ML20150B794

From kanterella
Jump to navigation Jump to search
Forwards Proposed FSAR Changes to Control Room ESF HVAC Description.Changes Include Flow Rate Revs Due to Partial Removal of Wall Separating Unit 1 & 2 Control Rooms
ML20150B794
Person / Time
Site: Vogtle  Southern Nuclear icon.png
Issue date: 07/05/1988
From: Bailey J
GEORGIA POWER CO.
To:
NRC OFFICE OF ADMINISTRATION & RESOURCES MANAGEMENT (ARM)
References
GN-1467, NUDOCS 8807120183
Download: ML20150B794 (91)


Text

-

o Gecegia Nwer Company V Post O'hes Box 282

- VAynestwo, Georgia 30830 Telephone 404 5$4 9961

- 404 724-8114 Southem Company Serwces Inc.

  • Post Off<e Box 2625 Birmqham, Alaoama 35202 re- 20s 870 e0" Vogtle Project i July 5, 1983 U. S. Nuclear Regulatory Comission ATTN: Document Control Desk File: X7BC35 Washington, D. C. 20555 Log: GN-1467 Plant Vogtle - Units 1 & 2 NRC Dockets 50-424, 50-425 Operating License NPF-68, Construction Permit CPPR-109 FSAR Changes for Control Room HVAC Gentlemen:

Attached are proposed FSAR changes to the control room engineered safety feature (ESF) HVAC description. The changes incorporated include flow rate revisions due to partial removal of the wall separating the Unit I and Unit 2 . control room, disabling of the control room isolation circuitry for chlorine detection, revision of the automatic start logic to prevent more than two of' the four trains from automatically operating, and damper modifications associated with these changes.

These FSAR changes were discussed with the NRC staff on June 28, 1988 along with the associated Technical Specification changes submitted ,

by letter SL-4685 dated May 19, 1988. Should you have any questions concerning this proposed FSAR change, please inquire.

Sincerely,

, k' hu J. A. Bailey '

P~ iect Licensing Manager JAB /sem xc: NRC Regional Administrator J. E. Joiner, Esquire [

NRC Resident Inspector J. B. Hopkinc t P. D. Rice G. Bockhold L. T. Gucwa R. J. Goddard, Esquire R. A. Thomas R. W. McManus B. W. Churchill, Esquire Vogtle Project File  ;

k l

9807120103 090705" PDR i ADOCK 05000424 P png

9 It i Ia *

!1 d in 0

>l ,

?. !

e :

1'

.a c . .

gg r

, , - g 7" r

^

,,- , a- - -

.' ha n.

f

- I e

g (e ! r . . _;eg.7h.f is;2 l rvya

- .;g,li.f><

rk.e* yn :gi

s; 5
i i

,i it <..-Jm%s:4

  • , m& 4%xg -49 l. m

= . >

mr

.g, i i i 13 =- ,1 -

C5 "

~

, Awrf o+, lW. " .-- h'= , 4~*4 m.. .

eJt

! .m ~ g 1T l  !'

\

vqa.4u9'Ji'55HT-wS}f.m=mi -  !

fh $$y usfh%=$2'?= Mtu!- inll il e  :.ski 4

,P J.ye w_ N'p!

r- .#' WaW. w=Esig TJ s

~#5.,=5f26.. .. .

b h l

-$ 1

~ +' .

v w p m -l Q, $ $..

k Ef ..

- i4.s ~"3,

, . r . . _. . .%, ==

. !L.c ;.: .

~

~ ..

a:- w gj.- =(

. v

n p.-e--,r v-- )

, m 1 e= am -

t i

p t s yas%s s h e wJ=.- g_(

a im% sipw.~ mn 3 #

M~ Itf-gHd'QQ7f--vuMw3h@l d.u aQnM$ 1 8 'fM F _

ty p.y gg%y- w s -- m -t g t- e J

[1INbNN --

n mnera. rw o bh tha III

.km. u dg--A b ! Li y h-'

DE@y; u , 7 e,.h.p,rg g-. ie :t;g 2 h # h mNkhNih- I "

n . ,- , o sew#gk = x m n ;, =m

,Aekn $P.: A'~ Y; Te E.m Me m,;.;.

,)pe- , n , v :7 , , md-g i r  ?, ; - 2  : 2 m i

s a ge g A ._ ,_ 9 n, .p .e,_.-. '

__.-~~~_,% ..

d M

'2 S

ko

e -

0 yf (,M 8 A/ 6 8 ^ / hlfC$ rd A O oNLY VEGP-FSAR-1 Refer to Regulatory Guide 1.55 comparison for a discussion of the standards being used in the placement of concrete in Category 1 structures.

1.9.95 REGULATORY GUIDE 1.95, REVISION 1, JANUARY 1977, PROTECTION OF NUCLEAR POWEF PLANT CONTROL ROOM OPERATORS AGAINST AN ACCIL%NTAL CHLORINE RELEASE 1.9.95.1 Regulatory Guide 1.95 Position This guide describes design features and procedures that are acceptable to the NRC for the protection of nuclear plant control room operators against an accidental chlorine release.

i e

Amend. 20 12/85 1.9-74f Amend. 34 8/87

1 I

VCGP-FSAR-1 1.9.95.2 VEGP Position Ccnfcrn :: di cueeed-i-n-pa ragraph- 6. 4 A ,2,-Re fe r-- to-subsec-tions---

2.2.3 and 5.^.2. - Jc G P Does nor oroac unu,r=icO c,4seoss cruadiaa sn es tn 'a s o t= 2o Poon o s o n .s i rf.

1.9.96 REGULATORY GUIDE 1.96, REVISION 1, JUNE 1976, DESIGN oOF MAIN STEAM ISOLATION VALVE LEAKAGE CONTROL SYSTEMS FOR BOILING WATER REACTOR NUCLEAR POWER PLANTS Not applicable to VEGP.

1.9.97 REGULATORY GUIDE 1.97, REVISION 2, DECEMBER 1980, INSTRUMENTATION FOR LIGHT-WATER-COOLED NUCLEAR POWER PLANTS TO A3SESS PLANT CONDITIONS DURING AND FOLLOWING AN ACCIDENT 1.9.97.1 Regulator, Guide 1.97 Position Thic guide describes an acceptable method for complying with NRC regulations to provide instrumentation to monitor plant variables and systeras during and following an accident in a light-water-cooled nuclear power plant. Refer to section 7.5.

l17 l_9.97.2 VEGP Position VEGP conformance is as described in section 7.5.

1.9.98 REGULATORY GUIDE 1.98, MARCH 1976, ASSUMPTIONS USED FOR EVALUATING THE POTENTIAL RADIOLOGICAL CONSEQUENCES OF A RADIOACTIVE OFFGAS SYSTEM FAILURE IN A BOILING WATER REACTOR Not applicable to VEGP.

1.9.99 REGULATORY GUIDE 1.99, REVISION 1, APRIL 1977, EFFECTS OF RESIDUAL ELEMENTS ON PREDICTED RADIATION DAMAGE TO REACTOR VESSEL MATERIALS 1.S.99.1 Regulatory Guide 1.99 Position This guide describes general procedures acceptable to the NRC for predicting the effects of the residual elements copper and Amend. 9 8/84 Amend. 16 5/85 1.9-75 Amend. 17 7/85

TABLE-2.2.2-5 (SilEET 1 OF 2)

DESCRIPTION.OF PRODUCT AND MATERIALS:

SAVANNAII RIVER PLANT (FACILITIES WITIIIN 5 MILES OF VEGP)

Maximum frequency Products or Materials Status Annual Quantsty Mode ol' or Amounts At Any Tin.e T ra nspo rt Shioment 1

400 Area Heavy Water Production and Recovery (includes rework, unit, drum clean-ing facility, analytical labora tory, extraction plant, and distillation plant) l Iteavy water (D 20) Produced 76 tons 330 tons Truck 3/ week Tritium Released 3900 Oi(*3 220,000 Ci NA 7 NA Sulfur dioxide Relessed 85 tons (b) acid(502)

N *. NA NA r

Phosphoric Used 1380 lb 460 lb Ammonia Truck 3/ year Used 1.5 tons 2.0 tons Truck 2/ year p resent Silicone Not used at present Trisodium phosphate used *O 5000 lb 1000 lb Truck 5/ year I Potassium permangate Used 220 lb 220 lb Truck 1/ year Steam and Electric

]

Cenorating Plant h

( inc l udes wa te r n treatment plant) to Bituminous coal Burned 240,000 tonsk3 75,000 tons Pail Daily Sulfur dioxide Released 9600 tons - - -

Chlo rine (continuous boiler emissions)

Used 15 tons h Truck Monthly Trisodit:m phosphate Used 10 tons 2 1/2 tons Truck 6/ yea r Sutruric acid Used 175 tons 270 tons Rail 3/ year Caustic (NaOH) Used 290 tons 340 tons Rail 6/yeer Alum Used 280 tons 100 tons g

Truck 8/ yea r

[

k

' Ten 1+n g,

. c.ytinAers En N

m I

.tm i

VEGP-FSAR-2 percent solution), fuel oil no. 2, hydrazine (35 percent solution), sodium hydroxide (50 percent solution), and sulfuric acid.

The rate at which a chemical is released to the atmosphere depends on the physical properties of the chemical, the geometry of the pool formed by the spilled liquid, meteorological conditions, and the governing equations for the transfer of mass into the vapor phase. Liquids having boiling points above the ambient temperature are governed by mass transfer relationships and constitute continuous releases. Liquids with boiling points below the ambient temperature are governed by heat transfer relationships and have both instantaneous puff releases and continuous releases. Compressed gas spills are entirely puff releases.

The guidelines and methodologies of NUREG-0570' are used in

-he determination of the release rates and the concentration of toxic gases at the control room ir intake. This includes the use of heat and mass transfer relationships as well as the relationships for vapor dispersion for both instantaneous puff 15 and continuous releases.

Having the toxic gas concentrations at the control room air intake, and using the parameters of the control room (table 2.2.3-19), the control room toxic gas concentrations are found by solving the following differential equation:

dC CR I) dt =A x(t) - X g C CR I )

7 where, CCR(t) = control room concentration (gm/m').

X 7 = control room air inflow rate (s-8).

X g = control room air outflow rate ( s -1 ) .

x(t) = control room air intake concentracion'(gm/m').

This inleakage equation is applied to the toxic gas releases.

-eNeep tr-f o llowi ng--eent rc i room isolation for a ch-koeine-hwe becauoe oh-soci-ne-has-detect 4on-i-net-rument+t-ion-and automatrio-l cont-rol-roo m i c o l a t i on-provi-sions . No credit is taken for l control room isolation for any other chemicals.

I i Af-ter-de tgo t4o n-a nd-leo 4e t4on-fo e-e-c hlo ei no-v a po r-relo ag%-

'outside air ht+oL_ro m air intakem::oTTtR!inEtion) fir st ing, wht re-t flows into h nt-r & d with the l

conTrCbut-Eding a i r aa s s . ~

The alr then-flows-vta-the-in eikw;te 1

2.2.3-15 Amend. 15 3/85

VEGP-FSAR-2 x

Nspaths into the control roon..

+-

Airflow parameters are listed in I

' table 2.2.3-19. The control building concentration is / j ddte,rmined by solving he following equation: ,e s -

'x dc CB xdt =ACB *I ) - CB CB(t) where, C

CB

=c trol building concentrati (gm/m 3 ).

A CB

= contro building air i ow and outflow rates to rooms djacent to ontrol room (s-2).

x(t) = concentrationNa the air intake (gm/m').

The control building concentration 4s used in the following equation to determine the' control rob concentration for chlorine following is ation:

dCCR(t = k C ut L CB(t) - XCg CR I )

where, X = control room inleakage and outleakage rat g(s-1)

L and all other variables are as defined previbusly.

2.2.3.1.4.3.1 Analysis Assumptions. Spills are postulated to occur at the site average annual temperature of 17 C and a G Pasquill Stability Category. The centerline of the vapor cloud is assumed to flow directly towards the control room air intake. A range of windspeeds from 0.25 m/s to 10.0 m/s are used in the analysis to determine which windspeeds would result in the maximum control room toxic vapor concentration.

Building wake ef fects are considered in th.'s analysis as described in NUREG-0570' and Slade.' The spills are assumed to form circular pools with a uniform initial depth of 1 cm, unless otherwise bounded by dikes or other restricti~ons.

The control room parameters used in this analysic are presented in table 2.2.3-19.

2.2.3.1.4.3.2 Analysis Results. The results of this analysis, along with toxicity limits and spill parameters, are shown in table 2.2.3-20. For all releases except chicrir. , ammonia, and hydrazine, the average concentration over an 8-h period never exceeds the long term toxicity limit. For the cases where the long term limit is exceeded, it is shown thac there are at least 2.2.3-16 Amend. 15 3/85 l

9

TABLE 2.2.3-13 (SilEET 1 OF 2)

TRANSPORTJsTION SOURCES - TOXIC GAS RELEASE INFORMATION 93 gn (nHan Control Room Toxicity 8-h Average .

Hagemum f rac t ion Concent ra t ion gg, Va po r 4.3 Odor to Concent ra t ion Limit Release Hetease Rate Flashed to Pressure Chemical (opel toom) Tvoe _.[qm/s) _ Vapor imm Hg)

Oetection 2-min Af ter guy Jam 1._, Detection (com)

Truck Anhydrous Ammonia 500 3 N/A L 4.996 x 10 0.18 N/A 50 69 Nitrogen (liquid) 143.000 0.0 L N/A 1.0 N/A N/A N/A Phospheric acid 0.25 3.8 x 10's N 5.0 x 10

_3 N/A 16 0.0285 N/A N/A U3 Nitric acid 2.0 2.85 N 1.601 x 10~# N/A 10 N/A N/A No. 2 fuel oil 300*3 0.14 N 1.41 x 10' N/A 0.408

' N/A N/A Ct lorine 15U3 N/A L '

'0 3

N/A 2.0 .;

Anhydrous ammonia 500 N/A L 1.592 x 10' O.18 N/A 50 112 h Ca rt>on dioxide 5000 41 L S O 1.187 x IO 0.17 N/A N/A N/A Helium 143.000 35 C N/A 1.0 N/A N/A N/A Nitrogen aliquid) 143.000 0.0 L N/A 1.0 N/A N/A N/A l0 Sulfuric acid 0.25 G.0037  :

N 2.6 x 10 N/A 0.005 M N/A N/.

Ba rge No. 2 fuel oil 300 30 N 1.62 x 10* N/A 0.408 N/A N/A Casoline 500 N/A N 2.585 x 10" N/A 403 0.09 262 3

tu

~.J CL Ch b

\

c' U1

TABLE 2.2.3-13 (SliEET 2 OF 2)

a. Ilie two-min tox ic i ty l imi t is presented for chlorine, ammonia and gasoline only. The long term (8-h average -

continuous exposure) toxicity Ismit is presented fo r a l l other ma teria ls. All va lues a re from reference 43,

b. At worst case windspeed,
c. N = normal boiling point Isquid (boiling point > ambient tempe ra tu re ) . Continuous relea se scena rio. L = low boiIang point liquid or liquefied compressed gas (boiling point < ambient t empe ra t u re ) . Puff release plus continuous release scena ri o. G = compressed gas release. Puff release scenario.
d. Continuous release rate for normal boiling point liquids. Bo i lof f ra te fo r low bo i l i ng po i n t ,
c. Vapor pressure not used in analysis of low boiling point liquids or compressed gases.
f. The odor detection limit is only presented for ammonia and gasoline since the analysis considers control room concentrations 2 min after odor detection. Chlorine detection is by instrumentation.
g. F rom U.S. NRC Regulatory Guide 1.78, June 1974.
h. The value for gasoline is used since toxicity limits for fuel oil have not been established.
i. The long term toxici ty limit is based on continuous exposure for a 40-h worls week and re su l t s in eye irritation and teeth ernsion. An 8-h exposure at levels slightly zbove this limit will not incapacitate control room opera tors.

Additionally, the 2-min toxicity s imit value is never exceeded for nitric acid re l ea se s. Fu the rmo re, nitric acid decomposes to nitric oxide and nitrogen dioxide in ti.e presence of air.l*4 If all the nitric acid is assumed to be converted to ( the more toxic) nitrogen dioxide, the long term 8-h toxicity limit value i s never exceeded. The re fo r e, <

M even though nitric acid exceeds the long term toxicity limit, it will not incapacitate control room operators.

  • O o

3 1 he bnspodabn sowc.e of c hlorin e. is loceded gecoAer b fro m 4he_ contec, l room c6 e- i n his e_ . hs ed on de_ ac_reening ce;4e.riq 7(ooom j g

to dai rsed in N RC. Repledog Gde. l.18, ct 1- ion cy linde -( largesi a si g le con w er h wspoc hteck) cd 4bi s c h s h n c.e_ need ^oi be. cons ich e r ed w e.yo h h3 con +eot room hab i +a bi l; +3 E

m

.3

.On 0%

b

\

co LH

VEGP-FSAR-2 TABLE 2.2.3-14 CHEMICALS ANALYZED THAT ARE AT OFFSITE STORAGE FACILITIES - QUANTITIES AND DISTANCES Maximum Distance from Quantity Control Room Chemical Physical Conditions Stored Air Intake Chlorine at Liquefied, compressed 31 m..e >5000 m Savannah River gas; ambient conditions Ten j yon Plant (SRP) c3 il n der g Anhydrous Liquefied, compressed 2 tons >5000 m ammonia at SRP gas; ambient conditions 16 Phosphoric acid Liquid, pure state; 460 lb >5000 m at SRP ambient conditions Sulfuric acid Liquid, pure state; 270 tons >5000 m at SRP ambient conditions No. 2 diesel Liquid, ambient 22,500 gal >5000 m fuel oil conditions at SRP No. 2 diesel Liquid, ambient 3,000,000 gal 13S0 m fuel oil at conditions combustion turbine plant l

l l

l l

l l

Amend. 16 4/85

TABLE 2.2.3-15 OFFSITE SOURCES - TOXIC GAS RELEASE INFOPJ4ATION Toxicityt*I 8-h Average (b) Haximum IDI Id 3 I*I Control Room Lamit Concen t ra t ion fraction Vapor Odor UI Concen t ra t e on Helease Release P. ate riashed to Pressure Detection ChemiEa1 _{ ppm 1 (ppm) _TEL iomist Vapor (mm Hai fanm) 2-min Artetr (b)

Deteetion iopal At Savannah River Plant N M A Q (i)

Chlorine 15(g) N/A L e *

' . Sit ..:C N/A 2.0 Jo Anhydrous ammonia 500 N/A L 2.154 x 10 ' O.18 N/A 50 70 Phospheric acid 0.25 6.9 x 10 0 N 3.5 x 10'3 N/A 0.0285 N/A N/A Sulfuric acid 0.25 0.015 N 3.6 x 10

-3 N/A O.005 N/A N/A Diesel fuel ois 300 0.8 N 4.75 x 10 I

N/A 0.408 N/A N/A At combustion turbine plant 16 Diesel fuel oil 300 W 4.1 N 1.56 x 10* N/A 0.408 N/A N/A C3

'c I

'U

a. The two-min toxicity limit is presented f'or chlorine and ammonia only. The long te rm (8-h average continuous TA exposure) toxicity limit is presented for a ll other materia l s.
b. At worst case windspeed.

All va l ues a re f rom re f e rence 43. y N

c.

N = normal boiling point liquid (boiling point > ambient tempe ra tu re ) . Cont inuous release scena rio. L= low boiling point liquid or liquaried compresserd gas (boiling point < ambient t empe ra tu re ) . Purr release plus continuous release scenario. G = compressed gas release. Purr release scenario.

d. Continuous release rate for normal boiling point liquids. Boiloff rate for low boiling point.
e. Vapor pressure not used in analysis of low boiling point liquids or compressed gases.

f.

The odor detection lit it is only presented for ammonia since the analysis considors control room concentrations 2 min

$ af ter odor detoction. Chlorine detection is by instrumentation.

EL

. g. from U.S. NRC Regulatory Guide 1.78. June 1974.

M m h. The value for gasoline is used since toxicity limits for ruel oil have not been estabiished,

.r. i. Tkt chlosne. sowec.e. <d S V is loceded Oecoder haA so o o M -Pe o m +h e. con + ro l g room oAe b h ke . hs ed o n -th e. s c.c e e.nk9 teHerio, corda.ined 'in N RC Re<3ula.4 ort; CMAe 1.1 B, C( 1-6 cpnCie.r (,lar3est sine)le. conh:mer o.+

reed no+ be con sicieeed 'm f EP ) Cd 4ka CN 4 % ee_

e9ahM3 cordroI roon he~hHaMhh.

