ML20214S233

From kanterella
Jump to navigation Jump to search

Demonstration of Conformance of Jm Farley Units 1 & 2 to App K & 10CFR50.46 for Large Break Loca
ML20214S233
Person / Time
Site: Farley  Southern Nuclear icon.png
Issue date: 02/28/1987
From:
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML20214S183 List:
References
TAC-62283, TAC-62284, NUDOCS 8706090191
Download: ML20214S233 (34)


Text

ATTACHMENT 3 DEMONSTRATION OF THE CONFORMANCE OF JOSEPH M. FARLEY UNITS 1 AND 2 TO APPENDIX K AND 10 CFR 50.46 FOR IARGE BREAK LOCA Westinghouse Electric Corporation Nuclear Technology Systems Division Nuclear Safety Department Safeguards Engineering and Development February 1987 8706090191 870602-I PDR ADOCK 05000348 P

PD8

i l

I. InW*i=1 5

'Dtis dominore reports the results of an analysis that was perth-ad to demonstrate that Joosph M. Farley, thits 7 and II, most the requirannts of Appendix K and 10CHt50.46 for Iarge Break Imme-of-<2olant-Accidents (IDQL).

II. Method of Analysis

'!he analysis was perfm1med using the Westin@cune 1981 Evaluaticrt Medal witti BMW and BhSH for a spectrum of break coefficients. 'Ihm Westin@ cuss 1981 ECCS Iarga 3:eak Evaluation Malal with BMtr and BhSH was developed to determine the BCS reopense to desigt basis large break IOC3s (see Rafarences 6-13,19-20).

'the is81 avaluatism meal with BMer and Buu is ccuprised of the ammu-vI,

]ptEFIDCD, OXD, IDCDh-IV, BMtr and Bhst 7*** codes (Rafarences 3,4,5,1,16 and 17 respectively, saa also Referenos 8). Wien the BhBI code (Reference 17) is used alcrig with the SlIN, a slipstly different versiert of the ]ptEFIDOD (Interia Mteflood) is required. 'Ihm purposes an$ structures of this code do not differ significantly from the standard SLIM Malal. 'Ihm sumINTI code was used to generate the bicudoun partien of the transient, the ]ptEFIDCD CIIE was used to ganarate the refill system hydraulics, and the CDCD code was used to i

avalusta the contairument responsa. 'Ihm BASH code is based primarily en initial ccmdities taken fram the results of Intaria ]ptEFIDOD and IDCUL-IV at Bottcarof-Core recovery (Boc time). BhSH provides a more realistic tbamm1-hydranlin sinalation of the reactor core and RCs during the reflood N of a IDCh. M=Mirig thermal analyses were WrA with the IDCBMW code,1dlicts for a BhSH analysis has the FIECHE correlatics in IDCDL-IV replaced l

by the BMtr code, using the RCs preneure, fuel rod power bi_*-y, staan flow past the moovered part of the acre, and mixture height histcry fram the j

sumM-vI, utzrtcoD, and BhSH occas as irsut.

j i

l l

.---.--..-._-------,-,n,...-,,n..,-

The fuel parsestare used as irsut fe the IDaL analysis were genuatal ushy the movised PhD enemm1 Safety Modal (References 14-15). The hydrunlit analyses and core thsemel tuenslant analyses for the Joseph M. Farley Iarge Break IfXA s

analysis were per$ mund tasing 102 percent of licensed NESS core power, 2652 Mft. Other partinent --==*i- -, include a lot staaet generator tube plugging level, mininas and =mr4== enfeguards Buergency Ctre Cooling systasi

-=hilities,17 X 17 SID fuel design *h is the current design for both Farley smits, and an upficar barrel-baffle configuraticut. The tyficer barrel-baffle configuraticat has previously been ehene to represent a maall peak clad temperature penalty, hence the uma of this configuratien is conservative and banding at both smits. This analysis also iru r t-- a conearvatively samall total reacter coolant systen fim (14 beim tach spec limit).

l Table 1 shaus the tima sessaance of events for the Iarge Beenk Iock transients.

