ML20154H398
| ML20154H398 | |
| Person / Time | |
|---|---|
| Site: | Davis Besse |
| Issue date: | 05/18/1988 |
| From: | TOLEDO EDISON CO. |
| To: | |
| Shared Package | |
| ML20154H301 | List: |
| References | |
| NUDOCS 8805250325 | |
| Download: ML20154H398 (75) | |
Text
THIS PAGE ?ROVIDED FOR NFORKION 0NLY 2.0 SAFETY LIMITS AND '.IMITING SAFETY SYSTEM SETTINGS 2.1 SAFETY LIMITS REACTOR CORE 2.1.1 The combination of the reactor coolant core outlet pressure and outlet temperature shall not exceed the safety limit shown in Figure 2.1-1.
APPLICABILITY: MODES I and c.
ACTION:
Whenever the point defined by the, combination of reactor coolant core outlet pressure and outlet temperature has exceeded the safety limit, be in HOT STANDBY within one hour.
REACTOR CORE 2.1.2 The combination of reactor THERMAL POWER and AXIAL POWER IMBALANCE shall not exceed the safety limit shown in Figure 2.1-2 for the various combinations of two, three ~and four reactor coolant pump operation.
APPLICABILITY: MODE 1.
ACTI0tt:
Whenever the point defined by the combination of Reactor Coolant System flow, AXIAL POWER IMBALANCE and THERMAL POWER has exceeded the appropriate safety limit, be in HOT STANDBY within one hour.
REACTOR COOLANT SYSTEM PRESSURE 2.1.3 The Reactor Coolant System pressure shall not exceed 2750 psig.
APPLICABILITY: MODES 1, 2, 3, 4 and 5.
ACTION:
MODES 1 and 2 - Whenever the Reactor Coolant System pressure has e'x'-
ceeded 2750 psig, be in H0T STANDBY with the Reactor Coolant System pressure within its limit within one hour.
MODES 3, 4
- Whenever the Reactor Coolant System pressure has and 5 exceeded 2750 psig, reduce the Reactor Coolant System pressure to within its limit within 5 minutes.
DAVIS-BESSE, UNIT 1 2-1 8805250325 880518 PDR ADOCK 05000346 P
DCD A
J
,1
"';;re 2.1-1. :ea:::r ::re Iaf e:'y.-;
Superseded With nevJ Fiyuree.l-l
- 100 2400 40 MIGH 8t!!!URE TRI?
$19. 300 O:;
iC OH !!M?!AAT',RE S
2200
,p 618,2124.6 ACOEPTA :
.~
CP! Rail 0N AC RES$URE i!NP!RATUR[ 731?
506.79.
- 1. 3. 4 SAE~if LIMIT 2000 I
RC 1.01 PRES $URE IRI j
l 4
1300 i
e i
i i
!!0 500 510 320 500 540 9t30t3 r su ti tt I!*3 t f 3tu r.
'E I
l l
l l
l 1
l l
l l
t l
l 2-2 DAVIS-BESSE, Vi1IT 1 Amendment lio. 77, 22,.J3,61
r ADDlil0NAL CHANGES PREVIOUSLY PROPOSED BY LETTER Scrial No. /M/rV Date4- / - fP Figure 2.1-1 Reactor Core Safety Limit 2500 2400 RC High Pressure Trip (618,2300)
RC High
_ Temperature Trip 2200 OPERATION
.?
(618,2124.6)
(633.4,
,100 R
2129.8) f RC Pressure (606.79,1983.4)
Temp Trip 2000 RC Low Pressure Trip Safety Limit (621,4,1929.8) 1900 1800 (608.2,1729.8) 1700 t
i e
i n
1 0
590 600 610 620 630 640 650 Reactor Outle: Temperature,*F DAVIS-BESSE, UNIT 1 2-2 Amendment No. JI, 33, 33, 61 1
C.
Figure 2.1-2 Reactor Core Safety Limi:
Superseded
- RATED THERMAL POWER WithnCLUf}Utta2.1e2.
- 120 48,112.0)
(44,112)
(-49,. 0.0)
- - 100 (49,1C0)
( 48,39.') n
( 44,3 9. '. )
[ 3 PUMP LIMIT
./
'O
(-49,77.1) (
.)(49,77.')
ACCEr AELE
-- 5 0 GPE?ATi N
^
l UMCCEPTABLE FOR SPE.
IED UNACCEPTAELE OPERATION RC PUM OPERAT.'ON COMB ATION
- -O 20 t
-60 40
-20 0
c 40 60 Axial Pcwer I=alance PUMPS OPERATING REAC~OR COOL NT FLOW, GPM 4
380, 60 3
283,936 OAVIS-CESSE, UllIT 1 2-3 Men 6,:nt No. 77, 7E, '3.
t!
JKT,91 l
m
Figure 2.1-2 Reactor Core Safety Limit t RATED THERMAL POWER
.120
(-44.0,112.0) 4 PUMP LIMIT (33.0,112.0)
(-49.0,100.0) 100
(-44.0,90.0)
(33.0,90.0) 3 PUMP LIMIT (47.1,37.2)
~~
(-49.0,78.0) (
)(47.1,65.2)
-60 UNACCEPTABLE UNACCEPTABLE OPERATION ACCEPTABLE OPERATION OPERATION FOR SPECIFIED RC PUMP COMBINATION
-40 20 t
i I
I I
i
-60
-40
-20 0
20 40 60 AXIAL POWER IMBALANCE. 1 Re;utred Measured F'.cw :o Ensure
- u es Ocerating Reactor C
- clant Flow, ;cm Cccoliance, ;;m a
130,000 389,500 3
293,960 290.957 DAVIS-BESSE, UNIT 1 2-3 Amendment No, II, 16, 33, 45,
$0, 91
F THIS PAGE PROVIDED FORINFORMATION DNLY
~
SAFETY LIMITS AND LIMITING SAFETY SYSTEM SETTINGS 2.2 LIMITING SAFETY SYSTEM SETTINGS REACTOR PROTECTION SYSTEM SETPOINTS 2.2.1 The Reactor Protection System instrumentation setpoints shall be set consistent with the Trip Setpoint values shown in Table 2.2-1.
APPLICABILITY: As shown for each channel in Table 3.3-1.
ACTION:
With a Reactor Protection System instrumentation setpoint less conserv-ative than the value shown in the Allowable Values column of Table 2.2-1, declare the channel inoperable and apply the applicable ACTION statement requirement of Specification 3.3.1.1 until the channel is restored to OPERABLE status with its trip setpoint adjusted consistent with the Trip Setpoint value.
1 DAVIS-BESSE, UNIT 1 24
v>
E a
6 e
9 2
5E
~D
.$ 8 c, E
L B "5 to c>
g
_Tahic 2.2-1 Reactor Protection System Instrumentation Trip Setpoints S
a0 n==
5 X;
b e
functional unit Trip setpoint Allowable values 7'
p g
-- g l.
Manual reactor trip Not appilcable.
Hot applicable.
2.
- ligh flux
<104.94% of RATED TilERMAL POWER with
<104.94% of RATED IllERMAL POWilt wi th Tour pumps operating Tour 8
~ 80 to f, pumps operating S 80.fe7, '70.?*, of RATED THERMAL POWER wi th
'??.
. of RATED TilERMAL POWI R wi th l
Three pumps operating Three pumps operatingI 3.
RC high temperature
<618"F
< 61tl*f8 Foor pome Four pume 4.
Flux -- A flux / flowIII
'ni'rlp setpoint not to exceed the lim-
'/Ilowable values not to exceed the it line of Figure 2.2-1.
limi t line of Figure 2.2-1.
8 7'
S.
RC low pressureIII For ihrce Pump operavon, see Fijutc 2.2-1.
i~o*ec Pump opuotio", 'sec R 0(c 2.3-1 3
>l983.4 psig
>l9113.4 psig*
>l983.4 psig*
- 6.
RC high pressure
<2300 psig
<2300.0 psiga
<2300.0 psig**
7.
RC pressure-temperatureIII
>(12.60 Tout *F - 5662.2) psig
>(12.60 T
- F - 5662.2) psig#
out 11.
liigh flux
<SS.1% of RATED IltERMAL POWER with
<SS.1% of RATED TilERMAL POWE R wi th pumps oni{ number of RC I
one pump operating in each loop line pump operating in each loopI
<0.0% of RATED TilERMAL POWER with
<0.0% of RATED TilERMAL POWER wi th Two pumps operating in one loop and Two pumps operating in one loop and wb" no pumps operating in the other loop
.no pumps operating in the other loopI
- =
<0.0 of RATED THERMAL POWER with no
<0.0% of RATED IllERMAL POWER wt th no d
pumps operating or only one pump op-pumps o erating or only one pump op-
. m erating erating 8 5 9.
Containment pressure high
<4 psig
<4 psigI O
M V
~.
5 Y'
Table 2.2-1.
(Cont'd) h
- m II} Trip may be manually I[ypassed winen'RCS pressure s1820 peig by actuating shutdown bypass provided that:
Q a.
Tlie high flux trip setpoint is 551 of RATED TilERMAL POWER.
b.
The shutdown bypass high pressure trip setpoint of 41820 pelg is imposed.
The shutdown bypass is removed when RCS pressure >l820 psig.
c.
- Allowable value for CilANNEL FUNCTIONAL TEST.
t
- Allowable value for CilANNEL CAI.IBRATION.
IAllowable value for CilANNEL FUNCTIONAL TEST and CIIANNEL CALIBRATION.
- a. -
I Cll3 lllllC lll3ll3 -
3r
~ ces a
g
-r s N A
Cll3 3:*
ll23 c:r3 z
gm a
- m =t "1:3 C
M =c::::
m C::lf g
m k C:3
Superseded with nev> Figure.7,2-1 Figure 2.2-1 Trip Se point for Flux -- Fiux/ Flew Curve snows trip setpoint for an a: proximately 25% flow reductign for three pump operation (283,980 gam).
The actual setpoint 11 be irectly croportional to the actual flow with three pumps,
% 'dTED THERMAL POWER UNACCEPTABLE
- 120 OPERATION UNACCEPTABLE n
... y
- w'*--
(, 3..e..,.,,..: )
,... 3. s u....:. )
M =1.0C0 l'
v u.
-ce 1
- egyp
.C0 2
L.u!T I
(-04.0, 1.::
2 4. ", 3 '.. )
l l
l i
1
..... l i :.. - )
1.:..O-..)
- t.. :
e l
3l PUMP l
(-34.0,62.9) [
LIf!T l
34.0,63.9)
~ 60 l
l t
I i
2C ~., TABLE OPERATICN N l
.. -.- r.....,: n..:: 19.: c.r.u: ey - s, l l
I I
l
_ :0 l
I I
l I
I j
l
- 20 l
l l
1 I
I I
l 1
1
, i I,
Ii i
0
-4
-20 0
20 40 60 Ax al Pcwer I:rtalance,1 DAVIS-BESSE, U' LIT 1 27
/nendment No. 71, JE, 33, J
/
E. M. 91
Figure 2.2-1 Trip Setpoint for Flux -- AFlux/ Flow
- RATED THERMAL POWER UNACCEPTABLE UNACCEPTABLE OPERATION OPERATION
-0 Curve shows trip
(-17.0,108.0)
(17.0,108.0) setpoint for an approximately 25% flow reduc-M;=+1.00 M =-2.27 2
tion for three 100 l
pumo operation 4 PUMP
(-30.6,94.4)
LIMIT l
(283,860 gpm).
i The actual set-i (17.0,80.6) point will be 80
(-17.0,80.6) calculated cy tne l
Reactor Protection (30.6,77.1)
P("
System and will be l
(- 30.6,67.0 )
fyAMPLE l
l directly propor-tional to the i
-60 l
l actual flow w'th l
l l
l ACCEPTABLE OPERATION FOR (30.6,49.7) lSPECIFIED RC PUMP l
l COMBINATION l
4C l
l l
l l
l l
l l
l I
l
-20 y
I l
i l
I i
i i
i i
il I
i i
i
-80
-60
-40
-20 0
20 40 60 30 AXIAL POWER IMBALANCE. *.
l l
l DAVIS-BESSE, UNIT 1 2-7 Amendment No. JI,16, 33, i 5, l
61, N, 91
2.1 SAFITY LIMIT 3 BASE 3 2.1.1 and 2.1.2 REACTCR CORE The restrictions of this safety limit prevent overheating of the fuel cladding and possible cladding perforation mich would result in the release of fission products to the reactor coolar.t. Overnesting of the fuel cladding is prevented by restricting fuel operation to within the nucleate boiling regime wnere the heat transfer coefficient is large and the cirdding surface tamperature is slignely above the coolant saturation tac:perature.
