ML20197H565

From kanterella
Jump to navigation Jump to search
Reanalysis of Main Steam Line Outside Containment W/Energy Absorbers as Replacements for Hydraulic Snubbers for Point Beach Nuclear Plant
ML20197H565
Person / Time
Site: Point Beach  NextEra Energy icon.png
Issue date: 05/13/1986
From:
BECHTEL GROUP, INC.
To:
Shared Package
ML20197H551 List:
References
IEB-79-14, NUDOCS 8605190191
Download: ML20197H565 (30)


Text

i '

'A.s .

4 ENCLOSURE 1 REANALYSIS OF MAIN STEAM LINE OUTSIDE CONTAINMENT WITH ENERGY ABSORBERS AS REPLACEMENTS FOR HYDRAULIC SNUBBERS FOR THE POINT BEACH NUCLEAR PLANT l

e PREPARED BY BECHTEL POWER CORPORATION FOR WISCONSIN ELECTRIC POWER COMPANY D 1 860513 p hM05000266 PDR

k, , .

, ENCLOSURE 1 REANALYSIS OF MAIN STEAM LINE OUTSIDE CONTAINMENT WITH ENERGY ABSORBERS AS REPLACEMENTS FOR HYDRAULIC SNUBBERS SYSTEM DESCRIPTION Original Configuration with Snubbers :

Isometric P-107 was analyzed for the rmal expansion, weight, and seismic loads. The system with snubbers was qualified for seismic loads using the original plant seismic design criteria as stated in "NRC IE Bulletin 79-14 Final Report" dated January 28, 1983.

The attached isometric depicts the system as in the 79 review. It includes seven snubbers, most of which are seismic supports. The snubbers are R-EB-2-1, 3, 4, 6, 7, EB-2-H7, and EB-2-H17. Figure 1 is a computer plot showing the relative locations of these snubbers.

i Revised Configuration with Energy Absorbers :

Figure 2 is a computer plot showing the revised support system for Isometric P-107 using energy absorbers. It indicates that the seven snubbers were replaced with five energy absorbers at the locations and orientations as shown in Figure 2. The five energy absorbers are identifed as follows:

__ _ _ _ ___.______ _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --- - ' ' ' - - ' ~ - '

. , , 4V Size Remark EABl 4x5/16x3 Replace snubbe r @ R-EB-2-3 EAB2 4x5/16x3 Replace snubber @ R-EB-2-1 EAB3 4x5/16x3 Replace snubber @ R-EB-2-6 EAB4 4x5/16x3 Replace snubber @ R-EB-2-4 EABS 4x5/16x3 Replace snubber @ EB-2-H17 ANALYSIS PERFORMED A l Thermal and Weight Analysis l The configuration modified with energy absorbers was reanalyzed using Bechtel i

, ME101 Computer program for all load cases for which it had been previously qualified. For all loads, the energy absorbers were modelled as linear spring

^

elements with a stiffness equal to the elastic spring rate of energy absorbers because the resulting movements are lower than the yield displacements. For thermal analysis, all thermal modes were reanalyzed using the energy absorber elastic spring rates.

Seismic Analysis The seismic design basis for Point Beach is based on an analysis for a two-directional earthquake (maximum of X+Z or Z+Y responses),1/2% damping coefficient, SRSS model combinations. This is the basis of the system analysis of the snubber configuration in 79-14 review. The response spectra applied were an envelope of elevation 48' of South Wing Aux. Building, l

elevation 26.5' of Central Aux. Building and Elevation 105' of Containment l

Building. ,

l l

l

, , , ,.w ~ - , - ,

n.

The seismic reanalysis of this system with energy absorbers was performed using a more stringent seismic analysis rules to demonstrate the system l capability to accommodate higher or more stringent earthquake criteria. The stress analyis wich enerr.y absorber was performed using Regulatory Guide 1.92 closely spaced model combinations method, using the enveloped spectra, assuming a concurrent X+Y+Z earthquakes, and assuming 0.5% generic system damping. The equivalent linear analysis method of the ME101 computer program was used in the reanalysis.

SUMMARY

OF RESULTS Table 1 compares the results of the safe shutdown earthquake (SSE) load case for the existing design with the results of the reanalysis using energy abso rbe rs . The comparison shows that although the reanalysis with energy absorbers used a more stringent criteria than the original design basis, virtually all of the significant results are lower than for the original snubber design basis. Table la presents the natural frequencies of the piping system and the damping values for each vibration mode, for use of the energy absorbe rs .

Tabel 2 shows the pipe stress summary sheet for all applicable load combinations for the existing design basis case (with snubbers). Table 3 shows the same information for the energy absorber case. Table 4 gives the snubber case support load summary. Table 5 shows the support load summary for the energy absorber case.

A *'-4-A6m,,

l

\

l

% E  ;

.8 il 5

y i

G

.e

' 5 fl / ,

z- .

. Y,, y

& e f

T

/  ?

' i  ! .-

i m

A / .

~

\J ~

n

\c 4 U

5

\\ ~

1,

\ e C

I

\

1 a

-m

'=

l

. l 4 -(

j I

M m

e t

s y

S t

r

_ o p

p u

S d

g y / i e

s v

e xy R

s

{ gr o ne t

\ ib wr oo Y hs Sb x_

A t

oy l g Pr e

N rn

/A:

% t eE ug pn mi os CU x

, 2

' e

, r

[ u g

/ i F

\

k

/

lI1 l

4 1

i Table 1 Load Case SSE Comparison Snubber Case Energy Absorber Item Compared 079-14 Review] Case Fundamental Frequency 1.4 Hz O.9 Hz Damping Ratio

[See Table 1(a)3 0.5% 0.5% - 17%

Max. Stress (SSE) 27.4 ksi 18 ksi Max. System Acceleration 2.6g 2.28g Max. Displacement (Dy) 2.43 in. 3.6 in.

Supports:

Total No. of Supports -

(not including springs) 45 43 Total No. of Snubbers 7 O Total No. of Energy Absorbers O 5 Max. Support Load (SSE) 56 kips 25 kips Max. Snubber /EA Loads 56 kips 7.1 kips Total Snubber /EA Loads 79 kips 28 kips Total Support Load in Bldg. 297 kips 231 kips

)

1 l

l

-_-_---_---_--_---_a

. Table (la)

Frequency and Damping SNUBBER ENERGY ABSORBERS MOOE FREQUENCY FREOUENCY DAMPING (CPS) (CPS) 1 f.437651 .895118 .009233 2 2.078974 1.425605 .007571 3 3.100619 2.063049 4 3.352563 .008063 5 3.631387 2.871350 .168744 3.264497 .010570 6 3.663524 3.433568 .005359 7 3.986841 3.597912 .013697 s 4.107092 3.772545 .014706 9 4.266303 3.813097 .006569 10 4.540916 4.073665 .013074 11 4.662055 4.207678 .044943 12 4.442973 13 4.997947 4.293500 .014070 14 4.411980 .031779 5.094390 4.639860 15 5.214334 .007119 4.704649 .021618 16 5.408941 17 6.098590. 4.845789 .005380 18 6.273128 5.138240 .012770 19 6.366309 5.215598 .005052 20 6.702521 5.357487 .017558 5.648984 .006431 21 6.742757 22 6.914420 5.865254 .014499 23 7.131896 6.272270 .005036 6.677277 .008022 24 7.284381 6.734168 25 7.576828 .005603 6.844540 .014691 26 7.739233 6.955343 I 27 7.829234 .010615 24 7.547438 7.101287 .010808 29 7.966432 7.286545 .005092 30 7.989455 7.785725 .008682 7.813568 .043347 31 8.011538 7.952483 .005829 32 3.072879 7.988079 .008630 33 S.110723 8.047354 .018662 34 a.650828 8.055753 .006544 35 a.996240 8.069853 .030266 36 9.301370 8.223757 .011822 37 9.414792 8.425778 .047693 38 9.740157 .028164 39 9.769536 8.595803 9.105186 .005605 40 10.363347 9.285851 .007322 41 10.503375 9,414931 .005038 42 10.564185 9.577781 .023995 43 10.686079 9.681393 .006816 44 10.386912 45 10.954611 10.132872 .020597 10.409931 .005863 46 11.230371 10.490795 .005806 47 11.248696 10.523476 .005536 da 11.671564 10.677652 .005080 49 11.746723 10.936237 .005731 50 12.054369 11.112820 .007141 51 12.533200 11.255369 .005042 52 12.829657 11.533672 .010028 53 12.654004 11.795345 .009042 54 12.985391 11.866930 .008547 55 13.186111 12.339429 .011248 56 13.219449 .005697 57 13.599804 12.501232 58 14.145275 12.533565 .005013 59 14.544479 12.768316 .005478 60 14.865406 13.085510 .005797 13.186802 .005004

Table 2 g PIPING STRESS

SUMMARY

CHECK AND COVER SHEET y

ANSI B31.1 (79-14 evaluation)

PROJECT: Point BQAch SHEET 1 OF 31 JOB NO. 10447-014 PLANT DESIGN GROUP SYSTEM: Mainstream Outside CALC.NO. 1-21 ISO NO. P-107 REV NO. 2 PLANT LOCATION MAXIMUM ALLOWABLE CHECKER /

CO DlT ON PERATING OF MAX. LOADING COMBINATION COMPUTED AND ( ANSI STRESS PSI DATE PAR A. REF.1 SUSTAINED DESIGN PRESS. AT 10 8 5PS 0 5616 104 LOADS WEIGHT & SUSTAINED LOAo 7366 i1048.11 EON.11 Normal 762 sum 12982 15,000 OCCASION A 6 DESIGN PRESS. ATl.QRSPsiG 8157 h4 A S 2)

WEIGHT & SUSTAINED LOAD 549 EON.12 Cat I Mu. OCCASIONAL LOAD- OBE 5052 18,000 CM I Upset 295 mn sum 13758 Ik-1.2)

DESIGN PRESS. AT1085PsiG 8157 64 WEIGHT & SUSTAINED LOAD 549 Cat I mu. OCCASIONAL LOAD- SSE 10105 27,000 Faulted 295 Suu 18811 Ik ,1. 8)

DESIGN PRESS. AT1085PSiG 5923 kN WEIGHT & SUSTAINED LOAD 1556 OCCASIONAL LOAD. OBE 13725 18,000 Upset 515 sum 21204 th-1.2)

DESIGN PRESS. AT1085 PSIG 5923 hSn WElGHT & SUSTAINED LOAD 1556 CAT III OCCASIONAL LOAD- SSE 27450 36,000 sys n u Faulted 515 34929 Suu Ik-2.4)

THERMAL . . A. ION M% SA EXPANSION

  • 1104s.3Al 521 deg. F. ANCHOR MOVEMENT tosE) N/A
  • E ON.13 640 Suu 20795 22,500 1 THERMAL DESIGN PRESS. AT PSIG SA+4 EXPANSION (104.8.381 WEIGHT & SUSTAINED LOAD
  • E ON.14 THERMAL EXPANSION ANCHOR MOVEMENT (Oct)
  • ElTHER EON.13 OR EON.14 MuST BE MET sum REFERENCE CALCULATIONS: Microfilm 4 SFPD-81-185 WEIGHT 2-21 SEISMIC (INE RTIA POR TION) 2-21 N/A OTHERS:

h THERMAL EXP. 'l SEBSMIC (ANCHOR MOVEMENT) N/A 0

SUMMARY

NAME SIGNATURE DATE PREPARED BY Roy D. Andrews 5/t>A/ATU94f AA 6 cat /~s y 11/ 7/80 REVIEWED BY ukhim /N eyn74 79 - n/ 11/14/80 APPROVED 8Y Elias Jadelrab c h utj) Tfoje c 11/14/80 P 1022 9/12/74 GKW

TABLE 3 PIPING STRESS

SUMMARY

CHECK AND COVER SHEET ANSI 831.1 PROJECT: Ppint Beach SHEET 1 OF 1 JOB NO. 13447-012 PLANT DESIGN GROUP SYSTEM: Mainstream Outside CALC. NO. 1-21/EAB ISO NO. P-107 REV NO. O DESIGN PLANT LOCATION MAXIMUM ALLOWABLE CONDITION CHECKER /

OPERATING OF MAX. LOADING COMBINATION COMPUTED AND(ANSI STRESS PSI DATE CONDITON PIPE STRESS STRESS PSI PAR A. REF.)

SUSTAINED DESIGN PRESS. AT 1085 PSIG 5616 '04 LOADS WEIGHT & SUSTAINED LOAD 7372 15,000 1104.8.11 EON is Normal 762 SUM 12988 OCCASIONAL DESIGN PMESS. AT1085 PSIG "4 8157 LOADS D 2) WEIGHT & SUSTAINED LOAD 464 18,000 EON.12 Upset Cat. I max.

OCCASIONAL LOAD-0BE 6003 5

CAT. I SUM 14624 Ik -1.23 Max

  • DESIGN PRESS. ATlO.85 PSIG 8157 kSn WEIGHT & SUSTAINED LOAD 464 Faulted Cat. I max.

OCCASIONAL LOAD-SSE 10261 27,000 5 SUM 18882 Ik - 1 38 DESIGN PRESS. AT 1085PSIG 5616 "4 WEIGHT & SUSTAINED LOAD 6548 Upset 818 OCCASIONAL LOAD-0BE 9288 18,000 Suu 21452 m - 1.12 DESIGN PRESS AT.10.85PSiG 5616 "A WElGHT & SUSTAINED LOAD 6548 CAT. III Faulted 818 OCCASIONAL LOAD-SSE 18069 36,000 Sys. Max.

Suu 30233 Ik 4. 43 THERMAL Max. oper. mERMAL EXPANSION 2M 4 EXPANSION temp. ANCHOR MOVEMENT (OSE)

[, I 521 deg. F, 708MBEND N/A sum 21928 22,500 1085 SA*4 THERM A a. Max. oper. DESIGN PRESS. AT PstG 5616 EXPA teep.

g WElGHT & SUSTAINED LOAD 664

. eon i. 521 deg. F 660MBend 37,500 THERMAL EXPANSION 22227 ANCHOR MOVEMENT (OSE) N/A

  • EITHER EON.13 OR EON.14 MUST BE MET SUM 32507 REFERENCE CALCULATIONS:

WElGHT 2~21 2-21 SEISMIC (INERTBA PORTION) OTHERS: NM h THERMAL EXP. 2-21 SESSMIC (ANCHOR MOVEMENT) N/A f

SUMMARY

NAME _ _ SIGNAIURE DATE h PREPARED BY M.Y. Dong ( VdD%Q i \M A 3-/4--8f REVIEWED BY H.M. Iae Wa%~ \rf. m_ O $ - /(/-gr APPROVED BY M.Z. Khlafallah /1/ 7/ Jo- ' -- 7//i//gy P.1022 9/12/74 GKW l _ _

n 3

.e I i l l l l 1

, . . l a e t 3

( I

!l e I

}

. 1 I l , e res t i* ,

l e *

.e . . ... .e e . . .!. .e .==== as p . sw en .~e ae

. . . ne ee .m

.e . . e '

.e =. =

m o e en . me

== a . . a. es

.. .. ..=

..m.e

s. . .

. e. . . . ee.

em e. e.w .e ..... .= m.e.. . == m.a lse.s.==N.

.. e.. - .s%.8 ' .e. . . "". N.

..Wh 88

    • A D

mm G e S 9 9 pts O SW D R0 84 0

.8 a s a i e o e el e 8! I e i .

h J ~, ..A. .

4." . .. .. .... .... . ... .... ... ....

'2 j u,s .. ... .

e

~ -' [.

e- . .e .

', , t g>J o'. . - 1 .

a I l

~) * '  !

  • I E 7 . ..' . - > l.* ..t. .... . ... .... ... ..e.

r: .c ...=..s..,.

- . . .e . .e .... . ... .i.

. . . ..e ..ee .-s.s~s.. ..o. .

. ... ... ... ...C.

... .. ..-~..~.e. .

i

.=

e /d s e

, 9 9 *

= ' s ^.. -

- t ,,

1 ', , , Y -

, ~

E e as .>Hea

..ew' .a .

% .iam ,e as art .rt. 8 l

t ****.

.~ }

.e H.,. '

.  ; 1

)y. , .

- i  !

l, l

6 b Se 4 f

.. ... .. ' i Ep a . .. .m .

. .e b

81 ess E E

eg .

> D e.st ee ==

8 a

' .= .e -

b a

l c e e m er . l ,

E

,i ,

e ses e.

ee - e l ,

W -

b h. - Me i

i l

.e

% 6 a Q l 1.*** la .

6

    • 9 I.. lg.e en nt as E. en e en e.

e As e

e

.e e

. ee j

ee.

i

l O

y e.s....d'as e.W ,

l o

' '2 e4 .  !  !

w '

% m . ...  :..e .. .. .. e I

b .-~

9 D= W

.. .e i

j

.e e D He .a art , . l ee I em .e en .3 M

o

/./ s.a o S

er l .

.8

  • I

... .. e . . i e .... .. . . . . . ...e ua .n- . so m a .. p. == .e .e art a e art e .e meio . apt @ .as o.=*p==.e e= e 9 e .ns e er p=

.O. As

== M..se se Mne Ut. . W9'm. - en e. wt . em . ..> a yt e= en == en.s ep e art .o.m

.O" l M ** um N 34 est e As Me == eo se 4 #gs se & As se M art se e p fa 0 0 se as se e e g se p.g 4 9 g nA F . t . Sl O o ,

M a 48 e l

.s

    • .M.

.. .e J.

l

. .e .

We ee .e

.e .

. e am

. e e

e e.H.u 8.m .W l We .. a ,.e@d e .e.

D

.S=

- . . ele as M

R

- ehp .s . em. b 3 ^

M> M 9 h r, tj e Q . e e - p',

rs n l l - 4, n r i t r 3 .e .e "*a n v

.s .J i ,

..l .ae g i

. e .< L

.u . a .

