DEWPT 2 S2.02383 DEWPT 7 78.04405 DEWPT 3 8i.43665 DEUPT 8 68.1816G DEUPT 4 80.69313 DEWPT 9 74.29905 DEWPT 5 79.859-1 DEWPT 10 77.66753 THE AVE DEWPOINT WITH WEIGHTING FACTORS 15 = 78.27153 THE PWV 15 u .4787039 PSIA THE MASS WEIGHT 15 = 93515.7265625 LDM 1

- - 1

_1 I

l; o.

J 1

l SUt1 MARY OF ILRT MEASURED DATA CLIENT': CPL.L ,

PLANT S1TE : ERUNSWICK UNIT : 1 READING TALE!! AT TIllE PERIOD : 730 DATE : 65-19-1957 RTD 1 90.94 ATD 16 06.9 RTD 2 91.04 RT L 17 86.4 RTD 3 94,08 RTD la 85.65 RTD 4 94.42 R fD 19 79.44 RTD 5 88.95 ETD 20 80.29 RTD 6 88.83999 RTD 21 80.17 RTD 7 88.01 RTD 22 79.91001 RTD 8 E7.51999 RTD 23 79.6 &51 RTD 9 8'7.72 R T ') 24 79.5a RTD 10 86.73001 RTD 25 RTD 11 57.93 RTD 26 a RTD 12 86.64 RTD 27 0 R1D 13 86.OS R1 D 20 0 RTD 14 87.26 RTD 29 0 RTD 15 86.25 RTD 30 0 THE AVE RTD WI(H UEIGHTING Ft.CTORE JF --- G 1.166 3.' JU F ,

= 5 0.87G1 IN R FRESS 1 61.35557 PRESS 2 44.35863 l FREGS 7 0 THE AVE PREESURE IS = 6 4 . 35 C d. J. PSIA DEWCEL.L5 WEPE CON'Ef;.TED 10 DEWPOINT DEUPT 1 87.43229 DEWPT 6 Ed.14551 DEWPT 2 82.2030'7 DEWPT 7 78.16537 DEWPT 3 81.,59116 DEWPT 8 57.99141 DEWPT 4 80.35448 DEWPT 9 74.37973 DEWPT 5 79.67786 DEWPT 10 77.72EGS t

\

THE AVE LEWPOINT WITH WEIGHTING FAClORS 15 = 7 8 . '.: 2 4 4 THE PNV IS .4793476 PSIA I THE 11A55 WE!GHT IS z 9 3514 . 84 :D 5 LSt1 l

[L.

ja l b

~

~~UMMAR'/ OF ILRr_NEASURED DATA CLIENT s' CP&L

' PLANT, . SI T E -: BRUNS' WICK-

. UNIT 1

PEADING TAKEN ATifINE' PERIOD : 745 LATE-: 05-19-1987 RfD l' 90.92 RTD 16' 86.9L RTD 2 91.01 RTD 17' $6.4 R 'l D ' . 3 - 94.12 'RTD 18- 85.87 RTD 4 94.39 RTD '19 79.44.

RTD 5. 88.9G001 RTD 20 80.29 RTD' 6. St3. E 2 RTD- 21 DO.16001

.RTD. 7 87.99 PTD 22 79.91001 RTD 5 .. .87.48001 'RTD 23 79.65 RTD 9 G'7. '71 RTD 24 79.56 RTD.- ;10' .G6.73001 RTD 25 'O RTD .11 .57.93- RTD 26 0 R TD - 12. Gi. 63 RTD 27 0 .i RTD '13 86.08' RTD 28 0 i RTD 14? G7;25 RTD 29' O RTD. 15 86 22 RTD 30 0

.i

-THE-AVE;RTD WITH WEICHiTNG FACTORE IE ==: 94. :.l G3G6 -IN.F

=

$43'.0738 1N R PRESS 1- 64.25709 PRESS 2 64.35645' PRESS 3 3 THE AVE PREESURE IS = 64.35677 ' PSIA.

i i

DEWCELLS UERE CONVERTED TO DEWPOINT DEWPT 1' 'G7.3332 DEWPT 6 GO.395">B DEWPT 2 81.9682 DEWPT 7 78.037 .s  ;

DEWPT 3 81.36865 DEWFT 8 67.97G2 DEWPT 4 .80.66622 EEWPT 9 ~74. 4 7 3G6 DEWPT S

~

79.36612 DEWPT 10 77.6E098 ,

i THE' AVE DEWPOINT WITH WEIEHTING FAC10RS is = 78.30723 THE PWV IS = .4792669 PSIA I

THE t1AGS WEIGHT IE = 93512.96975 LDt1 I

.,t

> et:J

SUMMARY

CF ILRT MEASURED DATA-

, ICL I ENT: . : CP&L t- fPLANT'5ITE > ERUNEUICk UNIT : .1

, l READING TAKEN AT TINE PERIOD ; 800 DATE : 05-19-1987 r.

RTE- 1 9E.89 RTD 16 06.88 RTD 2 91.01 RTD 17 86.37 RTD 3. 94.07 RTD 1G G5.83 RTD '4 94.33999 RTD 19 79.43 RTD 5 88.93 RTD 20 80.28 RTD 6 90.8 RTD 21. GG.15 p .RTD '7 : G'7.90001 RTD 22 '/9.69 RTD 8 87.45 RTD 23 79.65 RTD 9 87.68 RTD 24 79.57 RTD 10 86.68 RTD 25 0  ;

RTD 11 .37.9 RTD 26 0 l RTD 12 86.62 RTD 27 0 '

.RTD 13 86.05 RTD 28 0 RTD' 14- G7.23001- RTD- 29 0 -

RTD- 15 G6. l'5 RTD 30 0 THE AVE RTD WITH UEIGHFING FACTORS 15.= 84.16406 IN f

= 543.8541 IN R PRESS 1 64.35409 PRESS 2 64.35348 PRESS 3 0 THE AVE PREESURE IS u 64.35378 PSIA L

~DEWCELLS:WERE CONVERTED TC DEWPOINT

.DEWPT 1 G7.25286 DEWPT 6 80.07455 DEWPT 2 82.48122 DEWPT 7' 77.99698 7 iw T 3 G2.159G1 DEWPT 8 68.10014 d-WPT 4 80.62589 DEWPT 9 74.29'2 32 DEWPT 5 79.7451 DEWPT 10 77.66~/53 THE AVE DEWPOINT WITH WElGHTING FACTORS IS = 73.2 % 13 THE PWV IS = .4790904 PSIA i THE MASS WEIGHT IS = 93512.2578125 LBM

EUMMARY OF ILRT NEAEUPED DR,TA CLIENT : CP!<L PLANT SITE : BRUT 4EMICK UNIT : 1 READING TAKEN AT TIME PERIOD : G15 DATE : 05-19-19G7 Rl D 1 90.07 RTD l' "" 3 7 RTD 2 90.95001 F. l D 17 86.35 RTD 3 94.05 PTD 19 25.82 RTD 4 91.33999 RTD 19 '9.45

/

RTD 5 89.93 RTD 20 05.26 RTD 6 G8.79 stb 21 EO.15 l RTD 7 87.95 RTD J2 / 9. Sc3 RTD 8 87.5 RTD 23 79.64 RTD 9 07.66001 RTD 24 7 (P . 55 RTD 10 86.68 RTD 25 0 F. T D 11 87.8? RTD 26 0 RlD 12 86.6 RfD .7 0 RTD 13 86.03 rid 20 0 RTD 14 9 7 . 2 3 0 i0 ) PTD 29 0 RTD 15 Go.2 Rl D 30 0 THE AVE RID WITH WEICHTING FhCTORS IS - E4.15531 IN P

= 5 4 3 . 8 4 5 ~;~. IN R FRESS 1 64.35100 PREES 2 61.35125 PRESS 3 0 THE AVE PF/ESEL;RE 15 u 64.3S117 PGIA DEWCELL S WERE CONVERTED TO DEWPCINT DEWPT

  • G7.22812 DEtePT e CD.00732 DEWPT 2 82.56157 DEWPT 7 '78.06422 DEWPT 3 81.20177 DEUPT G 65.07295 DEWPT -1 80.80742 DEWPT 9 74.26542 DEWPT 5 79.81233 DEWPT 10 77.63391 THE AVE DEWPOINT WITH WElGHTING FACTORS IS - /G.2 4??

THE PWV 15 a .4785972 PSIA TTIE MACS WEIGHT IS= 93510.640625 LEM

i>  ;

gi t

b

. SUf1 MARY f 0f' ILRT HEASURED DATA t.1-L, , ' CLIENT: . : CPFuL

^FLANY'5ITE : ERutJSWICK cUNIT 1 r

A READING TAkEN AT' TIME FERIOD : .830 DALE : 05-19-1957

(: +;

RTD 1 90.83 ' RTD 16 G6 33

!' 4 RTD- 2 90.98001 RTD 17' 86.35

..R1 D 3 94;08 RTD 18 85,82 RTD -4 94.36- RTD 19 79.44 RTD 5 38.91001 RTD' 20 80.2L RTD h. G8.76 RTD 21 60.13

.RTD 7 ;S7.94 RlD 22 79.58  !

RTD 8 G7.5 RTD 23 79.64 RTD 9 87.66001. RTD 24 79.55 RTD 10 86.66001 RTD 25 0 RTD- 11 87.85 RTD 26 0 IT F< TD 12 .86.57 RTD 27 0

' Rl D - 13 G6.04 RTD 28 a RTD ' 14 ' G7. 2' RTD 29 0 RTD 15 ~86.18 RTD 30 0 I THE AVE RT'D WITH WEICHTING FACTORG IS = G4.1475 Th 'F

$13 8375 IN R

y. ,

l

. PRESS 1 64.34958 PRESS 2 64.34977

-PRESS 3 0 THE AVE FRE59URE 15 r 64.34967 P5IA DEWCELL'S WERE CON'.'ERT ED TO DENPOINT DEWPT 1 87.0736 DEWFT 6 90.23592 DEWPT 2 82.37614 DEWPT.~7 78.1986'-?