Tabla 2 prwides a krief===muy of the ip-A results of the IOCR anklyses for escit case. Figures la-Id and 2a-2d shcar layw.^

A ocre characteristics during the bicudoun phase of the translant (Core Pressure and Care Ficar versus i

Time,i--.+-dvaly). Figures 3a-3d and 4a-4d indicate the ficar of EOCS water into the RC3 (h==21= tor Flcar and Raped B0:5 Ficar during Pafirwwt versus Time, roepectively). The flooding rates during the rufttrue particut of the transiant are given in Figures 5a-5d. 1hase figures shcar the mucothed flooding rata retplired by the En5R SER and described in the Eh5H NtlhP, Mt3P-10266. Clad Average Temperatures as a fisicticas of time, for the peak clad 'w.^m-and clad burst locaticzis, are given in Figures 6a-6d.

Three break size discharge ocefficients (C ) were evaluated;Cp0.4, D

g Cde.6, and Cp.s. 1hese tranniants vers ocaisidered to be terminated Wust the hot rod clad average tamperature " turned around" (i.e. - hat red clad average tauparature began to decline) irdiating that the peak clad temperature had been reached.

III. Results Of the three break sizes evaluated, the Cf.4 break with minimusa BOCS safeguards proved to be the limiting (hi@ met PCT) case with a peak clad i

0 8

8 8

l temperature of 2013 F, cxupared with PCDs of 1685 F,1641 F and 1971 F for the Cf.6, C p0.8 and Cf.4 mairina BXS safeguarde cases, g

respectively.

l l

-_-n-,--

- -. - _ - _ - ~,

IV.

curclusicas ytr breaks g to and ir.cludirg the dothie ended severance of a reactor coolart pipe, the Ehergencar care Cholirq Systaat will east the Acceptance critaria as presented in locat50.46. mat is 0

1.

De calculated peak clad toeparature does not emosed 2200 F based cut a large break IDS total peaking factor of 2.40 and a hot channel enthalpy rise factor of 1.62.

2.

De macunt of ftaal alament e1wirig that reacts cb==fr=11y with idatar ce stamm does not axoemd 1 i i of the total amount of ziraalloy in the recotcr.

3.

Se clad toeparature transient is taminated at a tian Wien the core gecnetry is still amenable to cooling.

l 4.

Ma eldig enddatica limits of 17% are riot M dring or after quenching.

s.

2. a:re tesourature is reanoed and the decay heat is removed for an enctanded period of tian, as rapired by the Icmy-lived ruiWvity remaining in the core.

h as 1

I o

9 l

l Gb


,-.g-

i I

25mEE 1 i.

IAI M W EhK.

TDE SE3EN3 0F EVBf!5 IzKIA IEKIA IX1G*

EECIA m=0.a IItshi IIt&A a>0.4 nax sr 2

(sec)

(Sec)

(Sec)

(Sec)

Start 0.0 0.0 0.0 0.0 Danctor Trip 0.497 0.503 0.511 0.511 sigial s.z. stymi 0.se0 0.7s0 0.e5 0.s5 Acc. Ihjection 9.38 11.50 15.30 15.30 Rap Injection 25.690 25.7s0 25.95 25.95 -

Dd of M1 W 21.644 24.354 31.515 31.515 Bottzza of Onze 34.541 37.614 44.40 42.772 Decwary Acc. B yty 43.911 46.994 52.320 52.362

  • 1he M% coefficiarit of 0.4 with minisaan safeguards resulted in the highest Peak clad Temperstme.

l l

l i

I i

l l

0

I TABLE 2 LARGE BREAK - ANALYSIS INPUT AND RESULTS BEEP 1TE DECLG DECLG DECLG DECI4 CD=0.8 CD=0.6 CD=0.4 CD=0.4 MAX SI Posk Clad Temp., OF 1641.0 168'5.0 2013.0 1971.0 P02k Clad Temp.

8.5 8.5 8.5 8.5 Location, ft Local Zr/H O 1.166 1.530 5.431 5.07 2

Rxn (max), 4 Local Zr/.