O .e .e-

.s .ze > ' , C ,

ta .e ,

i e- - .. .. . .. .. .. .. ..o N

3 - - =e

- .t -

.o o - ca -

.c

. .o

- So. - e.o ..i on - .o .'ol E

- oo me

- o r *E e E e. E E me E e E E. I *

    • Oe * *-

O .E em e = 3 so et.e G .e .e .* .o em e 3 em .se e. S es .m e o .ee. .mIene ee! $ en ee r.te E. .e = .es

. WW W XMWW XPWW Zwww 3'p E WW E>WWI p W W X>6W XpWW

. .. > s.. es >me. w.m.. .-me. .E. me.

>a..l .TkWW

-m..

  • m .m .

QJ u

. 33

==

l .

a6 W

a as a e

l e =T l .

es l

. #: I. .l f au s l

es

'u

-- l

.E as > e a A a . N g a g ai d'e 'a "["

.s .e a I

  • l f' r . ia*

9 n ri .e . .-

a c.

s=

m . .

as 5e .

n

. , .y == 8

. ie

  • e .e = W. s e.n A Q o A e y ,e.e mi g .e e.

ee n a mi .e a g , g g,

, g ,== g N l l l 4

y qoo--

..  ; > c c . o .o q s o Q. o

. . -.e .

' a l . , I 8 i  :

s

&  ; a

  • l .

s g

.f

. l 1 d

e  !

.se .I ' I e De e e eeee eeee O e e.

get e um M e p- e e == .e e e = sts M e e -- .e e e e. '

. ** e e te . eeee e e e. e W em .o.h e M eoe& Dees &See s9eeo s.t e e e me e. m e e.

& e e. ,

es

e. me i s. e. m. e.c. e. em. e. r. e. ee ee eu. ee e. e. esee vses.ee e e M m.e. e. se e.m.e.

to 48 2 e pu a me .e.. ,

a e 9 9 9 9 9 e '

O 's

=.

l ,

Se ~ emme emme eeee meme seem eene emm e e i m e ese meee n.s O

,E .eeme e e m m e. eese e ste e' m e e po Ge ee .m. e 8

. .mees. e.

    • 4 me ee o.n*e * . m.m.ee e

e se ee.me.m.e e'e a o. eee. eDee e e ee m. ee m. e. e. e. e. e e. e e. m.

e

  • e e 4 e m i I e '
  • e .e.

==

e*

e as e estM est eeeo eeee e art e e art sie 8ts+ eeee ee ee eeeo eeee O e ets em sts e e ele eeee == e == ee 'e ee ej eeele eeee e a M.I eeeee ee se eaeo. e d

ee e e e.oe ee e. e.m.meee an.m<e e e nts'e. e e ee e e.e.ee e et m.ee e a eene.e. e e. ee oe s.

e 888 8 848 9 8 0  !

O  ! 9 1

l I  !

... . . elo wn. .- . ... . ... . .. . e ..e . . . ., . .. .

= z, 'eoes' e M e fts sw me em M *e a o.e e s eene eseo se em emm e esee

...e S

  • D e =9 a . e e M el D'e e De iSe 8

> *e@ e.

e WW F e Io l

i +

I i 1 11

. sz mee

.e. e

. . . .. . . . . ... .. . . ... . ...e

.e e,e G e ee e. SeOG et ee e#G e emme l NMer eN-M l f.O 1 l We M ene e etseeie 8tse @e e 9(

as Me e

48 .

a me e.t . 9 5't e. .e=

% 9- l9 e ,

== I e.

10 i a f t ei. [48 l l'

.a.

se . .e . . . .e  ! . .... . . .. a ."e . . e . . ..e u eeee . ... a 54 .= = 4.e Oeee e e-O e eeee eeee eee e e 9 6 8e El. , .as

=e& D D art .= @ @

I l e art . erb* == eft e M. 4 M

  • h e . e em e e as W 9 -M - em i '

=

t

.e . e e .! .. .  :...e .... .... . ... .. . . ... . ... , >

St. se == e Wt e. e = art a e9 s eeee eeee eeee ee ee eeee eeC F

  • M e s's art e > til e e e Wt > en We e e e fs
e. s9 a > - yt '

O OO e he ee 9 Wh ein == e. en e.

be e ;e la .

!e . .

a.

.s

'e.a . .e .. . . e . .E . ..e . . .. ....

. = m.

  • o -eeee e e m. ar*

en e as e se ari .e e ee su .=.e e .unest MeeM ee as a.s. eri .ase e m.

e .e e e e .- eeme e e e e. ese a

.e .e ...

o e..

e e .ar s=

ie l

.O-la. e er.a a me san me=e .eest se ses e eeeo as M .O. a.rte==

= 's.sd'ern e ie .e. >

i ens are a, eeet., se#w i

Ia -

ee e e. she N == M e ee .e. en i

1 l8 l 8 0 0 $

2 e l i C ic  !

  • a.a .. I
  • S.a I me e

as m, meme ae

. e . . .e

. . e.

. i...e e eeee Seem.e

. . .e e

.S. M t e

.e . . e Geee

. e .

..=,M

. e

.e

. . . .a este

'.6 .

. .e. ..e .e e e.e as e . e. e ..

e, o

e 8 eJ f

e e --

e., .e ..

.t

.e. .e . .e. .e.

a n .

i E eo s

e me - e I

.e .a.

e . < ' -

e aei = ,

e  :

eee.e uu .. t .m.

i I

ce i.-

  • . a---  ; ee .e . . . ee e e se m - oo - om - ce - Ee=

u S e=. .r - ic e -

e. e..

R

- e

.m. .e.-.a l S.e.

e s. a

~

e on o .a .m. - .a

.w a..,.

r

. mww .e. .a Se - ar -- .m e .

e g a em <

E u

em ee 33

.z-ww

-m .z. m ie .a. m E.

r.w .

> m e s.e .z-see .. w w - .z-see .ww

-ae. -ss w

.z-m.. .-L e

=

x .. ww-

-som e

ss a,u me = a u

. I r u o. e e l.z a 06 u e a e 'l o.

n e e 4. m. e

. e .a e a ei r-

=,a u- u *

i. A, 4 a l e

T , g a mee

-no-s e e e . . r, e 2 . si e , S. ,  : pi

-c . e ..

.e ,

. e.

. rf e. . 6 .

- . .a ..o. e e s M e,e M -

p y

. .S.

rg

' 0

., e u

i  !

i I

h 6 a 6 .

@i i

. . . . . - . .I . .'- .

J J s e v O O C u J Q*a v 0 0 J. ,

_. g ..$$,...

g. 4 .

y

. . t 1

. . . t ' l '

/

l

,' (- ~

8

.e

. e d. -

se i es. ,

  • es e e e e, neep eee eeee edee e4 == es em oe ee >ee o eeee
    • e eeee e.4 e e e en e e me e e e == se e e e e o se se ee Ge e G 8is WPt 84 == e e eeee e e ele eeee e,e e e oeee ==eee e#* O' >eee e4eee e e e e o e a e e oe a es e ee ee eo e o es e e a e e eee o e e e e me e

E

. e. e O

e e 9 8 se 0 e m

  • l e l

- . l ,. l g

= l 8 fe I g o- o e m m e. eee e e. eeee seem e sse poen p os e.. e ....

OSee G e e.e Gees sete seee e ese == G Re e S999 SQe a e S ie e e e ese eese Seee .See e eee ee ee see e eese he ee eo ee a e e oea eeee ee ee e ee e e e e a e ea e eeee M $9

, g .' .

e e

e e

i e  ;

, s ,

e >e me B as e e e e, eeye gepg se e g6 g gggp 3 g g4 em $m e P9 em um-e GA e Neme

    • e ee e == e e e == e e e GOee peee As eee ** e ee se e e e eee ee e' as e e e eoee me e e es se e e +es p4 e e == es e S** O e ==

48 ee e o e ea e .e4 eoee ee e se e e e e e e e e e e a en e e e

e .e - .e - .e h .e = .em e a o 1 I

1 ao e e e. eea e e oe o ee e e a e e e e

_a gge , see m e .e ea .e ees o e .e.a e .e ee.e esee .e.Ge .ee e .o.s.e -

eee.

S 988 em G e o= l I

e l .

e-3> p.e ea en e e oe e e e oe e ee e oe ea e eeo e a e a e ea e eeea to a E

a eeee o ee e.e e e emee e eee eeee eeee eeee els == p D '

O e em ao em ,

e l  ;

e me

)

- e i 1

- O I e w -

- e

- as . e e . e e a . .. ge. e ee . . . e . e e es e e e e a u a w e emee e .e .e .e.e.e .e ee e she e p e se. see m e 8

e e. ==== ====

Nmek es e se f ) ,

i ** i 0 I i l <

! I i l t I i .

t . I

.8 ee e e i eee e Ne =9 89 ee e** eeee .# ,e e e e e a e e ee e e e e eee e eeea hm

'e ee eeee eeee eeee e Wh eeee eeee e4 SR0me 4 8%.s

=

omel'm e O- e .

g  ! e e se e t se es ses e m es e e e s

e* .

e f ens t eA > e a e e e e e e *e je a e o e ee e, e e ee e a e e eee a eee a e e, est e e e e es= e as e ee ene.eeen p e .se as p.e eeo _

O O

a.

== m sne e eeme ans e e . p eeee she mit om ee ee se e. fts EPt e e e e. om som As e 'eeee eeneeeeien == me se dheem e a **

==

sis t m e est a s e W6 se sis e e sete eeee g We me e me 8ts N N e e Sg h eee sese==e9 est so

  • s 0 0 9 0 00 == 0 0 0 0 --

o- e b

e O

s -

e .

es l i e os as e e e ee q e ae ea eeee e e oe a e a e aa e e a ea e o e e e

== em me e.a ses en e o e.e e ee eeee eeee e oee ee e en eeoe eeee e e4 e me e e a= e 'em e ,

b g - me a

an E i en . ,

. I

?

=

!! aj e e

e e.seos i i i

=> - 1 i e He e . e as == e a 6 fe4 e e. 2 a a u= n f i l e- e,i -ae a me no em se se es se me e se I 4J f e se E 'an se e.

E oo -

3 ce ee e.

3 om e= ee == em en s e. = o a De 1

    • O e se es me e .e.e e e en 3 ee 3 ee 's ee 3 ice E ee I e

fl O ee se e sn ee se e se es se er - se see a es se se 's o.se se e .e ee e. ,e es,se se rr es es ese os 1 e= bas es

>mee 1 e- ens es 2 e- as ans e-see >mee 1 e- ens es

>see E > ens mal R e.es es E e-mas ens l 3 > me(nas i e= ens me me ame > mem ea me > sea e- a m e Wa  ;

l E

4J 5.I eA l e e

e.

e6 i

3 e

lo as s

I.a PT as l e e

a e

O e A e

as e a 4 O

I a p a - B e V m a e I g' i

e.5.

.s - "S e 4

e N, . z. Y,e } l 4* l.* ,',, N

- n n e. a.e

--en .a m, -o es e

.e 1

% e e

e.

O e

e . .

_ e im e

e e

e

}J.

, e e

.e.

e. g a g a

a g .

g ,

, g  ; t . ,

. l .

I  ; i ,

4 e > C i 0 0 m o W".l.

0, IO . .

O O

. e O

e -

4 g e- p. *'

l - l 1 l l 1.ie i

, I e i.

e em > ift p . e>pe e > afh 3 g S ge e gee 3 .g utg g.e eeee eep e ee4e

a.s en _ mat e > ee sm e= e. =e sen s= em sts e ets e e e e,. e .e s= ast e e 's * : 4

  • ist eeee se e ee eeee eeee en e me est eeee e e e se eee e. eee as eeee e a eo e o e o e oea oeoe oeeo e oe e o e e es e- o e o e o e a es a . 8 S. 9 O 3 9 es I i

e M  ! I a .

1 I m- -

E am se esse sees seee po s e e e see m. e ee eee s p. e e e mO e e.eeeme e eie eeee eeee its s e e e eee die e ee eee e fis e e e E Se em Gese sees emee se e e el e ees me ses see m ==s e m e he

  • ee ee eee e *eoea e eee ee oe a ea e ee oe eee e eoea Rus i g e  :

e e C,o, m

.i .

e _ i a= In an am en eee e eeee e e e .e e e e e, me o e e. ee ee se est en e esee

== O == e esse. 4 8ts eee e eeee SD e e.=e e e e ej se sts e et eeee se e e s seeee ee e eel eeee eeee d e en dte 14 e e es e e e se put eee -ee _ts put e e e

-ee

  • e s e see e yme a a es e se ee e o ne e

oe e o ese e

e eeos e 3 o 2 e

I i

, e . ee m es e see s e e. e e m e ., e s. . e. e es. e me . .

e. ee ee eee e eeee e<e e o e apt se == e eee se er e e eee e ses e 8ts em b e em e s.m p gt em e s le sie e e l e e en e 45 stsee e Wt em e 9 a j e se se e 8tsi81s e e ==

e . e i S 9 0 0 0 o- 6 .

l t

e. I p

e- -

. .a .e o .e e ....e ... . e .. . .. .a . e o .. e onea I I.s.s e e.e e m e e.e seee .ee e m e n, e ee so m em eso s o wn e m i 2

  • e est e e a se arePe pft art 84 > 1 e l pim 3 e eI e e == 4 e4
  • O. o me its. p == fts e e>

e se sts es fis se ==

e .6 i e e a s e . 6 I

to 1 ,  ! 6 e la a i i me e . s as .e a e e eea e e a e e a ea e ea e e a eee e e e a e ea e e a e a 9 u .ms. ee ee eeee eeee eeee e on e epis e eee e > set em eme e 8

  • me e '

[ apt p e> p see mes> e aseee f I e e e> e fW eft 986 se 8ts e $

3 sto fts e == ** fW die its e G S S l

' l

l.  ! I l t
  • h . a e e e e a e le se e aes e e me e a ese es e a esa e eme e g
e. ee== osee seem some e s. est e, e ese ,e e .em e see o e ss en e e om et se e eft se e s e e> .

p We e == 4 '

$ om e_n $ 4 0 e a_s es i

e.

W e ,

g

'e 'l.

e 4ha > ee e e, eee e .e ee 4 eeee e a e e a ea ea eee e eee a e em ase*e e - e e e e on e e e O we == == wt on e e e _em.aee We e e sum eeD D e are e ==

'O == e als W* / 9 == ses art 6 e emem e sts e e me, e eee fis stsens eft se e > tre te e 9e e O Sehe MM9e emme com> em _

e **se* O. g A edee 44 4 eems o= l 3$ es se g g g $ ms 3 g

..a e e i e e e= 'e  !

[

m e . t e .c.a j i to n W t e, .

l 3 as e a ee eea e 3eee a eea e ee ea e ee o ea e a a ee e ea e a se

_a en e S.e e. ee ene> e> eoee met ;

e e G= G e We == pe mone e eee iese4' sit Sism eee e l_e e se 4os 3

.e e se e.n e e es e e _ as 'o e_ m. 1 km 3 p3 g W. O em ses 9 9 9 e e O g e g .

H n

  • 3 e e ese t 3 es *= e . I 1 i
  • I e == O 3 es . . .

.e. ee

_ee e e, . .

e. u _, s o

e e e, , ._____

se. ==, se = see e. see e. se. . se. . _ se. .a. se e ==

. . e. .

_ n e

,. n __._m

_ ._S_e e _ .n_.. =. __ m_.._e_e _e e... _ e_ _e _ _e _. .__s e s _ _ _e.e ,e __ _ _

. L_ .,

.r___ .

.s.ee _ . . _r.e e,

.e-.

e.

- ee ... ..ee - ee _ . . --ee .... e. ,

e o ,n e- S e

e

.s m.

.e a g

. a

.i e I.

.e ,

.a g ei a -.

y as e

a -

l

,v es m e

a e <

! e e _.s eee Se e- g .

. l2 3, l E t' a , 1.,

2. . e

_ e. e G e

._ .n ee. n.e e

-- .e

n. > . ,.

.O .e ~.

.b e s

o.W.

~e .,

.4 e

es ,

e . . ,,

. g- e . - - - g

!. 4 y {

'.".* f, i , j $ '

I C 9  :

8 i l .

, I l s l l 1

~

s J - J O L O O O s v d ~O

  • J 'O ' 0' 'O dDi  !

.q 1 , .-

-.q . y . . . . .

, .o  %, s ./  %# ') '9 %S %J V  %/  %# M M *J *l J .  %. i '

. l t  !

a h

. l

= ,

C

~

e op-e eme seae e .d.

mome

. m e,e e m ere ee-e mee.

e m e .- emme

..e.

emme ...e.

em e s e e.

e .mm .e.

.s enese

. s

.t -

ee me.

o p , s e e .e

. eeen

. .~~.

me-.

ee oea e ,eeoe e oee e ei e o ea e .me ee e e. eoe e em oe se e s e.

es s. O ee .e. O me 0 W ep 2 '

S S S e

& n.

. I n=

s e.s e. e eeee e.e e, em e e o eeee e eeee e om e

eeee eeee e eee e eee ee De ee ee

9. e e e e eeee eeee e

X eeee a.s. e e e ele eeee e.e..e

.e e1 e. sts e e e el e eee ee ee

  • e a.ls

.e eee e eeee e * * * ***

a a.s ee o e ee a e eeee **e e o e** * * **

  • e
  • ed 9 5 l o

C e

i e e 1 Tee e..., .ee s ee-. e e ,e .s..e ee S .e,me _. . .e e . ee. e -.e es

.t ee e e emm em e o or Mee oe oea e

e e

.ee=e eeee e ea p.m se e e e s

s~ts e

.t.seee e a ee

.e.e e .e.

e ea e t tr pm e e e.

,e e ee see en e e o o eo s

e

.o sts e. e umee-se e =

ge e. e.eee a .e. l

. e - - e

  • 9 9 0 0 0 e o

e i e se J.e .e e.e . . e. e e . ee e e .e e es e e . ee ee= = =ee .

g ee e e, e es e e eoee see e e eeee e eee eee e' *" e se e se e e e n= 1 a e e e me

= ' I e e o es

~ ~ ' * *

    • "88'
        • 8

~ ~ ' '

M "e l'

!e a r I.

ee -

l

,o ' .

