ML20198H377

From kanterella
Jump to navigation Jump to search
Rev 0 to FAI/97-68, Prairie Island Fan Coil Unit Analysis Using Tremolo 1.01. W/30 Oversize Drawings
ML20198H377
Person / Time
Site: Prairie Island  Xcel Energy icon.png
Issue date: 07/28/1997
From: Burelbach J, Elilson G, Henry R
FAUSKE & ASSOCIATES, INC.
To:
Shared Package
ML20198H322 List:
References
FAI-97-68, FAI-97-68-R, FAI-97-68-R00, NUDOCS 9709180022
Download: ML20198H377 (168)


Text

- - _ _ - - - _ _ - - _ _ _ _ _ - - _ _ _ _ _ _ _ _ _ - _ _ _ _

FAUSKE & ASSOCIATES, INC.

CALCULATION NOTE COVER SHEET

,q SECTION TO BE COhtPLETED BY.* UTi!OR(S):

l 'O y'

Page 1of43 I

Cale Note Number FAl/97-68 Revision Number 0

Title Prairie Island Fan Coil Unit Analysis usine TREMQLO 1.01 Project Northern States Power Shop Order NSP002

Purpose:

Evaluate the potential for two phase flow in the FCU trains and determins the effect on containment heat removal.

Results Summary: FCU trains 22/24 and 21/23 have been analyzed for steady state and transient two-phase conditions.

Results show that the required heat removal capability is maintained.

References of Resulting Reports, Lett,ers, or Memorands (Optional) FA!/97-47 Rev. O included here as Appendix A Author (s):

Completion Name (Print or Type)

Signature Date tw P bw//

7-7-97 fames P. Burelbach

/

) v' SECTION TO BE COhtPLETED BY VERIFIER (S):

Verifier (s):

Completion Name (Print or Type)

Signature.

Date D. TFk}91AC, EL 16W)N vl W h

  • 7 ~ /4 ~ Tl

~

Lt621F1M1/LA) 17H?fN7D :

Al -1CDA/4A d C.dL.e DL A -r/MNT I

SECTION TO BE COMft.ETED BY htANAGER:

Responsible Manager:

Approval Name (Print or Type)

Signature Date

.o1LELT T. YOPY-T' k s'0~~$

ha$ EBM*?

w-o o

o

_1 9709180022 970915

~

PDR ADOCK 05000282 P

PDR l J' u

l l

l CALC NOTE NUMBER FAI/97 68

REV, O

PAGE 2

l N

CALCULATION NOTE METHODOLOGY CHECKLIST CHECKLIST TO BE COMPLETED BY AUTHOR (S)

(CIRCLE APPROPRIATE RESPONSE) 1.

Is the subject and/or the purpose of the design analysis clearly stat ed7.......................................... - Y ES

Are the required inputs and their sources provided?...............

  • NO
  • N/A 3.

Are the assumptions clearly identified and justified?..............

  • NO
  • N/A 4.

Are the methods and units clearly identified?...................

  • NO
  • N/A 5.

Have the limits of applicability been identified?..................

  • NO
  • N/A (Is the analysia 'or a 3.or 4 loop plant or for a single application.)

6.

Are the results of literature searches, if conducted, or other background data provided?.............................

)* NO e N/A 7.

Are all the. pages sequentially numbered and identified by the calculation note number?............................... h

  • NO Is the project or shop order clearly identified?................... Q
  • NO 8.

Has the required computer calculation information been provided?......@

  • NO 9.
  • N/A Were the computer codes used under configuration con: ret?,,........h
  • NO 10.
  • N/A 11.

Were the computer code (s) used applicable for modeling the physical and/or computational problems identified?....................

  • NO *.N/A (Is the correct computer code being used for the intended purpose.)

12.

Are the resulta and conclusions clearly stated?...................

  • NO h

13.

Are Open items properly identified......................... YES

  • NO 14, Were approved Design Control practices followed withou' exception?....
  • NO e N/A (Approved Deaign Control practices refers to guidance documents within ENATD that state how the work is to be performed, such as how to perform a LOCA analysis.)

15.

Have all related contract requirements been met?

45 NOTE:

If NO to any of the above, Page Number containingjustification Mv

_ ve d

FAl/97-68 Page 3 of 43 Rev. O Dste:

L-FAI/97 68 PRAIRIE ISLAND FAN COIL UNIT ANALYSIS USING TREMOLO I.01 O

Prepared for Northern States Power (NSP)

Prepared by Fauske & Associates, Inc.

16WO70 West 83rd Street Burr Ridge, Illinois 60521 July 1997 O

3

FAl/9748 Page 4 of 4 Rev.1 Date:

TABLE OF CONTENTS East 1.0 PURPOSE...........................................

7 2.0 I NTROD U CTIO N......................................

7 3.0 REF EREN C ES........................................

8

.4.0 DESIGN INPUT........

..............................8 5.0 ASSUMPTIONS 8

5.1 Parallel Flow P %.................................

8 5.2 Pipe Circuit Boundaries............................... 10 5.3 Containmer.t Conditions............................... 10 10 5.4 Pipe Wall Heat Transfer 5.5 Fan Cooler Performance.............................. 10 6.0 DESIGN ANALYSIS 15 5.1 Steady State Sequences............................... 15 6.2 Transient Sequences......................,

29 6.3 Conclu sion s...................................... 30 APPENDIX A FAI/97-47 Rev.0 TREMOLO Rev.1.01 Parameter File for Prairie Island Fan Coil Units 22/24................... A 1 APPENDIX B THEMOLO Rev.1.01 Pmmeter File for Prairie Island Fan Coll Units 21/23............................ B 1 APPENDIX C Detailed Output from Transient Sequences (Section 6.2)....... C 1 4

41.

n

Fall 97 68 Page 6 of 43 Rev. 9_ Date:

l f LIST OF TABLES Iable DE 41 Summary of Key Design inputs (3)............................

9 6-1 Steady State Sequences (270*F Containment, 85'F Service Water)......... 16 g

(

6

1 FAl/97 68 Page 7 of 43 Rev. o Date:

(]

1.0 PURPOSE V

This report describes a thermal hydraulic analysis of the service water piping associated with the Fan Coil Units (FCUs) at Northern States Power's Prairie Island nuclear plant. The analysis provides separate assessments for FCU trains 22/24 and 21/23 under postulated accident conditions which may result in boiling in the (open) cooling water system. Each train is analyzed for bounding LOCA conditions to determine the influence of two phase now on FCU performance. This analysis considers various degreet of tube side fouling for either an open or closed flow control orifice bypass valve.

2.0 INTRODUCTION

The NRC has recently issued Generic Letter 96 06: Assurance of Equipment Operability and Containment Integrity During Design Basis Accident Conditions [1]. One of the issues, which is the subject of the present report, is the ef fect oflong term two phase now on the heat removal capability of the safety related heat exchangers. Calculations presented herein analyze the Prairie Island FCU trains to assure equipment operability during DBA conditions. FAl's TREhiOLO Rev.1.01 computer code (2) is used to perform the two phase analysis.

V TREh10LO is a transient thermal hydraulics code which has been developed tc analyze single-and two phase flow conditions in plant piping systems. TREhiOLO Thermal hydraulic Response of a hiotor Operated valve Line was so named since it evaluates the pressure oscillations associated with valve closure and opening in piping segments that could be exposed to two phase flow conditions. TREh10LO is an axial node andjunction code which incorporates hydraulic resistances for now elements including elbows, tees, expansions, valves, and distributed tube side fouling. It considers mass, momentum, and energy transfer, including heat transfer between the fluid and the pipe walls, and the effect of compressibility of the fluid due to evolution of steam and non condensible gas. The code includes a mechanistic model for FCU heat transfer under low flow and two phase flow conditions. Time varying supply and return header pressures simulate pump trip, coastdown, and restart. TREhtOLO also contains models for calculating the resultant forces imposed on the pipe during a fluid transient, such as during column rejoining, following pipe refill, and void collapse. The code has options for examining different modeling approaches, for example homogeneous nonequilibrium two-phase flow, slip equilibrium, etc. In the present analysis TREh10LO is used to evaluate both the steady state and transient response of the cooling water circuit between :he FCU supply and return headers, n

7

l FAl/97 68 Page 8 of 43 Rev. o Date:

l 3,0 REFERENCES 1.

Nuclear Regulatory Commission (NRC), " Assurance of Equipment Operability and Containment Integrity During Design Basis Accident Conditions," Generic Letter 96-06, September 30,1996.

2. Fauske & Associates, Inc. (FAl), TREMOLO Rev.1.01 Test Plan, Test Documentation, and User Documentation, FAI QA File 5.17, May,1997.
3. J. Burelbach, " Summary of Design inputs Received from Northern States Power in Support of GL96-06 Fan Cooler Analysis," FAI memo to nie [QA 5.17], dated June 13, 1997.
4. Fauske & Associates, Inc., "FAI Experience on Waterhammer Phenomena in Containment Air Cooler Service Water Systems (Safety Related)," FAl/97 2 Rev. O. May,1997.

4.0 DESIGN INPUT '

The design inputs received from NSP in support of this analysis are collected in reference (3).

These include input and output t rom the NSP hydraulle model and from the Aerofin FCU model.

Key design inputs are summarized here in Table 41.

These data are incorporated in TREMOLO parameter files for FCU trains 22/24 and 21/23, which are documented, p

respectively, in appendices A and B of this report. Those appendices also list piping drawings

\\

whict were used in parameter Ole development.

Note that the flow control orifice and the orifke bypass valve are located in parallel in the retum piping just downstream of the point where FCU branches 22/24 (or 21/23) rejoin (Ref. X-Il!AW-Il06 46 Rev. E). The default models treat the bypass valve as closed. The bypass valve is " opened" by adjusting the pipe diameter (from 8" to 10") and reducing the loss coef6cient.

These local parameter changes are illustrated in Appendix C.

5.0 ASSUMPTIONS 5.1 Parallel Flow Paths Each containment cooling train consists of twa parallel FCUs which share common supply and return piping. The TREMOLO analysis treats parallel piping as a single pipe with an equivalent flow area, thus combining the two FCUs into one effective containment cooler. The elevations and pipe lengths used for this effective cooler circuit are those appropriate for the higher elevation FCU (i.e.,24 or 23). This is conservative for the present analysis since it is more conducive to column separation and two phase now.

3(v 8

1 9

1 FAl/9748 Page 9 of 43 Rev. J Date:

Table 4-1 Suminary of Key Design inputs [.'l FCU tube side fouling factor 0,0.001,0.002 hrit2.F/Blu Inlet cold water temperature 85'F Supply header pressure (22/24) 74.48 psia Return header pressure (22/24) 19.53 psia Initial cold water flow rate (22/24) 1197 gpm Supply header pressure (21/23) 77.21 psia Return header pressure (21/23) 18.92 psia Initial cold water flow rate (21/23) 1471 gpm l

Pump restart time for transients 5, 30 sec g-)

Pump coastdown time 1 sec

'V Pump ramp up time 5 see Containment temperature 270'F Containment relative humidity 100 %

Pipe length from supply to return header (22/24) 472 ft Pipe length to control orifice (22/24) 393 ft Pipe length from supply to return header (21/23) 539 ft Pipe length to control orifice (21/23) 358 ft Pipe schedule Schedule 40 O

O 9

...s.

FAl/9748 Page il of 43 Rev, o Dnie:

\\

Gb

...~,,

g

/

g

/

g 5

/

g

/

Prairie

\\

/

Island i

780_-

h h

E l

FCLR #24 l

E

=

i i

=

=

i i

=

7705-l l

-5

=

i i

=

E-l l

5 i

I I

i 7605-I

-5 i

i

=

i i

=

i i

=

i i

=

i i

750 =-

i i

=

i i

=

=_

i i

C E

l

[

l l

I+4 -

6 i

i 18

.g740=-

o m

=

8 6

=

(

=

l 10-

=

=

13

=

io' i

i

=

=_

i i

=

i i

7305_-

l l

-5 i

i i

i

=

=_

i i

=_

i i

=

i 720 -

I l

=

i

=

l l

~

E

=

i

=

i

-E 710E-10' l

io-u E

w l

l E

=

i i

=

=

1 I

=

700 --

~

Retum Supply JR96o113 CDR 8 30 96 O'

Figure 51 Schematic illustration of TREMOLO model for FCU train 22/24, 11

i FAl/97 68 Page 12 of 43 Rev.

0_, Date t

s'

/

l

\\

\\

/

Prairie

\\

i

/

Island i

780 =-

k h

=

E l

FCLR #23 E

=

i

=

=

i i

=

7705-l l

5

=

i i

=

l i

=

l

=

=

i 7605-l

~

i

=

l l

=

=.

=

=

i i

=

i 750=-

i i

=

=

i i

=

=_

l i

=

i e

l i

=

g

=

j7405-l l

~

d 5

5 i

730E-l 5

=

,i

=

i a-i 10' 700=-

i i

=

=

i

=

i, i

~

1 i

j

_=

i i

=

7105-10' l

l E

5

Trbr 5

i i

i

=

700=

i Return Supply m96o115 COR 8 30 06

,r')

i V -

Figure 5 2 Schematic illustration of TREMOLO model for FCU train 21/23.

12 I

,.,,.n-.,

---.a.

,,.,e

,....,~,-,,--..nr.e,

S.

Et x:, 0s2 0

y

~ :-

. i : : : :.

7i: U::::_._.

0 2

O

/

1 e

i

/

e i

e a

/

e u

t 1

e e B 0

c/

e l

n 1

F e

i a

0 d

l mr e

rk d

l-0 o

g ve 0

M i

Do-o 1

f2 R

Nrt M

P i

Aef O

L P N

)

S i

/

F L

e S

F FO m

N 0

I r0 i

I 0

e 0. 5 OM p

7 h

g l

Eo082 RE y'

t o

ER

(

i I

i R C= =

AT w

I e

d An i i n

/

Raf eh l

o o

e

/

OO 0 Q PFfTT s

c i

0 r

g

~

l a

8 p

i e

m e

t o

O a

C a

R w

e o

c l

n s

F a

e m

r e

o 0

g 8

0 f

l r

6 e

e i

P re i

lo 6

o C

i na e

F 2_::

8_ :: 2 : -

e 0

2_ :

0 mo m

m-S me m,

em4 2esm~

r ueioA t

e yW 3E" Ea E' EagaE 3 Ro nn g.F g@ " F, na o pc s WEnuc O

aOo4~

o:<2.x~

_w fll,lll:l!

w~

y, l

I O

- i n i o n s iie i e s s a s i s 2 s i jin ign

. s in n e is 6 e ga l

m_

e

_i i s i6 6 i s

=

ga

/[

3 vi sm

.f

r g e

~

m n

1 s: 8 i

w-. _ _

~

\\

44n f

EE5 b

/

2h 3

o

~

EEm go 7oX

/

a & ~

- /

g ""

_ cr

-c I

gg%

PRAIRIE ISLAND n

i a ao Fan Cooler Performance 0.002 f t2-kr-FIB t u ik ff E

=

f g, "o Tei = 85 F 270 F E. s "

Thi

~

=

8 9

AEROFIN Model I

y c w"

O TREMOLO Rev.

1.01 o

l

8. R w

i

.m a r

"a o.

l

$9 wp i

28 y,,,,,,,,,g,,,,,,,,,g,,,,,,,,,y1 3r

-3

w

,,,,, i, - -

s.

2 ::.

m

,,,,,,,.i o

o i

w u

g 400 600 800 1000 1200 1400 m

g,.

~

2" 3

Flow Rate Qcold (gpm)

I to I

o

.l 2

i i

0 t

Fan Cooler Performance - Comparison with NSP Model j

i T

m-

FAl/97 68 Page 15 of 43 Rev, o Date:

6.0 DF. SIGN ANA13 SIS This design analysis used the TREhtOLO 1.01 computer code., located at computer address

$ 3 $ DK A200:[Q A R CillV E.TR EM OLO.101 )

Documentation and verification of Rev.1.01 are recorded in FAI QA records Ole 5.17 [2]. The TREh10LO runs were performed on the FAI VAX cluster ALPH A work stations with operating system VMS V6.2.

Steady state calculations were performed in subdirectory: $25DKB100:[ COOL.Pl]

Transient calculations were performed in subdirectory:

$4$DKA300:[ COOL.Pl]

The piping models are defined in two TREMOLO parameter files. These parameter files define the pipe system geometry, flow element locations, heat exchanger characteristics, empirical model paramete'rs, boundary and initial conditions, and code control parameters. The models for FCU trains 22/24 and 21/23 are named P12. PAR and P12X PAR, respectively. These are documented in Appendices A and B and located at computer address V

$2$DKB100:[ COOL.NEXT.lNPUT]

6.1 Steady State Sequences in the present application TREMOLO uses constant pressure boundary conditions to establish the steady state ik,w conditions. The steady state liquid flow rate (which may be choked) is calculated based on the total pressure drop through the pipe (from supply to return header) and the total flow resistance. The pipe pressure profile is then calculated assuming all junctions have the same mass flow rate. Ileat transfer in the FCU is accounted for mechanistically, based on the specified containment temperature, but heat transfer in the pipe wall is neglected.

A total of twelve steady state runs have been performed, for two FCU trains, three fouling i

l factors, and with the orifice bypass valve open or closed. These runs are summarized in Table 6-1.

Pressure, temperature, and void fraction profiles for each sequence are illustrated in Figures 6-1 through 6-12, as described below. In each figure vertical dotted lines delineate the fan coil region (60 ft long) and vertical dashed lines mark the containment boundary.

(3 Q) i 15 l

1 l

FA!/9748 Page 16 of 43 Rev. A Date:

CN Table 61 Steady State Sequences (270'F Containment,85'F Service Water)

FCU fouling flow Itate lleat Tramfer Run #

FCU Train Orifice Valie factor (spin per (MDtu/hr per Position (ft3 l r 'r/Blu) train) train) 1 22/24 Open 0.000 972 89.8 2

22/24 Open 0.001 1191 100.9 3

22/24 Open 0.002 1544 101.6 4

22/24 Closed 0.000 913 84.4 4

5 22/24 Closed

0. Col 1011 88.5 6

22/24 Closed 0.002 1125 85.0 7

21/23 Open 0.000 16I8 147.2 8

21/23 Open 0.001 2073 143.7 p

9 21/23 Open 0.002 2042 114.5 10 21/23 Closed 0.000 1269 117.0 11 21/23 Closed 0.001 1473 117.4 12 21/23 Closed 0.002 1581 102.4 O

16

U<~

m

.. ;..... i.. ;.... i.... ;. i........ ;......... ;......... ;......... ;........ i.........,..........

r i

.s

.s__s i

i s

1 1

s i

.\\

2 7 0. *F 972. gym E9.8 MBts/kr f = 0.0 0 0 l

e

  • \\

270.T 1191. gym 100.9 MBru/kr f = 0.0 01

., g 270.T 1544. gpm 101.6 MBta/hr f = 0.002

.g

  • \\

e Hydraulic Model Z

.g

  • I I

I n

.\\

I I

., g I

g oo-

^

1 I

se h_N g

1 o

e g

I ca. e v v I g p

g 3

8 s

.e e

s 3

3 s s "'-s's, 3

I e

y

=s e

w I

s.

e T

g a

  • \\

t c

g

\\

\\

3 8,

1

---+.

N Q

~'

2 I

  • N /

~ '1 p,

s, g

o e

I I

c.

c I

1 i

i E

O

=

y e

i l

1 5

F 5 55 t,,,,,,,,l,,,,,,,,,le.,,,,,,le:,,,,,,,,,l..,,,,,,,l.,,,,,,.li........l.......,,,l.,,,,,,,l........:

,g m

~

0 50 100 150 200 250 300 350 400 450 500 o

N=

Axial Distance (ft) s E

O PI 22/24 LOOP w/ LOCA. Bypass Valve Open. Steady State Profiles

\\

oo I'

2 7 0. *F 972. gpa 89.8 MBta/hr f = 0.0 0 0

','l''''l'''I-m 270.T 1191. spa 100.9 MBta/kr f =0.0 01 2 7 0. *F 1544. spa 101.6 MBts/hr f = 0.0 0 2 I

i o

i

_ ;_ s i

N m

i i :

s,

-N-~s,-,

s f

i m

f

/

i I

m i

21 i

p u.

I g

I

- o i

i e.

g o

w i

i t

e i

i :

A u

I i

I y

i i

a E

f.

i p

o E

o I

it

~

l 3

o-l t.,.

f*

a e

g I

- r:

8 8

Ea s-.

I r;

I g

i i

p i

+

i y

o

[

g o

I 1

i J;

i u

i 1

1.

o )

i 2r

~ $

i I i v i i v i e, l e v i t t e s v i l,,, i t i v e l e :n t i,,, i, l.,, e v i i. l e,,,,, i e l,

..... l.., r..... l.....,.., l....... I hi o

e 0

50 100 150 200 250 300 350 400 450 500 F,

w Axial Distance (ft) 2 O

PI 22/24 LOOP w/ LOCA. Bypass Valve Open, Steady State Profiles

~

O 6 isir 26e saisignisisitsije 666 6 igi,isissaisjeesinosistinesissislisii iiiisias 4isijanisie,ing,i 2 7 0. *F 972. gym 89.8 MBtu/hr f = 0.0 0 0 E'

2 7 0. *F 1191. gym 100.9 MBru/hr f = 0.0 01

_E E_

270.T 1544 gym 101.6 MBru/hr f = 0.002 4

I E

E I

9 I

I

_7 l

I E

I I

I E'

I i

I 21 9 P i

i s

g C

3 1

~

l

\\

E 3

--5 P

S 9

I k.

1 g

w

~

l I t.

>\\

\\

l o

g gI.

I

\\

l m

E g

g *I:

3

\\

l C.

w E

': \\-

n I

8 I

C g; \\

t

~E O-51.

I-s i

?

g i ** t t

P.

5 E

g i

I ;*

\\'1 E

w G

h

.h I

I[

}

I I.* k i

8

'I g#*

E

?

E I.

1 ls r..

o I

E2 m

I__

1 I.*

  • 1 y

3 E

I f*

s g'

E I

I:

1 gi

'E I

i:

it 31

[

E.

11

-1 E-I I:

1 p

I=

st 1

o I

E-E

'a T

i I*

~.

E

I:

i E

= 5 E

?g 2,,, n... I n,,,,,,, l,, n., n, l i..,.... I,,,, n:,,, l..,,,, n.

i :r, e..,,,l,:.. i,,,,,:, l.,, :,,,,,, l...... g

,g E

J o

~

0 50 100 150 200 250 300 350 400 450 500 F,!

Ei Axial Distance (ft) s 2.

O PI 22/24 LOOP w/ LOCA. Bypass Valve Open. Steady State Profiles L_._._.___._____

_.. ~.

_ _ _ _ _ _ ~

m n

)

J l

6 1 64 eeeiileit i64646486 etil48466 6ist64844 4teiil4ee elea14eei 1 e i ele a e a a eesi6644e s & & 4 s 4 s 6 j-I

~*n 7 7.s I

1

  • Q l

g I

g l

t e

g i

e 1

i I

-l l

2 I

I I

.\\

i I

i

  • g I

e L

  • \\

I

(

e

.,g 21

=_

  • [ - - 's

{

{

I l

m ce

---J,s i

l p

l '.\\

g

,N 1

O e

g

  • \\

e ca. n I

  • x L

w w

I

/':*'

,~%

I f

  • ... *5....

....y,...

/

J I

o

..*\\

/

g o.

f I

t.g v

I e

e E

=

s <

e n

i g

1

~

e m

a I

... ~

t

[

o e

I t

I i

Q-g,#,

g A

1 s

g P.

I

{

5

[

g g

l p

1 I

n l

r N

i s

I F

2 7 0. *F 913. gym 84.4 MBtalkr f = 0.0 0 0

- - -.4 E

a 2

2 7 0. *F 1011. gym 88.5 MBts/hr f = 0.0 01

'I 2 7 0. *F 1125. gym 85.0 MBts/hr f = 0.0 0 2 I

l 4

G Hydraulic Model I

n i

5 I

L 8

I c

x>

3 i

g t

i i,

i i

1 f j f f f $ f f, I f f f f f f f f e 9 f f f f f 9 9 f I fit f f f i f f f i f f I f f f f f f,e f 9 919 f f f f ; f f f f f f t I f I f f f 'M i I f f f f f f f f f f f f f f 8 ' ' f f '

a'J f

n 0

50 100 150 200 250 300 350 400 450 500 Pm Axial Distance (ft)

Ei E

i E

w r

PI 22/24 LOOP w/ LOCA. Bypass Valve Closed, Steady State Profiles r

t I

a i

I

i i

o MU 2 7 0. *F 913. gym 84.4 MBts/kr f = 0.0 0 0

,"''l''''l''''

27 0. *F 1011. gym 88.5 MBtalkr f = 0.0 01

~

i

~_

i 2 7 0. *F 1125. gym 85.0 M Bt s/h r f =0.0 0 2 i

i l

L o

1

/ :

a r

i i

i

/

n F

l i

,/

n i

4....

i i

f :

i

  1. I i

i n

^

I i

I /

+

K A

I:

l 5

i

- o I;

a g

o i

m

~

i i

I 1

s u' :

i a

a i

i a

i i

=

i i

t 7

I i

l i

s

+

2 a

t a-I.

i l

e i'

i

3. s=g I

t i

F I

I p

g-m i

g i

8 F

I r

o i

i F

o i

2 i

J I

I i

=>

t tr

$,,,,,,,, I, i,,,,,,, I., i,,,,,, l i n i t,,,,, l...,, :,,,, l t e,,,,,,, l......,, l,... i

...,I,,,,,,,,,l....,...r

-3 s

l o

m a"

0 50 100 150 200 250 300 350 400 450 500 c,

Axial Distance (ft) if j

  • f 2.

.W PI 22/24 LOOP w/ LOCA. Bypass Valve Closed. Steady State Profiles

[

l l

1 it

O

)

tesaeei l

ieieei jisas. ite;sp.e.isingenissi.e.g..

...e.;

4.......g... pi...g......ee.g. 6.....t-2 7 0. *F 913. gym 84.4 MBtulhr f =0.000 i

270.7 1011. gym 88.5 MBtu/hr f =0.001 3

270.T 1125. gym 85.0 MEtelkr f =0.0 0 2 3

E 3-i n

4 9

F i

i i

i 2

E i

=

=

-n sr i

g E

E i

i 4

i

,s i

r i

E e

a

:s o

o 3

i a

-m t

i o

.E i

1 9.

e

=_

i

=

a m

m w

=

u i

E

~-

o 2

i m

~

8 o

i

.o i

i r.

o i

D I

q.

8 3

m 1-I I

i i

p I

3 i

r I

=-

i I

l w

s 9

w i

i i

e 3

'e i

r l

E yt i

5a 2,,,,,,,l..,,,,,,1,.......ti m,,,,,,l..,,,:,,,,l,,,,,,,:,,,,,,,,, A l....:,,. I,,,,,,,,,1,..,,,.x

,g i

i 3

~

0 50 100 150 200 250 300 350 400 450 500 o

o ;F Axial Distance (ft) 23 u

2.

O PI 22/24 LOOP w/ LOCA, Bypass Valve Closed. Steady State Profiles

Om

  • rt o

g-ao g4.

e

.igee ieipia igi.ia

...ig.

iei

.iig.

ie ig..ie ia ie ie a i-3 N

l l

5 e

= w a

N o

\\

270. T 1618. gym 147.2 Mrts/kr f = 0.0 0 0 I

  • ?

\\

2 7 0. *F 2073. gym 14 3.7 M B r a / h r f=0.001

--~~

8. @

o c

\\

270. T 2042. gym 114.5 MBas/hr f-0.0 0 2 g

8g g

3 1

Fo 1

I c.

C l

e O

e I

I O 2 x=

=

o

^

I g

E a, e

I I

o x a o i g t

35 Z

! 1 I

1 o =

I g

I Y

I I

\\

l I

Eo Z

i N\\:

g 2

,, o I

l 1

e az e

r i

s\\

.1

- a R I

i

- o

.N 3

~w g

\\

9 A

I w

\\

g I

I N

I o

I m :

I

{

\\k o o

~.

s x i

i

>\\

ae I

t ga

s

/%[%-

E

= oo C

i

1

/

i

- t,/

p I

Eg e'

a i

Eo I

I w-m y, as

.,,,,,..l.,...i..,,, l. :,,,,,,:.. l,.. :...., l........, I,....... 1

- S 1

Go o

8 og g

0 100 200 300 400 500 600 g g

Axial Distance (ft)

"O B

a E

2 O

PI 21/23 LOOP w/ LOCA, Bypass Valve Open. Steady State Profiles

m o

27 0. *F 1618. gym 14 7.2 M B t s / h r f = 0.0 0 0

  • 'l''''--

om 2 7 0. *F 2073. gym 143.7 M Bts/hr f=0.001 2 7 0. *F 2042. spa 114.5 MBts/kr f = 0.0 02 i

o i

n i

i c.

i I

I i

m

-c u.

i g

i r.

s i

f

- o

?

,f..;.........r------------------------------

=

o 3

i. :

-I

~

I I

a

~

f 1:

B a

3 i

1,.

2 i

i a

a g-s.

s c

s I

i o

u o

o.

s.

g

.o E

l g

o t,-

=

w 8

I x

e g

m l

. t g-i i

t c

o 3

w r

=

o i

=

c.

I Y

-c g

3 xg_

I

,,,,,,,,, l,,,, e t,,,,l..,,,,,,,,I,,,t,,,,,,!,,,,,,,,,I,,,,,,,,,--

.a w

I o,s, o

0 100 200 300 400 500 600 g -,

m

,a

~'

Axial Distance (ft) se PI 21/23 LOOP w/ LOCA, Bypass Valve Open. Steady State Pro!iles l

L ___

qJ egiie i;

ee i ee eieisieaej46 ieia eegi 6 j i i ei.l

.i eeia gseseieii6 j i

E 2 7 0. 'F 1618. gym 147.2 MBtalkr f =0.000 E

Fi 2 7 0. *F 2073. spa 143.7 MBtulkr f = 0.0 01 E_

2 7 0. *F 2042. gym 114.5 M Btu /hr f =0.002 E-i i

E-I

'i 4

1 E-E I

i i

I 4

  • Il i

i I

=

i i

c 3

c 5

i e

?

- e E_

i I

_4 E

i I

I C7 l

E' I

a E

i E

n i

I L%

2 I

E M

'E "O

g y

o g

~

i i

=

=

o

?

i 6

o I

z i

p m

i 1

p

.5 i

i

'E i

=

=-

i i

F i

u

=

I u

I

-h 7

i Ft 1

i E

I

.a i

e y # *t

,4, t e t t t t t t t t t i e e e i t i!

t t i t t 9, it t t t t t t i, e a f a1e es

t t i 1 1 1 t t t O

0 100 200 300 400 500 600 Fv Axial Distance (ft)

Ei 0:

2.

O PI 21/23 LOOP w/ LOCA. Bypass Valve Open. Steady State Profiles

s

,s-.

o slsssss 270. T 1269. gpa 117.0 MBluthr f =0.0 00 ao

-s s 6 sssse

< R 270.T 1473. gym 117.4 MBtalkr f = 0.0 01

^~%

270.T 1581. gym 102.4 MBtulhr f = 0.0 0 2 9

Hydraulic Model o

~

'k s

i

. i i

i o

&2' r'A i

-n.

e l

m ig l

l

^

I g

a m

g

,g g

I.

  • s s*

m L

m i

o CL o 1

g -;\\

i z

g

...s g

v n s

.o.

t s.

i

/Ts

. N O

e

...\\

f 3

s
  • i.\\

/.'I.4 p

I

. o I

..\\f m

r i

i

=

=.,

o

y e

g g

p,,

-c i

I 3

e I

1 o

3 3,

n i

i p

c l e

-._ s i

a

\\

a ly,..

l

\\

o g

I i 9 2

I I

i f>

l l

t

.a

-,,,,,,,,, I,,,,, i

, 1, :,,,,,, :, 1 1.,,,i,,,,,l,,,,,,,,,l.,...,...:.

-s

,,1 o~

o 0

100 200 300 400 500 600

?,

Ei!

Axial Distance (ft) 3 2.

O PI 21/23 LOOP w/ LOCA, Bypass Valve Closed, Steady State Profiles

O oo m

2 7 0. *F 1269. gym 117.0 M 3 t s / h r f = 0.0 0 0

'l''''

2 7 0. *F 1473. gym 117.4 MBtalbr f = 0.0 01 2 7 0. *F 1581. gym 102.4 MBta/hs f = 0.0 0 2 a

I I V cm I

-3 m

I

~

i

,-----,i,.------______

I I :

I g w.

r a

^

i I

I c

rx.

o f

v o

I

?

o I

n 1

f I

e I

y 3

g

=

f.I u

8 I

3,

=

i i

s' -

E

~

i e

e i

m a

a o t

o m

- s*

?

E o

e r-es I

I e

a i

e I

R, i

1

[

i x

o i

g g

g i

o c

c.3

-U I

i d

I I

-,,,,,,,,, I,,,,,,I.,,,l.,,,

,,,,l

,i,,,,,, I,,,,,,,, + l

,3 e

og o

m 0

100 200 300 400 500 600 g:,

Axial Distance (ft)

~"

o 2.

O PI 21/23 LOOP w/ LOCA, Bypass Valve Closed. Steady State Profiles

C O

ii6 i 6.......... g... j..... g......... g....

-i i 6...t

..je.i4 i

j 2 7 0. *F 1269. gym 117.0 MBralkr f = 0.0 0 0

[

2 7 0. *F 1473. gpe 117.4 MBts/hr f =0.001 27 0. *F 1581. gym 102.4 MBts/hr f =0.002 E

I

.I ao g

I E

E i

E I

E I

T 1

21 8

i 8

8 1

I E

C E

I 1

m o

Il l

g l

N O

! II E.'

o E

l l'

E 9.

E I

i i

2.

n i

o-t u.

I 8

a i

-o n

I I

g o

u g

g 3

=

o 3

5 I

I 5

i I

8 E

EE!

E s

3 9

t I

I o'

E i

I S

E f

1 e--

E g

/

i ca

=

1

/

c i

l

/

=

=

s

/

=

I 9

/

8 8

/

i E

I "7

.=

8 8

e I

-3 r,,, i,,,,

l,.,, i t e.,, l..,,,,,,..I..I

'...,,. l r

s o

o se 0

100 200 300 400 500 600 a,

Axial Distance (ft)

~,

L

?:

PI 21/23 LOOP w/ LOCA. Bypass Valve Closed. Steady State Profiles g

FAl/9748 Page 29 of 43 Rev. O Date:

l O

Figures 61 through 6 3 show results for train 22/24 with the bypass valve open. For fouling factors of f = 0.000 and 0.001 the pipe downstream of the FCUs is substantially volded (Figure I

6 3), and choking is evident at the pipe exit based on the exit AP (Figure 61). The f = 0.002 case is not choked and has less void. In each case there is a minimal AP across the (open) bypass valve at ~390 ft.

Figures 6-4 through 6-6 show results for train 22/24 with the bypass valve closed, in each case there is boiling downstream of the orince, but only the f = 0.000 case has noticeable void upstream. Choking occurs at the pipe exit for each case. The pressure drop through the orifice is evident in Figure 6-4. Note that the temperature plots (Figure 6 5) follow the saturation curve in those pipe sections where vold (boiling) is present.

Figures 6-7 through 6-9 show results for train 21/23 with the bypass valve open. This FCU train is at a lower elevation then 22/24 by about 20 ft. Note that train 21/23 has a longer length of pipe between the orifice and the 24" return header, so the nodes (pressure points) in that section are more widely spaced. Significant voiding and exit choking a. : only evident for the zero fouling cas'e.

Lastly, Figures 610 through 612 show results for train 21/23 with the bypass valve closed.

Q in each case the flow is essentially allliquid upstream of the orifice. Downstream boiling and exit choking occur for the f = 0.000 and f = 0.001 cases.

6.2 Transient Sequences TREMOLO analyzes transient sequences by first setting up the initial steady state conditions (in the manner described in Section 6.1) and then initiating s'.,me transient (accident) conditions, such as increasing the containment temperature and/or decreasing the supply header pressure.

In the present transient analysis a LOCA coincident with a loss of power event is postulated to occur, resulting in a trip of the service water pumps supplying the FCU piping. Up to 30 seconds are required prior to service water pump restart. This time delay accounts for the time required to start the emergency diesel generators plus the sequencing delay for service water pump actuation. The LOCA results in an increase in the containment gas temperature to a maximum of 270'F. As the containment temperature rises, heat transfer across the FCU tubes increases. Then, as the service water flow decreases due to pump trip, boiling is expected to occut in the FCU tubes.

Two transient runs have been performed for FCU train 22/24 with zero fouling and the orifice bypass valve open. In the first run (#1) the service water pump is restarted at 5 sec, while in the second run (#2) restart is delayed to 30 sec. The initial upstream and downstream boundary

~

29 l

l

1 FAl/97-68 Page 30 of 43 i

Rev. o Date:

1 O pressures, based on hydraulic model results (3), are 74.48 and 19.53 psia, respectively. Pump coastdown is approximated as a linear decrease in supply header pressure to 20 psia over one second. Pun.p restart is likewise modeled as a linear recovery to the in tial supply header 8

pressure, beginning at the restart time and ramping up over Ove seconds. The containment gas temperature is assumed to ramp up from 85'F to a maximum of 270*F, which is maintained for the duration of the transient. Cooling water is provided at an inlet temperature of 85'F and an, init al now rate of 1530 gpm (see page 34 of Appendix A).

i For convenience, the nodallration sketch (Appendix A) is included here as Figure 613.

Figures 614 through 618 illustrate selected results for transient #1 (pump restart at 5 sec).

No'c that pNOD(1), VFNOD(1), TWNOD(1), and WNOD(1) refer, respectively, to the pressure, void fraction, temperature and now rate at node I, while PUP and WINUP represent the inlet pressure and fiow rate. Node 16 is upstream of the FCU, node 20 is in the FCU, node 24 is downstream of the FCU, and node 48 is the last downstream node. Pump coastdown and restart are reDected in the upstream boundary pressure trace shown in Figure 613. These results suggest that within 100 see FCU train 22/24 has essentially reached steady state with a heat removal rate of about 115 MBtu/hr and an inlet now rate of about 1500 gpm (7.5 x 10 lb/hr).