Oceration above the uccer bouncary of the nuclents boiling regime would result in excessive claading temetraturns cecause of tne onset of cecarture fro:s nucleate boiling (DN8) and the resultant share reduction in neat transfer coefficient. DN8 is not a directly measuracle parameter during operation and cherefort THERMAL PGiER and Reactor Coolant Tenper.
ature and Pressure have been related to DN8 througn the IW4 DN8 corrtlation. The ON8 correlation has been developed to predict tne DN8 flux and tne location of CNB for axially unifom ano nonwnifem neat flux districutions. The local CN8 neat flux ratio, DNBA, cefined as tne ratio of the neat flux that would cause DN8 at a particular cort location to tne local heat flux, is incicative of the margin to ONB.
t
~.
The minimum value of tne DNBA during steady state coeration, normal ocerational transients, and anticipated transients is limited to 1.30.
This value corresponds to a 95 percent probability at a 95 pertant conficence level that CN8 will not oc:ur and is enosen as an appropriate margin to ON8 for all operating concitions.
The curve presented in Figure 2.1 1 resents the condt.ons at wnica a minimum DNBR of 1.30~ is prtdicted for t maxina possible mal cower 111: wnen tne reactor coolant flow is ?S.J SO GPM, which is 108% of design ficw rate for four operating reactor coolant cun:es. This curve is tased on the follcwing hot cnannel factors with potential f' I densifi.
cation and fuel rod bewing effects:
(The minimum rejuired flow Fq 1-5-5; Fh = 1.71;
/g = W bWW 2 83 t 65 4
The design limit power peaking factors art the rest restrictive calculated at full power for the range fras all control rods fully witnerawn to sinimum allowacle control rod withorawal, and fem tne cort CN8R design basis.
.3
- m. um i i 2-i w-ent =. 6, 91 n-
., -,--------_---+--..--,,,-,-,.-----n-
4 SAFETV L M!!S BASES Th.
- 4; e~/ ':;; ;;;;;r; :: ;;;r:::h th: e e f ;, l imi t; ;,;ra ;'.
r
- j th;.a it ::tu:11; :::: b:::::: t'
- t:r trip pr:::ur;; ;r: :::;r:: ; t-
-; 1;;;ti:r "e-? t".: didi:;t:d ;r;;;ur: i; :t;;t 30 p;f k;; then ;;r: :ut 1:t ;r:::r :. pr:;id ; i - : ^ ::r :ti;; : r;ir :: th: ;;f:t3 ti it.
The curves of Figure 2.1-2 are based on the more restri tive of two thermal
, limits and account for the ef fects of potential fuel censification and po-tential fuel red bow.
1.
The 1.30 DNBR limit produced by a nuclear power peaking factor of FO" 2.t3 t%E4 or the combination of the radial peak, axial peak, and position of l
the axial peak that yields no less than a 1.30 DNBR.
2.
The combination of radial and axial peak that causes central fuel melt-ing at the hot spot. The limits are 20.! tu/'t f:r 5:tch:; i:, 4", and-50, 0, on: 7.
Lo kW/ f t, for bateh IF
?A.. 20.5 U/f;. iv.
wo wc2 anel 20 5 W/ft for batene s % 7 ond 6 Power peaking is not a directly observable quantity and therefore limits have been established on the basis of the reactor power imbalance produced by the power peaking, e4 +u.o
. The specified flow rates for[ curves 1 :: 2-of Figure 2.1-2 correspond to I
t 0 minimum flow rates with four pumps and three pumps, respective-the -;;;a;n;a:ly eed 1y, The curve of Figure 2.1-1 is the most restrictive of all possible reactor o coolant pump-maximum the-mal power ccmoinations shown in BASES Figure 2.1.
g
' The curves of SASES Figu e 2.1 reoresent the conditiens at.nien a minimum
! DNBR of 1.30 is predicted at the maximum possible thernal pcwer for the nom-g :er of reactor coolant pumps in operation or the local quality at the point
{ of minimum DNBR is equal to +22*., wnichever condition is more restrictive.
, These curves include tne potential effects of fuel red bow and fuel densifi-cation.
he ON:" ;; ::':u k t:d by it: ::2 : N ::rr:hti:r ::ating;11j incr;;;::-
- ;: int ;f m.inimma ;N;R, ;; not ce w ; CNG: i..i e,; if r:r.
n:r:;_
, t u t"
- ' th: ::r :htu ::3;ae it. 4 ;ians: ; ;;;;, r;rs ;f -::t.;
l 3:tt't;: :n tne :;;;; cf i+ cia.;nt;! :;;;.
d.
n 8 2-2 Amendment "o. 17, 22 H, 27, 5:
- t.VIS-BESSE, U::IT 1 1
1
SAFETY LIMITS BASES For ne curve f SASE5 Figure 2.1, a :ressure-tercerature point a::ve and to tne lef t Of :ne curve would result in a DNBR greater inan 1.30 r a local cuality at the point :f minimum DNBR less than *22%
for that : articular rtact:r c:olant pum; situation. The 1.30 ONBR curve for three pump operation is c
-ar* #:*'. :,: ;., ;,, m, r ;. ; -; p
.e.
..e s__
__z_.
m_.
iig wwwy 5 w
w
'/w
,,yMT www:. pv p3
.JJ di
.m.
.w '_J _
e, m_
m.
___m m
..-_-.wJJ.
VVw r =
-g y
a
_..3,..
....rw
.w
.o.
, a.
vi f;, ; _ c
~-c less restric4 f vt. Som the. four pump c.urve.
2.1.3 RE ACTOR C CLAY
- SYSTEM PRE 55'JRE The restricti:n :( :nis Safety '.imi r:tects tne integrity f :ne i.en:::r 00:lan: System f t:m Over:ressari:::::n anc :nere:y prevents :ne release f ra:::n'.ci :es ::ntaine: 'n :ne rea:::r ::: Tant from rea:ntng the ::ntainment a:m:s:nere.
The react:r :ressure vessel anc :ressuri:er are :esigned :: Se::icn t
!!! Of :ne AL4E 30:ler anc 8cessure Vessei Coce wnien :ermits a max mum I
transient :ressure :f 110%, 2750 :sig, f design pressure. The Resc::r f
C:::an: Syste :t: ng, valves an: fittings, are designed :: ANSI ! 31.7,
- e-mt s a.aximum transient ;ressure Of 1105, 275 1553 E:i: On,wns:P.
- si;, Of ::.::rea: des ;n :* essure. The Sa'ety '. m1: 0 2750 :sig is 3
- n :ne :est;n :r eria an: ass::iate: :::e
' :ne-te:re ::nsis:ar: -
reCuirerenta.
The entire Rea:::e :::ian: System is hyce::ested at 3125 :sig,15:
I cf :esign :ressure, :: :e-cnstrate inta;rity ;rter :: initial :;ersti:n.
I I
1 0AV:5-3!!!!,'.N:T:
523 Amendment N:, }&,33',45 i
n
THIS PAGE PROVIDED FORINFORMATION 0NL:
2.2.
':u: !NG SAFE *v Sv!'EM !!-'MS
'3AS!$
!1l2.2.1.
REACTOR PROTECT'ON SYSTEM INSTRUMENTATION SET 80!NTS The reac:ce protection system instrumentation trip setpoints soecified in Table 2.2-1 are the values at wnich the reactor trips are set for each param-eter.
The trip setooints have been selected to ensure that the reactor core and reactor coolant systen are crevented fecm exceeding :neir safety limi 3.
<i
' The snutcown bypass provices for cycassing certain functions of :ne reac:ce li erotection system in orcer to semit control rod crive tests, :ero cower :HYS-ll [C3 TESTS and certain startue and snutdown crocedures.
The purpose of :ne I shutdown byoass high pressure trio is to prevent nomal coeration witn snu:-
down bypass activated.
This hign pressure trip setooint is lower : nan :ne l
nomal low pressure telo setooint so :na: the reactor must be tricoed before l :ne cycass is initiated.
The high flux trip setooint of 15.C% prevents any significant reac:ce power fran ceing produced.
Suf ficient natural circula-I tion would be available to remove 5.0% of RATED THERMAL POWER if none of :ne reactor coolant sumos were operating.
l! anual Reaccor Trio M
t t ( The manual reactor trio is a redundant channel to the automatic reactor orote"
}i tion sys;em, instrumentation channels and provsces manual reactor trio capaci!
!lity.
i l
Hicn Flux A nign ' lux trio at high cower level (neutron flux) crovices reac:or : ore e :-
- ection agains: reactivity excursions anien are too racic to ce er::ec ec ey i: temperature and cressure crotective circuitry.
During nor al station oceration, reactor trip is initiatec anen :ne reac:ce l' cower level reacnes 104.94% of rated sower. Due to :ransient oversroo:, nea-balance, and instrument errors, :ne maximum actual cower at anien a trio
.ould be actuated could be 112?., wnich was usec in :ne safety anal sis.
/
i -
4 l
i
' L 1
i,
4 0 AVIS-BESSE, OMIT 1 Anendment *:o, A3,61 i
J -
[
- l t
' !MIT:NG SAFETY S1QEM SETTINGS 3; BASES p
' RC High Temoerature The RC high temperature trip <618'F prevents the reactor outlet temoerature from exceeding the design limTts and acts as a backup trip for all power ex-cursion transients.
Flux -- aFlux/ Flow The power level trip setpoint produced by the reactor coolant system flow is based on a flux-to-now ratio wnich has been established to accommodate flow decreasing transients from high power anere protection is not proviced by the hign flux /nuncer of reactor coolant pumos on trips.
The power level trip setpoint produced by the power-to-flow ratio provides both high power level and low flow protection in the event the reactor power level increases or the reactor coolant now rate decreases.
The power level setpoint produced by the power-to-now ratio provices overpo-er DNS protection for all modes of pump operation.
For every now rate tnere is a maximum permissible power level, and for every power level there is a minimum permissible iow flow rate.
Examples of typical power level and low n ow rate combinations for the pump situations of Table 2.2-1 that would result in a trip are as follows:
108.0 %
Trip [ould occur when four reactor coolant pumps are operating if power 1.
is 1...X and reactor coolant now rate is 100% of full flow rate, or d
flow rate is 95+M of full flow rate and ;ower level is 100%.
j, 92 597, j 2.
Trip would occur when three reactor c00?.it pumos are 0:erating i f power is '~ ' and reactor coolant now ate is 74.7% of full G o*
rate, or ow rate is 'O.:n of full flow rate and power is 73%.
8o, % t, (A. 49 ).
For safety calculations the instrumentation errors for the power level ere used. Full flow rate in the above two examples is defined n the Dov 1-s culated by the heat balance at 100% power. At We tJme of %c.
colibration %e. RCS flow will be gro.t e $an or equal % the Valut in Toble 3 A-3 l
l Note Wat %e Vhe of Sc,(,% l M quve2,2-1wog t r un e.oA.e d frem %e j
OMeu.toMd Mlu.e of 80.(,87, I
l l
l AVIS-BESSI, 'JNIT 1 B 2-5 A,.nend.ent Co. JL 4, !3, !J, M l
s I
73=, 2 3 Pressure /Te:pera:ure L1=.1:s a: F.ax 2=: M *,.-vable
? cue r '--
w'-d u::t ON3R
- Superseded u>ith niw Basec Ftyure D.I 1
2400 3 PUWP CURY[
22:3 O
4 PUMP CURy[
.. 3 3
+
.9" n.