$ese.'z.

. ea ee eea e e e** e ea * * *ee * **e * *e *** * * * * *

  • 3 e e.e e as e= en e e e ,a eeee e.e e.e eeee e eeo e'* mas e - e e =. ee*O Q @ ses esti se e m ee 3 i l e9MW
  • )

e e e e.s.e e #is m me tes As G J e l l t l 0

% e .

l l

== O 6 l l e Le .-

- e I

I ' l e.

g m

a

.e ..e ee . e fe ee . e en o e. e. -e ese e. e e ... . e a en

.eeee em m em e eeee eeeo eeee e eoe ee eo e as ==ses eeee e

g g eme e e l emee e e == 6 l 4 i S slls b#4 l

g - - m '

- em j , l O O

! I f t. j ee !ee e e ee a e ,e eea eeee ee ee e .e ee e e e. e ee ea m.* *e eis e e on - as ses sts ans.e !esee e es e sese o eso mese .e. e e e eese

! ut es e e.em e - -e .m e. em, S sts art es es i e sts el .e as e e . sie I e  ;

e .

  • l e .s. , .  ! ,

I i .

e g  ; l l l

. D a.' . ea ee e' e a e Io eea e ea e e a e eee e a e a e- e e o ea

.e m. e e e art - eeso e s.e .e. s= .e e e ene== e ee.m a Q an e.e=

e e em nan art ea e

.aemm.e st

. ses wi

.=,e est e e o n. ! > e.. og om e e e.e e ee um e s.e.s ==

.. we e e e sis. e as e.en. me art > ett a le

-. e e e e. era e e a

e= 8e ses .e. sts e e m ses es 0

e .e. sts' es

=. et ee. Oe 80 0 i

l e-

. 0 Da e S

= e . .

l l

$e l

l ans t e b e .ea ee ee a e eee a eeeo e e ee a ese ee e a ee I

    • eh emee == e 4+ me eeee e ea es eeDe eeee e eee e e e es e eeee e

> 8 g

  • s e e e >

e a.r.e i

m one e.a ee e e As e l

I

E 8 i i

rn s e=

p

' l 3 e e s .

.e.s - m ,

.* es ,

e > e i

e es ee,o l e

.  ! a a '

i u.a u .e.* e

  • g I es e Soe se 1
e. e E.o se oo - - oo on e. Sa o Ee s eSe n E.m e.==

>4 e x a ee e.

eln e - - n. .a a m a e en a em .e.

e .m e.

e.

e as es =

em l

o

.a x*ww ,z

  • esse z e

a . = =e es w ,z e =s es

. e -

z.oww

.e. .

z .sw er - - # e ue . m.

. .e.

e-see ,m e m e. e- nee e n ame e. a m es es m o.w w i z e. w w z o. w w m es. > s se e ame e == i . I i i i es e

a 4e es

. . a. e i nae e, e

-= .e O

e e o u.

e

-e se e.

e.

e e

., e e _. .I l.a. ,a.

e u. ,.l ,e e 'a l g

m.Y *.'s 2

.e me e .se.r.J. . l l h, 2.i l I ,es. 4 l

- a m e. eo

-eemo

_.e _ .e ee -

i

- o.*so gg _e.

g

.e.

g e e

e , _

e e

.e .e. 2.1. e.e e i.

[~

~ 8 e

\ k ?t ,

\

. e$ l ?I 5,' '

ot o ,U

( s s t o o u o c gj S

- 1 3 VC 4 .__..

t O*,S .

.O ** O '

) ).O O O O 3' ,OllD, O!1, O: o eh\a )

. ~ .

_ _ ~

~ _

.e i

~

C _ _ .

e I sese aea seee eelr eeee ssss s e ase ses uasl sei n,e o. o s t en,su .

l s eses es es ltg eee esse esss ssse teel essi e esa ee sV

'" as s. " i nein

, ' ' , , ' - '- a'

= = s'= .' i. . .= _

1 9

9 R

o l

' _ * ' ~ l.

~

= _

l _. _

4 _ ~

. ~ _

see a e's e a

=a 1s 4e as ee ss ess ases seee esss esse Asee aeti stla ag esss te eee le as sl ee sen uee s e

s.

sena et asei s

u ls se eso lsee

' ..

  • le*s* e P s' ' ' *  ? " *' ' e
  • 1 , " '

- - . ..i'

2 O

e s d e f e Les ,

ise .

l l e se ee es ss se esi esss l seee ogse gres ssee eess e esa eele s lae sSlr el

.ese esa na.s.e e.ia e

se ss een tsss gees tesi e sel ee ' - *' " ' '-

  • 5 1 *' '- ' *

=

=

8 9

~ = , t.

e t

u e a' l a' ee o' e e'l a t' e'e' e' ta1lt 6' e e' e' e e e -

_. 8 tgas eaas eo ssss

_ 8 1

ee t.tt ea eete e6ta t

_ = l 1

d L

e a -

~

nasu e'a' s's' ,

s'e s' slss e'a'a'a e'e'o" e e'l 6's" e' e e e'

~

w sl et tael e s. es

_ atst a se -

i s e st _ l ee i 1 tt

. l l sa = t -

- e s ,1 .=

a

  1. s .

l o .

e l _ .

i s ,

b u

m sa 4 e'

, ee e l e't t o" e e e e* s'ee el e' e e e' e=as lsse s e t. g i e ee .e el - .

?

l I

=

la

l. l

~

3 4

, e e e' s a'a' e e e e e' ls*ai a" e s- e' e . e' s'

e 2.es ss s'a' _

_ jt ee =tr s lt

s. i

= ls = la

/

l .

_e _ " o t.

1

_

  • L e ~ _

na a' g - L * ,_

u-- u.".

u es a't e s' s's e' a s'e'e e -

  • t s' eela s s' a s 9 i c sela eee sssn lsee 4 0# n

. 0 4 _4

,1 taee a l eta tsse

= a- e t. s e l. ase

- l e. r 1 s

i A v - .

.=_

0 3

a s

e l

e w

m.

  • t 3

4 1 A

s *-

e4ts s4as

, eee s's'e e eels e'e e e ssas s A t"e e

e

- a e ..

e 2- _. sss a lt -o _

n . la e' w

a n - s e .

m Me e

t m

e n 3l c

ve 1

e

'% s -

u= \

" 2 a n

e & e- n _

ei l ,.

e :ce f le4e ve*m 3

-- l 1 1 al1s '* ss ss ee s se

~a s cu ss . oe

_ soi 8s a 8 l' 8 I s e ce es m cc s cc l _0 eg e' s oe l as s e s i oe s G n in l

. :* s u ee ee u ee u e ee u cf i.

l t

Ce

~

c 1

e Lll naii sll aai elln nai elln nai olll nali maai e tll ea Il NaIi a

. nn

e. n ee un O ll nse nes c

e ee mm nn tnes ase amse amee e

ameo s s ,

_.4 m e

_n n e s d d'

u se e e 1 s s-ar 3m n s a e e d m.

4m

' 8 9

e a wu - a

.e a a -

e 6 d

sM w e El

.t e e , ,

_e i

n 33 3 t W H _ _

_l.

eM H w n N ,7.

E -

33 1 .S na 8

s t2 - e ' a -

1feec w r a l

. .e i 4tCi: aa f- ev1 4 l s z- e'p s . -

l l

a 8 l l. -

s s 8eee0 vd s -

' :  : l

=

4ssr1 e 4' # ' t MF '

. f

__ a _o G~ 6 u -

_ f

_s '

P W ~ _

. ~ ,- 4,

  • 2, , , , ,. " .

o 4

)' )" a o O O O O ) 3

+

, Q,O .

c_

  • . I . - * -

Gf k _ 4 sJ _

i\1,t!: , :i , i; , t [h

, r , i. ;lit!titj

. , , - a w , q s w , v v w w #-

e a e I l (l' .

' i .

est de e me e e- me e e 4 are e e eee> p. upt er e en g> m e. en as em pts

e. O ee.e.ns ert se e m e e e e as sat tsa e.m

= en e> e e e en e eeme eeee est eee ses e s.e. mee.e e. emense. ee e.en . sts = ef.t e e ats e

= #ts s.e.eee em. ris trt e e

-e.a - .o ee e e o eoe e o e o. e o e en e e ee o e a e .

g g ,

.o .e o e .o .e .o 2 5 I i

- I

=>

we em e .,t . e .t. .m e-e. .e .e e . ee 4 .,t e

.es eeemDe e .,6 e e . e um e e am o. ee .= e D e .4 8=

asse e .eas ! eeme e e e as e e p. aft p4 8ts eft e == le e e4 a e.e eeee e eee eebe eee o e e > er e.a e e eo eee e ee eo e ep e,arte eo e e o e oe o- eo es e e e e e oe SA . S 9i des 9 e. S 9 '.= 0 8 9 0 .* 0 **

e e

  • S e s i e
  • P*

as e e s= ' eeeem e e.

==.

n as an a e se urt eee ese == e e e e. eee e ee ee e ist e e e e um e e e se eoe ee se e eles eeee '

ee eI e e e ssa e eee.e e e. g> ee.s. .e. > eee p e se. e ee >ee e pas e e m me e e eo e> e g e. s eoe e ee e >=eo ee.e e. e eee o e e e eee e eee

  • - 3. e e -

e e .e. 3

. e. .

i

m. e e e e e e a e e E e e o e e em e e e 2  : 8 T* l

, c.

I i

le.

r m.

e io e e e e a e e i

-a e e e e e o e e e l o

  • r1 l' e

e L. . I

. 8 I

e e.

0 e

i

e. as . e a e e e e e , e . '

d E , e ,e ej e e e e e e  ;

! I )

. p 1 .

.s t f f

.e a 8

'e -

i e e e .e e a

  • e j .e .e ,

e e .

. . e e I

,S" 1 -

. 3 g, .

y'

'h a 'l

b. i h

i 2

, sa m e e 3 e a e a e a a m. di i est .e. b -- e a en e =%L se o eO ' '~ * "U ' ' N O *g i  ; 8 0 N

. 'g F "* ,I s't It) g r3 ..

l o

  • e 8
  • M

' s d

=

o u

= .

o a

e i

I

.' p 8 e a

tl .

is s

. I i

e ,, , . t .,

eti.

e e ."J e-e e

e o1t

-e e

e g.

h.\I ,b l

N 5 g I h l

a n e  : f i

e i .

p _3 e ae

- e i

i

<0 .

.t .

a : u:p

- "n pe i l .

~

o a

. - Emei - E;e a

e. .e em - Eean . E e.

se om e. Em e So a

,Em a g

+= . nn7- l ,3 o m

e o

== r, mi

= x e

a

.e..m. e = =e. r o t a ne a e s == m e m -

.=

et *em= = . .

m e e.s w-

> m an e e.

I es==

.ww zeww e- m as e

  • m m es awww c .o e.xese.

ese . >

w 6 .=. wwe. 'E > ww

> p e n-e.

I'wwU

> men

.e z .ww see

*L *w 8 i l i6N I o

L e a w

a e a a.

e m

e a

a e a a e

a i

.a it-k e.

e p,e !ez a-y e el I

. e g g . ,

. t'. ", " t a le , l 5

..mee e 2, i og e ,) ,e a nn-

-nneo

.e en 4 e

. ,. e .4 e

e e n.

e.

e e e t- ,,

.,., .e.

o

. .e. . e. .e.

N..

l

  • A 0 4.8 e a g j d d i e d d . i.e $ z z b d W'4 1 i  !

u.r

< c . 12 i i s . e o e _. ..

.- 0 ) C O O v O G . v' bu O O O _

J

- yQ~ Y \ --he eN

- h< -

- &Q *'

,l j I 1, I jl Il l l  ! I' '! f  ! l 1 l L.l .

. . IlLi

_W_

, t _

_ . e , eeee ae*s aere esee eese l , slus ee esse e rst aett e ts1o le8n estA eees lela cenA asel sses sess nela ssse eees e9ss l0ee eeee tese t es

. ' * . ' * *'*' 8' ' ' '*'- .

H i n

. . a' e= '

= =.'- = = . t = -

v .

f .

o i w~ a m 3e.,6 stae ee*a etae ee6s etes eg s esee seee

,m a n

4s.

ee e eiss eees sl*r ee*s sitg seee rsta esee srso setn eeee sets esss n aesl e* e'c. s' e'8'e s o.

n. ' '. ' ' **- '

=*'* *'*'

a'=*"' 's' e

  • ."  ?' - a' s' e

o .

1 m

x .. = =

s e m

i n

t e

t a

e a

te v

i,aeee i ssss rsse Ases tees aeee asee ases ssts ief0 mse0 tses aee0 eess eees s*oe neaa

.s s g s e9sG aet*

s0ee t'e*e.

n tsoe,

,se

/,.

n t

t -

=

. = ." . a'

=

.' * ' s.

' s' =

' i n' a ' -

e _

/ - * - * *

  • t e e' 4 e e e' e e e' e e' . -

e l

a s

i _

e i

n - - * - - * -

a m

e e' 4 e e e' s' e'e' e e' ee _

o -

m _

s 1, e _

t s _

t e

o _

l s,

t _

a - *

  • s e s' 4 e e ee e'e' e e' e' e e e t e' e e s' S e' a s' e' e o

eH e

ve e.

it f

Ae

!a

  1. s g t _

/

e _,

1 1

o _ -

- e -

g, _

_e.

C - * *- - *

  • _

e, o _ .

s.j s' aP '

s ee ee .e e .- _

n. -

O a.y s t Ih d

_. aE -

s s

1 i 6t tW _

h o s .

  • o .

tI

. %.,w a - ,

3 i 4

8 3

e 1 s .

es t

e w s s'

N A s' e' 4

.e A

t re.

s'a

- se i a

2- _ _ ee o a n .

,. a &t 1

v m c e

l p

p f @*

as d

3 m es i 3 W -

a st s . s m 2 s se e

. . s e J 4

._ el a .

a d e nc s v

o es m ..

4 1 geMe' st e os

)

4 ,

e. se B te 8n ae es 8t ee es s. .

888le

, m l

ee u ee m ee I 0o s i

0s ee m s Gin ee m I 0e es u es l Di a m

.e s ee m e.

s ee ..

, elig estt e ttz s

elII ealt e sit el! 1' elue e

si .. , n a' g naai naiz ma33 n a 31- n ~a 3 i g a13 na Dtt 43 e3In _

e n s. snee anse aaee tnee aaee 4see a#e. .

t . t n_e e _

e An .

_ _ a_#ee .e -

- ese J =n a 3 s s s s o t e.

] ~ c e, e . e _ e e n e s1 4m e e s e e c e-e e e L s e 33l 1reee scess 3a s l i,4 e s

-> - 4

- 8 2 8

s e

fiE n

l t o

i

=

s 2t e _

r S

t 8

_s e

w a s-t 1 aW s

e" teseo ,4 t e - e - s 1 a 3 s m- s '~ ~

.sser1

,. -- e -e -

, e t

o n

e n M se s*U 3 ~

- _e C'~ n

..r '

7 , O O O ) 0 Q J p,O O 3 O "

, . )" .

%. OhJ k l  ;

li g

$ f! %.

It. 'l i,iI!t ,!ij:

'I

!!  !'li}!6i!:  ;;!rll,ft t!

\ ,s

. .a v u O v 0 L. J

i. v _. 4 0  ;

)

a,. ~,\. , .

. . . t,  ; '

i *-

t .

  • n i
20*: 2:*:  :":
t. *. "t * *. *.**". *.'*. *.**'t 't *

= g  ; .

g _ ~  : t .

m [

m. ....
6
  • . wa 3

........I.. . ....

j t

E - , . ., .. . ,..... ....,... .... .

i

% t- ,

A D ,

l r 2\

5 TL.  : :: ,...2 21:*

, . . .. .... ... 4 I x.

o i I.

7 ** i ** 4 y*

J*t .

v T h4

%*4 I

lY ,

l q - t I

M i I t.s E . .

3 ' '

l j ,

l A* I l

I

' B. <

Y i

i t.. o l

! i i

i 4  !

i l

l

'\l\

. l s i. . .

g4 \ ' i g i i

l !1 i

, s -> e g

,me { ,

N Q o >J 1 I

(g J g. N g i ,

i j y ':a b w NM  ;

I i 1, i d 44 M $TI N l , I

l. .

. lg l lt i i

I t

, . e e  !

k

,e i i j, j \

g g I

i

. . .i l

s.. 1- 2 m co -

. . 3 pg h a %. ' tQ f:t -

l i

d

$ $d h 2 .- N to [l;w  ;

(c% l .

c o - , . l u >

m! .

I as

= i.*

= i

.. .. . . . @ =

i '

i": t' .

.E ' :, *

  • I'

'*>+!

o*

o I 5 g m h *-

I l

n 8 L :'. 21 . l l N D' h n '

'i' NN4 C

l ?. '

s F, MD I

E:W .

I s om: '

i

.' $ $ Q
ww e4 l

. 2*

= : 22 \

e .2. a s.: -

.g l

,, su -

4:.  :::: 4:: tt t

ss

, e i - '

0 ,

D l'

. , . . - .I ' .7 9,8 I. - l  % o o i, z I: b ,'I .

i eans:  :. 4 I  !

$ b to n,' % i

: a ~ .mm '

.B*S

  • g *$ ,.
  • h, , l i

l

I l i

-l  : $g '

I ,

' I I

1

.! I

.i.

.W o cg4 c.

4 .i o

  • o u o

o q a;

, t M5

  • G N N Oc n 20 m Om **e*

1 O e ce o no M-ee M-ee a

w *- MOOo COOc COOm M CO w 2 . - - . -O O.

e. 0 0 w. o- n. M. N o. n. n.