VEGP-FSAR-2 TABLE 2.2.3-18 (SHEET 1 0F 5)

ONSITE CHEMICAL STORAGE Distance ,.

Chemical State Quantity (ft) Notes Ammonia 29% aqueous One 12,789-gal tank 385 (a) solution, ambient Two 50-gal tanks >490 (b) conditions Two 250-gal tanks 195 (b)

Two 800-in.' 195 (b) cylinders One 50-gal tank >490 (b)

Benzoyl 40% aqueous One 6-gal tank 660 (e) peroxide solution, (catalyst) ambient One 55-gal drum 660 (e) conditions 15 Carbon Liquefied One 10-ton tank 310 (a) dioxide gas, 300 psi, OF Liquefied Twelve 150-lb 160 (b) gas, 100 psi, cylinders ambient temperature

-Ch enne Lique f-ied Sim h n---cy1indere 615 taQ gas, 110 psi,

, nt Four 150-lb 0 (b) tempera cylinders Twenty- -ton >3000 (b) cylinders

__ Twenty-two 1-ton 1380 -t h )

cylinders l

l i

i Amend. 15 3/85

I

)

l VEGP-FSAR-2 TABLE 2.2.3-18 (SHEET 2 0F 5)

Distance Chemical State Quantity (ft) Notes

-G Liqu4d-and Two-646-4 r. . '

ir.c vapor expansion tanks 6-1-5

'-( kr)

Two 646-in ' >3000 ( b) ansion tanks Three 646-1 2 >1500 ( b) expansion tanks

One 50-gal tank s3000 ,3) i Dimethyl-p- Liquid, one 5-gal tank 660 (c) toludine ambient (promoter) conditio'ns One 55-gal drum 660 (c)

Dispersant Liquid, Six 55-gal drums 530 (d)

(Nalco ambient 7319) conditions Four 60-gal tanks 530 (d) 55-gal drums 1380 (d)

Two 200-gal tanks 1490 (d)

Fuel Oil Liquid, Four 80,000-gal 350 (f)

No. 2 ambient tanks conditions Four 1250-gal tanks 310 (b) .

Two 560-gal tanks 720 (b) j One 100,000-gal 375 (a) tanks Gasoline -

Liquid, Two 12,000-gal 2675 U~.eaded ambient tanks e a s( f )

conditions Two 12,000-gal 2675 Diesel f) tanks Kerosene Liquid, One 5000-gal tank 26 (f) ambient conditions.

Amend. 15 3/85

VEGP-FSAR-2 TABLE 2.2.3-19 PARAMETERS USED IN TOXIC GAS ANALYSIS Control Roon

  • Net volume = 168,540 ft' Normal outside air inflow rate = 3000 ft'

--4solat44n-mode-4nleakage and outlaakage-rate = y 1500 ft' /

f Response time following receipt of signal to damp ers / =

6s For c orine, isolation time after reachin 2 ppm chlorin = 17 s (10-s instrument respons time, 6-s damper c osure time, 1 s for margin) 15 Control Building Net volume I") 460,192 ft' Normal inflow and utflow ra e(b) = 33,779 l

i 1

\

[

/

/

a. V,41ume of rooms surrounding the control room only.

i (coa'servative assumption)

Flcw i n to a nd--outr-of--room c cur-r-ounding the contr^1 r m only.

l Amend. 15 3/85 t

CoM rol Lom -

Coge,drw b a Z m&es AM TABLE 2.2.3-20 Ociection (. ppm)

TOXIC GAS RELEASE INFORMATION hee-44 t%

Detection (

8-h (b) ge) d EJ "I 29 Average gey Ma x i mum (bl(al f ract s on Vapor Odor") 7~4 Toxic:ty (al Concen t ra t s on Release Release Rate ilashed Pressure Detectson Tu-fe: Ly _-

[temical Lemit [ ppm] (pom) Ivpe fOm/s1 to Vapo r _1 mmh 4 L __1 ppm) #

t eit M_

Ammonia ( 29". ) 500(10) N/A N 1.362 x 10 3

N/A 486 50

\ /

2S4 U Carbon dioxade 5000 re 039 L 7.19a x 10 ' O.13 (e) N/A N/A C:! r r :e 1FNI " ' ^

'_ 2

'97 ' _1 3 0 'a t11 Mr*

i r>__e

-I fuel Oil no. 2 300(n) 1.2 N 4,149 x 10 N/A O.3827 N/A N/A 1291 Halon 1301 10,000 999 L tJ/A 1.0 (e) N/A N/A 16 Hydraz ane ( 3S%) 30 3 N/A N 3.692 x 10

  • N/A 20 4 12.9 Hyd rogen - liquid 143,000 1.118 x 10 :, t 0.02 L 0.0 (e) N/A N/A o'1 5 *t3 Ni t rogen - liquid 143.000 1731 L 1.254 x 10 0.002 (c) N/A N/A I N

Natrogen - gas 143,000 2772 G N/A 1.0 (e) N/A N/A Sulfurec acid 0.25 0.16 N 8.270 x 10

-2 N/A O.005 Al N/A N/A 3 h.)

Sulfursc deowede 5 1.1 C N/A 1.0 (e) N/A N/A

a. The 2-manute toxicity limit is presented for ch!r r ir:e ammonia, and hydrazine only.

~ Ihc s ong term (8-h average continuous exposure) toxicity limit is presented or al othe r ma teria l s. All values are f rom reference 43 unless otherwise noted.

b. At worst Case windspeed.
c. N = normal boiling point liquid (boiling points ambient tempe ra tu re ) . Cont inuous relea se scena rio. t = low boilang puant lequad or liquefied compressed gas (boiling point (ambient tempe ra tui e ) . -

Puff release plus contsnuous release scena r i o. G = compressed gas release. Puff relea se scena rio,

d. Cont inuous release rate for norma l boiling point liqueds. Bo i l o f f ra te fo r l ow bo i l i ng po
  • n t ,
e. Vapor pressure not used in analysis of low boiling point l iquids or compressed gases, o r. Ine odor detect ion limi t is only presented ro_r ammonigrAnyd rA2.ine_.1222ce clic na lysis considers cont rol room
s concent ra t ions 2 min a rter odor detect ion. ( ci,Torme-detece4e,+-++ -W ee r= a .

2 ~% _

Hondh-6-WRG-Re p+4atory 9' e

<f. - ' ?b W C 191 h ~

__ --- - ~-

$ h. The value for gasoline is used since toxicety l imi ts s ur ruel oil have not been establi<hed.

16 u

\

co (ft

TABLE 3.ll.B.1-1 (SHEET 57 OF 84)

NORMAL ABNORMAL 1E51 ELAIIVE DBA/POSI-08A MMIDIIY MX ENVIR. TEM INT. IEMP *F TEMP INT.

DESIGNATOR UNII *F PRESS 005E-R/D5 MAX / MIN

  • NORML DBA PRESS i% a .F. . ....m.P.M. 55....DOSE-RADS 1  %

trVEE I (Cont)

IX-R-147 1/(XM 80 atm 1 x 103 87/55 -

90 1 x 103 IX-R-148 1/(XM 100 60 -

atm 1 x 103 120/55 IX-R-149 1/(XM 80 1 x 103 60 .

atm I x 103 87/55 -

90 1 x 103 IX-R-150 1/(XM 60 -

15 atm I x 103 104/60 -

1 x 103 IX-R-151 1/COM 100 60 -

atm 1 x 103 120/55 IX-R-152 1/(XM 100 1 x 103 60 -

atm I x 103 120/55 -

1x 103 IX-R-153 1/(XM 100 60 -

atm I x 103 120/55 1 x 103 y IX-R-154 1/(XM 80 60 -

atm I x 103 104/55 IX-R-155 1/(XM 1 x 103 60 -

23 m 75 atm I x 103 104/60

  • IX-R-156 1/(XM Bf80 1x 103 60 -

k

.1/8 WG I x 103 Sil00/60 a ta r .

  • IX-R-157 1/(XM 6f80

&$ -*# 1 x 103 60 -

y

.1/8" WG I x 103 M 80/70 a tm > , 8(

  • IX-R-158 1/(XM fil5-
p. 1 x 103 60 -
o

.1/8" WG 1 x 103 gfgefyo , t. , , _ gg y , 103 IX-R-159 1/COM 80

_, y 60 -

w atm 1x 103 104/55 atm 1 x 103

  • IX-R-160 1/(XM Br75 60 -

.1/8- WG 1 x 103 3f190/70 ata n

  • I X.-R- 161 1/(XM g5 -r* 1 x 103 60 -

9 80 +1/8 WG I x 103 of80/70 ata w,-

  • IX-R-162 1/00M SS- -w, 1 x 103 60 -

6(75' +1/8" WG 1 x 103 3500/10 gf

  • IX-R-163 1/00M ata , x ,, 1 x 103 60 -

sf 75 .1/8 WG 1x 103 aie0/70 alX R-164 2 $(75 atm u 8( ->c 1x 103 50 Ix 103

+1/8 WG C 00/10 atm a n gf IX R-165 1/(XM 100

-u I x 103 50 -

atm I x 103 37of35 )y 503 60 IX -R-166 I/COM 100 atm I x 103 120/55 - -

1 x 103 60 IX-R-167 1/(In 100 atm Ix 103 ipofss i x 103 60 -

> i Il _.

g

  • Indicates rooms (Sat are served by Class IE envirotunental support syste ens.

CL at least

  • 4 m c> u. a re s sd3* cent metas Rooms wmn &A s a' AN A d ^'0/ M 4 Mf/ /ot e Dd4 /4E6 5 u/ E I o pept /8 CONTROL BUILDING m) 6- W N k FCEPCC w w ne a cLess tG sn o o Ro n n tm tAL'

~

bo GloU Sns y as c /EA n rt:D &

(SheeE 12 of 20) u em e g sa >v i y N stooc nNo e''*"'~" "

f G ftiel t+ R h <- o *J T1tc'

/ $ O'. is O sn/ iMo z) d'

VEGP-FSAR-6 6.4 HABITABILITY SYSTEMS The control protection; room h.ibitability systems include missile

~s and smoke radiation detection shielding; capability;radiation air filtration, monitoring,rAchlorir.e-l7 adsorpt on, pressurization; and. air-conditioning, lighting, personnel a 3 suppcet, and fire protection equipment.

3.1 for aDesign General discussion on conformance Criterion 19.) with 10 CFR 50, Appendix A(Refe, The heating, ventilation, and air-conditioning (HVAC) equipment discussed which in this is directed section toward is also normal use discussed of the equipment.in subsection 9.4.1 This section only addresses emergency service requirements and the emergency and response operation of control room HVAC equipment under conditions.

Other equipment and systems are de-scribed trol room only as necessary to define their connection with con-habitability.

appropriate. Reference is made to other sections as 6.4.1 DESIGN BASES l

The temssafety are asdesign follows.bases for the control room habitability sys-l The habitability envelope definedsystems provide in paragraph coverage for the control room 6.4.2.1.

The control room emettsney ventilation and air-conditioning system is capable of maintaining the control room atmosphere in a condition suitable for prolonged occupancy throughout the duration chapter 15.of any one of the postulated accidents discussed in The control room emergency ventilation and air-conditioning system is capable of maintaining an environment suitable for sustained occupancy for a five-person minimum, with higher occupancy levels for shorter periods of time.

Food, water, medical supplies, and sanitary facilities are

providedfor persons for 5a days.

minimum sustained control room occupancy of five five hundred 130-mg potassium iodide tablets.The control room will have appro The radiation duration of any exposure of control room personnel through the one of the postulated limiting faults discussed Appandix A, Generalnot in chaptar 15 does exceed the limits set by 10 CFR 50, Design Criterion 19.

6.4.1-1 Amend. 7 5/84

l i

VECP-FSAR-6 The habitability systems provide the capability _to detect and protectcontrolroompersonnelfromsmoke,{chtt!_. and airborne radioactivity. l7 Respiratory, eye, and skin protection is provided for emergency use within the control room envelope.  !

The control room EEtiY1HVACsystemiscapableofautomatic and manual transfer from its normal operating,;nodelo_the_emer-gency or isolation modes. Smoke, radiation, 4 '_t1=_ic gas 2? 3 detectors and control equipment are provided at plant locations as necessary to ensure the appropriate operation of the system.

A single active failure of any component of the concrol room 4 W MfiU-HVAC system, assuming a loss of offsite power, does not impair the ability of the system to function. Each train of the control room HVAC system is connected to a separate and independent Class lE power supply.

-l3 em encv The control room es ergtial- e. HVAC system is designed to remain functional during and after a safe shutdown earthquake. All airducts and their supports above the control room suspended ceiling, as well as the ceiling itself, arc Seismic Category 1.

The control room normal HVAC system is described in subsection j

9.4.1.

! Protection of the habitability systems in the control room from l wind and tornado effects is discussed in section 3.3. Flood design is discussed in section 3.4. Missile protection is dis-cussed in section 3.5. Protection against dynamic effects associated with the postulated rupture of piping is discussed

~

in section 3.6. Environmental design is discussed in section 3.11. The fire protection system is discussed in subsection 9.5.1. The fire hazard analysis is discussed in appendix 9A.

l The control room ventilation isolation is described in i subsection 7.3.6. The design of the control room habitability l system meets the intent of Regulatory Guides 1.52, 1.78, and 1.95 as discussed in section 1.9.

0295V Amond. 3 1/84 6.4.1-2 Amend. 7 5/84

6 NO CHAU 6 ES *

/N POA en ADQd CNL Y VEdP-FSAR-6 6.4.2 SYSTEM DESIGN 6.4.2.1 Definition of the Control Room Envelope The areas, equipment, and materials to which the control room operator requires access during an emergency are shown in fig-ure 6.4.2-1. Those spaces requiring concinuous or frequent operator occupancy are also shown in figure 6.4.2-1. A description of shielding required to maintain habitability of the control room during the course of postulated accidents is provided in section 12.3.

6.4.2.2 Ventilation System Design 6.4.2.2.1 General Description Subsection 9.4.1 contains an overall description of the control room heating, ventilation, and air-conditioning (HVAC) system.

The system is shown schematically in figure 9.4.1-2. Figure "

6.4.2-2 shows the plant layout, including the location of potential radiological and onsite toxic chemical release points with respect to the control room air intakes. Elevation and plan drawings with descriptions providing building dimensions and locations are in section 1.2. Potential sources of toxic gas and radiological releases are discussed in subsection 2.2.3.

The volume of the habitability zone served by the HVAC system in the emergency 161,500 ft8 mode or the isolation mode is approximately l25 Environmental design criteria for the air purification system are based on the most limiting conditions resulting from any of the postulated design basis accidents (DBAs) and on their dur-ation, in accordance with Regulatory Guide 1.52, as discussed in section 1.9.

Two redundant and physically separated air handling unit trains with a moisture eliminator, an electric preheater, high-officiency particulate air (HEPA) filters, and charcoal adsor-i bers are provided for each unit to procers intake airflow and recirculated airflow in the combined control room. Each of the two redundanc units belongs to a different safety train. Per-formance characteristics and parameters for major components are listed in table 6.4.2-1. The seismic and quality classifi-cations of components, instrumentation, and ducting are given in table 3.2.2-1.

6.4.2-1 Amend. 25 9/86

VEGP-ESAR-6 6.4.2.2.2 Component Description Each essential air handling unit contains a fan, a moisture eliminator, an electric heating coil, an upstream HEPA filter, an activated charcoal filter, a downstream HEPA filter, and a cooling coil. Pneumatic and/or motor-operated dampers are pro-vided for system isolation purposes.

.$> 6'6' / AlMN Y

-The-cont ro-1-room-essent-i-a l-HVAG--eystem i c chared-b y-both-hi-t 1 and A temporary security partition is installed to se ate t he Unit eide of the control room from the Unit 2 side'during c anstruction M 2 The air ducts serving control roog are a common system 14 c annected to the Unit 1 an safety-related air handling u 11ts. During Unit 2 constr the common ductwork on the U. 11t 1 side is terminated-st'qot the temp eq,ry security wall, and-t:1e Unit 1 safety- Arfed air handling unita will s be available f or use. Whe d t 2 is completed, the temporY p artition wn, ljn be removed, and the common air ducts security ove each u nit of'Ehe the control room will be connected. Four

--sadynskated-air handling "ni r a vil than be avdilable. _

A. Filter Unic Housings The filter unit housings are Seismic Category 1 and are made of carbon steel. Each housing is provided with a service access door, explosion-proof lighe, filter test connections, connections for pressure gauges, and floor drains. The housings are of all-welded construction. Filter unit housings are designed in accordance with Regulatory Guide 1.52, as discussed in section 1.9.

B. Moisture Separator The moisture separator is a two-stage unit using louvers followed by relatively coarse glass fiber pads. The moisture separator will remove 99.7 percent of all free water droplets down to 2 um in diameter without any visible carryover. The louvers are stain-less steel, and the glass fiber pads are bonded with

phenolic resin. The moisture separator is designed I

and qualified in accordance with Regulatory Guide 1.52, as discussed in section 1.9.

l t

I l

l 6.4.2-2 Amend. 14 2/85 1

l l

' INSERT The control room emergency HVAC system is shared by both Unit - 1 and ~'i

2. The two. unit's control rooms are partially separated by a partition.

Areas in the vicinity of shift technical advisor work station .and the 80P & NSSS control panels provide access between the Unit 1 and Unit.

2. areas of the . control room as shown in figure 6.4.2-1. The air ducts serving the control room are a comon system connected to the Unit 1 and 2 safety-related air handling units. Four safety-related air handling units are available to serve the control room envelope.

-- - . - ~ -

NO c etnsv6 7 - M/i=c 4 s1 H 706/ cart y VEGP-FSAR-6 C. Electric Heaters The electric heater is sized to reduce the relative humidity of the airstream to 70 percent from as high as 100 percent. Heating elements are a finned tubular type, with 80-percent nickel /20-percent chromium resistance wire embedded in insulation inside a monel sheath. Fins are of monel and are permanently attached to the tubes. The elements are supported in a type 304 stain!.ess steel casing. The electric

! heaters are designed in accordance with American National Standards Institute N509, as discussed in paragraph 1.9.52.2.

D. HEPA Filters HEPA filter elements are of pleatud fiberglass with aluminum _ separator design, measure 24 x 24 x 11.5 in.,

and are capable of handling a nominal flowrate of 1000 ft / min each.

8 The filter medium is cased in i

l l

l

[

t I

l 6.4.2-2a Amend. 14 2/85

l VEGP-FSAR-6 stainless steel, has face guards on both sides, and is water and fire resistant. HEPA filter elements are manufactured and tested prior to installation in accordance with MIL-F-51068D. The. filter element l minimum acceptance criterion is removal of 99.97 percent of 0.3-um thermal-generated, monodispersed dioctyl phthalate particles.

E. Carbon Adsorbers The carbon adsorbers for the :::chtia.emteSency air handling units are of the bulk type, are 4 in, deep, and have an all-welded design. The carbon adsorbers are a recPargeable type. Minimum air residence time in the carbon is 0.5 s at a nominal face velocity of 40 ft/ min. An 8 x 16 mesh of impregnated, activated charcoal is used in each filter.

F. Cooling Coil The cooling coils are of nonferrous construction with copper fins mechanically bonded to seamless 90-percent copper /10-percent nickel tubing. Coils are arranged for counterflow operation using chilled water. The tube bundle is enclosed in a stainless steel frame.

Coils are arranged for horizontal airflow and are pro-vided with inlet and outlet piping, vent, and drain connections. The chilled water system is discussed in subsection 9.2.9. The cooling coil is Seismic Category 1 and Americen Society of Mechanical EngineersSection III, Class 3.

G. Emergency Filtration Train Fans The emergency filtration train fans are seismic Category 1 and are capable of delivering 25,000-ft*/ min flowrate with all filters at their design pressure drop. Fans are chosen with a steeply rising pressure-flow characteristic to maintain a reasonable constant airflow over the full filter train life. Fan and motor materials are suitable for oper-ation under the environmental conditions associated with the postulated DBA, in conformance with Regulatory Guide 1.52, as discussed in section 1.9.

r&c dw (2 4 r;vc y vev7lu nen R Mt? F0? Ekt r' Tf h t M t5 apunaccp =o A. A R. o es af 19,000 _FT[

mo 6.4.2-3 Amend. 35 3/88

VEGP-FSAR-6 H. Control Room Return Fan The emergency control room return fans are Seismic Category 1 and are capable of delivering approximately 25,000-ft'/ min flowrate. .