8.5 8.5 8.5 8.5 H O Location, ft 2

Tctal Zr/H O Rxn, %

<0.3

<0.3

<0.3

<0.3 2

Hat Assembly Burst Time, sec 104.7 62.7 46.7 46.5 Nct Rod Burst Time, sec 72.8 47.2 39.8 39.8 l

Hot Rod Burst Location, ft 7.0 6.5 6.0 6.0 INPUT i

NSSS Power, MWt, 102% of 2652 P0ak Linear Power, kw/ft, 102% of 12.49 P32 king Factor (At Design Rating) 2.40 Hot Channel Enthalpy Rise Factor 1.62 Accumulator Water Volume i

(Cubic Feet per Tank) 1025.0 Accumulator Pressure, psia 600.0 Number of Safety Injection Charging Purps Operating (Min ECCS/ Max ECCS) 2/3,

storm Generator Tubes Plugged 10%

(uniform),,

l

  • Minimum safeguards analysis assumes 2 charging pumps are operating and one RHR pump.

Maximum safeguards analysis assumes three l

charging pumps and two RHR pumps are operating.

    • Uniform 104-Steam Generator Tube Plugging assumes 10% SG tubes plugged in each steam generator and corresponds to the worst plugging level in any steam generator and will bound all combinations of non uniform plugging as long as no one steam i

generator plugging level exceeds 10%.

i

.__.-.,. _._._ -,_._.~.--,_--.. _.._,. _ -

MEFEUINCES 1.

Battalan, F. N.,

et al., "IOC51-IV Programs IcN l

Transiert Analysis," MC1P4301 (W**7 Versicm), M Ce. 7.,1stary version), ame 1974.

2.

" Acceptance Criteria Scr Bestgency O:xe cooling Systes ihr Ligst Matar cooled Pwlane PeWar Reacters: 10GR 50.46 ard

, Appendix K of 10GR 50.46," Federal Engristar, Vol. 39,Mo. 3, January 4, 1974.

l 3.

Bordalcrt, F. N., et al., SASN-VI Program: "Omgzahansivut Space-Time Dupendant Analysis of Ices-ofM3colant," MRP-8302 (Prtgrimtary Vermism), NCEP-8306 (Non-Prcpriatary him), &ma i

1974.

4.

Holly, R. D., et al., "Ch1culational Rulal for Core Daf1%g aftar a Imme-of-Omlant per Marit (Wrefirwd Code)," WO@-8170 (PrM*=y Version), WC1P-1871 (L. T.,1stary Versica), Mme 1974.

~

5.

Bordelen, F. N., and E. T. Margity, "Qmtaiment Pressure Analysis Oxia (CDCD)," M2P-8327 (Prtgrietary Versian),

M2P-8326 (Han-Prcprietary Version), ame 1974.

6.

Eih1Mruper, C., "Mastin@cuse EOC5 Evaluaticut Rxlal,1981 Versicm," WCRP-9220-P-A (Proprietary Version), MC1>9221-A Ca. T.,1stary Versian), Rev.1,1981.

7.

Bcuttelcrt, F. N., N. W. masia, and T. A. Zorden, "Mastin@cumet EOC3 Evaluatica Model-Staumary," WCAP-8339, maly 1974.

8.

Bordalat, F. M., et al., "Ihm Westin@cuse EOC5 Evaluation Model: Supplement:ary Information," MRP-8471 (Preprietary Version, WC1 78472 ( L. T.,istary version), January 1975.

9.

Salvatori, R., "Mastin$ouse RXS - Plant Sensitivity Studies,"

WC178340 (Preprietary Versicm), WCRP-8356 CAF. F.,Istary Versicut), maly 1974.

10.

"Mastin @cuse EOCS Evaluation Model Sensitivity Studies,"

MC178341 (Proprietary Versicm), MC1P4342 (e.--2.--

    • =7 Vermist),1974.

11.

Enlly, R. D., C. N. Shcagistm, et al., "Mastin@cune Emergency Q:reLQmling System Evaluation Model for Analyzing Iarge IDCRsL During_%st.icn Witti One Icap Out of Service for Plants Without Icop Isolatica Valves," WC1>9166, Putzuary 1978.

e

-,---am----,wwr,--,..-,,w-w,-

w---=-.--,,-wv.ww, rw r w v - ev e-

= www &w w -w m-

-.e

=wm----e-- -

--www me-w-ww=-------ww*ss--=*------mww-n-

12.

wih15Mpr, C., "Westingmusa 50t3 Evaluatist Rxlal, February 1MS Vers mn, M2>9220 (PM*=7 Versim), WCAP-9221 (Iturmteguristary Versian, Bakery 1978.

13.