DEWPT 3 81.01585 DEWPT E a.7 . 8 7 5 8 9 DEWPT 4 80.914T9 DEUFT ; 74.29232 DE'.@ r 3 79.84595 DEWPT 10 77.65-130 THE AVE DENPOlhT WITH WE1CMTING FACTORS 15 = 78.32256 THE PWV IS == .4791978 PGIA Tite t1 ASS WEIGHT IS a 93508 921G75 LDl1

4 i

. '( '

15Util1ARW CF ILRT ;1E AGURE D .- .D A T A .

'. CLIENT : CP&L-p

' PLANT SITE 2 DRUNSWICK 1

-~

UNIT 1-l READING TAF:EN AT: TI' tie PERIOD  : 845 Dr.TE : 06-19-1987 RTD 1 90.83999 .RTD 16 86.85 l R fD' 2 90.9D RTD 17 66.3' '

RTD- 3' 94,01999 RTD 18 05.8 RTD 4 94.32 RTD 19 79.12

'RTD 5~ 88.9 RTD 20 80.25 i RTD 6' EG.75 RTD 21 80.12 RTD' 7 87.92 RTD 22 79.88

~RTD 8 87.46001-- RTD 23 79.64 RTD -9 187.64 RTD 24 79.54 RTD 10 86.6s,001 RTD 25 0-i RTD; 11 67. 8"; RTD 26 0 i RTD 12' 86.55 RTD 27 0-

, RTD' 13 186- RTD la O RTD 14 67,18 RTD 29 0 RTD !.15 8 6 . 1 9'- RTD 30 0-THd AVE RTD WITH WElGHTING FACTCRS I5'" G4.135G1 IN F

= 543.52Sa 1h R

-)

PRESS 1 64.34732 FRESS 2 64.34753 PRESS 3 0-

- THE /WE PRESSLIRE IS = 64.34743 PSIA DENCELLS WERE CONVERTED TO DEWPOINT

,DEWPT 1 87.1_3541 DEWPT 6 00.00732 DEWPT 2 82.17535 DEWPT ~7 78 09784

'DEWPT 3 G1.52317 LEWPT G 67.90306 i DEWPT 4 80.8544G DEWPT 9 74.23853 DEWPT 5 S0.08128 DEWPT 10 77.63391 THE AVE DEWPOINT WITt' WEIGHTING FAClORS 15 s !a.27955 THE FWV IS - .T/GG292 FSIA )

THE L1 ASS WE!GHT IS = 93509.1875 LEl1

_ - - _ - _ - - - --. - = _ _ _ _. - - - _ _ - - - - - _ _ _ . _ _ - - _ _ . - . . _ _ _ _ _ _ _ _ - _ - _ _ - _ _ _ _ _ - _ _

T

. y

SUMMARY

OF ILRT MERSURED DATA

1 CLIENT's CP&L

' PLANT GITE : DRUNEWICK UNIT : 1-READIflG TAKEN AT TIME PERIOD : 930 DATE : 05 19 0~7 RTD 1 90.83 RTD 16 86.33 RTD 2 90.93 R1D 17 56.3 RTD 3 94 RT D 18 85.76 RTD 4 94,,3 RTD 19- 79 RTD 5 88.8'7 RTD' 20 G0.24 RTD 6 98.75 RTD 21 GO.12 RTD 7 87.9 RTD' 22 79.37 RTD G 87.43 R1 D 23 M ., c3 RTD 9 87.63 RTD 24 79.54 RTD 10 86.64 RfD 25 3 RTD 11 87.93 RTD ' "'6 _ 0 RTD 12 86.D3 RTD 27 0 RTD 13 85.98001 RTD. 2S 0 RTD 14 87.18 RTD 29 0  ;

RTD 15 86.1 RTD 50 0 l

1. THE AVE RTD WITH WEICHTINE FF;CTORb 15 = 8't.117E4 IN F 543.E279 Iti R FREGS 1 64.24431 PRES 3 2 64. M457 FREGS 3 0 THE AVE PREGEUPE 15 ' 6 <1 . 3 4 4 4 4 PSIA l

DEWCELLS WERE CONVERTED TO DEWPOINT )

l DEtlPT 1 87.03652 DEWPT 6 79.67766 l l DEWPT 2 82.04237 DEWPT 7 77.88268 l- DEWPT . 81.54172 DEWPT S 67.99141 l l DEWPT lt 00,61244 DEWPT 9 74.25198 l

DEWPT S 79.79216 DEWPT 10 77.64736 f

THE AVE DEWPOINT WITH WEIGHTING FAC10R3 IS = 78.124".

THE PWV 15 = .4763881 FSIA l'

l THE MASS WEIGHT IS = 93510.472 % 23 1 DM l - - - -______________-___J

[ .

, -g T

SUM 11ARWLF- ILR1 t1EASURED DAT A CLIENT : 'CP t<L -

Il iPlAUT SITE  : 'E.RUNEWICK

' UNIT : ' l 'J READIf4G TAKEfJ AT. TIriE FERICD : 91S DATE : OS-19-19h7.

.RTD 1 90.82 RTD- 16 86,81

. RTD ' : 2, 90.94 h rD .) 7 56,29 H

'RTDj;3 94.07. RTD 18 85.74

.RTD 4 74.3- RTD 19 78.53 RTD $ 88'83999

. RTD 20 50'24. ,

.6 RTD 88.73001 'R fD. 21 60,12 RTD 7 1 87.88 RTD 22 79.57 RTD- G - 87.43- RTD 23 79.6? i RTD 9 87.58999 RTD 24 79.51 1 RTD. '10 ' B6.'62 ETD 25 0 7' ,

RTD ;11 87.83 RTD 26 .0

'RTD' 12- '

86.5199? RTD 27 O RTD _13 85.98001 R1 D 28 'O

  • RTD 14. . 87.15- RTD 29 0 RTD -15 86.23001 R1 D- 30 -0

' THE AVE RTD WITH, WEIGH 11NG' FAC.Tl R9 19 - .34.11502 IU F

= '543 0059 'IN R PRESS 1 64,34206 PRESS .2 64.34235 4 PRESS 3- 0 THE AVE PREESL:RE 15 = 64.34221 P9In i

DEWCELL9 WERE CONVERTED 10 DEWPOINT DEWPT 1 87.G9215 DEWPT 6 ee.074ss DEWPT 2 82.15981 DEWPT 7 78.16507

.DEWPT 3 81.4304'7 DEWPT 8 68.005 DEWPT 4 80.73346 DEWPT 9 74.0301 DEWPT 5 -'79.63381 DEWPf 10 77.60702- l THE AVE DEWPOINT WITH WElGHTING FACTORS 15 = 78.20564

.THE PWV 15 = .4776G19 PSIA i

THE MASS WEIGHT IS = 93505.5640625 LBM

l-.

~'e

=

l }.

5 liOUR VERIFICATION e

l l

l t

l 1

EUt1 MARY OF ILRT MEASURED DATA CLIENT : CF8.L.-

PLANT SITE : BRUNSWICK UNIT : 1 READING TAKEN AT TIME PERIOD : 1030 DATE : 05-19-1987 RTD 1 70.78 RTD 16 86.73001 RfD 2 90.88 RTD 17 B&.24 R1 D 3 75.41001 RTD 18 85.72 RTD ei 94.2 RTD 19 78.55 RTD 5 88.8 RTD 20 60.21 RTD L GB.67 RTD 21 EO.09 RTD 7 07.83 RTD 22 79.84 RTD 8 87.36 RTD 23 79.53 RTD 9 87.53 R1 D 24 '79.49 RTD 10 86.57 R TD 25 0 RTD 11 87.75 Rl D 26 0 RTD 12 Ci 46 RTD 27 0 RTD 13 55 93 R1D 23 0 RTD 14 87.11 RTD 29 0 RTD 15 36.08 RTD J,0 0 THE AVE RTD WI rH WElOHTING F ACTGPS 15 - 84,06621 IN F

= $43 7553 lu R FRESS 1 64.32179 PRESS 2 6 1 . 3 2 1 5 1.

PRESE U 0 THE /WE PREEEttRE IS - 64. 3.d 167 PSIA DEWCE' LS WEF E CON','ERT ED 10 C EWPOINT DEWPT 1 0 6. G; @1 DEUPi 6 20.30316 DEWPT 2 82.0252G DEUP1 7 7 5 . 0 9 .1 1 1 DEWPT 3 81.21413 DEWPT 8 67.90985 DEWPT 4 e1.s7636 DeWPT , 73.e:253 DEWPT 5 79.67786 DEWPT 10 77.6003 THE AVE CEWPOlt1T WITH WEIGHTING FACTORS 15 = 78.22614 THE PNV 1 3 -- 4779GG3 FSIA e

Tl;E MASS WEIGHT IS= 93403 6796975 LBM

_______________-______-______--____-_a

gy/ ,

a .""[.- ... .

o SUMt1ARY OF- ILRT .NEAEURED DATA-

'. CLIENT! - CP&L:

FLANT' SITE : ERUNSWICK i ' UNIT:.- 1.

1+

l READING TAKEN AT TIllELPERIOD:: l1045 DA1E : l06-19-1987

'RTD 1 90.70 RTD 16 86.7/1 RTD 2 '90.G9 RTD 17 86.23001.