Fan and motor materials are 23 suitable for operation under the environmental conditions associated with the postulated DBA.

y mucu ouc I. DuYtwor band' Dam'pN I * '* 1 ' tf'w' ro nou Rec.s,2 c u mno a 4 m "Y-maa The system ductwork and dampers are Seismic Category 1 and are designed in accordance with Regulatory Guide 1.52. Ductwork is redundant where required to provide functional support to active components in meeting the single active failure criteria. Leaktight ductwork and bubbletight isolation dampers are provided, where required, to isolate the system from unfiltered outside air.

In genera.1 conformance with Position C4 of Regulatory Guide 1.52 as discussed in section 1.9, accessibility and adequate working space for maintenance and testing operations are provided in the design and layout of the air purification system equipment. -

J. Control Room Access Doors To minimize inleakage, the control room access doors are equipped with self-closing devices that shut the doors automatically following the passage of person-nel, Two sets of doors with a vestibule between, acting as an airlock, are provided at each of ths 3 r.

(

entrances spaces.

to the combined control room and associated 1

A separate doorway is provided to access the record storage area which, while not part of the control room lp proper, is within the control room HVAC envelope. The door is equipped with a self-closing device to shut the 3c door automatically following the passage of personnel l and can only be accessed by passing through an air lock (two-door vestibule) or another door in series.

K. Isolation Dampers I System isolation dampers are capable of automatically l closing in 6 s after receipt of an actuation signal, (

as. verified by manufacturer testing. The isolation dampers are tested as bubbletight dampers for zero l7 l i

leakage. l Amend. 7 5/84 l l '

Amend. 15 3/85 Amend. 25 9/86 l l 6.4.2-4 Amend. 30 12/86 l

l

VEGP-FSAR-6

', % 9hlorine vet.ectors f Redun M orine detectors are 1 -

led in the con -

trol room vent 7 on outsid r intake plenum.

These detectors capable etecting the presene f chlorine in concen ons of 1 ppm and 15 highe esponse time is 10 s at

\

l l

l Amend. 15 3/85 Amend. 25 9/86 6.4.2-4a Amend. 30 12/86

VEGP-FSAR-6

-40 pp chierine concentratien '!i+F the alarr setpoint.

+f 2 pp= -

l7 M. Radiation Detectors Redundant radiation detectors are installed in the con-trol room ventilgipn-outside air intake plenum.

Each unit is resp nsive to gaseous activity at concen-trations as low As 10-8 C1/cm 8

of Xe-133. Airborne particulateand(iodineativitiesarealsodetected.

The detectors ar ed in section 11.5.

N. Smoke Detectors Redundant smoke detectors are installed in each control room ventilation outside air intake (a total of four detectors). These detectors indicate the presence of smoke entering the control room envelope from outside. Redundant smoke detectors are also installed in ide the control room envelope. These smoke detec ors detect smoke inside the control room envelo and o,ct%+ cs e ohm is +we coer.g c.oona on, 4L e

- - + - - ' p ro +ez% n pane \.

Each smoke detector actuates an alarm in the control room on the HVAC control panel.

_- w _

a-O. Breathing Apparatus Self-contained portable breathing equipment with air bottles 1.s stored within the habitability area of the control room. The quantity available is sufficient to allow manning of five people for 6 h each for each individual (30 h).

The remainder of the system, i.e., supply /recircu-lation fans, exhaust fans, ductwork, and dampers, are components that function during normal operation and are described in subsection 9.4.1.

6.4.2.3 Leaktightness The exfiltration and infiltration analyses are performed using the methods and assumptions given in American Society of Heating, Refrigerating, and Air-Conditioning Engineers Handbook of Fundamentals and Regulatory Guide 1.70 and "Conventional Buildings for Reactor Containment," published by Atomics 25 P. Bat.kdro.f4 Damp e rs N g ,

i Pae.k.drah Aarwoes in 4ktewisid e air aAJ retu rn ducwor k ar e_ p ew id e d / l 40 preven t extan ive bac k Clow in fawlted conditions. ^ Amend. 7 5/84 or her de e '

^^ M T

  • Amend. 10 9/84 Amend. 15 3/85 6.4.2-5 Amend. 25 9/86 I

1

VEGP-ESAR-6 E. There are three doorways into the combined control room:

1. At the northwest corner of the control room.
2. In the south wall of the control room.
3. At the east wall of the control room. l30 The doorways to the control room are each arranged with two sets of doors actirg as an airlock. The dcors are provided with seals to reduce leakage and to maintain pressurization. l30 A separate doorway is provided to access the record storage area which, while not part of the control room proper, is within the control room HVAC envelope. The door is equipped with a aelf-closing device to shut the 30 door automatically following the passage of personnel and can only be accessed by passing through sn air lock (two-door vestibule) or another door in series.

F. The ductwork for the essential HVAC system for the control room under accident conditions is separated from connections to other areas or to the normal oper-ating HVAC air handling units by two Seismic Category 1, bubbletight dampers independently actuated and powered by the two engineered safety features trains. Each isolation damper automatically closes when an emergency air handling unit is started in the corresponding safety train. The emergency air handling units start automatically on any of the fellowing signals: safety injection, "- '- -- 'k-

-cuteid: mir int 2Me, or high radiation levels in the l7 outside air intake. +n the e> nt cf high chlorine 10 /: 1: i.- th: Outcide cir int he, the centrol r e e.r le l

autem tically 10 lated fr:: th: cutsid; intch . Under emergency conditions, filters are used for the makeup air supply to the essential HVAC system, in conformance with Regulatory Guide 1.52, as discussed in section 1.9.

G. When the control room is isolated but not pre urized, the air leakage into the control room is no greater than if4KF f t'/ min f rom all pathways, based on a 1/8-in. WG differential. This amounts to q $9 /~ approx mately Q7 5 -h"' air change. The infiltration is 3 distributed as shown in table 6.4.2-2.

O. 3 Amend. 7 5/84 Amend. 10 9/84 Amend. 13 1/85 Amend. 15 3/85 6.4.2-8 Amend. 30 12/86

VEGP-FSAR-3 TABLE 6.4.2-1 (SHEET 1 OF 2)

PERFORMANCE CHARACTERISTICS OF MAJOR SYSTEM COMPONENTS Control Building Control Room Filter Units Quantity 4 System components Supply fan Type Centrifugal Capacity (ft / 3min)(m^nev%) 25,000 Static pressure (in. WG) 14 Motor (hp) 125 Charcoal absorber Efficiency.(%) 99 at 70%

relative humidity (for elemental and organic iodines)

Face velocity (ft 3/ in) 40 Residence time (e/2-in. bed depth) 4 -25 0 , 5 Nominal size (Tyler mesh) 8 x 16 HEPA filters Filter element Pleated fiberglass Size (in.) 24 x 24 x 12 Efficiency (%) 99.97 on 0.3 um and larger' Capacity for size 1000 indicated (fta/ min)

Moisture eliminator Separator element Fiberglass Efficiency (%) 99.7 on 2 um and larger Electric heater '

Heater element 80% Ni/20% Cr Heating capacity (kW) 118 Cooling coil Cooling capacity (Btu /h) 1.09 x los Entering water temperature 44

( F)

Leaving water temperature 56

('F) l Chilled waterflow (gal / min) 175 l

l, _

O

  • 9 W

51

-i n

,; a s -

5a N A 4 E 4 x

'I  ! l  ! ;W

-l l 8

j'!

i .

_.]GJ l 9 li =

i

( l, 3 ' O i

f,l1,!

l8b lI M suW -

oe e e e ..

e

. ,g e ,

t ,_

e L i . ,gig e l > 4 g; w i

in ,g__Jn e a g,a;L . n

, 3 r. k 3 4 i og q._,______. _3._ y_ _ .g _= . , . _ . . . . _- c

. h jl d,E1.1 lNr k _Q ,_\,/ 5l ] E55 3"

e_ih i o Ape.. . Yy

  • q reR.I#s

_. m 4.m ,

i

$ 4

]~

~ ~

d i r_

_24 %.t&= c% '

b ,l $ 2 &

, --Q,s;.

'y

i. -

%qMg- g k E !g

-- B .

.f"": n1 756 I

I_

.2 m

Jil { E a c .

o y sh $ .th_ -x"ti m n ,', .

a A.k  %._= %_ kJ@ - ,iI

, _ m ._ ._ _

E W -- b!

iQ 2 P4T W a,,mt f, C / i n _g}t -

i gI I4 +3 " '~,~1 h g,88 1 e-f,:

.il3

' i

, . _ _bL .

<- g )W'i &"5Bppi .

' k L_ , _._ .  : l e_

I _$ $ _$ N N_ [fk NE,!!! .

I n ,,, - 4

.h ' b,o t . ,* ml_;d i A%

rf 5,'

, Q ,'i j'I Q; 7/ 1 '

l ce ,7.- , G " 4r.. '

, , 4 ~ ,F j [ . x7-,'

d fl b

! ec gj! yil c -

3 li . L, Elm _ C, ,'h_ ,J ..~/' ~'

pp"! Wy fgWh@df!$ k/

o_ -.4.3 - - __ .

Qi  !

~

h! -

a a a.? a 1 I

t

(i en h

g M m 5E zw e e W - at 0 25

!.r

,5

! "i ou i o .i 55 a5 *o i

a -

5"o-20 U! ~'

$ E T h h0 $c $*m ji "a$3nE D 9 * %" g4oO w=g 0$ "

- 2l" !i

! :: s !c= s;2ge 5sll<;?! =: g!*

U

- 3 5 8 s' 5:  :: t = , =/ 9 5:as s s= , em

-a2 g

3% "E 3 3E I ;: 5 E Es gl x63 5: t g5a. 00 a n e' i - Il.,aigi ee 5

o 8W o

2"ga 5 so

'S e=wotaEE"g$s=3* =N a 5gI .s 8a :

a gi: 1 5.!5 5i g 3a3

. 3.- -3=3 8e do gg I i 2331: EE E2 gg

@ OG 6 989 SS@@@ @@@@ 0 8

l' _

1

~

E E-f g e n -

y- i-In I

u;  ;. ik d, g,o' 7 z; 3 .-.

y I

s  : ), > .' 3 p

i c j ..- ,

.l

! <g

\. i'  ;

/;//

y

.' F C

jis; 6

[ \\i o' -/,. )-

4 : i, '

, s

/&'// ,f,/ j e---J -)c 'l )-

b;c\ / /f / ,'

3 II .'

I f n-  :;
! j t
, d)ex=.61 m yy_ 36E- --z,-m  %. _,S _

- I " f i --- -

l. -=-- vf _d G G Q ,,;[, ,

_,/)'

,g'  :  !

f# O p ed y j K /'1

g. h. ! Nf e ff ,s.. AlMO E !--i I L ! \

,t

._ _sa_

apj,F:,B!)hhjiri<e..o'troQ--.

in TJ

.l,"?

'~

r.

- - -(

9 ' l n -

, ,!.6l~ N b ,E m.

- h -

N-me P _

i4 ml l a..>. e t -

i, 1 ,f. lI s o. u rew-A . ..

. l g r/ N '

' )'i "

i i ...

g i O ifj(( d!

{Gd.~);

j

lu e ~k l

,v..g e v-l g-

~

3 :i w gg .

l 8

'i.u o

5#d e! e ' @g .

J i c. c -

I _i Q_ s -

e i,

j f - .. .

[, _ .

I

'ee i

4 -

N'!L j__A 1 g 1 l, l 4 ifrJ m _,,,, 1

}'q.k -1.h.

8 l

..._i'

+ e .

VEGP-FSAR-6

,g.gg A 6.4.3 SYSTEM OPERATIONAL PROCEDURES The control room normal and emergency airflow schematic is shown in figure 9.4.1-1.

6.4.3.1 Normal Mode Control room heating, ventilation, and air-conditioning (HVAC) system operation in the normal mode is described in subsection 9.4.1.

f 6.4.3.2 Emergency Mode (Gent-rel-acem Icelation) 9

, - A safety injection signal or the detection of high radiation levels in the control room outside air intake shall cause the 1 initiation signal of the control room caudiiiihactivation of the i4g;;; ..ti g $(CRI) signal. g Tg CRI air filtrationgude- 3 fellowed by the closure of the-isolatier dampere between-the normal 2nd cecenti: 1 cyctems. The control room normal air 5g handling units will automatically trip as the isolation dampers jg1 4 c l o s e .+ Af-t-e r--autc m a t i c a c t i v a t i o n-of--both-t-r-a-im s - f o r em e r g e nc y g -o perat i o n , one trair m2y be manually transferred to the emer';ency standby mode from the-centrol reem, while the other-train--continues to operate in the emergency mede. During this mode of operation, conference room, kitchen, and toilet exhaust ducts are also isolated through automatic closure of the isolation dampers on the receipt of the CRI signal . 6v s secnod 7. J. 6 Pr ou n bes h >scasssou o r= 77ta ec nh9 nw - o r' 77td &RZ .m NM. hko ??f u~

O s /A^ ton cF Twe d M WRG 4irinyd vAc .sy.srr7n, s.4.3.3 LW-ion-Mod e 'Texic-Cac) i N

[solatton mode of the control room emergency HVAC system rs when a tox1 as signal is initiated due to the prese of toxic gas (ch J

) in the outside air intake, signal automatical tivates both trains of .ergency air toxic gas l 7

{iltration system and qes the isolatio ampers in the 9utside air intake. The isel tion m will also occur if l manually initiated by the contr ' com operator. 15

$andling units are automati fe y trtpped and isolated following The normal air 3 the actuation of the eme Ency units.

l n this mode of eration both essential air fi ation units run in the from th irculation mode without outside air. he air ontrol room is continually recirculated, coole and fil . ed by the essential air filtration units. Upon v6Iificarien of one-train of eseential air fil*ra*4an "n4* _

s, Amend. 3 1/84 Amend. 7 5/84 Amend. 9 8/84 6.4.3-1 Amend. 15 8/84 l-

.y

-4 INSERT A The system logic permits only a. single train to start through lead / lag logic. In addition, the CRI closes the isolation dampers between the normal and Y.!E Y systems. Lead / lag control logic permits only one

~

train of fans per Unit to operate during the emergency mode. The-logic provides automatic start of a standby (lag) fan if the lead fan fails, such that no more than two fans, tota 1 3 are running.

(4 b b e umMS)

INSERT B If one train from each unit's control room HVAC is simultaneously activated, the control room operator may stop one train manually by first resetting the CRI signal for the selected train and then stopping the selected train's HVAC system.

I l

l u

=6 VEGP-FSAR-6 4paratton r-.-the- contal r o o r e p e rato r m a y m a r.u a 11 j i s c 1 s t c "- -

oth h txta.Lnd put it in emergency standby mode .

e I control room. N After making sur pe t re is no . as in the intake duct, the syete ntr'o1 room operator manually purge. _ Q al %HVAC efor e i t - i s pu t b a c k - in t o s e r-vics,.

J 6.4.3./ Smoke Removal Mode This operation mode is provided to remove smoke from the control room envelope by exhausting smoke-contaminated air to the atmosphere while introducing 100-percent outside air as dilutant makeup.

When there is smoke inside the control room, interior smoke detectors are actuated ar.d sound t-he alarm in the control room.

The operator analyzes the situation, cle :: i clation dampcrs for--a l l filtration unite if necessary, and acti'/:te: the- l3 solenciC valves,4 then manually closes the ieclation dampers to-ic010t0 the--Gon t re li r o e'" . o fee og APf Atf Al ATT (AND In this mode of operation, 100-percent outside air from the intake plenum at el 281 ft 0 in. is supplied by a normal air handling unit which purges the control room. The control room g

. . . return / exhaust fan exhausts the air by discharging it to i the outside at el 302 ft 0 in,  !

When there is smoke outside the control room, the smoke detec-tors in the outside air intake plenum actuate the annunciator j alarms in the control room. The operator then analyzes the l situation on the HVAC panel and, if necessary, actuates the isolation mode d: cri'::d pr0Vicucly ir paragraph 6.^ 3.3 m - --

To M% st t Tyt S b4 0 tL O If fr o # u pro p E o r= c f e'g gnoN N~

r

)

~

l ~ ~

k t*'N A M b h M fC iLS QE 15 s s k iE~D, 77t'? lVlGO w

EX tttkt.S I' DhP1AO

[ 5 _o fcN lY N D T'W E #

bg muuediy ge.ne.t o.H Ac3 A C. R. I tieg ned anci c_losino + h t_ o w i.d d e, a,i t i nio.h t dar* pef t . TA tht i s o\ o.t'i o n MCrd4 oI 6p eta +-t A O C. C.Me F3 C AC g o.b- filit oMon s dem cans in r e.ci r c u lo +i on w i + bow + o w4 3i d e, ed c.

~T h e. oA t- TeorA & s t. c;,on4eot ecorw is ton 4 'in un 11 3 P A ch c,uict teck, Coolec{ , i 4^d b\ t etGd h g th e, CMerge,6tg Ci t vecsMc A uni /

Q, _j l

6.4.3-2 Amend. 15 3/85 l

l

VEGP-FSAR-6 l

6.4.4 DESIGN EVALUATIONS 6.4.4.1 Radiological Protection The effects of potential radiological accidents are analyzed in chapter 15. The radiological protection afforded to the operators in the event of an accident is described in sub-sections 6.4.2, 12.3.2, 12.3.3, and 12.3.4 and in section 11.5.

6.4.4.2 Toxic Gas Protection Control room protection from the effects of toxic gases is in accordance with Regulatory Guide 1.78 as discussed in subsection 2.2.3. The analysis of potential sources for toxic gases is presented in subsection 2.2.3. The analysis of onsite and offsite sources for toxic gaees is presented in paragraphs 2.2.3.1.4.1 through 2.2.3.1.4.3. These eources are analyzed deterministically and it is shown that either the 8-h tonicity limit is not exceeded in the control room, or that there is at 16 least 2-min between detection and reaching the short-term toxicity limit, such that the operators have time to put on breathing apparatus. These results are shown in table 2.2.3-20. 15

/gep11+ed by Regul+ tory Cuide-1+95, control rec = pretacH e - - .

.s provided against chlorine which could enter the contro V room. The ific guidelines of Table 1 of Re (ry Guide

.95 regarding ma a function of c ontrol room type a nd %m chlorine m_eance toinventorie-th ntrol room do not apply since VEGP does not have a co room classified as type I through VI as described is regulatory guide. The guide 16 does, however, no at other combinatio parameters may be acceptabl pe-s own by analysis. Therefore, th ent of Regfutory Guide 1.95 is met as shown by the analysi oubs e e t4-o n-2 .- 2 r-3-- -

6.4.4.3 Implementation of Design Bases Control room habitability system components discussed in para-graph S.4.2.2.2 are arranged in redundant safety-related venti-lation trains as shown in figure 9.4.1-1. The location of components and ductwork within the control room envelope ensures an adequate supply of filtered air to all areas requir-ing access as shown in figure 6.4.2-1.

Amend. 7 5/84 Amend. 15 3/85 6.4.4-1 Amend. 16 4/85

7 ,

VEGP-FSAR-6 l

i By using chilled water cooling coils, the control room essen-tial air-conditioning system maintains the temperature between 88 6 and f0?F and the relative humidity below 50 percent. The L control room pressure is maintained at least 1/8 in. WG above atmospheric pressure during normal operation. The control room p0

' eme.3encressential air-conditionir.g system maintains the same tempera-ture and humidity conditions when operating in the emergency and isolation modes.

The control room air-conditioning system is capable of remcVing sensible and latent heat loads of.l.' '^' Stu/h and 2,2 x lsA

-Btu /h, reepertively, ' hich i cludOM"dbration of equipment heat loads and minimum personnel occupancy requirements. The transfer to emergency or isolation operation mode does not create a hazard for CO 2 buildup. In case of emergency opera-

/500 Tron, there is Tsupply or outside air oD 260 ft / min and the 2 long term equilibrium for Co m will remain below one part per thousand for a five-person occupancy. In case of isolation mode operation, where the control room is sealed, the critical level of 3 percent would be reached in 5 days for an occupancy of five persons. The technical support center will provide an additional habitable location to relieve crowding in the control room as discussed in paragraphs 9.4.1.8 and 9.5.10.2.