5 Figures 619 through 6 23 show similar result.; at 145 see for transient #2 (pump restart at 30 sec). (More detailed results for both transients are included in Appendix C.)

The " transient" steady state profiles are somewhat different than those shown for steady state run #1 (Figures 61 through 6-3). Figures 6 24 and 6-25 compare pressure and void pro 0les for the two transients and the run #1 steady state conditions described in Section 6.1. The

" transient" steady states do not exhibit a large AP at the pipe exit, and there is less void. Also, the above mentioned power and now rate (which translate to 57 MBtu/hr and 750 gpm per FCU) represent a somewhat redced FCU performance compared to the heat duty curves shown in Figure 5 3, which would suggest about 69 MBtu/hr at that flow rate. The lower heat load translates to less voiding in the downstream piping. This discrepancy is believed to be due to subtle differences in the transient and steady state portions of the two phase flow modeling and is not pursued further in this analysis.

6.3 Conclusions Containment conditions during a design basis LOCA can result in substantial voiding in the service water piping downstream of operating FCUs, These voids may extend to the 24" return header. Voiding is expected to be maximized for the higher elevation FCUs when the orifice bypass valve is open and the tubes are not fouled. However, boiling in the service water piping O

does not compromise containment heat removal.

U 30

FAl/9748 Page 31 of 4)

Rev. 0 Date:

oV

--~~~. x

/

\\

/

\\

j Prairie

's,

/

Island i

.L

.s.

780:-

E l

FCLR #24 l

E

=

i

=

=

I i

=

t 770 E--

l l-

=

=

=

er i

=

-O F

l

=

E' l

.6 7605-l t>

n ir j

_5 a,

=

l l

E 32 E-l i4

=

ti. i, l

=

s,

=

750E-l j

--g

=

..,,,,,i, 1,f i

i

=

.=

g c

it !a '*rM.7

=

l 3

g

.g

=

g 740-

.,4,,,

,, 3rl3, j

n, 3

l E

.s E

i o.,

tu

_=

=_

i i

730E-l l

3

=

4 i

=

,i

=

i

_=

i i

_=

i i

=

l 720:-

44 i

=

=

i

=

i

,i i

.=

i 4

_=

i i

=

l l

-2 d

710E-t o' w9, l

M10 i

c

=

  • id I

i l

i i

=

700=

i Retum Supply otR96o113 CDR 9 30-94 O

Figure 613 TREMOLO nodalization sketch tor FCU train 22/24 (48 nodes total).

31

ii l!

i;

,,;ptt 1

j,"

pt,3,.I

[,i!,:

,ittL

,I 1y5 a= 72 M 0."

a

' 3 o orn C

l 0

0

_ _. :.: nv_ _

1 T

.w e

t e

T s

... :~

t 5

t 0

~

l 9

Jg i

t a

~n

~-

t i

... =

t i

r a

e 0

t tl I

s 8

1 e

R t

.an t

p e

...+

t 0

e 1l 7

T P

t 0

t t

..:nn 0

T e

0 0

tl I

6 0

)

=

i

.c~...

c f

t

~

e f

x.

t t

s t

(

0 n

-l

.l.

.-.x-5 e

e Gb I

. - ~ y p

-.u m

O t

,..s_

t

.i t

e t

v

~

.r

.I 0

-Tl l

4 a

t t

V t

~-

~;

t s

t t

t s

O a

1 u.

0 p

r[

iI 3

y r

?

B t

e

)))

-t 6 04

.u 22 y.

A 1

i DDD iI 0

C

(((

[

2 O

i POOO s;9.,w.4 e

L c*

UNNN

../v t

4 PPPP t

s 2

1

/

i!

0 2

t, 1

2 e

t I

e P

  • .....:.:.m l

t e

6 s.

t

._;t

_.__0

^*.mO-

.e.=

.~um e

k

,.eCa a..u go& owc. o n ::e,.a,_on** Om, weo" ~.

~

=

n i1 4

O O

1 L

igiie ijiiie g i+.l6 j..e.l6..

l6 g.... -

(

~

i4 4 ie

_4

. i i V F N O D (16) l VENOD(20) f',

VFNOD(48)

O VFNOD(24) i

~

Ii 7

22 fV1i.j

=

i 1.

W I

c o

3 I

.t:

m i

i.

h I

I

(

~

c 1

m i

fo i

.i

?

^

I 3

-o I

8. =

I 1

6 i

$. ra.

9

[--

l

(

I

s me 1

t w

i w

w%$

1 t

3.

I ji o>

g a

?-

s 1

o i

St m

g w

I 1

p

.....i i

g

- t 1

o n.

I 1

r 2

i i

t l

1 y>

j 5

I 1

r

'-:: I t

o

-a

'l t;,,1, Ii,j! l,,,3 Ii

,,ll

,,,I

...l

..,I

,..I....

b

',8,e i

o O

10 20 30 40 50 60 70 80 90 100 E.7 l

Time (sec) t:

2 PI 22/24 LOCA, Bypass Valve Open, f f = 0.0 0 0, Pump Restart at 5 sec l

r

.)

O O

O o

i i 4

i..

4 4 4 i i

. i -.

liiiijie jiii4 l4 le l4 ili4 giie l

o i ii4 m

T W N O D(16)

TWNOD(20) t si TWNOD(24) 1 TWNOD(48)

O o

I

\\.......

m I

.{

..............................g....

m I

,- \\

_. 9

.,C P

G, f

s s a

t x

n

\\

Q l

~

m o

-- I on I

g' e g.

g-u 28

- I n-

"n I

gu ao I

Ro o I

w gE e

7 2o

-I 8 E-*

I y

g

~o

-t G

I

~

1 o

o o

4-p n"

g-n E

?>

n

.a I f f f I e i f f f e e t t *

  • it t t o

O f f f f f f f f f f f f f f I f f f f m

0 10 20 30 40 50 60 70 80 a0 100 p7

~a

..time (sec)

O 3

PI 22/24 LOCA, Bypass Valve Open, f f = 0.0 0 0, Pump Restart at 5 sec

.i c

m iiigie iil4

.g.6 jii l4 j....g....;.

e i i i 4 i..

i g

I O

O r

O y, h,,

5^

-(/

Jg. - -

J_,

t i, T W,..

2.....

g o,~,>..: :: ~..

l t

a 'c

-[S:

/

r WINUP 1-i E,

l I

,,,f W N O D(16) 3 E

d E*

j f.

l

',f' WNOD(24) j 'j WNOD(48)

O e-EM i

m u

o 4

g s it a;

'O O

3a gA I;;

I, i

F i

tj-n l'

E c.s-~ ( r/

g.

,M U

?.

\\

n y>

w

<.a f I I I f f f I f f I f f f f f.

I I i f f I I i f I f f f f f i f f f f f f f f O

O 10 20 30 40 50 60 70 80 90 100 Fm sa Time (sec) s.

PI 22/24 LOCA, Bypass Valve Open, f f = 0.0 0 0, Pump Restart at 5 sec 0

-...a...

hi

FA!/97-68 Page 36 of 43 Rev. O Date:

o O.

,,,,j,,i,

,i;,i,,;,cii

, i i i i i o

o

~

m 1

om o

=

=

U oc a

o o

m o

o o

o.

e o

~

h

~

^

11 q

1 o

m

,lF o

a m

o a

n a

o E

o H

o>

o 9

w

~

E d!

~

~

o a.

M

>s m

L i

_ o u

N O

a N

~

o n

N n.

I I

l l

o OSE 00E OSI 00t OSI 001 05 0

(29/ntsN)

Jojsus21 troH Os Figure 6-18 Total heat removal for transient #1.

36

FAl/97-68 Page 37 of 43 Rev. O Date:

1 o"

u

' J i i i i g i i i i j i i i 6 l 6 i i i { i i i i j i e i i j i i i ([i i i e g i e i i g i i i i

.le l

,i o

m

,i I

I i

!lO U

.I l

oc l

'l m

1 E

0

.I a

A I

o l

o o'

~

.I

.I o

I o.

.l 0 o

5

^

u Y.i u

w f(i1 o

w

(

m

.*'1 v

dfj{'

l

.s o

I '. O

'i'()l a

C M

I

's

.{

E-a o

I m^^

S e ov

=

.-. N N www CQQ

. 4,

- o

. l --

AOOO m

~'#', ' [; 6

.:3 Z Z Z C

s h

- g g-r, _w, su AAAA

_=

'm

-~.__

---iEIFP=._...'..

4

=--

x-

-6 (

O c... M '

a

..... 4w..

....v.....

m

.......g 4---

n n

  • y...,,,

..*..,r'w,,-

A iiiiliiiiliiiiliii liii l,,,,l

...I i,li.i S6 SS SL 59 SS St SE SI SI S

S-f (sisd) 02nssaJd Figure 6-19 Selected pressure plots for transient #2, 37

O O

i i

i e

i

(

l l

i gn e,"

gg 1

g la l

g gi 9

i l :

i E

g s.

g

.a l

21 1

I

.6 eo t

5 g

i o

I o

p e, - I a

n L

-O - - - - -O -

-+-

u I

F o

a i

m o l

g V F N O D(16)

,I

a. --

t-VPNOD(20) go t

t a

i VFNOD(24) a "'

V P N O D(4 8)

O

~

U

$.n.

9

_ l I

i t

i a

-~

% e

- I I

u D 'o

=

8>

,g i

9.

- I j

i o.__

I i

S 1

-t I

0 o'

~ 1 14

.. ' -'-~~~

2

-f f

iI Q

9

_- I l it I

its n.

8

8 ill E'A E

Id 5

~

ii i 2

Y 1,1 It i o

I

!I l l

i i -

i i

i

_i o

0 50 100 150 E7

e..,

Time (sec)

=

2, s.

PI 22/24 LOCA, Bypass Valve Open, f f = 0.0 0 0, Pump Restart at 30 sec

^

)

FAl/97-68 Page 39 of 43 Rev. O ' Dzte:

o i i i i 4 i 4 i i..

i..

il l&

ji..

9 gi;ii u

~

u l

1-i o

I m

I O

I

=

l l

~

s.

I (L

a l

~

M I

e

.l.

l cd 1

m E

i m

I o

I o

l C

O l

o i

I o

I O

i a

l :

o t

^

u I

o o

w vi

- mmmm e o e on I

w 1

l M

-NNT wwww u

I

.QQQQ l

~

E O

S I

l 0000 1

ZZZZ p

J HHHH

/

w

/

/

)

/

o if')

  • .e

.- )

  • i.1.~

p#

b

/

(

h

'%'%'n'.

j

-l'.ig%

m o

-.m os,n-

-s_-m...

g n n % d.....

8

=rrm %

a

,.;2-T

_ raw u en===

~

- 7g r o.w g

~

N 4

wn< =- -7.-

5~ '.

N

' -,,~~.

A h

h l

l l

l f

  • $" em$ ame %

l l

o OSE 00E OGE 003 OSI 001 05 (d) oJntszedmal Figure 6-21 Selected temperature plots for transient #2.

39 e

O O

O i

i i

i i

6 i

a 3

j l

~

WINUP

}

W N O D(16) k WNOD(24) o

^

C WNOD(48) n d

}

o H

o g

o k^

e a -

m.c g

hw ii i

j

" * " A ""*d M ~

.'o.

  • l4I,i

@ Awcbh - ee r -

i.ff,@^r6 l

a4 S,..

, ~ -

g.---

I'

's'l n/

n 4

1

)

4

g.,

i m

I4

/

l

\\\\

t I

8:

i m.-

I l"

j ;g ij 's o a l /h N

.l.!j i

Il/l 8

f, ', +2;:

, i,l'.g,l')6 5 in L P i

}3 o

j' f

... c.

I lly',l

["'

L l

f 2

l LI ly i,

Q 1

i I

u, m

y 5

E

?

_1 r

i i

l E'A

-14

,3

?

I l

E i

i i

e i

O 50 100 150 E7 a v; Time (sec) e 9,

0 PI 22/24 LOCA, Bypass Valve Open, f f = 0.0 0 0, Pump Restart at 30 sec e

9 Ir P

gp tualsutai JoJ Ieromo2 teoy pnoi Et-9 o2n2 d g'

Heat Transfer (MBtu/hr)

W

-50 0

50 100 150 200 250 300 350 400 C

ieii gi iig..

  • }

)

i i

N

.[

~

lg i

9 N

9 E

L-*o 4

o>

m i

txf

}

M i

~

e N

w

~

~

o m

I.

[,

e; O

9 i

m o

"a J

m to 1l m

a

[

o a

v O

ooo o

N e

B lus w

N M

N

[

I wo l

l wa

+

,,,l,,,,l l.,..I,i.r Iie i!'

'}'

n t

uo

st:0 0
  • ^ag tyJoipa3sd 39.L6/1Yd

_m_

FA!/97 68 Page 42 of 43 Rev. O Date:

o C3

..ii.iisliiiiiii..liisenii.ilsiiiiiiiiliiii....liii,iiiiliiiiiiiig_

M

,i I

o 4

f

/

m v

f

\\

i

)

tz.

. [.

o O

I o m t-

.e i

g c4 l

,.p-________;

i

',1 O

Oo

.\\

uu 7

m o.

i T

u. o

.I m

. =

+1 o

s A

^

n o in

a..,

J w.

o v I

j

~~

O T

.............,g m

a o

)

e

/

.u - e.

f i

/'

u a

C o

\\'

o ea

.A m

o 1

eo a

g

  • g o

x.-.-

~

.a.=a =

pg

..............p...............q$

a I

'd mHH

  • J o

1

  • /

en a

4 p/y o

m

+

g.

4 w

x 1

>j m

l

______p________________i i

.t m

1

s i

u 4,o,,-

o fer.",,, #.a o

~

a

o f 0 r,e d

~

l i

/

n.

/

o Z

t d o o

i t

m a

/

2/

i E

.........,1,,,,,,,,,1,,,,,,,,,1,,,,,,,,,1,,,,,,,,.I,,,,,,,,,1,,,,,,,,;o SL 59 SS St SE St SI S

(ejsd) oJnssoJd

/G d

Figure 6-24 Comparison of steady state pressure profiles.

42

U.

166666611l666666666l16666644el4,66eii6ignistiaisigtii6.sigigiiiisitingeississisegiessi#iiejseessiest

~

t E

Steady State #1 i

Transient #1 @ 100 sec i

Transient #2 @ 145 sec i

1 I

1

~

1 I

I I

E m

I 65' E

l i

E I

I l

\\

7

~

~-

9 I

N g

?

I 1

I o

f.d-4-

u C

l

~

2 I

.O I

I r

o o

/ \\ 1:

\\1

% s/

B o

E l

se P.

y 7

u 1

f..

a' 9

g m

m i

l-l.

o o

I g

E I

u o

e l.~-w%

I*

R g

1" t

i te o

5 B

E t

\\

r a

I x

I

\\ j..-

=

i 1

w 8

G R

8

/

2' I

6 I

p E

l I

[

Z_'

o, 2-I I

a 9

1 t

I i

8

J i

E2 5

i z

m I

wy g

I I

8 E

?5 ET,,,,,,,ilitivi.,,li,,,iiivilin,,,,,,,li,,,,,,,,le,,,. dli..,,,,,,!,,,u<.,,,l,,,,,,,,,l,,,,,,,:r.

og a

I I

0 50 100 150 200 250 300 350 400 450 500 o

o y

Axial Distance (ft) w 2

PI LOOP w/ LOCA, Bypass Valve Open, f f = 0.0 0 0, 270*F

FAl/97 68 A1

.I Gl' Rev. O Date:

I I

APPENDIX A FAl/97 47 REY, 0 TREMOLO REV,1,01 PARAMETER FILE FOR 1

PRAIRIE ISLAND FAN C0ll UNITS 22/24 i

i j

i I

e i

1 I.

j p.

nei J

Nele; % is appendiV c onf at'ns 5 t p*ps 3 Ecludik tkh cover p.ge. Two i

3 aitat% st rays.re n w hevea

.I pk.u.e ri cally as m,.md 351.,

1 6

1 1

4 f

4 O

A-t

\\

't)

Fws xc f A sso c t ATFs, T M c.

CALCULATION NOTE COVER SilEET SECTION TO BE CONIPLETED BY AUTilOR(S):

Page i.4 58

  • Cale Note Number FAI/41-0 Revision Number d

Title Penih'e Is l.= 4 Pa ra me 4cr File 4 TrzeMot.o Rev l.61 - Fct4, n/2'l

< ue s.s e ey. c Project Number or Project Mornern S+45 Powe r Shop Order MSP #2.

Purpose:

>< lop T rz m at-o Rev. l.4I ysees.e4e+

-f,'le S, r.

Pesske ni d. een%&ent 4sn c a. t h3 un *+, "u/*2z l'

Results Summary:

0.e spf ic.6Ie prAmeb A /*

Ars I,<en co mp /.eM.

^g References of Resulting Reports, Letters, or Memoranda (Optional) 4 (G

Author (s):

Completion Name (Print or Type)

Signature Date Ts mes P. 5-call.ek

/lsw A B&

c-oz-s 7 0

SECTION TO BE COh1PLETED BY VERIFIER (S):

Verifier (s):

Completion Name (Print or Type)

Signature Date

$T e w.

DAwse a 6 9 7 WRwie Av.e umem tw on-wrnavia-PER W P-n. t 7 Independent Review or Method of Verification: Design Review

, Alternate Calculations X, Testing Other (specify)

SECTION TO BE C051PLETED BY MANAGER:

Responsible Manager:

Approval Name (Print or Type)

Signature Date Q

%BE RT~ 5 YE/)12V N0(

Nuk M,f%

v

-u l

o CALC NOTE NOMBER FArtn-47 REV. _9I '

PAGE 7-CALCULATION NOTE METHODOLOGY CHECKLIST -

CHECKLIST TO BE COMPLETED - BY AUTHOR (S)

..(CIRCLE APPROPRIATE RESPONSE) 1.

. ls the subject and/or the purpcse of the design analysis clearly stated?...... h. NO 2.-

Are the required inputs and their sources provided?............

.-NO N/A 3.

Are the assumptions clearly identiGed and justitied?......-,......... @. NO N/A 4.

Are the methods and units clearly identified?,'....,.............. @. NO N/A 5.-

Have the limits of applicability been identified?......,............ h. NO

,- N/A (i.e.. Is the analysis for a 3 or 4 loop plant or for a single application.) -

6.-

' Are the results of literature searches. if conducted, or other background data prov ided? -........ '........................

4....... @. NO NI

(

?.

Are all the pages sequentially numbered and identified by the calculation g

............. h. NO

. note number?

Is the project or shop order clearly identified?.............,.......@. NO 8.

Has the required computer calculation information been provided?'....... @. NO N/A 9.-

Were the computer codes used under configuration control?............ @

NO N/A 10.

11.

Was the computer code (s) used applicable for modeling the physical and/or computational problems identified?.......-.......,............. @. NO N/A (i.e.. Is the correct computer code being used for the intended purpose.)--

. Are the results and conclusions clearly stated?......................h. NO 12.

,h

.13.

- Are Open Items t roperly identified?........................... Y ES NO j

- Were approved Design Control practices followed without exception?.......h. NO..N/A

14. -

- (Approved Design Control practices refers to guidance documents within NSD that state how the work is to be performed. such as how to perform a LOCA analysis.)

Have all related contract requirements been met?................... @. NO N/A 15.

NOTEt

. If NO to any of the above. Page Number containingjus:itication

FAI/17 -47 rus 9r 3

O Fauska & Associates. Inc.

CALCU1ATION SREET Client:

Acet.t

==

Description:==

Sheets of R eeen.co c es computed _ Date Checked Date (i) braw?3 List :

X-HI AW - \\\\6 6 - 4 6 RH E (A1040)

X-14 TA W. Q G i d t Rev F (A66Sp)

-1561 Rev A (A7& s t)

- 2 5 15' (h v A (A;ss&)

.30 Std D (A 64 rt)

- 2 f 58) Ret / A

( A 76 5~o )

( A'l' S%

-2713 (z3 c. P, Leebd, " sem ry.4 benhn skpas Ru e i v'< 4 G.-

suppert d q t. 94 06 Rw c.. l# r p.r4kerm s4 des Powe r s'.

lysis t4

  • m o -fo Sin <

G'- t1.- % 1

[3 } 7. P. 14. i m a n, " l44.A Ew 3 f < r, ", 'T+L S L A e%, q r q,. w.14sti t9 t)

(4 ) c rtAwe hkniki Pa r< r-Me.44to, " Flow of Flwi.b rke.ug.l Valves, pa4iap, ad Pih*, " 19 s t El:Ma

[.F3 Bernd awd P4yers, a ptew tm, L.te d, a w,4 Ptass r-*=,fer WJ E14'on, g sa il M < q r.w -H it ), 148 2.

[cq W e A P -n36 - L "n g, Al' 9.a pe r4 Th dos-C.w% n k s + Far c.. (<

  • ow C o o li n3 coi l r~c s+," Taiy My1, w. g. B. ettiy e r 5.G F A T Ex periiwce W.cterk mmer Phen e m <n s ik Cow +*inr**^t e-
f. lc Coo \\<e S a vit<

H s+er S y s+ ems (SsC 4yRdds))

Ph5 /91-2.,

Rev. f a u sy, t o i.

{.s3 Abdollahian, D., Healzer, J., Janssen, E., and Amos, C.,1982, " Critical Bow Data Review and Analysis," EPRI NP 2192.

Cl3 Ardon, K. H.,1978, *A Two-Maid Model for Critical Vapor. Liquid Row," Int. J. Multiphase Row 4, p. 323.

~

(to) Richter, H. J.,1981,' Separated Two-Phase Flow Model: Application to CriticalTwo Phase Flow," EPRI NP.1800 (April).

p)

(ii) Rivard, W. C, and Travis, J. R.,1980, "A Noneq ilibrium Vapor Production Model for t

Critical Flow," Nuclear Science and Engineering 24., pp. 40-48.

,med FA I /1 1 '47 Rev p.

4 CALCULATION SHEET Fauska & Associates, Inc.

Clientt Acet.I

==

Description:==

Sheets of Computed Date l

gyng gy, Checked Date This cale, n.4<

doc % en+5 pa r.~ k,-

fil<

A<ve lor ~.+ 6r Prairie Is t-wa pn coit u w i+ 3

" 24 /* 2z (com)..k4).Tkese ko

[* n coolers a

p.rwil< l L4 sk a r<

co mm on piping,

raw sil le TKis meae1 fre*4s & p.<allel p'i pinj a

pip <

.+k

  • > a egmklep4 area and co. l.iaes 1Le ho kw reele rs Ah An one c 4(, diL e
c.. (4 r.

W e l< v=A. s A

+ks's eff4cn '

'**ler

'5 K,3 er

<l<v M n apprefri fe for da cooler %4, as3xua 4 1. 4Le k

,u, i,

c.,,e ~ais.

,;n.-

n,

-.<r

- a -. w< +>

e.u --

sepsr AE

=~/

A. - ekas<

flow,othf. are o4 ir44r u i

(.

TRFMoLo a a ly r es.

71. e defaulf rw.Jel has ike subsegnen4

.or;tice bypss va lve c.l.s e a.

/M d

FAr/n.41 n.eg es r

u/O CA14U1ATION SHET - Fauske & Associates Inc.

Client Acct.*

Descriptiont Shept of Computed Date Checked Date ot tTMTS J

C A. skuts for pe r m. 44 r fde c.

sM - s4s4r pres s ure p ro b i'f s

  1. Co m pa r i $o n of y

33 by emwlit mod e t / n+a J

wid

  • c mparis.n of b c..ler pe r-k m. n c <

3I

/A ASP (A eTto p uJ ) moct e \\

C,54;ny.4 44.e 7.rameter fil e..

4 S c.r i p+

(i.e. command) 4 des used b gener=4t -tk e TR.f McL O l.dl pp 35,34,3r have runs wLest re s ul+3 pt.HeJ

.n

.re been

[aser4e /

al koumers'c pAjes 35.

og 356, As g

performed

-le, v alicl d < 4ke sd j ec4

~These runs were rerArme) on & FA2 VAy paramef e e file, Tkey w e r<

clas44r A LPH A work 54whows usiA3 opera 4$b3 systfm VMS V (e.2. \\le r i4*c a:h'e n o{ R.tv. t.0% is d ocument ed IE Fat GA recorcis Al< F.t 1 O

V

/M F AT.f i,. y ; Np 6

0 CAIEUIATION SHuf - Fauska & Associata, Inc.

\\

Client Aert.t j

==

Description:==

Sheet of l

Computed Date l

checked Date Mo rort o p u rt A rs p VA LVE 5 Mont ac4$4<

d +4(s m dtl.

plud.ld4rs ont y.

Ms4 t

O e

1 3(V i

4 a

y FAz/91-41 1

ike 6 4

CA14tHATION 3HEET - Fauska & Associates. Inc.

Client:

MSA Acet.l Descriptioni Sheet:

_;of Computed Date Checked Date

.y ysPE

, Ec rtort Pi y k
~dtbd Ao ab

/ 6 psfE Sec-d ods pi A

fa.eb Luksn is ggL c(,ys11) q ~(s 5

,J }.s f( &

5' 0

YA A$

ll 8,

Pi pl

'Co M -f4 d.4 Sbd YO CarboxShe[,

Pik M a-,( A h Ah ~

d a-n a 4 up sw h [.G.

MP)PE l(

eM (I = I % I 6 )

X1bP(Il P.[a I. b XWA LL P (2) yih w* d Ab Y EP (Il py W b DaP (I)

M b

bM bJT'/pp(I) M Y [u y

MGPLIT(I) i P" f

"f*

b pja sce_ Ah IC

.. ~. - -........ -....

. - ~.

/

F AI/9 7-4 y y

wi

,',,e**~~m

's g g

/

g

\\

/

g

/

Pra..ine g

/

Island i

780=-

k h

=

E_

l FCLR #24

.E_

i i

E l

(Y 22 iMorpove$td kef t 3

770E-l l

-E 5.

M F,@.

.5 2

=

=

i.

i l

E 7605-i o

a l

5 I

L a

c@t6@

,s l

=

=

if

=

si

=

750-i i

+' e i

e i

=

'4 1

!. ag 1

.E E.

_r

,t O.ce E

2 c l

E v

0 i

_=

v lii 740=_

( pij8 8

10'

=

=

! '.'1.*

5 5-l"

.,l w v i

=

=

l 5f'

=

730=-

  • ts o <y.i.

=

r-

==

i i

i i

q

-=

i i

=

720 -

2 5

E l

l L+

E i

i

=

i i

l l

_ jo, j

710E-

' 10' 6

zi E

w l

l E

s, o'e

=

i i

i i

=

700 -

3 Retum Supply

^

a JR96o113.CDR 8 30-96 I

M

2. 2.

% E.M.0(.O M M it

~

06s O

c, s,.g,_.us,

4 rr s eus.)

I Fy

3 F At lq 7-4 7 Mf 9

\\

x f

/

/

\\

,l

\\,

4 i

\\

l 780--

~g Pra..irie E

l Island 5_

i

=

i i

=

7705-l FCLR #22 l

-5 E

l l

5 5

=

760:-

i i

i

=

i i

4 i

750--

i 8

C S 22,f *4

=

8-

.9 E

"1"*s l

p

  • z;* 4 E

lii 740=_

'0] %li io-

,,ia q $

5 l

5

-c Lij 1

ga

=

i 730E-l

-5 i

l i

i 7202-

=

E I --

l 1

E i

i i

i

[

}

l l

l

,g g.

E

~

7105-10' i

i

~

700 Return Supply JR96o109 CC A i 30-96 d

~

O 5"P

" "' A

%s is sc oree.d d pr + 24 40 C r e_6d e

t. (h e.41V t

-iL gq 4 g g ode _ l an Fi3ur< 1

/1 Phr/5,.e TL J

bN to 3

CALCULATION Sluut? - Fauska & Associates, Inc.

Client Acet.9 Descriptioni Sheets og Computed Date Ch eked Date

?s y hsM ass $st

&r

$daL{4 40 Cs rb e k S kt.k

/lemM WO d'

h <e Fhu 014 3.[lw t im&,

)Mtc A res 9"

" o 122 8.625 "

7,99I' I

(0.0168 (t)

(0.918844)

(0. 6 6 5 ) lt) 0.3'41'4 f t.

io" o.365

10 760 lo.o2o "

(o.030i (t)

(0.?4 5 8 h)

(o.F 3 50 (t) o,f4764tl l

4,5 oo "

4,o 1 &

o.oH4 M 4

o,n3 (o.oiqa 4d (o19f (t)

(o.n 5E ft)

O W

( o. o i 6 4 -(4 )

(o,tt q c 4 r)

(0.2 o rt it)

OSSS" o,ono "

o.s1s "

o.o%z5 Se o.00shs W (o coit3 44 (o.or2 o g it)

O

A Pb Z f99 ~ 4 3 Wh

\\\\

o I

CA14U1ATION SHEET Fauske & Associates,_Inc.

Client:

Acet.t

==

Description:==

Sheets of Computed Date Checked Date l u 'o r s)t J % &M 8 p uhe s

, st)

(f w for

-A c ro u,

w s

S r 2 (

)(0.66 E l 4cf 2

  • o.N 3 4

.L. #

.o,6 4 Y F li' g'
2. b

=

IDeg r o_94v_' 4t

- \\ t 19

i

  • [ ki vb
  • >Aa-h E'

4 7'h (4o[bm

  1. .4 A, 8 C, b 2

3 2'2. A,1, C b )

A:

&x o. 01's 4 0,1o M Ot?

ad #

i D

o 9489 4t M mf a to {t J.)

( #,e o.lu )

(eA1 4" P'tt E &

,m

.fn

/ 6, z.5 pfm spk4s 40 a 2 5,,Iiph A: ( (, ' O.0333 0

0<f32'2 4t' D

q, rf f "

0,3232 4t q:

e,,..A;- -

a vraow neeve - ic o e /4c h : t r. o a o,cotG8 0.1688 St'N c.

+ LSc. :

O' S3 7b E4

  • ysU og3 ft y
  • XI. w cE = 60 4t It (bo')( 8 In') + (+ K 1+ 8 O

- 0.8751 R 10.51 tuO l

64 : - Z.3 hiistJe25' ro '22,

+T *24 s rw.u ' s ',

FAI/974J l

glw

/-

'g #

n.-p q

1,c,.Too f,. / 1c k a m.'tr o,e,H smpy t

3._,

r

/

u t...a-s

1. i '

i gy 2l5

,e y c' nus

[]

6 6"G v.1 3

' e sc9

  1. pi -k',

j 3

4 1,

Y 7

t

.. s *.,

G 75,..-

,,,i,..

.y;-

L $f a' T o

k-- n c '

k - 5, Y-T

=

6

(

W L-SIAw -\\\\o G-%

(tur 6 0

(va % -w<o ')

t ss'

']

cw-1-1 J ~Ilo j

/

et q E

24 W r

a,

/

d. 70')

-705 2 (m \\,,

Q g1

't - HI Aw -- \\0 G- \\o 1 (A<650)

As v 12 O

4 x' G. O j13 l

~

@ AI /9 7-9 7 RWp 13 g-. _ ~

c4; +c*t64 3

. 91' 3

AfD e k. "

hy d 7 &.

N h

D

%N t

w 36 '

I i

i l

14'3' 7

Ik p h'e'.d.. L _

) 2' 8

l-

/3 5

2 cL-12-4

.{

M'

' f,l--Jua" i~w 7 sb.

7N 5"rh @ ""ND T.t e- %e.c.

O L

h i '~ NI bW -\\ \\O b-28 (e I bd 4

2 Q

,5 ti,75 9

T 2. '

64 0. 2 F. 3

  • 3 "pc,c.3

,s

.e

,c c.3 h

qp u

,gj;.

9 3

9 ~ 1s s

,56 4

~"

Oc

FAI/97.q ;

gwp

  • G q

/

,A G l

g__

l k~7'*S "9'-s19'+p' 44l 7 65 h'h bi

  1. " A u-O^

4. g$ tap r

r.'&*%

' n en. < '.u w '

7

  1. 3'

^$

ut d t.s T

I

4 5 by*- a us

\\

7 CH %dC, IT '

?

t) h 6 Y L

\\

k - Ig#

g' s

dTW

..i W

MV-f2/ra pg Q t

I g,33'

/

j# 0

)g, 62.L}

=e u~m

~,

1, Y'

a' r$@b6 f

'.N

.T,'

e/ -,' g.

'a t

G 2'

l j'

g, q %- srsw-uo6-2s,r og a

f49 b c ' : 14 o g s.,3 2, '

t)+t2&2*4+% : Hi of 7 - 2. 3 i

ci % to M

i. wa r
r.. s

=s' a4 :

2.,

63' O

i j

FA :r /i ?.<f 7 (2wp

,g 14 ~13 t 'o

OA IJ. 2, v,l.,., 9.; -

j y, a '

CU' I

/.0 M 7%

/0 O v'tA ed J

M\\l

s i

q.. c

)

~

-u_,,Q_O,3, % p. - A s.

' %,. 1, I

, J. g, " " 'a I]'

y_g 3w.m.

wn

-m,y

. d

. j g' o

l y ~l g'

d

/'

1

.A 0 lb I )

I O74*n le h.

G,o/

ck l

p.,

' f ir%eut g,,m i a

.g ' y% h@

,(

y l

g yguQ f

IG 1

d, ff

)'.

/), vr n

19.v.+,s a

6 4

y

!a y*

19 0

a 3 to l'

G

/q 16 [

454',

Y -NJ AW -WO G- %

% C (A-,ono)

V I

u 707"*7 I i

2o _

, g gs

'2 4 j?,,J g 7,

3 n

cW H 4 v'- u: Aus

\\ toc-% fa -c c c

/

FAr /97 _9 7

\\

}

%-4 CALCUIATION SHEET - Fauska & Associates, Inc.

Clienti Acet.t Descriptioni Sheets of Computed Date __

Checked Date 4

Ftco ELEMco75 ng ru a L 4 n i

wru;'

w 4

- p. u n we 4

s% su, aa a a3 g

rw q

n A sa u

<e) wa n da PRoTo-FLO d de Mdg z

s it y sw n ~

sdA (m

V kk k-y-

ph, JC.

KaL y &

q 16 (L.& J g.p 4 -r L + pja nG mi sMu J hi 4 +C ~Lla 54 Prf -

n LJ

FAI/'t 7.y 7 M

W$

O now toss coEeeiciENT x is citcuturED I

P Bernoulli Equ.

=g 2

(i.e. AP a W )

.. K = 2 p AP "1 - f b

^

(W,

o 2

f=

friction factor 64/Re (landnar)

=

O 0.18ta=a 2 <tursuie=1)

=

L = LENGTH D = DIAMETER from plant data A = AREA p== DENSITY from water temp.

AP = pressure difference (corrected for elevation changes) from flow test data. or bydraulIC Aedek b-)

W = mass flow rate from p and measured gpm.

1

J

~.

P AI.l 4 7-d ')

Ilse /

l P)2 18

-4 S"U SnN t!*mt ?'*b at P'

1*t 10*r - t F. *.

L (40 ( M ;(vi a (eiia (M

l4 o

n 13

.l.t1 : 14A8

)

39

'N 'l 8

8 8

I I' s #b'I

  1. I'# 3' i t

i 2

f6 34.15 fo.16 I

8 t

1 I

i 3

L 3

4 3.06. fo.t &

48.3 7 2.

I,1, f 0.L.

i 4

_3

. 2.1

-2._11 '.48.38

...g 1 3,s41

'4 2

4

'Z.C. -. =S 4

f Ft, 2 4.t f 37.04 3

If,6, to, et, !* r,44 ;

i l6 r

6

. P_.. - 1. 'i 27d ' -

i

  1. 6 ..

FC4 -t 7 6

Go 1 0.4 '-

'l lo,l', fo t

i a

l21.s v

'l r,io,lr (*it,, it i, LJ 7

to

!io.s l*

81 I

i

. i4

-l.1T,17.67 f 29.44 f

. l, f, it.

l

~

g 18 1

to 41

-21 0 2f.44 G

'll,15,-27,11,48

  • f.C.

f

'~'*

a 11 le si 2.o t36 21...6 l3,f '

t l 81 et it. il 20. J s.it J C.is

-}

f g4,,

i l) 11.

13 3

0

-34.86 lo. i t V

2.i

}

l l

i O

44 13

,(

3 o

lo. f'l 10 14 i

. t.i l

~~

i

-_jl l ',

t,st, 'as g o g 4 7,- f9 if 44 ef fo 29.0 16.1 4 it ir

,5 z6

0. 5 '

is.s3. io

, s ir

> a

.....i 1

j i

}

I 1

s...

i i

I I

...m i

I

. ~. - +

..w.

l

(

l, 4 bdMS l'n Sguarts O m u,.uw, y a

,y 4., ga t Nat.en A circles O A ComsrewA % K.v.lses for Wred Pire Sedans on p.l9

FAI/41. e Ru#

~

t9 41 $ DKBlM :[ coot. Pr) PIK2.ouT*

yq, PRAIRIE ISLAND '! NIT 2 CFC #24,822 1197.

1. INLET VATER FLOV RATE TO BOTH OFCS S

0 85.

! INLET VI.TER TEMPERATtTRE (F) 62.165 I INLET VATER DENSITY (LB/TT3)

{

I

'4 P

L NFE DIA VATER (PT)

(PSIA)

'FT)

(IN) NODE

(

'g gI 0 708.17 74.48 0378 r

1 741.25 $0.86 129.

10 10.02 225B ecko 2 744.31 48.38 i.

3 11.29 824 CFC'J In

, l=Au 3 766.25 37.04

'5.