RTD 3. 93.,88 RTD 18 95.74-

'RTD 4 94.;19. RTD '19 70.54 RTD 5 88.79- RTD 20- 90.21 RTD 6 88'66001,

. R fD 21 E0.03 RTD- 7 87. O l ' RTD 22' 79.92 RTD. 8 G7.36 RTD- 23 79.57,

.RTD 9- G7.53- -RTD 24 79. <-18301 f'

-RTD 10 86.58 RTD- 25 0 RTD 11 .07.76 RTD~ 26 0 RTD 12 86.46 RTD 27 .0 RTD 13. '85.94-RTD 28 0 RTD: 14- 87.08999 ' TD R 29 0

.' RTD: '15 86.21 RTD- 30 -

O THE ANE RTD WITH WElGHTIN3 FACTORG 15 a G4.DaE56 Ill-F

=. 50$.7539. IN R .

i 1

PRESS 1- 64.31727 .PPESS 2- 64.31712 .

PRESS 3 0 THE AVE FREESURE IS = 64.31719 P sit, ) 1 l

DEWCELLS WERE CONVER1ED TO0*EldPOlflT DEWPT 1 S6.76456 DEUPT 6 GO.44405 DEWPT 2 81.65298 DEWPT 7 72.15163 DEWPT '.3 - 81.39956 DEUPT G 67.82G31 DEWPT 4 80. 941 t!.,9 DEWPT 9 74.15785 l DEWPT 5 79.711/10 DEWPT 10 77.5E013 l l

THE AVE DEWPOINT WITH WEIGHTING FACTORS IS = 78.26365 THE FWV IS = .4795798 PSIA l

i THE 11 ASS WEIGHT IS = 9347S.7890625 LGM 1 L 1 l

EUl1 MARY OF I LR T riE,^.5URED UnTA CLIENT : CF&L DRUNEWICK

~

PLANT EITE :

UNIT : 1 READING TAREN AT T IllE FERIOD : 1150 DaT2 On-19-1T87 r RTD 1 90.76 RTD 16 85.74 RTD 2 90.OG RfD / 26 c4 RTD 3 93,93 RTD 1G E F-i 7 3431 RTD 4 94. .? 1 RfD 19 78.51 RTD 5 88,79 RTO .d 0 90.Z RTD 6 88.66201 RTD 21 GB. C,G RTD 7 8 7. 8.! R1D .z 2 79.83 RTD C 07.37 RTD 23  ??.G7 RTD  ? G7.51979 RTO 24 79.45001 RTD 10 85.61 RTD 25 3 RTD 11 87, ~73031 RTD i:L 0 RTD 12 96.47 R TD r G Rl D 1:. 8S.96 RTO 20 0 RTD 14 87.1 RTD 29 0 RTD 15 06.15 RTD O O 1HE AVE RTD WIT H WE ICHTI t'0 i-l'.CTOR5 18 = G4.367G1 1:1 F a 54 3. '7PT7 6 IN H I 1

I PRE 55 1 64.:1531 F riEE i .2 L i . .J 1 5 1 PREEE 3 0 THE AVE PREE5URE 15 a . 4 . J 1 M . ., F B I E, DEWCEL.LS WERE CON'/EPTED TO DE UP G l i .:T DEWPT j St.75E39 D EU P r ._.. 1" . ELL,G DEWPT '? 31,9373 -Eur'T 7 77.002 DEWPT 3 32. 4 5,2c: / CEWPT & c_7.97103 DEWPT 4 00.8881 DEWPT 9 73.69393 DEWPT 5 79.75E55 CENPT 10 77.63391 THE AVE DEWPOINT W11H WEIG!tT1hG FACTORS IS = 78.11715 THE PWV 1E - .4767469 FEIA Tile MASS WEIGH 1 IS = 93 T7 3. '234 37 5 LDM

).. j ii.

th u -- ,

SUMMARY

OF I L R T '~f1E A S U R E D - D A T A i

~

,4. CLIENT ~ : CP&L~~ .

PLANT-SITE.: tRUNSWICK UNIT s'  : l'

. READItJ3 TAKEI1 AT TINE PERIOD : 1115. DATE t 05--19-1987 RTD 'l '90.76' RTD 16 86.75

'RTD 2

90. 8G RTD 17 86.23001 RTD. 93.91001. R1 D 18' '65.76

.RTD 4 94.17 RTD- 19- 7G.56 ..

RTD 5 88.79 RTD 20' 80.'2 RTD 6 88.65 RTD 21- GO.07 RTD -7' 97.81 RTD 22 79.21

.RTD C' 97.33 RTD 23 79.57 RTD 9 .G7.51999 RTD 24 79.48001' RTD 10 G6.55 RTD 25 O RTD ~11 .87.74 RTD 26 0 RTD 12 86.'46 RTD 27 B RTD 13 85.94 RTD 28 0 RTD 14 -87. 0G99 9 - _RTD 29 0 RTD' 15..- 86.l' RTD 30 0 THE-AVE RTD WITH WEICHTItjG FACTORS IS = S4.0596 'Id F-

= $43.7496 !!J R PRESS 1- 64.30901 .PREEs 2' 64.30894 PRESS 3 O THE AVE PRESSURE IS s- 64.3089G PSIA DEWCELLS NERE CCl4VERTED TO DEWroli T f DEWPT 1 G6.73984 DEWPT e 60.12162

'DEWPf 2 81.97438 DEWFT 7 78.06422 DEWPT 3 G1.79514 LEWPT 8 67.73996 DEWPT 4 G1.00913 DEWPT 9 73.73427 ,

DEWPf.5- 79.95353 DEWPT 10 77.49271 '

i 9

THE AVE DEWPOINT WITH WElGHTIljG FACTORS IS = 78.18694 THE PWV..IS = .477372'2 PSIA 1:

l T!IE MASS WEIGHT IS =- 93467.125 LBM i

- - ______ -_._ _: __ J

f

- , _ EUMMARY OF ILRT MEASURED--DA.TA -

CLIENT :. CP84L :

TPLANT-SSITE : BRUNSWICK UNIT';: 1-READING TAKEN'AT TIME PERIOD : 1130 DATE : .05-19-1987 r- RTD' 1' '90.76 R1D .1 6 86.'74-RTD. 2 90.9- RTD 17 86.25 RTD .3 93.88 RTD :18 85.71

.RTD .4 94.14 RT: 19 78.56 RTD 5 88.76999 RTD 20 GO.19 j RTD- 6 SS.i^ RTD 21 80.00 ITD 7- 87.8 RTD 22 79.01 RTD O- G7.33- R fD 23 79.57 RTD -9 B'7. 51 RTD 24 79.40001 RTD 10 86.5G999: RTD 25 0 RTD 11 87.73001 RTD 26 0

'RTD 12 .:86.480G1 RTD 2"/ 0 RTD. 13 E5.94 RTD 28 0

-RTD -14: 87.08999 RTD 29 0 RTD 10- 36.17 RTD 30 0 THE' AVE ~ RTD WITH WEIGHTING FACTORS IS' u 84.06I44 IU F

= 543.7545 ':. N R PRESS 1 64 3045' PRESS 2 64.30449 e

, PRESS 3 0' THE AVE PRESGURE IE 64.40449 PSIA l

i DEWCEL.LS WERE CONVERTED TO DEWPOlllT i

DEWPT 1 G6,76456 DEWPT 6 79.96025 i DEWPT 2 G2.36995 DEWPT 7 78.05749.

DEWPT 3 81.05916 DEWPT S. 67.7263G DEWPT 4 S0.89482 DEWPT '? 74.00321 DEWPT 5 79.79216 DEWPT 10 ~77.50013 Ji- THE AVE. DEWPOINT WITH WEIGHTING FACTORS IS = 78.1575  !

THE~PWV IS = .4770974 PEIA I I

o-  !

THE MASS WEIGHT .15 = 93460.125 LOM l

i

,A V f #

SUMMARY

OF ILRT 11EASURED ' DATA

.1: .

, LCLIENT CP&L

, PLANT SITE'z. DRUNSWICK

. UNIT -:: 1 READING TAKEN' (;T tit 1E PERIOD : 1145 DATE.: 05*19-1987

,_q RT D. 1 90.76 RTD 16 06.74 RTD 2 90.E3 RTD 17 86.22 T;TD 3 93.86 RTD. 10 85.7.

RTD 4 94.16001 RTD 19 76.55 RTD 5 88.78 RTD 20 80 19 RTD 6 GG.62- RTD 21 80."6 RTD 7 87.8 RTD 22 79.8 RTD 8' B7. 31' RTD 23 79.56 RTD 9 87.5- RTD 24 79.47 RTD 10 86.54 RTD 25- 0 RTD 11 87.71 RTD 26 0 RTD 12- 56.43 RTD 27 0 RTD 13 85.92 RTO 28 0 RTD 14 .87.07 RTD .29 0 RTD 15 '86.15 RTD 30 0 THE AVE RTD'NITH WEIGHTING FAC'f0RS'IS n .84.04719. IN F.

=- 543.7372 1h,R FRESS'1 64.29849 oRESS'2 64.29855

.FRESS 3 0 THE AVE PRESEURE IS = 64.29851 FSIA DEWCELLS WEF:E CONVERTED TO DEUPOINT DEWPT 1 G6.65949 DEWPT c C0.17541 DEWPT 2 52.2587 DEWPT 7 77.99698 DEUPT'3 G1.5231~7 DEWPT 5 67.73996

.DEWPT 4 80.93518 DEWPT 9 .73.9158 DEWPT 5 79.56356 DEWPT 13 7 7 . 4 9 2'7 1

.THE. AVE DEWPCINT WITH WEIGHTING FACTORS IS = 78.14766 i l1 THE PWV 15 = .4767554 PSIA I

TliE' MASS WEIGHT IS = 93454.84375 LDM

l 1

1 l,

EUt1 MARY OF ILRT ltEAEURED DATA  !

l CL1EliT : CPLL l PLAtJT SITE : E.RtJtJEWICK i UNIT : 1 l Il 1

READIfJG TAREfJ AT TIME PERIOD : 1202 DA1E : Ob- 19 -- 19 5 7  !