Food, water, medical supplies, and sanitary facilities are provided for a minimum occupancy of five persons for 5 days. '

Storage locations provided ensure that the above supplies will not be contaminated as a result of postulated accidents. The supply of food and water is sufficient for a prolonged occu-pancy interval.

because outside supplies can be provided within the 5-day The control room air purification system and shielding designs are based on the most limiting design basis assumptions con-l tained in Regulatory Guide 1.4. Automatic transfer of the con-l ventila$ ion, and air-trol room from the normal systemheating,,

to the fit 5Kff 1 system is accom l

conditioning (HVAC) _ -

plished upon receipt of a control room isolation signal which is generated on receipt of the high-radiation signal from the outside air intake duct radiation detector, the safety injec-tion actuation signal, o r-the-hi-sh-tox io-ga s-s igna l-f rom-the-

-oute4de cir intake duct toxic gee detecter. Transfer to the l essential system also may he manually initiated from the control room. Loc a l-- a u d i b l e -a l a rm s -w a r n-the -ope r a to r s-to-s hu t the-self-clecing deers--:heuld- they-bupon-fos-some-reason a f-ter-t ransfe r-t+-the cmc rgenc y-mode . Refer to subsection 7.3.6 for a discussion of the actuation logic.

The airborne fission product source term in the reactor

! containment following the postulated loss-of-coolant accident (LOCA) is assumed to leak from the containment at a rate of 6 4.4-2 Amend. 20 12/85 l

l l

I

VEGP-FSAR-6 0.2 percent per day for the first 24 h after the accident and 0.1 percent per day thereafter. The concentration of radio-activity, which is postulated to surround the control room after the postulated accident, is evaluated as a function of the fission product decay constants, the containment spray system effectiveness, the containment leak rate, and the meteorologice.1 conditions assumed to occur. The assessment of the amount of radioactivity within the control room takes into consideration the flowrate through the control room outside air intake, the effectivenesa of the control room air purification system, the radiological decay of fission products, and the exfiltration rate from the control room.

Air within the control room is recirculated continuously through the energency air-conditioning units, which contain upstream high-efficiency particulate air (HEPA) filters, char-coal adsorbers, downstream HEPA filters, cooling coil, and fan, to control the room temperature and airborne radioactivity.

The outside air required for pressurization is mixed with the return air before it enters the filtration unit. During the emergency mode of operation, the control room HVAC is designed to pressurize the control room to 1/8-in. WG pressure to prevent unfiltered inleakage. l10 Doses to control roon personnel resulting from a postulated LOCA are presented in section 15.6. A detailed discussion of the calculational models is given in appendix 15A. Air leaks have been taken into account in the calculations for ingress and egress losses in conformance with Regulatory Guide 1.78.

Control room shielding design, based on the most limiting design basis LOCA fission product release, is discussed in sec-tion 12.3 and is evaluated in. chapter 15.

As discussed and evaluated in subsection 9.5.1, the use of .

noncombustible construction and heat- and flame-resistant materials throughout the plant minimizes the likelihood of fire and consequential fouling of the control room atmosphere.

-Redundant-chlor-ine-detecterc cr: previded in--the-4entrol r;:

air'!ntake plenum upstream from the isolation dampe grs2I detectors meet ~aingle failure criteria.

ese Alarm and control logic are provide 3'to-Warn the operator automatically isolate the control room'Whe ch. e is present in hazardous 7 quantities. The sensitivLty-6f etectors and the closing time of the valves Ec'h that the amo f chlorine Lntroduced w ..omogeneously distributed thro t the contrc l room is- ow allowable concentrations in accordance

-Req ~u~1atory-Guides-1-48 and 1. 05 :--Withi-n 10 a f-ter-arelva -

Amend. 7 5/84 6.4.4-3 Amend. 10 9/84

. $ ksw\ A o(w. c. x c es s' V t. p e c.s sut t. chtop develop ei,c.c o as em n e. @ % r-f r a N - e .a. c,p e r o.% e . J k ts %e ce Av.nh.ni I t oe66, 'to provide &c. repWedmcoo e.n w ti o,6ci g l m pe,$ re & n, I

_f FSAR-6 I

phiocine--at 2 ppm, t he-d e t e c t us-i ni-t4a te-ol osu r+-o f-t he 1 isol'ation dampers to the control room.

7.3.6 fo h scussion of the actuation logic.

Refer to subsect [

In event of a toxic chemica lease, the detectors in t ontrol room ventilation system ou e air intake a e related logic Eunction to stop the norma C s and exhaust fans, close

he outside air intake and ampers, and start the emer--

gency HVAC units in t - olation mode.

of toxic gas ent g the control room to Thislimitstheamountl t ount that leaks-

hrough do , dampers, and other openings. Air i tration rates ing the isolation mode are discussed in para-4 ph-. 6v4 c2-v3 >

A supply of protective clothing, respirators, and self-contained breathing apparatus adequate for at least five per-sons is stored at specified locations within the control ro,om envelope. Five persons is the design basis operating shift crew size for operation as described in section 13.1.

To protect against high airborne radioactivity inside the control room, the control room HVAC system is automatically , A c, gg1 transferred from the normal mode to the creenticl Tode o (#8 operation upon receipt of a control room outside air intake nigh radiation signal. Transfer of the system to eccential or isolation modes may also be initiated manually from the control room or automatically upon receipt of an outside air intake high-toxic gas signal, freec l , audible-21:rm: ::rr the operatere to shut the s e l f41484ng-do+r-e r-shou-Id-the-doo re-be-open a f t e r-the transfer. j The filtration and cooling unctions of the control room HVAC system may be performed full even if the capability of the system is reduced by a single active component failure within Nhe system or its supporting systems. Should on rccircul tion me Lehb air filtracion unit fail, the(redundand train will provide the M required cocling and7:100 pr-ovide-the-requi-red filtration, should--a n-e xce s erive-pressu r e--d rop-deve-lop-ooreee-the-othe r-illter trai-nN Normally open isolation dampers are arranged in series, so that the failure of one damper to shut upon transfer to the emergency mode will not prevnnt isolation. There are two emergency diesel generators for each unit. If one of the emergency diesel generators fails to start and assume its load, he control room emergency ventilation system equipment powered by the other diesel generator will provide the required electrical peuer,-

cou r u s nac Ag fa.rx a n ea A failure modes and effects analysis is provided in table 6.4.4-1.

MFn To s a 6 s trc.n o n 7. 3. 9 Fod c crirt e t. / c e si sse>g eny rn 4 MwJ *15ro1 A c. ru knw Amend. 3

. o (*
  • C . 1/84 Amend, 7 5/84 6.4.4-4 Amend. 15 3/85

{

lt

.{.

-3

-{ VEGP=FSAR=6 di$l: $  % h A

4 6

9 9

K

=

g 6

O M

M $

> > e E o o o 4 w now o me noa e g >. Cw w aoa aoa wa= C g C C Z- 09- gDC da QC gVC wa C C A Dbb et 45C wa av U@= CN O UU- C* UG UG- C2 U@

6eg C e WC = C 9 C

  • C e C .

N bWa 600 DE 600 600 6cc w C a( C CC C a4 S &( C 38

  • C C a4 6pu.

CL(O g5 CG Log G ad C@

E ao>7 3d

  • aoo ao>V Ow
  • 409 ao>D sw . Goo E =0 V@ E E E V-O E a E D-D E E 6wC gh E cw ghe gh Ow= ghe gh tw= she 200 Q~9  % a Q= Q-t c 4 Q=

A g

h- g= bg c g- 64

_Q-0

-o- og- -g=

. E a L

Q=

=g

..Ww .gg et. .g> .g=g .C= e e. > e G .e

= eg>

y g g es>E c a- oo ==>E c a- c:o c:>I e n- c :

6

  • CCo6 CEg CCE CCo6 CEg CCE CCo6 JEe CC z26o om>

nc zu m z g 8 z E aC zog o3 0 og ombo og>

a w og@ ombo zg6 zSaC S u e> zI8 g o Z .

^ m m' o e a e m o e e C

& - .C. .C .C. .C. .C. .C.

M a w a a a a a

.C. .C.

W e e g a g a w

-A O

o e 6e .o. .u. .o .u. .o g

.u.

e

.o.

e

.o.

e

.o O eso e , , ,. y y ,

a E o=~ -w -C E

- -c -

C C

C C C E weQ Owe C C C C b d E w o o o o o C C o o C C o

C o

W g b o

-W ww w e Mw

-W we

~W -W -w -W -W -e 4 -g -z -g da

-n da

-g da

-g .a. dg ad we

-c E H Me em Wm Wm Wm Wm o~ o- o- o- ~t m Wm Wm

.m 4 6- 6= 6= a= o-A=

o-6=

o-6-

o- o~

6- A=

q a a a w a a i , C C C C C Ga G C

@ 6e a G

w G

w

@ e M T, s. 6 w a w

=O CD w 0 6 6 o w 6 o 6 4 > CD ct w DV OU w tt

-n se e >v >o e >o >o e >e g

m eo wE we o

=m

-o ea go na go

-m ve na =o De

- g= C= C=

-o g-go o =0 mo U =U wQ =U =U wU C=

=U

e- C

W 4 -

=Q %Q =U 4 aem 3 A > => C6Ce 40 me-o

=aa .

2 d aQe ( 20 C ( CO Q < mu O

E D 2 e d o e o W=

abe o e o W=

w6m o e o W-9 E : oo -u oo -u abd oo o- -

Wca e C - e-( e =, e-( C =

ll ho e

a o < t 32 e u ri>>> o u1 i i3>

() Gw o=D 9 i

  • 63 a  ;
9 i 2 a 1 9 t Z 4

0-9ti < :3 o-Dit; '3 Wgj wU 4C C bC i wS bC i =C bC 1 wC g

.zu-(I, w >- g E=6 . v ...w> go g 1 E=k .: qo E=6  :'go t=-COC6 t=-Comb c--Comb Egeoo wn genoo wa Egeoowa V 7 V 4 e eu ou o a

=

uw es ww 5 6 as b d G e 6Q 6 CE G Z

o -

CC o

a .b o Na ekCya a.

O e6=

a o.

O w 6come 6 e s6a bee a - g aso - o - si 45oQ= 4 - 45-6 e aW ew ed Q NW d

gw @D>=h a

ab=g= a h e=-

CD

  1. C abb Qo Nbe@a Nha Nb3 "oSea ~O4 =ow

>ebo3 >e 3 Dee ZCo=W CW ZC6

=oCUw =ow =ow E

c.

wo e

-3 N m

N

.!.!o -VEGP4FSAR-6 3q ,. r. .k.  %  %

4 6

g "

E G

E

=

8 h O -

e a . a=

S 4 =

4 3 w a0 40 g C g h= w w w 3 6 w- 3 C e ww- w OG=

C um C C b c C e b =

GbD gtC UG= Cm eV UG

--E O

O a =eg C w

< E O e 6og .c e C

  • bM6 e g ba6 e de 4Wa bg a tg 6cc C =#. . A g 0-b e d 6=

W g @a e CG C 44 C 5 O

  • C SO 40>V O CD 3d
  • SOC 436= = CO embu =O ao bdC E 29 th a V=9 C==

a 5 che d =A 04 W =4 &=

CWO 0844 0 40 0844 e=

Q~@ E a Q= -0 - E Q~ JO =

Qe h= =c= be =c 60= 0 6t= >

.=. M M ee= .C= 4> eb4e e e ab4e . .g 9 U gO) 0 4= D39 0 g> C

  • G= C 4> @

=CC . Cob CBS CCa C6de

  • O 03 C3 C= C6sg CD Ca 0360 Ce> 039 C=C Ow C= O=C 06 00

% 3maC E%n Ea6 24=N EW 23 Ee=N EW Ew

^ -@ @ m m C C C M m O,

=

C C C

& a e

=

e m M e a a a e = a e e N @

C U U U B ** 4

~*-

4 ** .t ** U U U O ~ ~ ** ~* ~* ~ ~ ~

23'3 c=u 2 2 2 258 0 25 25 2 2 2 n d40

.- = = =.a -. =.= = = =

=C -5 Gw@ C C C C=Ow C-6 C= c c c h E w O O O O O O e O g O O O g b =d =W =m = 6 -p= = = =w =e =w 0 MM de M

=

=g am

=g em da

g .M. Oa= == 6 9 dCe a e =

ad

=c da

=g da

g me sawC auOOgG muu me we em m O

A=

C=

A=

C=

A=

C408 Ausg AGE AQE Ce0 O=

4=

C=

A.

C=

A=

g e a & M a a &

C C C C C C C l G* O G G G @

sn a D 9 9 a a a e a a

. C= 6 0 6 6 6 6 6 6 O

-9 WW W 99 e @ O e e d Y =D >D 9 >@ > > > > >

e 40 DW -m te UC DC VC DC SC -C g wE 40 *C go eO Ce 49 4e ee =0 C= e- C= Ca C4 Ca Ca C4 Ca

-U %U =U =0 -O =0 =0 -O uO A as@

C6Ce 4G=D b =awo .

AO4E < SU Q ( e U ( e O e a o e O N wbe W- 0 00 wb a C C = d == O <

s CD C C e AO >

w=

tw 9

a O=g 0

9n)2 us 1

OCCW 0400

-ga OOd ud=

w bu b . 1 1w t thw N Ch gC C e- WD Dwub n3 -* K4>

Dwk w g

== = =GQ ==9

  • O- d) >swg >34 g=6 ee OCOsw OCs s==Co46 6=6e= 6-e meeOd ida A d at w add 5

90 a L ww U e n% W 3 a d

60 G2 cm w 6 CC a O

  • e

=P D w Oe O

  • 60 4 W

=C e6a cQEW d 6 9 JEGO 6

=4

= 2 e w= 0

  • 6 e ge = @>=U ah 6 e O O
  • SD 3 ~ DObh CO=

330 eb =bD caw = @w 60 Nb3 e e-

=Ow ( .

>0 W e @ 6* *6 ZC6 0430 00

=Ow 2*ec Eb E

G e s e <

wo a

~3 e @

3

p. -

,e

?.5 l

l>

. a .

' (p = yJ

\ vR"GP-FSAR-6 I

e 4

L h

C E

=

C 6

9 C

h, m

  • a O M O as s == c +a h 4 = @ =Ce O M 4 -

4 =

& 4 C 4 C -= d S

  • 4 C 3 h= 0 3 4 349 9V ** 3 b e C @
  • a +a = C e *a 3 **

Ot- --S be

  • Eb ** C C
  • b O C e b *.

OC*5 a = ta =*E O a ==5 vb4 0 = 00 wO- O C =

bgg b *a b d E O ea 6- ** O b .a b e g bab e a hea Ow . wb=b > 40 w C e OOC C 0 Ob . e C

c C=b . a b sti emb= =

ah d=b=

D

.O. Ce a C 9 De W =4 m D .b

=4=-. =.a IE D e =4 oe d a b =O .O. -

W =4 a.

b ed C.J O944 OWGme# g4 C3e4 0 40 SO

=dO C -

EOO =0 C9 0See **o g=

=>= s@= ak@=a s

.d O =. Z

%C=

O= aO 2 Q4

= M ea eb44

  • b .E 4 e *= ab44 . .U bQ e g U @ .b4g .==

aCC 9> Q

  • 4>CD G9 C g> C * @= @ e>

@

  • O=

C 6. ** e d 3 b *a 4 - 6 C C b *a e C3 C=

O3 O=C Ow=C Od O=C Ow C b +4 4 C3 Cg w 2 e ** N N '4 4 = N .4*W 3 O= O=C Cw 0>

E= Ee=N 2w E3 3e=N 3W 2e ,

a @ @ 7 O E E g g g H aa ed ea -

e g na 64 as e 9 b u u Q l so I es e ==

g U

es e bC = -=

W U U O uso e

  • =

w

  • = W vw eu
  • = W = ** =

ou e e v g g0.=. =.a .C. .C. .C CC

    • g y

.p .C. pC .C. p2 .C. .C. .C C .S -E .= 8 C C C=G C=6 C=b 04 E w @a e O C C C N w. .O. . =. 2. . .O_ , s .O , =g .O. . .g. .C. .

0

& OG *a 6a ****

-. .O

.m g .ea oC se s' C n sa g en em og .eu m .oC e oe .o .o .Co e .en og ea .se sa g .ba og *'

O= O=

de dw duo de ae em we

@ e= a= C= 0g CeO O4 C= O= O=

w 4= Ag Agt AQ A= A= A=

en se

& C C sa se sa se sa l 9a C C C C C

@ & 9 9 y 6e .* *a .G * ** 9 9

  • s b b Q 6 b en 6

ed 6

es 6

0 eD CD ** e e 0 T .== D >e >G G >

e e e **

. e0 Dd Uw =d DC

> 4 w1 eo eO tC DC DC UC =C

@ C= C=

=0 g& 4C 49 ee 9W =@

e- Ca Ca Ca CA Ca sa M

-Q == U wu =O =0 =0 =0 =0 wo N sa e @

CLeo 4e=2

=As E* o. o .a M* < m o < m o < a o 3bO wh: .o O C C TJ q

. wu .

hOl CV C ed = [ a0 t )3 m91 4 .'T<y OCCO ueOOa a

OO e me -

.l O *a a wu O b= 3 .= 4l< d'i c - E C. e iA O se C C CE=' D .Saub a c h a s.

M3 =)OO<>Cl D ea a w gO -'

=>3= 4at .c t E ==NS 1

O C O E *a >3*e u ===.b= C91d lC-W OC>*a E4ge4 ia1 w=6 4- 6=Z-4 ed aV w A ea *= =me O 6 CW 2 e sa O*

  • b CC eb O p d ^ * = *a O Oe kb by

=C OO COf WR

  • a O *a e aO OC 4g E e' b =

ea OO

5 80C c>= *a m bO 3 si 00 #9 cob O d *W

30 59 9b *= ea b c .t w @ ea QO Ng% *= m=

= 6 4 (

>ca 2 ae .m u .L

=0D OmC OO 2 e- m Eb 6

e. .
    • N .

e 04

e a

,' g VEGP-FSAR-6 0 -

g d g to a a w .e. .

en C C E 3 e 3 E O ea O

= a g N N b C C O

U V C C C @ .G 8 8- 8-

. a a. ,

> 4 = 0 =ca EO O C o

w e C 4 C=d s ee aO eT

h. ea 3 g 3g9 ed O 4 4O O a na -
  • ed =* .C
  • C 6 *a 36 - C a ee C O

U0- =*E OCa5 CL -U eUC ea N V- gVC .J a m ec (p .-

vbD O = 0O U@= 2- I aC &

b e ce b ea 6 e ea b d G Wh C C" QD UD= Ce OD h

  • 4e b M CL C=b e eb-b >

4 5 se C 4 Ee ->

w e C 6c 6eO . g3 - 6gO . gg -

4(* .C. =*

00C @4 G@

Eu to 3.b es =A 9

- 3Lt~

W =a-ma CL e 36 0 44 C aO>c a =O Ce.

3w g=g S=

4g 0

aO>g 44 e C0 3 ed . Ae C-ee L>

6 ea C O g as g Oe3ega g- gh 3 ew- > 3 30 g-p > .* 4a e 3 w0 - ZOO -O Qe Q-O a gh 3 ow- g $  ;

-. #h-C 6e- .J 6 e - CL g 4 Q-e g a 4 )1 . be 6

- V == be

= t/) ed eg U @

eb4 e e6 > G

  • e b 4 as 4>CO e

@=

eW 93>

.g= a0-

@ CL = C 4

C

.m-03>

-D

.beO == 4 O

.M$

4D C. C i

wCC C 6 ** g C 3 6 ed as = b C CCO CEg C4a @ CL = 9e i) iL fl 9 **

03 C=C Ow-C om> CCC C3g C *a I: llg m z.-N zw.-Nu3 e Ca z~

og60 zanc zes == OC 0 zIL0 zu. aC O as > 0C

== mi o ipai*

to e O6

.o.

- @ O O =

in C C C C Cn C

m C

e H C 3 3 3 .. 3 ~

a .. 3 3 e ) e )

% 9 U OE U U Ot

)

O 6C = .U. =U ==W = == = e

'd

.U.

==

V30 5 V V V

= -

~. e'a .O .*4*

gO .. =a *y ea V D *a D V $d i 19 ea y .C. .C. .C. gC . r,,A .C. .C.

g .C.m r .C. .C.