"Nestin @ ousa BOC3 Evalustian matal sensitivity Studias,"

WC3Lb4341 (Preprietary Versist), M2b8342 GA. 7. ;-Id=7 Version), 1974.

14.

Isttar frtet Oscil 0. 'Fhrman (IRC) to E.P. Dahe, Jr.

(Westin@ouse), "Acomptanos for Referencirri of Licensing of W -1 Report M2>4720, Adriards 2, 'Rev.med PRD Oxla 1hermal safety Metal'," Dated Deandar 9,1983.

15.

"Hastin@cusa Revised PhD Qxte 1barmal Safety Malal," M3LP-8720.

Adderuku 2 (Proprietary), and MCRP-8785 Ga..-7.---Id=7).

16.

Yamp, M., et al., "BMtr-3As A Osputer QuSa for the Best Estimate Analyzed Daf1 red Transients," M2P-9561->A.1984 (Pr* *=7).

[

'17 Embadi, J. N., et al., "Iha 1981 Versicri of the Mustin$cusa BOCS Evaluatie Mxtel Using the Bh5H Oxle", WChP-10266 Rev. 2 with Adtleruta,1986 Mastin@cusa PM**7).

18.

thim, J. S., et al.,"Matels for Ret Reflood Oticulatiens Using the BMtf Oxts," M2P-10062 19.

Ih*metmawP, T. L., "Mastin$cusa ECX5 - 1hrea-Icap Plant (17 x

17) Sensitivity Studies," M3kP-8573, April 1975.

20.

milian, s. v., Vebana, c. J., and shampson, c. M.,

"Mastinghoues ECX5 - Three-Icep Plant (17 x 17) Sensitivity Studies,"

MChP-8853, (Nort-gecprietary Versim), Octcher 1976.

l l

I i

i

,,r----

.~,c-.--w------re.---n---

,e-.,-,wm--,..-.

- -,, - -,, - - - - -. ~ - - -. _, - - - - - - -

..-..a

_-_E

,_*m A_

.-2a m,_.

.,u4 0

e

/

W.

/

[

~

e I

s g!

n.

1 a{t g

l 1

I 0

2 3

"1isl i

a E, l I

l li

\\

}

)

I 3

e

!!hhh

.l (red) doma sunssaud swoo

-.u.-

-sa

.a---

s

-4 r.-5 n

--.4s n

0ma

--.m-.

man _,

2 4

4 8,

e R

]

f i

(

i i

s Ii

~

lll.

p{

[

i 9, l l

I l

~

1

)

=

g E

o as (ISd) dous gEASSEWd 3300 l

\\

{

8

/

('

_g I

-f

/

I, g

.8 33

-(

lI

/

8 li f s

i 53l di sI g

h

'l h

h h

4 Osa) doma sanssaud swoo

_a

---m-.

,sa m-e,+

a__

a__

s

__ys_ _

_u,_,,

g,,y O

6 e

2 l

g I

s gl T

s.

w a ig II.

li

(

.l i

ii

/

l lsl r

ll s-l 1

a 2

~

-iE:::

g use) doma sunssaua swoo

a--4-->

M m

.m

,_a.m, Aw__

h.---_a

._-%-4 m

e e

h l

l l

a B

I i

. l{

li If a

.e l

Il

~v F l l

s

'l I

~

4 8

I Iil J

I ll P, s.

y d

di I

J g.

2 = - - - er: 3f._4.,.

oe**aoa.*noa*

.o l

i I

i 7

spuosnoyi)

(03S/(E7) 31W Mol.d-Z

,,ww

-,.v -

--*--w-ww

.w-e=w-w.

,--etw-en---w.

-,---wee'

.[

I i

l 2

3 8

2 42 02

)

C m

E

)

6 S

.r

(

c.

1 s

E M

x IT aM

)

A S '- (+

s D

t cR 2

c aA P

1 e

U O

n I

G T

K E 4

A F ss E A Tn o

R S Ao B

o mc 8

c E M w )n

(

U w

iI G N o

R s

I t(

AX r

TA IA t

R N s.

n t

e P 4 o

m A

n I

/.

4 F

0 A=

s

-s D

n Ac o

8 c

2 G

i I

1 1

h F

,O

$ l,

{

1 1 l 1

0 8 6 4 2 0 8

,4

2 4 6 8 0 1

2 1 1 1 1 1 a Wm h e3 r.

sa8c m'-

i

' h.:IIi ilii lb i;

l> l-

.li

e e

I.

i N

l I

1!