10 11.29 237B (adjusted) m Feu 9 4 766.25 27.67 100, 9 10.51 244B (adjusted) 5 759.00 28.44 la 3 11.29 246B 6 738.00 36.22 40 8 11.29 #24 CFC'J Out 7 736.00 36.86 17 1 11.29 248B 1

7.98 250B 8 736.00 10.89 9 736.00 10.34 3

1 7.98 249B d

10 707.50 19.53 M.

10 10.02 303B 4

LuMPEb PIPE PUP PDF DZ DPFLOV DP3EAD KFE UFE FFRIC LCUM (PT)

SECTION (PSIA)

' PSIA)

(FT)

(PSI)

(P3I) 1 74.48 30.66 33.08 9.34 -14.28 5.548 10 0.0143 129.00 2

50.86 ' 48.23 3.06 1.16

-1.32 3.549 3.

0 0147 135.00 g g,,,g,,,.

3 48.38 37.04 21.94 1.87

-).47 1.676 10 0.0147 210.00h b""

  • g 4

37.04 17.67 0.00 9.37

').00 7.625 7.

0.0145 310.00j 4'

"'N 5

27.67

8.44

-7.25 2.36 3.13 7.561 3

0.0147 324.00 6

28.44 M.22 -21.00 1.29 7.07 1.407 8

0 0147 373.00 390.00

'6.86

-2.00 0.22

).86 0.998 1.

0.0147 393.00+C**Dg 7

36.22 8

36.86 10.89 0.00 25.97 3.00 64.594 1

0.0137 ersh te 9

10.89 10.24 0.00 0.55 3.00 0.329 1

0 0137 396.00 10 10.34 19.53 -28.50 3.11 12.30 1.726 10. 0.0143 472.00 KCUM = 268.630 Mdel14LdralN(h Ar dater aste r wB, u4 8 be vo Lu

  • ~ df s 4J y

7 h /;p s4 s k h

bsud es etVste+ ef X p1A W-Itob-2SGI Rw A.

now refnsreTJ.

7kie s w ly ed re hrn m o r,, G f/ -h p

  • W s oro M h.ph C o, rhf

-]<nsta.hs f r n.e k J w. a f..A en d Ay en t fu' wir$.'

l St s.!E!*

042ysid d

M L

2.D ft T

a 3u 7 - o43 e 37.c4 psia i

2t.lo - 0 41 :

2. 7. 6 7 p,'.

7 6 S'.25 %

  • l-

' 7 M 25' fr i

w,2 : 4 tes, c.and.a 6, e.n.-

,,m, pain., t,,-

Ad)as 4ed hem 64.M i du 5'o.0 4 [eff er rodd 4b col d wde r l.

flow r a44 wkl< s+ilI p.<w hlih *. re s toMit pressu re gr4ft (tre p 13),

c - -

. ~.

d 2 4 b K G iuo.' {teo t..*Jer T. :rnPuT) Pr 2 4 s1M.D AT" 0

0.00 1

12.166(666666667

' r-)

2 36.5000000000000 2

E *3!!!!!!!!!!!!

""M"

"*6 M'~""

5 101.000000000000 4 4,q, ugl p s',.hin.f & ude c M er, 6

11a.666666666667 7

130.00C000000000 8

132.00C000000000 9

134.00C000000000 10 138.833333333333 11 146.500000000000

o. e.

12 154.166666666667

'" " "d "'" "*

"d"d "" """"'

1

""5"""

15 201.333333333333 16 213.333333333333 e

'd 17 220.000000000000 l

18 220.666666666667 8

Fag (19 240.000000000000 l

li',

1 tensg l20 260.000000000000 I.21 280.000000000000 l

ll 22 293 333333333333 n

23 300.00C000000000 ll

't,"

24 306.666666666667 u

25 312.333333333333 ll "i,"

26 317.000000000000 a

n 27 321.666666666667 ll E

G 28 330.833333333333 a

u V

29 344.50C000000000 E

E 30 358.166666666667 n

a 31 366.333333333333 E

lI 1

32 369.000000000000 a

n.n l* C '

33 371.666666666667 U

o. c.

34 375.833333333334 at 35 381.500000000000 N

3.',

8 36 387.166666666667 m

adi U

37 390.500000000000 na, 38 391.500000000000 u

44 39 392.50C000000000 40 393.500000000000 o

41 394.500000000000 E

42 395.50C000000000 a

44 43 404.333333333334

't 44 421.000000000000 o

a 45 437.666666666667

,,'.'n 46 450.333333333334 o

nn 47 457.000000000000 48 467.566666666667 4:

w.n 49 472 000000000000 i

l l

+w--

q.

m t

rw-

-*w w

v.

i--

FAIh*).O Rav h gj 8 2 4 bM B if Y ! [,(ceL. WE ET.I NPuT) PI2 W AverR. D AT 0.

74.48 74.8 129.

50.86 43.1

. d medel data O 135.

48.38

-40.6 n(g pd,-wm., sus k,Y raall'c 210.

37.04 27.8 p e W ikj Hi+L TREM0LO 310.

27.67 11.2 for (emparnion l

324.

28.44 10.2-373.

36.22 17.5

  • A. dy g4 4e. re su(4s.

390.

36.86 17.9 393.

10.89 13.6 396.

10.34 13.5 472.

19.53 20.9 4

O 1

O l

~l n/9 7 -4 7 bN 2 2.

O Fauska & Associates. Inc.

CAI M ATION SHEET Client Acet.$

Descriptions, gj f V #/ (oGrp sheets og L' j rd4u 8. le e al c sd,4;,

computed Date Checked Date 4

l O

($

k 8, [ % '.

8 [ WDiA

(

.1 e

Pg i N.49 r s a

0.it MPa gg g ; 3 3 p g O 10.1 m Ig rFM6 fl e t, c 0.' f M P.

,g,,g,,

)

L: I t'l C4

39 h

)

9q, p p

Gt. In AL ((t 1=1000kln) g 6 W P - Ir. MM l

N = lilt 7 ses)(. I53 61 g' )(c ?.16y)f60) e

/

o s w,, o '. 4 / A,,

,4., g A m

=G" 5 5 - Q '#,

o,o c < to Fx 3 - t o. ot "/'i z. -

o nr4+

=

o.rr4 P ; f (.'s t s Y : 0.s 4 8 h

  • b o.og s w t d

o.f i < Io-c ' /s e 3 c' C r.

y: (oq, y o, m 7 4<2/pd[' ~ggffe) : 2,6, 42/3 v = 4/n

- n. t s h

= t. n nj, o..a a <a '

p, : > 0 /s : b.+ t )(,1r u)h :, ro'

-o.on z>:t4 /

.g... > a, l<( ::

2 (rooo%e6 rto )

) - l

, vo l'3 [2 9 m)[2 r4 6

5'3

.{o r Q F E : l() p o w dd Kr=K/io

' S 3 e A~

O

F Ar I /q 7 q )

b#

13 d2fDv,gasa [C OUL. PI) C o f F.FOR.

4.a.9 7 PROCRAM COEF CALCULATE EFFECTIVE LOSS COEFFICIENTS IMPLICIT REAL*8 (A-H K-Z)

INTEGER LENF

)

CHARACTER *80 LINE,FNIN,FNOUT CHARACTER *200. STRING l

DATA G.CC /32.174EO,32.174E0/

DATA PI /3.14159E0/

C VRITE(*,*)

  • ENTER INPUT FILE NAME s' READ (*,100) FNIN

- VRITE(*,*)

' ENTER OUTPUT FILE NAME s '

READ (*,100) FNOUT OPEN(UNIT =1. FILE =FNIN, STATUS ='OLD',READONLY)'

C READ (1,100) LINE C ENTER VOLUMETRIC FLOV (GFM)

READ (1,*) VDOT C ENTER INLET VATER TEMPERATURE (F)

READ (1.*) TVATER C ENTER INLET VATER DENSITY (LB/FT3)

READ (1,*) RHO C ENTER ELEVATION (PT), PRESSURE (PSI)

READ (1,100) LINE READ (1,100) LINE READ (1,100) LINE O

OPEN ( UNIT =2, FI LE = FNOUT, STATUS = ' UNKNOW ' )

READ (1,*) I.Z,P C

VRITE(2,100) LINE VRITE(2,*)

VRITE(2,*)

C VRITE(2,*)

  • A

=

',A FT2' C

VRITE(2,*) ' RE

= ',RE C-VRITE(2,*) ' VEL = ', VEL,'

FT/S' C

VRITE(2,*)-' V

=

',V LB/S' C

VRITE(2,*) ' FFRIC= ',FFRIC VRITE(2,*)

VRITE(2,*) ' PIPE PUP ','

PDN DZ ',

' DPFLOW ',' DPHEAD ','

XFE','

NFE ',

FFRIC ','

LCUM' VRITE(2,*) 'SECTION (PSIA)','

(PSIA) ','

(FT) ',

' (PSI)

',' (PSI)

(PT)'

LCUM.O.E0 KCUM.O.E0 TEMPK= - (TVATER-32.EO)/1.8E0+273.15E0

'1 CONTINUE IUP=I ZUP=Z PUP =P C.. ENTER ELEVATION'(FT). PRESSURE (PSI), LEN3TH (FT)

-READ (1,*,END=2) I,2,P,L,NFE, DIN

-LCUM=LCUM+L-O DFT= DIN /12.E0 A= PI/4.E0*DFT**2 VEL. VDOT/A*0.13368E0/60.E0 V. VEL *A* RHO PIN = PUP *6894.76E0

FA z/t'1 -4 7 N4""9 Iq HU. VISCV(Pill.PSAT TEMPK)

RE. RHO

  • VEL *DFT/MU

[7 FFL 64.E0/RE

(

FFT=0.18/(RE**0.2EO)

FFRIC. HAX(FFL FFT)

DZ. Z-ZUP

~

FLOD. FFRIC*L/DFT DPHEAD. RHO *G*(ZW Z)/CC/144.E0 DPFLOV. PUP-P + DPHEAD K. 2.E0*DPFLOV*GC*144.E0/RH0/ VEL **2 -1.E0 -FLOD K. MAX (K,0.DO)

KFE. K/NFE KCUM. KCUM+K C

KNOD=K/NNODES C

IF(IUP.EO.1) THEN

.l C

FCDUP= 1.E0/ SORT (1.E0+KNOD/2.E0+FLOD/NNODES/2.E0)

C KNOD KNOD/2.E0 I

C ENDIF VRITE(2,110) I, PUP,P,DZ,DPFLOV,DPHEAD,KFE,NFE,FFRIC,LCUM e

]

GO TO 1 2

CONTINUE VRITE(2 *)

VRITE(2,130) KCUM CLOSE(UNIT =1)

CLOSE(UNIT-2)

ILFN=LENF(Fili'4) i ILFO LENF(FNOUT)

STRING =' APPEND /NEV '//FNIN(itILFN)//','

/ /FNOUT(IIILFO)/ / ' ' / / ' COEF.TMP'

y CALL SYSTEM (STRING,' SYS$00TPUT')

CALL SYSTEM (' RENAME COEF.TMP '//FN0UT(1tILFO)//'10',

'SYSSOUTPUT')

STOP 100 FORMAT (A) 110 FORMAT (I5,2X,5F8.2,F8.3,F5.0,F8.4,F8.2) 120 FORMAT (* RHO = ',F8.3,' LB/FT3')

'130 FORMAT (' KCUM = ',F8.3)

END DOUBLE PRECISION FUNCTION VISCV(P,PSAT,T)

IMPLICIT DOUBLE *thECISION (A-H,K-Z)

SAVE C*******************************************************************

C C

VISCV C

C***************************1967STEAM TABLES C VISCOSITY OF VAI2R--FROM DATA T0/311.D0/,AS/1.0049D0/,BS/2.6016D-4/,CS/-1.0323D-6/

DATA A/239.4D0/,B/248.37D0/,C/140.D0/,D/1.D6/

C INTERNAL UNITS BAR, POISE,DEGK PB-MAX ( P, PSAT)/1.D5 PSATB.PSAT/1.D5 F=1.D0+(PB-PSATB)*(T-TO)*(AS+(BS+CS*(I-TO))*(T-TO))/D VISCV 1.D-6*A*10.D0**(8/(T-C))*F C CONVERT TO KG/M/SEC VISCV=VISCV/10.D0

(,

RETURN END SUBROUTINE SYSTEM (COMMAND,0UTFILE)

FAI/97 4y IMPLICIT INTEGER ( A-Z) pp

'2. 7 CHARACTER *(*) COMMAND,00TFILE p

IF (OUTFILE.EO. 'SYS$0UTPUT' 1

.OR.

2 OUTFILE.EO. 'sys$ output') THEN

' RETURN STATUS.LIBSSPAVN(COMMAND,,,,,,

~

1 COMPLETION STATUS)

~

ELSE RETURN STATUS. LIB $SPAVN(COMMAND,3UTFILE,,,,

~

1 COMPLETION STATUS)

~

ENDIF RETURN END-FUNCTION LENF(REC)

C C

FUNCTION TO FIND LENGTH IN CHARACTERS OF STRING " REC" (TRAILINC C

BLANKS-DO NOT COUNT.').

C

-CHARACTER *(*) REC

-L.LEN(REC)

Do 10 J 1.L NC=L-J+1 IF (REC (NC NC).EO.' '.OR. REC (NCtNC).EO. CHAR (0))_ GO TO 10 GO TO 20 10 CONTINUE NC 0 20 CONTINUE LENF-NC O..

RETURN END O

g f# AI/9 7 -4')

48 3

4 Fauska & Associates Inc.

CAIMATION sus?

Client AJ S A Acct.6

==

Description:==

V pg gg p, Q

Sheets of Computed Date Checked Date 12:1)jf PROTN 340 by Prote Feww Carperudse (pe6FEX 0000)

@ )698 W.ity Dets Report is: NSF FCU. Aet6a FCU model Tde Hs= = 8W spa

[

Air Cell Heat Eschanger Input Farametert

]

A>.$ide Te e n rg % f,6,as u,435WEEa eam ya ~

tald Dry Sulb Temp 10lyi *F,

39.47 'T tald Wa Bulb Temp

  • F tala Reindve Hamiddr 33 85 %

g Omid Dry Dub Tampesrure 4

't U

Oudst We San Temp

'F Om!d Relative maniditF k

FTee mid Nume Freak Waur 0.002000 * *O M Qoooo N

Tube Foulag Feetof 0.000000 4,

Alt $1de Toahag g

k Defen Hest Tranafw(UTU!hrt IJ ti,tM Atmospherie Prename 14 040 g

Sena% Meat Ranie 1.00 Pertmnance factor (% Ra&rion) 0 000 mm nahansaType enii.imw mTne amteras iN ris c a, e cF.u.s4 A T )

J RxFt.t.smaxs2*Loocks))

[h CoilFinnedLan30i(la) Yt tuor/wPau 9020 /it i 1.t de-meo.nuw o

s Fla CeeesseMay(BTUhrerT) 225.000 i.r g.]

E Tip Thiskasse(Innhen) 0.0100 PtsRanthiskasseon hac o.e100 N

Cksular FinHeight(lanhs4 1.37$

d Nember of Colle PaUnk wt Fr.F c 8

tg g Webs of Tee Raw. Apas, v mmP I

W g Nuanbar of Tees Ps R** vr eto.J 2040 AetveTaben Fw Row some

[the faside Diameter On) 8**t eJ880/it:o.o42s' ig

% ousad Duswi=0e 06ts0 o

Leas:tadiant Tube hiek(in) 1.303 TranmmTube Plash (la) 1.391 g

N or,, - mm F i..

mvancondarevity(smtra r) us.00 J

,,sa p i s ri. m st Se (<

unesec. :

~

F R X N u n = 2.

(4wo pread ceden ** Adtd a.s emed f)<fe : See p. 3F for ple+

4 Ow cookr perform.oce.

1

FAJ/9 7 - 4 7 2 *1 4

'31,4ULATION SHuf - Fauska & Associates. Inc.

Client:

A)S P Acet.0 Description Sheets of Computed Date check 4 Date SdA i)

Y fo4ld Pfa y

d A LA0s

&r b./ E f~

l, u

lled Wf -lo

+UG 1 8 NHYSEC(L)=l

, NHX5C C(1) = 3

% heA h i Wh b,r MM Pr. b

+

& SU a A

Ploe Wall Physical Properties

{3]

The physical properties of the pipe wall are assumed to be constant and equal to the values for 0.5'k carbon steel at room temperature, Thus for thermal conductivity (k), specific heat (c) and density (p) we have 2

k = 31 Btu /hr ft 'F

= S4 W/m g c = 0.111 Btu /lb 'F

= 465 J/kg K 3

p = 489 lb/ft)

= 7833 kg/m Properties at room temperature are used because specific heat increases with temperature and h7-~

a lower bound specific heat is expected to maximize pipe wall heatup.

F%r/9, - v 7

[q ts M

(JO CAIEULATION SHErf - Fauska & Associates. Inc.

Client Acet.l

==

Description:==

Sheets of Computed Date Chee.ked Date

+ 3 cd W

ph w;tn Lj,

[L3 TNH P s TwDt) :

g5*f 14.91 gud pup :

(q.M pt id

)

P D tV #

O) 'd y WLA P : y W D N : O h

LA4 (to" se,(.qo p.) )

A tA P : A D tJ :

0 59 q (,

{t2 W

NN C< S

'Tcwd w y( m y

b PNA 4c L o.

1L Pt4 P,

WI.c-pwp tr 4s J.e s J

e-o swjph pm d&

MTYPW: E gu Jcm}, nd wQ

.d Tc 5 *F h le b l+

[ t.1 %

Lo o p w/ Me LocA )

a e r,4 s 2.

ma a TIO. T-

)

Tc, c T 4U o

u vs~p wa l 000 54e ri ' F-g o)

Tr.two

[h

,2. C '$

,,v

c. M Y.

(5L+-Au ~e, A -ut, ag &F4 b bl4-md h 74 4 -/

Pt4 P PeoA$7 7.&2. gu(

ev l o

Tc ouT = 3 :ec. a e I m4

  • r-ra p up -6 Pu P 5 74.48 pia r

ove r 1TL A MP : \\ Je e i

A llm i3 p-p n 4, r-f-

.3 fida TIPuMP (p./ A to o see d e 4A V=A4 ),

4

FAT /97-47 L1 W9 R

V Fauska & Associates, Inc.

CA!EU1ATION SHEET Client:

Acet.9

==

Description:==

Sheets of Computed Date ch.ex.4 D.t.

e AJJ coh Na) uw &

vb s dna

+6 e.L M.

hw JJ

~~ h a) 85

  • p a n pu' (pu-u p,p a & />y 7wato),

Ry> J d &

yrs

.JL, nug s a

Q W ialf J

85 *F,

Mal/ (m M

j,

6 a 49

~+

2 o'r

& -ew

&J a Ms (0 teca).

nji,P t

u a ~a viu u 4

( p -s y&

u &

kg wh s

an - m la.s GQ wyD Hrc o (w

+HdeD) b y VM O Mov' paw & wa 4x1 g/JLEJL4 A 16 da.

j

.. c etw u, dun y9, w.Mv 512g ll.

rt

, rn ou r$(r) QC 190arp'(n)

= 2 70' f v

l FA5f8tM*1 R4V %

30 0

Parameter Name Value Parameter Description Technical Basis NWALL 2.

NUMBER OF NODES FOR PIPE Maximise wall heat WALL HEAT TRANSTER transfer to reduce CALCULATIONS void influence NSECT 3.

NUMBER OF NODES PER PIPE Modeler discretien to SECTION FOR FLUID FLOW balanc6 precision and computation CALCULATIONS requirements.

9 FFRIC 0.014 NOMINAL FRICTION FACTOR FOR Derived from STRAIGHT PIPE SECTIONS hydraulic model results. Consistent with [4]

HTCO 0.

HEAT TRANSFER COEFFICIENT AT Outer surface assumed PIPE WALL OUTSIDE SURFACE adiabatic.

THTCI 1.0 WALL INSIDE SURFACE HEAT Allow fluid-pipe wall TRANSFER COEFFICIENT heat transfer MULTIPLIER; = 1.0 FOR NORMAL CALCULATION: = 0.0 FOR ADI ABATIC BC FCDUP 1.0 DISCHARGE COEFFICIENT FOR Maximise inlet flow FLOW AT BOUNDARY OF UPSTREAM rate PIPE SECTION FCVTIM 0.001 MOV CV FRACTION WHICH Not applicable to DEFINES VALVE CLOSURE VALVE current analysis IS ASSUMED FULLY CLOSED WHEN CV(t)/CVO < FCVTIM FFLOW 3

FLUID MODEL TYPE SELECT Fluid conditions of VOID AND CRITICAL FLOW interest will result MODELG FOR STEADY STATE in non-equilibrium INITIALIZATION two-phase flow VOID MODEL/

FFLOW CRITICAL FLOW MODEL 1

HOMOGENOUS /

FAUSKE EQUILIBRIUM 2

FAUSKE /

FAUSKE EQUILIBRIUM 3

HENRY /

NONT.QUILIBRIUM 4

LOCKHART-MARTINELLI /

HENRY NONEQUILIBRIUM O

a

fat /97-47 M 3I O-Paranneter

~

Nacie Value Paranieter Description Technical Basis FISTIX 3

STEADY STATE INITIALIZATION Converge upstream of CONVERGENCE CONTROL.

2-phase region t

TORCE DELPUP AND DELPDN TO CONVERGE AT NODE ISTIX+1 TOR STEADY STATE INITIALIZATION.

IT TISTIX = 0, THEN CONVERGENCE OCCURS AT NODE d

WITH IJ.RGETT LOSS COETTICIENT + 1 THOM 1

MOMENTUM PRESSURE DROP MODEL Uso detailed model SELECTION FOR STEADY STATE INITIALIEATION 4

i

= 0: BOUNDING MODEL TOR LOW j

QUALITY, HIGH VOID TRACTION

= 1: DETAILED MODEL, VALID TOR ALL QUALITIES AND VOID s

TRACTIONS i

TTMODL 2*

TRICTION PRESSURL DROP MODEL Homogeneous model l

SELECTION sufficient since l

frictional pressure

=2-HOMOGENEOUS TLOW drop is not dominant

=3-HOMOGENEOUS TLOW WITH PROPS BASED ON VOID

=4-LOCKHART MARTINELLI (UPPER BOUND)

=5-LOCKHART MARTINELLI (LOWER BOUND)

=6-LOTTES AND TLINN THXTC 0

TAN COOLER HEAT EXCHANGER Mechanistic model MODEL SELECTION must be used because of low flow and two-

=0: MECHANISTIC HEAT phase flow conditions EXCHANGER MODEL

=1 LOOK-UP TABLE TQMULT 1.0 TAN COOLER HEAT EXCHANGER Only 1 active CAC P*IP HEAT TRANSTER MULTIPLIER.

modeled CALCULATED HEAT TRANSTER WILL BE MULTIPLIED BY TQMULT TTDBUB 0.001 CHARACTERISTIC TIME FOR Based on photographic BUBBLE GROVIH studies reported in (5)

TVOIDB 0.01 UPPER LIMIT ON VOID TRACTION Not applicable FOR BUBBLE GROWTH MODEL NBM3 1.E9 INITIAL BUBBLE DENSITY Based on best (BUBBLES /H*3) estimate (8-111

/

FLLln-U Ru$

n O-Parameter Name Value Parameter Description Teclinical Basis Ra0 1.E-6 INITIAL BUBBLE RADIUS (M)

Based on best estimate [8-11)

PPN2MH 33.000-INITIAL MINIMUM NITROGEN Conservatively e.13EF PARTIAL PRESSURE (PA) selected less than 1 pa 6/alti atmoaphere CCOND 0.7 CONDUCTION COETTICIENT YOR Based on comparison ETTECTIVE CONDUCTION THROUGH to fan cooler data CONDENSATE TILM

[6]

PAIR 0.0 NITROGEN PARTIAL PRESSURE Not applicable for USED IN DELPUP TOR STEADY all liquid steady STATE INITIALIZATION state conditions VTHIN 5.E-3 MINIMUM RESIDUAL VOID Based on two-phase TRACTION TOLLOWING GAS waterhammer RELEASE experimentn [7).

I PVIMIN 0.2rd PRl35URE AT WillCil AIR COM13 OLIT Based on two phase OF sottri10N waterhatnmer experiments

[7]

TROUGH 1.0 TRICTION TACTOR MULTIPLIER Default value has no TO ACCOUNT TOR PIPE WALL impact.

ROUGHNESS O

o O

9yg %oa.ta no' 3 wta 0

_ E:

2' _-

_ h_~

0

.; _ ::i: : 2i 5

e l

0 i

5 f

4 o

r P

e C.

0 t

0 a

g I

0 e

4 t

t S

,I i1 :

g 1 I i ! I i l,,

: I I I ;

iI i il *,

y e.

0 d

a i

C.

i 5

e t

0 3

t 0

S 0

)

t 0

0

(

d f

=

f l

0 e

g s

. : j 3

r e

o h

c l

/

C 4

s n

a t

t n

c 0

e B

t F

i 5

v j

M 2

l s

m ei;.:':...:j:

i a

0 D

V 0

l s

0 a

s m

0 a

i i

y 2

p x

l ge A

B y

d

. i:+

.o 1M

, I I l 1 I I :

3 I,

.I g I I i I i, 5

.ii'i',

1 0

5 A

j l

1 c 1

C i

c.

t

  • s O

F o

.a L

5 r 8d i

y 0

o l

0

/

H 1

w P

O O

l 0

O i

L 5

.N

~

I

.x P

- [. : :

!_: __!_4 0

me-O mn n*

  • m en n

^m.o"

- - :

  • e"D 8

~

L I

I lll

i m

iiii....si......g...

..i. ;q,.......g.

..............g......

i.g....,.....g....

...g...... -.

r-.

I 1

4 C.C.

,-CCtA M t. c., ;

I

o. c.4-- r -+ i. e.

i E

2 8 5. T 1530. gym 0.0 MBtulhr f = 0.0 0 0 0 e

8 5. 'F 1530. gym 0.0 MBrulhr f = 0.0 010 8 5. T 15 3 0. ' g p m 0.0 MBtulhr f = 0.0 02 0 I

]

O Hydraulic Model e

i i

2 l

i i

i es i

i i

1 Q.

n l

-+

i i

t q

i i

i i

t g

I

=s I

l

^

en m

~__

I e

m 1

o i

l i

i fL I

1 I

t 3

g l

I t

m T

I i

i n

.i i

i H

~

i i

i

.o l

a 1

i s

I g

i i

-m.,,,,, I,,....... l...,,,,, : l, :,,,...... l.,,,, :,,,, l.,,,,,, :,, 1,,,,,,,,, l.... :,,,, I,....,, l...j 4

o i

O 50 100 150 200 250 300 350 400 450 500 2

l Axial Distance (ft) i i

j PI LOOP w/o LOCA, Bypass Valve Open. Steady State Profile w

.c.

t 1

I l

i

O O

O i

O i

iiiii.. i_

igi,...

...g......

ia gii+ii s.*ge e

_a a

j

/e-

/

e/

i

/e e'

.c

^"

f o

e i

e

  • l

/

l m

c,.

e l

PR AIRIE ISL AND l

c Fan Cooler Performance 0.002 it2-hr-F/ Btu 3:

ff

=

~

o Tei = 85 F 270 F i

D*

Thi e

e AEROFIN Model O

TREMOLO Rev. 1.01

~

)

i y

i o

e

}

l g

y 3

P I,,,,,,,,,I.,,,,,...l,,,,.,,I,...,,..I.......-

(

{

c m400 600 800 1000 1200 1400 Flow Rate Qcold (gpm) t w

l Fan Cooler Perf ormance - Comparison with NSF Model l

SN 3$g bI O N!BUL.V1)CrAnpg, p

$1 PRAIRIE ISLAND FAN COOLER PERFORMANCE RUNS I

t'N

$1 SE1 DEP $2SDKB100 [C00L.NEXT.00TPUT)

) $ fcx yes. 0

(!

l V

$ kP ; "0$2$dua0 [ELICSON] tools RP" i

$ RP $2$DKB100:lC00L.PI]OPAN005 INP -

$2$DKB100: 1 COOL.NEXT. INPUT]P12. PAR -

$3SDKA200:{0ARCilIVE.TREM0LO.101] TREMOLO.EXE -

$2$DKB100:l COOL.PI]

$ RP $2$DKB1001' C00L.PI)0 FAN 070.INP -

$2SDKB100 l.000L.NEXT. INPUT)PI2. PAR -

$3$DRA200:l QARCHIVE.TREM0LO.101) TREMOLO.EXE -

$2$DKB100:

COOL.PI)

$ RP $2SDKB100 ' C00L.PI)0 FAN 075.INP -

$2$DKB100:l C00L.NEXT. INPUT)PI2. PAR -

$3SDKA200:

0 ARCHIVE.TREM0LO.101]TREM0LO.EXE -

$2$DKB100:1 000L.PI)

$ RP $2SDKB100:1 CCOL.PI)0 FAN 080.INP -

$2$0KB100 ' C00L.NEXT. INPUT)PI2. PAR -

$3SDKA200:

0ARCllIVE. TREMOLO.101] TREMOLO.EXE -

$2$DKB100 ' COOL.PI)

$ RP $2$DKB100: LCOOL.PI]QFAN085.INP -

$2$DKB100 [C00L.NEXT. INPUT]P12. PAR -

$3SDKA200 [0 ARCHIVE. TREMOLO.101]TREM0LO.EXE -

$2$DKB100:[ COOL.PI)

$ RP $2SDKB100 (C00L.PI)0 FAN 090.INP -

$2SDK900: 1 C00L.NEXT. INPUT]PI2. PAR -

$3SDKi 00:,0 ARCHIVE. TREMOLO.101] TREMOLO.EXE -

$2$DKB100:[ COOL.PI)

V)

$ RP $2SDKB100 [C00L.PI]QFAN095.INP -

/

$2$DKB100 [C00L.NEXT. INPUT]PI2. PAR -

$3$DKA200 [0 ARCHIVE.TREH0LO.101) TREMOLO.EXE -

$2$DKB100:; COOL.PI]

$ RP $2$DKB100: ;C00L.PI]QFAN100.INP -

$2$DKB100:[ COOL.NEXT. INPUT]PI2. PAR -

$3SDKA200:(QARCHIVE. TREMOLO.101) TREMOLO.EXE -

$2SDKB100:[ COOL.PI]

$ RP $2$DKB100 [C00L.PIl0 FAN 105.INP -

$2SDKB100:[C00L.NEXT. INPUT)PI2. PAR -

$3$DKA200 [0 ARCHIVE.TREM0LO.101]TREM0LO.EXE -

$2$DKB100:[ COOL.PI]

$ RP $2$DKB100:(C00L.PIl0 FAN 110.INP -

$2$DKB100:[ COOL.NEXT. INPUT]PI2. PAR -

$3SDlW 00:[QARCHIVE.TREM0LO.101] TREMOLO.EXE -

$2SDKB100:[C00L.PI]

$ RP $2SDKB100:[C00L.PIl0 FAN 115.INP -

$2SDKB100:lC00L.NEXT. INPUT]PI2. PAR -

$3SDKA200 [0 ARCHIVE. TREMOLO.101]TREM0LO.EXE -

$2SDKB100:[ COOL.PIJ

$ RP $2SDKB100:[ COOL.PI10 FAN 120.INP -

$2$DKB100:[C00L.NEXT. INPUT]PI2. PAR -

$3$DKA200:[0 ARCHIVE.TREM0LO.101)TREM0LO.EXE -

$2SDKB100:[ COOL.PI)

$ RP $2$DKB100 [C00L.PI]QFAN125.INP -

$2SDKB100:[C00L.NEXT. INPUT)PI2. PAR -

$3SDKA200:[0 ARCHIVE.TREH0LO.101] TREMOLO.EXE -

p)

(

S2SDKB100: 1 COOL PI1

$ RP Se$DKB100:lC00L.PI]QFAN130.INP -

$2SDKB100 (C00L.NEXT. INPUT]PI2. PAR -

$3$DKA200: 10 ARCHIVE. TREMOLO.101) TREMOLO.EXE -

$2$DKB100:[ COOL.PI]

1m

FAr/q,#1 ReV4.

3Fb

$ RP $2SDKB100 l COOL.PI10 PAN 135.INP -

$2$DKB1001' C00L.NEXT. INPUT]PI2. PAR -

$3SDKA200:

0 ARCHIVE.TREM0LO.101) TREMOLO.EXE -

O

$ RP $2SDKB100:

$2$DKB100:!. COOL.PI)

C00L.PI]QPAN140.INP -

$2$DKB100 ' C00L.NEXT. INPUT)PI2. PAR -

$3$DKA200 l 0 ARCHIVE.TREM0LO.101] TREMOLO.EXE -

i

$2$DKB100: COOL.PI) 1

$1 COPY [. INPUT] PRESSURE DB.INP PRESSURE.INP

~

$1 RUN [-)PRESSUREA i

$1 OUT j

$ EXIT j

i J

% 1.4 bK9164. EtoOL PE.1 PZTc 0i. 0Pf. CoM

$ fcx yes. 0

$ RP != "0$2$dua0 (ELICSON) tools RP"

$ RP $2SDKB100:'C00L.PI]PITC 0 085.INP -

(CL *S'N

$2$DKB100: C00L.NEXT. INPUT)PI2. PAR -

$3$DKA200i QARCHIVE.TREM0LO.101)TREM0LO.EXE -

$2$DKB100: LCOOL.PI)

O 4

i.

l d'LiDWBIN C(col PI] P sTo-(f.# f. Co M 4

.$ RP !yes== 0= "0$2$dua0:[ELICSON) tools RP"

$ fcx (0

$ RP $2SDKB100 [C00L.PI]PITO O 085.INP -

$ 2 SDK'4100 : l C00L. NEXT. INPUT ) PI 2. PAR -

$3$DKA200 IQARCHIVE. TREMOLO.101) TREMOLO.EXE -

. $2$DKB100:. COOL.PI) 4 j

l

?

I

!O f

n e'

n~w-

ce~&-'s-'av ' m e

-*--m--*v

=~-s-=v-- - - - + ~ -

--"~--r--v-v

- - - ~ - * - ~'

"~~+=--w=w-v

' - ~

n

---e--w

+-~%

-wv

' =

  • FAr[q1-4 7 he p 36 d 34 DRBIO# 1[ coot. H0 stT.IdruT 3 PJ2. PAC

/g C /

TREMOLO REV 1.01 PARAMETER FILE PRAIRIE ISLAND FCU #24,#22 HODEL VILL USE 16 PIPE SECTIONS (SUPPLY HEADER TO RETURN HEADER)

LATEST PARAMETER FILE REVISION DATE: 6/12/97 '

                                                                                                                    • 3********************
  • BR
    • 1HIS PARAMETF" FILE IS IN BRITISH UNITS (I.E., FT-Lb-DEGF-SEC)
  • PIPE SECTIONS (MAXIHUM OF 100 SECTIONS)

PIPE SECTION VALL MATERIAL PROPERTY TYPE 1 CARBON STEEL

= 2 STAINLESS STEEL

- 3 COPPER ALLOY

. 4 ZIRCONIUM ALLOY NPIPE 16 TOTAL NUMBER OF PIPE SECTIONS IN SERIES (PARALLEL PIPE SECTIONS NOT CURRENTLY H0 DELED)

'T (V

    • SECTION 1
    • 10" PIPE FROM THE SV SUPPLY HEADER TO LOV SPOT XIDP(1) 0.835 PIPE SECTION INSIDE DIAMETER XVALLP(1) 0.0304 PIPE SECTION PIPE VALL THICKNESS XZP(1) 73.

PIPE SECTION ACTUAL LENGTH DZP(1)

-1.17 ILEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION NTYPP(1) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE NSPLIT(1) 1

'/0RCE SPLIT FACTOR FOR FLOV ELEMENTS IN THIS PIKE SECTION

    • SECTION 2
    • 10" PIPE UP TO PAST 8" REDUCER TO POINT VHERE FLOV SPLITS TO #24,#22 XIDP(2) 0.835 PIPE SECTION INS:DE DIAMETER XVALLP(2) 0.0304 PIPE SECTION PIPE VALL THICENESS XZP(2) 56.0 PIPE SECTION AC10AL LENG14 DZP(2) 34.25 ELEVATION CHANGE FE0H ISLET TO EXIT OF PIPE SECTIe1 NTYPP(2) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE NSPLIT(2) 1 FORCE SPLIT FACTOR FOR FLOV ELEMENTS IN THIS PIPE SECTION
    • SECTION 3
    • 8" PAPE FROM FLOV SPLIT TO CFCU SUPPLY VALVES

(~N XIDP(3) 0.9406 PIPE SECTION INSIDE DIAMETER (EQUIVALENT)

,)

XVALLP(3) 0.0268 PIPE SECTION PIPE VALL THICENESS

(

XZP(3) 6.0 PIPE SECTION ACTUAL LENGTH DZP(3) 3.06 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION NTYPP(3) 1 PIP'. SECTION VALL HATERIAL PROPERTY TYPE NSPLIT(3) 2 FORCE SPLIT FACTOR FOR FLOV ELEMENTS IN THIS PIPE

4 VA%l41 M Red ($

3 ')

SECTION O *** 8" PIPE FROM CFCU SUPPLY VALVES TO LOW SPOT AT 742' EL SECTION 4 XIDP(4) 0.9406 PIPE SECTION INSIDE DIAMETER (EQUIVALENT)

XVALLP(4) 0.0260 PIPE SECTION PIPE VALL THICKNESS XZP(4) 23.

PIPE SECTION ACTUAL LENGTH DZP(4)

-2.31 ELEVATI0H CHANGE FROM INLET TO EXIT OF PIPE SECTION NTYPP(4) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE NSPLIT(4) 2 FORCE SPLIT FACTOR FOR FLOV ELEMENTS IN THIS PIPE SECTION

    • SECTION 5
    • 8" PIPE FROM LOV SPOT AT 742' EL TO SUPPLY MANIFOLD XIDP(5) 0.9406 PIPE SECTION INSIDE DIAMETER (EQUIVALENT)

XVALLP(5) 0.0268 PIPE SECTION PIPE VALL THICKNESS XZP(5) 52.