==
E v
~
'3::
!!0 6:0 610 620 630
}0 Rent:r Outlet fe parature, (*F) i;w a t ti.:n > Pw, 80tra i
380,1.50 1125 3
283,980 89,1%
v:3 5Is3I, i;';;T :
3.2-8 Ar:endr.ent fic, X,M,4Ei 9I
Bases Figure 2.1 Pressure / Temperature Limits at Maximum Allowable Power for Minimum DNBR 2300 l
2200 (636.3,2159.8)
(633.4,2129.8)
/
2100
/
l
/
4 Pump
/
2 r/
E 2000 ACCEPTABLE
/
OPERATION i
8 (621.4,10'
- )
j (625.7,1959.8)
/
UNACCEPTABLE 1900
/
OPERATION
/
3 Pump
=
7 1800 j
(608.2,
!(614.3.1759.8) r
)
1729.8) l 1700 1
I I
I 595 605 615 625 635 645 l
Reactor Outlet Temperature, 'F l
l Required./easured l
Flow to ensure Pumos Flcw, gom Power Compliance, gom 4
380,000 1121' 389,500 3
283,860 90.5%
290,957 i
1 DAVIS-BESSE, UNIT 1 B 2-8 Amendment No. //, 33, 43, 91
REACTIVITY CONTROL SYSTEMS BORATED WATER SOURCES - SHUTDOWN LIMITING CONDITION FOR OPERATION 3.1.2.8 As a minimum, one of the following borated water sources shall be OPERABLE:
a.
A boric acid addition system with:
availa ble, 1.
A minimum -c: t;in;d borated water volume in ;;;;rda me l
i th " p: 2. ' 1, -
of 400 gations, 2.
Between 7875 and 13,125 ppm of boron, and 3.
A minimum solution temperature of 105'F.
b.
The borated water storage tank (BWST) with:
available.
1.
A minimum cc-Mi n: borated water volume of 70,7:C 3,ooo l
- gallons, 2.
A minimum boron concentration of 1800 ppm, and 3.
A minimum solution temperature of 35'F.
APPLICABILITY: MODES 5 and 6.
ACTION:
With no b rated water sources OPERABLE, suscend all ocerations involving CORE ALTERATION or positive reactivity changes until at least one borated water source is restored to OPERABLE status.
SURVEILLANCE REOUIREMENTS 4.1.2.8 The above required borated water source shall be demonstrated OPERABLE:
l a.
At least once per 7 days by:
1.
Verifying the boron concentration of the water, 8vailabic.
2.
Verifying tne n ud :: borated water volume of :ne j
,e source, and i:
l0 AVIS-BESSE, UNIT 1 3/4 1-14 Amendment No. 67
REACTIVITY-CCNTROL SYSTEMS BORATED WATER SOURCES - OPEPATING LIMITING CONDITION FOR OPEPATION 3.1.2.9 Each of the following borated water sources shall be OPERABLE:
a.
The boric acid addition system with:
available 1.
A minimum ges4e+eed borated water volume in accordance l
l with Figure 3.1-1, 2.
Between 7875 and 13,125 ppm of boron, and 3.
A minimum solution temperature of 105'F.
b.
The borated water storage tank (SWST) with:
1.
An--- -
borated water volume of between 482,778 and l
550.000 gallons, 2.
Between 1800 and 2200 ppm of boren, and l
3.
A minimum solution temperature of 35'F.
APPLICABILITY: MODES 1, 2, 3 and 4 ACTION:
1 a.
With the boric acid addition system inoperable, restore the l
storage system to OPERABLE status within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> or be in at least HOT STANDBY and borated to a SHUTDOWN PARGIN equivalent to it sk/k at 200'F within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />; restore tne boric acid addition system to OPERABLE status within the next 7 days or be in COLD SHUTDOWN within the next 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />, b.
With the borated water storage tank inoperable, restore the tank to OPERABLE status within one hour or be in at least HOT STANDBY within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in COLD SHUTOOWN within' the following 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />.
l l
DAVIS-BESSE. UNIT I 3/4 1-t1 At.ent ent No.26,67 l
L l(s
I REACTIVITY CC.'AOL SYSTEMS SURVEILLANCE REOUIREMENTS 4.1. 2. 9 Each borated water source shall be demonstrated OPERABLE:
a.
At least once per 7 days by:
1.
Verifying the boron concentration in each water scorce, available i
2.
Verifying the ---"" " berated water volume of each I
water source, and 3.
Verifying the boric acid addition system ' solution temperature.
b.
At least once per 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> by verifying the BWST temperature when the outside air temperature is < 35'F.
l l
i l
l l
DAVIS-BESSE. UNIT 1 3/41-W l
l
Supersedeo' with Figure.
- 3. I-I ruuJ O
s_
80 7500
~
A TABLE-m
-0 RATION O
7000 a
a C
6500
_N_
w E
O g
a
__r m-.
o
_8:_.
r M$=l! ~ d-T:ES:-NS
..i._ :
'N
~
5 h
.=7-55:.- UN CCEPTAB U -IN'I..
OPE R AT1ON p
U
- d.M mi. : 7_ ~ m_; -
~
g o
.. ;-le ~ ~
b -.G-ist.:M : =~.;-' 5:-~~
N
$~
4500
~
.-..: t ' === r " -- -- = /:. ar;.-. ". = _.:.:. " -
w z
- = 34:-." ~ ~-
q
--x--
...: = a r.... _.=_:-
f --.:._:.. n.. r --..:.-.=_=_.-..=.--
-=n--
- - - - - - - -_ ;; =_. =, ; ; _.___,.
,z
.: n 4000 o
_.g.. j,. _.j.,7_,,._ _,,. g.- - - --- - \\ ; - -
'u--=.._.
ni 4----N9FT;W_. i - Cr:----
~ dC -/Sh -I-I "E:~j - :-- ' k@256 2-~ ~ ~ ~ ~~ ~ ~ ~
~ - ~
~
2
- =~----~~-~~
3000 7000 80 9000 10.000 11,0 12,000 13,000 14,000 CONCENTRATION OF 80RIC ACID SO ' TlON, ppm B Figure 3.1 1 Minimu Boric Acid Tank Contained Volume as Function of tored Boric Acid Concentrat Davis-e 1, Cycle 1 18 DAVIS-BESSE, UNIT 1 3/4 1-M 4endment No. .
Figure 3.1-1 Minimum Boric Acid Tank Available Volume as Function of Stored Boric Acid Concentration -- Davis-Besse 1 8500
\\
8000 A
8 7500
\\
ACCEPTABLE S
5 7000 s
OPERATION 6500
,\\
6000 3
N 5500 E
UNACCEPTABLE OPERATION S
5000
.2 N
l S
4500 1
m E
4000 l
3500 1
1 3000 I
I 7000 8000 9000 10,000 11,000 12,000 13,000 14,000 Concentration of Boric Acid Solution, ppm B l
DAVIS-BESSE, UNIT 1 3/4 1-18 Amendment No. 11
- E C :y: v CON RCL Svs Ev5 i
lREGULAT:NGRCD:NSERT:CNL:M:TS
' ' :MIT:NG CONDITICN FOR CPERA!!CN
,l
' 3.1.3.6 The regulating rod groups shall be limited in pnysical insertion as shown on Figures 3.1-23, n, - %, a:
M r d 2.1 %, -:y, -:c ;;d n.
l A rod group overlap of 25 :5 sn 1 be maintained between secuential with-drawn groups 5, 6 and 7.
m L::AE:'.: v:
VCCES l' anc 2.
and - 26, 3 l - 3 a, o,md - 3 b.
ACTION With the regulating rod groups inserted beyond the above insertion limits (in a region other than acceptable operation), or wi th any group sequence or overlap outside the speci fied limits, except for surveillance testing pursuant to Specification 4.1.3.1.2, either:
a.
Restore the regulating groues to it.lin the limits witnin 2 neurs, or b.
Reduce THERMAL POWER to less than or ecual to tnat fraction of RATED THEMAL POWER wnien is allowed by the_ rod group position using the above figures within 2 nours, or c.
Se in at least HOT STANCBY within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.
NCTE:
If in unacceptable region, al so see Section 3/4.1.1.1.
i l
l l
l l
l i
l
'See Special Test Exception 3.10.1 and 3.10.2.
l
- With k,ff > 1.0.
i DAY!S-BESSE, UNIT 1 3/4 1-26 Anendr.en t.';o. 7 7, 2 2, / 7, ( f. ' T D,00 l
Superseded unu nea) Rpaa 3, i-2 a.
Figun 3.1-2a Aegulating Grau: Position '.imi ts, O *: 25 ';/.0
.E.F..; 0.., Fou r RC.pu=e s. - O a v i s.8 e s s e '., O e l f
(. c... a e. s (229,;C2) 100 P M r t.evel
,, C, ',,', j Cutoff a 10C%
<;.. :,i s.
E
!h!JTOC'=N
-a 3
suG:.N r..:..
j
/ LIMIT w
NACCI?TA!!.!
RE RICTI 3EMT:CN 0.?A7::N 50 e
w i
(159,50)
(, e..=. - s, I
40 1
a U
%)
h.
G 2:.
20 AC:I??A!LI 6j
/
OPE?AT:CN
- tc6, i
i (0,7.5) i 0
200
^^;
- e
- ne.2(1 100 0
a: : 2 n, e
i an :.
.3 a.
l l
GR SI l
0 25 75
'00
.1 5
.ea^ -
3 I
i l
l i
l I
1 1
)
l i
1 s"
- ,Ay.atsst, ';;IT 1 3/4 1-23 Men
'n* "O' 77' 33' /3'
~
)
1 1
l I
A
Figure 3.1-2a Regulating Group Position Limits, O to 325 10 EFPD, Four RC Pumps --
Davis-Besse 1, Cycle 6 (300,102)
(258,102) 100 - Power Level (270,102)
Cutoff = 100%
(270,92)
SHUTDOWN E
MARGIN y 80 LIMIT (250,80) e a
E UNACCEPTABLE OPERATION OPERATION 60 8
RESTRICTED 5
(170,50)
(180,50)
.o a
5 40 E
E
\\
(128,28.5)
~
b22 20 ACCEPTABLE OPERATION 0
I 0
100 200 300 Rod Index (% Withdrawri) l GR 5 i i
i 0
75 100 GR 6 I
I f
I l
0 25 75 100 GR 7 '
i i
0 25 100 t
DAVIS-BESSE, UNIT 1 3/4 1-28 Amendment No. JJ, 33, A5, 6J, 80
Supefseded u)ibh neu.) Ryute 3,j-2h Figure 3.!-2b Regulating Group Position Limits, 25+10/-0 to 200:'.0 EFPO, Four RC Pumos -- Davis-Besse 1, Cycle 5
( '..--.
l (229,102) 100 Pewer Level
- 300.102)
Cutoff = 100%
(270,921 g
s i
e SHUTDOWN (225
)
SO MARGIN h[
g LIMIT UNAC ~PTAbLE s
OPE TION p
[
60 a
E*
j (159,50)
(200,50)
I 20
=
t j
?'
f, u
I 2
ACCEPTABLE
[
CPERATION s
y
\\
s j
(SA,15)',
's
, (0,7.6)
N i
o 1
'x
- 200, 300
\\
d Index (" Withcrawn)
CE Ih.
\\
75 0
\\
0 6
'N.0 0
25 7
10 62 7,
~
0 25 1:0
\\N
'N
'\\\\
i N
i DAVIS-GESSE, Ull!T 1 3/4 1 -20a, Amendment No. J7, 33, /2, 3, 37,30
Figure 3.1-2b Regulating Group Postion Limits After 3251 10 EFPD, Four RC pumps, APSRs Withdrawn -- Davis-Besse 1, Cycle 6 (266,102)
(300,102) 100 Power Level
'(270,102)
Cutoff = 100%
(270,92)
SHUT 00WN MARGIN UMIT
'h 80 (250,80) 2 a
Eg OPERATION 5
60 UNACCEPTABLE OPERATION (176,50)
(180,50) j 40 E
E
[
(136,28.5)
I2 20 ACCEPTABLE OPERATION 8
(0.0,5.0) 0 100 200 300 Rod index (% Withdrawn)
GR 5 i i
0 75 100 GR 6 i i
i i
0 25 75 100 GR 7 '
O 25 100 DAVIS-BESSE, UNIT 1 3/4 1-28a Amendment No. JJ, 33, A2, 45, f>J, 80 f
\\N
/
\\
90eMed l
\\
/
Figure 3.1-2c Regulating 3rcuo Desi ion Limits, 200 -10 :: 220 :'/
EFPD, F0ur RC Pum:s -- Davis-Besse 1, Cycle !
j
\\
/
s (4,:...cs N
(257,102)'
100 -
Pewar Level
/
(;co, 02) s
\\
Cutoff = 100%
/
\\
OPERAT!OW'
_N RESTRICT *t0 (270,92) m.
w E
'80 (23c :o) 2C SHUTCOWN
"'~
MARGIN
./
f LIMITh/
3 60 j
=,
1)NACCEPTABL E 0PERATION
( 200,:.0 )
g-
,N
'/
s
(
40 5
E ACCEPTABLE 2
x
,/
OPERATION s.