,i I

3 lo

\\ !

7 1

d l, e

A i

}%

B N

na 2

j Fa i

1A g

E g

a g

Ig n

g rl.

.4

$..I

i. '

t 5

li l

,l 4

i g

s, 4 A.;

JE i 5

~

W PW m GaEL

-g 4_tE E EESL.o

~

a -

---==

NoeevNoNteeoNt eeo e-e-

v-e-

e-N l

l l

l e e 1

I I

I I

I (spuosnoyl)

(03S/87) 31YMMO73,-Z


m e

ll ll

,i i

I ii o

(I F

w-

-i F

g I

Y.

1

=

0 i

11 1

.gIS 5

,i isn4 a

59 I

r t

di l j

4

&.. u_

I

/

E

_i=mCM ___.

=s m _O

~

0 0

0 0

O' O

O O

O O

e N

N 6

)

e-

.g-I I

I I

I (03S

) idI13-Z

      • e OGWm

M

(

.N

<A

' N m

\\

R N

^

O N

w g

2 3

F

,l

~

llg I

5c E

3 no A

p 1

It d

O e

o t

n N

e 0

(03S/81)(spuosnoyl)10WOOOY MON HO1Y 4

w owe ewe ~,e ew-v

--w-,--w-n,--

-~- m w n

_,-www,-,,-_,--s,maew

-.--n-w,ww-,

m-me-- owm w m w,-

we, w, wo

,ew - ~ w ww w w m-,r--m*

w-

, ~..

-.--~s r

.u

+

=. - =.

D j

S<\\

' N m N

\\

R

- x

\\

~

e a

s 2

g F

sz d

N W

Ill1 1

l 5

4 g

a I

l t

!i

+

h o

o

+

n f

e (03S/g1)(spuesnoyl)inWOOW MO 13 801V

N l

mN e

A B

~ N e

N u

w 1

m e

i:

Ig 8

I E

E l

s

)

i mg N

-s E

It 5

O 10 t

N g-o (cas/s,)(spuosnoyl) nnnooy il mo7a uom 1

i

--e~--w---

w~,.

_.._,,,,_.-,,--_,_.-,n,

,--.wr,w-,

,n,_me,

,,,,-w----,--answye-,,.w--,

.r; i._e.

a

--m aa.-6 e

ah.-

JA

  • e i

d

)

\\

N N

e N

i E

m l

w m

i

,p 9

to T

E I

a a

t i

='

5 l

l o

e e

g>

t M.

f I

i (ogs/WLq)(spuosnoyl)00WOOW MO1d HO1

j i

l I

l AIA/APR IARGE BREAK IOCA CD=0.4 MININUN SAFEGUARDS PUNPED ECCS FIDIf l

343.

500.

m a sw.

I 500.

I 550.

w 548.

l 550' 2

$ SIS.

528.

W T {, f

?

500.

t 290 9.

58.

ISS.

ISS.

280.

258.

7 TIIE ISECl a

I FIG. 4A. REFLooo TRAllSIEN Pt359 ECCS FLolf (Cl>0.4 DECLG) l 2

f e

i i

?

9 e

i

)

i

.i 4

l i

i 1-i i

i ALA/APR IARGE BREAK IDCA l

CD=0.4 MAXIMUM SAFEGUARDS

{

PUMPED ECCS FIAN

. IIK.M

&.Illt.M l

e E*M P

j g

.II

..a g.IS*E M

^

h Y

h 8.ISOE M F'

f.

u.

. ISFE.M

\\

- n.

a.

l TIME IECI i

~

FIG. 48. REFLOOO TRAllSIENT Puffed ECCS FLOW (CD=0.4 KCLG DEX SI) i 1

a j

1 1

4 i

I i

i 1-i I

i l

i i

i I

AIA/APR IAltGE BREAK IDCA l

CD=0.6 NININUIt SAFEGUARDS PUIEPED ECCS FIDet

~

58.

d se.

E ~-

/

~

/

538a i

7 w

1 ankr t

l lM.

sie.

T'I 1

i n.

N=

f, 1

338 SS.

ISS.

ISS.

208.

250.