W1D 1 90.78 RTD is 56.71 RYD 2 90.89 Rl b 17 G5. 2 RTD 3 93.SG RTD 10 S S . 6 c' RTD 4 94.14 RTD 19 78.54  ;

RTD L GU.75 RTD 23 90.1E RTD 6 80.5G999 RTD 21 wo.36 RTD 7 07.76999 RTD 22 79.3 RTD S 87.26 RTD 23 79. 5: >

RTD 9 87.47 RTD 24 7 9 . -t 5 RTD 10 56.51ci99 RTb 25 O RID 11 87.69 RTD 26 0 RTD 12 86.4 R fD 2, O RTD 13 85.86 RID 2's O RTD 14 O'7.06 RTD 29 0

, RTD 15 Sc.CC999 RTD 33 0 THE nVE R ID t;ITit WEICHTING FACTCR:2 1 5 -- t31. Lt25 01 11.! F

= 543.72 11.1 R P Rl::.SS 1 64 29322 PREES z e4.29261 PRE 55 3 C THE /NE F RE5 EtJRE IS = 64 . .c 9 T9.$ P5IA DEWCELLS WERE CUNVERTED TO DE WPOl'Il DEWPT 1 86.67E02 DEWPT 6 E0.21264 DEWPT 2 Gi2. 32051 DEUPT 7 78 23231 DEWPT 3 G1.43665 DEWPT 8 67.65542 DEWPT 4 90.87465 DEWFT 9 73.929taa DEWPT 5 79.65'77 DEWF'T 10 77.56668 THE AVE DEUPC;NT WITH WElGHTING F(4CTOI.3 15 = 78.19768 THE i-iN 15 =- .4775405 FE>IA TiiE (1 ADO WEIGHT 10 '

9344a.484375 LLM

3l y 4

N l ., i ll< . . .

SUMMARY

OF 1LRT MEA 5uRED' DATA

JCLIENTi.: CP.t.L

'L '

PLANT. SITE : ERUNSWICK i UllIT 4, , ,

.. - READiljG T AUEN ' AT .*f If1E l'ERIOD : 1215- DAIE : 05-19-1987

,:1

' / -:

p!s RTU 1 90.76 RTD 16 G6.68

'RTD 2 90.09 RID 17 86.18 I RTD 3 93.8 R10 18 85.67 .j RTD 4 94.11 RTD 19' 28.54 '

RTD- $ 08.73001 RTD 20 80.18 RTD 6 88.56 R1f D 21 GO.66 RTD- 7 87.75 RTC 22 79.8 RTD G B7.25 RTD 2:3 79.55 RTD 9 'G7.45 RTD 24 79.45 RTD 10 86.49 RTD 25 0 RTD 11 87.66001 RTD 25 0 RTD- 12 ~ 86,39 RTD 27 3 RTD 13 85.G6 RTD 28 O l RTD 14- G7.D3 RTD'29- 0 l

'RTD l15 86.07 RTD 30 0 THE AVE RTD WITI: WEJCHTIt1G FACTORS JS = B4.016L9 lif F l' .

= 543.7057 111 R p PRESS 1 64.287'?6. PRESS 2 64.20741 l PRESS 3 0 ,

THE AVE PTRESSUPE IS = 64.28769 PEIA 1

DEWCELLS WERE CONVERTED TO DEWPo1MT DEWPT 1 86.62GES DEt JP T 6 79.60371 LEWPT 2 81.97439 DEWPT 7 77.94992 DEWPT 3 .G1.23S86 DEWPT G 67.65163-DEWPT 4- .81.00913' LEWPT 9 74.07716 DEWPT 5 79.6577 DEWPT 10 77.50616 3

5 THE AVE DEWPOIt1T WITH WEIGHTIi4G F ACTORS 15 = 78.01173 THE FWV IS = .474625 REIA THE MASS WEIGHT'IS = 93447.015625 LBM

_ _ _ _ _ _ _ _ _ _ _ . - _ _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _m ____ _

a m >s ..

4

'5Ut1 MARY-.0F.ILRT NEASURED DATA CL'IENT.,: CPLL=

PLANT. SITE
: BRUNSWICK
UNIT l.1

. 1 I

READING TAKEN-AT TIME PERIOD' 1230 DATE : 05-19.--198'/

RTD 1 90.76- RTD 16 86.68 RTD .2 90.89 RrD 17 Ei6.17 RTD 3 93.83999 RTD 18 85.66001 RTD 4 94.08999 RTD 19 78.53 RTD 5 88.7 RTD 20- > 80.17 RTD 6 88.55 RfD 21 EG Oa RTD 7 .87.74 RTD 22 79.'79-

RTD '8 B7.2D RTD 23 79.54 RTD 9 87.44 RTD 24 79.45

'RTD '10 86.46 RTD 26 0 RTD 11 8'7.64 RTD 26 0

RTD 12 E6. 37. RTD .27 0

.RTD- 13 55.83799 RTD 28 0 L

RTD 14 C7.01999. RTD 29 0 i

l t

RTD 15 86.11- RTD 30 0 THE AVG RTD WITH WElGHTING FACTOR 5 IS = 'S4.01729 TN F

= 543.7033 1N O PRESS-i 64.28346 . PRESS 2 64. 292(P6 PRESS 3 0. '

s THE AVE PRESSURE 15 s 64.29321 PSIA

~

DEUC' ELLS WERE CONVERTED TO ' DEWPOINT

-l

.-DEWPT . 1 86.57295 DEUFT 6 79.7182

'DEWPT.2 '82.64191- DEWPT-7 77.89613

'DEWPTJ3 81.33157 DEWPT~8- 67.74676 DEWPT:4 8G.90069: DEWPT 9 73.96286 DEWPT'5 79.75183 DEWPT 10 77.50616 THE AVE DEWPOINT WITH WEIGHTING FACTOR 3 IS = 78.05578 THE PUV.15 = .475471 PSIA I THE MASS WEIGHT _15 m 93440.1320125 LBM 1

x

--- -- . _ - L -. - _ _ _- - _-_ _ A

SUMt1ARY-CF ILRT t'IEMSURED DATA

~

. CLIENT : CP'& L PLANT GITE ' BRUNSWICK UNITL : 1-l READING TAKEtJ. AT ' tit E PERICD' : 1245 DATE : 05-19-1987 RT'D 1 90.76 R1 D 16 86.65 RT i> 2 '70. CS RID 17 B6.12 RTD 3 93.79 RTD 18 85.6-RTD: -4 '94.11 'RTD 19 76.53 RTD $ 88.68 RTD 20 30.1 ~7 RTD 16 88.55 RTD 21 80.06 RTD 7 G~/.72 RTD 22 ~79. 79 RTD G G7.26 RfD 23 79.54 RTD 9 87.42 RTD 24 79.44 RTD' 10- 86.49 RTD 25 0 RTD 11- C'7. 6 4 RTD 26 -0 RrD 12 86,35 TD . -2 7 d RTD 13 85.8 R1D 23 0 RTD .14 86.9Y RTD 29 0 RTD -15 86.07. R TD 30 3 THE (WE R fD WI TH WEIGl! TING FACTDRG 15 = d

'3.94730 1i4 F '

= 543.5374 IN R PFESS 1 64.27745 PRESS e. 64.27703

- FRESS 3 0 THE.nVE FRE85UFE IL = 64.27724 PEIA DEWCELLG WERE COth EP.TED 10 DEWFOlid DEWPT 1 86.57914 DEWPT 6 79.57701 DEWPT 2 81.79896- DEWPT 7 77.9701 DEhPT 3 G1.57263 'EWPT G 67.79433' DEWPT.4- 80.62589 DEWPT 9 74.23101 DEWPT 5. 79.4896 DEWFT 10 77.50616 I

l THE AVE DEWPOINT WIlH WEIGHTING FACTORS 15 n 77.99256  ;

I l' THE-FWV IS= .4743242 PSIA i THE MASS WEIGHT IS = 93435.8046875 LBM

r o..

E

SUt1 MARY ' OF ILRT t1EP.EURED DATA

- CLIENT : !CP&L

'PL. ANT ~ S I TE : BRUNSWICK

-: UNIT : 1-READItJG TAKEt1 AT tit 1E PERIOD : 1300 DATE : 05 19-19G7 RTD l' 90.70 RTL 16 86.62 RTD' 2 90.58 RTD 17 36.12 RTD 3 93.74 RTD 18 8 5 . 5 8 cl Y 9 '

RTD 4 94.06 RTD -19 78.53 RTD 5 88.67 R1D 20 80.16001 RTD 6 88.54 R fD 21 GN.05 RTD 7 87.71 RTD 22 '79.79

.RTD 8 87.21 RTD 23 ~7.54 RTD 9 87.41001 RTD 24 79.44 RTD 10 86.45 RTD 25 3 RTD .11 87.61 RTD 26 0 RTD' 12 86.33999 RTD 27. O RTD 13 85.8 RTD 28 0 RTD 14 06.99 RTD 29 0

.RTD '15 86.12 RTD 30 0 THE AVE RTD WITH WEICHilt1G FACTORS 16 :- G3.9921e 1!j F 543.6821 IN N PRESS 1 -64.27295 'FRESS 2 64.27257 PRESS .!. O THE AVE' PRE 5EURE IS -a 64.27275 PSIA

'DEWCELLS WERF. CONVERTED TO DEWPOINT DEWPT l' G6.51732 DEWPT s GO.17541-DEWPT 2 82.23397 DEWPT 7 78.07094 DEWPT 3 G1.33157 DEWPT G 67.66523 DEWPT 4. 80.83431 DEWPT 9 73.9427 DEWPT 5 '79.59046 DEWPT 10 77.47255 THE AVE DEWPOINT WITH WEIGHTING FACTOR 5 lb = 7 5.1 ?C4 THE FWV IE * .W764826 PSIA THE MASS WElGHT IS = 93426 984375 LUM

, 3 a , a

. v t

a j 3

..t .