- N. O N. m. -

- e e ee e a e Ne e e N, w

e 4

a CL e

CM @-@C O-nD O NOnn N eOs

  • O .* RN>8 on eOww

- M,O-N -

N. O. *. N N. O. N. w. W O

  • N.

e e e e

=E e

bbnb

-n,- bbbb bb b 0b b b b0 b

- ON*N

. a.3Nn e -N m

=

m Z> . - - . - - - - . - - . - . - - - - *-

  • Owe- - - - -

wx C000 0000 0000 0000 0000 0000 1 NwNe c e-me 1 ON-c ce O*

.J - me 4

EC O

J c

O E nbhb b b b b b b

  1. a encne 3 Neww ea we e

'4J

-J

  • e

.J e N . . .

heNN.

2 w 0000 0000, 0000.. 0000 0000

< Nocw. 0000 s w-NO 2 a oe em C e - -n

- to e a w w O

e m w a u> . - . - . - .

Moce-w as O men-

    • eo OOOw- NNMe ONCO C000 O m e- M move WNwe n ce enne e owNw m-2 w

N--N MOce o e r-6 we wcom e

-ONW 1 a e e N

  • Nm e m.- eN*N
e. e e e e -

e 2 g3 e O O v J w

c O x . . . . . . . . . . . . . . ..

=

e w mewm. 0000 0000... 0000 0000

-men C000 eNwo oeem 0e ** 6 mN

>3 M e-~ M we CE O Z e e v 4 e iE< g w CD C D w lD e 2 w

  • =

s 0

N Z

0 N

Z*

C Z

e-e e

e* wo = e

  • Ze Z Z e so O22=s e

e e

e e e e e

< == = N w to 10 to 0*Oe w CD ID (D w w w w w w

.a E L J 10 to CD C (D CD 10 (D ED (D (D C

  • - O - OO ** OO
  • OO O O = 00 0O 2 e I ee I ee I ee ee e ee ee

ma O t-== g 2-== === *=

..* =w w=

e w .a === *== j Irww Irww kww kww kww kww Et m m3me >3ee >3ee >3ee w K *= 3 e e >3ee >3ee e ~3 w 2 w w U O O O GE O O CE e c6 2 4 e e IL e 4

>E 4 > 4 CE . CE CE e CE CE O he. U k wwJ s .J 2 CD a O 4 e e o O e o o eOOw4 >> N M W - N N

=G$eO 4L * * *

  • CL CL 3 .J Q i

+

  • e N C*me nnme name 05-w N me n-

=

o MOOc WOOc WOOc COOw b 2 O. O. N m e. O. n m e. O. n m. n. O. N m. . . n. .- n. . . - .

= ne me ne ve -e e e a e e w

e 2> WeCO -wNw e Mn wo nn-n 4000 m om 3

w y e

.000 . . .. . . . . . . ..

5000

-e e

. .c..

( e J

4 e

=

Qw n--e - em emem NNec c Occo e mv enne Ocwn

-m w O. c -

.00- . . . .

m. N. O O m . -

e e ne~~ e e -

e y . . . . .. . . . . . .. . . . ... . . ..

0000.

-3 m

0000 0000 0000 0000.. 0000 *mem woeO a, O n. -m w w-

- h To w -n w

e 2> . . . . . . . - . - - - - - - - - - - -

wE x

C000 0000- 0000 0000 0000 0000 vom-mwm o cwon 1 o-me n me a n 4 m W

O 0

x . . . . . . .. . . . . . . . . . .. . ... . . ..

X C000 0000 0000 0000. 0000 0000 -emm co-o omOm m-ne e nw e

a a N . . . . . . .. . . . . . . .. . . .. . ... . . . .

2 w C000 0000 0000 0000 ewmm Woep 0000 N-m-meep

% nmnw - en 3

c e

n no

-n o

me

= m e e a w w c

e C w a g> . . . . . . .. . . . . . .. . . .. . ... . . .

w aw o

CeOO C000 Onew. ~~oo cmmm 0000 CeOO ewom.

& cOWN o me-n

  • w -emo evom mnen 7

E a OnNw we e-mo em e nne-e e -

- < e 1 2 m l O O v s w

o i a x . . . . . . .. . . . . . . .. . . .. . ... .

= w 0000 --Om 0000 0000 0000 0000 wwe..

e mmmm een

> m-no mene I

  • D neen - N en J 20% e -

e U IIe ggwme w e b b c - '

a - - - - -

Dwm42 > Z, Z er wo = Z. e Z. Z.

e>%Q > - - - - -

OZZ-N 3 e

<==nw .e .a .e .e w =

040e w w w w w 2 w JEL*J '

2 O

4 3

88 WW I er 88 -

I em 88 -

I em 88 - 88 ee I em 88 -

E We 88  !

= 22 ww O t=== a*== g-== t*== -== a-== g-== 1 4 a I>ww Ikww Iwww Irww kww Zwww Iwww '

E gg >300 >3em >300 >3ee M300 >3em >3ee w w 2 O O O O* E 2 a a 4 4 A

-m e. > e .e .e . < 1 Uw U >

wwa aneuc

>OOwe 4

>> n m O m

O m O, c w

o e

e O

=akeO 44 - - - * - - n l MALDs O

e

m N enee newo onom wecn w nn w nm 1 0 -n-- nnec nome boom e 00 e 00

- cong nome como eon

  • e e 00 2 - - - -

- = * * - 00- -

. .- e - -e ni n w

e e e e n.

e w

Z> ecwe esco wo NOec nnee

.I m.OO- . . . .

n. O. C. . . . .

u e e a 4

J a

e

=

Ou e w = '~ @nen n wn = n 0 *Oco NO&c M Mw

  • k w' n.o.n e . . . c. o - m e . O ==

. c. . O. . . . . .

e . e e e e

n. .

C000.

-I cc scoe n cn - o 0000 0000 0000. 0000 0000.

.e ewen a

e.-c

  • & vc w

P e

2> - - - - - - * - - - - - - - - - - - - - -

wE C000 ***= 0000 0000 0000 0000 0000 I mo-5 o WW6c

I ve

, e a e e. o w-n e

e cc O

J c

E bbb E b >'

@Oec bb bb b bb ccen cwee n.- co.-

e.

e.

3

.J e N . . . . . . .. . . . . . . . . . ..

Z w C000 boom cene C000 0000. 0000 0000 0000 s -o-O 2 -

e.

e oe e o.

c0 e e .J w w I O I e i

eq w

Q> . . . .

e--m..

once.

w aw C000 CeOO Onw-0000 mosh.

O - evmm e c -e wooe evoo

- w e mann comm c. NOwe 2

3 n. . m e m.n e.-n n, wone me-m, won

- < e e 2 m e O O v a O

w O x . . . . . . . . .. . . . . . . .. ....

~

e w C000 meNo.. C000 0000 0000 ecce C000

- e cn w O eOmv

>3 e n e th M e* o-ee 20

  • weab e o e EE4 w E < w to O .J *- M w o e e 3 w cc e 2 > I I I I* I Z*

e= wo = * * * *

@>%Q > .- e- e- en e-

  • O 2 2 *- N * * * * *
  • =-nw to to 10 to to CD C<O'w w w w w w w aEL*d
  • - CD 10 10 C 03 C CD CD ED CD e CD to CD C = 00
  • OQ
  • OO = 0O OO - 00
  • OO 2

g gg 4

o I . .e .e g g.m.e 3 e E ee g=== E ee ge== ===

ee 5 ee a=== E We ge==

ww I>ww Ikww k C@

,,4 p-3We >3e@

I>ww

>3ee I>ww

>= 3 e e www Z>ww Ikww

= 3E >30e >3ee P-3ee w w O O O O ME

.a e

W < .k . . <

< = 0 = = =

Uw U M w w .J a*Jto a O 4 o O o O e e e I

> 0 Owe >> c e O N n M M

$keO 44 N n O M M M M

> b 4 3 .J O

4 RESTRAINT LOAD

SUMMARY

TITLE MAINSTFAM OUTSIDE CONTMNT EAB DESIGN / ANALYSIS PROJECT NUMBER POINT BEACH PROBLEM NUMBER t-21/ EAR USER LEF/ DONG LOAD CASE GLOBAL FORCES (LBS) GLOBAL MOMENTS ( FT-LB) DISPLACEMENTS ( IN)

DATA TVPE EOAD TITLE FX FY F7 MX MV M7 DX OY DI PT 340 RAD EB-t-H7 THRMt 3605. O. O. O. O. O. .000 .000 -1.333 WTt 15. O. O .. O. O. O. .000 .000 .000 SEISOB 3659. O. O. O. O. O. .000 .000 .001 SEISDB 7213. O. O. O. O. O. .000 .000 .002 340 RAD EB-1-H7 THRMt O. 2689. O. O. O. O. .000 .000 -1.333 WTt O. -10458. O. O. O. O. .000 .000 .000 SEISOB O. 9453. O. O. O. O. .000 .000 .001 SEISDB O. 2833. O. O. O. O. .000 .000 .002 345 SPR EB-t-H8 THRM1 O. O. O. O. O. O. .008 .003 .932 WTt O. 45. O. O. O. O. .000 .010 .000 SEISOR O. f\ O. O. O. O. .010 .002 .001 SEISDB O. O. O. O. O. O. .O19 .004 .001 365 ANC THR41 -1082. 570. 1740. 1007 12077 -492. .000 .000 .000 WTt -5. -5449. -28. -19345. St. 3638. .000 .000 .000 SEISOB' 2934. 409. 6705. 15G9. 22537. 953. .000 .000 .000 SEISDB 5887. 793. 13175. 3067 43801. 1845. .000 .000 .000 380 RAD EB-t-H9 THRMt O. -2240. O. O. O. O. .210 .000 .437 Wit O. -8393. O. O. O O. .000 .000 .000 SEISDB O. 1690. O. O. O. O. .006 .000 .005 SEISDB O. 3355. O. O. O. O. .012 .000 .009 390 RAD EB-t-H9A THeut O. 556. O. O. O. O. .312 .000 .439 WT1 O. O. O. O. O O. .000 .000 .000 SEISOB- O. 700. O. O. O. O. .006 .000 .008 SEISDB O. 1410. O. O. O. O. .012 .000 .014 405 RAD EB-t-H10 -

THRMt O. 108. O. O. O. O. 48f .000 .441 Wit O. -2791. O. O. O. O. .000 .000 .000 SEISOB O. 341. O. O. O. O. .007 .000 .013 SEISOB O. G76. O. O. O. O. .082 .000 .024 9 9

N weee weet e nn enne enn@ e we 1 a o c-wn w

e-wn e no NOWN NOWN N -w

-O-w * - nm COON COON O CO 2 * * - * -

  • - + - + - *

= e . e w

e Z>

wC I

w n .o w

no

. n w

.e .n

>~ne

@On-nn-n w

O N C. O.

n

. n o. e. O. n >

e e C.000 O-n q e o e e a

n e

~

Ox C

Onne e-n-Onne e-a-

@nne

--u- 8n->-n- 8n-> n- n,-es-an neep n-nu

@ O =. .

. . @ O. . .

. 6 0. . . n. o . . n. o . . n O. . . 0 0. . .

e-n

. e-n ..-n . -n . -n -e-n -e-n

~E c

C000. 0000 0000 0000.. 0000 0000 0000 a

b w

e Z> . . . . . .. . . . .. . . .. . . . . . . . .,

0000.

wE 0000 0000 0000 0000 0000 0000 2

k a

e c

O a

O E b b b b b e

e a

e  % . . . . . .. . . . .. . . .. . . . . . . . . . ..

2 w ewoe C000 0000 0000 -Noe COCO. CONw N

ween -men o em n@ce ne en em 2 - 5 we - nc -

O e

c e a w

O e

m w q y> . . . . . .. . . . .

w am O

0C00 0000. O-CO neoc ecen 0000 Owoo CC00

  • w

=

ee-o 2 eOoo woom I a -wwe nw-n e e .

> e 2 c O O u a O

w O x . . . . . .. . . . .. . . .. . . . . . . . . . ..

=

e w OOOO C000 0000 0000 0C00 0000. 0000 ap I. Z. Z. Z.

MOZ N e u N. n. N.

  • w E W W W 134gwc 0 DwmeZ a

w a

w a

n w w w N

I* a a I*

e= wo = * - N n O e>NO > m e n m m n =

O22-N g 4

  • g g e o g==Nw w w m w w e =

04C+w = w w w = w 2 JEL-J .

>* @@ EC CW @@ CW WC WW O - 00

  • OO -

0C -

CO - OO

  • OO
  • OO 2 g I ee I ed I em I ee E em I ee I ee a

22 w

O a

t == 4-== g =w= $*== 2*== &*== 4*==

Iwww Ikww .ww I=ww Zuww Irww IWww a m >3ee >3ee >3ee >3ee M3ee >3ee >3ee

>3 0 3 w 2 w w W k & O C O O a e a 4 a a 4 4 4 4 WE 4 > w e e M w M E Uw U >

wws a7mmo 4 O O O e e m 5 WOOwe >> 0 0 - n e o O

=kteo da O O O @ W G O WLLOJ G

N e ee e--m @--m e==O mmm-

--*O ---O meme a

C O me cono cono Omm- Ome- vn-b 2 . , O. n . O. n e. - O. N c w o. n. e.

. O. O n e. O. O n. e. O. O c b

= . .

. n. n. n.

w e

lo w a.l.l.a a.la.s. f.a.l.a. al.l.a. a.l.la. al.la a.l.l.a.

v 4

a a

e m

Ox e-on 6-em 6-ed ahec

  • ek o n*nn N-Nn N-nn no-e @ me
m. O. . . m. O. . . e. O. . *. c -n M. o. c. e. ... . - .

ne -n n.-n ne-n e N . . .. .... . . . . .... .... . .. . . . .

~I C000 0000 0000 0000 0000 0000 0000 m

a e

6

=

m m

ZW . . .... . . . . .... .... . . . .

wt I

C000.. 0000 0000 0000.... 0000 0000 0000 k

a w

e O

a C

E bb0 b b0 0 0 b bbb bb b bb e

m o

a a N . . .. . .. . .... .... . . .

Z w OOOO 0000.... NO-m ecem 0000.... 0000 0000 0000.

N me e-2 a w cm c e m m e a w w C

e C w g v> . . . . .... . . . . .... .... ... . . . .

w am enec endo 0000 -men C000 ene enom O ecco mmme emme one emme

=

g w om&w meco - - Oe m e. vece

-- - en w &.--On e a J # *

  • a t

- e Z m O O v a w

c O x . . .. .... . . . .... .... .... . . . .

e w 0000 0000 0000. 0000 Webe ence 0000 0000

- I* Z* ~~cm

>3 wS Nw UOZ n a v n. e E34 w m a m E<wed a o w w e e m -

Duc<t > ~ ~

om wo m Z. m m Z. Z. Z. Z.

eksO e n m m N n n n OZ2*N e 4 4 8 * *

  • 4mmnw W w w M M W E 040*w w = w w w w w JE4*a k . O - 00 WE

- 0C WC

  • WW 00 -

WW 0C

  • 00 EW

- 00 WW

  • WW 00 2 4 I ee 5 0e I ee I em I em 3 ee E e@

m aa O gemm aemm g-mm a-mm g-mm a-mm gemm 4 ww a I>ww I>ww Zuww ZMww Z>ww Z>ww I>ww a g >3ee >3ee >3ee >3ee >3ee >3ee >3ee e 3 w

a E2 we w a

O e

O e O O O O e 4 4 4 e e 53 4 > 3 E W E E E E L WWJ uw v >

ancac 4 @ O O O O O O

>OOwd >> > e e O M M O mMQec (& O c c @ @ e c M443a C e

m N nM-m cece e-me Mnec enne 1 ~

O come man * *O-e wmee eO*w z n o n n.

. O. n. @ n. o. . . . . . . . O n e. M. O N. n.

= e n e n e e e l

e Zw MeOc 5 n-Oc 6 he -

wo ~C-- N Omno a O- -

1 0000 -

w u

C.000 e

. . . C. O. . O.

e 4

a a

e

=

Ox - O DOOO - O n ~~ ~

O M e -nec n @ e em M t-c O, C - e

. e. .

e

. o. . . e. . O. .

e e....

Onow. enMc.

=X C000 C000 0000 0000 0000 C ecom

-com e-nn

s. e---

enen

=

en-e e e b

=

o Z> - - - - . ~ * . - * - - - . - . * - - -

0000-

+2 0000 Con- C000 0000 me-e 0000

\- a- cocw -men W m w u. nou n ee ww n un e ew -

a n

e c

Q a

C w . . . . . . . . . . . . . . . . . .

-mov. . . ..

I C000 nee- C000 COOC C000 0000 en-C e-es noen o nw e on -

e e

w e

d

=  %

noc-.

C000.

2 6 0000 0000 vemo C000

< e-oc O em 0000 s

zu =

e n

e

.n w

- n.

e e--

=

c a

w =

O e

c w g v> . . . . . . . . . . . . . . . . . . . . . ..

w aw CeOC c-Oc cevo CeOO Oe-n. ocem CeOO

=

Q emov emmm n nne- owce e w en-n acno e neem g e e e e. n. n 6 -

e

- 4 2 m O O v a O

w a x . . .. . . . . . . . . . . . . . .

=

m w C000 como.

eeO-0000 0000 cown.

C000 0000

- 6 WN onne CO-6 l >3 * - e 20%

4 U E4 Igwco w N -

a w - M - n Dwm42

  • e Z e I

em wo = n a n a n e

e-%Q > - N - n -

( O22-N e * * *

  • i e==nw QWCe w g m e e e w

i t

JEL-a a I w Z

} >- WE 2C 25 CW WE WW WW Q - CO -

00 - 00 - 00 - 00 - 00 - 00 2

= mm e

Q E em g-==

I ee m-==

W m*==

We eW I me 3 me 3 ee

( ww a

= a-== e-== g-

i

.www Zuww Zuww kww ZWww Iwww I>ww i k CC W3e@ W3@@ W3@M W3@M >3MM W3@M W3@@

> II W w a E M

= ,

=, a W O. = O. .