9 188E ISECI

~

~

FIG. 4C REFIDOD TRANSIENT PUNPED ECCS FIDef (CD=0.6 DECIA) e' j

i t

I i

I

i 1

i e'

i l

1 l

l ALh/APR IARGE BREAK IDCA Co-o.s uruznun sarsouARos l

PUIIPED ECCS FIANI E8.

Y nu 540.

y

/

Iggg l

lEV 588.

a l

m.

l MB3.

58.

ISS.

ISS.

208.

258.

TIOE ISECB

=

e i

l FIG. #

ItEFLOOD TMNSIEN MSFED ECCS Ft.Olf (CD=0.8 DEQ.G) t i

d I

4 1

)

l AIA/APR IARGE BREAK IDCA

~

r l

CD=0.4 MININUN SAF e m m CORE INLET VEIDCITY l

i l

i l

i IS.

s i

9 I

i

~

i U

S.

t H

1 seg 7.

i s

~

(

S.

I 5

5.

s 4

l 5

i 1

5.

l 2

2*

+

H l

I I.

l 1

4 0 E.

25. 50. 75. ISS. 125. ISS. 175. 200. 225. 250.

IlfE ISECl l

5 j

FIG SA. FLOOD RAM (CD=0.4 DECLS)

g e

M s

=

R G

R

.a

i.. -

E lIe

.U E

g 4-w 8

g j :: '

3

.a l

23 i

e W

5l-s a

M S

11l f

. a.aaaa 1

w (oss/xI) AzzoatzA srINI-i

i 1

l ALA/APR IJGtGE BItEAK IOCA CD=0.6 MINIIENE SAFutumt COItB INI2T VEIOCITY i

I l

l I

'l l

1 1

1 1

l IG.

l en, o I

M l

7.

1 l

N 5.

4 m

4.

n s.

H

'l l

j I'

n i

I S3.

25. 50. 75. ISS. 125. ISS. 175. 208. 225. 250.

TIIE ISECI s

i Fis. SC FLOOD MTE (CIk0.5 gECLG)

  • e

l 1

i i

AIA/APR IARGE BREAK IACA CI>0.8 NINDENE SAFWsum CORE INLET VIIACITY I

ct, 5

1 9

I I

I IG.

i 9.

O m

3.

as I

7.

w g e.

H g..

a..

gs.

~

I 1.

e D.

25. 58. 75. Iss. 125. ISS. 175. 200. 225. 250.

l rinc escCi 1

l#

FIG 50 FLOODRATE(CD=0.8DECLE) 4

1 E

O I

l l

l 1

AIA/APR IARGE BREAK IDCA CD=0.4 MINIfRRE SAFEGUARDS

~

CIAD AVG. TeptP. IIOT NOD WItST NODE (-) PCT NODE (*)

I e

.2EC*S4 3 22EC*Se n.a E

.3C+S4 l

M

~

.375E e W

s(g/

i

E

  • g12EE*S4 g

T E

.IC+Se

\\

g h

x8.

\\

i g

E8e.

(

2ES.

t S9.

58.

ISO.

BES.

20s.

258.

See.

t TlfE ISEC.I I

r FIG. 'EA CLAD AVEMGE TDrutATWlE'(CD = 0.4 DECLG) 4

~.

t I

I i

s' i

i!

AIA/APR IAltGE BREAK IDCA i

CD=0.4 NAXIIENE SAFBGUARDS I

CIAD AVG. TEMP. HOT ROD BURST NODE (-) PCT NODE (*)

i'

~

.2EC+S4 w

t

=.aasr Se w3

.2E*Se M

^

g

.17EE.84 f/ P N

i, a.IEE*S4 N o

x

.insc 4

[

b i

E

.IC+Se i

.i.

\\

l 7ss.

X 500.

a t

o ass.

3 i

u o

3.

58.

Ice.

858.

age.

250.

See.

fist esEC.I f

a

)-

FIG. 65 CUW AVEllAGE TEMPEllAitstE (CIk0.4 DECLG MS SI) il l l

I l

f e

1 y

[

i

i _ _ _ _ _ _ _ _ _ _ _ _ _

1

)

4

~

i AIA/APR IARGE BREAK IDCA

)

cD-o.s mInneues sar====na 4

l cIAD AVG. TEMP. HDT B00 suRsr moos (-) PCT NODE (8) 1 i

.2EE*S4 I

6

  • .23EE*S4 e

i

.K*Se

.37EE*S4

. LEE *Se

__2 2 --

J

[j [

.laEE*S4 //

N

.lE.94 r

T 350.