PIPE SECTION ACTUAL LENGTH DZP(5) 24.25 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION NTYPP(5) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE NSPLIT(5) 2 FORCE SPLIT FACTOR FOR FLOV ELEMENTS IN THIS PIPE SECTION

    • SECTION 6
    • 4" CFCU INLET PIPES XIDP(6) 0.9489 PIPE SECTION INSIDE DIAMETER (EQUIVALENT)

XVALLP(6) 0.0198 PIPE SECTION PIPE VALL THICKNESS O

XZP(6) 20.

PIPE SECTION ACTUAL LENGTH DZP(6)

-9.9 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION NTYPP(6) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE NSPLIT(6) 8 FORCE SPLIT FACTOR FOR FLOV ELEMENTS IN THIS PIPE SECTION

    • SECTION 7
    • CFCU TUBES XIDP(7) 0.8273 PIPE SECTION INSIDE DIAMETER (EQUIVALENT)

XVALLP(7) 0.00583 PIPE SECTION PIPE VALL THICKNESS XZP(7) 60.

PIPE SECTION ACTUAL LENGTH (SAME AS XLTUBE)

DZP(7)

-0.4 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION NTYPP(7) 3 PIPE SECTION VALL MATERIAL PROPERTY TYPE NSPLIT(7) 16 FORCE SPLIT FACTOR FOR FLOV ELEMENTS IN THIS PIPE SECTION

    • SECTIch e
    • 4" CFCU OUTLET PIPES XIDP(8) 0.9489 PIPE SECTION INSIDE DIAMETER (EQUIVALENT)

XVALLP(8) 0.0198 PIPE SECTION PIPE VALL THICKNESS XZP(8) 20.

PIPE SECTION ACTUAL LENGTH DZP(B) 10.3 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION NTYPP(8) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE NSPLIT(8) 8 FORCE SPLIT FACTOR FOR FLOV ELEMENTS IN THIS PIPE SECTION O

          • SECTION 9
    • 8" PIPE FROM CFCU RETURN MANIFOLD TO 759' EL XIDP(9) 0.9406 PIPE-SECTION INSIDE DIAMETER (EQUIVALENT)

i F^r In D 9" d 33 XVALLP(9) 0.0268 PIPE SECTION PIPE VALL THICUESS i

XZP(9) 14.

PIPE SECTION ACTUAL LENGTH DZP(9)

-7.25 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION J

NTYPP(9) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE NSPLIT(9) 2 FORCE SPLIT FACTOR FOR FLOV ELEMENTS IN THIS PIPE l

SECTION l

    • SECTION 10
    • 8" PIPE FROM 759' EL TO LOV SPOT AT 736' EL i

q XIDP(10) 0.9406 PIPE SECTION INSIDE DIAMETER (E0VIVALENT) '

]

XVALLP(10) 0.0268 PIPE SECTION PIPE VALL THICMESS i

XZP(10) 41.0 PIPE SECTION ACTUAL LENGTH i

DZP(10)

-23.0 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION

~

NTYPP(10) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE NSPLIT(10) 2

-FORCE SPLIT FACTOR FOR FLOV ELEMENTS IN THIS PIPE i

SECTION-

    • SECTION 11
    • 8" PIPE FROM LOV SPOT AT 736' EL TO #24 CFCU RETURN VALVES XIDP(11) 0.9406 PIPE SECTION INSIDE DIAMETER (EQUIVALENT)

XVALLP(11) 0.0268 PIPE SECTION PIPE VALL THICMESS XZP(11) 8.0 PIPE SECTION ACTUAL LENGTH DZP(11) 2.0 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION NTYPP(11) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE NSPLIT(11) 2 FORCE SPLIT FACTOR FOR FLOV ELEMENTS IN THIS PIPE SECTION

    • SECTION 12 i
    • 8" TO FLOV RECOMBINATION #24,#22 AND 10" TO SPLIT TO BYPASS. ORIFICE i

XIDP(12) 0.9406 PIPE SECTION INSIDE DIAMETER (EQUIVALENT)

XVALLP(12) 0.0268 PIPE SECTION PIPE VALL THICUESS i

XZP(12) 17.

PIPE SECTION ACTUAL LENGTH DZP(12)

-2.0 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SEC' TION j

NTYPP(12) 1 PIPE SECTION VALL MATERIAL PROPERTY 'lYPE NSPLIT(12) 2 FORCE SPLIT FACTOR FOR FLOV ELEMENTS IN THIS PIPE SECTION j

l

    • SECTION 13
    • 8" PIPE TO DOVNSTREAM OF ORIFICE XIDP(13) 0.6651 PIPE SECTION INSIDE DIt. METER XVALLP(13) 0.0268 PIPE SECTION PIPE VALL THICMESS XZP(13)-

3.0 PIPE SECTION ACTUAL LENGTH DZP(13) 0.0 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION i

NTYPP(13) 1 PIPE SECTION VALL MATEEIAL PROPERTY TYPE NSPLIT(13) 1 FORCE SPLIT FACTOR FOR FLOV ELEMENTS IN THIS PIPE l'

SECTION l

    • SECTION 14
    • 8" PIPE FROM ORIFJCE TO VHERE FLOV REJOINS 10" EYTASS BRANCH XIDP(14) 0.6651 PIPE SECTION INSIDE DIAMETER i q XVALLP(14) 0.0268 PIPE SECTION PIPE VALL THICKNESS XZP(14) 3.0 PIPE SECTION ACTUAL LENGTH

' Q DZP(14) 0.0 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION NTYPP(14) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE NSPLIT(14) 1 FORCE SPLIT FACTOR FOR FLOV ELEMENTS IN THIS PIPE SECTION E

i FAIf17 47 6d 31 e*

    • SECTION 15
    • 10" PIPE TO LOV SPOT AT 707' FL IN 10" RETURN LINE XIDP(15) 0.835 PIPE SECTION INSIDE DIAMETER XVALLP(15) 0.0304 PIPE SECTION PIPE VALL THICKNESS XZP(15) 50.0 PIPE SECTION ACTUAL LENGTH

~

DZP(15)

-29.0 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION NTYPP(15) 1 PIPE SECTION VALL MATERIAL FROPERTY TYPE NSPLIT(15) 1 FORCE SPLIT FACTOR FOR FLOV ELEMENTS IN THIS PIPE 4

SECTION

    • SECTION 16
    • 10" PIPE FROM 424,#22 TO SV RETURN HEADER i

I XIDP(16) 0.835 PIPE SECTION INSIDE DIAMETER XVALLP(16) 0.0304 PIPE SECTION PIPE VALL THICKNESS l

XZP(16) 26.

PIPE SECTION ACTUAL LENGTH DZP(16) 0.5 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION l

NTYPP(16) 1

. PIPE SECTION VALL MATERIAL PROPERTY TYPE NSPLIT(16) 1 FORCE SPLIT FACTOR FOR FLOV ELEMENTS IN THIS PIPE SECTION

  • HOTOR OPERATED VALVES (MAXIMUM OF 10 MOV'S) l 4

CVHOV(1) 1000.

MOV 1 FLOV COEFFICIEN'i DVMOV(1) 1000.

HOV 1 REFERENCE FLUID nENSITY FNMOV(1) 2 MOV 1 CHARACTERISTIC CLOSING CURVE EXPONENT:

e V7 = CVMOV*(DP*DVHOV/DV)**FNMOVt LET FNHOV.1 FOR j

Lt.NEAR AREA CHANGE VITH TIME, = 2 FOR QUADRATIC, ETC i

TDCMOV(1) 1.E-6 MOV 1 CLOSING TIME i

TDOHOV(1) 1.E-6 HOV 1 OPENING TIME 1

TDMOV(1) 1.E6 MOV 1 TIME DELAY FROM RECEIPT OF SIGNAL TO INITIAL

)

VALVE RESPONSE CVMOV(2) 1000.

NOV 2 FL0d COEFFICIENT DVMOV(2) 1000.

MOV 2 REFERENCE FLUID DENSITY FNMOV(2) 2 MOV 2 CHARACTERISTIC CLOSING CURVE EXPONENT:

TDCHOV(2) 1.

MOV 2 CLOSING TIME TDOH0V(2) 1.E6 MOV 2 OPENING TIME TDMOV(2) 1.E6 MOV 2 TIME DELAY FROM RECEIPT OF SIGNAL TO INITIAL VALVE RESPONSE

  • FLOV ELEMENfS (MAXIMUM OF 100 FLOV ELEMENTS).4FD ? URGE VOLUMES (MAX 101
                                                                                              • <s#+n*******************o FLOV ELEMENT TYPES:

. 1 90 DEGREE ELB0V 2 SUDDEN ENLARGEMENT

- 3 SUDDEN CONTRACTION

= 4 GRADUAL ENLARGEMENT (I.E., REDUCER) 5 GRADUAL CONTRACTION (I.E.

REDUCER)

= 6 ORIFICE O

7 120 DEGREE ELB0V 8 BRANCH TEE

= 9 FIXED POSITION VALVE OR HISCELLANEOUS ELEMENT FLOV ELEMENT CHARACTERISTIC DIMENSION

f l

l FAr hbo Ag/

yo

= RADIUS OF CURVATURE FOR ELDOV

= RATIO OF SMALL TO LARGE OPENING FOR ENLARGEMENTS, CONTRACTIONS, OR ORIFICE O ****

= RESISTANCE COEFFICIENT L/D IF NTYPFE = 1,7,8,9 NTYPFE(1) 6 FLOV ELEMENT TYPE (HODEL AS GENERIC FLOV CONTRACTION)

NTYPTE(2) 6 NTYPFE(3) 6 NTYPFE(4) 6 NTYPFE(5) 6 NTYPFE(6) 6 NTYPTE(7) 6 NTYPFE(8) 6 NTYPTE(9) 6 NTYPFE(10) 6 NTYPFE(11) 6

    • ENTER LOSS COEFFICIENTS (K VALUES) HERE XXTE(1) 5.548 K VALUE XXFE(2) 3.549 XXFE(3) 1.676 XXFE(4) 7.625 XXFE(5) 7.561 XXFE(6).

1.407 XXFE(7) 0.998

    • XXFE(8) 64.594 (K FOR ORIFICE IS ADJUSTED TO XXFE(8) 50.

BETTER HATCH HYDRAULIC H0 DEL FLOV)

XXFE(9) 0.329 O-XXFE(10) 1.726 XXFE(11) 0.0

    • DEFINE SURGE VOLUMES; SEE
  • INITIAL AND
  • CONSTRUCTION FOR ADDITIONAL PARAMS VSURGE(1) 10.

TOTAL VOLUME OF SURGE VOLUME 1 ASURGE(1)

.01 FLOV AREA INTO SURGE VOLUME I VSURGE(2) 10.

TOTAL VOLUME OF SURGE VOLUME 2 ASURGE(2)

.01 FLOV AREA INTO SURGE VOLUME 2

                                                                                                • 4*****************************
  • FAN COOLER DATA FHXNUM 2

NUMBER OF FAN COOLERS. TOTAL FLOV VILL BE DIVIDED AMONG FHXNUM FAN COOLERS AND CALCULATED HEAT TRANSFER VILL BE HULTIPLIED BY FHXNUM FAN COOLERS XIDT 0.04625 FAN COOLER TUBE INNER DIAMETER XLTUBE 60.0 LENGTH OF A SINGLE TUBE FPSh THE SUPPLY HEADER TO THE RETURN HEADER (7.5' FINNED LENGTH

  • NPASS)

NPASS 8

NUMBER OF TUBE PASSE.*

NTROV 20 NUMBER OF TUBES PER ROV NSERP

=1 NUMBER OF SERPENTINES NREGFC 8

NUMBER OF FAN COIL SECTIONS IN PARALELL FFOUL 0.0 FAN COOLER FOULING FACTOR f-'g

\\

    • THE FOLLOVING PARAMETERS DEFINE THE FAN C000LER HEAT REMOVAL LOOKUP TABLE
    • FOR HASS FLOV RATE VS HEAT TRANSFER RATE
    • CAN HAVE MAX OF 15 POINTS; HUST HAVE AT LEAST 2 POINTS; HEAT TRANSFER
    • VILL BE EXTRAPOLATED BEYOND FLOV RATE ENDPOINTS OF TABLE NHXTAB 15 NUMBER OF POINTS IN LOOKUP TABLE (2 <= NHXTAB <= 15)

P AI[M 4*f Red g

    • COOLING VATER MASS FLOV RATES FOR LOOKUP TABLE

(~'g VCV(1) 250000.

1ST MASS FLOV RATE t Q VCV(2) 275000.

2ND MASS FLOV RATE VCV(3) 300000.

3RD MASS FLOV RATE VCV(4) 325000.

4TH MASS FLOV RATE VCV(5) 350000.

STH MASS FLOV RATE VCV(6) 375000.

VCV(7) 400000.

VCV(8) 425000.

VCV(9) 450000.

r i

VCV(10) 475000.

VCV(11) 500000.

VCV(12) 525000.

4 VCV(13) 550000.

VCV(14) 575000.

VCV(15) 600000.

4

    • FAN COOLER HEAT TRANSFER RATE CORRESPONDING TO FLOV RATE SPECIFIED IN VCV OCV(1) 44.2D6 IST HEAT TRANSFER RATE OCV(2) 48.3D6 2ND HEAT TRANSFER RATE OCV(3) 52.4D6 3RD HEAT TRANSFER RATE QCV(4) 56.3D6 4TH HEAT TRANSFER RATE OCV(5) 60,106 STH HEAT TRANSFER RATE OCV(6) 63.7D6 OCV(7)
67. 3D'6 0CV(8) 70.7D6 1

OCV(9) 74.006 0CV(10) 77.1D6 O'

OCV(11) 80.2D6 OCV(12) 83.006 0CV(13) 85.8D6 0CV(14) 88.4D6 OCV(15) 90.9D6 j

  • CONSTRUCTION OF PIPE SYSTEM (CURRENT MODEL ALLOVS PIPES IN SERIES ONLY)
    • ASSEMBLE PIPE SECTIONS IN ORDER STARTING VITH THE SECTION FARTHEST
    • UPSTREAM AND PROCEEDING IN THE DOVNSTREAM DIRECTION:

NIDPIP(1) 1 ID NUMBER OF 1ST (UPSTREAM) PIPE SECTION NIDPIP(2) 2 ID NUMBER NEXT ADJACENT DOVNSTREAM PIPE SECTION NIDPIP(3) 3 ID NUMBER NEXT ADJACENT DOVNSTREAM PIPE SECTION NIDPIP(4) 4 ID NUMEER NEXT ADJACENT D0VNSTREAM PIPE SECTION NIDPIP(5) 5 ID NUMBER NEXT ADJACENT 00VUSTREAM FIPE SECTION NIDPIP(6) 6 ID NUMBER NEXT ADJACE:1T DOVUSTREAM PIPE SECTION NIOPIP(7) 7 ID NUMBER NEXT ADJACE!!! DOVNSTREAM PIPE SECTION NIDPIP(8) 8 ID NUMBER NEXT ADJACENT DOVNSTREAM PIPE SECTION NIDPIP(9) 9 ID NUMBER NEXT ADJACENT 00VNSTREAM PIPE SECTION NIDPIP(10) 10 ID NUMBER NEXT ADJACENT DOVHSTREAM PIPE SECTION NIDPIP(11) 11 IV NUMBER NEXT ADJACENT 00VNSTREAM PIPE SECTION NIDPIP(12) 12 ID NUMBER NEXT ADJACENT DOVNSTRLAM PIPE SECTION NIDPIP(13) 13 ID NUMBER NEXT ADJACENT DOVNSTESAM PIPE SECTION A

NIDPIP(14) 14 ID NUMBER NEXT ADJACENT D0VNSTREAM PIPE SFCTION

'Q NIDPIP(15) 15 ID NUMBER NEXT ADJACENT DOVNSTREAM PIPE SECTION NIDPIP(16) 16 ID NUMBER NEXT ADJACENT DOVHSTREAM PIPE SECTION

    • PIPE SECTION 1
    • lb" PIPE FROM THE SV SUPPLY HEADER TO LOV SPOT

FAr[47W712*v4 8/ 2-NFESEC(1) 1 PIPE SECTION FOR FLOV ELEMENT

(] XZFE(1) 2.

DISTANCE FROM INLET OF PIPE SECTION TO FLOV ELEMENT

() NIDFE(1) 1 ID NUMBER OF FLOV ELEME!1T TYPE NFESEC(2) 1 PIPE SECTION FOR FLOV ELEMENT XZFE(2) 4.

DISTA!4CE FROM ItJLET OF FIPE SECTION NIDFE(2) 1 ID hUMBER OF FLOV ELEME!4T TYPE NFESEC(3) 1 PIPE SECTION FOR FLOV ELEMENT XZFE(3) 14.

DISTANCL FROM INoET OF PIPE SECTION 141DFE(3) 1 ID NUMBER OF FLOV ELEMENT TYPE NFESEC(4) 1 PIPE SECTION FOR FLOV ELEMENT XZFE(4) 17.

DISTANCE FROM INLET OF PIPE SECTION NIDFE(4) 1 ID NUMBER OF FLOV ELEMENT TYPE

    • PIPE SECTION 2
    • 10" PIPE UP TO PAST 8" REDUCER TO POINT VHERE FLOV SPLITS TO #24,#22 NFESEC(5) 2 PIPE SECTION FOR FLOV ELEMENT XZFE(5) 5.

DISTANCE FROM I!4LET OF PIPE SECTION 141DFE(5) 1 ID NUMBER OF FLOV ELEMENT TYPE NFESEC(6)

,2 PIPE SECTION FOR FLOV ELEMENT XZFE(6) 8.5 DISTANCE FROM INLET OF PIPE SECTION 111DFE(6) 1 ID NUMBER OF FLOV ELEMENT TYPE NFESEC(7) 2 PIPE SECTION FOR FLOV ELEMENT

(-)

XZFE(7) 16.5 DISTANCE FROM INLET OF PIPE SECTION U

DFE(7) 1 ID NUMBER OF FLOV ELEMENT TYPE NFESEC(8) 2 PIPE SECTION FOR FLOV ELEMENT XZFL(8) 25.5 DISTANCE FROM INLET OF PIPE SECTION NIDFE(8) 1 ID NUMBER OF FLOV ELFME!4T TYPE NFESEC(9) 2 PIPE SECTION FOR FLOV ELEMENT XZFE(9) 31.5 DISTANCE FROM INLET OF PIPE SECTION NIDFE(9) 1 ID NUMBER OF FLOV ELEMENT TYPE NFESEC(10) 2 PIPE SECTION FOR FLOV EL"HENT XZFE(10) 36.5 DISTANCE FROM INLET OF PIPE SECTION NIDFE(10) 1 ID NUMBER OF FLOV ELEMENT TYPE

    • PIPE SECTION 3
    • 8" PIPE FROM FLOV SPLIT TO #24 CFCU SUPPLY VALVES NFESEC(11) 3 PIPE SECTION FOR FLOV ELEMENT XZFE(11) 1.

DISTANCE FROM INLET OF PIPE SECTION NIDFE(11) 2 ID NUMBER OF FLOV ELEMENT TYPE NFESEC(12) 3 PIPE SECTION FOR FLOV ELEMENT XZFE(12) 3.

DISTANCE FROM INLET OF FIPE SECTION NIDFE(12) 2 ID NUMBER OF FLOV ELEMENT TYPE ss tJFESEC(13) 3 PIPE SECTION FOR FLOV ELEMENT A)

XZFE(13) 5.

DISTANCE FROM INLET OF PIPE SECTION 14IDFE(13) 2 ID NUMBER OF FLOV ELEMENT TYPE

    • PIPE SECTION 4
    • 8" PIPE FROM #24 CFCU SUPPLY VALVES TO LOV SPOT AT 742' EL

FA;rh141 944

.[3 l

NFESEC(14) 4 PIPE SECTION FOR FLOV ELEMENT XZFE(14) 2.

DISTANCE FROM INLET OF PIPE SECTION NIDFE(14) 3 ID NUMBER OF FLOV ELEMENT TYPE NFESEC(15) 4 PIPE SECTION FOR FLOV ELEMENT XZFE(15) 3.

DISTANCE FROM INLET OF PIPE SECTION NIDFE(15) 3 ID NUMBER OF FLOV ELEMEllT TYPE NFESEC(16) 4 PIPE SECTION FOR FLOV ELEMENT XZFE(16) 14.

DISTANCE FROM INLET OF PIPE SECTION NIDFE(16) 3 ID NUMBER OF FLOV ELEMENT TYPE

    • PIPE SECTION 5
    • 8" PIPE FROM LOV SPOT AT 742' EL TO SUPPLY MANIFOLD NFESEC(17) 5 PIPE SECTION FOR FLOV LLEMENT XZFE(17) 1.

DISTANCE FROM INLET OF PIPE F.,CTION NIDFE(17) 3 ID NUMBER OF FLOV ELEMENT TYPE NFESEC(18) 5 PIPE SECTION FOR FLOV ELEMENT XZFE(18) 4.

DISTANCE FROM INLET OF PIPE SECTION DFE(18) 3 ID NUMBER OF FLOV ELEMENT TYPE NFESEC(19)

.5 PIPE SECTION FOR FLOV ELEMENT XZFE(19) 6.

DISTA@ E FROM INLET OF-PIPE SECTION NIDFE(19) 3 ID NUMBER OF FLOV ELEMENT TYPE NFESEC(20) 5 PIPE SECTION FOR FLOW ELEMENT O

XZFE(20) 10.

DISTANCE FROM INLET OF PIPE SECTION NIDFE(20) 3 ID NUMBER OF FLOV ELEMENT TYPE NFESEC(21) 5 PIPE SECTION FOR FLOV ELEdENT XZFE(21) 12.

DISTANCE FROM INLET OF PIPE SECTION NIDFE(21) 3 ID NUMBER OF FLOV ELEMENT TYPE NFESEC(22) 5 PIPE SECTION FOR ).0V ELEMENT XZFE(22) 25.

DISTANCE FROM INLET OF PIPE SECTION NIDFE(22) 3 ID HUMBER OF FLOV ELEMENT TYPE NFESEC(23) 5 PIPE SECTION FOR FLOV ELEMENT XZFE(23) 44.

DISTANCE FROM INLET OF PIPE SECTION N DFE(23) 3 ID NUMBER OF FLOV ELEMENT TYPE

    • PIPE SECTION 6
    • #24 CFCU INLET PIPE

-NFESEC(24) 6 PIPE SECTION-FOR FLOV ELEMENT XZFE(24) 5.

DISTANCE FROM INLET OF PIPE SECTION N DFE(24) 4 ID NUMBER OF FLOV ELEMENT TYPE NFESEC(25) 6

. PIPE SECTION FOR FLOV ELEMENT XZFE(25) 10.

DISTANCE FROM IHLET OF FIPE SECTION NIDFE(25) 4 ID NUMBER OF FLOV ELEMENT TYPE NFESEC(26) 6 PIPE SECTION FOR FLOV ELEMENT XZFE(26) 15.

DISTANCE FROM INLET OF PIPE SECTION NIDFE(26) 4 ID NUMBER OF FLOV ELEMENT TYPE

    • PIPE SECTION 7
    • #24 CFCU TUBES

PkCf9*1*47A*&

yy FSSEC(27) 7 PIPE SECTION FOR FLOV ELEMENT dj h;fE(27) 10.

DISTANCE FROM INLET OF PIPE SECTION le;jj CDFI(27) 4 ID NUMBER OF FLOV ELEMENT TYPE-e FESEC(28)-

7 PIPE SECTION FOR FLOV ELEMENT XZFE(28)

. 30.

DISTANCE FROM INLET OF PIPE SECTION N10FE(28) 4 ID NUHFEF OF FLOV ELEMENT TYPE

'NFESEC(29).

7 PIPE SECTION FOR FLOV ELEMENT

'XZFE(29) 50.

DISTANCE FROM INLET OF PIPE SECTION NIDFE(29) 4 ID NUMBER OF FLOV ELEMENT TYPE

    • PIPE SECTION 8
    • #24 CFCU OUTLET PIPE NFESEC(30) 8 PIPE SECTION 20R FLOV ELEMENT XZFE(30) 5.

DISTANCE FROM INLET OF PIPE SECTION i

NIDFE(30) 4-ID NUMBER OF FLOV ELEMENT TYPE NFESEC(31)-

8 PIPE SECTION FOR FLOW ELEMENT

-XZFE(31) 10.

DISTANCE FROM INLET OF PIPE SECTION NIDFE(31) 4 10 NUMBER OF FLOW ELEMENT TYPE NFESEC(32)

8 PIPE SECTION FOR FLOV ELEMENT XZFE(32)
15..

DISTANCE FROM INLET OF PIPE SECTION

.NIDFE(32) 4 ID NUMBER OF FLOW ELEMENT TYPE NFESEC(33) 8 PIPE SECTION FOR FLOV ELEMENT O

HIDFF(33)

XZFE(33) 18.

DISTA?CE FROM INLET OF PIPE SECTION 11 ID NUMBER OF FLOV ELEMENT TYPE

    • PIPE SECTION 9
    • - 8" PIPE FROM #24 CFCU RET'JRN V ANIFOLD TO 759' EL tlFESEC(34) 9 PLP% # 4110N FOR FLOV ELEMENT X7FE(34)-

4.

DIStaaCE FROM INLET OF-PIPE SECTION NIDFE(34) 5 ID NUMBER OF 7LOV ELEMENT TYPE

.UFESEC(35) 9 PIPE SECTION FOR FLOV ELEMENT XZFE(35) 8.

DISTANCE FROM INLET OF PIPE SECTION NIDFE(35) 5 ID NUMBEL OF FLOV ELEMENT TYPE NFESEC(36) 9' PIPE 1ECTION FOR FLOV ELEMENT XZFE(36) 12.

DIST" ACE FROM-INLET '0F PIPE SECTION NIDFE(36) 5 ID NUMBER OF FLOV ELEMENT TYPE

    • PIPE SECTION 10
    • 8" PIPE FROM 759' EL TO LOV SPOT AT 736' EL NFESEC(37)-

10 PIPE SECTION FOR FLOV ELEMENT-XZFE(37) 13.

DISTANCE FROM INLET OF PIPE SECTION-NIDFE(37) 6 ID NUMBER OF FLOV ELEMENT TYPE

.NFESEC(38) 10 PIPE SECTION FOR FLOW ELEMENT XZFE(38) 25.

DISTANCE FROM INLET OF PIFE SECTION O%

NIDFE(38)

-6 ID NUMBER OF FLOV ELEMENT TYPE NFESEC(39)'

10 PIPE SECTION FOR FLOV ELEMENT XZFE(39) 27.

DISTANCE FROM INLET OF PIPE SECTION NIDFE(39) 6 ID NUMBER'0F FLOV ELEMENT TYPE

FM ['il T7 (24v %

95 NFESEC(40) 10 PIPE SECTION FOR FLOV ELEMENT XZFE(40) 33.

DISTANCE FROM INLET OF PIPE SECTION

(

NIDFE(40) 6 ID NUMBER OF FLOV ELEMENT TYPE NFESEC(41) 10 PIPE SECTION FOR FLOV ELEMENT XZFE(41) 40.

DISTANCE FROM INLET OF PIPE SECTION 111DFE(41) 6 ID NUMBER OF FLOV ELEMENT TYPE

    • PIPE SECTION 11
    • 8" PIPE FROM LOV SPOT AT 736' EL TO #24 CFCU RETURN VALVES NFESEC(42) 11 PIFE SECTION FOR FLOV ELEMENT 9

XZFE(42) 3.

DISTANCE FROM INLET OF PIPE SECTION NIDFE(42) 6 ID NUMBER OF FLOV ELEMENT TYPE NFESEC(43) 11 PIPE SECTION FOR FLOV ELEMENT XZFE(43) 5.

DISTANCE FROM INLET OF PIPE SECTION NIDFE(43) 6 ID NUMBER OF FLOV ELEMENT TYPE NFESEC(44) 11

' PIPE SECTION FOR FLOV ELEMENT XZFE(44) 7.

DISTANCE FROM INLET OF FIPE SECTION NIDFE(44) 6 ID NUMBER OF FLOV ELEMENT TYPE

    • PIPE SECTION 12
    • 8" TO FLOV RECOMBINATION #24,#22 AND 10" TO SFLIT TO BYPASS, ORIFICE
NFESESU5, 12 PIPE SECTION FOR FLOV ELEMENT XZFE('$)

15.

DISTANCE FROM INLET OF PIPE SECTION

()N NIDFEs45; 7

ID NUMBER OF FLOV ELEMENT TYPE u

    • PIPE SECTION 13
    • 8" PIPE TO D0VNSTREAM OF ORIFICE NFESEC(46) 13 PIPE SECTION FOR FLOV ELEMENT XZFE(46) 2.9 DISTANCE FROM INLET OF PIPE SECTION NIDFE(46) 8 ID NUMBER OF FLOV ELEMENT TYPE
    • PIPE SECTION 14
    • 8" PIPE FROM ORIFICE TO VHERE FLOV REJOINS 10" BYPASS BRANCH NFESEC(47) 14 PIPE SECTION FOR FLOV ELEMENT XZFE(47) 2.9 DISTANCE FROM INLET OF PIPE SECTION NIDFE(47) 9 ID NUMBER OF FLOV ELEMENT TYPE
    • PIPE SECTION 15
    • 10" PIPE TO LOV SPOT AT 707' EL IN 10" RETUFU LINE NFESEC(48) 15 PIPE SECTION FOR FLOW ELEMENT XZFE(48) 2.

DISTANCE FROM INLET OF FIPE SECTION NIDFE(48) 10 ID NUMBER OF FLOV ELEMENT TYPE NFESEC(49) 15 PIPE SECTION FOR FLOV ELEMENT XZFE(49) 18.

DISTANCE FROM INLET OF FIPE SECTION NIDFE(49) 10 ID NUMBER OF FLOV ELEMENT TYPE

(/)

NFESEC(50) 15 PIPE SECTION FOR FLOV ELEMENT XZFE(50) 23.

DISTANCE FROM INLET OF PIPE SECTION

'~

NIDFE(50) 10 ID NUMBER OF FLOV ELEMENT TYPE NFESEC(51) 15 PIPE SECTION FOR FLOV ELEMENT

I R A:E fn.41 Cu g(

g XZFE(5?)

30.

DISTANCE FROM INLET OF PIPE SECTIC4 NIDFE(51)-

10 ID NUMBER OF FLOV ELEMENT TYPE

,) NFESEC(52)

(s, 15 PIPE SECTION FOR FLOV ELEMENT XZFE(52) 40.

DISTANCE FROM INLET OF PIPE SECTION NIDFE(52)-

10 ID NUMBER OF FLOV ELEMENT TYPE I

NFESEC(53) 15 PIPE SECTION FOR FLOV ELEMENT XZFE(53) 48.

DISTANCE FROM INLET OF PIPE SECTION NIDFE(53) 10 -

ID NUMBER OF FLOV ELEMENT TYPE NFESEC(54) 15 PIPE SECTION FOR FLOV ELEMENT XZFE(54) 49.

DISTANCE FROM INLET OF PIPE SECTION NIDFEL54) 10 ID NUMBER OF FLOV ELEMENT 1YPE

    • PIPE SECTION 15
    • 10" PIPE FROM #24,#22 TO SV RETURN HEADER NFESEC(55) 16 PIPE SECTION FOR FLOV ELEMENT XZFE(55) 8.

DISTANCE FROM INLET OF PIPE SECTION NIDFE(55) 10 ID NUMBER OF FLOV ELEMENT TYPE NFESEC(56) 16 PIPE SECTION FOR FLOV ELEMENT XZFE(56) 24.

DISTANCE FROM INLET OF PIPE SECTION NIDFE(56) 10 ID NUMBER OF FLOV ELEMENT TYPE NFESEC(57) 16 PIPE SECTION FOR FLOV ELEMENT XZFE(57) 25.

DISTANCE FR9M INLET OF PIPE SECTION NIDFE(57) 10 ID NUMBER OF FLOV ELEMENT TYPE O'

    • LOCATE SURGE VOLUMES VITHIN PIPE SECTIONS
    • NSURGE(1) 1 PIPE SECTION FOR SURGE VOLUME 1
    • XZSURG(1) 10.

DISTANCE FROM INLET OF PIPE SECTION TO SURGE VOL

    • NISURG(1) 1 ID NUMBER OF SURGE VOLUME 1; ID NUMBERS CORRESPOND
    • NSURGE(2) 1 PIPE SECTION FOR SURGE VOLUME 2
    • XZSURG(2) 20.

DISTANCE FROM INLET Of PIPE SECTION TO SURGE VOL

    • NISURG(2) 1 ID NUMBER OF SURGE VOLUME 21 ID NUMBERS CORRESPOND
    • LOCATE M0V'S VITHIN PIPE SECTIONS
    • NMOV(1) 5 PIPE SECTION FOR MOV 1
    • XZHOV(1) 36.

DISTANCE FROM INLET OF PIPE SECTION TO INLET OF MOV 1 (SPECIFY DISTANCE SLIGHTLY LESS THAN ACTUAL DISTANCE TO ENSURE PROPER N0DAL PLACEMENT OF MOV; I.E.,

LET X= 0.99*XACTUAL)

    • NIDMOV(1) 1 ID NUMBER OF MOV 1: IP NUMBERS CORRESPOND TO DEFINITIONS IN THE
  • MOTOR OPERATED VALVE PORTION OF THE PARAMETER FILE
    • NMOV(2) 1 PIPE SECTION FOR MOV 2
    • XZMOV(2) 12.

DISTANCE FROM INLET OF PIPE SECTION

    • NIDMOV(2) 2 ID NUMBER OF MOV 2 NHXSEC(1) 1 PIPE VALL BOUNDARY CONDITION FOR PIPE SECTION 1

=0: ADIABATIC PIPE VALL i

=1: HEAT TRANSFER BASED ON MECHANISTIC VALL CONDUCTION VITH CONVECTIVE B0UNDAD.Y CONDITIONS

=2: CONST.

HEAT FLUX; MUST ALSO SPECIFY QAIC(I) < 0 FOR HLc FLUX FROM VALL IN NODE I TO VATER

=3: FAN COOLER HEAT EXCHANGER BOUNDARY CONDITION

.- - -. -. ~. - - - -..

FAr/p.st1 A gf 41 IF FHTCI 0, THEN THIS PARAMETER VILL BE OVER RIDDEN

/~'T AND ALL PIPE SECTIONS VILL USE ADIABATIC BOUNDARY

()

NHXSEC(2) 1 PIPE VALL BOUNDARY CONDITION FOR PIPE SECTION 2 NHXSEC(3) 1 PIPE VALL BOUNDARY CONDITION FOR PIPE SECTION 3 NHXSEC(4) 1

, PIPE VALL BOUNDARY CONDITION FOR PIPE SECTION 4 l

NHXSEC(5) 1 PIPE VALL BOUNDARY CONDITION FOR PIPE SECTION 5 NHXSEC(6) 1 PIPE VALL BOUNDARY CONDITION FOR PIPE SECTION 6 NHXSEC(7) 3 PIPE VALL B0UNDARY CONDITION FOR PIPE SECTION 7 NHXSEC(8) 1 PIPE VALL BOUNDARY CONDITION FOR PIPE SECTION 8 NHXSEC(9) 1 PIPE VALL BOUNDARY CONDITION FOR PIPE SECTION 9 NHXSEC(10) 1 PIPE VALL BOUNDARY CONDITION FOR PIPE SECTION 10 l

NHXSEC(11) 1 PIPE VALL BOUNDARY CONDITION FOR FIFE SECTION 11 NHX3EC(12) 1 PIPE VALL BOUNDARY CONDITION FOR PIPE SECTION 12 NHXSEC(13) 1 PIPE VALL BOUNDARY CONDITION FOR PIPE SECTION 13 NHXSEC(14) 1 PIPE VALL BOUNDARY CONDITION FOR PIPE SECTION 14 NHXSEC(15) 1 PIPE VALL BOUNDARY CONDITION FOR PIPE SECTION 15

?

NHXSEC(16) 1 PIPE VALL BOUNDARY CONDITION FOR PIPE SECTION 16

                                                                                                          • f?*****************
  • MATERIAL PROPERTIES (SI UNITS)
  • SI

= 1 CARBON STEEL

= 2 STAINLESS STEEL

- 3 COPPER ALLOY

= 4 ZIRCONIUM ALLOY

, ()

KMAT(1) 54.

CARBON STEEL THERMAL CONDUCIVITY i

DMAT(1) 7833.

CARBON STEEL DENSITY CHAT (1) 465.

CARBON STEEL HEAT CAPACITY KMAT(2) 15.

STAINLESS STEEL THERMAL CONDUCIVITY (20% CR, 15% NI)

DMAT(2) 7833.

STAINLESS STEEL DENSITY t

CHAT (2) 460.

STAINLESS STEEL HEAT CAPACITY KMAT(3) 395.

COPPER ALLOY THERMAL CONDUCIVITY (COOPER FAN COIL)

DMAT(3) 8666.

-COPPER ALLOY DENSITY CHAT (3) 410.

COPPER ALLOY HEAT CAPACITY KHAT(4) 18.

ZIRCONIUM ALLOY THERMAL CONDUCIVITY (SEE USOLID)

DMAT(4) 6500.

ZIRCONIUM ALLOY DENSITY CHAT (4) 356.

ZIRCONIUM ALLOY HEAT CAPACITY

  • BOUNDARY CONDITIONS
                                                                                          • +**************************
  • BR TVUP 85.

UPSTREAM BOUNDARY FLUID TEMPERATURE PUP 74.48 UPSTREAM BOUNDARY FLUID F9 ESSURE XVUP 0.0-UPSTREAM BOUNDARY FLUIL r.UALITY AUP 0.5476 UPSTREAM BOUNDARY ACTUAL FLOV AREA (DISCHARGE 1

COEFFICIENT IS DEFINED IN *HODEL);

TVDN 83.