-= . e < . . V. . .

Ow U >

wwa J7CEO 4 n @ w

  • N e @ ]

>QQwd >> @ @ O N n a w meMeQ 44 @ w b N N b N 1

>LLDJ O ]

1 l

i 1

..wr

-- -, - . _ . . - . < t

. _ - ~ . _ . ., - . _ . - . , _ . - - . . .

a N meen 5 Me n =e o em c*ec O cane n no 6 en w we noen

~ M a no w* -me i 2 - - - - O.One - - e n.

. . -. . - ** a * .O- 0. **

= e' e i e e e 2 n.

1 e

1 25 5 Mene > 0 we enke wo a menw n o nm pCMe E

w =. . . . . . .

O. O. O O, =. . .. m. . n. e.

ee

. . . . C. O. O. *.

u e i s e

.J a

e c= 0 m ew

  • O enne e oe e *O

, O e m on M e r--@c w ** n OM n

. n. . . e. .O* 6 m. . .. O.000 W . N. w.

. . .

  • n.

, e -een e e e e e

-x enn@ OOOO 0000 wwee OOOO COCO OOOO c nown ocho a

i one- -

-Oce

-eng

  • e. . - e w
  • w e

2* . - - - - - - - - - - - +- - - - - - - - - - a 0000-wI ecee C000 0000 men

  • 0000 0000 3 w
  • r- w noon C w = el) O ewnM E ee ww - e em N *N N *

.J

=

c C

C i

E N' n w' b evee b bb eee-Nw* bb b bb I n=co - ww

@ nw w

  • f . .
e J

=  % . . . . . . .. . . . . . . . . .. . . . . . . . .

2 w emme 0000 0000 home.. 0000 0000 0000 e n nn Onwa N w Oc n 2 - - **

  • o n.-

e e e

. .% m e e w w o

e m w e U> . s ~ = - - - * * = ** * - * * + - - - .

w a* nome v e n o' 0900 Ocho O M' O O Meen 0-00 o -Oes smom n woon i Onem 7

w e n.

  • cong e emne ee*w X a e - e e n--n e ee

- e i 5 8 i v 4 1 0

w
o = . . . . . . .. . . . . . . .. . . .. . . . . . . . .

~

e w veom m M*

0000 0000 ***n OOOO C000 0000 wmMO J > e e=* m OO *

>3 e e 20Z e u O i; 2e w 0 w -

eweo s - - - o e in. c a 2 6 Z e Z == =

en wo e= e N e a I e>%Q >- n a n N 022*% e e i 3 e e--nw e e m w e i

Q40*w w Z w 2 w 1

., m a ,

2

.. O e

- 88 ee E ee 88

  • E ee 88 -

E ee 88

  • Eg

- 88

@e 5 ee 88 "4

&2 ww 0

.a

-==

www a*==

IPww 0*==

I>ww e===

I>ww

  • =e=

kww

  • ==

e- w w 9*==

Ikww

O e- B e e >300 >300 >3ee >3ee >Dee M3ee O

! w w w O O k U k O W i a e a 2 = 4 2 a e a

>I e > e a e e e a e I ww n uw u > *,

(

.i J7mmO e e O > e N e O 4 >00we >> w e e e > > e i a23eQ 4a b b N b b b b

>aaDA o i

1

I a .o

  • l N ~~O@ M-Oc M-O@ n-OW NmMc en-c 4 a 0 OOce OOce OOce doce >=n> eoen 0000 @ COO 2

~

@. -O- O O. . n O. O. O.

  • O. . N.

. - .O. n. e.

e e - - e e e e e w

2, 9-.- .~n. coe.

=

w 88.8;. 889 $.$EE $$.E.E. $E$.E 0.E.$.E3 8 8. *.

u e e e e e 4

J e

=

Ox O

mw-O coon OMOc evbe pow-ovos emem e km o

-O@c 60** ence 6 me w

.O-n

. e O. O. O. -

e e C. O. O. .

e 000..

e N. O . n

  • N b e
  • E to C000 0000. 0000 0000. 0000.

0000 0000

.a w

e m

Z> . . . . . . . . . . .. . . . . . . . . . . . . . . .

i wE E

0000 0000 0000 0000 0000 0000 0000.

I k a

e cc 3

0 a

i C w - . . . . . . . . ..

0000.

E C000 0000 0000 0000 0000 0000 e

e d

a N . . . . . . . . . . .. . . . . . . .

0000.

2 6 w-@c OOCC 0000 0000 0000 4 ,e "O 0000 N @ Mn 2 -

n no o

e e to e a w w 0

e O w ag g> . . . . . . . . . . . . . . .

-ONo. . . . .

w 26 0000 0000 0 0 0*Q veN- emON 0000 O

w mnon *now -nem n

  • -en neen -

E 7

.J e-n e

o.nce - -

e e

e

> 4 2 to O O v .a C

w C M - - * * - ~ - . .

eno-.

w m

~

e 0000 ocem 0000 0000 0000 0000 wnen neep

>D ww-en Ze-Om Z a0: n e o e nw e n nn e Ne N 4 U C e a e E4 w a= II to 10 e N 4wC0 a c n w w

  • N e wg<2 > = = e -

e= wO a I I e e*N

=

e e e i e n J OZ2*O

  • ==nw N 3 w

10 4

CD 4

to e

N e

N o

e w w w a m g O4O*w 2 w w - w w .

a34-a

>- ID to ID CD 10 to Gk (D @ ID E CD (D ED O OO - OO - 00 00 00 00 00 2 e ee 3 ee 3 ee ee ee ee ee e= O 4

tu a ww >ww

g - e- - a.-- -== === -== -

.J Ie- w w I>ww >ww .>ww >ww *= w w CE ED >3mm e3me >3ee W3ee >3ee >3em e=3ee e I e D w 2 w w O E e C O O M cE e IL e 4 e e e e 4 +

>I 4 > Cr w w k E $ e Uw U >

w w .J

=J 7 m a C 4 *

  • O O O 6 n

>00w4 >> e e @ 6 O O N

= tz cr e O 44 m e > > e e e i

  • 4 4 3 .J O l

e

e RESTRAINT LOAD

SUMMARY

TITLE - MAINSIEAM OUTSIDE CONTMNT EAR DESIGN / ANALYSIS I

PROJECT NUMBER - POINT BEACH PROBLEM NUMBER t-21/ EAR USER t.E E / DONG LOAD CASE GLOBAL FORCES (LBS) GLORAL MOMf NTS ( FT-LB) DISPLACEMENTS ( IN)

DATA TYPE LOAD TITLE EX FY FZ MX MY MZ DX OY DZ PT 824 ANC THRM1 345. -272. -563, -1574. -t1203. 5061. .360 .127 .000 WTt -77. -556. -1. -7. -102, 4914. .000 .000 .000 SEIS08 670. 786. 1410. 1629. 15291. 6764. .000 .000 .000 SEISDB 1305. 1478. 2840. 3230. 30835. 12723. .000 .000 .000 829 RAD EB2-H21 THRM1 O. 368. O. O .. O. O. -1.069 .000 -1.087 WT1 O. -343. O. O. O. O. .019 .000 .001 SEISOB O. 431. O. O. O. O. .131 .000 .080 SEISDB O. 850. O. O. O. O. .249 .000 .162 840 SPR HB-12-7 THRM1 O. O. O. O. O. O. .721 .064 - t10 WTt O. 12. O. O. O. O. .000 .019 .000 SEISOB O. O. O. O. O. O. .000 .054 .138 SEISDB O. O. O. O. O. O. .000 .131 .298 846 ANC THRMI 580. -285. -416. -1072. -7842. 4662. .360 .127 .000 WT1 48. -241. -2. -1. -26. -967. .000 .000 .000 SEISOB 589. 665. 1461. 866. 12561. 5t55. .000 .000 .000 SEISDB 1167. 1671. 3148. 1900. 27083. 12719. .000 .000 .000 851 RAO EB2-H2O THRM1 O. 435. O. O. O. O. .978 .000 .964 WT1 O. -822. O. O. O. O. .041 .000 .013 SEISDB O. 543. O. O. O. O. .114 .000 .062 SEISDB O. 1298. O. O. O. O. .226 .000 .146 867 SPR HB-12-6 THRM1 O. O. O. O. O. O. .747 .028 .153 WT1 O. -25. O. O. O. O. .000 .072 .002 SEISOB O. O. O. O. O. O. .000 .063 .153 SEISDB O. O. O. O. O. O. .000 .123 .368 868 ANC THRMt 726. -372. -468. -1302. -9269. 6240. .360 .127 .000 WT1 -79. -553. -2. 21. -120. 4R89. .000 .000 .000 SEISOB 595. 598. 1086. 1183. 11318. 5132. .000 .000 .000 SEISDB 1190. 1175. 2589. 2670. 27110. 10093. .000 .000 .000 O e

_ .. . . . _ ._ . . . _ . . _ _ . . . - . ~ _ _ _ _ .. _ .m.. . . _ _ _ __ . _ . _ _ _ . _ _ . _ . . _ _ . _ . _ _ _ _ _ _ _ _ _ . _ . _ m ._ _ .. . _ . . . .

1 1

RESTRAINT LDAD

SUMMARY

TITLE f*AINST E AM OUTSIDE CONTMNT EAR DESIGN /ANAtYSIS PROJECT NUMFIE R PolNT BEACH I

, PROBLEM NUMBER I-21/ EAR USER LEE / DONG LOAD CASE GLOB AL FORCES ( LBS) GLOBAL MOMENTS ( F T-LB ) DISPLACEMENTS ( IN) i DATA TYPE LGAD TITLE Fx FY F7 Mx My MZ DX OY 07 l

} PT

\

) 871 RAD EB2-H-19 1 THRMt O. t137. O. O. O. O. .868 .000 .786 i WT1 O. -367. O. O. O. O. .017 .000 .005 l SEIS06 O. 504 O. O. O. O. .109 .000 .092 SEISDB O. 1023. O. O. O. O. .198 .000 .174 882 SPR HB-12-5 THRMt O. O. O. O. O. O. .728 .036 .089 i WT1 0, t2. O. O. O. O. .000 .019 .000 '

SE1S08 O. O. O. O. O .. O. .000 .055 .162

SEISDS O. O. O. O. O. O. .000 .121 .315 j 888 ANC THRMt 1265. -433. -386. -1279. -6479. 6757. .360 127 .000 e! WT1 28. -240. -O. -25. 4 -972. .000 .000 .000
SEISOB 589. 709. 1697. I17I. 14695. 5357. .000 .000 .000
SEISDB 1153. 1576. 3295. 2258. 28497. 11820. .000 .000 .000 i

h 1

1 l

i j

4 i

i k

I l

.g.

ENCLOSURE 2 TECHNICAL BASIS FOR THE USE OF ENERGY'ABSOR8ERS AS SUPPORTS 0F NUCLEAR POWER PLANT PIPING SYSTEMS BY M. Z. KHLAFALLAH AND H. M. LEE OF BECHTEL POWER CORPORATION SAN FRANCISCO, CALIFORNIA January 1985 fi ? /\ d n / *> dI in ,

i .

ENCLOSURE 2 CONTENTS Page Section 1 INTRODUCTION ,

1 -1 1.1 Current Piping Support Practice 1-1 1.2 Energy Absorbers as Pipe Supports 1-3 2 OPERATING PRINCIPLES OF PLATE-TYPE ENERGY ABSORBERS 2-1 2.1 Performance and Design Requirements 2-1 2.2 Energy Absorber Relational Characteristics 2-2 2.3 Operating Principles 2-4 2.4 Fatigue Design 2-5

! 3 StM4ARY OF SHAKER TABLE TEST RESULTS 3-1 3.1 U-Loop Test 3-1 3.2 Space Frame Test 3-4 3.3 Scaled Spatial Piping System Test 3-5 3.4 Overall Experimental Work Conclusions 3-8 l

4i ,

5 Sections 4 through 8 are proprietary and are  !

6( not included in this doctment.

7 8'

9 INSERVICE INSPECTION REQUIREMENTS 9-1 1

l l 1

CONTENTS Section h 1 INTRODUCTION 1-1 1.1 Current Piping Support Practice 1 -1 1.2 Energy Absorbers as Pipe Supports 1-3 2 OPERATING PRINCIPLES OF PLATE-TYPE ENERGY A850R8ERS 2-1

2.1 Performance and Design Requirements 2-1 2.2 Energy Absorber Relational Characteristics 2-2 2.3 Operating Principles 2-4 2.4 Fatigue Design 2-5 3 SupMARY OF SHAKER TA8LE TEST RESULTS 3-1 l

! 3.1 U-Loop Test 3-1 3.2 Space Frame Test 3-4 3.3 Scaled Spatial Piping System Test 3-5 3.4 Overall Experimental Work Conclusions 3-8 4 DESCRIPTION OF THE0RETICAL'AND C0RRELATI0H STUDIES 4-1 4.1 Computer Programs for Systems with Uncoupled - 4-1 j Nonlinear Degrees of Freedos 4.2 Step-by-Step Integration 4-2 4.3 Modifled Itaration Algorithe 4-6 4.4 Implementation and Example 4-11 4.5 Correlation Studies 4-16 4.6 Sensitivit;y Study 4-26 5 DESCRIPTION OF,LINERIZATION METH000 LOGY 5-1 5.1 Localized Equivalent Viscous Damping 5-1 5.2 Computation of. Modal Damping Ratios 5-3 1

--,----.-_m,-, _ _ _ - - . - ,--.,.m. - _ - _ -,, , , , - . _ --___. y,, m , _..-.,,_.s_,.,-y,w,., , . -g_-..-- _w_ _ _ , _ . , - . - - , _ - -,y--- ,m - - , ,.-- ., y - .--,..,

CONTENTS Section M 5.3 An Iterative Procedure 5-6 5.4 Verification of Linearization by Modal Damping 5-8 5.5 Conclusion 5-9 6 DESIGN PROCEDURE 6-1 6.1 Normalization of Energy Absorber Characteristic Curves 6-1 6.2 Design Methodologies 6-2 6.3 Design Response Spectra , 6-5 6.4 Thermal Analysis Considerations 6-7 7 ME101 C0WUTER PROGRAM 7-1 7.1 Description of ME101 7-1 7.2 Summary of Verification Problems 7-2 8 FABRICATION AND TESTING . 8-1 8.1 Description of Energy Absorber Details 8-1 8.2 Testing 8-4 9 INSERVICE INSPECTION REQUIRDIENTS 9-1 REFERENCES R-1 Sections 4 through 8 are proprietary.

11

ILLUSTRATIONS Figure P_a age, ,

1.1 Enery Absorber Development Flow Chart 1-5 2.1 Concepts of Steel Plata Energy Absorbers - 2-6 2.2 Deformation Model for X-Type Energy Absorber 27 i 2.3 Energy Absorber Characteristics 2-8 2.4 Typical Hysteresis Curve of an X-Shaped Energy 2-9 I Absorber l 3.1 Plan of Measurement Points and Isometric of 3-10 U-Loop Piping System 3.2 Time-Histories, Without Absorber, Peak Table 3-11 Acc. = 0.142 g 3.3 Time-Histories, with Absorber No " Thermal" 3-12 Displacement, Peak Table Acc. = 1.32 g 3.4 Time-Histories, with Absorber, + and -1,0-Inch 3-13

" Thermal" Displacement, Peak Table Acc. - 1.32 g 3.5 Hysteresis curve of 1/8-Inch and 2x1/8-Inch 3-15 Energy Absorbers (btained from Shaker Table Test of U-Loop 3.6 Test Model of Hope Creek Core Spray, Piping 3-16 System - IV 3.7 Extreme Values of Pipe Strains, Accelerations of 3-17 the Valve operator, and Corresponding Shaker Table Response for Increasing Earthquake Intensities 3.8 Maximum Reaction Forces Between Pipe and Frame at 3-18 Restraint Devices and Rigid Rod Connections 3.9 Fourier Spectra of Snubbers and Energy Absorbers 3-19 3.10 Hysteresis Loops of Snubbers and Energy Absorbers 3-20 Subjected to the Same Earthquake 3.11 Damping Ratio of System IV with Different Support 3-21 Devices in Position and Corresponding First Natural Frequencies fit

ILLUSTRATIONS Figure P.a28 Force-Displacement Behavior of a Snubber and a 3-22 3.12 2-Inch x 1/8-Inch Energy Absorber from Separate .