I E'

m.

L ass.

1 S.

50.

ISS.

IES.

208.

250.

508.

D l

TiOE ISEC.I r

I l

FIG. EC CUB AVERAGE TDFEA411AE (CIk0.6 DECLG) p r

h L

D

()

f t

l D

~

i I

=

i i

(

l J

s R

J e

d 1

I 8

t r

k h

o 8

s-a 8

w l* $g

.=

g l

1 87

<k l.

m j

a a pa w

v.

s g q g n n$ $ $ $ n* a* n*

g"g 4

EYE usy l

IJ $3345308 003 A M'm 3A* m g S

i 2

an.

.I 1

-,--,~me~- m -ne w

,w

,--.,-~w..

y ATTACHMENT 4 Evaluation of BASH Code Modifications (WCAP-10266, Revision 2/ Addendum 2) on Farley Large Break LOCA RASH Analysis Subsequent to the completion of the Parley Units 1 and 2 BASH analysis it was noted that some analyses using the 1981 Westinghouse ECCS Evaluation Model (EM) with BASH were predicting a relatively poor mass balance. In addition, it was decided to incorporate improvements into the smoothing routine, which is used to modify the core flooding rate for use by the LOCBART code, and to the fluid properties tables. This was done to make the smoothing process more reliable; in some instances, the BASH flooding rate was not properly smoothed according to checklists established for the methodology. The changes to the fluid properties tables were done to increase the accuracy of the fluid properties at lower pressures.

In the LOCBART code it was found that the gap pressure remained constant after the core reflood portion of the transient began, when it should have been varying, as in the current LOCTA code. These modifications required the evaluation of the impact on the results of the Farley Units 1 and 2 BASH analysis.

The effects of the mass balance differences on the final peak clad temperature (PCT) were determined and the results were used to develop acceptance criteria for mass balance differences. The results of the Farley BASH analysis were compared to the acceptance criteria. The core mass balance for the Farley.

analysis falls well within the acceptance criteria. Therefore the mass balance differences in the Farley 1981 EM with BASH analynis are acceptable and the mass balance will have a negligible effect on the results of that analysis.

The smoothed core reflood rate for each break analyzed was reviewed and it was determined that the original cases had predicted the correct times for entrainment and boiling below the quench front. This was confirmed when the core reflood rate for the limiting discharge coefficient was smoothed using the new smoothing routine. There is virtually no differences between the two cases for both the integral flooding rate and the flooding rate curves. Since tb: new smoothing routine did not alter the flooding rate curve for the limiting break it was determined that the original flooding rate curve using the older smoothing version is still valid and bounding for the Farley BASH analysis.

The changes that were made to the fluid properties table involved increasing the number of points in the tables, primarily at the low pressure end. These changes increased the accuracy of the tables and were shown to be a slight peak clad temperature benefit. These changes will have a negligible effect on the predicted peak clad temperature for the Farley BASH analysis.

n.

~_

ATTACIDENT 4 Page 2 The LOCRART version used for the Farley Units 1 and 2 analysis contained the logic that held the fuel rod gap pressure constant following the start of core reflood. This caused the gap pressures to remain at an elevated constant pressure until clad burst was predicted to occur. The increased pressure at the time of burst caused a greater blockage penalty to be assessed which in turn increased the predicted PCT. The cases that addressed the LOCBART gap pressure code modification determined that the variable fuel rod gap pressure, currently used in the LOCTA code, now in the LOCBART code is a peak clad temperature benefit. The change in the gap pressure model in LOCRART will not cause the peak clad temperature predicted in the Farley Units 1 and 21981 EM l

with BASH analysis to increase. It is expected that this change will result l

in a peak clad temperature reduction.

The effects of the BASH, LOCRART and smoothing routine modifications on the Farley Units 1 and 2 Large Break Loss-of-Coolant-Accident Analysis have been evaluated. The results of the evaluation demonstrate that there will he no increase in predicted peak clad temperature and that the current 1981 Westinghouse ECCS Evaluation Model with BASH analysis for Farley Units 1 and 2 remains conservative and bounding.

0964F