D0VNSTREAM BOUNDARY FLUID TEMPERATURE PDN 19.53 DOVNSTREAM BOUNDARY FLUID FRESSURE i /

XVDN 0.0 D0VNSTREAM BOUNDARY FLUID QUALITY ADN 0.5476 DOVNSTREAM BOUNDARY EFFECTIVE FLOV AREA i

XLSTAG 0.0 DISTANCE FROM POINT OF FULLY DEVELOPED BREAK FLOV TO UPSTREAM STAGNATION CONDITIONS; USED TO CALCULATE ACCELERATION OF BREAK FLOV; XLSTAG=0 YIELDS 4

FAZ fM *4'l lle v d

.l1 FULLY DEVELOPED BREAK FLOV AT TIME ZER01 FLUID IS ASSUMED TO ACCELERATE FROM 0 TO FULL FLOV OVER ONE TIME CONSTANT, VHERE THE TIME CONSTANT IS DEFINED AS:

\\

TAU = 2*XLSTAG*(RHO *ABRK/VBRK)

    • PSCOPE 5.91E5 FIXED PRESSURE IN N0DE 1 IF SCOPING OPTION IS SELECTED: SCOPING CALCULATION ASSUMES A LINEAR PRESSURE PROFILE THROUGH THE PIPE NETWORK VITH THE PRESSURE IN NODE ONE FIXED AT PSCOPE AND THE PRESSURE IN THE LAST N002 FIXED AT PDN

$TYPV 5

UPSTREAM BOUNDARY CONDITION FOR TRANSIENT CALCULATION

=0: CONSTANT PRESSURE AT UPSTREAM BOUNDARY 1: QUADRATIC PUMP C0ASTDOVN MODEL: UPSTREAM FLOV IS REDUCED FROM ITS INITIAL VALUE TO ZERO OVER A C0ASTDOVN TIME, TC0AST, AS A QUADRATCI FUNCTION OF

. TIME: V(t) = V0*(1-t/TC0AST)*0.5

=2: "ZERO HEAD" MOMENTUM MODEL OF PUMP COASTDOVN, ASSUMES PUMP HEAD GOES TO ZERO INSTANTANEOUSLY AND FLUID FLOV COASTSD0VN FROM INITIAL FLOV TO ZERO FLOV ACCORDING TO CHANGE IN FLUID HOMENTUM OVER A TIME TC0AST: V(t) = V0/(K*V0*t<1), VHERE K REPRESENTS THE HYDRAULIC RESISTANCE 3: LINEAR HEAD PUMP C0ASTD0VN.

ASSUMES UPSTREAM BOUNDARY PRESSURE DECREASES FROM INITIAL VALUE TO A MINIMUM VALUE, PC0AST, OVER A TIME, TCOAST

-4: SAME AS NTYPV-3 BUT VITH CHECK VALVE S0 VINUP>=0.

-5: PDN = MIN (PDNO, PUP) 50 CAN VARY V/ PUP.

TCOAST 3.

C0ASTDOWN TIME FOR UPSTREAM BOUNDARY CONDITION.

(

C0ASTDOVN IS ASSUMED TO BEGIN AT TIME = 0'AND ANE AT TIME = TC0AST PCOAST

?.82 MINIMUM UPSTREAM BOUNDARY PRESSURE TIPUMP 100.

TIME OF PUMP RESTART

$$1UuiP 1.

TIME FOR PUMP TO RAMP UP TO FULL FLOV FOLLOVING RESTART

$$1 AMP 74.48 KAX PUHF DISCHARGE PRESSURE FOLLOVING PUMP RESTART AND RAMP UP NCTTAB 2.

NUMBER OF POINTS IN CONTAINMENT GAS TEMPERATUEE VS TIME LOOKUP TABLE (MAXIMUM OF 10 POINTS); USED IN MECHANISTIC CONTAINMENT AIR COOLER HEAT EXCHANGER MODEL HECHANISTIC M00SL USES TEMPERATUFJ GRADIENT FROM CONTAINMENT GAO TO COOLING VATER 10 CALCULATE HEAT TRANSFER RATE.

THIS GAS TEMPERATURE OVER RIDES THE VALUE OF TGOUTO FOR PIPE SECTIONS DESIGNATED AS FAM COOLERS (SEE NHXSEC)

TICT(1)

O.

FIRST TIME IN TEMPERATURE VS TIME LOOKUP TABLE T$CT(2) 1000.

SECOND TIME IN TEMPERATURE VS TIME LOOKUP TABLE (LAST TIME HUST BE BEYOND END OF PROBLEM TIME, O\\

EXTRAPOLATION BEYOND END OF LOOKUP TABLE IS NOT ALLOVED).

-TGCT(1) 85.

CONTAINMENT GAS. TEMP CORRESPONDING TO FIRST TIME

. _ _ ~... _

f"h3f9 W }2t &

49 TGCT(2) 85.

CONTAINMENT GAS TEMP CORRESPONDING TO SECOND TIME

() **INITI AL CONDITIONS q

TVPIP0(1) 85.

PIPE SECTION INITIAL FLUID TEMPERATURE TVPIP0(2) 85.

PIPE SECTION INITIAL FLUID TEMPERATURE TVPIP0(3) 85.

PIPE SECTION INITIAL FLUID TEMPERATURE TVPIP0(4) 85.

PIPE SECTION INITIAL FLUID TEMPERATURE TVPIP0(5)'

85.

PIPE SECTION INITIAL FLUID TEMPERATURE TVPIP0(6) 85.

PIPE SECTION INITIAL FLUID TEMPERATURE 2

i TVPIP0(7) 85.

PIPE SECTION INITIAL FLUID TEMPERATURE TVPIP0(8) 85.

PIPE SECTION INITIAL FLUID TEMPERATURE TVPIP0(9) 85.

PIPE SECTION INITIAL FLUID TEMPERATURE TVPIP0(10) 85.

PIPE SECTION INITIAL FLUID TEMPERATURE TVPIP0(11) 85.

PIPE SECTION INITIAL FLUID TEMPERATURE TVPIP0(12) 85.

PIPE SECTION INITIAL FLUID TEMPERATURE TVPIP0(13) 85.

PIPE SECTION INITIAL FLUID TEMPERATURE l

TVPIP0(14) 85.

PIPE SECTION INITIAL FLUID TEMPERATURE

^

TVPIP0(15) 85.

PIPE,SECTION INITIAL FLUID TEMPERATURE TVPIP0(16) 85.

PIPE SECTION INITIAL FLUID TEMPERATURE l

PPIP0(1) 33.

PIPE SECTION INITIAL FLUID PRESSURE PPIP0(2) 33.

PIPE SECTION INITIAL FLUID PRESSURE PPIP0(3) 33.

PIPE SECTION INITIAL FLUID PRESSURE j

PPIP0(4) 33.

PIPE SECTION INITIAL FLUID PRESSURE PPIP0(5) 33.

PIPE SECTION INITIAL FLUID PRESSURE PPIP0(6) 33.

PIPE SECTION INITIAL FLUID PRESSURE PPIP0(7) 33.

PIPE SECTION INITIAL FLUID PRESSURE h

PPIP0(8) 33.

PIPE SECTION INITIAL FLUID PRESSURE

\\

PPIP0(9) 33.

PIPE SECTION INITIAL FLUID PRESSURE 4-PPIP0(10) 33.

PIPE SECTION INITIAL FLUID PRESSURE PPIP0(11) 33.

PIPE SECTION INITIAL FLUID PRESSURE PPIP0(12) 33.

PIPE SECTION INITIAL FLUID PRESSURE PPIP0(13) 33.

PIPE SECTION INITIAL FLUID PRESSURE PPIP0(14) 33.

PI~a SECTION INITIAL FLUID PRESSURE PPIP0(15) 33.

PIPE SECTION INITIAL FLUID PRESSURE PPIP0(16) 33.

PIPE SECTION INITIAL FLUID PRESSURE

-XVPIP0(1) 0.

PIPE SECTION INITIAL FL1ID QUALITY XVPIP0(2)

O.

PTPE SECTION INITIAL FLUID QUALITY d

XVPIP0(3) 0.

PIPE SECTION INITIAL FLUID QUALITY XVPIP0(4)

O.

PIPE SECTION INITIAL FLUID QUALITY XVPIP0(5) 0.

PIPE SECTION INITIAL FLUID QUALITY XVPIP0(6)

O.

PIPE SECTION INITIAL FLUID QUALITY XVPIP0(7) 0.

PIPE SECTION INITIAL FLUID QUALITY XVPIP0(8)

O.

PIPE SECTION INITIAL FLUID OUALITY i

XVPIP0(9)

O.

PIPE SECTION INITI AL YU.'ID QUALITY XVPIP0(10) 0.

PIPE SECTION INITIAL FLUID QUALITY i

XVPIP0(11)

O.

PIPE SECTIOP INITIAL FLUID QUALITY XVPIP0(12)

O.

PIPE SECTIGiv INITIAL FLUID QUALITY XVPIP0(13)

O.

PIPE SECTION INITIAL FLUID QUALITY XVPIP0(14)

O.

PIPE SECTION INITIAL FLUID QUALITY XVPIP0(15)

O.

PIPE SECTION INITIAL FLUID QUALITY XVPIP0(16) 0.

PIPE SECTION INITIAL FLUID QUALITY (nj)

TVALLO(1) 85.

PIPE SECTION INITIAL VALL TEMPERATUTT TVALLO(2) 85.

PIPE SECTION INITIAL VALL TEMPERATURE TVALLO(3) 85.

PIPE SECTION INITIAL VALL TEMPERATURE TVALLO(4) 85.

PIPE SECTION INITIAL VALL TEMPERATURE TVALLO(5) 85.

PIPE SECTION INITIAL VALL TEMPERATURE J

FAI/97 47 R,0 %

.ro TVALLO(6) 85.

PIPE SECTION INITIAL VALL TEMPERATURE TVALLO(7) 85.

PIPE SECTION INITIAL VALL TEMPERATURE TVALLO(8) 85.

PIPE SECTION INITIAL VALL TEMPERATURE s'

TVALLO(9) 85.

PIPE SECTION INITIAL VALL TEMPERATURE TVALLO(10) 85.

PIPE SECTION INITIAL VALL TEMPERATURE TVALLO(11) 85.

PIPE SECTION INITIAL VALL TEMPERATURE TVALLO(12) 85.

PIPE SECTION INITIAL VALL TEMPERATURE TVALLO(13) 85.

PIPE SECTION INITIAL VALL TEMPERATURE TVALLO(14) 85.

PIPE SECTION INITIAL VALL TEMPERATURE TVALLO(15) 85.

PIPE SECTION INITIAL VALL TEMPERATURE TVALLO(16) 85.

PIPE SECTION INITIAL VALL TEMPERATURE TGOUTO(1) 85.

GAS TEMPERATURE AT PIPE OUTSIDE BOUNDARY TG00TO(2) 85.

GAS TEMPERATURE AT PIPE OUTSIDE BOUNDARY TG0UTO(3) 85.

GAS TEMPERATURE AT PIPE OUTSIDE BOUNDARY TGOUTO(4) 85.

GAS TEMPERATURE AT PIPE OUTSIDE BOUNDARY TGOUTO(5) 270.

GAS TEMPERATURE AT PIPE OUTSIDE BOUNDARY TGOUTO(6) 270.

GAS TEMPERATURE AT PIPE OUTSIDE BOUNDARY TGOUTO(7) 270.

GAS TEMPERATURE AT PIPE OUTSIDE BOUNDARY TGOUTO(8) 270.

GAS TEMPERATURE AT PIPE OUTSIDE BOUNDARY TG00TO(9) 270.

GAS TEMPERATURE AT PIPE OUTSIDE BOUNDARY TGOUTO(10) 270.

GAS TEMPERATURE AT PIPE OUTSIDE BOUNDARY TG0UTO(11) 270.

GAS TEMPERATURE AT PIPE OUTSIDF, BOUNDARY TGOUTO(12) 85.

GAS TEMPERATURE AT PIPE OUTSIDE BOUNDARY TG00TO(13)

, 85.

GAS TEMPERATURE AT PIPE OUTSIDE B0UNDARY TG0UTO(14) 85.

GAS TEMPERATURE AT PIPE OUTSIDE BOUNDARY TGOUTO(15) 85.

GAS TEMPERATURE AT PIPE OUTSIDE BOUNDARY TGOUTO(16) 85.

GAS TEMPERATURE AT PIPE OUTSIDE B0UNDARY TVSUR0(1) 100.

SURGE VOLUME 1 INITIAL FLUID TEMPERATURE

\\s,

PSURG0(1) 100.

SURGE VOLUME 1 INITIAL PRESSURE XVSUR0(1) 0.0 SURGE VOLUME 1 INITIAL FLUID QUALITY TVSUR0(2) 100.

SURGE VOLUME 2 INITIAL FLUID TEMPERATURE PSURG0(2) 100.

SURGE VOLUME 2 INITIAL PRESSURE XVSUR0(2) 0.0 SURGE VOLUME 2 INITIAL FLUID QUALITY FMOV0(1) 1.

MOV 1 INITIAL VALVE POSITION (FRACTION OPEN)

FMOV0(2) 1.

MOV 2 INITIAL VALVE POSITION (FRACTION OPEN)

VVINO 0.

INITIAL F1UID VOLUMETRIC FLOV RATE IN PIPE USED TO ESTABLISH INITIAL PIPE PRESSURE AND FLOV PROFILE; IF--0 THEN THE UPSTREAM BREAK FLOV VILL BE USED TO INITIALIZE THE PIPE; IF <0 THEN INITIAL PIPE PRESSURE VILL BE PPIPO AND INITIAL FLOV VILL BE ZERO.

NICTYP 1

INITIAL CONDITION TYPE

-0: ZERO FLOV; PIPE NODE FRESSURES VILL BE SET AI FARTHEST DOVNSTREAM FRESSURE BEFORE ENCOUNTERING A CLOSED MOV OR THE END OF THE PIPE.

ELEVATION i

DIFFERENCES VILL ALSO BE CONSIDERED.

-1: CONSTANT BOUNDARY FRESSURES; CODE VILL CALCULATE THE C0 RESPONDING EQUILIBRIUM FLOV RATE AND PIPE PRESSURE PROFILE

-2: CONSTANT FLOV RATE (SPECIFIED IN VVIN0); CODE VILL TAKE THE FLOV RATE AND D0VNSTREAM BOUNDARY PRESSURE TO CALCULATE THE PIPE PRESSURE PROFILE AND UPSTREAM BOUNDARY PRESSURE

  • MODEL PARAMETERS
  • SI

1 FAL[47-47 4td SI NVALL 2.

NUMBER OF N0 DES FOR PIPE VALL HEAT TRANSFER

[\\

CALCULATIONS NSECT 3.

NUMBER OF N0 DES PER PIPE SECTION FOR FLUID FLOV CALCULATIONS FFRIC 0.014 FRICTION FACTOR FOR STRAIGHT PIPE SECTIONS j-i HTCO-O.

HEAT TRANSFER COEFFICIENT AT PIPE VALL OUTSIDE SURFACE FHTCI 1.0 VALL INSIDE SURFACE HEAT TRANSFER COEFICIENT MULTIPLIER

- 1.0 FOR NORMAL CALCULATION; - 0.0 FOR ADIABATIC BC

?

FCDUP 1.0 DISCHARGE COEFFICIENT FOR FLOV AT BOUNDARY OF UPSTREAM PIPE SECTION 2

FCVTIM 0.001 MOV CV FRACTICN VHICH DEFINES VALVE CLOSURE; VALVE IS ASSUMED FULLY CLOSED VHEN CV(t)/CVO < FCVTIM FFLOV 3

FLUID MODEL TYPE: SELECT VOID AND CRITICAL FLOV MODELS 1

FFLOV VOID MODEL CRITICAL FLOV MODEL 1

HOMOGENOUS FAUSKE EQUILIBRIUM 2

FAUSKE FAUSKE EQUILIBRIUM 3

HENRY HENRY NONEQUILIBRIUM 4

LOCKHART-MARTINELLI HENRY NONEQUILIBRIUM I

FISFIX 3

FORCE DELPUP AND DELPDN TO CONVERGE AT NODE ISFIL1 q

FOR STEADY STATE INITIALIZATION. ONLY USED VITH g -***

CONSTANT PRESSURE INITIAL CONDITIONS (NICTYP - 1).

IF FISFIX - 0, THEN CONVERGENCE OCCURS AT NODE VITH LARGEST LOSS COEFFICIENT + 1 1

MM 1

M0 MENTUM PRESSURE DROP MODEL SELECTION

- 0: BOUNDING MODEL FOR LOV OUALITY, HIGH VOID FRACTION

- 1: DETAILED MODEL, VALID FOR ALL QUALITIES AND VOID FRACTIONS-hFM0r',

2 FRICTION ~ PRESSURE DROP MODEL SELECTION

    • HOMOGENEOUS FLOV HOMOGENE0US FLOW VITH PROPS BASED ON VOID
    • LOCKHART MARTINELLI (UPPER B0UND)
    • LOCKHART MARTINELLI (LOVER B0UND)
    • LOTTES AND FLINN FHXFC 0

FAN COOLER HEAT EXCHANGER MODEL SELECTION-

    • ~

-0: MECHANISTIC HEAT EFCUANGER MODEL

-1: LOOK-UP TABLE F0MULT 1.0 FAN COOLER HEAT EXCHANGER HEAT TRANSFER MULTIPLIER.

CALCULATED HEAT TRANSFER VILL BE MULTIPLIED BY F0MULT FTDBUB 0.001 BUBBLE GR0VTH CHARACTERISTIC TIME FVOIDB 0.01 UPPER LIMIT ON VOID FRACTION FOR BUBBLE GR0VTH MODEL

-(

NBM3 1.E9 INITIAL BUBBLE DENSITY (BUBBLES /H'3)

RBO 1.E-6 INITIAL BUBBLE RADIUS (M)

FAI/97-0 /2tv#

5.t PPN2MN 0.33E5 INITIAL HINIMUN NITROGEN PARTIAL PRESSURE (PA)

_(g CCOND 0.7 CONDUCTION COEFFICIENT

\\,_)

PAIR 0.0 NITROGEN PARTIAL PRESSURE USED IN DELPUP FROUGH 1.0 FRICTION FACTOR HULTIPLIER TO ACCOUNT FOR PIPE ROUGHNESS PVFMIN 0.2E5 PRESSURE AT VHICH AIR COMES OUT OF SOLUTION VFMIN 0.005 MINIMUM VOID FRACTION ONCE GAS APPEARS IN FLUID 1

  • EVTHESS 3

1 T HOV 1 OPENING 1 F MOV 1 INACTIVE 2 T MOV 2 OPENING i,

2 F MOV 2 INACTIVE 3 T MOV 3 OPENING i

3 F MOV 3 INACTIVE 4 T MOV 4 OPENING 4 F MOV 4 INACTIVE 5 T MOV 5 OPENING 5 F MOV 5 INACTIVE 6 T MOV 6 OPENING 6 F 110V 6 INACTIVE

(~

7 T MOV 7 OPENING 7 F MOV 7 INACTIVE 8 T MOV 8 OPENING 8 F MOV 8 INACTIVE 9 T MOV 9 OPENING 9 F MOV 9 INACTIVE 10 T MOV 10 OPENING 10 F M0V 10 INACTIVE 11 T MOV 1 CLOSING 11 F MOV 1 INACTIVE 12 T HOV 2 CLOSING i

12 F MOV 2 INACTIVE 13 T MOV 3 CLOSING 13 F MOV 3 INACTIVE 14 T MOV 4 CLOSING 14 F MOV 4 INACTIVE 15 T MOV 5 CLOSING 15 F h0V 5 INACTIVE 16 T MOV 6 CLOSING 16 F-MOV 6 INACTIVE 17 T MOV 7 CLOSING 17 F MOV 7 INACTIVE 18 T M0V 8 CLOSING 18 F MOV 8 INACTIVE 19 T HOV 9 CLOSING 19 F MOV 9 INACTIVE 20 T MOV 10 CLOSING t

20 F MOV 10 INACTIVE 101 T HOV 1 GENERATE A MANUAL OPEN SIGNAL 101 F MOV 1 NO SIGNAL 102 T HOV 2 GENERATE A MANUAL OPEN SIGNAL 102 F MOV 2 NO SIGNAL

FAI /11-47 24(58 53 103 : T MOV 3 GENERATE A MANUAL OPEN SIGNAL 103 F MOV 3 NO SIGNAL

(,)

104 T f

MOV 4 GENERATE A MANUAL OPEN SIGNAL j

104 F MOV 4 NO SIGNAL 105 T MOV 5 GENERATE A MANUAL OPEN-SIGNAL 105 F MOV $ NO SIGNAL 106 T H0V 6 GENERATE A MANUAL OPF.N SIGNAL 106 F MOV 6 NO SIGNAL 107 T MOV 7 GENERATE A MnNUAL OPEN SIGNAL 107 F MOV 7 NO SIGNAL 108 T MOV 8 GENERATE A MANUAL OPEN SIGNAL 108 F MOV 8 NO SIGNAL 109 T MOV 9 GENERATE A MANUAL OPEN SIGNAL 109 F MOV 9 NO SIGNAL 110 T M0V 10 GENERATE A MANUAL OPEN SIGNAL 110 F MOV 10 NO SIGNAL 111 T MOV 1 GENERATE A MANUAL CLOSE SIGNAL 111-F MOV 1 NO SIGNAL 112 T MOV 2 GENERATE A MANUAL CLOSE SIGNAL 112-F MOV 2 NO SIGNAL.

113 T MOV 3 GENERATE A MANUAL CLOSE SIGNAL i

113 F MOV 3 NO SIGNAL j

114 - T HOV 4 GENERATE A MANUAL CLOSE SIGNAL 114 F MOV 4 NO SIGNAL 115 T HOV 5 GENERATE A MANUAL CLOSE SIGNAL

-115 F MOV 5 N0' SIGNAL 116 T MOV 6 GENERATE A MANUAL CLOSE SIGNAL 116' F MOV 6 NO SIGNAL 117 'T MOV 7 GENERATE A MANUAL CLOSE SIGNAL-(~'/

T 117 F MOV 7 NO SIGNAL

(

118 T MOV 8 GENERATE A MANUAL CLOSE SIGNAL 118 F MOV 8 NO SIGNAL 119 T MOV 9 GENERATE A MANUAL CLOSE SIGNAL 119 F HOV 9 NO SIGNAL 120 T MOV 10 GENERATE A MANUAL CLOSE SIGNAL 120 F M0V 10 NO SIGNAL j

    • YOU CAN 9 AVE UP TO 25 PLOT FILES AND UP TO 99 VARIABLES.
    • BEGAN EACH PLOT FILE SECTION VITH THE VORD "PLOTFIL" FOLLO'."LS-BY
    • THE UNIT NUMBER YOU VANT THE FILE VRITTEN TO.

A NEGATIVE UNIT

    • NUMBER VILL FORCE BINARY OUTPUT.

(USE FORH= UNFORMATTED IN OPEN

    • STATEMENTS)
    • NEXT, SELECT THE VARIABLES YOU VANT PLOTTED-BY SIMPLY 4-

-** SPECIFYING THE VARIABLE NAMES.

    • BE SURE-70 END THIS SECTION VITH THE KEYVORD "END'

)j

    • AND "**" COMMENTING IS ALLOVED.
    • CONSTRAINTS ON THE MINIMUH/ MAXIMUM PLOT DT FR0 VIDE REASONABLE CONTROL
    • OF THE VAY PLOTTED DATA POINTS TURN' 0UT. EG., ELIMINATION OF YERY
    • NOISY PLOTS (IE., MANY DATA POINTS OVER SMALL TIME INTERVAL) AND VERY
    • C0 ARSE PLOTS (IE., FEV DATA POINTS SPREAD OVER LARGER TIME INTERVAL).
    • THE FORMAT TO SPECIFY THE PLOT' FREQUENCY CONSTRAINTS 15 fg

()

FRE0 < MINIMUM PLOT DT>

< MAXIMUM PLOT DT) 4

    • VHERE THE MAX / MIN PLOT DT IS SUPPLIED IN SECONDS. NOTE THAT PLOT
    • FREQUENCY CONSTRAINTS APPLY TO ALL PLOT FILES.

4

-.- -~ -

( 4 r / O. O -l2 d 79 1

t

    • PLOT FILES CAN ALSO BE SETUP VIA THE INPUT DECK BY LOCAL PARAMETER
    • CHANGES.

SIMPLY SPECIFY 25,0,0 FOLLOVED BY THE SYNTAX EXPLAINED,

. ** (PRATICALLY IDENTICAL TO THE SETUP BELOV BUT VITHOUT THE *PLTMAP

    • LINE) AND BE SURE TO END PLTMAP INPUT VITH THE REYVORD END. NOTE
    • THAT IF YOU SPECIFY THE SAME UNIT NUMBER, THE CURRENT PLOTFIL VILL
    • SUPERSEDE THE PREVIOUS ONE.
    • FOR CERTAIN APPLICATIONS, IT IS ADVANTANE0US TO OFFSET THE PLOT
    • FILE TIHE BY SOME DELTA TIME.

FOR EXAMPLE. LATE INTO A CODE RUN

    • THE RESOLUTION OF TIME INTERVAL IS LOST DUE TO THE LARGE NUMBER IN
    • SECONDS EXPRESSED IN E FORMAT. THIS REOLUTION CAN BE REGAINED BY
    • UTILIZING THE TIME OFFSET.

FOR EXAMPLE, IF THE TIME OFFSET IS 10,000.

    • SECONDS, T*1EN THE TIME STORED TO THE PLOT FILE VILL BE CODE RUN T1HE
    • MINUS 10,000 SECONDS. THE FORMAT TO SPECIFY THE TIME OFFSET IS T2MOFF < TIME IN SECONDS TO 0FFSET)
    • AND VILL ONLY APPLY TO THE PLOTFIL IN VHIch TIM 0FF IS SPECIFIED.
    • THUS, EACH PLOTFIL CAN HAVE ITS OWN TIME OFFSET.

END

  • PUTHAP i

j PLOTFIL 73 /** P.IPE N0DE VATER MASS i

MVNOD(1),MVN0D(2),HVN0D(3),MVN9D(4),MVN0D(5),

j MVN0D ( 6 ), MVNOD( 7 ), MVN0D(8 ), MVN0D ( 9 ), MVNOD ( 10 ),

MVN0D(11),MVN0D(12),MVN0D(13),MVN0D(14),HVN0D(15),

-MVN0D(16),MVN0D(17),MVN0D(18),MVN0D(19),MVN0D(20),

4

). (d')

MVN0D(21),MVN0D(22),MVNOD(23),MVNOD(24),MVN0D(25),

MVN0D(26),HVN0D(27),HVN0D(28),MVN0D(29),MVN0D(30),

HWN0D(31),MVN0D(32),MVN0D(33),MVN0D(34),MVN0D(35),

i MVN0D(36),MVN0D(37),MVN0D(38),MVN0D(39),MVN0D(40),

MVN0D(41),MVNOD(42),MVN0D(43),MVN0D(44),MVNOD(45),

MVN0D(46),MVN0D(47),HVNOD(48),

PLOTFIL 74 /** PIPE NODE VOID FRACTIONS i

VFN0D(1),VFN0D(1),VFN0D(2),VFN0D(3),VFN0D(4),VFN0D(5),

VFNOD(6),VFN0D(7),VFN0D(8),VFN0D(9),VFN0D(10),

V FN0D ( 11),VFN0D ( 12 ), VFNOD( 13 ), VFN0D ( 14 ), VFN0D ( 15 ),

VFN0D(16),VFN0D(17),VFN0D(18),VFN0D(19),VFN0D(20),

VFNOD ( 21 ), VFN0D ( 22 ), VFN0D( 23 ), VFN0D ( 24 ), VFN0D ( 25 ),

l VFN0D( 26),VFN0D ( 27 ), VFN0D( 28 ), VFN0D( 29 ), VFNOD ( 30 ),

VFN0D(31),VFN0D(32),VFN0D(33),VFN0D(34),VFNOD(35),

VFN0D(36),VFN0D(37),VFN0D(38),VFN0D(39),VFNOD(40),

VFN0D ( 41), VFN0D( 42 ), VFN0D( 43 ), V FNOD ( 44 ), VFN0D ( 45 ).

VFN0D(46),VFN0D(47),VFN0D(48),VFN0D(48),

i PLOTFIL 75:/** PIPE N0DE PRESSURES PUP,PN0D(1),PNOD(2),PN0D(3),PN0D(4),PN0D(5),

PN0D(6),PN0D(7),PN0D(8),PN0D(9),PN0D(10),

PN0D(11),PN0D(12),PN0D(13),PNOD(14),PHOD(15).

PNOD(16),PN0D(17),PNOD(18),PNOD(19),PN0D(20),

PNOD(21),PN0D(22),PNOD(23),PN0D(24),PNOD(25),

1 PN0D(26),PN0D(27),PN0D(28),PN0D(29),PN0D(30).

PN0D(31),PN0D(32),PN0D(33),PNOD(34),PN0D(35),

'N PNOD(36),PN0D(37),PN0D(38),PN0D(39),PN0D(40),

PNOD(41),PN0D(42),PNO3(43),PN0D(44),PN0D(45),

PN0D(46),PN0D(47),PN0D(48),PDN PLOTFIL 76 /** PIP 2 NODE TEMPERATURES

FAIln-4 i (2og gy TUNOD(1),TVNOD(1).TVN0D(2) TVNOD(3),TVNOD(4),TVNOD(5),

TVNOD(6),TVNOD(7),TVN0D(8),TVNOD(9),TVNOD(10),

p TVNOD(11),TVN0D(12),TVNOD(13),TVNOD(14),TVN0D(15),

Q TVNOD(16),TVNOD(17),TVNOD(18),TVN0D(19),TVNOD(20),

TVN0D(21),TVNOD(22),TVNOD(23),TVN0D(24),TVNOD(25),

1 TVNOD(76),TVN0D(27),TVN0D(28),TVNOD(29),TVN0D(30).

TVNOD(31):,TVNOD(32),TVNOD(33),TVN0D(34),TVN0D(35),

TVN0D(36),TVN0D(37),TVN0D(38) TVNOD(39),TVNOD(40),

TVNOD(41),TVN0D(42),TVN0D(43),TVNOD(44),TVNOD(45),

TVNOD(46),TVNOD(47),TVNOD(48),TVNOD(48),

PLOTFIL 77 /** PIPE NODE FLOV RATES

-VINUP,VN0D(1),VN0D(2),VN0D(3),VN0D(4),VNOD(5),

VN0D(6),VN0D(7),VN0D(8),VNOD(9),VN0D(10),

VN0D(11),VN0D(12),VN0D(13),VN0D(14),VNOD(15),

VNOD(16),VN0D(17),VN0D(18),VN0D(19),VN0D(20),

VNOD(21),VN0D(22),VN0D(23),VN0D(24),VNOD(25),

VNOD(26),VN0D(27),VN0D(28),VNOD(29),VN0D(30),

VNOD(31),VNOD(32),VN0D(33),VN0D(34),VN0D(35),

VNOD(36),VNOD(37),VN0D(38),VN0D(39),VNOD(40),

VN0D(41),VNOD(42),VN0D(43),VNOD(44),VN0D(45),

VN0D(46),VNOD(47),VN0D(48),VN0D(48),

PLOTFIL 81 /** PIPE NODE GAS MASS MGN0D(1),MGNOD(2),MGNOD(3),MGN0D(4),MGN0D(5),

MGN0D(6),MGNOD(7),MGN0D(8),MGN0D(9),MGN0D(10),

MGNOD(11),MGN0D(12),MGN0D(13),MGNOD(14),MGN0D(15),

MGN0D(16),MGN0D(17),MGNOD(18),MGN0D(19),MGNOD(20),

MGNOD(21),MGN0D(22),MGN0D(23),MGNOD(24),MGNOD(25),

MGN0D(26),MGN0D(27),MGN0D(28),MGN0D(29),MGN0D(30),

V MGNUD(31),MGN0D(32),MGN0D(33),MGNOD(34),MGN0D(35),

MGNOD(36),MGN0D(37),MGN0D(38),MGNOD(39),MGNOD(40),

MGN0D(41),MGN0D(42),MGN0D(43),MGNOD(44),MGN0D(45),

MGN0D(46),MGN0D(47),MGNOD(48),

plotfil 82 /** FAN COOLER N0 DES VFN0D(19), VFNOD(20), VFN0D(21),

XN0D(19),

XN0D(20),

XN0D(21)

MGN0D(19), MGN0D(20), MGN0D(21),

UGN0D(19), UGN0D(20), UGN0D(21),

MVNOD(19), MVN0D(20), MVN0D(21),

UVN0D(19), UVN0D(20), UVN0D(21)

PN0D(19),

PN0D(20),

PN0D(21),

VGNOD(19), VGNOD(20), VGN0D(21),

VVN0D(19), VVN0D(20), VVN0D(21),-

HCNOD(19), HGN0D(20), HGN0D(21),

HVNOD(19), HVN0D(20), HVNOD(21),

HN^' (19), HN0D(20),

HN0D(21),

Uu0D(19),

UN0D(20),.UN0D(21),

VOLNOD(19),VOLNOD(20),VOLN0D(21),

TVNOD(19), TVN0D(20), TVN0D(21),

TGN0D(19), TGN0D(20), TGN0D(21),

WN0D(19), VN0D(20),

UN0D(21),

0AIC(19), QAIC(20),

QAIC(21),

PLOTFIL 84 /** FORCES g

CRITERION PARX(1) 5.E6 MAXIMUM 5000.0 CRITERION PARX(2) 5.E6 MAXIMUM 5000.0 CRITERION PARX(3) 5.E6 MAXIMUM 5000.0 CRITERION PARX(4) 5.E6 MAXIMUM 5000.0 CRITERION PARX(5) 5.E6 MAXIMUM 5000.0

.__..__-m FA1;lR1-T1 Rd' Ss

-CRITERION PAhX(6) 5.E6 MAXIMUM 5000.0 CRITERION PARX(7) 5.E6 MAXIMUM 5000.0 b-T CRITERION PARX(8) 5.E6 MAXIMUM _5000.0 CRITERION PARX(9) 5.E6 MAXIMUM 5000.0 CRITERION P/RX(10) 5 E6 MAXIMUM 5000.0 CRITERION P/.RX(11) 5.E6 MAXIMUM 5000.0 CRITERION IARX(12) 5.E6 MAXIMUM 5000.0

. CRITERION PARX(13) 5.E6 MAXIMUM 5000.0 CRITERION PARX(14) 5.E6 MAXIMUM 5000.0 CRITERION PARX(15) 5.E6 MAXIMUM 5000.0 CRITERION PARX(16) 5.E6 MAXIMUM 5000.0 CRITERION PARX(17) 5.E6 MAXIMUM 5000.0

-CRITERION PARX(18) 5.E6 MAXIMUH 5000.0 CRITERION PARX(19) 5.E6 MAXIMUM 5000.0 CRITERION PARX(20) 5.E6 MAXIMUM 5000.0 CRITERION PARX(21) 5.E6 MAXIMUM 5000.0 CRITERION PARX(22) 5.E6 MAXIMUM 5000.0 CRITERION PARX(23) 5.E6-MAXIMUM 5000.0 CRITERION PARX(24) 5.E6 MAXIMUM 1000.0 CRITERION PARK (25) 5.E6 MAXIMUM 1000.0 CRITERION PARX(26) 5.E6 MAXIMUM 1000.0 CRITERION PARX(27) 5.E6 MAXIMUM 1000.0 CRITERION PARX(28) 5.E6 MAXIMUM 1000.0 CRITERION PARX(29) 5.E6 MAXIMUM 1000.0-CRITERION PARX(30) 5.E6 MAXIMUM 1000,0 CRITERION PARX(31) 5.E6 MAXIMUM _1000.0-CRITERION PARX(32) 5.E6 MAXIMUM 1000.0 CRITERION PARX(33) 5.E6 MAXIMUM 1000.0 0

CRIIERION PARX(34) 5.E6 MAXIMUM 5000.0

(

CRITERION PARX(35) 5.E6 MAXIMUM 5000.0

--CRITERION PARX(36).5.E6 MAXIMUM 5000.0 CRITERION PARX(37) 5.E6 MAXIMUM 5000.0 CRITERION PARX(30)-5 E6 MAXIMUM 5000.0.

CRITERION-PARX(39) 5.E6 MAXIMUM 5000.0 CRITERION PARX(40) 5.E6 MAXIMUM 5000.0 CRITERION PARX(41) 5.E6 KAXIMUM 5000.0 CRITERION PARX(42) 5.E6 MAXIMUM 5000.0 CRITERION'PARX(43) 5.E6 MAXIMUM 5000.0 CRITERION PARX(44) 5.E6 MAXIMUM 5000.0 CRITERION PARX(45) 5.E6 MAXIMUM 5000.0 CRITERION PARX(46) 5.E6 MAXIMUM 5000.0 CRITERION PARX(47) 5.E6 MAXIMUM 5000.0 CRITERION PARX(48) 5.E6 MAXIHUM 5000.0 CRITERION.PARX(49) 5.E6 MAXIMUM 5000.0 CRITERION PARX(50) 5.E6 MAXIMUM 5000.0

- CRITERION PARX(51) 5.E6 MAXIMUM 5000.0 CRITERION PARX(52) 5.E6 MAXIMUM 5000.0 CRITERION PARX(53) 5.E6 KAXIMUM 5000.G CRITERION PARX(54) 5.E6 MAXIMUM 5000.0 CRITERION PARX(55) 5.E6 KAXIMUM 5000.0 i

CRITERION PARX(56) 5.E6 MAXIMUM 5000.0 CRITERION PARX(57) 5.E6 MAXIMUM 5000.0 CRITERION PARX(58) 5.E6 MAXIMUM 5000.0 l CRITERION PARX(59):5.E6 MAXIMUM 5000.0 END

(

~

  • CONTROL CARDS IPOUT 09

/0VIPUT UNIT NUMBER

FAs[47 O 84 *' I i7 IPLT1 1

/0PTION FOR PLTMAk Q(T.**

VARIABLE LABEL LENGTH IN PLOT FILES =1, USE A6 FORMAT (AS HAS BEEN IN THE PAST) =2, USE A15 FORMAT - MAX LENGTH OF ANY CODE-COMMON BLOCK NAME.