20
./
v (126,15) i c.
W(0,5.7)
/
00 100
\\
200 2C0 f
"E.
-/
Red Index ( xWitnerawn) e s
')
75 100 x
GR 6 '
l 0
25 75 \\
100 N
i l
/
I GR 7
'b0 0
05 1
/
l l
/
's
/
l l
l l
/
'N I
e' N
l
/
/
/
\\,
/
DAVIS-BESSE, UNIT 1 3/4 1-20b Amendment t'o. 4/, 43, $1, f) 80 l
\\
l /
\\
/
[*
10eleted l
/
/
Figure 3.1-2d Regulating Group Position Limits, 330 :10 to 390 :10 EFPO, Four RC Pumes, APSRs Witnces n.- Davis-Besse 1, Cycle 5 s,
/
N (271,102)-
l
'\\
100 -
Power Level KCO,102)
\\
Cutoff = 100%
/
sN f
\\
f
^
SHUTDOWN i
5 MARGIN
/
3 8C i
LIMIT
/
i a
{
/
i
=
~.
W
\\
l 6C
\\
=
,.,... 0) j 2
UNACCEPTABLE
'"*'8 i
OPERATICN i
e 4C a
5 O
2 ACCEPTABLE OPERATICN b
20 N
f 2
'[(134,15) 2
, +
g (0,A.5)
/
0 100 200 300
/ od index (% sithcrawn)'
R' e
i c.g 5 I
O 75/
100 1
I I
GR 6 'O 25 75
- 00 p
l l
/
i
/
GR 7
/
0 25 100 9
l
/
,/
N,,
/
'N
/
i
's
/
\\
/
'N
/
3 DA'll5-3 ESSE, U;i!T 1 3/4 1-28c k.endrent :'o, (E, U, D, 30
,/
/
Supersedec/ un6h neu)
Fiyore 3.i-3a Figure 3.1-3a Regulating Group Position Limits, O t: 25.;;/-0 EFPD, Three RC Pumps -- Davis-Besse 1, Cyc'.e 5 100 (275,77) 80 (229,77) 0 o"
(300,77)
(270,69.5)
\\
SHUTECWN
=
60 ARGIN (250,50.5)
LIMIi
-C
. ERATICN 2
RESTR:CTEC
=
Utl CEPTABLE Or RATION j
40 (its,38)
(225,35)
E t'
et 20 ACCEPTABLE y
OPERATION 5
(*,11.75) 0
,\\
i i
(0,6.2) 0 100 200 3CC Red Indeg ( Witncrawn) 0E E O
75 100 i
i i
GR 6 0
25 i
no l
l t
I GR 7 0 25 100 l
l l
l N
'N N
N l
nVIS-BESSE, UlIT I 3/4 1-29 Amendme.-t No. 77, 33, J, /2 1
11, 80 l
l 9
EI
Figure 3.1-3a Regulating Group Position Limits, O to 325 10 EFPD, Three RC Pumps --
Davis-Besse 1, Cycle 6 100 -
S 80 (258,77)
(300,77)
C 3
g
( 0,77)
SHUTDOWN h
MARGIN (270,69.5) s LIMIT (250,60.5)
C 60 S
- E I
UNACCEPTABLE OPERATION OPERATION RESTRICTED (170,38) g 40 8
(180,38) tS E
20 (128,21.8)
ACCEPTABLE OPERATION 0
0 100 200 300 Rod Index (% Withdrawn)
GR 5 '
0 75 100 GR 6 i
i 0
25 75 100 GR 7 '
0 25 100 DAVIS-BESSE, UNIT 1 3/4 1-29 Amendment No. 11, 33, 41, 45, f>l, 80
l Suptseded with neu> Figure 3.l-3b
/
Figure 3.1-3b Regulating Gr uo Posi f on Li.> s, 25-10/ 0 :: 200 -13 l
EFPD, Three RC Pumos -- Davi s-Besse 1, Cycle 5
/
/
/
100
/
,/-/
E (275,77) w 3
(229,77)
(300,77) a
[
(270,59.5)
E SHUTCOWN 60
,v;gGIN (225,50.5)
~
~
O LIMIT f
UNACC.0 TABLE
[
OPERn ION 10 (159,38) ggg,33) 8
/
0 E
i
~
ACCEPTABLE 2r -
b OPERATICN
~
3 S
(36,l'
)
(0,5.2)
,/
i i
d Index Withdrawn) h OR I 7
100
/
h i
i t
l GR/5 0
25 75
's.
100
/
N
/
GR 7,
0 25 100
/
/
/
\\
/
\\
/
\\
\\
l l
l
, 0 AVIS-DESSE, UflIT 1 3/4 1-29a Anendnent No. 77, );, /2, /-
31,
/
80
/
/
a
Figure 3.1-3b Regulating Group Position Limits After 325 10 EFPD, Three RC Pumps, APSRs Withdrawn -- Davis-Besse 1, Cycle 6 100
{
80 (266,77)
(300,77) 2 SHUTDOWN 3
l E
(270,77)
MARGIN y
UNACCEPTABLE LIMIT (270,69.5) a OPERATION E
60 250,60.5)
~
e U
c" OPERATION (176,38)
RESTRICTED 40 y
(180,38) b t
l 5
uj 20 (136,21.8)
=
ACCEPTABLE OPERATION
' (0,4.25) 0 I
0 100 200 300 Rod Index (% Withdrawn)
GR 5 0
75 100 l
GR 6 i i
0 20
/o 100 l
GR 7 '
0 25 100 DAVIS-BESLE, UNIT 1 3/4 1-29a Amendment No. JJ, 33, 42, 43,
$J, 80
s..
10a/eted
/
Figure 3.1-3c Regulating Scoup ?csition Limits, 200 :10 00 230 :1^
EFPO, Three RC Pu.m s -- Davi s-Besse 1, Cycl e 5
\\
100 f
=
(275,77) 80 c\\
j(257,77) e-OPE 3dTION (300,77)
\\
\\
R CRICTED 9.7 0,::.. : s
=g
[
60 1.
- 3.. :. n. :. s
,n
\\
=
SHUT;cWN 2
IN
~
Ii
-0 w
UNAChICN
~?TAELE (200'38)
OPE
-p x
,e b
20 ACCEPTABLE OPERATICN (126,11.75)
<g.(0.4.7)
/,
0
/ 100
\\
200 3:C j/'
Red Ince\\ (t Witnerawn)
I i
i 3; 5 0
/ 75 100
\\
/[R 6 0
2:
e
0 l
i i
i GR 7 0
25 100
/
\\
,/
j y
/
/
\\
17,33,/2,/3\\$7,i?,
OAVI5-GESSE, UNIT 1 3/4 1-29b Amendment.'io.
a N
\\
l l
l l
N
/
De/ded l
Figure 3.1-3d Regulating Grouc Desition Limits, 330 :10 :: 190 :10 j' EFPO, Three RC Pumps, APSRs Witncrawn -- 3 avis-Besse 1, Cycle 5
/
/
\\
100 r-i N
/
/
/
n 5
/
22 N
(27;1','77 ) e
~
o (300,77) g f
\\
/
b
/
E A0
\\
MARGIN /
=
d
's LIMII/
5 UNACCEPTABLE
/
OPERATION o
s
~
T N
/
(2C6,38) 8 l-g
/
c.
b 20
's
/
ACCEPTABLE 5
/
OPERAT:CN s
- ~
(134,11.75)
(0,4.01
..A,
t N
i 0 0 100
'N 200 300
' ' Rod Index ('*\\ nerawn}
/
Wit i
GR 5 0
g tCO
\\,
g I
I f*
I og,6 0
23 7 5 ".
100
/
'N I
I t
GR 7 0 h 25 100
,/
\\.
f N,
/
'\\
l
/
'\\
/
\\
/
'N
/
N l
N i
s
/
/
/
/
b
/ AVIS-GESSE, UNIT 1 3/4 1-29c Amer.dment No. 77, 23, /J,
/
80
/
/
/
THIS PAGE PROEDED FORINFORMATION ONLY REACTIVITY CONTROL SYSTEMS ROD PROGRAM LIMITING CONDITION FOR OPERATION 3.1.3.7 Each control red (safety, regulating and APSR) shall be pro-gramed to operate in the core position and rod group specified in Figure 3.1-4 l
APPLICABILITY:
MODES 1* and 2*.
ACTION:
With any control rod not programed to operate as specified above, be in HOT STANDBY within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />.
SURVEILLANCE REQUIREMENTS 4.1.3.7 a.
Each control red shall be demonstrated to be programed to operate in the specified core position and rod group by:
1.
Selection an.d actuation from the control room and verifi-cation of movement of the proper rod as indicated by both the absolute and relative position indicators:
a)
For all control rods, after the control rod drive patches are locked subsequent to test, reprograming or maintenance within the panels.
b)
For specifically affected individual rods, following maintenance, test, reconnection or modification of power or instrumentation cables from the control rod r
drive control system to the control rod drive.
2.
Verifying that each cable that has been disconnected has been properly matched and reconnected to the specified control rod drive.
b.
At least once each 7 days, verify that the control rod drive patch palels are locked.
i
- See 5per.ial Test Exceptions 3.10.1 and 3.10.2.
DAVIS-BESSE, UNIT 1 3/4 1-30 Amendment No.ll
[
Figure 3,1 4 C:ntrol : d Core L :ations an: Greu:
Assion.ments -- Cavis-Besse 1 Cycle 5
/
/
Supuseded wi&h nM I
Fijure 3,j. y X
l 4\\
/
/
5 3
7 3
\\
,[
C 2
6 6
2
\\
/
o 7
8 5
e 7
N2
/
E 5
/
5 2
\\
F 3
1 7
/1 8
3
\\
G 6
x a
f' 6
W-7 5
7 7
5 7
y q
/
x 5
N 4,
4 6
i L
3 8
1
\\
7 1
8 3
[
\\,
5 2
M 2
5 e
s N
7
/
8 5
'N 9
7
,!2
\\
O 6
6 2
/
~
3 7
h
/
'N R
l
/
l s
l Z
\\
l l
1 2
3 4
5 6
7 8
9 10 11 l2s 13 14 15 x
No. of Greue rods Fune ions 1
5 Safety N l
2 8
Safety 'N X
Grouc Nu:.cer 3
8 Safety 4
4 Sa fety
'\\
5 8
Control 6
8 Centrol 7
12 Control 8
8 Apsas Total f 61 DAVIS-3 ESSE, Uti!T 1 3/4 1-31 ende.ent !!o 77, 33, /2,
Figure 3.1-4 Control Rod Core Locations and Group Assignments --
Davis-Besse 1, Cycle 6
/
H N
A 4
6 4
g C
2 5
5 2
D 7
8 7
8 7
E 2
5 5
2 F
4 8
6 3
6 8
4 G
5 1
1 5
H W-6 7
3 4
3 7
6
-Y l
K 5
1 1
5 L
4 8
6 3
6 8
4 l
M 2
5 5
2 N
l 7
8 7
8 7
i 0
1 2
5 5
2 P
l l
l 4
6 4
R I
I Z
1 2
3 4
5 6
7 8
9 10 11 12 13 14 15 Grouo No. of Rods Function l
1 4
Safety 2
8 Safety 3
4 Safety X
Group Number 4
9 Safety 5
12 Control 6
8 Control 7
8 Control 8
8 APSRs Total 61 DAVIS-BESSE, UNIT 1 3/4 1-31 Amendment No. JJ, 33, 43,
$J, 80 l
- REAC~!VITY CCNTRCL SYSTEMS
'l
' AX AL PCWER SHAPING RCD lNSERT:CN LIMITS LIMIT!NG CONDITION FOR CpERATICN 3.1.3.9 The axial power shaping rod group shall be limited in physical in-section as shown on Figures 3.1-54, -5b,p-5c.