SUMMARY

OF ILRT. MEASURED DATA '1

> i CLIENT
CP8<t i i PLANT-SITE : E;RUNSWICK
UNIT.: 1 READING TAKEN-AT TIME PERIDD : 1315 DATE : 05-19-1987
l i

I i

.RTD ' .1 ' .90.78 RTD 16 86.62 l R FD 2 90.9 RTD 17 86.14 RTD- 3 93.'76 RTO- 18 Ei5. S8 RTD L4 94.05 RTD- 19 78.32 .)

RTD 5 OG.66001 RTD 20 80.17 j

4 RTD 6 .G8.51999- RTD 21 EG.05 l RTD. 7 87.6? RTD 22 79.77' RTD 8: G 7.15 ' -RTD 23 79.S3  !

RTD9 87.59 RTD '24 79.44-RTD 10' B6.43 RTD 25 0

'RTD 11 87.55' RTD 26' O RfD 12 86.32 RTD 27 0 i RTD- 13 85.32 RTD 20 2 -l RTD. 14- 96.99 RTD 29 0 '

RTD 15 G6.04 RTD 30 C.

THE' AVE RTD WITH WEICHTIMO FAC'iCRS'13,= G3.' 9 84 3 IW F' l

543.6743 IN R I

PRESS 1- 64.26843 'FRE55 2 64.26511 I

. PRESS 3 0- '

THE nVE'PRESEURE 15 = 64.2eE28 PSIA i

EEW2 ELL 9 WERE CON','EDTED TO EEWPolitT  ;

DEWPT j B6. 48642 DEWPT-6 CO.05438

. DEWPT 2 82,23397 DEWPT '7. 78.023CG DEUFT 3 81.34393 DEWPT O 67.59047 DEWPT 4 80.66622 DEWPT 9 73.72082 DEWPT'5 79.4G96 DEWFT 10 77.49271 j THE AVE DEWPOINT W!TH WEIGHTING FACTORS 15 u- 7G.Z422 .

THE PWV 15 = .4751034 PSIA-THE MASS WEIGHT I S := 93423.78125 LBM

.' k

.EUMMARY OF ILRT 11EASURED DATA CL.IENT :- CP&L

' PLANT-SITE-: -E.RUNSWICK UNIT.: 1 READING TAKEN AT. TIME PERIOD : 1330 DATE : 05-19-1987 I

RTD 1- .9r 9 RTD 16 86.62 RTD .2 91 3 RTD 17 86.12 RTD 3 97 001 R fD 18- 85.6 RTD 4 94, .RTD 19 78.52 RTD 5 88.66001 RTD 20 80.14 RTD -6. 68.50- RTD 21 80.C4 RTD 7 37.68 RTD 22 77.'79 RTD 8. 87.17' rid 23 79.53 RTD 9 87.38 RTD- 21 79.41 RTD 10 86.44 RTD 25 0 GTD 11 87.61 RTD- 26 0

.TTD 12 .86.35 RTD 27 0 RTD 13 35.6 RTD 28 0 R TD 14 86.99 RTD 2.9 0 RTD 15 86.08 RTD 30 3 -

THE' AVE RTD WITH WEIGHTING FACTOR 3 IS = 83.95G11 IN F 2 543.6'751 IN R PRESS'1 64.26467 FREES 2 64.26366 PRESS 3' O THE AVE PRESSURE I5 = 61.26417 P5IA DEWCELLS WERE CONVERTED TO DEWPOINT DEWPT 1 86.41226 DEWPT 6 80.04766 DEWPT 2 81.83223 DEWPT 7 78.02308 DEWPT 3 81.523;7 DEWPT 8 67.60405 DFWPT 4 80.41072 DEWPT 9 74.19819 DEWPT 5 '79.46944 DEWPT 10 77.4456i.

Tt!E AVE DEWPOIltT WITH WElGHTING FACTORS IS = 78.052S5 THE PUV IS = .4752674 PSIA THE (1A9.9 WF 1 Gt iT 15 u ? ".41 7 , 3091 V' M i Iill

SUMMARY

OF ILRT HEASURED DATA

CLIENT - CP&L PLAhtT.- SI TE's BRUNSWICK

' UNIT : -1

' READItJG = T AKEf) AT TIME PER10D : 1345.. DATE : 65--19-1957

.RTD'.1 90,.8 RTD 16 86.63 L RTD '2 90.9 RTO 17 86.14

! RTD 3 93.76 'R1D 18 ' :5. 65 d

R TD 4 94.03- RTD 19 7G.4 R10' ~ .5 SS . 66C01. RTO 20 'GO.14

'RTD 6 G8.53 RTD 21 . 80. C<1 RTD. 7' 87.68 RTD 22 79.77

. RTD .G 87.'19 RTD 23 7:7.52 RTDl .9 c37. '39 RTD 24 79.43 RTD- 10' 86.48001 RTD 25 0 RfD 11. 87.61 RTD 26' O RTD 12 OL>.35 RTD 27 0 RTO 13 85.;86 RTD 28 0 RTD 14 'G7.e1 RTD 29 0

.RTD 15 G6.12 RTD 30 0-THE AVE RTD WITH WEIGHTING FACTORS IS = 83.59406 Ilj F

= 543.6841 IN P FRESS 1 64.2e166 PRESS 2 L4.2 PREJS 3 0 THE AVE PRE 5EURE 15 = 64.26155 P5IA a

I CEWCELLE WERE CONVERTED TO CEWPOINT

.g.

DEWPT 1 86.4617 DEWP1 6 00.02377 DEWPT 2 62.114.,36 DEWPT-7' 78.07094 l DEWPT 3 81.30102 DEWPT. G 67.47494 l DEWPT 4 80.53848 DEWPT 4 '7 3 . 8 0 1 5 1 1 i

DEWPT-5 DEWPT 10 77.49271 79.77873 a THE AVE DEWPOINT WITH WEIGHTING FACTGRS IS = 73.06538 i THE PWV IS = .4754716 PEIA 1

THE hASS WEIGHT IS = 93411.7265625 LBM I

SUMMARY

OF ILRT MEASUPED DATA CLIENT : CP&L PLANT SITE : BRUNENICK UNIT : 1 READING TAKEN AT TIME PERIOD : 1400 DATE : 05-19-1987 RTD 1 90.82 RTD 16 86.65 RTD 2 90.92 RTD 17 86.17 l RTD 3 93.73001 RTD 18 83.67 i RTD 4 94.01999 RTD 19 78.5 l RTD 5 G8.69 RTD 20 80.14 l RTD 6 88.5199'? RTD 21 80.03 RTD 7 G7.72 RTD 22 79.77 RTD 8 87.19 RTD 23 79.52 R1D 9 8'7.39 RYD 24 79.43 RTD 10 86.5 RTD 25 0 RTD 11 87.58999 RTD 26 0 RTD 12 86.36 .R ID 27 0 RTD 13 L5.87 RTD 28 0 RfD 14 G7.01999 RTD 29 0 RTD 15 86.12 RTD 30 0 THE AVE RTD WITil WEIGHTING FACTORS 15 = S3.79920 ItJ F

= 542.6893 1N R

PRE 5; 64.25866 FRESS 2 64.25847 s FRE55 3 0 THE A(.'F PRESSURE IS - -

64.25856 PSIA CEWCELL 5 WERE CCiNERIED TO I 5WPOINT DEWPT 1 86.37517 5 DEWPT 6 80.02077 DEWPT 2 82.04856 7 DEWPT 7 78.P6422 DEWPT 3 81.36248 DEUPT G 67.75356 DEWPT 4 80.94189 CEWPT 9 74.13768 DEWPT 5 79.64425 DEWPT 10 77.50616 THE AVE DEWPOlllT Wi1H WEIGHTING FACTORS 15 = 78.12622 THE PWV IS = .476418 PSIA l

i i

e 8 9 .

. - - - - _ . _ - " ' - ~ - - -

y4 o

p N SUMt1AR y OF ILR r tiEAEURED DAT A 3

CLIENT': CP&L PLANT SifE :- 1 BRUNSWICK

.UNITL; 1.

READING TAKEN.AT TIME PERIOD : 1415 DAT E ' 19-1987.

RTD - 90.83 RTD. 16 06.65 RTD" 2' 90.92 RTD' 17 86.17 RTD 3 93.,72. RTD 18 65.6G RTD 4 94.01 RTD 19 7G.52 RTD .5' E 8 . 6'9 RTD 20 80.14 RTD 6 -SG.51 RTD 21 C3. 03

=RTD' 7. 87.72- RTD 22 79.'77' RTD -S G7.23001 RTD 23 79.51 RTD 9 67.4 RTD 24 79.44

RTD 10 G6.49 RTD '25 O RTD .11 87.61 RTD 26 0 RTD 12 G6.37 RTL 27 0 RTD c13 G5.8G RTD 28 0 RTD 14 87.01997 RTD 29 0 RTD 2 5 ~. 86.18 RTD 30 0 THE AVE RfD WITIl UEICHTING FAC'lGRS I S =- 04.00491 lu'F 543.6947 1!J R PREES 1 61.25491 F Fels
i' 64.25475 PRESS 3 0 YiIE AVE PRESSURE 19 = .:4 . 254 B3 f'51 A DEWCELLS WERE CONVERTED TO DEWPOINT DEUPT 1 'C6.4431a, DEUPT 6 " .iG715 (