Tests Using the Same Input Table Motion Local Coordinate System of Truss Element 4-28

4.1 Graphical Solution of Equation (4-45) for the 4-28 4.2 Inelastic Truss Element Under Prescribed Load A Simple One Degree of Freedom Nonlinear System 4-29 4.3 for Program Verification Response Time-Histories and %steresis Curves 4-29 4.4 Computed with New Algorithm and with ANSRII of the One Degree of Freedom System A Three Degree of Freedom Nonlinear System for 4-30 4.5 Program Verification Response Time-Histories and % steresis Curves 4-30 4.6 Computed with New Algorithm and with ANSRII of the Three Degrees of Freedom System Computed Time-History from New Algorithm and from 4-31 4.7 ANSRII of Piping Sys-IV (Hope Creek Three-Dimensional Model)

Input Table Acceleration Time-History and Its 4-32 4.8 Response Spectrum for U-Loop Without Energy Absorber Response Time-Histories of Relative Pipe Corner 4-33 4.9 Acceleration and Displacement and Fourier Spectrum of Displacement Response of U-Loop 4.10 Computer Simulated Response Time-Histories with 4-34 Parameters from Raw Measurements 4.11 Response Time-Histories Affected by Low Young's 4-35 Modulus and High Young's Modulus 4.12 Effect of Frequency and Modeling on RMSDR of Pipe 4-36 Corner Displacement 4.13 Response Time-Histories with Overestimated 4-37 Damping Factors iv

ILLUSTRATIONS -

Figure Pg 4.14 Effect of Deeping Factors ao and al on MSDR of 4-38 Pipe Corner Acceleration and Displacement Responses 4.15 Response Time-Histories with Best Correlations ' 4-39 with Experiment 4.15a Triangular Energy Absorbers 4-39a 4.16 Computed Response Time-Histories and %steresis 4-40 Curves Compared with Experimental Results of the 1/8-Inch Energy Absorber 4.17 Computed Response Time-Histories and Hysterests 4-41 Curves Compared with Experimental Results of the 2xl/8-Inch Energy Absorber 4.18 Response with Properly Adjusted Young's Modulus 4-42 and Hysteresis Loop of 1/8-Inch Energy Absorber 4.19 Computed Response Time-Histories with Identical 4-43 Parameters Except the Stiffness is Proportional to the Damping Factor 4.20e Theoretical Hysteresis Loops Compared with an 4-44 Experimental One for Varying Parameter r with a = 3.35 4.20b Area per Cycle Corresponding to Figure 4.20a 4-44 4.20c Hysteresis Loops Over a Time Period of Four 4-45 Seconds for Different r Corresponding to Figure 4.20a 4.20d Dissipated Energy Corresponding to Figure 4.20c 4-45 4.21a Theoretical Hysteresis Loops compared with an 4-46 Experimental One for Varying Parameter 2 ,

r=7 4.21 b Area per Cycle Corresponding to Figure 4.21a 4-46 4.21c Hysteresis Loops Over a Time Period of Four 4-47 Seconds for Different cx Corresponding to Figure 4.21a i 4.21d Dissipated Energy Corresponding to Figure 4.21c 4-47 q l

V I

ILLU$1 RATIONS

, Figur, Page 4.22 Sensitivity to Changes in the Absorber Wsterests 4-48 Loop 4.23 Sensitivity to Changes in System Damping and 4 49

%sterests Loop 4.24 Sensitivity to Changes in System Flexibility and 4-50 Wsterests Loop 4.25 Typical Response Time-Histories Computed with 4-51 Properly Adjusted Parameters Compared with Experi-mental Results.

5.1 Response Time-Histories with Local Linearization 5-10 f Compared with Experiments 5.2 Hysterests Loop with Constant S-Value Compared 5-11 with Experimental One 5.3 Typical S-Curve Derived from Jenning's Equation 5-11 with r = 7, s = 3.35 Compared with the Estimated S-Curve of the 2x1/8-Inch Absorber 5.4 Relationship Between Damping Coefficient ( ,and 5 Frequency a for Rayleigh Damping Based on' Different Modes Compared to Calculated Modal Damping Coefficients 5.5 Linear Time-Histories with Overall System Damping 5-13 Factors Calculated with Modes I and 5 Compared to Nonlinear Results 5.6 Distribution of MDDS/PKLV Ratios of Pipe Sys-IV 5-14 5.7 Design Configuration of Pipe Sys-V 5-15 l

5.8 Design Configuration of Pipe Sys-VI 5-16 5.9 Distribution of M005/PKLV Ratios of Pipe Sys-IV, 5-17 V, VI, and Their Coeination 5.10 Typical Computed Modal Damping Ratios of Pipe 5-18 Sys-V 6.1 Normalized $ steresis Curve and S-Curve 6-8 vi

l ILLUSTRATIONS Figure Pg ,

6.2 Response Factor vs Damping Ratio at Control 6-9 Frequencies ,

8.1 Energy Absorber Details 8-7 8.2 Fatigue Design Curve 8-8 8.3 Overall Test Setup 8-9 8.4 Six-Inch Assembly Under Test 8-10 8.5 Test Assemblies and Fixtures 8-11 8.6 Load vs Displacement for 4x1/4-Inch II Specimen 8-12 at _4.8 Inches Displacement - 1st Cycles 8.7 Load vs Displacement for 4xl/4-Inch II Specimen 8-13 at _+0.8 Inches Displacement - 100th Cycle 8.8 Impact Test Setup 8-14 8.9 Load and Displacement Time-History Data 4xl/4-Inch 8-15 II Specimen 550-lb at 10-Inch Height 8.10 Load and Displacement Time-History Data 4xl/4-Inch 8-16 II Specimen 550-lb at 15-Inch Height 8.11 Load and Displacement Time-History Data 4xl/4-Inch 8-17 II Specimen 680-lb at 20-Inch Height

.l vif

TABLES Table Pg 7.1 Features checklist for Verification Problems 7-4 8.1 Standard Energy Absorber Data . 8-18 8.2 Fatigue Test Specimens 8-19 8.3 Test Frequencies 8-20 9.1 Section XI Support Examination Categories 9-4 )

viff

Section 1 INTRODUCTION 1.1 Current Piping Support Practice Currently, Seismic Category I piping systems in nuclear power plants are designed for normal, seismic, and other transient loads using the following types of pipe supports:

o Spring-type supports, including variable and constant-effort types, are used as vertical dead weight supports at locations where essentially . free thernal expansion is necessary. The springs in these supports are coil type, have low stiffness values, and are designed to perform elastically throughout their travel range.

Spring-type supports have a negligible effect on piping response during seismic events. As such, they are not normally accounted for in the seismic analysis computer models of piping systems.

o Rigid-type supports, including rods, struts, stanchions, frames, etc., are designed -to restrain the piping system under all loading conditions. They essentially prevent the pipe from moving in the restrained direction and are designed to remain elastic under all specified piping load combinations.

I o Snu,bbers, including hydraulic and mechanical types, are used as seismic and dynamic supports only. They are either mechanically or hydraulically activated. They offer no support against gravity, allow essentially free movement under thermal expansion and con-traction of piping systems, but, under rapid dynamic piping move-ments, they activate and function as a rigid strut. Snubbers are designed to remain elastic under. specified load combinations.c ,

1 1

l

\

1-1

With the exception of springs, pipe supports currently in use are I designed with the intent of maintaining their rigidity against speci- l fied loads while remaini'ng within the material yield stress. Seismic analyses of piping systems employ linear elastic mode superposition methods in which rigid supports and snubbers are modeled at linear elements. Although gaps and other sources of nonlinearities exist in rigid support and snubber designs, modeling these supports as linear elements has been considered adequate in light of the conservatism inherent in the overall design process. The damping values used in the seismic modal analysis are based on Regulatory Guide 1.61 for recent plants, or the values contained in the Final Safety Analysis Reports (FSARs) of operating plants.

The escalation of seismic criteria has led to a continuing increase in the number of snubbers and the overall number of pipe supports over the last few generations of nuclear plants. As a consequence, recent plants contain stiffer systems than old operating plants. Our operating exper-1ence base indicates that flexible systems perform well during seismic

- events when compared to rigidly constrained systems. The increase in the number of snubbers, the rise in the number of snubber operating problems, and the decrease in system flexibility has led to numerous industry programs to investigate alternatives. Two important areas covered in these investigations are damping and flexible system design.

The recomendations by the Pressure Vessel Research Comittee (PVRC) on alternative generic damping values, which were included in Code Case N-411 of the ASME Section III Code, are one example of damping.

The alternative damping values in Code Case N-411 were developed from available test data of piping systems typically supported with springs, rigid supports, and snubbers (1). References (2), (3), and (4) establish the fact that general system damping values are strongly dependent on the types and quantities of pipe supports used as well as the magnitude of the actual response involved. Fluids in hydraulic  ;

snubbers, small gaps in mechanical snubbers and frame supports, and i

l-2 I l

- - - - _...,-,c . . . . . . . _ . ._._,,m_, , . , . . - - w .- ,_,. ., ,. ~ .

l l

friction forces in springs and bearing supports are the energy dissi-pating mechanisms to which the observed damping values are attributed.

Due to complexity and nonunifortnity of these mechanisms, it is not feasible to predict system damping values analytically, thus test data was used to make generic reconnendations.

The energy absorber designed in accordance with Code Case N-420 and des-cribed in this enclosure is an alternative that enhances both damping and system flexibility.

1.2 Energy Absorbers as Pipe Supports The energy absorber, as presented in this enclosure, is a new pipe support concept that allows large amounts of energy dissipation under j simple, well-defined, repeatable, ead reliable conditions. Accurate l analytical estimates of damping values associated with energy absorbers are possible. When used as seismic supports of piping systems, energy absorbers will provide the following basic benefits:

o Add significant amounts of damping that can be reliably calculated i for each significant mode. The amount of damping added for signif- l icant modes of vibration can be much higher than the values recom- l mended in Code Case N-411.

o Reduce the systen frequencies, which will result in more flexible designs, especially for systems designed for high seismic loads.

o Virtually eliminate the need for snubbers, thus enhancing the system's reliability.

o Significantly enhance the system's capability to acconnodate higher than design earthquake loads or other dynamic events within pipe and support allowable limits.

1-3

Energy absorbers are simple, flexible supports designed to undergo controlled and predictable yielding under dynamic displacement. The hysteretic action of the' energy absorber plates results in*added damping to the piping system. Cumulative fatigue effects can be evaluated according to the requirements of Code Case N-420.

Figure 1.1 shows the major activities that led to the development of this new pipe support concept. Each of the steps on the chart is shown in the sequence where it occurred. The successful completion of each step served as a benchmark for the succeeding step. Therefore, the energy absorber development and its analytical solution methods followed a course that could be verified by proven experimental data, i

1-4

[ EXPERIMENTAL STUDIES l '

/ \

l ENERGY ABSORBER DESIGN l l SHAKING TABLE TESTS ON PIPING SYSTEMS l l

/ " \ /\

l FATIGUE l l MATERIAL l IGEOMETRYl l THERMAL l l SEISMIC l j

' ANALYTICAL AND THEORETICAL STUDIES ]

/ \

l SENSITIVITY -1 CORRELATION STUDY l-

/ NN l HYSTERESIS l l DAMPING l l SYSTEM FLEXIBILITY l LINEARIZATION l f - N l LOCAL DAMPlNG l l GLOBAL DAMPING l l MODAL DAMPINGl

\/ \ /

l TIME HISTORIESl l MODE SUPERPOSITION l

\ /

l COMPARISON WITH NONLINEAR TIME HISTORY l DESIGN PROCEDURES l ANALYSIS l l DEVICE l Figure 1.1 Energy Absorber Development Flow Chart 1-5

l l

l Section 2 DPERATING PRINCI'LES P OF PLATE-TYPE ENERGY A8SORBERS 2.1 Performance and Design Requirements Energy absorbers are made of simple, specially shaped steel plates designed to- '

o Exhibit a smooth, well-defined force-displacement relationship.

o Possess moderate, finite, and well-defined stiffness and peak forces to be used in the thermal expansion analysis of piping systems.

o Yield uniformly over the maximum possible volume of the plate's material.

o Have a well-defined hysteretic behavior under cyclic displace-ment. The hysteresis loops should only be a function of the current strain status and should be independent of strain rate, o Exhibit negligible stiffness degradation.

o Achieve maximum cyclic energy absorption capability per unit volume of the material, per cycle, over as large a range of strain as allowed by fatigue design considerations.

o Possess a fatigue endurance capability sufficient to maintain the plate's integrity under cyclic design and service load conditions.

I o Be insensitive to environmental conditions, such as temperature and I radiation.  !

O Be of simple construction so as to enhance reliability and elimin-ate maintenance and functional testing.

2-1 l

During the past few years, several energy absorption concepts have been .

investigated (5), (6), leading to the conclusion that only the simplest energy absort>ers made of ordinary ductile steel plates fulfill all of the above requirements. Figure 2.1 illustrates two simple concepts for steel plate energy absoiters that am ideal for satisfying all design mquimments and allow for m11able calculation of their damping effects.

I Concepts 1 and 2 can be used interchangeably because they possess similar characteristics and hysteretic performance and provide the same damping effect to the piping system. Concept 2, employing x-shaped plates, has been selected by and used in the Bechtel energy absorter development program. This concept was selected because its end connec-tions are simpler than those of Concept 1. To facilitate construct-ibility and installation, to allow for pipe movements in the unrestrain-ed direction, and to increase reliability, multiple x-shaped plates were incorporated in the design shown in Concept 2(a). This concept allows the use of simple pin connection at the pipe end. A detailed descrip-tion of these energy absorbers is provided in Section 8.

2.2 Energy Absorber Relational Characteristics Figum 2.2 depicts the configuration of a one-dimensional x-shaped energy absorber plate. It is madily apparent that this configuration provides a large volume of unifom plasticity when yielded, and that its hysteretic characteristics can be easily determined as a function of its dimensions. Hysteretic behavior obtained from simple bending tests on-x-shaped plates has correlated very closely with that derived for an ideal x-shaped beam.

For an ideal x-shaped beam (plate), the force-displacement relationship in the elastic region is:

3

f. . Et b. (2-1) 1 0 I 12a l l

l 2-2

l i

l

'. where F is the applied force at one end of the plate, d is the corresponding displacement, and E is the material Young's modulus. As shown in Figure 2.2, a, b, and t are plate dimensions. .

The relationship between the displacement d at strain c is d= 2c(a2 /t) (2-2)

After the plate has yielded, the force-displacement relationship becomes:

F 3 1 (2-3)

F 2 y 2(c/cy)2 where F and yc are the yield force and yield strain respectively y

and c is the strain.

Equation (2-3) indicates that the ultimate load for an x-shaped plate Fu approaches 1.5 times its yield load Fy.

Equations (2-1) througn (2-3) also show that; o The yield force Fj and the ultimate force Fu are proportional to t 2and b/a but independent of the plate's length (for a given ratio of b/a).

o The initial elastic stiffness is proportional to 3t , jf,2 ,

and b/a.

2 o The yield displacementj d is proportional to a and 1/t.

The above relationships are shown graphically in the force-displacement diagrams in Figure 2.3. The fom of the hysteresis curves at any strain value, based on the ideal x-shaped beam relationships, is indicated by the graphs of Figure 2.3. Figure 2.4 shows a typical hysteresis curve frtwn a test specimen. The close correlation observed in the figurts has been demonstrated by subsequent analysis.

2-3

-. _ _ _ - - - - . . J . - . - . . - _ - _ _ -

' ~

The simple oriergy absorber characteristics and their interrelationships shown in Figure 2.3 illustrate the capability to size energy t.bsorbers to suit a wide variety of applications. -

2.3 Operating Principles Energy absorters designed according to the requirteents of Section 2.1 and as described in Section 2.2 are simple flexible supports that interact with the supported piping as described in the following paragraphs ,

a) Thermal Expansion

Energy absorbers will acconnodate piping thermal expansion by flexing. Their finite, moderate, and well-defined elastic stiff-ness and peak forces allow accurate and reliable thermal expansion i analysis of the piping systems. Piping systems with energy absorb-ers are analyzed to satisfy the applicable code stress limits, nozzle load allowables, and other applicable criteria as required.

b) Seismic and Dynamic Loads Under seismic and dynamic excitation, the cyclic displacement of the piping will rtsult in a hysteretic behavior of the energy abso rters. The hysteretic behavior will cause an increase in the effective damping of the system dynamic response, hence it will provide the desired control. An increase in the system's response will result in an increase in the effective damping, thus converg-ing on a stable level of system response. The design and analyti-cal process allows complete control of damping values, strain levels in the energy absorters, and other pertinent system response i

pa rameters. This has been proven in shaker table testing, and the test results have been correlated to theoretical and analytical methods with a high degree of accuracy as shown in the subsequent sections.

2-4

)

c) Seismic Anchor Movements (SAM)

Energy absorbers are considered as flexible elements.' Since the energy absorbers are more flexible than a locked snubber and become l even more flexible as they undergo yielding during a seismic event, the system response due to SAM will be lower than for a correspond- l ing system supported with snubbers or rigid supports.  ;

An important feature of energy absorber design is that loads from ther-mal expansion, seismic and dynamic loads, and seismic anchor movement are not additive. Once an energy absorber has yielded, no increase in load beyond its load-displacement characteristic is possible. Al so ,

tests have demonstrated that thermal expansion loads in energy absorbers undergo a shakedown at the onset of yielding under dynamic excitation.

This is further discussed in Section 3. .

2.4 Fatigue Design Energy absorbers are designed for cumulative fatigue effects resulting from all cyclic thermal, seismic, and dynamic loads in accordance with the requirements of Code Case N-420. Load rate testing of prototypical energy absorbers to develop fatigue design curves is discussed in Section 8.

2-5

. _ _ _ _ _ _ - , , . - _ _ . - , , . _ _ . . _ . , , , . . 7 -. .,m-_.- -..._, _ __ . .

PROFILE DEFORMATION STRESS DISTRIBUTION

~

m- M .

Nonworkable due to local yielding only.

l J M.- ,

y uneme-l f ,-f-Concept 1 llorkable

(

' f 4 Y

wh I Concept 2 Workable T

I Concept 2a  : ..

.Jorkable A

I Figure 2.1 Conce:ts of Steel Diate Energy Absorbers 2-6

- _ . a m- 2 m l

9 9

9 E

Dh 2 *

[ E

% =

S E i 1 r

/

_____ i _ _ ___

u if  % u

% O b l N en N d i ac I N h cn W

c w

W CL h

' l O i w

% N N N -

% N W

% N T

' .Q

% Z

% N

% N c

% N O N N "

%  % 9

% N

% N E

% N O N N  %

% N g

% N c O

X N N

~.

N N N

% N N N W

% N 6

% N 3

%  % CB

% N 6

% N N N

' If

% ' N

% N N N N

N O $ I y -- 3 2-7

3.25F, -

3.375K fu L

F - I Y

K S.I25K 9.25Fu S.2EF, 0.5%

i f f e 67d, e, 2d y l i

Influence of the Thickness t of an Idealized X-Type Absorber to Stiffness K, Yield Load F y, and Ultimate Load F u

F, )

Fy -

0.5. e l

i.5.

4K K e.44K t f f l 8.25d y dy 2.25d, Influence of the Length a of an Idealized X-Type Absorber to Stiffness K, Yield Load F , and Ultimate Load F

'"~

i.5be.