~.AC@

la C E

.a e U Owe C C C b

eC-

=

C C 6 - .+ 6g )$ .*

E4 x s O O eC- C C l l .* ell 4 *L a be OQ

=. =a .O. .

-O

= = Cm w

O

=. .O. . . .O. .

O

=a .O. . .o .us ,= -O .= .e.

M .a ed ea +a .a ea

(. E

==

  1. CM

.e.dgeJ dO g

es @

)C O se na g

es Cm

.e. g a ea em O e na a

) .e. .C. .e.a es

  1. Cm g a na

.n. m .ap +. 4 4 , .ea 4 , I l

Q C= C= C= -O4 0- 0- -Oe C=

to Ch 48O O-e4 es l>

y 4 == A= A= b dLU 4 .= 4 == b av A= A ==

p alti

e. O3; utwQa =Cie$P l g a en a l l C en es sa <n en i C C C C i 0 9a G W G C 4: C v 6 ee ed . ee S 9 9 Ii 4 ea ea a 4 e 3= b 6 0 6 9 a eD ** OV eV ed O9 41 0

>9 9 >@ $ >@ >0 e eo VW V se == es 5 se to V es g es -w 9 >9  : =

l g *T gO 90 =0 =0 gO gO 5 et 1pi : 4 C- C- .- 20 .- C- e- -O e-eo <>t > 86 -

? -u == U 60 -u wU -U -U C =. n u C 6 I M bo -U =.s> oe ,C M m m *a Cie. C e l sg ac=c 9 -au Aoe g. < m <

l o mu Q < mu Q e:ci ai 0 1p C

n es b g i O c 0 O.is en b cU es b a te - C i C C se 4 e

O = O . esmO e OO -O e' E C e xg6 C - es - est ,:D !e h .o. @)

ea e i t

@ ) CMD C O W CL 4 0 3

  • f:9 >

CL C C O D300C)>

aO Co Z

< t CCa 0 *a bU C==9dbi b 4 l

C - 9 *0 e ed O-< O-Oe03 ci ap O

  • jaw eC C C 01 l i bb O V to ** > bC S6@ it A* _l t/) 3 1

C 2--C ~Z C WV 11d4 ' 54

=)OE1 i1) = ) U g U se to ) -)e=gU 6 90 < i-.

e a e o

=

~'44 8-L=i>.C eO .u = ea > .. 3e (6 ce-g-.i) $.O. b.CO7-g3g e-. Cg w=

g-b g--COgL XgO O b

4Ci d h 'a eri a' 4' EeeU44a geasCeU w> g e e 0 ed a CL

c. e4 Ca. * =

SQ DQ = mC

.e4%w .aaNw (>AC ie' ed g ec  !

.O. C@

.b bb .

CL =

Ch *

. *'a I

Li en O .OaeO Ob Ob C> 4 eg ap 6 CL 9 OC b O.

e

-a SOQ =3 5

.1' 4 bQ = se e ge O 6

UV 4A g g g m

es -ea N erg ei b

6 eb == a b ers b OO NeG -b eb tl

~6g == b W;

>@m NO NO 41 3'g 2 Ch e

-e -e 4 f

-0V >C >C 6.wt ( 4 IO ZO at =. a e S

S .

ed O- O .

-E ==

e.= N

E

- Vm I hc) 'ci]hg os o (

e. 5 1

5 7 N

1 1

G b_

s k

r a

m e

R l

a r

e n

e G d . . . .

d e A A A 8 y e s ,

s o n yi t on li - i l

ci n i.

ae - io ee dd i n.

ae in.

ae l i n, l ttI ca ev a rl evmr rl rl l

ae rl l

cei m ror ym tb ro e tb tb i

tb i

efb faa lyer tp l

l r e

fl a

t pk m rep fl a

fl a y . a y w .

d fl rd p l o a oi o oa oi oi t

ee l

f S_a E al ns l a nsmd a a ps oi a

l ee a pt mC ml U l sv Us sv sv mo sv mmD ee ri UN sa UN e. sa sa sa rtn ow F Mi o F nhy o o ral odc o rat odc luso yi N

rd

. E .

rd

. L8 F .I tl L8 L8 N LA N ~

is t . ee .de. .e .n .de .ea I

.n .n .dein .n .deTn a c eps erC ep ei erCsu ei esa fn o u n nmo niA nm na niAon na ei na nom na ei esK nom oal ouV oai or osVl a or t o ol e or ol e f Ndc N qH Ndc NT NqHcm NT N Ncr NT Ncr 9

) g g 5 i n n 1 t i

; t ;g ;g  ;

a w w a wn wn w F e - ; c o- c O rn is i Io-is Ii i oi l t oi l t is

o; li s is duo dt d oli nh n ,d nh t ,d nnt n d ,a ,c a dt nh ,d nht dt nh S hlt ig i mi g mi g i e ei ig mi g tac i m r i r i r rd im ig eret nl r n anl n an r im i m T M o a oi lanl o l o nl r anl r o a nl r E r e i gl s aig ai g i i li s a s i gl la i gl o a o s E oD tna tt tn tn t rt rt tna i gi ii ih wii wii woh woh tna tna H stC sg ost ost sg i

t ii wii ii lotg oi lotg S oaC oi l oa l oa oi oi stC ostC stC oaC PcM ml Fml PcM FpcM PcroaC oa l

( Pl F pc fpc Pl F w 1 t t t t t n n n n n t

n t

n t

n

- e ) e e e e e e e e 4 rs t t t t

. u( r r o r r o t

r t

r t

r t

r 4 lo e ed t ed e t e e e e ld ao v

dn ve e ve v v v v v ds l s ds d n dn dn dn 6 rM ae ao l o ao dn np nl a

p e ae ae ae ae I c al nl a np np np np E ic Fc I c o F I O io io I o L t a B nrn e A aeid pto T l POaM C AD 8 O AD 8 C AD B C e

dd t o

n

- m eo R - tm yo n e smnC nd e ti oot cti o o d ll onnt ct caoi rc ey

( cann i(

an dtr nrp mea eyt u ii e dtcr vup ioocs iee S_ F onm) an ie utp ria5 m dxd ennoo nom)

Ptd1 r ra8 Roatm P pd1 f

f8 ,

o1 ,8 o r2 1 C1 t_ o2n )

n2 C r f

nn o1 Mme s0f.N oe V ek n dH Vta r r i_

t o pp e1e tot eI t

aC 0 r ie i m rNr 8rb rN le o ro cC t a a e, f2

,t p ,

s s5s osA r ,2 ef Do r r 1

reA rB es.

omoA o pl kuo tetB aBNA tm e 8 otoA Mim1 oan REC 8 d Mdo B1N1

=e n r u t

e,

s. . .

t08 i_. 9

%(on Ci l I 5 1

6 '

!j ' ,j

,i , i

4 "I : VEGP-FSAR-6

$f5]oh .k 1 a

4 6

e a

e E

C h=

=

e

. 26 . . ,. .

u ww- o> C

-> Os e e i- e i- e ce= i.O mm

.- .. ea .- .- o> .- => .-

U%D  % N >3 wOas-G e mm 60 (oe 60L de bee 04

. 4 e e L e

- uD C- waCU C C- wa bMa il - Gic = *

  • O - = == 0 C-

==

wa C-W 4 1: # 4 W em CW O 0 ==

EQ' s S O 6>

4 44 Ce se CW 4.

s.d > b> s by et 6dC 12 64* we 3EOC . 4 de 32 de 32 3 6) w CV 6

  • de sdO

-h-Lt .

V E 64 w .>( =g -h ( 64 w . be 6

w. km

WW e. .D@= C O VE - 0 O O e U >60 ceq m

C eG .e C C .Ve. C .Vt . O C

W=

g6cos d= phO d-wCC  ::=( COE de C=DDC c60 M=

03 h 3> O-c Ob 03=ce de Ob de Oh C=( me C=4 de

% 3: 7E EUL W E7>$$ 03> Ob 03> 06 JW JW E 72 w> 3 7E JH

^ tPL m m 9 e4 o

.s

.. .. u ..e m o ) e

.. e C 3C 9 .. e y e , o w C 3C e =u a

6C -

-=w -O

.C= - =

O-O ==O -a w y a e - s. a. -d

,o _- =, _L EC .e E o o e e u _m

, g _C- = _ _ _u _u- _u weo - u, m, , .. u

@ g969 9 I:

0

  1. C=

-0 eC C eC eC C C 4 b e a= -O 4=m O == == = =..= -=

Ol o' s s wC w

=d e bu e e e e d . e W M -

C )== >== =

6w be ks La z "i .m. Ceu Ceu a OC OC OC OC OC g o d.- - e - e 0 6 Q 6 O A

- =

6 em -6 we am

=

wee 4

-- s - -

so

-g 2 6 =

N en a a a

(: C C l Wa (i e G 9 C

9 6e .i a w L 9, 3w 4 O 6 6 0 w

6 w

6 0

-t d CD 9 a e CD O Cew V ~7 O.V

9 9 >9 > W de e 4 Tid -d > >4 9 4 w De DC -C Ud Od -e -6 al O =O

@ C.=

= >U e-wU 40 . Ca C-

-Q 49

=0

-e e4 uO se C4

-0 40 C-

=U

0 e

(

N

-ec ehe M %o E w0% .

M wem CLCD e@=7

- aw 0 b AQat 4.Q m

@ O (O S O (

SO 4 20 e'

C i 5 ==

& CK O

W e.

-L C 6

  • 00 C4 *=

ho OOw O OCC w= yw= ==de QL-ow w U Leeba eu >

wu C .C

. .>-Wu =OO

.w Ce aaC .- -

32 Cua

-OOu.

owo

--.ES = .

C -. >3w . ->u.e=w QC.a

.- a 4dDe .ecO VYD OCOCd u-u.- o EOed A d ak w bau b ea MC C-00

  • Och L

N ** uc=- -

a Ce 3 O C Op O 'O CC NO =

>.u O

w0 .

N

.u.

=~- @ L.

C

-w o.

2 S ege "? ,2 "o-- *:2--g

-m s u 'NC s .o. ,

uu . ,e '8 O A LNN W dg .

  • E!' -2 2% J".s04 c .' .Cw.

au=x 0 s S e,* -

,a Oa ew e M. c

, MS j #

7

  • k$- =*-a 50d 8 h sk,g- 7 i

E G

w0 N

i/ .

_g e e o e " N

.i TABLE 6.4.4-1 (SHEET 7 OF 15)

Plant Oper- Method Faiiure Errect Go--fe Item Descr8ption Safety ating fa i lure of Failure on System Safety peo . of Component function Mode Men Mode (s) Detection function Capability Cenera l_ Rema rks h 21 B rea ke r, 8660-V , Provide con- A Inadvertent Motor indicating 1E Bus, None. EFU not re- 7/'

swi tchgea r, tinuity and closed lights quired. NUs provide fo r I tam 22 No. 4 protection to HVAC.

breaker on 18807 fan motor item 22 8, Fall to Motor f 7dicating None. Loss of train 8.

C close lights; flow Train A available.

alarm, low

22. Control building con- Provide motor A N/A N/A trol room filter unit power to cir- None. EFU not re- pf ran anotor, ND quired. MUs provide culate air HVAC.

1-1531-NT-002-M01 8, fail to Flow alarm, low; C operate None. Loss of t ra i n B.

motor indicating Train A available, rap motor lights

23. Breakers, 480-V Provide con- A inadvertent Heater Indicating None. [FU not re-jd4 t:1 swi tchgea r, 1E Bus, tinuity and closed lights quired. NUs provide for item 24 No. 06 protection to O breaker on I A805 hea te r ( i tem HVAC. .O 3
24) 8, fail to C close lleater indicating lights; flow None. Loss of train A.

T ra i n 8 a va i l a b le.

3, alsrm, low y 8

24. Control building con- Provide heat. A N/A N/A Nane. [FU not re-trol room electrical hea ter, ND 1-1531-and reduce relative quired. NUs provide [ C5 HVAC.

NT-001-H01 humidity and 8, Fall to ex t rac t moisture C opera te Moisture alarm; tempera ture indi-None. Loss or tra in A.

Train 8 available, cating lights

25. Breaker 480-V Provide con- A inadve rtent Heater indicating switchgear, 1E Bus, tinuity and for item 26. NO No. 6 protection to closed lights None. EFU not re-qui red. NUs provide K HVAC.

breaker on 18801 hea ter ( i tem

26) 8, Fail to Heater indicating None, loss of train 8.

C close lights; flow Train 8 available, alarm, low

26. Control building con- Provide heat, A tsol room electrical hea te r, MD 1-1531-and reduce relative N/A N/A None. EFU not re-qu i red . NUs provide [

HVAC.

NT-002-H01 humidity and ex t rac t 8, Fall to Mo i sture a la re: None. Loss or train 8.

moisture C opera te temperature indi- Tra in A ava ilable.

cating lights

m TABLE 6.4.4-1 (SHEET 8 OF 15)

Plant Ope r- Method 4 tem Description Safety ating Failure Errect -Ge -fe-failure of failure on System Safety No. or Component function Mode 4teer Mode (s) Detection Function Capability Cene ra l Remarks J6e ,--

27. Breakers, 8 80-V 4 MCC, Frovide con- A, inadverient Position Indi-IE Bus, for item 29, tinuity and D open cating lights; None. Normally closed g dampe r wi l l remain NC No. 23 breaker protection to MCC alarm closed, on 1ABA dampe r ( i tem
29) 8, inadvertent flow alarm, low; None. Loss or tra in A.

C open position indi- Train 8 available.

cating lights; MCC alarm

23. Motor starter for Provide con- A, Item 29, NC No. 23 inadvertent Position Indicating None. EFU not re- )(

tinuity to D closed lights qu i red. NUs provide motor starter on dampe r ( i tem HVAC.

1ABA 29) 8, Faii to C close flow alarm, low; position indi-None. Loss of train A.

Train 8 ava ilable.

cating lights

29. Motor-opera ted on-orr Remain close A, inadvertent Posi tion indi-damper, NC IHV12128 on 1ABA on normal mode, D and cpens on open cating Ilghts Mane. EIU not re-quered. NUs provide - #$.n CRI :nd is ; HVAC. In smoke mode, a
f;; close the damper M manually. u)

C 8, reil to open flow alarm, low; position indi-Mone; Loss of train A.

Train 8 avaliable, y

cating lights m

30. Breake r, 48 80-V %, Provide con- A, inadvertent Position indi- None. Normally closed 1E Bus, fer its:a 32, MC No. 23 bre3ker tinuity and protection to D open catIng Iights; damper wiII resain K on 188A MCC alarm closed, damper (item
32) 8, Inadvertent f l ow a la re, low; C open position indi- None. Loss of train B.

Train A available, cating lights; MCC alare I

31. Motor starter for Provide con- A, inadvertent Position indicating None. EFU not re-item 32, NC No. 23 tinuity to motor starter on 188A damper (item D closed lights quired. NUs provide f HVAC.

3.' ) -

8, Fa l l to Flow stars, low; Mono. Loss of train 8 C close posit!on indi-cating lights Train A available.

e TABLE 6.4.4-1 (SHEET 9 OF 15) f Plant

' Oper- Method Item Description Safety ating Iaiiure Efrect -Gea-4 e-Failure of Failure on System Safety No; of Component function Mode Mode (s) Detection 4eem-function Capabiisty Cene ra l Remarks y

32. Motor-operated on/of f Remain closed A, damper, NC IHV12129 inadvertent Position indicating None. [FU not re- 3I on nosmal mode, 3 open lights quired. NUs provide 4 on 198A and open On CRI rd .;-. % HVAC. In smoke mode, h close the damper manually.

8, Fall to Flow alarm, low; C open None. Loss of train 8.

position indi- Train A available.

cating iights

33. Brea ke rs. 8s80-V MCC, Provide con-1E Bus, for item 35, tenuity and A,

D loadvertent MCC alare:

open None. Etu not re- [

NC No. 6 breaker on protection to motor indicating quired. NUs provide lights HVAC.

1ABA fan motor litem 35) 8, Inadvertent f l ow a la rm, low; None. Loss or train A.

C open position indi-cating lights; Train 8 available. <

MCC aIarm to C2 384 Motor starter for Provide con- A, Inadvertent Motor indicating item 3$, MO No. 6 tinuity and D closed lights None. Efu not re-quired. NUs provide N 'O 8 motor starter on 1ABA protection to fan motor HVAC. $

p (item 35) B, fail to f l ow a la rm, Iow; Mone. Loss or train A.

y 1

C close motor indicating ligtets Tra in 8 ava ilable. m

35. Control building con- Provide motive A, N/A trol room re turn a i r power to cir- N/A None. Etu not re- g D quired.

ran motor, ND culate air 1-1$31-87-00$-M01 8, fail to f l ow s la rm, fow; C ope ra te None. Loss of train motor inuicating A. Train 8 available.

ran setor lights

36. Breaker, 8sS0-V MCC, Provide con- A, inadvertent MCC alarm; None. EFU not re-1E Bus, for item 38, NC No. 6 breaker on tinuity and protection to -

D open- motor indicating lights q u i red. NUs provide K 188A ra n mo *.o r HVAC.

(item 38) 8, inadvertent flow alaris, sow; None. Loss of' t ra in B.

C open position indi-cating lights; Train A available.

MCC alarm P

w b-- '"

. ._ __-_m. _ _ _ _ _ . _

, p' TABLE 6.4.4-1 (SHEET 10 OF 15)

Plant Ope r- Method itsu Description Safety ating railure Failure Errect h g or Component of Faiture on System Safety treur Function Mode _ Mode (s) Detection Function Carability Gene ra l Remarks -New-

37. Motor starter for Provide con- A, inadvertent Motor indicated item 38, NO No. 6 tinuity and D closed lights None. [fU not re-quired. NUs provide

.J$

motor starter on 188A protection to HVAC.

ran motor (item 38) 8, fail to flow alart, low; None. toss of train 8.

C close motor indicating Train A available.

lights

38. Control building con- Provide motor A, N/A N/A trol room re tu rn a i r power to ci r- D None, EFU not re-quired.

g ran motor, ND culate air 1-1531-87-006-M01 8, Fall to C

f low a la rm, low; None. Loss o r t ra i n 8.

ope ra te motor indicating lights Train A available.

39. Breaker, 480-V MCC, Provide con- A, Inadvertent Position indi- None. Normally closed 1E Bus, for item 41, tinuity and D open cating lights; damper will remain fis NC No. 21 breaker on 1ABA protection to damper (ites MCC a la rm closed. h g
41) 8, a nadve rtent flow s t a rs, low; None. Loss of tra in A. en C open position indi- I 1 Train 8 available. "2 cating lights; M

' MCC a la rm i 40. Motor starter for Provide con-item 41, NO No. 21 tinuity to A,

D Inadvertent Position indicating None. Eru not re-close lights quired. NUs provide gmI motor sta rter on 1 ABA damper (Item HVAC.

41)

[ 8, Fall to Flow alarm, Iow; None. Loss or train C close pos; tion indi- A. Train 8 avail-cating lights able.

41. Motor-ope ra ted on-of f Remain closed A, inadvertent Position indicating None. Efu not re-damper, NC 1HY12130 damper on 1 ABA on normal mode, D and open on open lights qu i r.ad. NUs provide g

CRI -J ..-.-

HVAC. In smoke mode,

-eodes- damper can be closed manua11y.

9, Fall to r iow a la rm, low; None. Loss of train C open position ivid i - A. T ra in 8 ava i l-cating lights able.

42. E rea ke r, 480-V MCC, Provide con- A, i nad've rten t Position Indi- None. Normally closed 1E Bus, for i tem 44, MC No. 21 breaker tinuity and protection to D open cating lights; MCC alarm dampe r wi l l remain closed.

[

on 1BBA damper (item 44)

  • o s TABLS 6.4.4-1 (SHEET 11 OF 15)

Plant Ope r- Method failure Errect item Description Safety Ger=9e ating failure of Failure on System Safety 4 teen g of Component Function Modo f*odc( s ) Detection Fajnction Capabi1ity Cene ra l Remarks =Her

42. 8, inadvertent F i tN a la rm, low; (Con- None. Loss of train G.

C open position indi- Train A available.

t i ntied ) cating lights MCC a la rm

43. Motor starter for Provide con- A, item 44, MO No. 21 tinuity to D Inadvertent Position indicating None. EFU not re-close fights quired. NUS provide M

motor starter on 188A damper item 44 HVAC.

O, rail to flow alarm, low; None. Loss of train C close position indi- 8. Irain A avail-cating lights able.