DEWPT 2 82,20307 DEWFT 7 78.0C371 DEWPT 3 81.4265 DEUPT G 67.60405 DEWPT 4 GO. 612 t',4 DEWFT 9 73.92925 DEWPT 5 79.70476 DEUPT 10 77.4G6 THE AVE DEWPOINT WITH WElGHTING FACTORS 15 = 7G.06G14 THE FWV 15 = .4755081 PSIA THE 11 ASS WEIGHT IS a 93399.9765625 LDM

l l

~UMMARY CF ILRT MEASURED Dl;IA l

CLIENT : CF 8<L PLANT SITE : ERUNSWICK UNIT : 1 READING TAKEN AT TIliE FERIOD : 1430 DATE : 05 19- 1 ci8 7 RTD 1 90.03999 RTD 16 86.67 RTD 2 90.93 RTD 17 85.19 RTD 3 93.75 RTD 18 55.7 RTD 4 94.01999 RTD 19 78.78 s RTD 5 08.69 RTD 20 80.14 RTD 6 89.51 RTD 21 E 0. 0 'l RTD 7 87.73001 RTD 22 79.77 RTD 8 87.22 RTD 23 79.52 RTD 9 87.4 RTD A 79.43 RTD 10 06.5 RTD 25 0 RTD 11 87.63 RTD 26 0 RTD 12 86.37 R FD 27 0 RTD 13 85.9 RTD 28 0 RTD 14 87.64 PTD 29 0 RTD 15 86.13 RTD 30 0 THE AVE RTD LJITH WEIGHTING FACTdFS IG C4.00c53 IN F

= 543.6998 liJ P PPESS 1 61.2519 PRESS 2 M . 2517 9 PRESS 3 0 THE AVE PRESSURE 15 = 64.25165 PSIA DEWCELLS WEPE CONVERTED TO DEWPOINT DEWPT 1 86.4617 DEWPT 6 90.25609 DEWPT 2 82.25253 DEWPT 7 7 7. c/5 M.5 DEWPT 3 81.75186 DEUPT S 67.67201 DEWPT 4 81.00913 DEWPT 9 74.13768 DEUPT D 79.59046- DEWPT 10 77.4254G

4. ,

THE AVE DEWPOINT WITH WEIGHTING FACTORS IS = 78.17711 THE PWV IS e .4772252 PSIA TEE f1 ASS WEICHT 15 = 93392.2343/5 LUM

- _ _ _ . . . . . _ . . . .. . .. . _J

SUMMARY

GF'ILRT MEASURED DATA B  ! CLIENT : CP&L l FLANT' SITE _: E.RUNSWICK l UNIT : 1. 1,

l. d j ." . READING TAKEN AT TIME PERIOD : 1445 DATE : 05-19-1907 RTD 1 90.63999 RTD 16 86.7 f ._

RTD 2~ 90.94 RTD 17 86.23001" ,

RTD 3 93.68 RTD 1 8 -- 85.76 .

RTD 4 94.01 RTD 19 78.83-RTD- S' 88.'72 'RTD 20 80.13 RTD 6 89.51999 RTD' 21 GO.03 RTD 7 97.75 RTD. 22 79.77 RTD 8 G7.26 RTD 23 79.52 RTD 9 97'.41001 F;T D 24 79.42 RTD 10 .06.53 RTD 25 0 RTD- 11 8'7.64 RTD- 26 'O RTD- 12? 86.41001 RTD 27 0 RTD 13 '85.98001 RTD 28 -0 RTD 14 87.08999. RTD l29 0 .

RTD 15 '86.1 , RTD 30 0 THE AVE P,TD WITH WEIGHTING FACTORS IG = 84.02166 IN F

= 543.71:7 1N R FRESS 1 64.25115 FRESS 2 64.25105 PRESS 3 0 THE AVE PRE 55ttRE'IS = 64.2511 PSIA DEWCEL.LS 'WERE CONVERTED 10 SEWPOI NT DEWPT 1 96.44934 DEWPT ta. 80.12833 EEWPT.2 82.33287 DEWPT 7 7G.00371 DEWPT 3 G1.90021 DEWPT G 67.61~765 DEWPT 4- 80.95534 LEWPT 9 / 3.85529 DEWPT 5 79.77199 DEWPT 10 77.49271 THE AVE DEWPOINT WITH WEIGHTING FACTORS IS = 75.15787 THE PWV IS = .4769149 PSIA

~THE MASS WEIGHT IS =- 93389.5703125 LEM I

1

gs EUMMARY CF'ILRT tiEASURED DATA.

T

. CLIENT.: CP&L-3 PLANT. SITE 'DRUNSWICK DNIT i 1.3 m

n

' READING TAKEN AT TIME PERIOD : 1500 DATE': 05-19-1907

-RTD 1 90.86 RTD ' 16 ~ 86.72 RTD 2 90.93 RTD 17 G6.26'

- RTD .3 93.74 RTD 18 85.32 RTL' 4' 94 RTD. 19 7G.G4 RTD. 5 88.75 RTD 20 GO.14 RTD 6 88.53 RTD - 21 = 80.03 RTD 7 8'/.78 'RTD '22 79.77 lRTD JG G7.26 RTD 23 79.S2 RTDS 9 87.43 RTD 24 79.43 RTD '10 86.57 RTD .25 0 RTD 1.1 .87.66001 RTD 26 0 RTD- l' 2 - 86.'44 RTD 27 .O RTD- 13' 86.01999 RTD 28 :0 .

RTD 14 8'/ .1 - RTD' 29 0 RTD 15 86.15 RTD 30 0

~

- THE AVE RTD WITH WEIGHTING F ACTORS. IS =' 84.03935 lu F

= 543.7294 IN R-PRESS 1 64.24765 _PF ESS . 2 - 54.24956 PRESS 3 0 1HE AVE-FRF.ESURE 15 = 64.24961 PSIA q

DEWCEL.LS'WERE CONVERTED TO LEWPOIN1 DEWPT'F G6.51732 DEWPT 6 79.94008 DEWPT 2 82.49976 DEWPT / /7.09613

.DEWPT.3 82.74699 DEWPT 8 67.706 DEWPT 4 81,08308 DEWPT 9- 73.92233 DEWPT 5 79.98041 EEWPT 10 77.49271 THE AVE DEWPOINT tJITH UEIGHTING FACTORG IS = 78.20262 THE PWV 13 = .4776287 PSIA 1' l l

THE MASS WEIGHT.IG = 93383.3046875 L.BM

n - _ _ _ _ - _ _ _ - _ _ _ _ _ _ _ _ - ..

1

[y. >

SUMMARY

0F ILRT MEASURED DATA' -.

CLIENT : CP&L ')

, PL. ANT.~ SITE : 1 BRUNSWICK j

-( UNIT : 1 (

READING TAMEN AT TIME PERIOD : 1515 DATE : 05-19-19G7 RTD 1 90.86 RTD 16 86.76-RTD' 2 90.98001 RTD 17 86.32 RTD' 3 93.74 RTO 18 85.9 RTD 4 93.99 .

RTD 19 78.83 RTD. 5 88.76999 RTD 20 80.14 RTD. 6 88.51999 RTD 21 60.03 RTD "7 87.81 RTD 22 79.77 RTD 8 87.29, RTD 23 79.52 RTO 9 87.45' RTD '24 79.42 RTD 10 86.64 RTD 25 0

.RTD 11 37.7- RTD 26 0 RTD 12- -G6.51 RTD 27 0 RTD '13 86'.11 R1D 28 0 RTD' 14 87.12 RTD 2.9 0 RTD 15 86.13 RTD 30 0 THE AVE RTD WITH WEIGHTING FACTORG 15 = G4.0599 IN :

= 543.7499 1H R PREES 1 64.24965 PRESG 2 61.24582 PRESS 3 0 THE AVE PRESSURE 15 = 64.21924 PGIA i

DEWCELLS WERE CONVERTED TO DEWFOINT DEWPT 1 86.49879 DEWPT 6 80.39056 DEWPT 2 82.09181 .EWPT 7 77.75665 DEWPT 3 81.90639 DEWPT 8 67.'706

.DEWPT 4 81.28212 DEWPT 9 74.19146 DEWPT 5 60.3435 DEWPT 10 77.47255 THE AVE ~>EWPOINT WITH WEIGHTING FACTORS IS & 78.35191 THE PWV 35= .4799716 PSIA THE MASS WEIGHT 15 = 93375. '796 G7 5 LOM

1

'3UMMARYLDF ILR~l MEAEURED DATd  ;

i

-CLIENT : 'CP&L  :  ;

, ! PLAN.T CITE
BRONSWICK
  • n~ UNIT's

'_1

READJ!)G TAKEN.Ar TIME PERIOD . 1S30 DATE : 06--l % i 987
  1. RTD- 1 90.89 RTD 16 '

86.85 RTD' .2 93.96001 RTD 17 86.42 RTD 3 93.76c/99 RTD' 18 '86 RTD 4 94 RTD 19 '73.7 RTD 5 88,a2 RTD 20 SA.14 RTD 6- 08.51 R ~i~D 23 EO.03 RTD. 7- .87,G7 .RTD 22 79.77-RTD :O E7.31 RTL. 2? 79. ST RTD .9- S7.51 RTD. 24. 79.42

%TD 10 86.73001 RTD 25 0 RTD' 11 r37.73001 RTD 26 0 RTD 12 G6.61 RTD 27 3

'RTD 13 86.23 RTE 23 0 RTD 14 G7.17 RTL 29 0 RTD -15 86.1'9 RTD 30 3 THE AVE.RTD WITt! MEIGHTING Ff;CTORS IG + S 't .1(o 10a. - I N r-543.7911 IN R PRES 5 1 64.25115 PRESS 2 64.25105 PRESS 2 0 THE. AVE PREECOP.ELIE 14'.'2311 PSin DEWCELL5 WERE CONV9:RT ED TO DELIFOINT DEWP'T 1 G6.52969 DEWFI~ 6 50.17142

, DEWPT 2 82.ic046 DEWPT 7 77.19835 DEUPT 3 82.72227 DEt#T G 57.G4191

- DEWPT 4 31.49845 DEWPT 9 74.27387 DEWPT 5 GO.26754 DEWPT 10 7 .$3616 THE AVE DEUPO]NT Wil!I UElGHT ING FACTOR 5 15 = 75.44697 l THE FUV 19 - 0, G 1 4 7 1 ? PSIA THE MASC WEIGHT IS -