1.5F, -

Fu i

b/e F, -

t.5 8.5F u 8.5Fy - K 8.5b/e 8.5K ,

e

{

N Influence of the Angle (b/a) of an Idealized X-Type Absorber to Stiffness X, Yield Load F , and Ultimate Load F Figure 2.3 Energy Absorber Characteristics i 9

2-8 l 1

4.es .

2.99 .

n h e.ee ,

'a

~

a -2.ee .

i

-4.se .

1

-l.2e -e.Se e.e6 a.Se i.23

, DISPLACENENT CINQES)

LOAD VS DISPLACEMENT FOR 6*X3/8*-II SPECIMEN AT

+-l.2 INCHES DISPLACEMENT-- 200TH CYCLE l Figure 2.4 Typical Hysteresis Curve of an X-Shaped Energy Absorber l

~

Section 3 ,

Sum ARY OF SHAKER TABLE TEST RESULTS ,

Extensive experimental studies of plate-type energy absorters have been conducted at the Earthquake Engineering Research Centar (EERC) of the ,

University of Califomia Berteley. In these studies, various plate  !

geometries and materials of construction were investigated, resulting in the development of triangular and x-shaped energy absorber concepts.

Shapes similar to these have been previously utilized in some civil /

structural applications of energy absorption. Fatigue testing of sample

! plates, fabricated from mild AISI 1020 steels, demonstrated sufficient fatigue endurance at high strain levels (up to 2.5%). Thus , the feasibility of using these energy absorbers as seismic supports of l piping systems without ever replacing them was established. A series of shaker table tests at EERC was then conducted to demonstrate the concept and obtain response data for subsequent use in analytical correlation and parametric studies. ,

j The behavior of piping systems with energy absorbers, under seismic loadings, was studied in three separate and extensive series of shaker table tests at EERC. The results of the tests are briefly sumarized in the following paragraphs. Special emphasis is given to the first and third test due to the volume and significance of the test data obtained.

3.1 U-Loop Test a) Test Objectives and Setup The first extensive series of shaker table tests was conducted, j under the sponsorship of the Department of Energy, on a single plane U-loop piping configuration using triangular energy absorbers. A complete description of this test is contained in 3-1

Reference (7). The objective of this test was to study the general concept of controlling #namic piping response with energy absorb-ers and the effects of combined seismic and thermal loadings.

Although triangular plates were used, the conclusions drawn frem this test are equally appitcable to x-shaped plates.

Figure 3.1 shows the configuration of the U-loop used. It consisted of a 3.5-inch. 0.D. pipe fixed at the boundaries with concentrated masses added at each elbow and filled with water. One energy absorber in the horizontal direction and two in the vertical direction were used in various test runs, singly or in combina-tion. Over 80 test runs were performed on the loop with or with-out energy absorbers, simulating both cold and hot piping con-ditions. Parametric studies oh energy absorter sizes were per-formed. The table motion used was the TAFT earthquake. Peak acceleration intensities wert varied between runs from 0.125g to 1.499 Pipe stresses, displacements, accelerations, energy absorber forces, and input table motions were recorded.

b) Time-History Response of Unrestrained System Figure 3.2 shows the measured unrestrained pipe displacement response to an earthquake of v.)42g intensity and a duration of 20 seconds. It indicates high response under the lowest input motion.

c) Time-History Response of Cold-Restrained System Figure 3.3 shows the measured pipe response at the same location as in Figure 3.2 with one horizontal energy absorber installed on the U-loop. The test run was for a TAFT earthquake of 1.32g intens-ity. The effectiveness of the energy absorber in controlling the system's response is evident.

3-2

d) Time-History Response of Hot-Restrained System ,

Figure 3.4 shows th'emeasured system response under the same test conditions as described in Section 3.l(c) but with simulated thermal expansion conditions. The response is shown for two conditions, one which thermally deflected the energy absorber in one direction and the other which deflected it.in the opposite direction. The results indicate that under dynamic excitation, a classical shakedown of the thermal forces in the energy absorbers occurs in one to three dynamic displacement cycles. The dynamic response of the piping system is identical under cold and hot test conditions.

e) Conclusions Drawn from U-Loop Test As is readily seen, the U-loop configuration was essentially a one degree-of-freedom system when excited in either the horizontal or the vertical directions. Therefore, important system parameters such as natural frequencies and damping coefficients were found accurately and the effects of energy absorbers were easily iden-ti fied. This fact was later utilized in correlating the test results with computer solutions, verifying nonlinear programs, and gaining a clear understanding of the characteristics of energy absorbers. Several important conclusions can be drawn from this test:

o Energy absorbers are able to dissipate a significant amount of energy as can be seen from the hysteresis curves of Figure 3.5. Thus, the dynamic response of the pipe is considerably reduced as compared to the response of a free pipe, while the force transmitted from the pipe to the support structure was limited to the yield force of the energy absorbers.

3-3

o The damping coefficient of the free pipe was measured around 21 of critical. When energy absorbers were used, the system damping increa' sed significantly, in some cases to values well above 20% of critical.

o Thermal expansion or contraction effects are not additive to the dynamic system response.

o Performance characteristics of energy absorbers, measured from the shaker table tests, were verified to have a constant strain-stress relationship, thus correlating with models using the perfect kinematic hardening rule (8), (9).

3.2 Space Frame Test a) Test Objectives and Setup To examine the behavior of x-shaped energy absorbers in a general uncoupled three-dimensional system, a spatial piping system supported by a three-story steel frame was mounted on the shaker tabl e. A detailed description of this test is contained in Reference (10). The frame was 18 feet high,12 x 6 feet in plan dimensions, and weighed approximately 26.6 kips. Several config-urations were tested, such as the frame without piping, the frame with the piping rigidly attached, and the frame with the piping supported by energy absorbers. TAFT earthquake records were used for all configurations. The results showed the expected reliable performance of the energy absorbers and provided conclusions similar to those gained from the U-loop test. The following additional advantages were revealed from this interactive piping-structure experinent:

3-4

, _, - - . , - , - - -- - - , .,--n.. , , - ~ ,----,e-n -------,-----was -- '

b) Conclusions Drawn from Space Frame Test .

o The fundamental frequency of the piping system supported with energy absorbers was lower than that for a rigidly attached configuration.

o With energy absorbers, responses at higher frequencies were lower, overall system stresses were lower, and spectral peaks were broadened indicating that high damping was introduced by the hysteretic action of the energy absorbers.

o Energy absorbers close to valves with eccentricities were highly effective in reducing pipe stresses and valve acceler-ations.

3.3 Scaled Spatial Piping System Test a) Test Objectives and Setup This test was sponsored by the Electric Power Research Institute (EPRI). Bechtel provided advisory consultation, provided the l

system configuration, and facilitated the acquisition of some test I material. In this experiment, an extensive series of tests (over 110 shaker table runs) were performed. A full description of the experimental setup and primary test results can be found in Refer-ence (11). In this experiment, a half-scale model of a section of the core spray piping system design from the Hope Creek nuclear plant (Figure 3.6) was constructed inside a rigid frame and mounted on the shaker table. The snubbers were installed and tested and were then replaced with energy absorbers, which were installed and tested. The applicable Hope Creek operating basis earthquake (OBE)

, and safe shutdown earthquake (SSE) response spectra curves and multiples thereof, properly modified to account for the scaling effect, were used as input motions to the shaker table. Despite the modeling considerations, however, the model was viewed as a smaller prototype and tested accordingly. The purpose of this test was to:

3-5

i l

o Apply the findings from the previous two tests to a realistic three-dimensional system.  !

o Evaluate the feasibility of replacing snubbers with appro-priately sized x-shaped energy absorbers on a one-to-one basis at the same locations, o Obtain comparative system response data with snubbers and energy absorber setups.

o Develop benchmark data for analytical and correlation studies, b) Stress and Valve Accelerations Figure 3.7 compares naximum stresses and valve acceleration in the piping at increasing intensities of earthquake. It is observed that at design earthquake intensity the two responses are approximately equal. At higher than design earthquake intensities, however, the responses with energy absorbers are lower than with snubbers, c) Support Loads The results here are predictable (Figure 3.8). With increasing ground motion intensity, there is no significant increase of force in energy absorbers after they have reached their yield values, whereas the snubber forces increase. This is a significant advan-tage because the maximum forces transmitted by energy absorbers to the building are smaller and are clearly defined. The rigid rod forces are similar in magnitude in bath installations.

l l

3-6 l

d) Fourier. Spectrum of Pipe Acceleration Response Another way of comparing the snubber and energy absorter system responses is via the fast Fourier transfomation (FFT) oY pipe accelerations Figure 3.9. The snubber system response has a random i

characteristic with significant energy over the whole frequency spectrum (attributed to the impacting phenomenon associated with snubber activation). The energy absorber systes response is more associated with- the natural frequencies of- the system, thus is mort predictable.

! e) Load-Displacement Response Figure 3.10 compares a snujiber and its corresponding energy absorter hesteresis loopt frem similar tests. The snubbers displayed uneven, irregular, and multiple-impacting chcracter-istics. The energy absorbers displayed smooth and predictable characteristics. The Artal within the loops represent energy absorted and are a measum_ of damping. ,

f) Damping The comparison of damping values is n gruat' interest. Figure 3.11 shows the free decay curves of the piping system without snubbers

-- u or. energy absorbers, with snubbers, and with 4-inch long and 2-inch long energy absorbers. It is observed that system danping without '

gnubben or energy absorbers is'about 1.2% of critical. With snubbers it is 5.7%. Wf th energy absorbers it is 5.6% for the 4-inch size and 7.9% for the 2-inch size. The direct correlation i

of used energy absorbers to damping is evident.- Given an install-ation in which optimization of energy absorters is made by design, higher desaping values will result. It is important to note that subsequent analytical work in which the hysterstic characteristics

..m 1

3-7

l i . .

of the installed energy absorbers were used, produced damping values that am virtually identical to the measumd values. A direct cormlation therefom exists between experimental data and analytical methods to calculate the damping associated with the use of energy absorbers.

g) Conclusions Drawn from Scaled Spatial Piping System Test

As was the case in previous tests, energy absorbers were demon-strated to be an effective means of supporting piping systems for earthquake loads. In addition, an important aspect of this test was that snubbers were actually installed and tested before being replaced with energy absorbers. After the latter were tested, a direct comparison was made of the performance of each.

The results indicated a mort clearly defined behavior on the part of energy absorters than the snubbers. The hysteresis curves of energy absorbers showed smooth and well-defined characteristics, similar to those obtained from static displacement tests. Snubbers, on the other hand, showed a behavior that is mort difficult to predict or reproduce. See Figure 3.12 for comparative plots. The shakedown of themal forces in the energy absorbers was observed in the same manner as in the U-loop test. Throughout the test series, the energy absorbers wert mounted as a direct one-to-one replace-1 ment of snubbers without optimization of location. Even with straight replacement, the experimental data showed advantages of  ;

energy absorbers over snubbers.

3.4 Overall Experimental Work Conclusions The samary of the experimental work presented in the preceding sections has conclusively proven the viability of energy absorbers as supports for piping systems. The experimental wort demonstrated the following advantages of energy absorbers:

3-8

o They provide some degree of decoupling of seismic input to the '

piping.

o They provide as goed or better control of system seismic response as snubbers, o They are more advantageous than snubbers at large intensity excitations due to the significant increase in their damping effect.

o The results are predictable and repeatable. Some energy absorbers were subjected to more than 32 earthquake tests of varying intens-ities with no degradation in response repeatability or character- i istics.

o They possess sufficient fatigue endurance to sustain design condi-tions for the plant life.

o They are simple, require no maintenance, and are easily replaceable should such a need arise, i

l o They can be used to replace snubbers in existing plants with a resulting increase in flexibilty and system damping.

3-9

- ._ -- 7- y , y o -. - .,_---_.y.-,%--, .._ , y- g. - y--7~ .m,--

1 .

l d,

N f

\ E'

/

p f I

/

/

s.

\

N /

/ sc Pos ost

\ ,

y a i noO suepamt 2 Pipt LOOP 3 elbow a sena.atso wave ii.,

s Ewsov ansoneEn a amoto m 7 Mes0E0 COedECtest =00

' s, 6 ', -@

)

,\' ^'

  • ff s #

2 Figure 3.1 Plan of Measurement Points and Isometric of U-Loop Piping System 3-10

l 9

4.0 .

890480.96 I

1

, yu,v .m m y.v n,v,

- n _ _

, 1, , , r.< ,

+.. _

CM-0 W 12INTE TA KE DI N 1.9 .

o O

, , , _7 "[J,*,' g- J, /

^ -

-r , ,

  1. 7U 9, r i V,~. ^ , .

a

-1.9 - '

i Il j CH-2 sea!ZDNTE TAKE ACCEERAT!WI j

fl ' '

l l w l l

i gi

_,,_,33Ah 1 i ,' i I il  ! 0

. vv r gv 6 i . -

r i  : '

(I J g if I

i 1

-e.s .

CH-20 M12WITAL PIPE DISPLACBEllT S*  :

tiu j '

ii ,plll; i L*

l h n li'. I

, II Figure 3.2 TW-Histories. Without Absorber, Peak Table Acc. = 0.142 g

3-11

-- - _ . - _ . = e- -..m. -.-,,----,-e ,--e-- - , , ,--,---..,w-._-, ,----r-,- ,-.ww,,--%.-m. ,

eseuse.es u.. .

  • I A A ,A~. n ,_

-. n,M. . . .

.y ,aA cs_. M k T .i- l 1.e _

l l

m ,, .k h Ah , .Ah 1 .A I.. k. \ ls A k. n A. .k a a n_,

i ' T i . ' vn . j WV T ' T'y { y yl]I k IV k N ' y V{ N I U ggg' i l -1.9 _

CH-2 MORIZONTAL Tang arrriraaT!st s _

, w I

Z. B L daa 11 kN ) ilk A AJi I 1 in h I A _MI aiJ. bl u

. T lyv ga ge 5 n'

' tig a r"I v r r'It ' ' 8

' 7p' ]

~

MME PIPE 015PUCDelf )

CH-29 l uco.e -

i l

mm_de. i Mbd &Ahkb> I atJ4:1 th J3 A u gy )- pg pu v n 1 T"

l m.e .

CH-32 ABSORBER F0PCE as.e

,,, esc l Figure 3.3 Time-Histories, with Absorber, No "Themal" Displacement, Peak Table Acc. = 1.32 g 3-12

~ '-

-- - -- _ _ _ _ _ _ _ _ _ _ _ _ _ . )

399489.99 -

u.e -

A AA b $ b_

i wi y v v ~ u

m. i i iyi li

.H.. _ _ . , _ _ _ _

1.s .

2 a, .A l hh th i h \. .h L A kn A..kaa M a 9

1 ]' 8V 'yl{iWlVVIT'y y '[ *' Y f * '

i ' ' ' i ' vvv

) V'[

~

CH-2 M12MTE TAEE ACGLDATim e.5 .

5 Z 4 i

v,'.".- "

i i e i i iiiiiii i i cH-ae h m12DNTE PtPt 01sptAcetirt nei i d IN N A & Ullija n ..L lli tidhi ha ili.I L ll .d 1 .

, , . >iry

, 97 r. 7, i

w J.e -

ABSORBER FORCE m ,g 3.e sac Figure 3.4a Time-Histories, with' Absorber, +l.0-Inch " Thermal" Disolacement, Peak Table Acc. = 1.32 g 3-13 l

14 . s .

398488.18 f

m /\ A b b me/\nA /\_

.yi i 6 7: i wi y v m ~ - u

~

CH-0 M IDNT E ) TA E K DISM AC3 Wff 1.9 .

e .m,. .b N Mk AP . A ds . ! bhLA .ke 4. .f e . m -

I

i ~ ' i " M - } g' 1] g 8ylfs W fyV Pf'yp '{ W' Y vi '

l M 23rfE T m 1 AggILER4ft s

-1.9 _

RE .

,2, , , .. a l .m 4, ' JNM i i

- in i =

  • e ~

R e

[s

. :R

s ,

.. o t

. . .o I <R R =

s: _ 5

[

2.* I . 9 I g- ,

g. .

c.

d . VI

. 4 . L

, e ,

. -e w

r u 5 .

- o J.* . J.* o

h: 2

.. .* e.;

e - -

e

, , e

, , , . L

, o

. . . . 3 . . . . .

. m 6 6 6 6 6 6 4 e. e. ... g' g

g 6

RRR RRSRR2 - -

ei nua3, ei Aw 3-19 l

)

l dos. 09eW2.e4 g,_ _ e5NO2.e4 .

3es.- N I

see.- \ ee.- -

) 3 '"- 3 e,_ e.- -

- iW. - -

i j

! -ase. 3 .

l 2 .-

l 4W . -

4

. sos e. ass e.ase .ese.ee .see.see.eie.ses.eie.see. css oist 2 oier So y , , , ,_ .. .. ... . . .

usw.ri ion.2,e 1 m i

o -

i5e.- - -

l

'"*~ ~

l iss.-- 1 i

se. - -

! 2 3 l e.- - e.-

\

-se.- - -

.see. -

-ion.- - -

- see.- - -

4 q .........;. . -see.-  ;......_

2 e. .. ... ...

...,.. . ...;... .... 7 ,

.2ee . sos e.ees e.ies e.2ee .cos e. ass e.ses e.nes D85, 2e elef 3e l

] figure 3.10 llysteresis Loops of Snubbers (Top) and Energy Absorbers (Bottom),

Subjected to the Same Earthquake t

i

8.M

~ ' '

,seum.,3 .

. . I "

i

" f k 0 A a '. - &= 5.7 %

SNUB 8ER

~ ' ' ' _- - 4 = 36.0 %

1 . ,gyVV , f= 8.3 Hz I

.I 1 -

is.es . . m. sie, a ***"

s.a . - i i * ' -

i ,,m,e

~

-fi15fif A -

( " 7.9 %

l llll 1, Il A A . -'""~

2 xt/3' 4 - 49.5 %

1'  !' '

I I yVV - ENERGY f= 7.5 Hz

, h3jg3j,f . ABSORBER is.es a , as, sis, na *"

9. l i 8 ' 3 g'gg,g,gg ,

} f AA ( = 5.6 %

g 1)r'\ O A A ^ _ ~ _____

5 al/8* 8 - 35.2 %

y.