44. Motor-operated on-of f Remair. closed A, Inadvertent Position indicating Mone. EF88 not re- ~

dang;e r, NC 1HV12131 on normal anode D open lights Je8f qu i rect. NUs provide on 1881 and opens on CRI ; - .! ;; !;-

HVAC. In smoke mode, damper can be ciosed P1

-madeer manually.

Q 8,

C Fali to open flow alarm, low; position indi-None. Lost of tra in

8. T ra i n A ava i l- k 01 cating lights able. l>
45. Breamers, 480-V MCC, Provide con- A, 8,
D inadvertent MCC a la rm; None. Less of train A.

1E Bus, for 'I tem 4 7, tinuity and C, open motcr indicating pdf *8-NC No. 14 breaker on protection to P Train 8 available.

lights; flow 1A3A fan motor a l a rm, low item 47

46. Motor starter for Pr7 vide con- A, 8, Inadvertent flow alarm, low; item 47, NC No. 14 tinuity to ran C, open None. Loss of train A. JrI motor starter on 1 ABA motor, item 47 D motor indicating lights Tra in 8 ava ilable.
47. Control building con- Provide motive A, 8, Fall to trol room engineered power, to C, ope ra te Flow alarm, low; motor indicating None. Loss or tra in A. [

Train D available, safety features (EST) exhaust a i r D lights chiller room exhaust ran motor, norma lly energized (ME) 1-1$31-87-OO2-M01 CL). Breaker 480-V MCC, IE Provide con- A.

Bus, for item 50, NC tinuity C, D 8, snadvertent MCC a la rm; motor open indicating lights; Mone. Loss of train B.

Train A available.

p No. 14 breaker on protection to fl ow a la rm, low 188A fan motor item 50 *

]

1 TABLE 6.4.4-1 (SHEET 12 OF 15) riant Ope r- Method Fai eure Errect

] Item Desc ript ion Safety ating Failure of Fai f ure Go-To-4 18 o . or Component on System Safety 4+ ear function Mode Mode (s) Detection function capability Gene ra l Remarks 1 .Jame-

49. Motor s tarter for Provide con- A, 8, Inadvertent Flow alare, Iow; item 50, NC No. Ils tinuity to ran C, D cpen motor Indicating Ilone. Loss or train 8. M motor starter on Train A available.

, 188A motor (item 50) l istits 1

50. Control building con- Provide motor A, 8, Fall to l trol room ESF chiller power to C, D ope ra te Flow stare, low; motor indicating None. Loss or train 8. M room exhaust ran exhaust air Train A available.

lights motor IIE 1-1531-

87-008s-M01 St. Fan, ran short, bea r- Provide cic- 8, C Mechanical flow alare, low; None. Loss of t ra in A.

4 i ing, ri t ter, deeper, culation rallure ,5(

pressure dir- Train 8 available, j etc., for air filtra- filtration and rerential alare, tion unit 1-1531- control or air high; teapera tu re

M7-001-000 tlow stare, high
52. Fa n, ran short, bear- Provide cir-8, C Mechanical Flow a la re, low; j ing, fi l ter, deepe r, culation rallure pressure dir-None. Loss or train 8. M 'lgO!-

eic., for air filtra- ri f tration and Train A available. U

?

tion unit 1-1531- control or air re rentia l a l a re, high; tempe ra ture - 4,:

i MT-002-000 flow alare, high m:

- i

53. caoling coil for air Provide cool- s, C Leakage in Wa te r riow a la rm, l riltration unit ing and heat cooling coll Iow; tempe ra ture None. Loss or t ra in A. 54'8, j 1-1531-N7-001-000 removal in the a la re, low Tra in 8 ava ilable. m i

ama i Sas . Cooling coli for air Provide cool- 8, C Lealage in Water riow s tare,

} riltration unit log and heat leone. Loss of T rain 8. 16 1-1531-N7-002-000 removal in the cooling cola low; tempe ra tu re alarm, high Train A available.

a rea i 55. HV12162 a i r-ope ra ted Reesin ogen A Inadvertent PosiLion Indicating IIone. Damper can be Common to Units on-off deeper IIO/FC to allow flow closed lights manually opened.

M of air in 1 and 2 i normal and 8, C i

Fall to Position indicating leone. Item 56 smoke modes, close lights 1

and close on available.

j CRI see=4espec D j

medeo- so that Inadve rtent Position ividics. ting None. Damper can be

' closed Iights manualIy opened EfU will pro-vide HVAC 1

l s

i

e.

TABLE 6.4.4-1 (SHEET 13 OF 15)

Plant Ope r- Method failure Errect ihr-ftr-Stem Desc ript ion Safety sting failure or Failure on System Safety l(o. of Component -+teer-function Mode Model51 Detection function Capability Gene ra l Remarks -Me>r-

56. HV12163 a i r-ope ra ted Hemain open A inadvertent Position indicating None. Damper can be Common to Units ~ fM' on-of f dampers NO/fC to allow flow closed lights manually opeited. I and 2 or air in normal and B, fail to Position indicating None. item $5 smoke modes, C close lights available.

and close on CRI s h a$e- D Inadvertent Position irvticating None. Damper can be

-modee so that closed lights manually opened.

EFU will p ro-Vide HVAC

57. 1-1531-B7-002-000 Provide motive B, C, Mechanical f l ow a l a rm, low; One . Loss of train A. jptf fan, ran shaf t power to ci r- D rallure tempe ra ture a la rm, bea ring, motor, etc. Train 8 available.

culate air blgh.

$8. 1-1531-87-004-000 Provide motive f> , C, Mechanical ran, ran shart, power to ci r- D railure Flow alarm, low; temperature a la rm, None. Loss of train 8. M bea ring, motor, etc. Train A available.

culete air high a 59m 06 :: n i t z .-

1Ai1Sl2110 1 :tr- c!

concentration C Fr!' t r a 4v* Ch alarm at c^^c-" t '? U ^^

alarm high on Cl

' ^ ^

  • Loma u" isolation of Unit 1

'r-CAn dYoace4 t NTso Mn-' p$< ,g

-QLintake a i r, high Cl2 monitor IATIS121$2 side intahe_b r - Unit 2 s concentra- - closThg dampers ai r int.ske 29 7n and713 rms-4t_ ' Ntion *O C1 s

c ti$n,oncentra-and s ilt- - '

X~#- 1HV12114 and IHV12115. Use Unit intake.

recircut?;.. .

mode with no Outside air intake.

Cn

~ f Fa l se a la rm No a la rm on Cl2 None. C Cen

--tsoc_unsmo +-au -t nign , _

t.

3 Q.

N LD

\

co b

- - b _ _ U

TABLE 6.4.4-1 (SHEET 14 OF 15)

Plant Ope r- Method Faiiure Efrect h item Desc ri p t ion Sarety ating f a i l u re or failure on System Safety of Component 44msn 14 0 . funct(on Mode Modets1 Detection Function Capabieitv Gene ra l Remarks J6er et C! ren4se- Nn4 tee-64 C f: : - N; OL c;qcc;.; etisa L , .c . Aui --i .ce ; ;j ;. C;2 so,w- M r1 7 Atts12t1 concent ra tion a la rm a t alarm high on Cl2 isolate Unit 1 sjda -tration Ts also L.Jotake air, high Cl2 monitor 1AT1S12110 intal + by cTOGng high in Unit 2 air alarms it-higt+ concen t ra- dampers 1HV12115 and intake, go on re-CI, concentra- _

IHV12115. Use Unit circulation mode tion, and 2 air intake. with no outside 1solates in- air intake

-- ' ~ take air Fa l se a la rm No a la rm on Cl2 None. Cl 2,C m-

- r.m. w 3 csp sn get imo 1 m_,, - _ _

w : 3..

61 Smoke monitor Monitor smoke C Fail to give Smoke alarm high on None. Automatically If smoke con-1AE12167 in intake air smoke alarm seke monitor W

isolate Unit I side centration is also and ala rms at at high 1AE12166 intake by closing high on Unit 2 high smoke smoke con-concent ra t ion dampers 1HV12114 and a i r intake, cent ra t ion 1HV12115. Use Unit go on recir-and isolates 2 air intake. culation made inta ke a i r with no outside Fa l se a la rm No a la rm on smoke lione. Smoke con- air intake moni to r 1 AE12166 centration is not 4 p3 high. O

62. M Smoke monitor 1AE12166 Monitor smoke C Fail to give Smoke alarm high on None. Automatically if smoke con- fT I in intake air smoke a la rm smoke monitor isolate Unit i side centration is also M and a la rms a t at high 1AE12167 intake by closing high in Unit 2 high r,moke smoke con- dampers 1HV12114 and air intake $

y concer.t ra t ion cent ra tion 1HV12115. Use Unit go on recir- i and isolates 2 a i r intake. culation mode m intake air with no outside f a i se a la rm No a la rm on smoke None. Smoke con- air intake monitor 1AE12167 centration is not high.

63. Radiation monitor 1RE12117 Monitor radiation in C Fall to Radiation a la rm give radia- high on radiation None. Use EFU to fil ter iodine. item g

intake air tion alarm monitor 1RE12116 @ available also, and a la rms a t at high g high radia- rad ia t ion tion level

& Fa l se a la rm No a la rm on rad ia- None. Radiation 3 tion monitor c6 level is not high.

23 1RE12116

.Da U1

\

c) b .

F TABLE 6.4.4-1 (SilEET 15 OF 15)

Plant

  • Oper- Hethod FaiIure EFrect -Ce ?e_

l tasa Description Safety ating Failure of Failure on System Sa fety 4 tee-No. of Componeng function Mode Models) Detecti9n function Capability pone ra l Remark % -4ter-(A . Radiation monitor Monitor C Fall to Radiation alare None. EFU to 1RE12116 radiation in give radia- high on radiation f i l te r i od i ne. Item' intake air, tion alarm monitor 1RE12117 $$ available also.

and alarms at at high high radia- rad ia t ion O tion level Fa l se a la rm No a la rm on rad ia- ~None. Radiation tion monitor level is not high.

1RE12117

^

blf$ /N SC 8 l tn

, O

\ m j I m

l m

o a

i 2 <n 4

o. Plant operating modes are as follows:

A - Normal mode: HVAC poreal units (NU) operating; outside and recirculation supply air; positive room pressure relative to the atmusphere.

! B - Emergency mode: HVAC itration units (EFU) operating; ou*, side and recirculation supply air; kk uu

_pos;tive room pressure relative to the atmosphere.

.L2s.\ a t i c h DD O. LL C - hmte mode: EFU operating; recirculation only; zero pressure differential; outside smoke, :S::r'=. l7

  • g D - Smoke purge mode: HVAC NU operating; outside air only; negative room pressure relative to the atmosphere (smoke inside yw cont ro s room).

, NN CD CD l J. 4

e

' b I

nll t K

4 -

s 5 d d

~

~

?:

!;l-A i  : e . 2

( ,'c y

. ll, 5 3

's;isgi 8L i a l i! .! l!! I li i!,

ligl!

iii 4 i!!! a,!

'- gll a 1: Il llil i ;

se s u

lll 5 I  : I  : bl!!!jp) : F l} S l . ,
ui:: 3 a=li c

" #  :  : l' 5II  : !1 1

_l llt is ill -

alii sli

?  ! :- :.  : . . . .

l ,,

sl ll1 ~

i I s! fd~ III' s

  1. li .is  !

llll

! 1, N *3 El*!jivgl!i .r i a . . Ii ii lga lg,i!!,l! , ll.iin gas-i sg - - .

-l n

o ll1 ll illill ililli

" g i

a  : - -

e i i j u E 5 I 2  :  ; .

!  :$ I I a El :l :l If Ie R R ll If If rI rE p) i i .

.. rE g I

n  :. 5 :1

. :l
. c I ,,

\h 's 3 W h5 1R I

t

. ,, ., .,n- , ,,-. -- , , , ._.. ,.,._,.-D,.-, -,,_.,,,-a,.,,,_w_,__-._-,n-,,__.,,_ .,.,-.._,-n

_-.,-_,-,naa,-_- ,-,.

VEGP-FSAR-6 6.4.6 INSTRUMENTATION REQUIREMENT The indications in the control room to monitor the heating, ventilation, and air-conditioning (HVAC) systems are listed in table 6.4.6-1.

Instrumentation required for actuation of the control room

. essential RVAC system is discussed in paragraph 6.4.2.2.2 and in subsection 7.3.6. The control room ventilation logic diagram is shown in figure 7.3.6-1.

Details of the radiation monitors used to provide the control room indication actuation signal for the control room essential ver.tilation system are given in section 11.5.

The chlorine detecter eeneitivity and-reepence time ere provided

-in paragraph 6. 0. 2.-2. 2 ..d t;bi; ' . 0. 5 1. 7 The instrumentation is designed as Seismic Category 1. A description of initiating circuits, logic interlocks, periodic testing requirements, and redundancy of instrumentation relating to control room habitability is provided in subsection 7.3.6.

I l

l l

l l

6.4.6-1 Amend. 7 5/84 L

VEGP-FSAR-6 TABLE 6.4.6-1 CONTROL ROOM HVAC INDICATIONS AND ALARMS Control room differential pressure (high or low alarm)

Control room area radiation (indication and high alarm)

Control coom smoke.(high alarm)

Smoke in control room intake (high alarm)

Radiation level in control room intake (indication and high alarm) 1

- Chlor 4ne-qce in entrel reer int 4he (recorded and-hi;h alarmF Fan operating status 17 Isolation damper position Differential pressure across first HEPA filter (indication and high alarm)

Differential pressure across total filter unit (indication, recorded, and high alarm)

Moisture content downstream of the moisture eliminator (indication and high alarm)

Temperature in charcoal filter (high alarm) l3L Temperature of filter unit upstream and downstream of the charcoal filter (indication)

^

Airflow rate at filter unit outlet (indication, recorded, and high or low alarm)

Qen--cont ro4--room-acce s a4oo r a-af ter-trans f e r te the

-emergeney r.ede (a1are)

Amend. 7 5/84 Amend. 30 12/86

6 )

8 0

/ 2 2 M 1 E F T O 0 S 3 Y A S 8 d N T n O E e I E n T H A

, i to A U S aeT (

uA T Nu A T C 1 Mc A -

A 1

- D .

R 2 K

C 0 + I If A U 7 0 G xY8 f

,7 E E

~

l

,s F R AtA A U sng S hoA IT- G I

nTN cSO j F

(

d,L/ \, N

' ~

S ,

I f L ^

t/E ATEE Df y "

E a*

A uSR NEM hI ARE M 'a 2 D aT 3

  • A L a"O cN E=A x

T t 1 S 7 r E 3 o cT H -

T f o

t i

v "" 8J L

y n

T S

E r

%cu T

1 f f

f I -

4s I

mE o

n T

p " T E r

I

~ I wm e o

C w

L)

Agi t,E P o

uA AyWg . a

{

e p U A T usm s

sEm

=

i c/

g MC AnE s m r t A a W =av o e

s I! e ll i,gI! sel3 8 ,. ! j I :il, G

(

_~g 3 y w q:A

- o os f r*

TaH R

_ F GAG cf

- O *#

A R

s.

9-3

_ 3 4

4 ' ii ll  ;: l /; '

~ 4 EGP-FSAR-7 ff wnc. u u ri.

.s c re. rv /

.s w e rz. n c , w i m rG *r e, Loc c i=cartr ee, edi pter r. o co .a rw i n . w ssco m noa iY$nu c, c o u ri ca, cipeu,r n twsw ,

JP pr6 im rt v &1cN 7" c ou r1ec c.nz c a i r s u c c/dw o cwt l fr'tE A u~Q u N O hN r g c,y yg o g,, ,, , ;Q g y g y C. Bypass N -

j

-Swi t ch e e -a re-provi<ied-to-bypa s s -de fe o t4ve-moni-t o rs-to--

-proc 4ade-spur 4ous-actuat4+n.\ Channel bypass is  :>

indicated at the system level in the control room.

D. Interlocks There -a re-no-i nte r4ook e-on-these-con t rol s .

@ f ER.kr/0Nh t turf /LOCfJ AAS ifJ #+C o.t y su **t co a / 6 7.3.G,*/ AND E. Sequencing M 'O'S **'#D /* enov 6,4 The control room ventilation isolation system is powered from the Class lE power system and energized on the first (0.5 s) step of the load sequencing, except for the control room filter units and return fan motors which start automatically after the 30.5 s l 1, step.

I F. Redundancy Controls are provided on a one-to-one basis with the -

mechanical equipment so that the controls preserve the redundancy of the mechanical equipment. Redundancy is provided in the ehleri e 2-M gaseous radioactivity l7 monitors, the actuation signals, and manual actuation switches.

G. Diversity Diversity of actuation is provided in that the control room ventilation system mty be isolated by either an automatic system or by operator manual actuation.

Diversity is provided by actuation from the gaseous radioactivity, chl^ri-- =^=4*^- , and manual switches.

l7 H. Actuated Devices Table 7.3.6-2 lists the actuated devices.

1. Supporting System The supporting system required for the controls are the four Class lE 125-V de power supplies, vital Class lE 30 ac system described in section 8.3, and the instrument air system described in section 9.3.1.

Amend. 7 5/84 Amend. 19 9/85 7.3.6-2 Amend. 30 12/86

VEGP-FSAR-7 7.3.6 CONTROL ROOM VENTILATION ISOLATION 7.3.6.1 Description Upon detection of high airborne chlorine concentration, the 17 normal supply of outside air to the control room is terminated, as described in sections 6.4 and 9.4, and the control room air is recycled and filtered. For high gaseous radioactivity levels, a small supply of fresh makeup air is provided, and the control room is maintained at a set positive pressure to prevent the ingress of the local ambient atmosphere. Normal ventilation is restored only by manual operation by the plant operator and is maintained only if the local ambient atmosphere poses none of the monitored hazards.

7.3.6.1.1 System Description A. Actuating Circuits The gaseous radioactivity level and the chlorine l7 content of the air provided to the main control room from the local ambient atmosphere are each monitored by four redundant monitors (, nao en. esco mrue D ucer) $3(!

The signals from these monitors are transmitted to bistables in the engineered safety features actuation system. If acceptable levels are exceeded, the control room is isolated, as described above.

The sensitivities and response times of these monitors are listed in table 7.3.6-1.

In addition to the above, control room isolation is initiated manually.

3 B. Logic The control room ventilation isolation actuati_on system logic is included in figure 7.3.6-1. (The actuation signal is transmitted to each actuated device and, subject to the provisions of bypass or override, causes each device to assume its safe state.

K cm ca. c cac y o N t h rio d , t$o rt; TApias o r= rred" %

ht=f-fC VfD J H 4 r Al'LE I V 0 ,4 Jrn/T di fs A!.4 ( . rt CW86'tR ,

h t'Ed. m s S S I / e^ 13 // 0 y't D c'D W tot c.4 D 0 f3 At f r .+ c L O W mf LAs wer rc .rmar uni.iss rneae is A tow ,atow l L O N b t r10!) t Al rit .i' LOD ut/t r l

<3T6-1 Amend. 30 12/86

~

6 VEGP-ESAR-7 7.3.6.1.2 Design Bases The design bases for the control room ventilation isolation system are such that no single failure can prevent the isolation of the control room ventilation system. The trip points are provided in the Technical Specifications.

Additionally, the design bases described in subsection 6.4.1 are applicable to the control system components.

7.3.6.1.3 Drawings The logic diagram for the control room ventilation isolation actuation system is included in figure 7.3.6-1. -The--

- di f forence s- be tween-thi s-logic-a nd-that-presented-iuhe -

-Pr+Liminary 5:fety ?.n:lyci: 3eport-a:Pe the cere is *k 3== far

-the cent:1nmentr-purge -1 sc,Fatien-systow; paragr:ph 7. 3. 4.1. 3.

Other drawings pertaining to this system are included in the references in section 1.7.

7.3.6.2 Analysis A. Conformance to Nuclear Regulatory Commission (NRC)

General Design Criteria The applicable criteria are listed in table 7.1.1-1.

No deviations or exceptions to those criteria are taken. Compliance is summarized in section 3.1.

B. Conformance to Institute of Electrical and Electronics Engineers (IEEE) Standard 279-1971 The design of the control system conforms to the applicable requirements of IEEE Standard 279-1971, as listed and discussed in paragraph 7.3.3.2.C. The setpoints are provided in the Technical Specifications.

C. Conformance to NRC Regulatory Guides The applicability of regulatory guides is as shown in table 7.1.1-1 and summarized in section 1.9.