93367.25 LDt1

,.,,,r-_,---yn.----- , - _

APPENDIX F AS FOUND ANALYSIS l

1

\

l l

1 l

I 1

_ - _ - _ - - _ - _ - _ -_________-____J

S E

T O

N s

g S n I

S i

v 000O0O0000O00000000000000000 Y a L S A

N A

H t T sf 00000O0000O00000000000000000 AA e P -

L M

U '

M I

N d I n Msu 0000000000O00000000000000000

_ A o

_ F

_ e g

na ek P a S e

_ I L

_ S Y

L A

N t A sf 0000000000O00000000000000000 A e B L E

P Y

T d

n su 0000000000O00000000000000000 A o F

s e LLLLLLLLLLLLLLLLLLLLLL LL LLLL

_ v AA AAAAAAAAAA AAAAAAAA AAAA AAAA l

a CCCCCCCCCCCCCCCCCCCCCCCCCCCC I I I I I I I I I I I I I I I I I I I I I I I I I I I I

_ V RRRRRRRR RRRR RR RRRRRRRRRRRRRR TTTTTTTTTTTTTTTTTTTTT CCCCCCCCCCCCCCCCCCCCCCCCCCCC TTTTTTT

- , EEEELLLLL LLL EEEEELLLL EEEEEEE EE EEEEE LLLLLLLL LLLL EEEEE LLLL EEEEEFEEEEEEEEEEE EEEEEEE EEEE

_ n ABCADDABB 00O3 04 24 2 lACDECCHGEEFEG HFFBGH l 5 S 2 4 5 5 2 4 000O2 4 3 4 2 e 00OO00000OO00000000000O0O0OO P 1 1 l l 1 1 1 1 1 l l 1 1 1 1 1 1 1 1 1 1 1 l 1 l 1 l l

! 1 S

E T

O N

s _

g S n 6 I i 00 0000 0O0O 1 0O OOO O0O O0O OOO S v 8 Y a L S 6 A

N -

A l

I t T sf 00 0000 0O00 00O OOO O0O O0O OOO

,- A Ae P L M

U M

I N d I n 6 M su 00 0000 0O00 1 0O OOO O0O O0O OOO Ao 8 F

6 e

g z-na ek _

P a S e I L S -

Y  :

L A -

N t -

A sf 00 0000 0O00 00O OOO O0O O0O OOO A e -

B L -

. E -

P Y -

T -

d -

n 6

- su 00 0000 0O00 1 0O OOO O0O O0O OOO -

A o 8 F

6 K l i

s LL LLLL LLLL I I LN C G GG -

e AA AAAA AAAA CAA TI I LN GGG GNN l

v CC I I CCCC I I I I CCCC I I I I TEL ASB ACS I

I TU SAI UER Nt N I I I NI I I RR a RR RRRR RRRR i l AR RS RRR R V TT TTTT TTTT RD Dl Oi O O OO CC CCCC CCCC TEH I I I I D - O00 O - - -

EEEE EE LL EE LLLL EEEE EEEE LLLL EEEE PN QI W ELD WR DCS D '. '.E4 A9 NI V VVV I

S67

- 67 91 1 VVV n

JK 55 FDCB 1 l 5S BCAD A B 2222 0 0 5 0 55 e OO 0OOO 3 333 0 0 - B 052 600 P l l 1 l lI 2222 1 23 462 2 3 222 2 22

l l llJ l l l l l e e e e e l l l l l l l l l l a a a a a r r r r r a ) ) a ) a a a p a b p c p p p

( 7 ( 7 7 7 (

n n n n n i ee ee t t e e i e i i i t t t t t S

d oo e NN NN oo o o d o d d d N N e N e e e E t t t t t T s ee ee e e s e s s s C e ee ee e e e e e e e N T SS SS S S T S T T T S

G S N

  • 4 I I 0 L 0 0 0 S V 0 2 0 0 Y A > 1 L S 4 A

N A

9 6 H T 3 7 T SF 0 0 O 7 0 3 0 0 0 A AE .

P L M

U M

I N D -

I N P 9 M SU 0 0 N 3 0 0 0 0 ADE W 7 5 4

E S

NA EK PA G

E I

S Y

L L

A 7 N

A SF AE T

0 O 0 0 1

8 0 O O O 0 9

3 7

0 2

5 7

0 3

2 8

O 5 7

2 C L E

P 3

1 _

Y T

SN AU D

O F 0 P

N k

3 4

4 5

1 6

1 4

2 P

N P P N N 0 9

3 0 0 3

2 O 5 7

2 7 8 2 W W W 7 0 8 2 4 1 3 9 1 _

S _

E AA BB CC DD A A B B A A B B V 28 28 28 28 69 0 26 0 28 32 78 23 89 5 7 5 7 _

L 22 22 22 22 l1 1 3 0 1 3 8 1 4 00 00 00 1 1 1 l _

A 90 00 00 00 00 O0 0 00 0 00 00 00 00 00 0 0 0 O _

V 45 FF FF FF FF FF F FF F FF FF FF FF FF F F F F CC 11 1 1 11 11 1 1 1 11 1 1 1 1 1 1 1 11 ll l l l l AA 22 22 22 22 22 2 24 2 25 53 55 44 l l l l l l CC BB BB BB BB BB B BE B BE EG EE EE EE EE E E N A B E B A B C D A B 0 1 2 3 3 P 3 7 7 7 7 8 9 9 1 1 1 1 1 ll !I llL

l l l l l l l l l l l l l l a a a aa a a r r r r r . r r a a a aan a a) p p p ppe p pd P (

n n n nn n n i i i i i2 i i e t

d d d dd s d d o S e e e eee e eN E t t t t t v t t T s s s s sr s se O e e e eee e ee N T T T TTS T TS S

G 1 1 S N 6 0 I I 8 0 0 0 0 0 0 0 0 0000 1 0 S V 4 Y A L S A

N A 5 7 3 9 9 1 4 5 8 H T 1 3 1 5 5 6655 9 TSF 2 0 2 0 0 0 5 3 1 64 96 7 0 AAE . .

3 1 P L 3 1 M

U M

I N D 3 9 I N 2 4 5 8 9 7 MSU 7 0 3 0 0 0 1 5 5 6655 0 AO 0 2 5 3 7 64 96 9 F . .

1 3 1 2 5 E

G NA EK P A S E I L S

Y L

A 7 N T 1 4 1 5 6 0 3 67 AS F 2 003 8 0 0 0 1 1 1 3 2 01 9 0 AE 4 22 5 7 3 3 993 3 C L . .

1 1 5

3 2 6 1 E

P Y

T D

N SU 4 4 1 5 6 7 AO 4 3 8 1 1 1 3 67 _

F 1 002 2 0 0 0 5 7 5 3 2 01 O

. . 3 993 047 2 3 2 5 . .

1 1 1 91 3 S 5 01 E 1 7 6 V AABB V 1, 1, L 1 4 4 5 4 5 23 3 4 90 2 A 00 00002 2001 2 28 ,57 6 2 3 037 V 0000000000005 2 6 1 1 66 91 21 I FFF V 1, 1 6 VVVVV

- - -FFFFFFF

- - - - F - -F -V -V- V- V,V

- - - B - A , 5, - - - - -

1 1 1 1 1 1 l l 6666 CCC4 C0 C001 CCCCP 3 3 2 2 2 2l l 1 1 1 1 CCA - A2 A2 67 5 AAAAI GGEEE EEEGGGGRR CVCXCX1 1 5 CCCCT 4

N A B 2 5 A E 4 6 6 7 8 9 3 5 0 6 5 P 1 1 1 1 1 1 2 & 2 & 2 2 3

l 1,

!j! jll lijlll l]j ))jII l :Ii

!1)i

- llll3 l l l e e e l l l l l l a a a r r r a a a )

p p p e n n 3

3 3 3 n

4 4 3 4 (

i i e e e e i e e e e e t t t t t t t t t d d o o o o d o o o o o .

S e e N N N N e N N N N N -

E t t t T s s e e e e s e e e e e O e e e e e e e e e e e e N T T S S S S T S S S S S

= -

S -

G S N 2 1 4 I I 0 0 0 O 9 0 7 0 0 0 0 1 0 -:

S Y

V A

7 3 A A A A N N N N L" 9 A A A A

> 2.

.L S 1 7 N N N N A

N A

6 6 7 3 4 6 0

_IH T 1 3 4 5 6 9 8  :

' SF 2 0 0 O 3 5 2 0 A A A A 0 O 4 1 1 A A A A 0 A AE N N N N N N N N .

P L 1 1 1 -

M

.U -

M I

N D I N 6 8 7 4 4 M SU 1 0 0 O 2 4 2 0 0 P 0 0 9 0 AO 2 1 5 6 A A A A N 0 A A A A F N N N N W 8 N N N N 1 2 2 E

G NA EK PA S E '

I L S

Y L

A N T 6 1 4 4 3 9 -

4 A SF 1 0 0 O 7 9 2 5 O 0 0 0 0 0 0 O O 0 0 0 5 0 0 0 0 0 O 0 0 AE 2 6 0 6 2 3 8 C L 1 2 1 2 1 E

P .

Y  :

T D

N SU AOF 6 0 0 O 5 4 4 2 O 0 0 0 0 0 0 P P 0 0 0 7 0 0 0 0 0 O 0 0 1 5 9 2 9 N N 8 2 2 2 0 6 2 W W 1 9

. 3 .

1 4 1 2 7 6 _

1 7 4 3 2 B C A C A E F A - B - D E -

S 0 1 3 3 7 7 1 9 1 1 9 9 9 9 9 5 9 -

E K 0 6 4 4 3 3 3 1 3 1 6 2 0 0 0 0 0 0 0 V h AA BB 2 2 0 0 0 0 5 2 4 2 2 6 2 4 2 4 2 2 4 L C 61 61 6 7 1 1 F F F F 2 1 3 1 1 2 90 1 4 1 4 1 1 4 A -

l 2 12 0 0 - - - - - - 5 - - - - 5 1 2 - - - - - - - 2 4 V 2 3 4 b0 00 0 0 V V V V V V - V V V V - 00 V V V V V V V 2 2 V V V N FF FF F F S S S S S S V S S S S V FF S S S S S S S V V .