IPTSAV 150-

/NON-SPIKE NUMBER OF POINTS.

(AVERAGE BEHAVIOR) STORED IPTSPK 1

/ NUMBER OF POINTS STORED DURING A SPIKE (TO RESOLVE FAST TRANSIENTS)

IPTSMX 10000

/ MAXIMUM NUMBER OF PLOT POINTS ALLOVED PER PLOT FILE IRK 5

/ INTEGRATION SELECTION: = 0 FOR EULER; = 2 FOR SECOND ORDER RUNGE-KUTTA; -4 FOR 4TH ORDER RUNGE-KUTTA: EULER IS RECOMMENDED FOR USE WITH THE SCOPING OPTION ONLY; 2ND R-K IS BEST FOR C0 ARSE N0DALIZATION SCHEMES AND 4TH R-K I BEST FOR DETAILED NODALIZATION SCHEMES I

O

/ SCOPING OPTION FLAG; =0 FOR DETAILED CALCULATION; 1 TO h

  • SCOPE ACTIVATE SCOPING OPTION VHICH ASSUMES A FIXED PIPE

'- /

PRESSURE PROFILE (SEE PSCOPE AND IRK)

IFRONT 0

'/" HOT FRONT" MODEL FLAG; = 1 TO TURN MODEL ON; = 0 TO TURN MODEL OFF; HOT FRONT MODEL INTEGRATES THE MOVEMENT OF THE HOT FLUID DOVN THE PIPE AND PREVENTS NUMERICAL PROPROGATION OF THE HOT FLUID VHICH MAY OCCUR AT A RATE VHICH EXCEEDS THE ACTUAL FLUID VELOCITY i

ISS 0

CALCULATION CONTROL i

=0: STEADY STATE PROFILE ONLY

=1: STEADY STATE INITALIZATION AND TRANSIENT CALCULATION 4

VSH00T 0.0

" SHOOTING METHOD" CONTROL; USED ONLY VHEN NICTYP=1

=0: NEWTON ITERATION USED TO FIND STEADY STATE FLOV AND PIPE FRESSURE PROFILE (RECOMMENDED)

>1: INITIATE SHOOTING METHOD; GOOD FOR STIFF OR MULTI-VALUED PROSLEM3 AS THE NAME IMPLIES. THE SHOOTING METHOD CONTINUES TO GUESS AT THE SOLUTION UNTIL THE CORRECT SOLUTION IS FOUND.

IN THIS INSTANCE, GUESSES OF THE STEADY STATE FLOV RATE ARE MADE. BEGINNING VITH A COLD i

VATER FLOV RATE AND ENDING VITH ZERO FLOV. THE FLOV RATE IS DECREASED BY AN AMOUNT OF VSHOOT ON

, ~'s EACH SUBSEQUENT SHOT UNTIL THE SOLUTION IS BRACKETED (j-**

ISH00T 0

SHOOTING METHOD TYPE. ONLY USED IF VSH00T > 0

=0: STOP SHOOTING ONCE THE SOLUTION IS BRACKETED AND CALCULATE PRESSURE PROFILES; THIS VILL FIND THE SOLUTION VITH THE LARGEST FLOV RATE AND IS GOOD f

r+ric.c Rud.

ga FOR EXTREMELY STIFF PROBLEMS OR PROBLEMS VITH MULTIPLE SOLUTIONS

=1: TAKE SHOTS OVER THE ENTIRE RANGE OF FLOV RATES f~~.)

FROM THE MAX FLOV (ASSUMING COLD VATER) TO ZERO

\\s /

FLOV. THIS VILL EVALUATE THE ENTIRE " FUNCTION" PN0D(ISFIX+1) = f(U), THUS PROVIDING INSIGHT INTO VHAT FLOV RATES YIELD EQUILIBRIUM PRESSURE PROFILES. THIS OFTION IS GUARANTEED TO FIND ALL SOLUTIONS TO THE FROBLEM, AND IS RECOMMENDED FOR SCOPING OUT PARTICULARLY DIFFICULT PROBLEMS.

OUTPUT DATA TABLE IS VRITTEN TO THE LOG FILE IBCHX 0

BENCHMARK SELECTION (=0 FOR NORMAL RUN)

                                                                                                          • =******************
  • TIMING DATA
    • a*********************************************************************
    • NOTE: VARNING-TDMAX IS USED AT THE BEGINNING OF A RUN TO N0DALIZE CERTAIN COMPONENTS.

USERS CAN CHANGE TDMAX DURING A RUN, BUT THEY SHOULD NOT CHANGE IT TO A VALUE GREATER THAN THE VALUE USED AT THE BEGINNING (CHANGING IT TO A HIGHER VALUE COULD RESULT IN NUMERICAL PROBLEMS.)

TDMAX 3.E-4

/ MAX TIME STEP (ALVAYS INPUT IN SECONDS)

TDMIN 5.E-5

/ MINIMUM TIME STEP (ALVAYS INPUT IN SECONDS)

MFCHMX 0.1

/ RELATIVE MASS CHANGE USED TO SELECT TIME STEP

('"S

(.,)

FTGCHX 0.02

/ RELATIVE PIPE N0DE FLUID TEMPERATURE CHANGE USED TO SELECT TIME STEP FPPSHL 0.1

/ MAX PIPE N0DE PRESSURE CHANGE ALLOVED PER TIMESTEP FOMIN 0.0003

/ MINIMUM PLOT FREQUENCY; TIME BETVEEN PLOT POINTS VILL BE AT LEAST FOMIN F0 MAX 0.01

/ MAXIMUM PLOT FREQUENCY; TIME BETVEFN PLOT POINTS VILL BE NO GREATER THAN FOMAX

                                                                                              • w************************
    • INPUT DECK AND CODE OUTPUT IN BRITISH UNITS
  • BR

,7

FA!/9748 Page BI of _BN Rev. O Date:

APPENDIX B TREMOLO REY 1.01 PARAh!ETER FILE FOR PRAIRIE ISLAND FAN COIL UNITS 21/23 t

5 O

I i

4

_m.

i FA!I97 68 Page B2 of Rev. O Date:

p The TREMOLO Rev.1.01 parameter file for FCUs 21/23 is developed by making a minimum O

number of changes to the parameter file for FCUs 22/24 (Ref. Appendix A, i.e., FAl/97 47 Rev. 0). This model for 21/23 is approximate in that details regarding the number and location of flow elements (i.e., elbows, etc.) are generally left unchanged. The parameters that are changed for the 21/23 model are pipe (i.e., node) lengths, elevations, and effective loss coefficients (i.e., K values). Also, th' upstream and downstream boundary pressures are slightly different than before. Details regarding parameter file development are not repeated here; the l

following pages illustrate only those parameters which are different between 22/24 and the 21/23 model.

The attached difference listing (Table B 1) identifies all parameter changes made for the 21/23 parameter file (PI2X. PAR) relative to the 22/24 parameter file (PI2. PAR). Pipe lengths XZP and elevation changes DZP are derived from the following plant drawings:

X-HIAW-106-101 Rev. F X-HIAW-1106-45 Rev. G X HIAW-1106 2560 Rev. C X-HIAW-1106 2574 Rev. B X-HIAW-106-96 Rev. C O

Loss coefficients or K values (XXPE) are c rived from hydraulic model data (for bypass valve closed) in Proto-Power Calc.96-063, Re.. - [3]. Table B 2 summarizes the hydraulic data and the results of the Bernoulli calculations (Ref. Appendix A). The calculated loss coefficients for i

21/23 are different than for 22/24, but they are assumed to be similarly distributed through the pipe system. Thus, the relative flow element locations XZFE are generally not changed except where adjusted to accommodate different pipe lengthsc The upstream and downstream pressures (PUP and PDN, respectively) are also changed based on the hydraulic model [3].

Table B-3 summarizes key parameter file data for the FCU 21/23 model. The 16 pipe sections are illustrated in the nodalization schematic, Figure B-1.

As noted, the FCU 21 (lower elevation) branch shown in Figure B-2 is incorporated with the FCU 23 (higher elevation) branch shown in Figure B-1. (See Appendix A for more details on the method.) The model for 21/23 is validated by comparison of the predicted cold water steady state pressure profile and data from the hydraulic model, Figure B 3.

O

FAr/47-ce gg TABLE b~!

+*****w*****

File $2$DKB100 [C00L.NEXT. INPUT)PI2X. PARIS O

PRAIRIE ISLAND FCU #23,#21 6

7 (AFPROXIMATE)

MODEL VILL USE 16 PIPE SECTIONS 8

3 File $2$DKB100:[C00L.NEXT. INPUT]PI2. PAR 116 PRAIRIE ISLAND FCU #24,#22 6

7 8

H0 DEL VILL USE 16 FIPE SECTIONS File $2SDKB100 [C00L.NEXT. INPUT]PI2X. PARIS LATEST PARAMETER FILE REVISION DA1E: 6/24/97 11 12 File $2SDKB100 [C00L.NEXT. INPUT]PI2. PAR 116 LATEST PARAMETER FILE REVISION DATE: 6/12/97 11 12 i

File $2SDKB100 [C00L.NEXT. INPUT]PI2X. PARIS i

35 XZP(1) 84.

PIPE SECTION ACTUAL LENGTH 36 DZP(1)

-1.17 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION File $2$DKB100:[C00L.NEXT. INPUT]PI2. PAR;16 35 XZP(1) 73.

PIPE SECTION ACTUAL LENGTH 36 DZP(1)

-1.17 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION l

f"~N tj File $2SDKB100:[C00L.NEXT. INPUT]PI2X. PAR 5 46 XZP(2) 49.0 PIPE SECTION ACTUAL LENGTH 47 DZP(2) 16.0 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION 48 NTYPP(2) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE File $2SDKB100:[C00L.NEXT. INPUT]PI2. PAR;16 46 XZP(2) 56.0 PIPE SECTION ACTUAL LENGTH 47 DZP(2) 34.25 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION 4

48 NTYPP(2) 1-PIPE SECTION VALL MATERIAL PROPERTY TYPE File $2$DKB100 [C00L.NEXT. INPUT]PI2X. PAR;5 57 XZP(3) 8.0 PIPE SECTION ACTUAL LENGTH 58 DZP(3) 7.92 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION 59 NTYPP(3) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE File $2SDKB100:[C00L.NEXT. INPUT]PI2. PAR;16 57 XZP(3) 6.0 PIPE SECTION-ACTUAL LENGTH 58 DZP(3) 3.06 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION 59 NTYPP(3) 1 PIPE SECTION VI.LL KATERIAL PROPERTY TYPE File S2SDKB100:(C00L.NEXT. INPUT]PI2X. PAR;5 68 XZP(4) 16.

PIPE SECTION ACTUAL LENGTH 69 DZP(4)

-1.42 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION 70 NTYPP(4) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE

[s

+++***

File S2SDKB100:[C00L.NEXT. INPUT]PI2. PAR;16 68 XZP(4) 23.

PIPE SECTION ACTUA'. LENGTH 69-DZP(4)

-2.31 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION 5

FAtit7.&t eq Rav p 70 NTYPP(4) 1 PIPE SECTION UALL MATERIAL PROPERTY TYPE

' O, File $2$DKB100:[C00L.NEXT. INPUT]PI2X. PAR 5 79 X2P(5) 40.

PIPE SECTION ACTUAL LENGTH 80 DZP(5) 14.5 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION 81 NTYPP(5) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE File $2$DKB100:[C00L.NEXT. INPUT]PI2. PAR 116 i

79 XZP(5) 52.

PIPE SECTION ACTUAL LENGTH 1

80 DZP(5) 24.25 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION 81 NTYPP(5) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE File $2SDKB100:[C00L.NEXT. INPUT]PI2X. PAR 5 91 DZP(6)

-8.8 ELEVATI0H CHANGE FROM INLET TO EXIT OF PIPE SECTION 92 NTYPP(6) 1 PIPE SECTION VALL MATERIAL PROFERTY TYPE File $2SDKB100:[C00L.NEXT. INPUT)PI2. PAR;15 91 DZP(6)

-9.9 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION 92 NTYPP(6) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE 4

File $2SDKB100:[C00L.NEXT. INPUT]PI2X. PARIS j

102 DZP(7) 0.9 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION 103 NTYPP(7-)

3 PIPE SECTION VALL MATERIAL PROPERTY TYPE l

File $2SDKB100r[C00L.NEXT. INPUT]PI2. PAR;16 102 DZP(7)

-0.4 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION 103 NTYPP(7) 3 PIPE SECTION VALL MATERIAL PROPERTY TYPE

(,

File $2SDKB100:(C00L.NEXT.INPUTIPI2X PAR;5 1

113 DZP(8) 7.9 ELEVATION CRANGE FROM INLET TO EXIT OF PIPE SECTION 114 NTYPP(8) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE 4

          • s File $2$DKB100 [C00L.NEXT. INPUT]PI2. PAR;'<6 113 DZP(8) 10.5 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION 114 NTYPP(8) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE Fi$*e*S2SDKB$00[C00L.NEXT.INPUTJPI2X. PAR;5 123 XZP(9) 6.

PIPE SECTION ACTUAL LENGTH 124 DZP(9)

-4.0 ELEVATION CRANGE FROM INLET TO EXIT OF PIPE SECTION 125 NTYPP(9) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE File $2SDKB100:[C00L.NEXT. INPUT)PI2. PAR;16 123 XZP(9) 14.

PIPE SECTION ACTUAL LENGTH 124 DZP(9)

-7.25 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION 125 NTYPP(9) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE

      • =********

File $2SDKB100:[C00L.NEXT. INPUT]PI2X. PARIS 134 XZP(10) 30.0 PIPE SECTION ACTUAL LENGTH 135 DZP(10)

-17.0 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION 136 NTYPP(10) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE File $2SDKB100:[C00L.NEXT. INPUT]PI2. PAR;16 134 XZP(10) 41.0 PIPE SECTION ACTUAL LENGTH 135 DZP(10)

-23.0 ELEVATION CHANGE FROM INLE1.0 EXIT OF PIPE SECTION 136 NTYPP(10) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE

FAI/47dr g5 04J, 4 File $2SDKB100:[C00L.NEXT. INPUT]PI2X. PAR;5 145 XZP(11) 7.0 PIPE SECTION ACTUAL LENGTH s_/

146 DZP(11) 2.0 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION File $2$DKB100:{C00L.NEXT. INPUT]PI2. PAR;16 145 XZP(11) 8.0 PIPE SECTION ACTUAL LENGTH 146 DZP(11) 2.0 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION File $2$DKB100:[C00L.NEXT. INPUT]PI2X. PARI 5 156 XZP(12) 15.

PIPE SECTION ACTUAL !.ENGTH 157 DZP(12)

-2.0 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION File $2SDKB100:lC00L.NEXT. INPUT]PI2. PAR;16 156 XZP(12) 17.

PIPE SECTION ACTUAL LENGTH 157 DZP(12)

-2.0 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION File $2$DKB100:lC00L.NEXT. INPUT]P12X. PAR;5 168 DZP(13)

-0.08 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION 169 NTYPP(13) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE File $2SDKB100 [C00L.NEXT. INPUT]PI2. PAR;16 168 DZP(13).

0.0 ELEVATION CHANGE FROM INLET TO EXIT OF.'IPE SECTION 169 NTYPP(13) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE O '

File $2$DKB100:[C00L.NEXT. INPUT]PI2X. PAR;5 179 DZP(14)

-1.92 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION 180 NTYPP(14) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE File $2$DKB100:[C00L.NEXT. INPUT]PI2. PAR;16 179 DZP(14) 0.0 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION 180 NTYPP(14) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE File $2$DKB100:(C00L.NEXT. INPUT]PI2X. PARIS 190 DZP(15)

-14.0 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION 191 NTYPP(15) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE File $2$DKB100 [C00L.NEXT. INPUT]PI2. PAR;16 190 DZP(15)

-29.0 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION 191 NTYPP(15) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE File $2SDKB100:[C00L.NEXT. INPUT]PI2X. PAR;5 200 XZP(16) 128.

PIPE SECTION ACTUAL LENGTH 201 DZP(16) 2.25 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION 202 NTYPP(16) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE File $2SDKB100:[C00L.NEXT. INPUT]PI2. PAR;16 200 XZP(16) 26.

PIPE SECTION ACTUAL LENGTH 201 DZP(16) 0.5 ELEVATION CHANGE FROM INLET TO EXIT OF PIPE SECTION 202 NTYPP(16) 1 PIPE SECTION VALL MATERIAL PROPERTY TYPE i

File $2SDKB100:[C00L.NEXT. INPUT]PI2X. PAR;5 263 XXFE(1) 1.412 K VALUE 264 XXFE(2) 1.412

. ~ ~. - -

FAr /11-ss gg gaq d 265 XXFE(3) 3.916 266 XXFE(4)-

7.727 267 XXFE(5) 0.529 268 XXFE(6) 0.529

\\s-)'

269

    • XXFE(7) 10.066 (PART INCLUDED VITH ORIFICE K VALUE) 270 XXPE(7)-

1.066 t

271

    • XXFE(8) 39.510 (K FOR ORIFICE IS ADJUSTED TO 272 XXFE(8) 34.

BETTER MATCH HYDRAULIC MODEL FLOV) 273 XXFE(9) 0.000 274 XXFE(10) 1.539 275 -XXFE(11) 0.0 File $2$DKB100:[C00L.NEXT. INPUT]PI2. PAR;16 263 XXFE(1) 5.548 K VALUE i

264 XXFE(2) 3.549 265 XXFE(3) 1.676 266 XXFE(4) 7.623 267 XXFE(5) 7.561 268 XXFE(6) 1.407 269 XXFE(7) 0.998 270

    • XXFE(8) 64.594 (K FOR ORIFICE IS ADJUSTED TO j

271 XXFE(8) 50.

BETTER MATCH HYDRAULIC MODEL FLOV) 272 XXFE(9) 0.329 273 XXFE(10) 1.726 274-XXFE(11) 0.0

^

i File $2$DKB100 [C00L.NEXT. INPUT]PI2X. PAR;5 469 XZFE(23) 39..

DISTANCE FROM INLET OF PIPE SECTION g-'

470 NIDFE(23) 3 ID NUMBER OF FLOV ELEMENT TYPE q $,

File $2SDKB100 [C00L.NEXT. INPUT]PI2. PAR;16 468 XZFE(23) 44.

DISTANCE FROM INLET OF PIPE SECTION 469 NIDFE(23) 3 ID NUMBER OF FLOV ELEMENT TYPE File $2$DK3100 [C00L.NEXT. INPUT]PI2X. PAR;5 525 XZFE(34) 1.

DISTANCE FROM INLET OF PIPE SECTION 526 NIDFE(34) 5 ID NUMBER OF FLOW ELEMENT TYPE File $2SDKB100:[C00L.NEXT. INPUT]PI2. PAR;16 524 XZFE(34) 4.

DISTANCE FROM INLET OF PIPE SECTION 525 NIDFE(34) 5 ID NUMBER OF FLOV ELEMENT TYPE File $2$DKB100:[C00L.NEXT. INPUT]PI2X. PAR;5 529-XZFE(35) 3.

DISTANCE FROM INLET OF PIPE SECTION 530 NIDFE(35) 5 ID NUMBER OF FLOV ELEMENT TYPE File $2$DKB100 [C00L.NEXT. INPUT]PI2. PAR;16 528 XZFE(35) 6.

DISTANCE FROM INLET OF PIPE SECTION 529 NIDFE(35) 5 ID NUMBER OF FLOV_ ELEMENT TYPE File $2$DKB100:[C00L.NEXT. INPUT]PI2X. PAR;5 533 XZFE(36) _

5.

DISTANCE FROM INLET OF PIPE SECTION 534 NIDFE(36) 5 ID NUMBER OF FLOV ELEMENT TYPE r

s File $2SDKB100:[C00L.NEXT. INPUT]PI2. PAR;16 532

.XZFE(36) 12.

DISTANCE FROM INLET OF PIPE SECTION 533 NIDFE(36) 5 ID NUtiBER OF FLOV ELEMENT TYPE

17%2/91-4#

gg Gud. 6

    • eeeeee****

File $2$DKB100 [C00L.NEXT. INPUT]PI2X. PARI 5 rx

!]

540 XZFE(37) 3.

DISTANCE FROM INLET OF PIPE SECTION 541 'NIDFE(37) 6 ID NUMBER OF FLOV ELEMENT TYPE File $2$DKB100:[C00L.NEXT. INPUT]PI2. PAR;16 539 XZFE(37) 13.

DISTANCE FROM INLET OF PIPE SECTION 540 NIDFE(37) 6 ID NUMBER OF FLOV ELEMENT TYPE File $2SDKB100 [C00L.NEXT. INPUT]PI2X. PAR;5 544 XZFE(38) 15.

DISTANCE FROM INLET OF PIPE SECTION 545 NIDFE(38) 6 ID NUMBER OF FLOV ELEMENT TYPE i

File $2$DKB100:[C00L.NEXT. INPUT]PI2. PAR 116 543 XZFE(38) 25.

DISTANCE FROM INLET OF PIPE SECTION 544 NIDFE(38) 6 ID NUMBER OF FLOV ELEMENT TYPE 4

ik**********

File $2$DKB100:[C00L.NEXT. INPUT]PI2X. PAR;5 i

548 XZFE(39) 17.

DISTANCE FROM INLET OF PIPE SECTION 549 NIDFE(39) 6 ID NUMBER OF FLOV ELEMENT TYPE File $2SDKB100:[C00L.NEXT. INPUT]PI2. PAR;16 547 XZFE(39) 27.

DISTANCE FROM INLET OF PIPE SECTION 548 NIDFE(39) 6 ID NUMBER OF FLOW ELEMENT TYPE 4

,O File $2SDKB100 [C00L.NEXT. INPUT]PI2X. PARIS

\\ -)

552 XZFE(40) 23.

DIST*.NCE FROM INLET OF PIPE SECTION 553 NIDFE(40) 6 ID NUMBER OF FLOV ELEMENT TYPE File $2$DKB100 [C00L.NEXT. INPUT]PI2. PAR 116 551 XZFE(40) 33.

DISTANCE FROM INLET OF PIPE SECTION 552 NIDFE(40) 6 ID NUMBER OF FLOV ELEMENT TYPE File $2SDKB100:[C00L.NEXT. INPUT]PI2X. PAR;5 556 XZFE(41) 29.

DISTANCE FROM INLET OF PIPE SECTION 557 NIDFE(41) 6 ID NUMBER OF FLOV ELEMENT TYPE File $2$DKB100 [C00L.NEXT. INPUT]PI2. PAR;16 555 XZFE(41) 40.

DISTANCE FROM INLET OF PIPE SECTION 556 NIDFE(41) 6 ID NUMBER OF FLOV ELEMENT TYPE File $2$DKB100:[C00L.NEXT. INPUT]PI2X. PAR;5 571 XZFE(44) 6.

DISTANCE FROM INLET OF PIPE SECTION 572 NIDFE(44) 6 ID NUMBER OF FLOV ELEMENT TYPE File $2$DKB100:[C00L.NEXT. INPUT]PI2. PAR;16 570 XZFE(44) 7.

DISTANCE FROM INLET OF PIPE SECTION 571 NIDFE(44) 6 ID NUMBER OF FLOV ELEMENT TYPE File $2SDKB100:[C00L.NEXT. INPUT]PI2X. PAR;5

\\-

578 XZFE(45) 14.

DISTANCE FROM INLET OF PIPE SECTION 579 NIDFE(45) 7 ID NUMBER OF FLOV ELEMENT TYPE File $2SDKB100:[C00L.NEXT. INPUT]PI2. PAR;16

FA (41 se 58 R*v p 577 XZFE(45) 15.

DISTANCE FROM INLE1 0F PIPE SECTION 578 'NICFE(45) 7 ID NUMBER OF FLOV ELEMENT TYPE q'

File $2SDKB100:[C00L.NEXT. INPUT)PI2X. PARIS 630 XZFE(55) 108.

DISTANCE FROM INLET OF PIPE SECTION 631 NIDFE(55) 10 ID NUMBER OF FLOV ELEMENT TYPE File $2$DKB100:lC00L.NEXT. INPUT]PI2. PAR;16 629 XZFE(55) 8.

DISTANCE FROM INLET OF PIPE SECTION 630 NIDFE(55) 10 ID NUMBER OF FLOV ELEMENT TYPE File $1SDKB100:lC00L.NEXT. INPUT)PI2X. PAR;5 634 XZFE(56) 124.

DISTANCE FROM INLET OF PIPE SECTION 635 NIDFE(56) 10 ID NUMBER OF FLOW ELEMENT TYPE File $2$DKB100:[C00L.NEXT. INPUT]PI2. PAR 116 633 XZFE(56) 24.

DISTANCE FROM INLET OF PIPE SECTION 634 NIDFE(56) 10 ID NUMBER OF FLOW ELEMENT TYPE File $2$DKB100:[C00L.NEXT. INPUT)PI2X. PAR;5 638 XZFE(57)_

125.

DISTANCE FROM INLET OF PIPE SECTION 639 NIDFE(57) 10 ID NUMBER OF FLOV ELEMENT TYPE File $2$DKB100 [C00L.NEXT. INPUT)PI2. PAR;16 637 XZFE(57) 25.

DISTANCE FROM INLET OF PIPE SECTIO:1 638 NIDFE(57) 10 ID NUMBER OF FLOV ELEMENT TYPE f(

File $2$DKB100:[C00L.NEXT. INPUT]PI2X. PARIS 720 PUP 77.21 UPSTREAM BOUNDARY FLUID PRESSURE 721 XVUP 0.0 UPSTREAM BOUNDARY FLUID QUALITY File $2$DKB100:[C00L.NEXT. INPUT]PI2. PAR;16 719 PUP 74.48 UPSTREAM BOUNDARY FLUID PRESSURE 720 XVUP 0.0 UPSTREAM BOUNDARY FLUID QUALITY File $2$DKB100:[C00L.NEXT. INPUT)PI2X. PAR;5 726 PDN 18.92 DOVNSTREAM B0UNDARY FLUID PRESSURE 727 XVDN 0.0 DOVNSTREAM BOUNDARY FLUID QUALITY File $2SDKB100 [C00L.NEXT. INPUT)PI2. PAR;16 725 PDN 19.53 DOVNSTREAM BOUNDARY FLUID PRESSURE 726 XVDN 0.0 DOVNSTREAM BOUNDARY FLUID QUALITY File $2$DKB100 [C00L.NEXT. INPUT)PI2X. PAR;5 773 FRAMP 77.21 MAX PUMP DISCHARGE PRESSURE FOLLOVING PUMP RESTART 774 AND RAMP UP File $2$DKB100:[C00L.NEXT. INPUT]PI2. PAR;16 772 PRAMP 74.48 HAX PUMP DISCHARGE PRESSURE FOLLOVING PUMP RESTART 773 AND RAMP UP Number of difference sections found: 36 Number of dif ference records found 55

4,$.dt.,a-< hah 44-.6A..-J.OD.M-MunemJ4 -- eamo.M M aen5.4 A A JM -M a.nem 4 4 alt.e 4.h P

hdad 4W M.a &

T-@ J--AM MJ J-.taa m--lE amdem+M M Awd hMAd.aABAe W e-"

4-a8 de4Ja4 m p J.&le.d4 M.A Agi.-edh+

h pem 4

.Jea.-,m a m M sea. hm4 FAIl91 6*

gg l%r. 6 i

i DIFFERENCES / IGNORE.()/ MERGED 1/0UTPUT.$2$DKB100:[C00L.NEXT. INPUT]JX.DIF 18-j

$2$DKB100:(coot.NEXT. INPUT)PI2X. PARI 5-

$2$DKB100 (C00L.NEXT. INPUT)PI2. PAR 116 j

i Y

n 4

d 4

i i

5 1'

1 l

i h

I (

l i

i i

i ki-i-

1 5.

{;

I e

l 1

I y -'.

4 i

i,

.n

,c,,,,

,.n.-

e-, - - - - -,--,

m-

,r

,--w

- ~-

TAM 6 ' 2.

FA T /41 69 g

Eur d 4 2 4 bW E ldd ((c3L.P2) PIK1X.ouT PRAIRIE-ISLAND UNIT 2 CFC 623,421

~

1471.

1 INLET VATER FLOV RATE TO BOTH CFCS S

-(

85.

I INLET VATER TEMPERATURE (F) 62.165 I INLET; VATER DENSITY (LB/FT3)

I Z

P L

NFE DIA VATER (FT)

(PSIA)

(FT)

(IN) NODE O 708.17 77.21 037A 4

'" I "4 4

1 730.92 62.18 141.

13 10.02 #23 CFCU In 2 744.00 50.42 56.

10 11.29 279A f'h o, FCu-* 3 744.00 36.10 100.

9 10.51 285A 4 725.00 43.19 43.

11 11.29 423 CFCU Out 5 723.00 42.37 15.

1 11.29 291A l

6 722.92 18.17 3.

1 7.98 293A 7 721.00 18.49 3.

1 7.98 292A l

8 709.25 18.92 178.

10 10.02 303A a

L4MPFA PIPE PUP FD?)

DZ DPFLOV DPHEAD KFE NFE FFRIC LCUM (FT) i SECTION (PSIA)

(PSIA)

(PT) (PSI)

(PSI) 1 77.21 62.18 22.75 5.21

-9.82 1.412 13. 0.0137 141.00 2

62.18 50.42 13.08 6.11

-5.65 3.916 10. 0.0141 197.00 2 Feu odt are 3

50.42 36.10 0.00 14.32 0.00 7.727 9.

0.0139 297.00)#"*"'14*'

4o 2714t.

4 36.10-43.19 -19.00 1.11 8.20 0.529 11. 0.0141 340.00 355.00 5

43.19 42.37

-2.00 1.68 0.86 10.066 1.

0.0141 6

42.37 18.17

-0.08 24.23 0.03 39.510 1.

0.0131 358.00<6 Co'O *I T

ersfas s

?

18.17 18.49

-1.92 0.51 0.83 0.000 1.

0.0131 361.00 8

18.49 18.92 -11.75 4.64 5.07 1.539 10. 0.0137 $39.00

"}

l KCUM = 197.843

~'

t 4

S f

i G

4

F AIli7-6 g.tt TABLE B-3 he Sum,,,ary Te W -Co

02. 8/ 0.3 2

Fe..J

~!%

  • Se i+'n &#

e.;wt. Lem'b Ae Pt.,

P.s 20 E t. c. r4

'(44)

((d j(fSi4I (f:id (f()

lg 7 -

7.

11

'17 o

i F4

-l.l 1

~

g 2,*4,44 t 'l e

.i t

t

48) j 16.o t

, r, s.r, #6 5 aj r.r,ss.436.r

[t

~

f

}

)

l 3

8 1 7.12 _

62.18 Z

ll,1, f !

o.c. i f

4 3

4 16

-I A 1. ' c,s.it 3

l t:s.4 l.

. l g..

h F8.*4 2 3

1, 4, (,,

l o,

3., :2 f, 31 !

Lr 4

r 40 14.f T 4.

(,

r 6

to

~ - 8.9 fo.all 4

' f, lo s f f

l

{o.9 4

3 1:CLA -> 7

(,

60 I

,3* re so

!3610- 4

' r,se,tr (*it e ir in k'my) 3 1

3

2. 0 79

- q -

p 3

(,

i -4.0 36.10{~

f j a,3,5 i

t-

['~

. 6 se i

Jo

- 17 0

3', sr,nf, 3,2 9 7.C.

T

4 3.11..

+, 5; (. '

l l2.o 6

.. se il 7

as is 4

6 y

it p

at og

' 2.o ' 43.49 l 42.37

]

g4 t

s s

o.c.

l- 0.es ; 4 241 l l t.i7 3

r,q l

l i 11 is is sf s3 64 3

-l.91 ' 18.(7 li.41 g

2.i l

l i

~~*

3 t, s 8, [2 7,3 0, ! 9 0,4 9, 49 sf 64 sr to

- 154 0 ' l f.+ i i 10 j

i a

.16 sf i6 12 8 12r 17.11 ! 10 9,l:41str Jr.

7

f8f39 l

l 1

i I

+

i I

i i

e i

i i

t L

u.

i l

I 4

j i

l I

i i

i I

i u.. __

j l

O sJ l

4 See %mbers ik c'grcles ew Ackd Fipre B-l.

FAI/41-6#

B.it stav 6 Ov

/

a

/~,/

i

/

s

./

Pra,ine s

i Island i

s.

a.

780-

+

y i

E l

FCLR #23 l

j

=

i i

=

i i

=

770 -

l

(*2n iacorpor*4ed b"*)

l

-E i

i i

I i

i

=

i

=

5 I

I 760=-

i i

1 i

i i

i i

i

=

i i

750-i i

g l

-- !P

-O l

5

(~T 'i8 740E_

l

@r l

-5 i -V>

i,

=

i

.s

=

i i

=

tu i

e i

=

i s

=

e fr-j, 730=-

  • zil'n reiA l

=

n',o., du/*n sem=

E l

e i

=

5 6

l e

l E

720 -

i

=

=

l l

=

=

=

i i

=

4

=

i i

710}=

g'O' l

l 7

e

!' ed 5_

1

=

l l

=

700 -

Retum Supply JR96o115.COR 8 30-96 E"i g u re B-I

' TRE M0LO Ned alig ahin

, ck,y4 6, Q, P. I.

2 t[d23 8

(N pi e Se c+ lows,

3 nedtS per sec 4-io n v

p t

1

F A L l91-68 g g3 wy

-i 4

n

U-l

/

'I

/

g

/

\\

i

/

\\

t

\\

/

\\

I

\\

I

\\

l I

\\

Prairie

~

780--

l Island l

.i i

i

=

i

,i 770_=-

FCLR #21 i

i i

i I

=

~

i i

7605-I l

=

l l

==

i i

I

=

I

=

l i

750

l l

=

i I

C 4

C i

.O_

i i

lii 740_=-

i i

i

=

l 4

l (e

3 i

=

1 w

r i-i i.'.

i

'8 730:

i

=

i i

=

~

W l

E iO-8 p

720g-l l

[""

[

j

-j p

l J

l

=

i i

5 I

i l

l r~-

710:-

10' 24-l l

l E

i i

10*24' i

i

=

i i

700=-

i Return Supply 4

JR96o111.CDR 8-30-96 1

Fi wre s.2 3

5 i

i-

O g.... e i... a l..I.......

g..

..... g....... _.

g...t.....-j e

eo r

i

~

K

_ i 1

8 5. *F Ic ' ?.

gym 0.0 MBts/h r f =0.00 0 5

c G

Hydraulic aedel i

i i

7

~

t m

I i

i r

e I

I i

m i

l i

s O

I I

C2.

v i

i I

i

. e i

i I

r

  • =

=,

i i

a I

I m

g i

m a-I r

e i

i e*

r i

i w

I i

i m

8 8

I i

-,,,,,,,.l,,,,,,,,,,I,.,,,,,,,I.,.I I

g,,,,,.,l.,,,,,,,,_.

r m

0 100 200 300 400 500 600 ye

ir Axial Distance (ft)

.s f

.=

PI 21/23 LOOP w/o LOCA, Bypass Valve Closed. Steady State Profile 1

Fiy.re B-3

FAl/9748 Page Cl of CU Rev. O Date:

O APPENDIX C DETAILED OUTPUT IHOM TRANSIENT SEQUENCES (SECTION 6.2) 4 6

O O

FAT: h *l. W -

TRAWtlEu r d 1

- F su res4act

$ icx yes.. O

$ RP ~. "982$dua0 [ELIC50N] tools RP" O $ RP $4$DKA300 '

COOL.PI)PITO 00$L.INP -

$2$DKB100: C00L.NEXT. INPUT]PI2. PAR -

$3SDKA200:

0 ARCHIVE. TREMOLO.101) TREMOLO.EXE -

$4$DKA300: C00L.PI]

i i

i b

O J

e k

)

4 6

)

i i

1 O

',sm,.

.. - -.-.,,,- ~. -,-,,

..~ - _......,,.._.-,

.-..-.~-

Pkxl%1.is cs gui f, 2

/ ENTER 1 FOR BATCH, OR 2 FOR BATCH VITH SENSITIVITY OPTION n PI LOCA, VLV OPEN, f=0.000, PHP RST 9 55

  • IADIABATIC PIPE, 270 F GAS TEMP
  • 4TH RK, 48 NODES 1

/14 READ PARAMETER PILE, 0+USE DEFAULTS 25

/ UNIT NUMBER OF PARAMETER IILE O

/ ECHO PRINT OF PARAMETER FILE 1=YES, 0.N0 1

/ LOCAL PARAMETER CHANGES 1.YES, 0.N0 o*****************************************************************************

o*

LOCAL PARAMETER CHANGES o*****************************************************************************

IPLT1 2 o*****************************************************************************

    • SIMULATE 10" URIFICE BYPASS VALVE OPEN (USE K 5) o*

XIDP(13).0.835 l

X1DP(14)=0.835 l

XXFE(8)=5.

on

    • SET FOULING FACTOR c*

FFOUL.O.000 o*

    • PUMP BESTART CONTROL o*

TIPUMP 5.

TRAMP-5.

    • CONTAINMENT TEMPERATURE INCREASES FROM 85P TO 270F OVER 1 SEC NCTTAB-3 TICT(1)=0.

TICT(2) 1.

TICT(3).100.

TCCT(1).85.

TGCT(2).270.

TGCT(3) 270.