References to the discussions of these regulatory

  • guides are presented in table 7.1.1-1.

7.3.6-3

- _~

VEGP-ESAR-7 TABLE 7.3.6-1 CONTROL LOOM VENTILATION ISOLATION CONTROL-SYSTEM MONITOR SENSITIVITIES AND RESPONSE TIMES Concentration Setpoint for Isolation Limiting Type pCi/cm 3 ppm Isotope Response Time Gaseous 3x10** -

Kr 85 (a)

Radio-activity

--Ghle rine -

2 -

Lees-then 20 e l3(

Smoke - -

l7 Manual actuation a .- Response time is radiation-level dependent.

Amend. 7 5/84 Amend. 30 12/86 l

1

o VEGP-FSAR-7 TABLE 7.3.6-2 CONTROL ROOM VENTILATICN ISOLATION CONTROL SYSTEM ACTUATED EQUIPMENT LIST <a>

Actuation Channel Description or Train Control-room (CR) filter unit fan motor A (1-1531-N7-001-M01)

CR filter unit fan motor (1-1531-N7-002-M01) B

-_ Emergency suppby-inlet--damper-HV-12118 A-

- Emergency supply inlet--damper--WV42119 B Emergency supply outlet damper HV-12128 A Emergency supply outlet damper HV-12129 B Emergency return fan motor (1-1531-B7-005-M01) A Emergency return fan motor (1-1531-B7-006-M01) B .

Emergency roturn air damper HV-12130 A Emergency return air damper HV-12131 B Outside air isolation damper HV-12114(b) A outside air isolation damper HV-12115(b) B Normal CR A/C unit fan motor A-1531-A7-001-M01 Nontrain Normal CR A/C unit fan motor A-1531-A7-002-M01 Nontrain Normal CR A/C unit inlet damper HV-12143 Nontrain Normal CR A/C unit inlet damper HV-12144 Nontrain Normal CR A/C unit discharge damper 1HV-12146 A Normal CR A/C unit discharge damper 1HV-12147 B B

Normal CR A/C unit return air 1HV-12148 A Normal CR A/C unit return air 1HV-12149 Nontrain CR kitchen, toilet, and conference room exhaust fan motor-A-1531-B7-008-M01 CR kitchen, toilet, etc., fan inlet damper HV-12162 A L CR. kitchen, toilet, etc., fan inlet damper HV-12163 B Normal CR A/C unit discharge damper 2HV-12146 A L

Normal CR A/C unit discharge damper 2HV-12147 B i Normal CR A/C unit return damper 2HV-12148 B l Normal CR A/C unit return damper 2HV-12149 ,

A Normal CR A/C raturn and exhaust fan motor Nontrain i A-1531-B7-009-M01 Normal CR A/C return and exhaust fan motor Nontrain A-1531-B7-010-M01

a. Refer to appropriate logic diagrams for additional actuated devices.

b, en%utw Ac rv +rl o v o m., q

see 10 ac ;af eO*a y,3, ~ .agT 8(sa t/

p SOMA &S AE W S CNTL d[mq OSA INTAKE ,

GAD M 8 S to 1* av- s2sts ','8# # #

l iso l 3

\

cL6P. 1-sSa lf f31 T3 ST bLOCaW.aee e pe) i" e eas-ets95 A 4-as- s1895 C l- MS- 81895 s

..I- e m 4.sassa Tasesta s.es.f tl% S g. e64 fte96 A spesase astumpe Spheeen asfusae

" (b.ma 020.gh"'j')' NO TEAM M 70 s.aoreA6, in weJTes gy,,o me.s.v) ky s esofa.

~ -N- _ .. r' ) Iso Teat 6 % t10 uput s. Usat e TEAnas casrt ame mWAC STS eafeTT ACTla&Tafe Esfums

. Traies g ,

6 a&TJat NOTS 1 Taassa 5 4 : Psi! EastLAC A6 TE4OLATFD et TaMA I Cat bewe

,.s W Aa5bede20 4-Coat 4. . Cat ,Oh I'*Ta ste = 2 TE5f*** Of tasaftess 8es*dT sse cab tele s4 1-2 Wa B2 e1 150 Akk OE #

C e6 2 , ,,oy , 4 I"ecesTOS ed Pse6 GESF 1. W S . f t t G ~ ~ ~

TJ41 SLOCC N%g'M a i

k - /pagg DUs ' & TSSTisse OP 5.T napof ce sae+6 2 F W- ""'1 g _ gg inaagem y peorecTsoes 141T

< ~ ' - ~ ~ '# _.J -

4A&. EaMt 70 W TEST Pupaa

- .m ^~

! I5o}-(Teiss bsue)4 ft 6 og -

-1 we Asol - 2T2 Sec so.9 J" ,,pyn R f 4. Is0LATeh comeTA4T Per**m

+ T46#.Outu W Tt40 N'-- *' -

~

f ev a tea *** a4A'86 8*asavCa6 insTron Trm.R= 7 we -_- -

i

,,,p ,, g SanTr uTuar 0.s gg @E1*A) saf sT v twitcvsosa sI- A ; neo aToe o peOf6 6 r lHPOT TO Ts.l A U***

M', * #we g aCTJAfocoa m oao a cro=T.o.4 ,,, 7-ase c .. .. izies A ,

I T

&cTO&TE,(P) -

, wore & rsF b.<*(- NUCLEAR SAFETY RELATED cave i- as. .zinA s P4 Lb AP4as so6-i.t 4 a c o.,Tuo s. aoo.a eevac **TY AcT. .Q.

  • CroATs CP)

NOTC 6 @r **) Iupdf TO &D I*Sb-Se-CCSc b Trai.4 6 2 it S & cOS C, 3 e .sT/eveceios gy';** ,

crivc.. :-ses- s2 895 & .

esesT/ovescena (P)

Amend. 13 1/85 av.n -=4 nav.s Amend. 24 6/86 CONTROI. ROOM VENTILATION a'c a a^'"'< ISOLATION LOcic orAcxAs G mhi h m d m c,,,

Ofe':T'1 AND Ufe'47 2

'u=

FIGURE 7.3.6-1 ' SHEET 1 OF 15) -a a

e

t. ~ L'* . a' ;,

C A L OR IN E DE TEC TED , rest 7t st RELEr ATES IgifC cn * . sp., Bs Q( n ogggong AlrunTl t nw A

  • TRa*M a enc Gas Y

QE3W t - NS- 8 2Lo! C .

E

'&

  • m M NAL 50 /

TEST OLn,2.saV L)V) . ] l l l d y' us m or tunuT2 TsamrsAn i. dunT y srtJ.e.o<a sar

\ gT ,- [ f{ Mh- re f f 8Ct-Wi- ef f se t e ,- (p -

..pgl ac,,y m -

w aea ra n~ s o ro us armat f-as&-g g ggg e i 4esu~6 aarow t - ,. :. ,g , ,3 A $ ts1710 eq rpggg p Cg cwc 4xsowro-no er.,wc, sts row I wcwe T(sT,4. To moc c ISO Hrx*LDeus) rs act TA 6 NorCt h "O ' *~ " '" " Y '* ~'U'"4

(rWO r< A,4 Gd)

$*p h

, yg . , ,, g y ,, ,,, ,,,, g hj,'"

_ y ,- .. sosarea cureur Lo.oracr eAov,oso r.etous= rawosM CNLORtul DETECTED e ENPurr

$ A f f S = 9 3 9 E k Col I e n -{D wce. ogS & Sv s arus orse. a.us- os og I ".* bl 7 '*

  • Y t $ 7 15 LOC K iCM a % / (4)

, 'mp -

a s IN9df TO ~ Qs* *C,

TG $ -

u nm,q i ,

a 33- y=

5"C OZO I:0)(cuaTry 91- A SAfiT1

- " -./ % /,

7

-~

FrT e .vic o N

~

<huc Q ** C 5

MA NUAL aCTUATlON  ?"'S O*G YY f N0T s' frThlMii'""'  :

I ~= 3 - me aae..-ug>suasA ACTUATE e

~ ores / > ro cacircq) r RES E T/ Owl ARIDE I"'L O*G Y~" ofy ' y OHvc t WS- 8 s tif 4 , _

l A tSGl"/OVELRIOC (P) s l*L'O A K 4DS t06-9. t $ 3

' C C asO-aG-C042 c Mr sSanae.4 36LtT J

m r stevJ Amend. 7 5/

Amend. 24 6 -

vooTse CONTROL ROOM VENTILATION

[ %Ghh

% atacinacesseERATassG PLAssT usser i aseo usesT z ISOLATION LOGIC DIAGRAM m FIGURE 7.3.6-1 (SHEET 4 OF 15) g 5 ,

M 3

. "; El se b -

z era' s ll. iia  !

?s!A

>i  ! <j :s 3 i' ?l Ia as 8:?!

8B; !!

s z .o -

-.s 5 9 as 4

9 25 r-o h $

sj'e,c.

v.

8

.. -o Ja5@fI n2 aie

! s

, z. 31 : o .- $ .-

g o< 03 a d o ,, .

z-  % wi Nw i, g '

4 g k i:

u i

) 2hh las I

S (s e (I) l b

.G

( o. '(

s 58 EM I n, n

, 4 l i[8 2 1 N M R

+

c j .

d (

i a S $ 6 e g el i 1 1 H it t h,t 21)

.<3 i .. .

g **

(

+!n i.!! iliisil! -

1 -

E O  ! '5!

l

'g -

K -

N NOTE:

TATUS Mosto roA C N TL PwR LOSS TCstC G A S

1. uSYS nir T, TEM)R r T AIN A sHow v.

sFTY ACT TK A n

' 4"1T I Tkh'N S UN*T t TR A D A,f A A N D Usto r 2 Tk A ss/ 8 SIMoL A R A S TA rn uLa rgo sa TA IS LE I O M D nIG pf ys STATUS Nou _

A n SouO go. o o.

To y !C G AS f f T Y AC T OVE A A s OC EN TR A ny.p>

HS-t onlrnr (vrissAAM&

b hMfancr 0N CL, (wnss406-%

R E F. D NG S FLsO A V4 08 2 04.-I. t ( 3 E O. /GD SG -C04E.C 223 D- BC - COK. :

MUClfAR RELATED TOKIC GAS S A FE1~ Y AC UA YlON *Q*

\

DCLCTL%

/ a- nov.4 Amend. 24 6/s6 vooTts e

CONTROL ROOM VENTILATION gg oc Genenatame w ISOLATION LOGI? DIAGRAM FIGURE 7.3.6-1 (SHEET 6 OF 15)

,O W

  • a .

, TABLEI

\ \ (Q M WC) (GM vC) rpEspr)

TRA EQUIPMENT NO. #"" MANUU W ET ' ' ^ -'-

3 LOGIC DIAG. ACT Sn! CVEUIDE 4W- TE W & &' '""'~ "'

t-165L N T* OO t -Mot A%SDNO51 1 I N !2114 A t:DN O32-1 UNIT I A l-HS-ittl!S l

/

\ N t-HS tt tttA t-HS- tfll!C g. , g .g gjg /

,/

t- tS31 -NFOO2-Mos AXSDNoslK l'NS* *2 t t3 A t HC-Ittt3C g., 3.y ggn ,-l t -HV-12115 A YSDNO32-1 ,/

s UNIT I /

g y I MS-Ittt36

\ /

2 - 1531 -N 7-001- Mot A t SDN 031-1 K

j fy 2-HV- s tlI4 A KSDNO32-1

/

7' 3 b)

  • N 2 $- t2199 8 Y A

/.

./

2-HS- s t et tA 2-MS-It tttC 79 33.ggggg '

-x 2_-IS 31 - N 7- 002-Mit A t S D N O_3 t-E*HS-Ittl3A 2-HS Ittt3C g gg.ggggg ~\

2-H V- 12115 A KSOhf 032-1

,/

2-45-12113 6

/

/ -

Amw new.a Amend. 13 1/85

  • Amend. 24 6/86 voorts CONTROL ROOM VENTILATION ja } % g ac cameuruse rtant ISOLTCION LOGIC DIAGRAM PIGURE 7.3.6-1 (SHEET 7 OF 15)

. .

  • v e

u I

I g.eas

.s ra or p u .ta toreat**- ,2 w- CusLtsa sca

,,,ro QnJC.1 N$-ittto Sin A r(,*l

-(ter u ss.t)o vaLw e wwwe #' ,

Ps/tt , '

A U (O STAR T ear 4 g MLMA t Orc. s-ret s ts to A u ro pw) R e. es se - ,e 7 arc NeeruT TO STk J

oos - *ac s frtm .ver e e=

courn x pow 1;otarwas (os'. oss ,m t)e ,,,,m fusman I us- r2 rrouse)

%'21 <- ~ ~,(tam ozo-4}- + 3 o,, . g- st a t-&l 3 ,,,,),,,,,,,,, y,'y * 'd*"

g L. (cu }

revoc re 4

-vve-ea5-eeeeevco (_ s & -

{ -

^

'("'*'*.'by *** yW M5 ce Loan ucwictc. sLocmif" pr _.

Note Q NVC

  • t-NS tit!O $rOPO%

) e. e i s O0 O N r. r t ueur ScwN'" o' rs*o*m" ra're u'sren' Y "d,ih[-h,,3 ,,3 AtA p( 384 IA6 LIB 0 SIMIL Af.

ese t.cao suesa.46 O

stoca can e - 83&f - Ni-

"l '""' * * * 'y%

/

^* T* W "

1. TYe'6*Ak 40To Trad> Loesc

'd C00-snog I . _ /'sgg4C

/ MS MMee Swee Os boss GLP CTEsc At peOTECT Op4

  • 0 EGDNQPZ- &

gg aucg 3 py pg gg , gm ug ALAenas A MCNeTot*S ' ' SW68- C83c4>. y phreawac4.c

  • jot % 7 rA>4 AOTO Tries 0- se 3 e +N 7 - CO f - Mo* l E delWC fA80 COreNeesse (r g 4,,,,

0-86S8'NF-OOg CatAd rL*4 Leat. StoN ,

(a a e oeft sr>Ntec Loss I.

e - 's e f - ** 7 - ( L's - 590f LOW 3 ' F 4d t - 828 8 E he ,

m a. 2 ) Air 0.WG:

,. g , y , g ,3gog, ,., y

f,"*"

FmAma c ..t.r e a.r40.u.E.A4, ( m cyo.7) .".,,#

. PE . . - L e, . m .

  • CeeVC. 0* ess- st e zo W.

Pt?LL TO Locat (M) ege

[w (l1JCLEAR A L SKETY RELATED TAM a EM f /\ -~ ~ - h0hGW f WM FANZ

, FAN W2. CNT&. Se=J SArGrT'C#%. Etwo $n 'Q((M7;f ${'t W4( 0C ou.

  • AL s - ts .As- N1-COs Mc e ML-A 8 s2420 t- FSeat-e zes t . de 027 7 t r(if tt4' l UR #f f32 g r

S esse-e4 7.co?.mos e- et- e ts 28 z-esse-u t-cco-maa t- e s- e te to c rE L - 6 a s' z. - A 4- F$ut g gg g 3]

2-n L-s1.sa\

] .

  1. #fsf5

[ Iff35 )

t noen e azur ts T . t% *41-t o t-MCs 'l- H % -t LE 28 C 2 : - t!> 2 GtssL- g 2gss , l .  !! ' Itt tS\ t ' 12 035 ,

f_ .

W De b l 2 / m3, new.s voorts CONTROL ROOM VENTILATION st acumec navasse rtassr Georgu. ibuer a% m , . os ene, o , ISOLATION IDGIC DIAGRAM

.n. FIGURE 7. 3.6-1 (SHEET S OF 15)

Note.: De rAits ssown AN FoR. Qurr 2-

  • ' Cs.a AN6si. CAP **T 1 IPcC'8'C c.AA AN6 65 Ws t'. be. rde, lohei-

U Moch f;idious b

?i 3 13&-l sh a Desgn DetaIt 'L DESCRIPTION OF CH ANGE 1 FOR FA^l. 2.-1531-N7-ool- Mol (swe gy p.Ag)

G HVC, f.-HS-l2810 ST4AT(P) kVTO

~ G W C,7 - NS.17.t1C AVTO (Ml' '

% STAf.T FA4

, ' SP IOML h },.15 51 -NT -

D LSCLAT19N M.010 4.6w O co, _ m o,

~

Eff i.oAb Sm6wtta. StoCEWh % m a

sv St-TUN 5

(( CHAW (nE GINc,2.-4S nno stof /f) gp g Etr toAb sweteips  ; n 2.-1531-"l-

~

J 00\-MOS ELECTit.lLAL PiloTEenoN  :

- I

/5 FoA FM, 2- 1531 - N7-oo 2 - Mo t (l.EAD FAN)

QWC 1-H$-tim STAftr(.P) '

MP &%VC. 2.-Mf-mit Atto(H) 6.-- _ STAftT FAN m 2-issi- N7- ~~~

T R. cow tioLAT19H (wn,.oro.9,6b V 002.- 4 Of 058 "

ESF toAb StGutekts.k) cut %

2-F51.-ttof6

/ -

S.yfac}Q STg,ggw : C44Wfnf 1 (8 ue.

STop N

~~ ^N QWC,2-H9- ntm SToe M -

,f.3(,9y.

ESP tcAb SHEbbtw6 00'L - Mol T.WLT9 tCAL NTE(.T)e4 l l

c- c P B '2 C o c M p28 l

e -.

v CC I t (Q l

[' l) $

Fi 3 7. 3. 6 - 1 Sh8 i

De.sya Dol ~ l L DESCMIPTION OF CHANGE CHANGE TABLE I To REAb AS FOLlowg : '

TAbl.E I TRAW FAN Ne cwit.sw Q ptow w ({Ag m $ 5*q, y g 4" 7' g A l-153).W1. cot.M41.H f- title cAI.A t.rsHL.titit L 1.w.itity

_~

B le tEl-W1007. Hoe l-Hf.iliti cal-4 1.fsHL-t2113 g.yy.ittt5 s

g A t-15 M H 1-dos.H ol7,Hf-iltic ctI-A 2 FCH L itilt RfAWD&Y J2.TV-littif 2-Ffte Lloys t

l s 2. .. . .- 2.u.u,2s en-a i I

2. u .i s te4. h.w. nits 2. m -i aa J i

(

1 CMAME '

m J cc a B 2ce s u t' - b '1

% e e

._. t F

.y k 3

f-h

=

Y t

s c

=

g

[w oD St 9

4 t y {

l l

z 1 E 5 e-

= 2 4 i' Hg@

e l;i e

'9 9 e f m a ,-- Y, n a 3 g  : *

-a 4 u s ic g .A i

= Xg M == w

  • > ad -=m m
4 gag a uu A8 -# O i e

3 w

4a $l 38 =8 3 ,$ %

e e >- i 5,E SeU $ 5 I

xs se -

ml

[5 859

,i t w -$. g

=

agm $ ,

<3  ! 8' ?

Y 1 ~ - 5 =o !

" ss ess .

4!E d433 is '

r ici 4

{ j'it t

a ~.*

it

att 5

h B

0=

5

$$W 8&iE V s s

S l "g =

s. t. <

t

- @g s

S g

  • Q g

a a L

U n

m Ea

- I a 4 34 f C3 ix E

a 4

f &,

3N 7

e any j3-a! ,

15 h55 ,

3f

,s f a +

M ',g V Pi l  %.

j ,.e 5

,4 0

_ k 3 A-t <xM 3

+ g r ,

g e

- 4 ~4 ~

4 =

~

_s

, +

g-

- . / . _[

, - t t. e_e1 4 y q y-1 g n l tE IE a k 8 8 $ E s at u a  :  :

: 4 3 s
  • k $k d $ Y Y w ,

c4 9 l

E'n e u

v 3 r aB B ~

0

.. s- s+ i h h t l o o a e i tc t i I

8 4  % ~

I e i t b h  ! $ 9 4 9t a <i ts s 1

i r; y 4 i g A

8 e

v 3 $

s a =f s  !! ..

e at S -

g i t si

=

$ 4 gi N

0 t t5 1 1 .

ls {<

~

, 4 H i 3 E 4 I b 7

! IN)

!! i /{! e 5 ?

e 9 e ?! c !sg 5 a e e 4 44 3 - a~ - = x y E 3 3

x 5 2 $ $ 's .j ,i s i t '

a e c '

n t s t i _t .