U y V \/ V # E.'4E RGY f= 6.65 H,

' 4iLLyV ABSORBER

, s. . .s.-

.. .. ,,s, .

~

l dL.bb y'gmmniim"

'LWl'"""ll::::::.

no oevscE s-r.

E.$ 5

6. i s H, l

.. .. ,,,, . s. . ~

1 Figure 3.11 Damping Ratio of System IV with Different Support Devices in Position and Corresponding First Natural Freauencies 3-21 i

i e .

1 i

1 i

i

4gg,_  ; 110382.10 .

Snubber --

150382.10 .

! 300.- '

i 200.- '

I 1

( 1

@ 100.- ' .

l H 0. \-, A i Y m d b.

~ g _3gg,_ s 2"xt/8" '

l A Energy -

-200.- 9 Absorber .\ .

i -300.- ' .

-400.- ' .

I ...:.........:......... ......... ....... . ...

.200 .100 0.000 0.100 0.200 DIST 21 Figure 3.12 force-Displacement Behavior of a Snubber and a 2-Inch x 1/8-inch Energy Absorber from Separate 3

Tests Using the Same input Table Motion I

l l

Section 9 INSERVICE INSPECTION REQUIREMENTS When nuclear pipe supports are constructed and installed to the rules of the ASME nuclear codes, the inservice inspection (ISI) of Section XI of the code applies. Therefore, energy absorbers constructed and installed to the rules of Code Case N-420 are subject to Section XI rules. While energy absorbers are not explicitly mentioned in Section XI requirements for ISI, the intent of the existing rules are applicable.

Table IWF-2500-1 of Section XI (enclosed as Table 9.1) specifies the exam-ination categories for all support types. With the exception of snubbers and variable and constant springs, the required examination method is the visual, VT-3 method described in Paragraph IWA-2213:

"IWA-2213 Visual Examination VT-3 l

"(a) The VT-3 visual examination shall be conducted to determine the general mechanical and structural conditions of components and their supports, such as the presence of loose parts, debris, or abnorinal corrosion products, wear, erosion, corrosion, and the loss of integrity at bolted or welded connections.

"(b) The VT-3 visual examination may require, as applicable to  !

determine structural integrity, the measurement of clearances, detection ofphysical displacement, structural adequacy of supporting elements, connections between load carrying structural members, and tightness of bolting.

"(c) For component supports and component interiors, the visual examination may be performed remotely with or without optical aids to verify the structural integrity of the component."

9-1

Visual VT-3 examination rules apply to the energy absorbers described in this enclosure. To facilitate perfomance of a VT-3 examination on energy absorbers without removal or disassedly, the openings and scratch plates described in Section 8wre provided.

A visual VT-3 examination on energy absorbers will provide the level of assurance intended by the ISI requirements for the following reasons:

o Energy absorbers are merely a simple type of pipe support designed to strain and fatigue considerations. They are not springs. They are not snubbers.

1 Energy absorbers do not contain activation mechanisms, internal moving parts, or fluids. They contain simple bolted connections. Therefore, from an ISI point of view, they should be viewed as being similar to rigid-type component standard supports.

o The basic failure mode of an energy absorber is fatigue cracking of an absorbing plate. Complete fatigue cracking occurs after the cyclic life

' of the material corresponding to the imposed strains is consumed. When energy absorbers are applied to piping systems, they are designed to sat-isfy design conditions and fatigue requirements without replacement.

Their fatigue design will be based on fatigue design curves developed i from testing of prototypical specimens per the requirements of Code Case

N-420.

Fatigue cracking, when it begins, is usually surface-type cracking originating close to plate edges and is very visible and easily l

identifiable by the simplest visual examination (the naked eye). Based l

on prototypical testing, a visible surface crack takes a relatively large number of cycles before it Msults in complete failure of the plate (ranging from the low 10s at the highest strain levels tested to the mid-9-2

100s at low strain levels). Formation of a visible crack does not degrade the ,

function of the plate until the crack has significantly propagated and

~

resulted in separation of a large percentage (255 or more) of the plate's i

cross section. Therefore, plates will not fail catastro- phic' ally in fatigue, rather, if failure were to occur, it would be over a reasonably large  ;

number of cycles. One earthquake event does not contain enough cycles to  !

cause a surface crack to propagate significantly and cause degradation of a plate's function. Thermal expansion cycles occur over a long span of time. I Energy absorbers are typically designed to sustain low strain levels under thermal expansion conditions. The number of thermal cycles assumed in the design is usually very conservative. Thus, a crack propagation would require 100 or more thermal cycles. One inspection interval contains much less than i 100 thermal expansion cycles.

o Perhaps most significantly, the design of energy absorbers discussed in Section 8 incorporates multiple plates. It requires two plates or more to function, and most applications will contain three or more plates.

Based on fatigue testing, fatigue failure is basically limited to one

plate in an assembly of plates. This is expected because random, natural distribution of crack initiating factors will favor one plate to take the lead in crack formation and propagation. Loss of one plate in a com-plete assembly will not completely incapacitate the energy absorber. This further reduces the significance of a fatigue failure of one plate.
o Energy absorber dasigns additionally incorporate two aids aimed at j

simplifying and enhancing the visual ISI examinations. The first is windows cut out of the sides of the boxes to facilitate viewing of the plates and bolts. The second is the scratch plate and markers at the pin l location, which will provide physical evidence of pipe movements and

! their magnitudes. This physical evidence of pipe movement can be

directly correlated to design conditions and fatigue endurance.

l l

9-3 i

1 l

9

1 1

TAttE IWF-2500-1 .

EXAMiteATIOss CATEGORIES EMAtsgesATIGII CATEGestY F-A, PLATE ASIO SMELL TYrf SUPreRTS l

l Emamenesten j

home Its.

emperesusest Enemenseemn' W Fw of Puses Emesehod Fig 80s. Ideemer 5Ammend Esasse af femmtessens Easudesume Fl.le -d commsteamus as preumme rutasmane IWF 8we I v= mal, yT 3 IWF-Mie IWFBMS Eash busaselms bewest cangsammes and budtemas suurene IW Mae IWF-aste ,

IM-MM i f FI 2e Weed cammertions to tusens struthse IWF-ilees I Vlamal, vi 3 IWF-Mle IWF 13ee EasdetugusMunhered I lePF-M3e IWF-2Sle l

l F t.38 tusts auf was asametiensc at IWF-13ee i Vlamal, VT 3 IWF Mle IWF 1300 Ea6 hupudies IM j tuassmussiane semes an suudekassurend SWF-His IWF 2Ste ,

l mespel ame ammmespel smoparts IWF M3G I

FI es came use ensa a d SWF-13es 1 vamms, vt 3 iw Mie IWF13ee Eastassessaanmessim eines. me in .mias ,mm m w eWF Mae IWF 2Sle
em anamnesy of sigpast leses IWF-M M i

i i @

i l

1 i

l.

I Isett.

til Amtsemme IWA 2288-1 f

) Table 9.1 Section XI Support Examination Categories i

i l

j < .

I i TAGLE IWF-25001(COIIT'D ,.

~

l 1

EMAA0088AT1000 CATEG000E5 l ExaastelAileII CATER.88V F-8, LIIsEAR TYPE SUPreRTS I

4 Esamensson

! angerensenss men -

Enmuenseen Assapeamse fosammer af ses. Pares Emamhed FigL tie. Gothod' Standed Estest af Esautastium Ensuluglige i F3.no a w s comucesans en asessee seamistie Iw 33ee- veinnas, vT 3 Iw His IwF 13ee East kapesalen basensi i esmemamesandhundnesuurewe IwF-His swF-2Sie j Iwr use Fa se med es summ i. madme n,=w.e twtmI viin e, vr-3 iwr Mie s w lSee E.sh mw am. nes.,

IwF-MM IWF 2Ste Fr.3e weed and *d ====rusas as IwF lJee-1 V6eusi, vi 3 Iw-His twF-13ee fash hapuseum heutel ,

hasnumenaar somes en amusedcametted twF-M 24 IwF-2SIG tesoras and amameseraf enspares IwF MM F3 40 Campanum daar a -- eseeings af IWF-1Me I venmal, VT 3 IwF Mle IWF Isee East kupassimn heense essess and steps, mesahomusse of IwF M20 twF-2SIG

w assenedy of smopart leses s w F-34 M

{

f a

j 1

i i

1 1

i 4

a0TE:

sie asamme twA anie.

I 1

l 4

i i Table 9,1 (Continued) 4

i /

} -

r -

! TAOLE IWF-2M1(C001T*Di EMARRIIIATItet CATEG000E5 EXAa0000AT90II CATE4WBRV F-C, C800PGI0E88T STA000ARD SUPPORTS i Enamenas6en i hess Augeseausest Enamtualen Assaysante Fsegumesp ef j lee. Peres Esasubled Fie. Ite. asenhof' 5eansard Emessa of Emasukaselon Enamenseles F3 le Geschenecas commstenens to psesenne retamume IWF 1Me 1 vhesel, vi 3 IWF Hl0 IWF-lMe f ash hupesalma hamnumi l se and humang strucense IWF-Mit IWF 2S60 j IWF MM i

F 3 :e Wow c ne.as ia tisismis sance e IWF B Me- I vn m. vi 3 IWF His IWr BMe f aisi bussissen hempias

)

1 IWF 34M IWF 2Sle

}

) F3 M woes and suschasucal tassertemas as lWF lMe i Vhasal, VT 3 IWF. Mle IWF lMe Eash hupeuden tueued meer== esse semes in ansieresuscies IWF-His IWF 2Sle ,

hesgral and annennegrad taggerts IWF 34M J F 3 es Cemenname an pa., asochuss of IWF-8 Me-1 Vleenal, VT 3 IWF Mle IWF lMe Easin8==y=sen== hempuni as.ans m s nas.g e se IWF Mae IWF 2Sie eggerts, anessuety of siepart lessus 1WF-34 M j e F 3 to $preme esse nepperts, <==.aw enen gWF1MeI Vinneal, VT-4 IWF-Mle IWF-13ee Eash hupeselon kulerumf J g ever amepartA sinsch d earters m,Wa c s IWF MM IWF 2Sle 3 h m iWe ==an.r.

I 1

i l

1 1

l l WSTE:

Ill Autuense IWA 2284.

, Table 9.1 (Continued)

I i

o .

% t .

REFERENCES

l. Welding Research Council, " Technical Position on Damping Values for Piping--Interin Summary Report," Bulletin 300, December 1984.
2. Shibata, H., et al, "A Study on Damping Characteristics of Piping Systems in Nuclear Power Plants," Institute of Industrial Science, University of Tokyo, undated.
3. Ware, A.G., " Damping Test Results for Straight Sections of 3" and 8" on Pressurized Pipe," NUREG/CR-3722, April 1984.
4. ANCO Engineers Inc., " Laboratory Studies: Dynamic Response of Prototypical Piping Systems," NUREG/CR-3893 August 1984.

l S. Spencer, P.N., V.F. Zackay, and E.R. Parker, "The Design of Steel Energy Absorbing Restrainers and Their Incorporation into Nuclear Power Plants for Enhanced Safety; Volume 1--Summary Report," University of California, b 8erkeley, UC8/EERC-79/07, February 1979.

6. Earthquake Engineering Research Center, "The Design of Steel Energy Absorbing Restrainers and Their Incorporation into Nuclear Power Plants for Enhanced Safety:

a) Kelly, J.M., and M.S. Skinner, Volume 2 " Development and Testing of Restraints for Nuclear Piping Systems," UCB/EERC-80/21, June 1980 b) Kelly, J.M., and M.S. Skinner, Volume 4 "A Review of Energy Absorb-ing Devices," UCB/EERC-79/10,1979.

i c) Owen, W. S. (MIT) et al, S. J. Hartman (UCB), et al " Volume 3 -

Evaluation of Comercial Steels," UC8/EERC-79/09, February 1979.

7. Stiener, S.F., and W.G. Godden, " Shaking Table Tests of Piping Systems l with Energy-Absorbing Restrainers," University of California, Berkeley, UC8/EERC-80/33, Septemer 1980.

l R-1

8. Hill, R., The Mathematical Theory of Plasticity, Clarendon Press,1950.
9. Prager, W., An Introduction to Plasticity, Addison-Wesley,' 1959.
10. Stiener, S.F. , W.G. Godden, and J.M. Kelly, " Experimental Behavior of a j Spatial Piping System with Steel Energy Absorbers Subjected .to a Simulated Differential Seismic Input," University of California, Berkeley, UCB/EERC-81/09, July 1981.
11. Schneider, S., H.M. Lee, and W.G. Godden, " Behavior of a Piping System Under Seismic Excitation," University of California, Berkeley, UC8/EERC-82/03, May 1982.
12. Mondkar, D.P., and G.H. Powell, "ANSR-II, Analysis of Nonlinear Structural Response User's Manual," University of California Berkeley, UC8/EERC-79/17. July 1979.
13. H&K, Inc., "ABAQUS-ND: A Finite Element Code for Nonlinear Dynamics,"
  • Electric Power Research Institute, NP-1552-CCM, February 1981.
14. Bathe, K.J., E.L. Wilson, and R.H. Iding, "NONSAP: A Structural Ar,1ysis Program for Dynamic Response of Nonlinear Systems," University of California, Berkeley, UC/SESM-74/3, February 1974.
15. Clough, R.W., and J. Penzien, Dynamics of Structures, McGraw-Hill,1975.
16. Stricklin, J. A., and W.E. Maisler, "Fonsulations and Solution Procedures for Nonlinear Structural Analysis," Computers and Structures, Vol. 7, 125-136, 1977.
17. Hilber H.M., T.J.R. Hughes, and R.L. Taylor, " Collocation, Dissipation, and Overshoot for Time Integration Schemes in Structure.1 Dynamics,"

Earthquake Engineering and Structural Dynamics, Vol. 6,99-117, 1978.

R-2 l

1 s

.; .i l

18. Mondkar, D.P., and S.H. Powell, " Finite Element Analysis of Nonlinear l 1

Static and Dynamic Responses," International Journal for Numerical i Methods in Engineering, Vol. 11, 499-520, 1977.

18a. Netmark, N.M., "A Method of Computation for Structural Dynamics," Proc.

ASCE, Vol . 85, No. EM3, 67-94,1959.

19. Jennings, P.C., " Response of Simple Yielding Structures to Earthquake Excitation," C.I.T. Report 63-60. June 1963.
20. Caughey, T.K., "Sinusoidal Excitation of a System with Bilinear

%sterests," Journal of Applied Mechanics, Trans. ASME, Vol. 27 Series E. No. 4, 640-643, December 1960. I 21 . Jennings, P.C., " Equivalent Viscous Damping for Yielding Structures,"

l Journal of the Engr. Mech. Division, Proc. ASCE, Vol . 94, No. EMI, 103-116, February 1968.

b 22. Iwan, W.D., " Estimating Inelastic Response Spectra from Elastic Spectra,"

Earthquake Engr. and Struc. Dynamics Vol. 8, 375-388, 1980.

23. Grossmayer, R.L., and W.D. Iwan, "A Linearization Scheme for $steretic Systems Subjected to Randon Excitation," Earthquake Engr. and Strue.

Dynamics, Vol. 9, 171-185, 1981.

24. Traill-Nash, R.W., " Modal Methods in the Dynamics of Systems with Non-Classical Damping," Earthquake Engr. and Strue. Dynamics, Vol. 9, 153-169, 1981.
25. Tansirikongkol, V., and A. Pecknold, " Approximate Modal Analysis of 8111near MDF Systems," Journal of the Engr. Mech. Division, ASCE Vol.

106, No. EM2, 361-375, April 1980.

26. U.S. Atomic Energy Commission, "Costination of Modes and Spatial Components in Seismic Response Analysis," Regulatory Guide 1.92, December 1974.

R-3

. - - . - .. - . ~ ...- - - -.

P

27. Gasparini, D., and E.H. Vanmarcke, " Simulated Earthquake Motions Compared

'I with Prescribed Response Spectra," M.I.T., Dept. of Civil Engineering, ,

R76-4, January 1976.

28. Nigan, N.C., and P.C. Jennings, "SPECEQ/SPECUQ, Digital Calculation of Response Spectra from Strong-Motion Earthquake Records," A Computer Program Distributed by NISEE/ Computer Applications, Earthquake Engineering Research Lab., C.I.T., June 1968.
29. Bechtel Power Corporaton, "ME101 Benchmark Problem: RHR Head Spray SK-M-1550, Rev. M," San Francisco, Project D8031, Problem 1-10-09 December 1982.
30. Bezier, P., M. Hartzman, and M. Reich, " Piping Benchmark Problems:

Dynamic Analysis, Unifom Support Motion Response Spectre Method,"

8rookhaven National Lab./NRC, NUREG/CR-1677, Vol.1. August 1980.

31. Timoshenko, S., and N. Goodier, Theory of Elasticity, McGraw-Hill, 2nd l , ed. 1961.

l 5

32. Fung, Y.C., Foundations of Solid Mechanics, Prentice-Hall,1969.

i

33. U.S. Atomic Energy Consnission, " Damping Values for Seismic Design cf Nuclear Power Plants," Regulatory Guide 1.61, October 1973.

34 Tsai, N.C., " Spectral Peak Ratio Curve", Bechtel Power Corporation, File No. J820,821, February 19, 1975.

35. Hill, R., The Mathematical Theory of Plasticity, Clarendon Pmss,1950.
36. Stephen, R.M., " Cyclic Loading of Energy Absorber Restraints," Structural Engineering Laboratory, Report 84-2, July'1984.

, R-4

-.- . . - _ , . - - . .- . - --