    • PUMP COAST 00VN CONTROL TCOAST - 1.0

/ TOTAL COAST DOVN TIME (SEC)

PC0AST - 20.0

/ PUMP DISCHARGE PRESSURE AT TIM >= TCOAST 11 / USER DEFINED PLOT FILES PLOTFIL 80 /** PIPE VALL NODE TEMPERATURE THTS(1,1),TFTS(2,1),THTS(3,1),THTS(4,1),THTS(5,1),

THTS(6,1),THTS(7.1),THTS(8,1),THTS(9.1),THTS(10,1),

THTS(11,1),THTS(12,1),THTS(13,1),THTS(14,1),THTS(15,1),

TRTS(16,1),THTS(17,1).THTS(18,1).THTS(19,1),THTS(20,1),

O THTS(21,1) THTS(22,1),THTS(23,1) THTS(24,1),THTS(25,1),

THTS(26,1),THTS(27.1),THTS(28,1),THTS(29,1),THTS(30,1),

THTS(31,1),THTS(32,1),THTS(33,1),THTS(34,1),TRTS(35,1),

THTS(36,1),THTS(37,1),THTS(38,1),THTS(39,1),THTS(40,1),

THTS(41,1),THTS(42,1),THTS(43,1),THTS(44,1),THTS(45,1),

m

FAI/t1 4,y t4 w th Pl CCP h v 0*(N t e0 000

    • P 4$t e t PI'.0;h P74

. ; i...

e e

e O

O R

o o

o I

t e

e e

o.

o.

o, i i i i *

i. e

,*o 10 to Jo *o t) 60 to to sa 100 i i i,,.,

O to ko Ja ao ha 60 to #9 W 100 o lo 40 J; 80 by 60 so 90 pg iop 11"E ltCONOS

?IME $(COND$

tint $tCONOS

, i,,.

,. i

-4 e

e c

n m

e e

o o

o I

I 1

i e

e e

o o

n l

l

,'o is ao 30 so to 60 70 eo 90 i00 i

e i. i e

i i i i i i i.. i e

i

,,.,,, i

'o ao do 40 *o da 60 to 60 90 too

'o to 40 so ao 60 60 to ao 90 io0 fi"E SCCONDS fl*C stCONo$

tint stCONos e

s e,

g

.... i e

a i.

g g

'C g

C e

e y

p

~g ec

. e, w

gC gg C

g A

c C

s s

g g

g

........ i

.. i,, i 00 to JG JJ *a 60 to 70 uo 90 too oc is 20 Ja ao to 60 is so so 400 00 is 29 30 ao 30 60 so 80 to 100 11*C SECONDS tl*C SCCOND5 11*C $ECONDS C

n

,m g

g i i...

i.... i i..

g

.. i i.... i a

e a

n e.

c p

i

~

a a

ec

=

f-

. f C

y w=

=c b

g o

s T

g g

. i..... i e

i i i, i i...

o 60 da 40 ao t; 60 to sa no ico 00 to 70 3a ao 50 60 70 63 to too oc to 2G 30 ao SG 60 70 kJ to 100 11*C $tCONDS tl*t SCCONDS time SECONOS

FAI/O. ty g

l% 6

  • ! t OC A v6 v C#(N r 0 000 e=a a$1 0 $
  1. 110.005L #74 h

'o O

  • i i

'n '

e i i..-..

,, i--,--;--,-;,,

e 1

1 C

1 C

b b~

{

h~

~

h 8

I 1$

)

i 8

o o

-g g

4 g,,

i..

e e

i._,

e i... _,

00 to so n so da 69 to 60 v0 600 00 to 40 sa 4

nC og so too oc 60 ao so ao to to 70 90 to 100 f!MC 5CCONJ6 il"C

,c w fint LCCON05

  • E

- - N'?T#~

S o

o 4

o 4

i e

.-e i i i

5

~

s C

C C

e n

n C

6 NA C

5 1

y r

1 C

n G

G o

g.

g i,,,....., i i

i i,.

4

.. i i.., i..

00 49 n so ao 59 60 to 60 va 404

?Q io do sa ao do 60 to e0 90 soo ?O to 20 so ao So 60 to to to too fl*C SECON05 11MC SCCON05 11MC SCCON05 C

e e.

i i i i..

i W

e n e Ee Bs 1-

- f.

s t_

1 e

f o

n 7

i I t.

g i,.

..i..

,,, i i.

00 to do 30 as to 6s to ea no iop o 60 Jo sa *o to to to se so too 0 40 to 30 40 to 60 to 80 wo 100 il*C SCCONDS flMC SCCONDS timt SECONOS E

f s

~

.{e-

. - i 6

4

.. i i.....

p i

go g.

g$

i I-e

.i ge

~p 9

ye ge yC i

g

pa n

c

,V.

s

,i, s

,i,,,,,,

.,, i i,

o 60 so J; *o so 60 70 so so 100 0 10 20 30 ao so 60 to e0 so ico 00 to 20 30 *o to 60 70 80 90 100 fi"C SCCCN35 flMC SCCONOS flMC SCCONDS

.. - - -.. -..... - - _.1 FAIlile6I p

NW P1 4C0* vLv OPl% fe0000 PMP R$f 9 $

j PlIC.C * $L P f 4 e

e

(.

c i-i-. ; -i-;

e j

e e

e C

o A

e e

a p

m n

e c gr

~r e

~

p Oy.

tC t

i t,

n n

g g

g g b, 1i

,h.

i e

i.,,,.

4 oc ac,o 33

.g 30 60 to eu 90 600 o 10 do 30 *o do to 10 to 90 i00 o 10 to 30 40 to 60 to eu 90 100 f!"C 5tC0%D$

tiet StCONDS flMC LCCON05 C

R g

C c

c

-p l

4 n e Re n

he

~

~

~

g tC in c

R C

e C

~

8 8

E {

}

~

j rs g

g ao io n so ao do e,o 10 to 90 100 00 10 ao 30 *o do 60 to 80 to 100 00 to do so *o 60 to io so 90 100 time SECONDS f!"[

SCCCNDS fl*C SECONDS b

.. i i Q

p p

Q C

l 8

0 2

- e,. o

_m

.,.2 m

m m

C C

C I

5 c

c c

a g

i. i i e

i i i i

... i i,, i i

,,, i 1

00 20 40 10 *c do 60 to so 90 ico oc to do 30 ao 50 60 70 to go 100 00 io ao 40 *o 60 to 70 to vo 400 l

flat SCCONDS timC $[CCN05 timt $tCCN05

-... i.- i e'

..-- i,

6 i

I

)

Q Q

Q

~

~

i n.

i m.#

m m e

m w

8 8

Ec

%c Sc s

c c

c G

C Q

s c

s og in ao 33

.g 30 63 io og 93 aco oo 10 20 30 *o to 60 10 80 to too c0 10 10 30 ao to 60 to 90 so 100 fl"C SECC%35 fl*C SECCNDS timt SCCCNDS

FAr/*1.t.t et

$4 V, $

Pt LOCa viv OPCN f *0 000 PmP R$19 $

Plf D.00h P74 e

n e.

i

... i i i 4-

.-i-4-

.---i-.

c e

e e

e e

w

,e

,m

=

h M

o

. i e

i..

, i..

i e i.

i

?o is to so ao do 60 to uo 99 io0 0 to to 30 ao 60 to to 60 vo 100 o to to ao 49 $9 eo it to so ice hMC SCCCND$

11*C SCCON05 flMC SCCON05 C

R

... i.

. i e

i i i.

e C

[h j.

11k f

  • i al L u i

Tii,y "

a o

Re IN

?

s 4

C C

5 lg 1 0

~

c c

C Q

g

... i i i e

i i...

g i.i.,

.e.

...i... i

i..

.. i o is to so ao 50 60 to so to 600 00 10 Jo 30 *o 50 60 to eo so 600 00 io 20 so ao ho 60 to to so 100 flMC SECONOS TIMC BCCON05 11MC $CCONOS e

R

,,.. i i...

7 e.

g p

J S

p

=

h

~

h ili LL '

h fC

'rTi' C g

sm s n t

c n

c 8

J g

g

... i i

. i i i... i i i.......

0 :o Jo 30 au to 60 70 e0 to too 00 to do 30 90 50 60 70 to so ico 00 to do 30 *o to 60 70 00 to 400 timt SCCONOS fl*C SECOND5 flMC SECONDS e

e

, i e i i i. i e

i e

i

~+

4 i...

4 a

6 e

a e

f.

e e

f t

=

a O a

m g, e

?

m

.m

> e m

o i +. i

'o is ao no ao do 60 70 80 to ico o 10 20 30 40 50 60 70 80 90 10 0 o 10 to 30 *o to 60 7c 90 90 100 TimC SCCONOS 11mt $CCONOS TIMC SECON05

MIf97*$f cs

h. d i

VL v DPCH; f =0 0$0, P** 45f p 5 PIgCCA.00$L PF4 Pil 1

1 1

e e

4 i

4 i--i.. i e

e y

y c

j gr l

7 g.

g.

l t.

t-4 m

a

+

4 i,,

.,, i e

i e 10 so so au na 60 to no to 600 0 to to 40 40 bo 60 70 to Da ice 3

YI"C StCONOS fImt $tCOND$

i I

f l

t i

+

N 1

... - _ - - -.. - ~ -.. - -... - -.

. - -. - _. ~...

EAA f1% &lf gg l

$tv I.

Pi LOCA VL Y DP(N f *0 000 PMP R$1 $$

Pl10.00$L P7$

4

.i h

k I

i

.........i,.

. i.

e e

e 1

+

c

.o e

e

(

ES

~

C

.f

]

i I

f Of pe C

Q C

g g

E R

a w

, i i i e

i e i.

i e

.... i.,

i_e

i. i i...,

o io 40 so ao do 60 70 ea eo 100

~c 10 to Jo ao 60 60 to eo pa 400 0 10 to Jo ao do 60 iv po go 600 fl*C $tCONDS ttMC SICDN05 flME SCCONDS R

R S

e i i. i e

i...

G -f

$ - j e

3 2

e

~c 7

o

)

IR E

[?

^

2 7 p

3 C C

g

. f2 F

- f g

s i

R 2 f 2

t

,f c

e )

W, j

g i i.,, i e

i i

, i e

i i.,. i. i e.i i. i i... i. i o so to n *o do 60 70 00 00 100 "o

10 to ao ao 50 60 ro to go io0

  • o 10 40 30 ao 60 60 to ao 09 400 i

flMC SCCONOS flmt $ ECON 05 flMC SCCON05 S

i i

^

4 i

?

p i

~

~

g g

i 2

9 R

0 02 0,

n C

n n eR r-e Mg M

g

[2 9

g c

'c h

2 2

g e

e e

j i i i e

i i i i.

e i i e

i. i e i

i e

i, i i i e

i i

,0 to Jo Jo ao to 60 70 so to 400 o 10 ao 30 ao do 60 70 ea 90 io0 0 10 ao 30 ao 50 to io so go 400 ilMC SECONOS timC SECCN05 timt SCCONOS o

o e

4 i

6 -.. i i

e i..

e i.

6

. 4 i...-- i r

S g

g g

g

_g p

tn e n t.R

~

~:2 2

gg

. j B

j g

gC

- [c e

f e

f e

e e

i i....

i i, i i, i. i

. i i i i i e

i

i. i _i o ic to 30 ao do 6a 70 60 00 too o 10 do 30 *o so 60 70 to ho io0 o to 20 30 ao to 60 to eo go aco j

tiet stCON05 flMC SECONOS timt stecNOS 1

1

, _... _, - - ~

~


,,.,,_,.,,,-..n

FArlqi.6,r g

t%- t.

v, v OP(te ia0 000, PDP $$1 $ $

P C *t. 8 75 P1.C i

i 4

4

... i-....

4-

...- i-i-..,

C C

~

g 8

I g

f 4

[c

[C 0

[R 4

1 2R cR E

c c

E E

(

e e

e i i i i e

i i i 4

i.. <..

0 to do ao *o no 60 to to va io0 0 to 40 43 ao t.o 60 ru so Da 400

,0 10 to Jo ao du 60 so sa va i00 flat t[COND$

fl*C 5tCONDS fl*C SCCONOS E

E S

- i....

....,,. i.

g g

R c

_R..e C

g. A C

C R

hp cc tc

~

l c

Lg g

2 c

e

. i e

i i...., i

.. i i e

i

,,e i i i o 10 Jo sa ao >c 60 to ea so sob o is 40 so *o 60 to 10 00 to top o to ao 30 *o to 60 to so 90 soo flMt SECON06 1t*C SECONDS 11MC $tCONOS i

i E

c

?

c.h c

fn

{E

.Ylle?l{0?iYsY!!M fn f

~

I g

' y gC f

RR R

R c

g c

2 2

E

{

(

e i I

I o I e

. i i,, i...

i

. iiiii

.i o io 40 sa *o so 60 70 sa to too o io lo 30 *o 50 60 70 to to 100 0 10 to so 40 so 60 70 ea sa soo fimf StCON05 fl*C SECONOS fl*C $CCONDS o

o e

o

... i i,.. i iii..i g.I i

?

o c

g en Ih.ihmas g",: 0 p*

n a

g

~

R n

e.

c 5g ER

~

t t.

c o

f 2

g N

f e

e

+

4 i

i ie i...

i o ic so na *o 50 60 70 to 90 100 0 to 40 to *o 50 60 70 ea 90 100 0 is 20 40 *o to 60 to to sa ico it"E SECONDS Yl*C SECON05 il*C tt00N05

rar/n.c e Col Pi i cta yt v cet N reocco Pep asi e $

Pl10.00$L P 7 b i

Y

?

........i C

C C

~

f R

R C

{C fC fC RR RR RR C

C C

p C

9 c

~

c c

o io so ja av to to io es va soo o io so so

  • a do to 10 to as 600 o lo do so *o to 60 to to 90 ioO flet 5tCONDS 11*C 5tCDN05 11"C $ECOND5 C

S E

-i-...

..... i.. i l

g f

I

.. C

,W'\\

  • C l, nl :y qr

-r r~

r R

.R E

R RC y

L g

2 l

e e

,l.

........ i

.. i _i..,,

e i i i i... i o 30 20 40 to to 60 70 so vo too o io eo so ao 50 to io to to 600 o 10 to 30 ao 30 60 70 so to 600 11aC $CCCNDS flat SECONDS 11PC 5ECONOS N 7 E

E i..

i C

kll C

p-R j Ild i I

g

~g

-R C-R C

C kC 4

fn hC

-- kc

- fo fg I

e e

e i,,,,,,,,

o ao ao sa *o to 60 to na sa ioo o io da sa ao

>J 60 to ea wo 500 o 40 do so ao to so 70 to to soo flat SECON05 timt SCCONDS 11*C SECONOS E

N E

.. i i i.......

$ff A

l A

C g

-R.

-g I

O f

f kC C

l

$2 lg

. lg A g 1

e e

e

... i

,,,,. i...

c 10 20 so 40 to 60 to to Isa wo o 10 Jo 40 ao 30 60 70 63 90 ico o io 20 to ao to 60 70 so sa too firi SECCN05 lime SC00N05 t!"E SCCONDS

FAr/97.ct en p; C;a i. i 0*(. N r 0 000 P*P NSt 9 5 8 : '.g.. C 05, e r)

N 2

E i..

i i...--. i-C h

C hk C

W H

-R

-g

-g

?

C C

%C i

EC h

RC

(

5 N

U ig Eg t 9 r

. i i i.

.e i

... i e

i i.,

o io 40 so a o do e.o io ao n too o 40 to ao ao 3.' 60 to 60 to 100 0 10 40 Jo *o do 60 to to 60 400 f!*C SCCONOS timC SCCONDS tlMC SCCONDS E

S N

a

.. i i e

i. i i g

R

~g

[

E C C OC o

Io E~

~~

j

~

i

[

e c

i

... i i....

.ii

(

o io ao,; 40 30 60 10 00 so 100 c 10 to so ao Sc 60 70 to so 100 o io to Jo ao 59 60 io so 90 400 fl*C SCCONDS fl*C SCCCNDS lMC SCCON05 E

E E

i.

a N

~

^

S

~

g2 E; R

~,; R t

f t

(%

7C "C

!C 1

'l

! m o

t o ao

, i i..... i

., i, i i, i.i o 20 to Jo ao do to 10 no so too o 10 40 so ao to 60 70 eo so sco o 40 20 Jo ao to to io so so 400 TI-C SfCONOS

?!"C SCCON05 flMC SECONOS o

e o

i i.... i a

..... i.i.

i a

. i a

i.

c

$m%

E n

d

, n IN 41; h

~

a n e 4

,O z

g 2

l f

2 a

e e

e N

5e Br Ee t

t~

o f

o

~

c i

i > i.

e i -. i i,,.

6 e

i i i

C lo 40 30 *o to 60 70 to 90 100 0 to 20 30 *o to 60 10 so 90 100 o 10 Jo 30 *o to 60 70 to 90 400 4*C SCCCNOS fl*C SCCONDS flMC SfCONOS u

FAr /f'7 4g cH fj,gg yV D*[%. f *0 000. PMP N$1 9 3 S t Y. $

v g

E".

II i

... i, ;,

I-l l

r b C d

I g

C g

'*e g

0 10 kV u ao da na io no va ico o in n n.o 33.,,o,,,,,,,

itat $tc N s il"I SECONOS 4

l l

'" ~

i l

i FA r hv.t r r

LIC 8t v. d Pl Ca viv cegg t 0 000. pnp R$1 0 t Pit. 055 PF6 8

8 8

., i. s.i.,

..... i,. i

...,, i,, i

. s 8

E t

E t

g g

'g "g

'g e

a b*

NE I g i g h

=

g g

g g

g g

g i i.,

e i i e

i i

e i

e i i i i i g

g o io go so ao no 60 so oc to ace o io so so ao so 60 to to 90100 o io ao so ao do 6o ro go go soo fimt $tCONOS flmt $tCONDS timt $tCONDS 8

2 8

.... i e

i 6

i

  • ....... i i i i i 4-

..- i-- i g

.g g

$2

}$

- "8 I g I. ;

. I g

g g

i e

i i i e

i i i

. __i..<._,_,. _i, _.

g

'o 40 to so ao 30 to io 80 so ioC o io do Jo ao to 60 70 00 to 600 o to to 30 to do 60 to to to 400 11mt SCCONDS 11"E SECONOS 11Mt $f C0e$

S S

S

- i i i..

....... i i i

g g

g

'g

'g

'g 3

E g

M g

{ g kg S g g

g g

.. t..a a_ u. a..

ma........a..

.. i. _... a a. a. _.._.....a b

..i._,-

m. a,.,. a.

g o io 20 30 ao 50 60 to 60 so 400

  • o 60 to 30 ao to 60 70 to 90 io0 o 60 do 30 ao no 60 70 to to 400 11mt SCCON05 flmL SECON05 TIME SECON05 I

E E

.. i e

i....

i i i...

4 e

6-e i i e i g

g g

w w,g

.g s[

ei e

=

g g

g fg g

g b

, o.._..

o io 4a 30 ao so 6a 'to so 90 10 0

  • o io 40 Jo ao to 60 70 to so i00 60 20 ao ao 30 60 70 00 to 100 fl*C SECONOS fimt SECONOS tlME SECON3S l

FAr/g M r g g, PitbDhC$t N(,0"(N f =0 000 PMP Alt 0 $

Pl y

.... i... i

.i i.. i.

i - e i..-i i. i..

r

(

g g

w w

.E

2 g

pt J

t g

g g

[

i g

g..l % ~ #

a--.4.....

..w.,b.

J i_

i _-

m

......n..,.-

g,.s...4...+,..-..

1 0 no su sa av hv to to 6a W io0 o io so so ao to to sp so to 600 o io 19 su ao 60 69 to e9 po 800 flat M CCNDS llMt $(CDNDS 11MC $(CONDS k

I b

C

.-. i...

4--.

4 4-I g

g R

R

~

i w

w w

E$

G8 R

2 g

g 1

g g

)

g g

g

]

)

i i i..,...

i i.,,... i i i..... _i _i _.

g g

g 0 is do so

  • 9 60 60 to oc vo 600 o 19 49 sa ao 60 60 #9 60 90 io0 o to ao so ao to 60 #9 tu va 390 11mt LCCONDS 11mt 6(CONDS tl*C $ ECON 05 k

k k

6 4

i i 4

... i.

f k

g k

w a

w em e.

e e

g E

S l

I E

l' k

B

, i i i e

i. i i i i......,

e i i_ i e

i_ii o 40 ao so ao 60 So io 60 to too o 10 ao 30 *o 69 to io 09 to ico o io ao so ao bo 60 70 to 60 100 11MC 5(COND$

11ML 5tCDN05 ilmt SECONOS k

- -i.' i i.

k

- i-i- i--.

i.

. i.-i i

.. i......

{

{

{

j b

h g

O N

h,g g

5g

.4 r.

l ]

l

)

g

\\

4 g

...,..., i i__

o

_i_....ii.

  1. o to 40 so *a w 6e te oc we ico o io ao 30 ao bo 60 70 80 so ico
  • o is ao 30
  • 9 bo 60 10 to so 600 11=t SEC0%0$

11mt SCCOND$

timt SECONos

~

.. - - _ _ ~ -

_ _ _ ~. ~. _ - - _ _ ~

. -. _. ~ - -. -._.-.. - -

l'

% Zl 4 '1

  • U di7 i

RtV. W PI t o vt v DPth f 0 000 emp abt # b Pl10. 6' n0bL PF6 i

[

g

_4 H

i i i..... i 4

a i

k k

k k

k 4

-p n

g g

4 n

E E

E g

g g

)

J f

,,,.. i i

!._i i,. i i i e

e i i.

p

.,, _ i.. i o io ao so to do 60 to to yo io0 o io to aa ao no 60 to e4 va io0 o io io so ao no tio io na so sco flMC 5tCOND5 liet $tCOND$

fl*C $tCONDS k

k b

- 4 i-,,

i,

i,

e i

i i

g g

g 1

6 k

i.

1 m

a m

he E

E R

R c

g g

s l

g g

.,,,... __i..

i e

i i i.....

i i,,,, i i..

i o

", o o to io ao ao 30 to 70 to 90 400 o 10 to 30 *o 60 60 70 to 90 100 io to 30 *o no 69 70 so so too ilMC $ICDNDS lime $tCONDS timC SCCON05 k

k C

i..

i e

i_

, i i,

1 i

g

[

g

+

w i.,

6 d'

8 0

a a

o o

l g

w g 1

j d

d g

g g

a e

e i... i_ i e

o o

o

._ i i i...,,

i i i i e

i i. i

  • o io do so *o to 60 to 80 to 100
  • o io 10 so 40 to 60 10 ea so 100
  • o 40 ao so ao so 60 70 00 90 sco il"C SCCONDS 11"E $ECONOS 11Mt SCCON05 b

C

-i..,,,

i k

-i.

i....

i i

{

g

{

q w

4 i.

O 7

g mp a o a

g-y.

~ lc 2

_2 4

l g

g g

i d

....__i i...

o i_ i.......

i i., i i.

  • o
0 to so io % 60 to 60 to 100
  • o 10 40 3a ao do 60 70 to 90 100
  • o 10 20 30 to 30 60 70 80 90 600 ft"C SECONDS tlME SECONOS fl"C SCCONOS 1

.m

,,_.,__.,___m___~

_mm__.-____________..____m

.. _ _ ~ ~. _ _ _ _ _. _ _ _

J kbI fi *Ie $ J C'It Rev, O N Oca

v. y peIN t,0 000 nP H51 0$

Pit.00h F 7f>

4 3

r pe k

k o

o a

i i

4 i

i e

t

. i i d

{

l

[

i w

w w

i a

n m

Ro 5

R o

e c

g 6

e.

]

g g

g 4

i..,....,

.....,,, i e

i i i 4

... i. i.

o o

o i

  • o io ao ao *p-do 60 so op so soo
  • o io su #J *o do 60 to 80 90 sco "o

io to so ao 30 6o io en to 400 timt StCOND$

11PI StCON05 timt $[CONDS 4

i I

{

{

[

J w

w s

8 0

I

{2 E

E 4

+

g g

g 4

l o

. i,,., i e.

e e

i i i......

.. i e..... i o

  • o is ao so ao to 60 to 00 so too
  • o 40 tosoao b0 60 to 60 to io0 o 40 to 30 *o to to 70 to so 100

\\

l f!ME $tCON05 11MC SLCONOS 11mt $ECOND$

k k

C o

1 l

g g

j s

w w

f R

E

~

^

g p

g g

g g

a i

.... i,..,

i........

  • o

,,. i i i i.._

o o0

  • o io do so ao to 60 10 so so too
  • o ic to so ao no 60 io so so 400 0 to Jo 30 ao so 60 70 so so ico flMC SCCDNOS flMC SECONOS timt SECONDS k

b k

i....

.- i...

i

... c a

4

[

{

{

i 1

3 G

R hi

?

?

2 2

g t

g 0

8 4

6 8

4 1

1 1

O

  • o io do 30 ao do 60 10 60 90 ico
  • o no do 30 ao to 60 70 60 to 400
  • o to 20 30 to to 60 70 vo 90 600 flat SCCONDS TIME SECON05 fl*C tECCN05 i

e 9

f*AT/97 67 cig Plggvgv CPr% r.c ooo emp ar,t, g

$4 V. @

S 9N a

~, i'...

I y

o R

l F

=

.8 5

l 3

,o 0 10 to n

  • 0 do 60 to sa 69100 in to ja.c do ao io ya ya ion ilmt SCCONDS flPC $CCONDS O

- - -. -....- ~_-.- - -.

.-~.-._

--.u._.-__-.._-.-

..-.-u-.-

-~..-----w~

PAZl93*GS C10 i

bd Pl L O)#

  • WiV QP(N (*0 000
    • P 451 0 $

911 0 Ck Vil i

i i[e e

e

. i..

y-y-

d 4

i a

a a

a e

e a e a

f 1

4 o

o o

1

.i e

, i s

s e

e

.e e

t

. i t

e e

i e

s 9

i.

t..!

?D to 49 Ja *o >; 60 70 ea sa 400

?D 40 to Ja

  • 0 do to Fu 80 9.

100 90 so du #0 40 to 69 30 60 64 400 flat $tCOND$

fimt 1,( C ON05 flMC SCCONDS e

e e

g.

be b=

i i.~

i' a e

a a

, i

.. i i i i e

a a

e e

e

{

Y

{

Y

{

Y.

1 a

a

.a ge pc ge i

o o

o e

_i....

e i i_

e i...

e i _

e

.. i i

e

?O to 40 so 40 to 60 70 so to 800

?O 10 do Ja

  • J bo 60 70 to to 100

?0 10 20 ao ao to 60 70 60 90 100 flMC $[COND$

flPt SECON05 timt $[CONOS e

' i t.

e e

t-t-

i,

4 i i..

....... i e

a e

~

~

~

~

~

~

i ru i

i ge ge a

a a

"o #

E e

o o

e e.'.

9 e

..i,.....

?O 10 20 sa *o 50 to 70 ea 80 600

'O 10 Jo 30

  • 0 to 60 to Da to s00

'0 to io 30 'u SG 6a 10 uo so 100 flMC $tCON05 flME SECONOS 11"C SECON05 e

e g-

,i.

,,e i i t -

t 8' di~e 6

i'i e

i i i

  • l t
  • i a

f

  • e. f I

I e

c t

1 1

~

Ae 5

I g$ l' I

a a

g i

80 g*

ge "0

o y

o I

2

}

e e

s o

e o

e i

.iii,,,.i e

_'0 to 20 30 40 to 60 70 00 va soo 70 to 20 30 40 to 60 to 60 9e 400

'o 20 ao Ja ao Sa 60 70 60 to 400 fl*C SECONOS f!MC SECONOS tlat SECCN05

___.._-.....m.

_..m,.__.____

PAZhi* $ 5 cu m.9 PI t 0*

  • vt v Det % f >0 CCO. PPP mLt 9 %

PifD.dCh PF7 i

JiQ I

e e

e Y

i 1

l m

i s

s c s

at

a. a 3

J J

.e Ro

C po i

Q 10 1

4

(

e, l e

e 1

i o

9 N

e,

(.

.. i e

~

. i i, i e

i..

4 o 40 sc Jo ao w to io 09 vo too io io so 30 au do 60 to so to ico

'o io to ao ao so 60 to to so 100 ilMC SECONDS fimt $tCONDS flmt $lCOND$

e e

--i..- i t,

'ti e t-

.. i e

% +-

~

i i-i 1 i

, i.

T

~

q e

e e

]w- _ _ _

9 g,

I s

s a>

e e e a

se 6"

Ge I a

R

(

o h"*

i h(<

y s

e j e

?

}N h

?

?

<i,,,ii..

c

... i i i i i i i

.__i__iie i i__i 4

'o 19 to ao ao do so io so 99 100

?o ic 40 so ao 60 60 to eo 30 soo

  • o io to so *o 60 60 to 80 99 noo i

1Imt StCONDS fP StCONOS 1 Int StCONOS

't c

%e e

g ge 6--

i i-i i e

i

....... i

,.. h

- s w. #McMw%WJ L

ggggg p%g,

=*

i e

e T

Te T$

l Aa e.

ec a

  • a e i

g.

pm R

M e,

9 1~ t e

I a

e e

e o'

v.

i i i, i i i_ i.

i i i, i i e i i

  • O ao 40 Ja ao do to io ao so ico

' o no do Jo ao do 60 to so so 100 70 is ao 30 av So 60 70 eo so too SECONOS timt stCON?$

timL SECONDS i.

,'Imt

'i e

e o

g J...

.....~

ge 4

i i L'

ci i i ge a i.. i A & $ Yl $ YhY01}

)

y

~

~

e O

l e

d

.{'

e I "e I

I g

T e g

l s

s c a

=, c g*

g' i,

~c i

}

i i

h *::

he Nm l

s s-l e

i

\\l

~

e

+

~

e l

i i i

.,,,, i i, i e

,,i i i i i..

^o 40 40 so ao 30 60 to so to too o io Jo ao ao so 60 70 eS va ico

?o io Jo ao ao 60 60 70 60 90 soo flat SECONDS time $[CONDS 11MC $[COND$

_m.-

n

_______..._m__._..

..____m._.

ruin st C2L PM. $.

  • l LOCa vt v del N t.0 000
  • P 451 0$

PllD.0CSL P7 7 ht

%S gN 6

.4-

, ; i j(.

. h.....,

1

! Qe

~,,

6 e

~

v

{*

T:

p(

n y-y c

qe

.c i;

s' 4

~

a a

s e e

-e j

E N'

8e I.e I

fe I

e a

i

/-

J e i

m i

3 m

e a

e l

e" c

e i i,,,,,,,

-c io <c s % w 6a ic 60 va 500 o ic to Ja ao 30 60 to e.: 90 ico ?o ic la ao ao 59 to io so pg too fl*C stCONDs 1l*t LCCOND5 11Mt $CCONDS e

e

-....... i e

-i.-, -,,,,

ge g-g-

i-.

i fV i

i e

e qe

}

q q

"w c--

se s

s

]

3 e.

3*

Li 1

9

%e i

5a k

R R

yo O

ye y

s=

a e

e e

~

y y

c e

... i i...,

,, _.i i e

i.,,_i

?o io do su ao b0 to is 60 ta 400

'o 10 to Ja ao do 60 70 00 99 100

  • o 10 to 30 *o 60 to 70 ta 90 400 time stCONDS t!PC SECONDS 11Mt 5tCON05

%~

t ~

4

~

t

..iii..

. i j

?.

8 i

8 t'

G 1

i

l

~

a.

~

O 1

3 i-O L

O e

e

,. i,4 io 10 J0 30 *o 30 60 iD 00 90 400

?0 to 40 JJ

  • D W 60 to 60 to 100 io 30 40 so ao 30 60 ti 6T To 400 l

f*r stecNos flat stcoN0s tint stecNos l

s s

, i.,, -.

s

^

N b 1$1&

l i

y

  • N

^

~

E A

~

E

~

O O

n O

N N

O O

~

?G 44 s0 JC 80 30 to lo 60 90 400

?Q 10 20 30 *o b0 60 70 00 90700 io 40 20 30 to bo 60 70 to 90 soo ti*c secoNos ti t stcesos timt stCcN0s

FA T /M. s g cu

$f V. k PI t t;ta n v Ort h.

f *0 000 Pap h6f 9 5 Pit o.Cth P F7 l

C

- i.. i.

~

t t"

l 3

.. i

. i.,

l

.i

. ~

^

o o

g h

i l

?

o

.c 40 sa

  • a de 6.: io 80 se ico ? o~ ia C

to 30 *a da 60 is to va 800

?o io to Ja ao M t, o is oc 93 100 ilmt tt:0NDS 11*[

SCCOND$

11PC SL C0ttl t C g~

t'

.-....... i i i....

3' h

JC a

a.

=.

~

P 5'

o g~

5 i

o l

o e

i.....

~

, i i......

i. i i e

f

?o 40 20 3a Eg 30 to to 60 pc too ?o 40 49 ao ao 59 to 70 to 60 100

?o to 40 30 to 50 6c ro so so ico tlat StCCNDS Yl*[

f.CCOND5 11MC $tCONOS C

C C

g g

........ i t

i........

I I

I y

'- [lhZ S

Y S

p-S p

7 h

5 5

J l

o o

o

?c io da as *o to 60 to to to ipo

?o io 40 sa ac to 60 to e0 to ico ?o no ao so ao 50 60 70 og sa 100 f!"C SECONDS flME SECON05 TIPE SCCONDS g C C

C

....i.ii.

t t

'p y

h..

V h..0 k..0 p+ ?

p h

I L

u E

a

=

o o

o io 0 JG JJ

  • J

$O 60 10 90 90 ICO IQ 10 20 )3 eQ SQ 60 IQ $Q gy 300

?Q gg gg Jg og $g gg ;g gg yg jgg flPC StCONOS flat St0CND$

tim [ $(00g05 b

-.. _ __._.. _ _._.__ _._ ~

i FAr/q1 6f 4

C11 Iw, PI O A. vt V DPIR ree C00. PmP #$f 6 $

4 Pit 0$L.P f f I

e

  • a -

e

,a-4 i e i 4 -i-i-

,,.i I

y S. e

..e n

e e

h o

l 3

o 1

f 2

,.{

g e

e O.

O.

s

{

  • l e

i e

i i 4

e i.,,,, i,

1

  • O to ao Ja ao do 60 is sa va 400

'o io ao so e9 to 60 so so va ico flat $[CDND$

flMC $ECOND$

I i,

O i

4 d

4i t

f i

1 l

l i

4 4

y 1

i 1

b i

I.

i b

4 i

e d

9 t

t

.e i

_,,, _.. _, -.. -.. -,.,.. _... - _. _. _. ~.. _

FAT /41 6F

\\t.e g.

car TRAN51G4T di + 30 m riesfeef

$ fcx yes== 0

$ RP != "4$2$dua0 lELICSON] tools RP" O $ RP $4$DKA300:

COOL.PI]PITO 030L.INP -

$2$DKs100: C00L.NEXT. INPUT]PI2. PAR -

$3sDKA200: 1 0 ARCHIVE. TREMOLO.101)TREM0LO.EXE -

$4$DKA300:' COOL.PI) f o

O i

e

-g pp-M v-' e tm y'r y

'yDm--*

,, mm ueg mresp-'

sw

FArl91. s r g,$

fld.$

2.

/ ENTER 1 FOR BATCH, OR 2 FOR BATCH VITH SENSITIVITY OPTION PI LOCA, VLV OPEN, f.0.000, PHP RST 0 30S

  • O ADIABATIC PIPE, 270 F GAS TEMP
  • 1 4TH RK, 40 NODES 1

/14 READ PARAMETER FILE, 0+USE DEFAULTS 25

/UNIf NUMBER OF PARAMETER FILE O

/ ECHO PRINT OF PARAMETER FILE 1.YES, 0.N0 1

/ LOCAL PARAMETER CHANGES 1=YES, 0 N0 LOCAL PARAMETER CHANGES

                                                                        • =*****************************************

IPLT1 2 TDMAX.1.E-3

    • SIMULATE 10" ORIFICE BYPASS VALVE OPEN (USE K 5)

XIDP(13)=0.835 XIDP(14)-0.835 XXPE(8) 5.

    • SET FOULING FACTOR FFOUL 0.000
    • PUMP RESTART CONTROL TIPUMP 30.

TRAMP.S.

    • CONTAINMENT TEMPERATURE INCREASES FR00 85F TO 270F OVER 1 SEC NCTTAB-3 TICT(1)-0.

TICT(2)-1.

TICT(3) 100.

TGCT(1).85.

TGCT(2) 270.

TGCT(3)=270.

    • PUMP COAST DOVN CONTROL TCOAST = 1.0

/ TOTAL COAST D0VN TIME (SEC)

PC0AST - 20.0

/ PUHP DISCHARGE PRESSURE AT TIM >= TCOAST 11 / USER DEFINED PLOT FILES PLOTFIL 80 /** PIPE VALL NODE TEMPERATURE THTS(1,1),THTS(2,1),THTS(3,1),THTS(4,1),THTS(5,1),

THTS(6,1).THTS(7,1),THTS(8,1),THTS(9.1),THTS(10,1),

THTS(11,1),THTS(12,1),THTS(13,1),THTS(14,1),THTS(15,1),

THTS(16,1),THTS(17,1),THTS(18,1),THTS(19,1),THTS(20,1),

THTS(21,1),THTS(22,1),THTS(23,1),THTS(24,1),THTS(25,1),

' tits (26,1),THTS(27,1),THTS(28,1),THTS(29,1),THTS(30,1),

THTS(31,1),THTS(32,1),THTS(33,1),THTS(34,1),THTS(35,1),

THTS(36,1),THTS(37,1),THTS(38,1),THTS(39,1),THTS(40,1),

FAI/41 6F c t, w.1 TNTS(41,1) THTS(42,1) THTS(43,1),THTS(44,1),THTS(45,1),

TNTS(46,1) THTS(47,1),THTS(48,1),0N0DEV(19),0N0DEV(20),0NODEV(21)

END OF USER DEFINED PLOT FILES O 0,0,0 e*******enee******************************************************************

/ END OF PARAMETER CHANGES 0

/ INITIAL RUN (1 AND 21 ON NEXT LINE IF RESTART)

O.

/ START TIME 150.

/ END TIME, SEC 5.