~:,
5',
{
APPLICABILITY: M00ES 1 and 2'.
ACT:CN wi th the axial power shaping rod group outside the above insertion limits, either:
a.
Restore the axial power shaping rod group to within tne limits within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />, or b.
Reduce THERMAL POWER to less than or ecual to that fraction of RATED THERMAL POWER wnich is allowed by the rod group position using :ne above figures witnin 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />, or c.
Be in at least HOT STANOSY within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.
SURVEILLANCE REOUIREMENTS 4.1.3.9 The position of the axial power shaping rod group snall be deter-mined to be within the insertion limits at least once every 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> except when the axial power shaoing rod insertion limit alam is inoperaole, then veri fy the group to te witnin the insertion. limit at least Once every a
- r. neurs.
l!
u 1
- With Keff > 1.0.
DAVIS-BESSE, UNIT 1 3/4 1-34 Amendment !:o. 32, ',
3,'
80
N Superseded anth neu) Figore 3,1-54 Figure 3.1-Sa APSR Position Limits, O to 25-10/-0 EF"O, Four RC Pumes -- Davis-Besse 1, Cycle 5 (9,102)
(38,102) 100
>(9,92)
(38,92)'
RESTRICTED REGION 80<
2 (0,80)
(50,80)
N
~
55 60 k
=
d E
(100,50)
~
PEFRISSIBLE AO e
OPERATING REGICP 5
0 t
20 c-0 1
I I
t i
0 10 2n.
30 4
50 pu
<0 so 30
.;C APSRPosit.g(: Withdrawn)
\\
s i
l NN
\\
l
\\
\\
DAVIS-BESSE, UilIT 1 3/4 1-35 Amendment.No. 3), /3, $1, 00 l
l l
c
't
\\'
Figure 3.1-5a APSR Position Limits, O to 325 10 EFPD, Four RC Pumps -- Davis-Besse 1, Cycle 6 RESTRICTED REGION c
s-o 100 - (0,102)
-(100,102) 80 2
W 2
a a:
60 y
PERMISSIBLE OPERATING REGION ed 5
%o 40 Y
8 b
t.
b g
20 c.
Q t
I 1
i t
i f
I I
f 0
10 20 30 40 50 60 70 80 90 100 APSR Position (', Withdrawn) f 1
DAVIS-BESSE, UNIT 1 3/4 1-35 Amendment No. 33, 43, $J, 80
N
\\e Superseded 6 %
neu)
R yure 3./-sh N\\
Figure 3.1-5b APSR P:si tion Limi ts, 25-10/-0 :: 200 :10 F.::0,
\\
Four RC Pueos -- Davi s-Besse 1, C/cle 5
\\
(9,102)
(42,102)
C 1C0
/
(9,92)
(42'92)
RESTA.CTED REGION 5
2C' R,80)
I (50,80) 1 g
=
/
-5
-0
\\
\\
=
N N
N (100,50) l
=
t
\\
PERMISSIBLE
- o
' PERATING REGION I
^
5 d
E
'N
\\
h 20 N
I
=
\\
- 5
\\,
\\
\\v i
t i
t i
i i
i 00 10 20 3
40 5A 50
, 70
$0 90 100
+
N I
AP5R positien (% 'ditnerawn)
/
I x
\\
\\
i
\\
i
\\
l
\\
/
N l
1 NN JAVIS-BESSE, UNIT 1 3/4 1-36 Amendment ?!o, D, /2, 4, r,,
CO 1
Figure 3.1-5b APSR Position Limits After 325t 10 EFPD, Three or Four'RC Pumps, APSRs Withdrawn --
Davis-Besse 1, Cycle 6 1
i 100 80 8
c.
a g
APSR INSERTION NOT ALLOWED W
60 P
IN THIS TIME INTERVAL S
l 3
40 T
8 u
I 2
l
- 20
~
b l
c.
I l
0 t
i i
i i
i i
0 10 20 30 40 50 60 70 80 90 100 APSR Position (*. Withdrawn)
DAVIS-BESSE, UNIT 1 3/4 1-36 Amendment No. 33, A2, 45, 61, 80 l
1
^
Superseded wies neu> fiyure 3i-se Figure 3.1 5c APSR Position Limits, 200 :10 to 330 :10 E::0, Four RC Pum:s -- Davis-Besse 1, Cycle 5
( 9,0'02)
(42,102) 100 (9,92)
RESTRICTE'
~
(42,92)
REGION
-z 80s (O'30)
(50,50)
~
5 w
(100,70)
P 60 S
3 PER.WISSIBLE OPERATINri REGION s
C 10
=
6
~
,c t
20 5'
0
~
30 4
50 60 70 50 90
- C O
10 20 APSR Desit n (% Withdrawn) l 1
l l
i l
DAVIS-BESSE, U';IT 1 J/4 37
- m. endment ::o, 23, f), JJ, ty, go i-l l
\\
Figure 3.1-Se APSR Position Limits, 0 to 325t 10 EFPD, Three RC Pumps -- Davis-Besse 1, Cycle 6 100 -
80 RESTRICTED REGION E
W (0,77)
(100,77) 2 a
b E
60 8
- 2 cx:
o PERMISSIBLE 40 "5
OPERATING REGION O
2 E
E e-20 t
0
~0 20 30 40 50 60 70 80 90 100 1
0 l
APSR Position (*. Withdrawn) l DAVIS-BESSE, UNIT 1 3/4 1-37 Amendment No. 33, M, H, H,
80 l
i
/
\\
&,f&b&
j
\\
Figure 3.1-5d APSR Pesi; ion Limits, 330 :10 to 390 :10 EFDO, Three or Four RC Pumos, APSR3 Witnerawn --
s Davis-Besse 1, Cycle 5
,/
's
/
/
s
/
,/
\\
100
\\
-z
\\w 3
/
No C-s y 80 L
/,,/
2 \\
/
d \\
/
=
\\
/
=
\\
/
g 60 APSR INSERTION NOT ALLOWED g
's IN THIS TIME INTERyAL
-o
/
j a
8 40
~
da c
u j/
g 20
.s\\/
s A
/,
r
,c 4
0 O
10 207 30 40 5.0 60 70 50 90 100
/
\\
/ APSR Position (i Withdrawn)
./
l
/
/,)
r 4
J
/
~,
\\
,/
s g
/
\\
/
\\
/
N
/
\\
,/
DAVIS-BESSE, UNIT 1 3/4 1-38 Anendment i:o. 33,12, / 2, ' 2 7, '
80 3
l
/
\\
/
\\
ee j
A0eleted
/
,/
Figure 3.1-Se APSR Position Limits, O to 25-10/-0 EF:0,
/
Three RC Pumps -- Davis-Besse 1, C/Cle 5
/
x
/
/
/
s
\\\\,
100 a:w.
55 '\\~
//
o
'30 (9,77)
(38,77) g N,.
i
=
,\\
x-e S --. e.. :,;
va,a.
f in.
(38,59.5)
/
REGICN
'O
~
~
E (0,50.5)
(50,50.5)/
/
/
/
g c
/
3 40 j
DS
'sPERMISS[BLE
( 100 8 )
OPERAT'iG REGION
\\
o n
10
~
/
t
/
,/
3 0
10
/20 30 2 0 '-
50
.50 70 30 10
'. 0 0
/
l
/
APSR Pesitien (; 'aitnerawn)
/
1
/
1
/
l l
\\'
-.N l
/
\\
l
,/
/
\\
/
l
/
\\
l
/
\\
s l
l s
\\
\\
l
\\
N.,
l
/
'sx
' DAVIS-BESSE, L' NIT 1 3/4 1-39 Amendment ::o. /2, !), 27, n, j
\\
p y
a
/
d)eiet ed
/
Figure 3.1-5f APSR sesi:icn Limits, 25-10/-0 to :^0 :10 EF30 Three RC sumos -- Davi s-Besse 1, Cycle 5 7
\\
s\\
/
SQO
/
\\
r W?
E N'
g go - M J7)
(42J7)
/
e N
- m.. s. -. n.
s t.
-w A....-
5
"()tc:)
u' a
(,2,,,.2)
_c g
50 (0,50.5)
(50,60.5)
=
w r
/
O ed
=u 10 O
(100,35) i u
s PERMISSIBLE D.UAII"O OI "
5 20 E
s 0
0 10 20
,20 10 50 50 70 30 90
'Z g
' 1 thcrawn) 4 APSR P sitien (
' \\.
/
l
/
t l
t
,/
[
'N
/
l
/
/
1
\\
/
\\\\
\\
i s
t
\\
./
\\
DAVIS-BESSE, UNIT 1 3/4110 Aren: cent *:o. Ai, 77, 57, \\
80 1
j
/
d3 ele.ted
/,
N
/
Figure 3.1-5g 4PSR Position Limits, 200 -10 to 330 t '. E ::, /
Three RC Pumps -- Davis-Besse 1, Cycle 5
/
\\
,/
x
/
s t
i k
/
's,-.
100
/
Nec bJ
/
3
/
cs
./
C i
a (9,77)
(42,77)
E 80 5
\\
ESTRICTED 3
s
,(9,59.5) j RE ICN (42.'9 5>"
,i
=
i
=0 '(0'60**:)
(50,50.5)/
cc Y
/
( '.00,5 3 )
/
a::
/
8 40 b
I e
,' PERMISSIBLE S,
i
/OPERATINGREGION l
g U
's
/
'\\/
5 20 i-l g
0 10 20 30 40' 50 50 70 30 0
100 A
i
~.
APSR Position (% Withdrawn)
/
../
\\
s.
l
/
1 1
1
\\
l j
/
,./
x l
1
/
/
I
/
x l
l
/
DAVIS-BESSE, UtlIT 1 3/4 1 41 Amendment !!o. /3, 37,'E7,
/
30 l
/
\\
i
/
N, 5
O
A00lil0NAL CHANGES PREVIOUSLY PROPOSED BY LETTER Serial No. /'40 7 Date //-J f 7 3/4.2.
POWER O!STR!BUT CN L:M!TS
' AXIAL D0kER IMBALANCE LIMITING CONDITION FOR CPERATION 3.2.1 AXIAL POWER IMBALANCE shall be maintained within the limits shown on Figures 2.0 '..,
't.
10, and id :rd 2.0-Ce,
- t, 2: :d 2d. 3.2-1 ed 3.2 2..
l APPLICABILITY: MODE 1 above 40% of RATED THERMAL POWER.*
ACTION With AXIAL POWER IMBALANCE exceeding the limits specified above, either:
a.
Restore the AXIAL POWER IMBALANCE to within 1:s limi:s witnin ;S minutes, or b.
Within one hour reduce pcwer until it: balance limits are met or to 40".
of RATED THERMAL POWER or less.
SURVERLANCE REOUIREVENTS 4.2.1.
The AXIAL POWER IMBALANCE shall be determined to be within limits least once every 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> when above 40% of RATED T}{ERMAL POWER except at when the AXIAL POWER IMBALANCE al ann is inoperable, then calculate the AXIAL POVER IMBALANCE at least once per hour.
l
\\
l i
i
'See Special Test exception 3.10.1.
DAVIS-BESSE, UNIT 1 3/4 2-1 Anondn:-t No. 32, /2, /3,27, D, 80 I
l
/
&rsehdosh neu> Ayure 3.2-1 Figure 3.2-la axial ::we
'..:alance Limits 0 to 25
'.C. -0
/
EFF0, F:ar RC ?u: :s -- Cavis-Besse '., 0 c'e /
/
5
/
(-23,102}-
,(23,102)
\\
(-25,92)
(25,$2) 70
\\
5
\\
(-30,80)
Co
/ (30,80) a
~
-70 W
C N
9
~
\\
0 RESTRICTED PERMISSIBLE
[
p REGICN OPERATING o
/
--40 REGICN a
! /
\\'
/--30
-20 c.
--10
/
,\\
i
-30 / 20
-10 KO 10 20 30 at A0 j
/
Axial P0wer \\ calance (%)
.r
/
/
\\
/
N N\\
\\\\\\
'N CA L -3 ESSE, U:lIT 1 3/4
-2 Anenh;c..: llo. II, 32, !!