- - - - - - - - - - - - - - - - S - - - - S - - - - - - - - - - -

P P P P ll ll 1 1 C C l l l l - C C C C - 22 C C C C C C C 2 2 I I I I l l ll 4 4 A A l l l l A A A A A A 33 A A A A A A A 3 3 T T T T EE EE C C C C E E E E I C C C C I BB C C C C C C C B B -

N B C D E A B B A B C D E F E A B D E A E 5 5 5 5 9 9 2 9 I l I I 2 4 4 5 6 7 7 7 0 2 P 3 3 3 3 3 3 4 4 S S S S 5 5 5 5 5 5 5 5 6 6

ll{ l Ml M

I

) -

3 3 3 3 4 4 4 3

(

e 4 3 3 3 3 e e e e e e e e e e e e e e t t t t t t t t t t t t t t o o o o o o o o o o o o o o S N N N N N N N N N N N N N N E

M T e e e e e e e e e e e e e e O e e e e e e e e e e e e e e N S S S S S S S S S S S S S S S

G S N I I 0 0 0 0 O 0 S V Y A A A A A A A A A A A A A A L S N N N N N N N N N N N N N A

N A

H T T SF A A A A 0 A A A 0 0 A 0 O 0 A AE N N N N N N N N A A A A A P L N N N N N M

U M

I N D I N M SU 0 0 0 0 O 0 AO A A A A A A A A A A A A A F N N N N N N N N N N N N N E

G NA EK PA S

I E

L S

Y L

A 1 N T 2 A SF 0 0 0 O 0 O O O 0 O O O 0 0 0 0 0 8 O 0 0 7 0 0 O 0 AE C L E

P Y

T D

N SU AO 8 6 F 0 0 0 O 0 O 7 O 0 O 0 O 0 2 0 0 0 2 O 0 0 1 0 0 O 0 2 3 9 2

. 3 7 2 -

7 4 3 2 1 D B D B A - B - C - E B C BC A - C D B C S 7 3 3 7 7 0 7 0 7 0 7 0 5 0 5 22 8 0 8 8 9 9 E 3 4 4 3 1 2 1 2 1 2 1 2 6 2 4 2 22 1 1 1 1 1 1 1 V 0 0 0 0 6 2 4 2 4 2 4 2 2 2 4 2 22 5 2 4 2 2 2 2 L F F F F 2 1 4 1 4 1 4 1 1 1 3 1 1 1 2 1 4 1 1 1 1 A - - - - 5 - - - - - - - - - - - - - 0 2 5 - - - - - -

V V V V V - V V V V V V V V V V V VV 3 3 - V V V V V V S S S S V S S S S S S S S S S S SS V V V S S S S S S

- - - - S - - - - - - - - - - - - - - - S - - - - - -

l l l l - C C C C C C C C C C C SS 2 2 - C C C 1 C C l l l l A A A A A A A A A A A A XX 3 3 A A A A 4 A A E E E E I C C C C C C C C C C C RR B B I C C C E C C N A B C D A B C E B C BC A 6A 6C 6D 6 B 6C E 8 8 8 8 1 3 3 3 3 6 6 77 8 3 0/ 0/ 0/ 0/ 0/

P 6 66 6 7 7 7 7 7 7 7 77 7 8 2 A 2 A 2 A 2 B 2 B l l ll ,!l ll l lll ll l ll(l ll llt :

l l n n l l e e a a P P r r a a )

h h p p f

(

3 3 t3 t 4 5 5 i i n n t

e t

ewew t ee t t t e i i t

e o od od oo o d d o S N N eN e NN N e e N E t t t t T e es es ee e s s e O e eeee ee e e e e N S STST S S S T T S S

G S N I I 0 0 0 0 O S V Y A A A A A A A L S N N N N N N A

N A

0 2 H T 5 0 TSF 0 0 1 0 3 AAE A A A A A A .

P L N N N N N N 1 2 M

U M

I N D I N 2 MSU 0 AO A A A A A A 3 F N N N 0 0 N N N 0 0 .

2 E

G NA EK PA S E I L S

Y L

A N

ASF T

0 0 0 0000 _- 9 9 0 4

0 AE 2 6 C L 2 4 E

P Y

T D h h N t t SU iA iB AO w1 w1 F 0 0 0 00000000 1 009 1 80000 0 0 d2 6d21 3 e 2 e 3 9 t . t .

s n sn 3 ee ee 1 TP TP 1

D D D A -

S 9 0 1 67 8 93 9 E 1 2 2 88881 0 V 2 2 2 1 1 1 1 2 4 AAA ABBB B AABB L 1 1 1 4 4 4 4 1 4 7l 4 5 7 l 4 5 97 297 8 7 81 0 A - - - - - - - - - Ol 2 2 0l 2 2 2 91 1 2 2 2 2 04 V V V V VVVVVVO00 00O0 00000000000 FF FF FF F FF FF S S S S SS S S SF FF FF FF 1 1 1 S S S S CCl l l l l l l l l l 1 1 l l l l 1 1 4 4 4 X X X X AAl l l l l l l l l l 4 5l l l l 55 E E E RRR R CCEEE EEEE EEEEEEEEEEE A B A B N 6 D6 D6 D9B9 D9 A 0 0 1 1 2 E 0/0/0/0/0/0/ 1 1 1 1 1 P 2 B2 C2 D2 A2 A2 B 2 2 2 2 2 l

l l l l l l l l a a a a r r r r

) a a p

a) a g p pd p 5 ( ( 5 5 66 66 4 4 n n n n e e i i i e i e e ee ee e e t t t t t t t t t t t o o d d d o d o o oo oo o o S N N e e eN e N N N N NN N N E t t t t T e e s s s e s e e ee ee e e O e e e e ee e e e ee ee e e l S S T T TS T S S S S S S S S S

G S N I I 0 0 0 0 0 0 0 0 S V Y A A A A AA A A A A L S N N N N N NN N N A

N A

9 3 9 H T 5 5 1 TSF -

5 1 8 0 AAE A .

0 0A A 0AA0 AA A A P L N N N N N N N N N M

U M

I N D I N MSU 9 3 0 AO A 5 5 1 0 0 A A 0AA0 AA A A F N 5 1 4 N N N N NN 0 N N E

G NA EK P A S E I L S

Y L

A 8 8 67 0 7 5 1 N T 3 1 01 2 9 3 8 ASF 1 1 3 808 0 0O000001 03 2 000O0 A E . .

C L 4 1 2 E

P Y

T D

N SU AO F 0O0OOO5 8 6 0 0 0O0000 7 7 7 1 00 O0 3 1 0 2 984 8 8 1 1 3 8 81 65 2 5 9 1 2 7 8 5 4 3 1 1 2

_ 1 B E 2 2

_ S 0 7 1 1 5 0 E

F, l 3 4 1 4 ABAB AABB AB AB

_ V v, 25 2 5 L S 5 3 3 92659 2 82051 5 1 1 002 1 1 1 41 4

_ A S 5 0OO1 4 667 7 2 02 24 1 3 1 3 3 2 2 4 0 0 - - - -

V O01 l 2 2 000002 7 80000000000 00 00 2 VVVV FF FFVVF FFFF VVVFFFFFF F FFFF F FF1 2 S SS S

- - - - - - - - - - - - - - - - - - - - - - - - - - - - VV - - - -

l l l l l 1 1 1 1 1 1 CCC1 1 1 1 1 1 1 1 1 l l 1 1 1 - - CCCC

_ l l l l l 1 4 554 4 AAA55 4 4 2 2 2 2 5l l 4 2 2 DDA AAA EEEEEEEEEEECCCEEEEE EE EEEEEE ETTCCCC A B A B AB B E

_ N 4 6 8 0 1 2 3 3 4 55 67 7 1 4 5 E 1 1 1 2 2 2 2 2 2 2 2 2 2 2 3 4 4 P 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 l

, y,gu);

r-NOTES

. General

1. All values are given in sefh.
2. The MPL assignment to penetrations that have valves tested in parallel is q 1/2 the Type C value unless otherwise noted.
3. Valves do not receive containment isolation signal. These lines are required operable during normal operation, shutdown and accident conditions to monitor critical parameters. Piping and instruments tested during Type A test.
4. H -0 m nitors are Seismic I designed and used post-accident to monitor 2 2 containment atmosphere. Piping and monitors are tested during Type A test.
5. These lines are part of a closed, seismic qualified loop that discharge back to containment below the minimum required torus water level. These penetrations do not constitute a potential atmospheric leak path.
6. These lines, which take suctivn below the min. torus water level, provide emergency cooling water to qualified closed systems which are built to seismic I, Safety Class II standards. No potential atmospheric leak path exists.
7. Leakage from Main Steam Isolation Valves (MSIV) is considered a separate source term from containment leakage in the accident analyses. Technical specification acceptance criteria for MSIV's is 11.5 scfh per valve which equates to 92 scfh for 8 MSIV's.

Specific ,

I

a. Maintenance performed to.only B21-F028A-
b. Maintenance performed to only B21-F028B
c. Maintenance performed to B21-F032A stem leakoff line only.

Leakage line has been cut and capped to preclude any further leakage.

d, CAC-V172 was moved from Pen 26 to Pen 220 during outage. CAC-V-9, 10, and 23 tested together at end of outage.

e. B32-V22 tested with B32-V30 which is part of penetration 78A.

Maintenance was performed to B32-V30 only. Retest resulted in .8 scfh which is also the As Found value for B32-V22.

f. Maintenance performed to only E51-F001
g. Maintenance performed to only E41-F049 I

t 1

..