/ PRINT TIME INTERVAL, SEC 0

/ NO OTHER INITIATORS 0

/ NO OTHER ACTIONS, TREM0LO EXECUTION ENDS 6

4 O

O

FAI/O.67 dat Pi (Oca v6v OP(% f eQ DOO PMP R$10 SO Pi10,C30L P74 a

i e

i i

c n

2 X

v o

oo 8o I

,a i

1 w ',:, J

  • e

?

e e

?

-'o do ica 130

'o-do ice iso

'o do 90 i50 tim [ SECDNDS fimt $tCCNM 11MC SECONDS c

o 4

i e

4 e

e 2

E Eg t

t In e

e C

O.

O.

C C

.'o to loc it0 os 60 100 150

  • o so ica iso ft"C SCCONOS tl*C SCCONDS 11MC SECONOS

.=

. e

. e O

i 4

0 6

s O

I e

e s

e e

c m

m m

e o

e.

g.

g g

g g

g9 e

~

~

~

Q l

?o to ico 150 o

do Ao ano o

no soo (30 flat SECON05 tint stCONo$

flME SECONOS C

a

.a o

i o

i e

R m

a a

m m

m 0

C

=

~

s t-t C~

o o

l i

i i

i i

o to too 150 00 to ico i50 o

50 too 150 Time SCCON05 ft"C SECONOS 11MC SCCONOS l

. -.,.. ~ -. ~,

,.~...~~.-_.n__-.-.

........ ~. - ~.

1 FA t lt'l.6 7 A v* g c ti 2

Pi L OCa. vtv OPEN r=0 000. PMP R$t 9 h i

Plf D.030L '74 W

i a

i sE n

e n

4 6

i i

e t

?

a l

g_

2 a

n i

bC N

2 a

a j

y

)$

l

).

1 I

l i-S d

j l

c o

l g~

s i

oc bo ipo ISO 00 to too 150 90 to too 150 timt SECONDS time SECONos flME SECONOS C

e i

i e

g 4

,i i

1 e - [l 1,

. e e

J f

8 i

I

@g l

I*

y go e

a rg

~

t' t '.

y

{

c i

n a

n l

~

i l

s y

,I 1

i i

oc to too 630 0

to aco L50 0

so 400 ISO e

flME SECONOS time SECONOS time SECONOS 3

e t

e a

=

6 i

l 1

4 m

e i

e e

l m

$e a

8 l

k Ee c

0 gc gn g

{

ye ge a

g a

j 4

m n

i I

I O

O C

So 100 150 0

50 100 130 0

30 400 450 ti"E SECON05 flmE SECONDS t!NE SECON05

(

s

't s

e

(

a e

s e

J e

3 j~

m, J

N

)

ge

{e "w

a a

4 w

w f

w j

@e

@m

@O 2

2 z

ye g9 a

ge J

I i

a a

a n

n n

a I

t e

e s

- 6 G.

30 10 0 150 0

So 10 0 150 0

to too 150 I

fimE SECONOS fimE SECONOS time =ECONDS s

i FAT /97 6t C.So Pi LOCA VL v OPCN. r=0 0C0 PMP HST S So P110.030L P74 j.

i T

g i

i i

i e

o e

8 7e Ge Ge v

n g

p]e gc gc a

2 ge g,

g e.

n a,

n g.

o\\

i i

i i

o o

0 30 100 450 0

bo ico ISO O

bo 400 150 f i'"E SCCONDS TIME SECONDS 11MC SECONDS e

t.,

. e e

n l;

o 8,

re se a se O

O e

c a

go a

g, g,,

g e.

a m

n n

n n

o) i e

'i',

i o

o, 0

30 100 iso o

to 100 isc 0

50 0

150 ftMC SECONOS TINC SCCDNDS 11MC SECONo=

~

~

i a

e e

e s

a 8e ca

e 0

0 0

8*

8*

8*

3 3

3 ge

$v J

ge m

-u e

m n

n n

a e

i i

0 30 ivo 130 0

30 100 150 0

30 400 450 ft"C SCCONOS TiMC SECONDS TIME SECONOS i

i

_j e

e e

a e

s.

2e a

7e 2e

."go go O

O go m

z z

ge g

e, g*

J

=

n n

n i

i i

O bo 100 150 0

30 100 450 0

20 100 ISO T!*C SCCONOS TIME SCCONOS TIME SECONOS

.....~.._m.

~... -... _ _ _...

__..___.____.._.,...m..

.._=._..-__m._._.

.m.

i FAL/9% 6e g,

w. o

^

Pl LOCA. vt v OP( % r 0 000, PMP RSt e go P110.030L P 74

~

i i

4 i

)

e e

e a

i Ce ge 8,*

De gc 9

s' gv g e.

m m

n

~

O O

O 0

30 100 150 0

30 100 iso o

do ico i3g TIME SECONOS 11ME SECONOS TIME SECONO5 i

i i

e a

e a

e e

e a

e s

3 E*

J 8e a

Oe 0

5 5

go go ge 2

z z

^~

y*

y T.

W ge n

n n

o o

o O

So 100 ISO O

30 100 150 o

to 300 iso

?!ME SECON05 11ME SECON05 11ME SECON05 e

f

{

a i

4 i

e e

e a e a w

n '.

e Re Re 5

5 5*

ge.

go y

g 2

2 g s ge ge g ^

a a

n ti i

i o

0 50 too 150 0

to ico 150 0

so too iso TIME SECONOS TIME SECON05 flME SECON05 E

S

=

G C

e '.

a C

n a a

E p

e a 3

Op a

c

- c 3 *-

O O

O c

o '.

o o,

xw 24 z

z t

C m

,n C '-

6 e

1 a

g g

. i i

oo 30 too ISC O

So too 15 0 00 bo loc

_isc TIME SECONOS flME SECONOS TIME SECONDS

l ras in.sr C S t.

Pi LOCA

.6v OPCN f a0 000 PmP R$f 9 33 Pif 0.C30L P74 l

C 9

i C

r p

g g

t -_

t f$

y$

50 Mf Y

9 yC gC R

C C

c g

i Oc so 10 0 L30 (o

so 10 0 63 0 ftMC SCCON05 11MC SECONDS

FAI/17 6e w.4 cu Pl 40CA. vt v QPC N.

f *0 000. PMP RST 3 })

PlfD,030% P75 E

E E

i q_

g R

g o

_g E

e E

Eo G

g c?

g t

- f g

o,,

c 4 2 R

f 4k C

g %

E e

o o

~o 50 soo ao

~o 50 100 150

~o so iou iso TIMC SECONOS tlMC SECONOS TIME SECON05 E

j_

E E

i i

v-Q g

_g g

f N

E E

~

^

g

@g B

8,

{g g

A R

g J

g l

o

'~ o 50 100 150

~o So too 150 0

50 800 150 flMC SECONOS flMC SCCON05 flME SECONOS 0

E N

i i

e i

C s-

?

w

~

g a

g a

_E

~

R l

_2 ER j

E E

f n

t

-cg l

5 Ya gR

[

m 5g I

5 a

9

=

A Ae a

L e a

o 2

l 2

c - l1 e

I, J

e t

o so ico iso o

50 ico 450 0

50 too ISO flMC SECONOS TIME SECON05 flMC SECONOS 7

7 7

4 p

a p

p J

y g

g a

g

_R J

_g 4

_E I

E E

,g I

a

-g i

l g

l m

e n=

'gg l<

a gg gg a

j t

l z

L e a

A c a

A c I

o o

g i

f e

e i

U W1 i

i i

e o

50 too iso o

50 sco iso o

50 100 150 flMC SECONOS 11ME SECON05 ilME SECON05

~.. -. -, -.

~.... -.- -. _.... -. - - -. -. _..

FAr/q1.ca

'N

n. q Pi LOCa vt v OPEN f
  • 0 00 0.

p=> aSt e 33 PITO.03CL P FS D

e o

o i

E g

g f

fR

[C R-Eo

. o,

{

~

~

n hR N

~

i 4

l

[C l

g

[,

C 1

o 9

l 9

~

c I

0 30 soo iso o

o sco 130 0

o 100 150 TIME SECONDS ilmE SECCNOS flME SECONOS i

c e

e g

7 R

E o

0

~

O 2

c g

ca j

- r*

i ec '-

En in W

E' N

N 2 b

~

Y

~

CC i

1 te

~

  • jd l

N c

y 9

i.

C ll f o

e e

i a

L I

d 0

50 10 0 t50 0

So ico 450 0

50 too 130 TIME SECCN05 TIME SECONDS flME SECONDS i

I g

g..

p c

_0

_g Ce C'

fe 1

h h(

-j he.k b

Oe. '

[

fi ko

.. [g C

l e

d-C C

I s

e e

e

+

'O So 10 0 150 0

So aco 15 0

TIME SECONOS TIME SECONOS TIME SECONOS e

e 4

i i

E

~

o p :.

1 g

j E :-

f

~

3o E E EA 8

A e E

i 1

u

$a -)

k

$c

@e t

a l

a u

s i

hal Ig I

fe j

fE M

~

I gs a

j c

e i

i t

0 Sc 100 150 0

do 100 150 0

30 100 150 ftME SECCNOS flME SECONOS TIME SECONDS

.. -.... = ~..... -. --.

_.. _ _ ~ _.... -.. - -... _ _ - -. _ - - -.... -.. _ -

F A Z / 91.6 r esr Ru.$

OCa VLv Oprk r =0 000. PPp RST 933 Pi Plf b.C)DL P75 s

a e

i i

(

Q D

-c

_s f

C_p f

0 e

, l h,N b

  • j, l

N N

h n

[

l l

tc.[g tc c a 4

e c

e o

I I

I 1

0 e

g

'C do 100 i>0

'o 30 too l>0 o

do 100 150 TIME SECONOS fl=E SECONDS flME SECONOS l

I E

e l

i i

i i

p f

a f

Q..

C e-

. r-

}

es o

e f

-nj2 J'

- ic wpm ic

,C. '(

i Ag 4

sn 9

i o

a e

e e

1 e

i i

i e

s g

O

$0 too 150

'o So too 450 o

So too ISO

?!"! SECONOS flME SECONOS TIME SECONOS E

0 E

i i

y E r g

l I

~

3 2 g

g?

{

g m

m m n l

C '-

hN

~ h, b

bo 2

z z a 4 g 4 0 L

2 o

2 e

o o

ico iso o

o too 150 o

o 10c 150 Ti"E SECONOS Tl"E SECONOS TIR SECON05 I

E E

E i

i i

6 i

i p

d Q '.

a J

a E

o k

[

~

~

~

I [R '-

n

.~

m

o 2N m u m

g*

~

gR J

gg a

t

~

e i

c c

e d

i e

l c

c j

Isc o

50 too L50 o

o 100 L50 o

o ico Time SECONOS f!ME SECONOS TIME SECONOS

_.~

FAI/n.sg Pi LOCA. WL v OP(N. fi0 000, PMP RST $ M P110.030L P75 s

On g

o e

e i

g g

o

[C N

[C

- [

~

~

I

$R ER EC f

6 i

gc gc ig, o

o e

e e

1 i

i i

n o

30 sce ido o

30 ico 450 0

30 ico 150 it"E SECONDS TIME SECONDS 11ME SECONOS 0

6

?

p i

2 o

1 E

~

{g

{

~

~C k

a g

t t 0 A

L c U

o e

4 L

e 0

I 4

o go 300 ISO O

30 40 0 th0 O

So 100 ISC it"E SECON05 TIME SECONos TIME SECONOS E

E E

i i

i f

g o

e; C

h' w d

~

e C :-

i e

o

{C A_

~' [E i

k l

l z

o o

jR r.

2e f

ge l4 l

t a

L e

O l

o

~

~

c e

e g

(

t t

I I

"C 30 ICO 130 o

30 10 0 ISO O

SO 10 0 ISO T!=E SECON05 f !"E SECONOS ilME SECONOS 2

C E

E-i 6

g R

g h

MI

~

q E

ge '.

@C f

f.

fc :-

g g

1 o~

l

}

e c

j O n 30 io iso o

So 10 0 150 0

50 100

!SO Tf=C SECONOS T!ME SECONOS TIME SECONOS f

.m_

.,.,..mm.

_ ~.. _.. _.. _ _. _ < _.. ~.

.._m_.-m.__.__.

.__......_m 1

FAT /q7.Gr 4

C.1t 1

k4 d. k P

yt y pplN f 80 000. 8mP R$f g y p

R j

\\

?

-e f

1 b

s

} /*"

p I

O o4 m 1

a

(

4L e t

I i

9 I

i a

c e

O da ICQ ISO

~0 go 10 0 13 0 e

I TIME SECONOS ylMC SECONDS i

i b

l h

p l

4 4

a t

t, 9

1 4

1 i

1

.(

I l

4 A

l 1

4 1

4

.{.

i I

i e

G t

-1 e

.._......___..._._...._m.

FAI/t7.&r (38 StV. k Pl LOCA. vLv OPEN, f *0 000. PMP RST e 33 P110.030L P76 i

O O

O i

i i

g g

3 g

g g

g 6

e

  • e

, e 4 e e

,e n

n i

u u

i 8=

8e 8

c

=

fg In f To l

g g

l g

g g

4 g

g g

(-

o o

"o so 100 LSO

  • o do too 650 0

50 ico 330 TIME SECCNOS TIME SECONOS f!ME SECONOS o

o o

i i

i l

g g

g t

}

4 i

'.e

'e

~

. e.

n O

M 4

o O

o a

5 fg

  • fe fg t

j g

3 g

i i

l "O

_^.

c 1

e 1_

e to 100 650 0

to 10 0 65 0

  • 0 So too 450 8

4 ftME SECONOS f!ME SECONOS

'INE SECONOS i

3 S

8-

}

I l

g g

Q 4

n e n

n G f

O-O a b

8 w o O

1 O

O Q

}

$g

$g a

9 o

e 3

j g

g j

g e

c t.

.)

i 5

e o

so ico 150

  • o 30 40 0 450
  • o 30 10 0 130 S

TIME SECONOS TIME SECONOS flME SECONOS C-C e

i 2

i e

e f

f i

o j

a f

g

~$

hb

~

S R

O o

o E

E 3

  • o i

d g

8

=

a g

g i

e i

o o

j "o

30 too t$3 "O

So 10 0 ISO

  • o 50 100 15 0 l

?!ME SECCNOS ftME SECONOS flME SECCNDS 4

4

}

4

.._m m._-.-__...____..-..

._m.m.m.

I FA r/n.c a j

Aw. $

C 39 P1 LOC 4 vL v OPE N.

f e0 000, PMP RST $ 93 4

P j l 0,0101, P 76 4

2 I.

t o,

}

n 2

8 u

s 5 -

1 EN EN 7

9 3 "

9 3 "

2

8 g

8.. '

8 8

j 4

o o

o "O

30 100 150

'O

$0 100 ISO "O

b0 100 abo 4

TIME SECONOS flME SECONDS itME SECONDS 8

8.

2

~

a kl i

l s

R.-

o wE 0

w.

'-( f o

c 1

~5 g8 i

8 1

8a

{

2 8

i

! )

8 o

i t

e e

I e

o o

"O 30 ico 150 "O

S0 100 150

  • 0

$0 100 150

!!ME SECONOS TIME SECON05 f!ME SECONOS o

o M

G e

e i

i l

g g

g i

.E -dpl-mB [j i m2 d

[

L 2

5 1

o 38 08

~k 8a I

8a 8

i i

i i

g

-g 4

g 8

8 8

}

a o

o o

i e

i i

e "O

30 100 150 0

30 100 ISO "O

30 10 0 450 TIME SECONOS TIME SECONOS flME SECONOS s

o o

A i6 i

i m

i k

g i

o

/

~

4 N f

~

w o

I N ]

g j

6 4

+

=

~

~

N -

ce o v

gg gg 9

zo

~

'y 4

j g !

3g 3

1 o

(

g 8-,L e r j

8 O

o o

5 "O

30 10 0 150 "O

SQ 10 0 15 0 "O

$0 100 15 0 I

flME SECCNDS 11ME SECONOS TIME SECONOS i

1 4

._i--

FArfq1.6T c.g3 i

Atti h i

Pi Loca. vt v OPEN. (*0 000. PMP RST 9 $$

l.

Plf 0.030L P76 4

i A

i 4

l j

k

~

~

ll

- $l1 g

wc 3

0 0 -(

l l

5 us e

aO g

a N

N O '.

i g

gg 18

{

3 i

-g

-g i

I O

8 )

B h

@ f

)

e i

o e

i t

o e

e "o

ho ico ISO "o

30 100 150

  • o to 100 450 l

11ME SECONOS flME SECONOS fimE SECONOS o

o I

e e

i i

i B

2 B

O g

O gg g,

gg O

O O

8 8

8 IB iE IB 9

8 g

8 O

O O

j "o

so too 150 "o

So 100 150

  • o do ico 15 0 j

itME SECONOS flME SECON05 f!ME SECONOS o

o i

A C

i m

i i

k

~

~

j

(_

q wb

~

~

wo w a au

=

=a m

mO m

M 8g 5

8 8o 2

2 2 e "g

~

g I

O O

O

  • o to 100 150 "o

So 10 0 150

  • o So loo 150 flME.SECONOS TIME SECONOS flME SECONOS g

o o

2 R

i i

=

i y

(

{

~

h w

b 4

0 o

gg 8

7 O

0 0

0 8

8 8

18 iB

!E we e

e i

i o

o

  1. o 30 100 150
  1. o to 100 450
  • 0 So ico 150 Yl"E SECONOS fl*E SECONOS flME SECONOS

... _ _ - _ ~. _.

- ~.

._..w.

.,..... _. ~ -... _,...... _... ~. -. _. _ -. _..

1 Fht {A *1 G t 9

Ru. %

PI LOCA VLv OPEN. t =0 000, PMp R$T p $4 Plf 0.030L P76 4

o o

o 2

M i

i R

4 i

4 o

o N

C N

o 2

N-R 4

3 ~g c~

'o g

gR 0

0 0

O O

O 9o 9o 9o

.a c 1 c

.a c 8

8 8 '.

.1' I

o o

o l

  • o so too LSo "o

30 10 0 130 "o

so too 150 TIME SECON05 flME SCCONOS TIME SECONOS 8

8 8

i 4

i o

o o

g g

g t

I b

k o

o o

1 gg gg 2R

=

B 5

8 O

O

!B IB g

8 8 '.

i 4

o o

o i

j'

  • o 50 ico tso
  • o 30 10 0 150 "o

so 10 0 150 TIME SECONOS TIME SECON05 flME SECONOS o

o 8

e e

~

, ~-

~

o i

C N

~

8 8

g m

N 6

h o

N QR

~

R Q

T o W

f o i

5 5c 5C

~

O C.

O

!h j

1.

i 8

8 8

~

1 i

e i

e i

e e

o o

o i

  1. o 30 10 0 L50
  • o 30 10 0 150

o -

TIME SECONOS f1ME SECONOS

?!PC SECONOS o

l i

0 C

C in 2

8 8

8 l

6 6

6 m

n n

n e

r-I e o gg gc T o e o gg l

O O

O z

z z

3 2

)

2 8

8 8

a f

i e

o e

  1. o 30 100 150
  1. o 30 10 0 L50 "o

So too 150 i

?!ME SECONDS it"E SECONOS flME SECONOS m--. -..

.... ~. -.

... _... ~

. -. ~ ~ - -

.. - ~.,. ~... _....._...-_, _.

.= _..

FAIlf 7 -6T i

C4t Itu $.

Pt LOCa VL v CPCN. f *0 000. PMP RST D to Pit 0.030t P76 I

4 e

o N

i i

C iq i

,;q-,

O o

2 g

w w

^

n 8

m i

g' O vy O i

c c

q.

8-o 4

l g

i 1

e i.

O O

0.

30 too 150 "o

30 ico isc i

0 1

Timt SECONOS flMC SECONDS i

I 0

i 1

i 1

4, t

~ -. _.

@ AI f 91* 6 I Aw. g cA3 Pi L CC A.

VL V OPEN. f *0 000. PMP RST e 33 Pif 0.030L P77 l

et C f

t "a

~

t i

i i

~

W I

I

=ze ge ge

=

a 2

b i

o o 1

E

{o X

o 1

o

(

e e

e

?

?

?

a i

i e

i i

  • O to 10 0 150

'O So 10 0 ISO

'O to 100 150 T!*C SECONDS tlME SECONDS TIME SECONOS 1

e e

e t-i e

t-a i

t-3 5

a b

d 5

ge ge ge a

a

.a 5

E 7

E I

I 1

i o

1 Qo Qo t.

i l,

5 k

5 2

e

~

e

^

o

~

?

?

?

i i

i I

_*O So 100 150

'O 30 100 150

'O to 800 15 0 TIME SECONOS TIME SECONDS TIME SECONOS e

e e

i i

t-i i

t-t-

L

,L l

J._ _

6

[~~

[~

l_

i go ge g

jr s

s se a

.a a

t go po g

l

$0 he l

h*

3 i

o e

2 l

z 3o 3o f

  • . l i

i i

e i

e e

,'O So too 15 0 70 do ico 450 70 to too ISO time SECCNOS Tl"E SECON05 TIME SECON05 e

e e

i i

t-a e

t-t-

i

{

\\

II jb l

ge Sc j

g I

4 i

te

.a a

a E

EO

~

-Bo - d 8=

8 I

$h

~

1

[

~

?

~

l 0

i i

i i

c i

i

,*0 to 100 150

'O So 100 450 70 50 too 150 TIME SECONOS TIME SECONDS TIME SECONOS 4'

FAT h 7 67 C44

$A,de Y Pl L OC A.

uv Opt %.

f =0 000. PMP R$1 0 33 Plf 0.C30L P77 e

e c

l l}

s 4

t-1 J

j

~

e t-4 4

1

\\

a

,p n'i 1e l

Ie

$e i

a I

o

[

po i: l l

l s

a

o n

c 5

8

}

8 lj j

so se se 7

I O

I p

l l

p p

?o so ico 150 To do too

..n, To 50 ico iso flaC SECONOS TIME SECONOS llME SECONOS i

t t.

i i

i r

g pr 1

(

^^

1 Y

%e I

s*

3 i

Ao l

a

.p a

i a

v3

~

J f 60 l f[

7 1 Ha l

Ho - k f

- g, l

l

.p

~

$o L

?

c

\\

e s

e e

e

\\

_'o ho 100 150 70 to ico So

'o so 100 650 TIME SECONOS flME SECONOS TIME SECONOS e

e e

t-i t-i t-i i

l

~

5 i

l(a is g

k :^ ; -

gc l

g a

P a

a g

go

) I f n O

l s

?

l' 0

ft

=

n 0

_'o So too 150

?o 50 ico 60

  • o so too 15 0 TIME SECONOS flME SECON05 flME SECONOS t ~

b ~

to 4

i e

"o i

.c

_{

c c

e a

e I

{

E l-a*

&o ao e

ma '

Nh

'~

~

Nh NO i

se

~~

7

?

~

~

l i

i e

~O 50 40 0 150 To 50 10 0 150 70 to lov 150 TIME SECONOS

?!ME SECONOS tlME SECONOS l

~..

~. _.. -. -.

F AI l("1. 69 C45 iltv. #

PI L OCa. Ytv OP[N, f e0 000. PMP R$f 9 33 P110.030L P77

['N e e

c je i

e te a

i te 4

6 i

.r

~

ie

~

f *e ie 5:

- 5:

5-E*

E*

R*

I r

  • l*

h g*

ag f.

3 e

~

'$M

- Wd

~

~

9 t

9 t

i I

f p

I t

p e

70 30 100 650 To do sco 450 70 bo too 150 TIME SECONOS flMC SECCNDS TIME SECONOS S

I S*

i t

6 i

i i

t E

I mW

\\

c -nc g

j s

sm R

Se

$e

{g r

i O

U 0.

[

a b

l l

i

~

~

s 2

N l!,

o o

1 t

i i (

'; i'

,'o do too iso 90 so 100 150

?o so too tso TIME SECONOS TIME SECONOS TIME SECONOS S

I

~

i b

t t

i f) f.-= 4 j I,.

[

! 1l

! Ol g

+t; t

+

e g

Oe Oe Iq C~

C i{

C 8

8 1

8 1

5*

g

~

i i

i o

o l

k

~

l J.

i e

i c

?o so too t50

?o 30 loc iso

?o 50 too iso itME SECLNOS TIME SECONOS TIME SECONOS S

t' S

i i

i t

i c_

e e

e

(

r f

'^

  • ^
o I

pn g

m m

ll b

l m

h h

I h*

1

~

i i

l

\\

~

c-o o

7 o

30 ico 150

?o do sco iso ?o 50 too 150 O

flat SECONOS fimE SECON05 TIME SECONOS 1

. _ - ~.. ~ -

VkTlM*bt c

AW. N Pi LOCA. VLv OPEN. f *0 000, PMP R$f 9 30 i

P110.030L P77 s

t

{

I t

i i

t I

t V I.

7 7

l I

T I

- a g.

g g

a ge g

ge m

m m

l f

b"

~

h I

h lf l

5 s

I 1

o o

L o

1 t

e i

e e

i e

n e

?o do ico iso ?o do ico 450

?o so too

- iso j

TIME SECONDS tlMC. SECON05 flMC SECONDS t*

6 6

]

-t*

6 i

t i

a a

a e

' e e

l t

i s

l g_

g_

_ g.

g

=

m e

e ye o

ge f

l 2

l l

o o

o 4

c i

i c

i i

o i

i "o

so too tso "o

30 10 0 iso ?o do too 450 j

TIME SECONOS time SCCONOS tlMC SCCONOS t'

t' i

t i

i i

i 5

a a

e 3

e.

e.

e I

T j

s.

_ g.

_ g.

G G

^ --

{

ge

- y*

k y0

/

o 5

s s

7 j

o o

o j

c e

i i

c i

?o 30 ioo 650

?o so soo iso ?o so ico 150 TIMC SECONOS TIME SECONOS TIME SCCONOS t'

i t*

t' i

e i

e i

e

~

o a

a 4

e o

c j

l l

5 5

Y g-g-

l

. g-e o

e, i

l b

f 8

b L

o

/

j Va

/

o r

e

?o to too 150

?o so 100 450

?o 50 too iso TIME SECONOS TIMC SCC,0NOS t!MC SECONDS J

. - - - -...... - -.. - -.. -....... ~ - - -.. ~ ~.

..... ~...., _.

~ ~.... - ~.. ~ ~. -....-.-~.--... _._..._,

FAT /( 7-6 f dV ;

i a-M.Y d

Pi LOC

  • VL v OPEN. f*0000. PN 8tSt # ts P110.030L P77 I

w" i

i 3-l

=

4 m

e a

l l-5 j

. g.

( ?

he

(

e h

h h

f o

o e

s e

e e

?o 30 noo LSO 90 to 10 0 130 f!ME SECONOS flMC SECONDS O

1 e

7hashe & Assedsess, fee.

Attachment A c

i l

-DATE:

January 24,1997 10:

File NMt Bob Henry ((

i

}

SUBJECT

'Ina Role of Ptaham Taas an the Empply and Return Henders i

i l

Piping configuratiana for the supply and return headers to the fan cooler un its havo l

Junctions for the respecdve supply and seturn to non-safety related coolers insidO of the containments. 'Ibese coolers are isolated under the accident conditions being considered, however the steam void lagression into the fan onnlar piping could also result in some steam void realding in these desdinded configurations. These are also considered as part of the plant l

evaluations, i

j ler those conditions in which the seem void would progress past the junction location, these dead ended legs would only support steam void if the pipe wall could be heated to the local saturation temps.nge. As a causequence of voiding, the water la these pipes would drala into i

the local header to the extent that the pipe configuration leading to the header is horimntal.

Consequently, the pipe wall wouki condense steam in the mune manner as the heat sink represented by the header pipe wall. To this extrat, the local piping junction will slow the void j

ingression rate into the header since this acts as a local heat sink much like a thicier pipe wall.

During the voiding process, the behavior in a hodsontal connection would not differ from that which is experienced in the horizontal runs of simulated loop seals in the experiments, with i

the exception that the dead ended configuration would potentially experience loads typical of a stagnated region as opposed to those associated with column rejoining. Thus, at worst, the i

l waterhammer in these zones could ranch vaham appmaching 120 psi, which is twice the maxirnum value detected in the asperiments during youhag of a horizontal line Furthermore,

{

it is to be noted that these lines are in the containment and would be exposed to heat addition j

on the outer surface due to the DBA condition, in this manner, the pipe wall would be heated prior to the steam void lagression to the headerjunction. 'this energy transfer would act to reduce the loads from those observed in the experiments.

i During refill, this line would again be W to behave in much the same manner as the experimentalinforsamian de-@ for refillin horizontallines. Specifically, the refill rate is determined by the combination of the pump conddion and the thermal boundary layer created by the voiding process. A key part of this in the pipe wall thermal capacity. For these i

horizontal segments that are junctions with the supply and discharge headers, the thermal heat i

sink of the piping wall would again determine the water ingression rate. The noncondensible 1

gas in this line would be typical of that in the total voki generated prior to refill, which la i

16WOM West 83rd Street

  • Burr Ndge, Illinol.s 60521 * (630) 323-8750 f

Telefax: (630) 966-5481

  • E-mail:falgfourke.com i

Latn.it; g;yg-Jpv ; gih0 i FAI - No. SHORE 4 ~ ~ ~~8123307603is'4/10~ ~ ~ ~

4.

principally detennload by the extent of he necessary to heat the piping configuration to support the calculated voki lagression. As a resuk, the nonrnadeselbie gas in this region would be W to be approaimately tem thnes (a mass fracdon of 2 x 10$ that associated whh the gas that would be voladlined bened only on the void developed (a mass haction of 2 x 109. This helhte gas significandy influences the void couapes. Since similar gas quantitles necessarily were pressat in the experiments, the plant configuration would be +W to experience pressures typical of those observed in the experiments.

l In summary, piping junctions that tie into the supply and d:-h=y headers could potentially be voided during the assumed DBA transient. 'Ihe behavior of thsee horizontal lines l

would be similar to that observed la the experirnests since tbc void ingnesion would again be j.

determined by the pipe wall heat sink. '!)is is true fet both the voiding and the refill phases of l-the transicat.

Consequently, these deedd piping conSshis would experience waterhamrner events with pnasures no larBer than twice the maximum pressure observed in the j

2-loch experiments, i.e.120 psi.

l REH:leb i

3 i

i r

1 i

I d

4 i,

i 1

imaman.ru l

3

'~SU(r BY 1-27-97 i i3:37i FAI-NO.SHURE4 6153307603th2/11

~

Assute & Asaseissur, Ime.

DATE:

January 27,1997 l

TO:

File PROM:

BobHenry h5 sunacri e i.. of w. - ser-wm n== -+ i. m, Hender For the design buis accident (DRA) condition involving a loss of-offsite power (LOOP) and a large break loss-of-coolant accident (LOCA) into the containment atmosphere, the fan coolers would be expected to have different enthalpies for the cooling flows. Considering the transient behavior early in the event, it is likely that some of the return flows to the return header could be two-phase (steam-water) while others would be single-phase (water). The mixing of these two streams in the return header could result in a single-phase or two-phase 4

mixture @ ding upon the respective flow rates and enthalpics for the two streams. For those conditions in which the steam coukt be completely condensed, the question of whether this results in a algnificant waterhanuner event needs to be addressed.

%e discharge into the reann header during this transient would always be at a significant velocity whether this is determined by steam generation (voiding) in the fan cooler coils or by the refill velocity once the servke water pumping capability is established. nus, the two fluid streams would be moving at significant velocities with the flooding velocity l

Um = 3 go (p, - p,) / pf (1) typifying the steam velocky throu;;h the discharge piping during the voiding interval and the refill velochy of about S ft/sec being typical of the water velocity for such conditions. In the above expression, g is the *W=tian of gravity, a is the steam-water surface tension wlth pc and p, being the respective densities of saturated water and steam.

l These velocities are important since they indicate that each stream has significant momentum, and in the case of voiding, is being driven by the pressure difference between the fan cooler and the return header. Should the ratio of the pressure in the return header and that in the fan cooler as a result of steam addition decrease to approximately 0.S, the steam velocity would approach single-phase critical flow conditions through the discharge piping. Hence, both of these conditions for the steam flow indicate that, should this condition be created, the steam flow would be determined by the pressure difference. Much the same consideration is valid for the water flow since this is detennined by the pump condition once the pumping capability is re-established. Thus, the dynamics of any such mixing condition would relate to the local behavior 16WO70 West 83ni Street

  • Burr Ridge, Illinolt 6W21 * (630) 323-8730 Telefax: (630) 9865481
  • E-mail:faiQfaurke.com t

1 N

um.y/

B-W-97 1 13:58 i FAI - NO. SHORE <

612330760318 3/11 2o within a return header as opposed to lafluencias significant -innaary flows back into the fan i

cooler return piping.

Focusing on the conditions within the return header, one can relate the mixing of water and stenta water streams to those features that have been observed in scrubbing systems when the flow has been at a substantial velocity. PAI has perfonned experinusta related to steam condensation la quench tanks (Fauske and Gruimes,1992) and has found that the governing physical mechaniam for such ndxing and condensation is the entrainment of cold fluid by the higher tempenture two phase mixture. Similar canalderations would be valid when two streams mir in a return header, and if anything, the mixing rate would be more limited (reduced) as a result of the piping geometry since the experiments were performed wkh a large water pool surrounding the sclease tar =alr= (Figure 1). The experinumas iHustrated complete condensation of the flashing watcr discharge over about 1.2 jet dian==*ars. These conclitions 60 not promote significant waterhammer events since these were not d=*=ct=d la the experimental system. (Only cavitation type noises were observed.) Thl is the maaleig= tad banavior since the momentum of the flow dictates that the mixing region exists in a quasi-seendy condition with the net result of "coraplete condensation" being a small trail of bubbles which are the residuni noncondensible gases, plus sufficient steam for the bubbles to be in equihbrium as they progmas through the subcooled temperature annes illustrated in Figure 2.

For the service water configuration, the net behavior would be expected to be even less dynamin than that illustrated in Plgure 2 as a result of the relatively tight configuration created by the return header Dow area. 'thus, the mixlag of the two fluid streams and the condensing of steam in the higher cathalpy stream would be capected to occur over at least several pipe diameters and be charactarland as quest-steady given the momentum of the two fluid streams.

Therefore, the availahta experissental leformation, as well u anamiderations of the momentum for the two streams leads to the conclusion that the anxing of the fluid streams in the return header does not promote dynamic interactions that would yield significant waterhammer events.

If such events are to be considered, they would be similar to those observed in the experimental manswoments for the discharge piping, i.e, of the order of ten psi.

Iteferences Fauske, H. K. and Grolmes, M. A.,1992, " Mitigation of Hazardous EmerEency Release Source Terms Via Quench Tanks," Plant / Operations Progress, Volume 11, April 1992, pp.121 12$.

REH: lab tweemma l

.g i

)

i y

m..-

PASSIVE, M(M CAPACITY SCRtEMR SYSTSh8 j

y.

TT

n +

=.

I l

g pg#'

b..

1 Static

.4

- E vi i

 ;-- -~ y

L.

Q

....g -

v.,. w.. -:.

S,

.. ~..

)

r e c, '

E

--l

~

. +::

'*l a

~

Kinetic

~

Release ammag Alseort> tion y

Neutrardation i!!

  • s-

.i

....'f% 'i Ei.,b.MQ gl jp...

u..

.;- gg :;s. :;-

t

- 4;:7 i

l i

i Eii co !

Figure 1 Illustration of extensive liquid breakup due to the kinetic energy of thejet release Itsulting in large surface area

$l augmentation and rapid quear+ing of the vapor source.

@l

=

l

\\

=

Mit LW:

1-27-07 ; 14:01 i FAI - NO. SHORE 4 6123307603;# 5/11 l

4 j

TC i

i

'--+

0 No a

i, l

To - 140'C, P ~ 73 psia o

l D ~ 0.43 in.

l Tw ~ 15*C Discharge : Flashing Water Quench : Subcooled Water i

l l

150 p

T, - 140*C O

o s

O g100 3-Tsat l

4 i

a Complete j

g 50 Condensation i

g l

0 I

I I

I I'

0 1/8 2/8 3/8 4/5 5/8 DISTANCE FROM DISCHARGE, in.

i

]

Figure 2 Meammxt temperatures immediately afterinitiation of discharge. Each data point i

replesents a separate test run.

j munaurm.A i

l 1

i OVERSIZE i

\\

DOCUMENT l

PAGE(S) PULLED I

i SEE APERTURE CARD FILES l

l APERTURE CARD / PAPER COPY AVAllABLE THROUGH NRC FILE CENTER NUMBER OF OVERSIZE PAGES FILMED ON APERTURE CARD (S) $

ACCESSION NUMBERS OF OVERSIZE PAGES:

I 9709230//lo 97692302 7 9709236/ST 1

970?230 //8 9709230/39 9709230Kol 97o9230 //9 9709230/4/

970923OKoV l

9709230/2/

9769230/Y7 9709230/6 7 l

970923 0 /23 9709230/Y8 9709230/70

}

970923 0)26 9707230/50 9709230/7/

i.

9709230/27 970923 0/S 2 970923 0/72 I

9709230/3Y 9709230153 9709230)7N

l OVERSIZE DOCUMENT l

PAGE(S) PULLED l

i mammmmmmmmmmmmmmmmmmmmmmmes-l l

SEE APERTURE CARD FILES i

i f.\\

l APERTURE CARD / PAPER COPY AVAILABLE THROUGH NRC FILE CENTER I

1 NUMBER OF OVERSIZE PAGES FILMED ON APERTURE CARD (S)

ACCESSION NUMBERS OF OVERSIZE PAGES:

9709230)75' 9709230/17 970923d /79 9709236/8l 9709230 2 5 w o.

i l

DOCUMENT l

PAGE(S) PULLED m an er am er er er er am mr me er an er mr er me amr ma er me i

SEE APERTURE CARD FILES i

i l

l

\\

APERTURE CARD / PAPER COPY AVAILABL

  • * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *E THRO UG NUMBER OF OVERSIZE PAGES FILMED ON l
  • * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *A PER TU

\\

ACCESSION NUMBERS OF OVERSIZE PAGES:

@J(JC% O(%

l i

.