/
c0 m
a
Figure 3.2-1 AXIAL POWER IMBALANCE Limits, Four RC Pumps -- Davis-Besse 1, Cycle 6
-- 110
(-20,102)
(15,102) e 3
" 100
(-25,92)
(15,92) 90 E
(-28,80),
y
-80 (20,80) 2 y-- 70 5
5
.60 S
(-28,50)o 3-- 50 o (20,50) o 40 5
RESTRICTED PERMISSIBLE $-- 30 REGION OPERATING S REGION
- 20
=>
l l
~
- jo i
i e
i i
i i;
l
-50
-40
-30
-20
-10 0
10 20 30 40 50 axial POWER IMSALANCE (*2) l l
DAVIS-BESSE, UNIT 1 3/4 2-2 Amendment No, JJ, 33, 45, 61, 80 A
L
N\\-
/
^\\
r:-
JOefeb d
\\
/
\\s Figure 3.2-lb Axial Power Imoalance t.imits, 25+10/-0 :: '/
200 +10 EFPO, Fo,ur RC Pumos -- Oavis-Besse f 1, Cycle 5 i
l
(-23,102) -
' (23,102) s
_ _,g t
\\
(-30,92)
'(30,92) x E-- 90
\\
y
/
\\
2
/
O g
/
- 80
/
g i
/
/
N
= __ yo
/
x'
=
N
$ - 60.'
E l
x l
- 50 i
C
/
RESTRICTE0 PERMISSIBLE a
REGION \\
OPERATING 5 -- 40 f
REGION F./
s c
l
,6 -- 30 t
t x
i.
t s
e
\\.
g-- 20
~
=
/'.
i
/
- 10
\\
/
l l
l t
/ '
I f
?
40 30/ -20
- 10 '. G 10 -
20 30 40 l
/
\\
Axial Power' Imoalanca (")
n
,5
/
/./
\\s
,/
N, 1
/
/
/
/
's l
s DAVI (BESSE, Utili 1 0/4 2-2a Amendment No. 17, 33, 22, 43,ff I
S0
\\
\\\\,
/
\\
\\\\
t
\\"
feleed
,i Figure 3.2-Ic Axial Pc er : calance Limits, 200 -10 to 320 -12 j
EFPD, Four RC Pumps -- Davis-Besse 1. C cle 5
/
\\
/
s s
\\
r s
/
\\
( -23,102) =
- (23,102)
./
l
~ 200 i
(-30,92)
>(30492)
-90 f
=
5
?
\\
2
/
- 80 a
E
./
~ 70
/
5
/
/
\\
~ 60
/
\\
\\
E
/
/
-:0 N
\\
/
RESTRICTED PERNSSIBLE
/
~ 40 REGION OPERA, TING d
/
REGIO (
ID
/
6
-30 s
/
u
$/ - -20
-10 N
I i
e s
t i
i i
-40
-20
- RO'
-10 0
10 20 30 40
/
/.'
Axial Pcwer I alhnee (*)
/
'\\
1
/
N
/
\\
./
\\,
l l
/
~
j
\\
l
'N
/
N
/
\\
t I
l DAVIS-BESSE, UNIT 1 3/4 0-2b Amendment ':o. /2, /!, '27, /
/
go N
l
/
l l
N
'\\
A0&hd
/
\\
/
N Ficure 3.2-Id Axial Power Imbalance Limits, 320 :10 to 390 :10,/
y
\\
EFPD, Four RC Pumps, APSRs Withdrawn --
\\,,
Davis-Besse 1, Cycle 5
,/
j
\\
,/
s
/
/
N,
(-23,102)-
(23,10M
- - 100
'\\
(-30,92)
^-- 90 0,92)
N 5
/
\\
/
- 80
/
S a
N f
5-- 70
\\.
5 1
8-- 60 E
/
[-- 5 0'
/
RESTRICTIC PERMISSISLE REGION OPERATING T.t. 40 s
' REGICN 0/
I!V S-- 30 s
u
\\
j
- 20 e.
/
- - 10
/i t
i 40
-30
-20
-10
,0 10 20 30 40 s
Axial Power I'moalance (%)
/
~
1
/
t
~
/
~'
t N
N
/
1 l
's
\\x
'\\
l CAVIS-BESSE, UNIT 1 3/4 2-2c Anendment.No. A), 37, 37,'x l
80
's
\\
\\
\\
\\
N s
Superseded wie neuJ Ryure 3,a-a.
\\
Figure 3.2-2a Axial D0 e
- Dalan:e Limits, O to 25+10/-0
\\
5F30, Three R; ? umps -- Davi s-Besse 1,
\\
Cycle 5
\\
\\\\
- - 100
/
\\
/
\\
/
/
n=s= ~ co
'~
(-17.25,77)
(17.25,77
(-18.75,59.5' 5
(18.7 ii9.5)
C
(
?.5,50.5) i5 -- 50 J22.5,50.5)
=
f w
-e"
/
\\
t
/
- 40
/
\\
==
\\,
1
/
we o
RESTRICTED Ve 0
REGION L
2 l
_,x e0 w
z-a<
u wz 2
'E f
C I
l I
f I
! et I
.6 40
-30
-20 O
10 20 20 40 l
Ax 1.cwer.Salance (%)
t l
l
\\
i l
l l
l l
l l
l
\\
\\
DAVI5- :SSE, liflIT 1 3/r
-3
.rendr. nt o 77, 23, 3,.
27 80 N
Figure 3.2-2 AXIAL POWER IMBALANCE Limits, Three RC Pumps -- Davis-Besse 1, Cycle 6
. 110 100 90
(-15,77) 7,(11.25,77) l 70 (11.25,69.5)
(-18.75,69.5)
E i
y-- 60 i (15,60.5)
(-21,60.5) q' c.
l a
f
- 50 a-w t
I o
- 40 W-o (15,38)
(-21,38) o 5
5
%-- 30 $
RESTRICTED g
yy REGION g
- 20 yge o
g-S
)-- 10 h O
W n
e a
t t
i f
I t
i i
a d 1
f 20
-10 0
10 20 30 40 50 l
-50
-40
-30 2
AXIAL POWER IMBALANCE (%)
l l
l DAVIS-BESSE, UNIT 1 3/4 2-3 Amendment No. JJ, 33, 45, 61, 80 l
\\-
.N
\\"
A0e/eled
/'
/,
\\
Figure 3.2-2b Axial Dewer I.tealance 1.imits, 25+10/-0 :: 2:: :.0
\\
EFPD, Three RC Pumps -- Cavis-5 esse 1, C cle 5
/
\\
/
w g
..\\
- - 100 h,
'\\
5
/
\\
z
/
o
- 80
\\,
(-17.25,77)
- ( 17. 2,5','77 )
a
(-22.5,59,5)
E (22.5,69.5) m g
wp
- 60
/
\\
=
\\
d
.i x
s a
- 40,'
x
=
o c
~
a RESTRICTED w$
5
. REGION
==
0
/
we v
w em o-
- 20 I
fy u
/
wm v'
- g 6'
p-o'
/
I f
f s i
?
_t
..m-t 1
40
-30
-20.,.'-10 0
10 20 30 40
/
,A'xial Pc er' Imbalance (%)
/
..\\
/
/
J j
/
i N
s s
/
/
l t
/
'i
\\
\\s
/ DAVIS-BESSE, Uf'!T 1 3/4 2-3a
?nendr.ent f:o, 77, ??, J2 ']E,
/
80
\\
I
/
L
\\\\N Ns ee e
/
g
'x e/ede
/
\\
/
s Axial 2 wer ' calance Limits, 200 :10 to 330 :10 Figure 3.2 2c 0
EF:0, Three RC Dumos -- Oavis-5 esse 1, Cycle 5
/'f N
_/
/
\\
/
- - 100
/
s
/
2 5
/
/
\\
o
\\
(-17.25,77')
- 90 (17.25,77) s (M22.5,69.5)
(2
,69.5)
W
/
'\\
/
- so
\\
w
\\
-N 3
/
s O
'\\
WC
- 40
[
me RESTRICTED'., ~ E j
REGION eo v
AZ b
O E >=
G
= at.
w wes
- 20 4W \\
L.
/
c s e N3 o
L
/\\
l t
r t
1 1
l 40
-30
-20
-10
'O 10 20 '
30 20 s
/
\\
Ax'ial ;cwer Imoalance (5)
. j/
s s
I
/
\\
l 1
l
/
/
/
/
/
's N
/
1
/
s l
,/
\\
l i
x
/
's l
N\\
l
\\
\\
/
/
/
s s
l N
l
\\
i
/
/
/
j/ A'/IS-3 ESSE,'JMIT 1 3/i 2-35 jae-h.ent !!c, !2, /3, 27, '3 ?,
0
/
1
//
7_
ele &cd x
\\
/
/
\\
Figure 3.2-2d Axial Dower mbalance !.imits, 330 :10 to 290 :10 E.:PO, inree RC Pumes, APSRs Witncrawn --
3 Davis-5 esse 1, Cycle 5
/
/
s
'N
- - 100 N
\\
5
/
\\
a f
E - 80 N
(-17.25,77),
-(17. 25,;77 )
(-22,5,69.5)
[22.5,69.5)
/
x '
w s\\,
=
c0
=
w E
'\\
E
/
N MS
~ 40,'
==
w e
=
'STNC:**'
'M NO N
/'/
...nu1Ci z-u
~,
55 2:.
m _.
-- 20 C.
G/
C U!
s
\\
l t
I t
f f
a l
-30
-20,/KO O
10 20 20 40
\\
dxialocwer Imcalance (%)
/
l 7
\\
,/
\\
l 1
1 1
/
9
- s N
N N,
f
/
x i
l
/
i l
[
\\
l
/
1
/
i t
l l
i
/
s
/
/
\\
a' PMIS4ESS2, UilIT 1 3/4 2-3c
/c.cndncnt ?!o, /3, 31, !?,
80 x
\\
\\m
r s
1 DOWER DISTRIEU~ ION LIMITS OUADRANT POWER TILT LIMITING CONDITION FOR OPERATION 3.2.4 THE QUADRANT ?0WER TILI shall not exceed the Steacy State Limit of Table :.: :.
- 3. 2. - l,
l APPLICABILITY:
MODE I above 155 of RATED THERMAL POWER.*
ACTION:
a.
With the QUADRANT POWER TILT determined to exceed the Steady State Limit but less than or equal to the Transient limit of Table :.: :
- 3. :L-l.
l 1.
Within 2 hour2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />s:
a)
Either reduce the QUADRANT POWER TILT to within its Steady State Limit, or b)
Reduce THERMAL POWER so as not to exceed THERMAL POWER, including power level cutoff, allowable for the reactor coolant pump combination less at least 2* for each 1% of QUADRANT POWER TILT in excess of the Steady State Limit and within a nours, reduce the High Flux Trio Setooint and tne : lux-1 Flux-Ficw Trip Set;oint at least 2'; for eacn
'.7 of OUADRANT POWER TILT in excess of tne Steacy State Limit.
2.
Verify that the QUA0 RANT POWER TILT is within its Steacy State Limit within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> after exceeding the Steady State Limit or reduce THERMAL POWER to less than 60*, of THERMAL POWER allowable for the reactor coolant pumo combination within the next 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> and reduce the High Flux Trip Setooint to < 65.5% of THERMAL :0WER allowable for the reactor coolant pump combination within the next 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.
3.
Identify and correct the cause of the out of li it con-m dition prior to increasing THERMAL POWER; subsequent POWER OPERATION above 60% of THERMAL POWER allowable for the reactor coolant pump combination may proceed provided that the QUADRANT POWER TILT is verified within its Steady State Limit at least once per hour for 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> or until verified acceptable at 95% or greater RATED THERMAL 30WER.
- See Special Test Exception 3.10.1.
DAVIS-BESSE, UNIT 1 3/42-9
ADDlil0NAL CHANGES PREVIOUSLY PROPOSED BY LETTER Serial No. /4'0 7 Date //-2-97 POWER DISTRIBUTION LIMITS LIMITING CONDITION FOR OPERATION (Continued) 3.2-I b.
With the QUADRANT POWER TILT determined to excee the Transient limit but less than the Maximum limit of Table
..., cue to l
misalignment of either a safety, regulating or axial power shaping rod:
1.
Reduce THERMAL CWER at least 2' for each I' of incicated QUADRANT F0WER TILT in excess of the Steady State Limit within 30 minutes.
2.
Verify that the GUADRANT POWER TILT is within its Transient Limit within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> af ter exceeding the Transient Limit or reduce THERMAL POWER to less than 60% of THERMAL POWER allowable for the reacter ' coolant pump combination within the next 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> and reduce the High Flux Trip Setpoint to < 65.5% of THERMAL POWER allowable for the reactor cooTant pump combination within the next 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />'.
3.
Identify and correct the cause of the' out of limit con-dition prior to increasing THERMAL POWER; subsequent POWER OPERATION above 60% of THERMAL POWER allowable for the reactor coolant pumo ccmbination may proceed proviced that the QUADRANT 00WER TILT is verified within its Steady State Limit at least once ::er hour for 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> or until verifiec acceptable at 95$ or greater PATED THE:FAL POWER.
3 2.- l c.
With the QUADRANT POWER TILT determined to exceed the Transient Limit but less than the Maximum Limit of Table
, due to 1
causes other than the misalignment of either a safety, regulat-ing or axial power shaping rod:
1.
Reduce THERMAL POWER to less than 60% of THERMAL POWER allowable for the reactor coolant pump combination witnin 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> and reduce the High Flux Trip Setpoint to < 55.5%
of THERMAL PCWER alicwable for the reactor coolant pump ccmbination within the next 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.
2.
Identify and correct the cause of the out of limit cen-dition prior to increasing THERMAL PCWER; subsequent POWER OPERATION above 60% of THERMAL POWER allowable for the reactor coolant pump combination may proceed provided that the QUADRANT POWER TILT is verified within its Steady State limit at least once per hour for 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> or until verified at 95% or greater RATED THERMAL POWER.
DAVIS-BESSE, UNIT 1 3/4 2-10
1 PCWER OISTRIBUTION LIMITS LIMITING CONDITION FOR OPERATION (Continued)
ACTION:
(Continued) 32-I With the QUADRA'<f.
i PCWER TILT determined to exceed the '4aximum d.
Limit of Table 4M, reduce THERMAL POWER to < 15% of RATED l
THE:24AL POWER within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />.
SURVEILLANCE REQUIRE' DENTS 4.2.4 The QUADRANT POWER TILT shall be determined to be within e a limits at least once every 7 days.during operation above 15" of RATED THERMAL POWER except when the QUADRANT POWER TILT alam is inoperable, then the QUADRANT POWER TILT shall be calculated at least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.
DAVIS-BESSE, UNIT I 3/4 2-11
ADDITIONAL CHANGES PREVIOUSLY PROPOSED BY LETTER Serial No. /407 Date //-2-f7 9
3.2-l po/'6 -
60 '
8 Table W Ouadrant Power Tilt '.imits/ @?o*gF-l 5teacy*jhk
[hd# Steady state Transient Maximum limit limit limit peg g ggog
"::::.; ::: '7d:;: d;nt f.02 11.07 "0.0
^'JOr=T E0":: T'T QUADRANT POWER TILT as measured by:
4 12 10.0 d Symetrical incere detector
(.. E'6 Gr3t tMt-20.0 system,^ 5:.'^ :-^^s 0,x;ri::' _ _' :: : d:t::t--
2.02 0.~2 20.0 Power range channels 4.05 1.96 6.96 20.0 L
Minimum incere detector system 2 80 1.90 4.40 20.0 l
t I
l l
JAVIS-D:SSE, UiIT 1 3/4 2-12 Anendment t!o. 77,33, /3, p,
80 l
l l
l
PCWER OISTRIBUTICN LIMITS DNB PARAMETERS LIMITING CON 0! TION FOR OPER ATION 3.2.5 The following ONB related parameters shall be maintained within the l imi ts s hown on Ta bl e 4,4*t.
\\
32-2 a.
Reactor Coolant Hot Leg Temperature b.
Reactor Coolant Pressure c.
Reactor Coolant flow Rate APPLICABILITY: MODE l-ACTION:
If parameter a or b above exceeds its limit, restore the parameter to within its limit within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> or reduce THERMAL POWER to less than 5% of RATED THERMAL POL %a within the next 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.
If parameter e exceeds its limit, either:
1.
Restore the parameter to within its limit within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />, or 2.
Limit THERMAL POWER at leas; 25 below RATED THERMAL POWER for each I parameter c is outside its limit for four pump operation witnin the next 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />, or limit THERMAL POWER at least 21 below 75% of RATED THERMAL POWER for each 15 parameter e is outside its limit for 3 puco operation within the next a hours.
SURVEILLANCE RE0VIRE.MENTS 3,2-3L 4.2.5.1 Each of the parameters of Table eve-b shall be verified to be within their limits at leas t once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.
j 4.2.0.2 The Reactor Coolant System total flow rate shall be determined to be within its limit by measurement at least once per 18 months.
f DAVIS-BESSE UNIT 1 3/4 2-13 Amendment No. 64 3
- 3. 2-2.
TABl.E
,]
E DN!! _MA_RG_I N._
y E,
E Reyired Measured L: :TC Re red Hensored.
fbrosneteti toie g
< net ers with Four Reactor arce Reactor c-Coolant Pumps Coolant Pumps
-2
. ___ _.lfa ramete r
.-a Ope r.3 t i ng Operating, II
~
Reactor Coolant llo t Leg
$ 610
$ 610 Temperature T,,*F Reactor Coolant Pressure, psig.( }
_ 2058.7(3
> 2062.7
( I)
Reactor Coolant Flow Rate, gpm
- , e.,,.,
> n :, :' '
l 384,500 29o,957 c-
'e' c~
__(1) Applicable to the loop with 2 Reactor Coolant Pumps Operating.
(2) Limit. not. applicable during either a THERMAL POWER ramp increase in excess of 5% of k
RATED TIIERMAL POWER per minute or a TIIERMAL POWER step increase of greater than 107.
R of RATED TilERMA!. POWER.
a i
f, rninirnom required mCQ3ured
'g (3)These flows include a iIow rate uncertainty of 2.5%, and are based on a minimum of 52.
i 4Wr-lomped burnable poison rod assemblics in place in the core.
4 i
1.N 9
l i
THIS PAGE PR0YlDED FORINFORMAll0N ON
~
'_3/4.3 INSTRUMENTATION
_3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION
_ LIMITING CONDITION FOR OPERATION 3.3.1.1 As a minimum, the Reactor Protection System instrumentation channels and bypasses of Table 3.3-1 shall be OPERABLE with RESPONSE TIMES as shown in Table 3.3-2.
APPLICABILITY: As shown in Table 3.3-1.
ACTION:
As shown in Table 3.3-1.
SURVEILLANCE REQUIREMENTS l
4.3.1.1.1 Each Reactor Protection System instrumentation channel shall be demonstrated OPERABLE by the perfonnance of the CHANNEL CHECK, CHANNEL CALIBRATION and CHANNEL FUNCTIONAL TEST operations during the MODES and at the frequencies shown in Table 4.3-1.
4.3.1.1.2 The total bypass function shall be demonstrated OPERABLE at i
least once per 18 months during CHANNEL CALIBRATION testing of each channel affected by bypass operation.
l 4.3.1.1.'3 The REACTOR PROTECTION SYSTEM RESPONSE TIME of each reactor trip function shall be demonstrated to be within its limit at least once per 18 months.
Each test shall include at least one channel per function uch that all channels are tested at least once every N times 18 months s
here N is the total number of redundant channels in a specific reactor l
w trip function as shown in the "Total No. of Channels" column of Table 3.3-1.
4 l
l l
l OAVIS-BESSE, UNIT 1 3/4 3 1
ILE 4.3-1 REACTOR PROTECTION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS s'$
CHANNEL MODES IN MIICH y
CHANNEL CHANNEL FUNCTIONAL SURVEILLANCE g
FUNCTIONAL UNIT CHECK CALIBRATION TEST REQUIRED E
ys 1.
Manual Reactor Trip N.A.
N.A.
S/U(1)
N.A.
h 2.
High Flux S
D(2), and Q(7)
M 1, 2
- a 3.
RC High Temperature S
R H
1, 2 4.
Flux - AFlux - Flow S(4)
M(3) and Q(7,8)
M 1, 2 5.
RC Low Pressure S
R H
1, 2 l
6.
RC High Pressure S
R H
1, 2 l
7.
RC Pressure-Temperature S
R H
1, 2 w
8.
High Flux / Number of Reactor O
Coolant Pumps On S
R M
1, 2 9.
Containment High Pressure S
R H
1, 2 10.
Intermediate Range, Neutron Flux and Rate S
R(7)
S/U(5)(1) 1, 2 and*
==y=g --.-(
OZ f
11.
Source Range, Neutron Flux o
and Rate S
R(7)
H and S/U(1)(5) 2, 3, 4 and 5
_ C/3 12.
Control Rod Drive Trip Breakers N.A.
N.A.
M(9) and S/U(1)(9) 1, 2 and*
T c:s ::==
,o 13.
Reactor Trip Module Logic N.A.
N.A.
M 1, 2 and*
ym 2**,3**,4**,5** E M 14.
Shutdown Bypass High Pressure S
R H
U T
15.
SCR Relays N.A.
N.A.
R 1,2 and
- y
[
Zk a
mC
.iiE rm kC
/
TABLE 4.5-1 (ConticurJ1 NOTATI.ON If not performed in previous 7 days.
(1)
Heat balance only, abeim 15% of RATED THERMAL POWER.
(2) 5o'7.
When THERMAL POWER [TP} is above JOT of RATED THERMAL POWER (3) g [(RTP), compare out-of-cbre measured AXIAL POWER IMBAL y
stenov state n,;..,.;;,.. ;
(onows :
ReestWate if the absokse. value of +he Offse+. E erer is h :.G 7..
AXIAL POWER IMBALANCE and loop flow indications only.
(4)
Verify at least one decade ove.rlap if not verified in previous (5) 7 days.
- (0)
E.Ju L.
tc.;t J s ay ;O.x n th.
l Neutron detectors may be excluded from CHANNEL CALIBRATION.
(7)
Flow rate measurement sensors may be excluded from CHANNEL s
(8)
CALIBRATION. However, each flow, measurement sensor shall be calibrated at least once per 18 months.
The CHANNEL FUNCTIONAL TEST shall indepe,nceurly ve:ify the (9)
OPERABILITY of both the undervoltage and shpat trip devices of the Reactor Trip Breakers.
With any control rod drive trip breaker closed.
When Shutdown Bypass is actuated.
Amendment No, /3, 108 DAVIS-BESSE, UNIT 1 3/4 3-8 s
.b ADb110NAL CHANGES PREVIOUSLY
/, '.
Serial No. /
De W
3/a.i.
REACTCR CCOLANT SYSTE.":
' /
C00LMT LCOPS AND CCCLANT C:RC'JLAT:CN
'A.4.1.
'.' 5._'aRTUP 340 DCVER CPERATION
'l LIMITING CON 0! TION FOR OPERAT!ON
. - -.
3.4.1.1 3o:n' reactor coolan: loops and both reactor coolant pumos in eacn I
loop snall be in operation.
APPLICA3ILITY:
.% DES 1 and 2'.
o h.h k Vien one reactor coolant pump not in operation, STARTUP and POWER OPERA-may proceed provided THEF. MAL POWER is re-a.
TION may be initiated an of RATED THERMAL POWER and wf nin 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> stric:ad to less than.
- N:'.:'.::
j ine se poirds for the following trips have been reducedJ:e reac:or con 1-j
+,%44th Speci fication 2.2.1 for cperation vi ta :nre ant plws operating:
1 in accordance WHh 1.
High Flux l
2.
Flux-aFlux Flew
/
SURVEILLANCE RE0VIRENENTS The a ove required reactor coolant loops snall be verified to de 4
t
[4.1.1.!in oceration and circulating reactor coolant at least once per 12 neurs.
system
- rip 569eMt5 for ttt I
j:eorW Prote% w::::r ;mwwW instrumentation cnannell speci fi ed in tne R
l l :":
- 4. 4.1. 2
- he
- h
- ;;'i:::':- ACTION statement above sna11 de verified to :: :: Specification 2.2.1 for :ne
- ,.::i 'f ::
y :::;;. :; ;m;;d !*-ee-..n&_::plicable rur. Der of reactor coclapt pumps operat
- theec.
Vithin a hcurs after swit:Mirg to a 4444ereM pump conninnlan 9 f,ne a.
swit.:n is made = tile operating, or j
Jo*n.
Prior to reactor criticali ty if the, switch is made < nile snu
,o y
-I
[
a 1
I i
l
'See 5:ecial Tes: Excepcion 3.10.3.
"d "t
3/A 4-1
'{0
. 3Av!S-2 ESSE, UNIT 1 l
l l
t EMERGENCY CORE COOLING SYSTEMS BORATED WATER STORAGE TANK LIMITING CONDITION FOR OPERATION 3.5.4 The borated water storage tank (BWST) shall be OPERABLE with:
av6(lable a.
An;;nt i.mJ borated water volume of between 482.778 and l
550,000 gallons, b.
Between 1800 and 2200 ppm of boron, and c.
A minimum water temperature of 35'F.
APPLICABILITY:
MODES 1, 2, 3 and 4 ACTION:
1 With the borated water storage tank inoperable, restore the tank to OPERABLE status within one hour or be in at least HOT STANDBY within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in COLD SHUTDOWN within the following 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />.
SURVEILLANCE REOUIREMENTS 4.5.4 The BWST shall be demonstrated OPERABLE:
a.
At least once per 7 days by:
DV6fibbl Verifying the ::.-t:ic.;(w borated water volume in the tank, l
1.
2.
Verifying the boren concentration of the water, b.
At least once per 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> by verifying the water tem.1erature when outside air temperature <35'F.
1 1
l l
OAVIS-BESSE, UNIT 1 3/4 5-7 Amendment No. :6 i
i l
t
...,.,..........._.g w
n._s........
2 i
i,
3A3IS
,4 ilt i.
5 3/4.1.1.4 MINDfCM TEMPERaTL*RE FOR CRITICALITY This pecifica:1:n ensures tha: :he rea:::: vill not be cade ::1:i:a1 vi:h :he rea:::: :colan: sys:e: average :e:perature less :han 525'T.
- nis lici:a: ion iis required :o ensure (1) the coderator :e:pera:ure coef ficiett is within its
! analyzed ce:perature range, (2) the protec:ive instrumenta: ion is vichin its j ;inor:41 operating range, (3) the pressurizer is capable of being in an OPERABLE sta:us with a stea: bubble, and (4) :he reactor pressure vessel is above its
( l <
d-
- R! m te=perature.
3/..
.2.
3CRAT!ON SYSTEMS The boren inj ec: ion sys:e ensures that negative reae:ivity control is avail-~
able during each : ode of f acility operati:n. Ih6 cenponents required to per-this fune:1on include (1) borated vater sources, (2) =akeup or DER pu:ps, llf:r:
(3) separa:e flow p :hs. (4) bori: a:id pu=ps, (5) associated heat : racing
'isyste:s,and (6) an e=crgency power supply from operable emergency busses.
!ij '%'i:h :he RCS average c=pera:ure above 200*?, a =ini=u: of cuo separate and
,iredundant boren injection systems are provided :o ensure single fune:ional 6.:apabili:y in the event an assu=ed f ailure renders one of :he systems inop-t
'erable.
All:vable cu:-of-servi:e periods ensure :ha: ciner componen repair
- ::r e::ive a::1on ay be ::=ple:ed vi:hout und ae risk to overall facili:y saie:v i::n inje::ica syste f ailures during :he repair period.
The b::a:1:n capabili:y of ei:her sys:a: is sufficient to provide a SH'JT CWN MA?;;b f::: a* 1 operating condi: ions of 1.0; ik/k af:er xenon decay and : col-d:.m :: 200*?.
The zaxi=u= bora:1:n capabili:y require:en: occurs fro: full p:ver e quil briu: xenon condi:i:ns and requires :he equivalen: of either 7373
.gallens :f 5742 pp: borated va:er fr:: :he bori: acid s:orage :anks or 52,7:6 l ga.1:ss of 1300 pp= borated va:er frc the borated vater storage tank.
li avail 6ble l The require =en:/ f or a minimum :::::in:d volu:e of 482,773 gallons of bora:ed
.va:e; in :he borated water storage tank ensures the capabili:7 for bora:ing i:he RCS :o :he desired level.
The specified quantity of borated va:er is con-lsisten: vi:h the ECCS require:ents of Specification 3.5.4; therefere, the
. larger volu:e of bora:ed water is specified.
si I
I6 l h'.:h :he RCS tenpera:ure below 200*?, one injection system is acceptable vi:h-l:cu: single f ailure consideration on :he basis of the l
i i
6
.l 1e i
i.
I
!!? AVIS-3ESSI,UN:: 1 3 3/4 1-0 Amendment No. X,37,X,/l,61
/
REACTIVITY CONTROL SYSTEMS BASES 3/4.1.2 BORATION SYSTEMS (Continued) stable reactivi'.y condition of N reactor and the additional restrictions pronibiting CORE ALTEFAi!ONS anc positive reactivity change ir the event the single injection syste.n becomes inoperable.
The boron capability required below 200'F is sufficient to provide a SHUTDOWN MARGIN of 1% ak/k af ter xenon decay and cooldown from 200'F t Ao ' ' ".
This condition requires either ^ " callons of "'
p;m i
7o
- F -Torated water from the boric acid storage system or ga ons of 1800 pcm borated water from the borated ater storag tank.
Goo 3,000 7875 A
in :c t:fr:d :::
c:'r: 't: ' :'
- ' ' :.. r :: 'e-
- 4 W 'r
- :
- ;f di::5: ;: '": ':::t';
- nd :tter ;5 :'::' : : ::
- ri: tic;.
The limits on edwhr.hheed water volume, and boron concentration l
ensure a oH value of between 7.0 and 11.0 of the solution re:irculated within containment af ter a design basis accident.
The pH band minimizes the evolution of iodine and minimizes the effect of cnloride and caustic stress corrosion cracking on mechanical systems and components.
f The OPERASILITY of one b0ron injection system during REFUELING ensures that this system is available for reactivity control while in MODE 6.
i 3 /4.1. 3 MOVAELE CONTROL ASSEVELIES 1
1 The specifications of this section (1) ensure that acceptable power distribution limits are maintained, (2) ensure tha the minimum SM'JTCOWN MARGIN is r.lintained, and (3) limit tne potential effects of a rod ejection accident. OPERASILITY of the c:ntrol rod position indicators l
is required to detem:ne control rod positions and tnereby ensure compliance with the control rod alignment and insertion limits.
l The ACTION statecents which permit limited variations from the basic l
requirements are accompanied by additional restrictions wnich ensure that i
the original criteria are met.
For example, misalignment of a safety or regulacing rod requires a restriction in THERMAL POWER.
The reactivity l
worth of 3 misaligned rod is limited for the remainder of the fuel cycle
.o prevent exceeding the assumptions used in the safety analysis.
The position of a rod declared incperable due to misaligreent should l
not be included in comouting the average group position for cetemining l
the OPERASILITY of rods with lesser misaligreents.
l I
DAVIS-BESSE, UNIT 1 B 3/4 1-3' l
[L #e bo% 4 lnches cf the berated uJaler Skray tan k;. art. not,
gycuu nte and 441t in struMentaticn is calibra.t td to re flect %t 1
( Quo tiable.J Vol0Mt, All befiC Q Lid tan k Volum e is availa ble.
p EVERGENCY CORE COOLING SYSTEMS BASES With the RCS temperature belcw 280 F, one OPERABLE ECCS subsystem is acceptable without single failure consideration on the basis of the stable reactivity condition of the reactor and the limited core cooling requi remen ts.
The Surveillance Re'quirements provided to ensura OPERABILITY of each component ensures, that, at a minimum, the ass;mptions used in the safety analyses are met and that subsystem OPERABILITY is maintained.
The decay heat reroval system leak rate surveillance requirnents assure that the leakage rates atsumed for the system during the recirculation phase of the icw pressure injection will not be exceeded.
Surveillance requirements for throttle valve position stops and flow balance testing provide assurance that proper ECCS flows will be maintained in the event 'of a LOCA.
Maintenance of proper ' flow resistance and pressure drop in the piping system to each injection point is necessary to:
(1) prever.t total pump ficw from exceeding runout conditions when the syste.m is in its minitrum resistance configuration, (2) provide the proper flow
~
split between injection points in accordance with the assumptions used in the ECCS-LOCA a.;alyses, tnd (3) provide an acceptable level of total ECCS flow to all injection points equal to or above that assumed in the ECCS-LOCA analyses.
3/4.5.4 BO ATED WATER STORAGE TANX The OPERABILITY of the borated water storage tank (BWST) as part of the ECCS ensures that a sufficient supply of borated water is available for injection by the ECCS in the event of a LOCA.
The limits on BWST minima vol'.me and boron concentration ensure that 1) sufficient water is available within containment to permit recirculation cooling ' low to the core, and 2) the reactor will remain subcritical in the colc condi-tien following mixing of the BWST and the RCS water volumes with all control rods inserted except for the most reactive control assembly.
These assumptions are consistent with the LOCA analyses.
y
!; m s.t i :d
,.t;.
col r: 'Mt':19. : r s11 - nee N war nt
- d';'.mo x v7 to..k uix..m g 1... l a t:::
c t'n :
9,q, ;, ;;l ci ;:t:
- ti:9.
The limits on ::r t;:n;d wa ter volume, and boron concentration ensure a pH value of between 7.0 and 11.0 of the solu-tion sprayed within containment af ter a design basis accident.
The pH band minimizes the evolution of iodine and minimize; the effect of chloride and caustic stress corrosion cracking en mechanical systems and components.
me pot. tom 4 inehes of Mt. bora.ted Watif Shvept & K Q't not *' *' Y'>
V#f* f o M the Instrum en +0 tion is Calibfo ted to re flec t #t **Hab!<-
O,yj$.3ESSL UNIT 1 R 3/4 5-2 MM*
og d
'O l DESIG'{ FE ATURES DFSIGN PRESSURE AND TEMPERATURE 5.2.2 The reactor containment building is designed and shall be maintained for a maximum internal pressure of 40 psig and a temperature of 264*F.
t 5.3 REACTOR COM FUEL ASSrMBLIES 5.3.1 The reactor core shall contain 177 fuel assemblies with each fuel assembly containing 208 fuel rods clad with Zircaloy -4.
Each l
fuel rod shall have a nominal active fuel length of 144 inches and contain a maximum total weight of 2500 grams uranium.
The initial core loading shall have a maximum enrichment of 3.0 weight percent U-235.
Reload fuel shall be similar in physical design to the initial core loading and shall have a maximum enrichment of 3.3 weight percent U-235.
CONTRCL RODS 5.3.2 The reactor core shall contain 53 safety and regulating ai,d I
8 axial power shaping (APSR) control rods.
Tne safety and regulating centrol rods shall contain a nominal 134 inches of absorber material.
Thc ' ZT,,' mil c= t: k : -- 'ni % ' chu :f b:: t:r
- t:c ~1 J t':., i m., m.ja.
The nemi 1 values of absorber material shall be 80 percent filver,15 percent dium and 5 percent 6 dmium.
All control rods shall be clad with stainless steel tubing. The APSRS ShMt coMain oL nominal (e5 (nches of absorbte ma4uial o.t W4W lowef thdS.
l We absce ber-material for et APSKS Shall be lcc pm ent Enr.one l -(,0o,
5.4 REACTOR COOLANT SYSTEM DESIGN PRESSURE AND TEMPERATURE 5.4.1 The reactor coolant system is designed and shall be maintained:
(
l a.
In accordance with the code requirements specified in Section 5.2 of theTSAR, with allowance for normal degradation pursuant to applicable Surveillance Requirements.
l b.
For a pressure of 2500 psig, and l
c.
For a temperature of 650*F except for the pressurizer and pressurizer surge line which is 670*F.
DAVIS-BESSE, UNIT 1 5-4 Men hent No. )J,19 J