4-e ht ) , .h. [c - l Sheck\b h u she J

4 eup r

~

6 024 ~ sere N *W YN \

sus .t1///

QNVC,f.N$/Z//foArffp)- j ) *f.,&

, -&d*C-s.s issa., 1

~

--=i' _g x  ;

at os$ ' f* M titti t 6

as O W J.t retrok ~ 444474 1 ZMfit/// 2444 t I Ctojp

' JW4tirtet

~g:::::::y!" = = ~'<g_. =? '='

x '

x '

No7/j' AYN/E y

A

&'*S MG4)I '

Alegd DAM /'d.'t (WV*/3 //$ 3// oval. no,ofA / q y./ y t.$ s N e w a ,

Ojurgr4 MMAsnt 4/srfb /// \

)%mt MMsq 4/2rys sy

.ng/3 w L AMG D m u f. . r,4 0: t 1 ss s M a n n .

p

.dewe#J JW v -/11. / / / .SNoc.wd . '

e p rirt .D 4 M P FM L /.C 7fb /A' O

FI4444'2 /3 V '444 , . , ,

/A /34d /

Q 7A A /A .f14 W ee b6^** M UNM See ,#tavtswN'/N4 tot M4"M__

e m

4*6'!! /. A (M/7/*/$_

SMMG. 344*Aff /44 /A'l#1' (dv.////$ /454J//2 /./t3/v4'764'nat

/MY* / t t//_.

W WNN T//

,p fin.jgiff (NJ*/5//fl./f.tf MiteetM l*Af y./8/!f

// / / JNVf'I'W4WP/?)$/$'*y 9 2It'Y7/5//! :

Q '

NV8 N/ / / / 8

< '/ / / / if*ledt (Madd%f8364!7 don /*/I t dy-f4 /// '

W=-

ysg g . - -

w 4

~~ _, -, -

WNirl* 4 d*44d4Ne Y JMy /AN/A'447 gMr./fpl

~ - . . .t - -

~

2M/2//l N ff/.W 74mf.h6ft/t'f*/t/// * '

uwirt- b {, 241-1211yw wr psst.HypMet 1NY. /s// f

, fij J s AX5DNO31-5 Re v

c. - 9 s 2 c c c .u.i..Ls __w ..

FP=4414l$500)It144 r 4

Q ,, . _ _ , _

> a VEGP-FSAR-9 The safety features electrical equipment room HVAC system provides a suitable environment for the Class 1E electrical equipment and is discussed in subsection 9.4.5.

The cont;ol building normal supply and exhaust , systems include the following: control room normal HVAC, control building normal HVAC, control building locker and toilet exhaust, control building laboratory hood vent, cable spreading rooms HVAC, control building normal HVAC, equipment and electrical equipment rooms HVAC, central alarm station backup HVAC, and the onsite technical support center HVAC. -The control building normal HVAC systems are described in the following paragraphs.

Flow diagrams for all systems are given in figure 9.4.1-1. The '

onsite technical support center HVAC system is described in paragraph 9.4.1.8 9.4.1.1 Design Bases 9.4.1.1.1 Safety Design Bases The normal HVAC systems (non-ESF systems) provided for the control building serve no safety function. However, the failure of nonsafety, nonseismic HVAC equipment /ductwork will not compromise any safety-related systems, structures, or components. The systems are not required to function after an SSE.

9.4.1.1.2 Power Generation Design Bases A. Control Room Normal HVAC System The control room normal HVAC system supplies conditioned air to the control room area during normal plant operating conditions to provide personnel comfort and to maintain a suitable operating environ-ment for equipment.

The control room normal HVAC system is designed to maintain temperature at 75+5 F and 50-percent maximum relative humidity in the control room area.

Thacelltrfd-room -normal HVAC-system-i-e-ehere_d-by-heep Units 1 and 2N7emporar-yaecur.11yJarYiYion is inatalicd to separate the Unit 1 side Et'nQpol-Amend. 14 2/85 9.4.1-2 Amend. 35 3/88

INSERT The control room emergency HVAC system is shared by both Unit 1 and

2. The ~ two unit's control rooms are partially separated by a partition.

Areas in the ' vicinity of shift technical advisor work statfor, and the B0P &. NSSS control panels provide access between the Unit 1 and Unit 2 areas of the control room as shown in figure 6.4.2-1. The air ducts serving the control room are a connon system connected to the Unit I and 2 safety-related air handling units. Four safety-related air handling units are available to serve the control room envelope.

l l

- - ~ , - , - . , -

, . - - , , , - - - - , , - , , , ---,--, .- ,~~n-- . , . - e, . ,,, , - - , -

, , - ,v--- , ,,~r-

D e

VEGP-ESAR-9 vnnm from the Unit 2 side--dur4ng construction of-Urtit--

2 N he air ducts serving the control room are-a common system conn ted to two redundant normal-afr handling units. During 2 constructione'the common ductwor' <

on the Unit 1 side is terminated at the temporary- 14 security wall. Both of-the' normal air handling units are available for-us ,e during Unit'2~ construction. When Jnit 2 is completed, the temporary secuPityspartition aiflbe' removed, and the common air ducts above~each cInit of the control rocm will bc connected.

9.4.1-2a Amend. 14 2/85

l' ' V 1 O'

l

&E l d l M! g  ;;;

fd XR

. :. :.' 1!,

ja t

???* e-e-

63

$ M ,, )

3 333 $  !

5

b b

~ * ~2 4 l

o 'l U. l- n jb b' 2 oab 95 -

= - to I $' l A j ll]

tu i'I!

f lll@ I!}

ru la .

I

., 5 @ 3*

g

! $4j 5

o , '" 0 'a $

3 3

..,- w.

i$N

<r-La.c ,e Pi s); i $ ..! Y i i+ 'm@on<c,. / i Tc

3 "e g 4 , .g .'s(tm e

i . ,

{i j .

g ..j e;

ar

- hi, ao.

..::, ,e n O a c)

[

.j

,[c,. m,.I

'@ M a  :

s a h a

, . _oen ,

- r_

r 5'

8 y@ - 4i . f) I p5 53 i E ci & l .l . . .h w,d kb-

= 4 }.r>< I EN b d 2 -

% p.  !

NQN:u'c g I)'i r3 .

r~ s b'"hn 'h l e

l

, g)

w ,dk '

f6 Eh

' 0 " ~0I;? * ** =gg)

.. 3

.. h-p,i s, B L lgam . - -

.l . .(.

u

! :-E1g 01iL@!N-EI _j, :f;li y

q ,.1 s _s(. g p ss,e,eag_,

y

!O  !

i

.y_g$'

dr,3g s-yn u

[~~"'lQTphZ gan

% f, i

f3 bl

  • 5I !stes g9

/ I h

R Taw M, i

r. A,a & 2 Dig ^ " )s r' i e

_i[@p-@eW -

MM!)t G iz - l 4 i #5dMe'M4p.3 kFrkd 1: h Se,w '

. .J r ;ig,5'..ne.S h.

k, . g - ' p' ifi__.,,ig, Jydih.i.+. d I N

_ . + .

.j  ;

l

'h !kUk!  ! 3 geyp .

Mc'cl.Vka[lon< v bC }

Flef 9.4.1 - 2 ShL l DESCMlPTION OF CHANQg

' b D e 6; } 2.

Mp{d3 AT cocRD; P3 r, '-) (DN >

A80 7 &

,r - -<6sW <

f-- - - 42.co.A (I geu

. esvc.

g2sN A./A D e-c.sdese

.77:sar .r(zo '

} l A s, b -

s .$

,9' D eta;

~ At coceD: c2 DdW13 l---> m o AT cooco: 64 ACO  %

tro44 r---(G.a r c Aco l Y, B g --  % p.co.3 4

Z f _

C,,0 We v3 Duct 5114McER g 't 12,'

-isat-ey.cor't I Q TT i t.

k e

o l 3 I 4 4

- e l

l "P 31oco3n p q t ar-.. n i,... ,,,,,

% e

e ,

l Mcd, f e c3 sons he FJc; 't 4 l 2 . . -

Sh1Cr^M DESCRIPTION OF CH ANGE ETdooCO1Gl4G oe tx) 5 r

vet.nTc0

........t .

Un m

.e:,

l

$g .df h(p;B/p6

'j Ddd4

,Q, ocuqep W

il 4Lo 3- ,. .... , ... a -

fEWfs1iiQ  ! I

.I l9 any,

( -: :: =  !

1 Q '

^**JQ l C= {l, f gov nO n! Fo e.

fowEH2 Louco"T <

5- M9 ftGTonATtod h Gn/Titet. OnA . i l

, %dD Q_ - .

l A

f p u a SEE wrn VaD O

ttp 3 2,c ooM p - 10

,,...,i......,..

% e 1

. . . . . _ . . . _ . . - . _ _ _ _ _ , , - . _ , , , . . . . . _ _ _ . , _ . _ . . _ _ . _ _ _ . ,.,,._,,,,,___..m.-...2._,,.,,,. _.. ,-. . .__,...._ _.... ..__.___ - . -

9 VEGP-FSAR-9A TABLE 9A-2 (SHEET 2 OF 3)

Fire Zone No. Fire Area No. Fire Zone No. Fire Area No.

76 1-CE-LB-E 116 1-CB-L1-B 77A 1-CB-LB-L 117 1-CB-L1-B 77B , 1-CB-LB-K lie 1-CB-L1-B 78A. 1-CB-LB-N L19 l-CB-L1-B 78B l-CB-LB-M 120 1-CB-L2-B 79A 1-CB-LB-C 121 1-CB-L2-A 79B l-CB-LB-Q 122A 1-CB-L2-E 80 1-CB-LC-B 122B l-CB-L2-E 81A 1-CB-LC-D 123 2-CB-L2-E 81B l-CB-LC-A 124 1-CB-L1-B 82 1-CB-LB-G 125A 1-CB-L3-M 83 1-CB-LB-I 125B l-CB-L3-K 84 1-CB-LA-F 126A 1-CB-LC-A 85 1-CB-LA-N 126B l-CB-L3-J 86 1-CB-LA-N 127 1-CB-L2-E 87 1-CB-LA-T 128 2-CB-L2-E 88 1-CB-LA-I 129 2-CB-L2-E 89 l-CB-LA-B 130 2-CB-L2-E 90 1-CB-LA-C 131 1-CB-L2-E 91 1-CB-LA-G 132 1-FB-LC-A 15 l 92 1-CB-LA-H 133A 1-CB-L2-E 93 1-CB-LA-I 133B l-CB-L2-E 94 1-CB-LA-N 134 1-CB-L2-E 24 95 1-CB-LA-K 135 1-CB-L3-H 96 1-CB-LA-M 136 1-CB-L3-K 97 1-CB- LA- R 137 1-CB-L3-L 98 1-CB-LA-L 138 1-CB-LC-B 99 1-CB-LA-D 139 100 1-AB-LD-B l2.

1-CB-LA-S 140A 1-CTB 101 1-CB-LA-A 140B l-CTB 102 1-CB-LA-T 140C 1-CTB 103 1-CB-LA-G 140E l-CTB l2f 104 1..CB-LA-D 141A 1-AB-L2-A

"105-l 106 l-CB-L1-A 141B l-EB-B

' 1-CB-L1-A 142 1-AB-LD-B

,- 107 1-CB-L1-P 143 1-CB-LB-A

/ 108 1-CB-L1-E 144 1-CB-LB-D 109 l-CB-L1-B 145 1-NSP-LA-A 110 1-CB-L1-G 146 1-NSP-LA-B i

111 1-CB-L1-B 146A 1-NSP-LA-C 112 1-CB-L1-B 147 1-AB-L2-C 113 1-CB-L1-B 148 1-AB-L2-E 114 1-CB-L1-B 149 l-AB-L1-B 115 1-CB-L1-B 150 1-AB-L1-G s . - _ . - - - -

( 10 5' , L l-c6 -L1- A } .

N< Amend. 15 3/05

/ Amend. 24 6/36 Amend. 28 11/86

VEGP-FSAR-9A 9.A.l.81 FIRE AREA 1-CE-L1-A l

A. Location: Control Building, Level 1 B. Figure: 9A-21 -; ,(6 y lo ? -

3 09 C.

Description:

Includes fire zones lO5y'106, 183A Rom 3 Control room, kitchen, and conference room D. Description of Boundaries:

  • Floor h-rated barrier separates area from 1-CB-LA-K, 1-CB-LA-N, 1-CB-LA-L 2y - c 6 -' 8 - r-Ceiling h-rated barrier separates area from 1-CB-L2-B, 1-CB-L2-A, 1-CB-L2-E; L -c8 -tA -8 North h-rated barrier separates area from 2

1-CB-L1-E, 1-CB-L1-F, 1-CB-LB- A , i -ca -c c -A 2 -c6 - c t - G , 1- c d ? 15

- Unrated exterior area boundary.

  • South h-rated barrier separates area from 1-CB-L1-8.

East h-rated barrier separates area from 1-CB-L1-G, 1-CB-L1-B.

  • West h-rated barrier separates area from

-2H3B-El--A . l -c 6 -u i - 6

\ c S-l Interior h-rated barrier separates zone -109 from 183A.

t c .r- 1 h-rated barrier separates zone 109 from 106.

h-rated barrier separates emergency storage from conference room and unit 1 control room.

E. Area Access South - Class A door from 1-CB-L1-B.

  • East - Class A door from 1-CB-L1-B.

a VJ G'5r - c c39 A Scoit i=6 tem )-c6-Lt-d.

Amend. 15 3/85 9A.1.81-1 Amend. 24 6/86 .

i VEGP-FSAR-9A i

l Interior - Class A door separates emergency storage l from unit 1 control room.  !

- Class B door separates conference room i from unit 1 control room. l

- Class A door separates kitchen from unit 1 control room.

- Class A door separates toilet from unit I control room.

F. Sealed Penetrations Seals meet or exceed fire barrier ratings.

G. Fire Dampers Dampers meet or exceed fire barrier ratings.

34 H. Safe Shutdown Components 15

' '/w?'1500-V7-001 - HVAC instrument panel .

  • '/tl'-1500-V7-002 - HVAC instrument panel.

s '/uf-1601-QS-MCB - Main control board QMCB.

  • fv1'-1604-QS-PCP - Miscellaneous equipment panel.
  • Y1'-1604-QS-PS1 3 - Process protection set I.
  • Yzf-1604-QS-PS2 - Process protection set II.
  • '/vf-1604-QS-PS3 - Process protection set III.
  • '42'-1604-Q5-PS4 - Process protection set IV.

1

' '/gY-1604-QS-PP1 - BOP protection channel I .

.

  • Vtf-1604-Q5-PP2 - BOP protection channel II .
  • Vpf-1604-Q5-PP3 - BOP protection channel III .
  • l/uf-1604-QS-PP4 - BOP protection channel IV.
  • VLJVI13134A - Liquid plasma display.

Amend. 15 3/85 9A.1.81-2 Amend. 24 6/86 ,

l

VEGP-FSAR-9A

  • '/z IVI13134B - Liquid plasma display.
  • '/tf-1605-Q5-SPA - Solid state protection panel-A.

l

  • ;ht-1605-QS-SPC - Solid state protection panel-C.
  • 'z/-1605-QS-SPD

/ - Solid state protecti;n panel-D..

  • PtI-1816-U3-007 - Electrical auxiliary board QEAB.

Train A safe shutdown cables.

Train B safe shutdown cables. 1 I. Safety-Related Equipment No major equipment other than safe shutdown equipment.

2 J. Nonsafety-Related Equipment 15 No major equipment.

K. Combustible Loading lA y'. Zone No. 105 - l Fixed combustible quantities Cable insulation (equivalent hypalon value) 27,050 lb i -

Charcoal O lb Cellulosic materials 3,000 lb Oil / grease O lb Plastics 750 lb i

l Rubber goods O lb Heat release Fixed combustibles 249,586,750 Btu Transient combustibles 24,400,000 Btu Combustible loading 65,531 Btu /ft 8 l

  • Fire severity (wood equivalent) 49 min l6, 20N6 10S '

I s e sca. r g rr7ket Amend. 15 3/85 9A.1.81-3 Amend. 24 6/86 .

I -

'~

In s.ch 1. 'I A i. 61- 3

~

  • ' Fixed combustible quantities

-- Cable insulation (equivalent hypalon value) 27,050 lb

, - Charcoal 0 lb

- Cellulosic materials 3,000 lb

- 0il/ grease 0 lb

- Plastics 750 lb

- Rubber goods 0 lb Heat release

- Fixed combustibles 249,586,750 Btu

- Transient combustibles 24,400,000 Btu 65,531 Btu /f t 2 Combustible loading Fire severity (wood equivalent) 49 min i

l" t

l L

l '.

. .. . .. ._ - - .=.

VEOP-FSAR-9A M. Fire Detect.on Early warning fire detectors are installed with'in the following ::ones:

- Zone 10 5 - I s hoae s uc -7 Zone 106 Zone 183A In addition, smoke detectors are installed inside'the main control panel 5 4

/

Amend. 15 3/85 Amend. 24 6/86 Amend. 28 11/86 9A.1.81-8c Ama.nd. 35 3/88

CE D: o C; h.,

?? E 'o f  ; $ $

. ij;,f il ' l l.

t

!i.

i N g! e l' 8zk" w

e iiil al.!iiiii!liinllI !l!

gitgl

. ii ii 5- 3

j!jlf 11 Il ! ! !! I i ! I il i I II 3 '- t

.y II 1,I,l 1

l ! ! !! $ $ N $

  • 3'!l$ o f

_! l 6 h ,,- i e

,N 3,f7 N) 2 ,h u li  !

-Un! i

t. . :y: ~. ;1 I lI  ! :'

Ww I EW 7- , XL] '

~

i 1

,_L_qq tt l ]t ag l : f, -

!h_ l

}_<YEEEEM!ERAldf he p e nI' l,

,.- It~ nbl,xrMO, y .

e;i arik> f r-,$ <

q h

nE I

(

't P;ef' . m &

!)

3h f. '. ii ie j

=

T-M 4 g 'G

. m .' % ;s n m y ;P

>5<a  % jj +l a~~.vy '

T 2

w:q n . C" sfmj g? 4v y+;qu.f nr - ]3g,3 -I gi,7 .

, s 4_-r[7.3; n

- x j g.,h. l'f

' . e,J

- ' ' ~ I, . m){g !y; ;.

}

)---

'~~i Qh,dt L %t'E_@MF $

_.. 9 t- 4 .u : ..

,,,- d !' N 3 -' i' NME E 1

" v e; iM*2D &

lt v:- . 4.-4l&;,r Q' h th ,g r T4 b t.

,- - -4 t 5.

.j i8 u;l

? . ' 'd 1 -

\ f, %W i ir 1 Ps p' }, lT@'

5 ll N

ii! ilsH6RH$HNChl$

g:d3sb M- 8L 3 iii! ?M69t;+HtltltldtMdv e o gg .

wi,.u,,wc,,',w,w,w,',w.y,w,w,

, ,u m, 2 , ,,,,, .,oo..,

4 9

_i

VEGP-FSAR-9A l

N. Fire Suppression

1. Automatic i o r-t Zone BVr - No zone coverage.
  • bone l o s'. 2. - no zone covenegw Zone 106 - No zone coverage.

Zone 183A - No zone coverage.

2. Manual Hose stations (with portable extinguishers) are conveniently located to each area. Any location can be reached with at least one effective water stream. Independent Seismic Category 1 dry

-standpipe system provides alternate source of water for post-SSE fire.

O. Radioactive Materials None.

P. Ventilation Smoke can be removed using the. normal ventilation system in a once-through only mode of operation. For areas isolated by fire dampers, smoke may be removed by portable fans using flexible tubes to direct the smoke to an area capable of being ventilated or directly to outside. The mechanical ventilation > system which could b3 used to remove smoke from this area may not be operational because electrical cables associated with its operation are located within this area.

Q. Drainage A flooding analysis has determined that drainage from the fire areas is adequate.

R. Emergency Lighting 1.5-h-rated battery and diesel generator powered fixture (s) provide safe ingress / egress of personnel. l 1.5-h-rated battery and diesel generator powered fixture (s) provide the capability to control the plan' l shutdown from the main control room.

Amend. 15 3/85 Amend. 24 6/86 Amend. 25 9/86 9A.l.81-9 Amend. 35 3/88

7-e e{! . .

n! - a :

Is  !!! h NO']c F 1, g!o gi B

I6-&

a pp s- I * ** ,

., b,;

go

.a o- .;*

.. 3 u -

h.! 1 I Igk b. o

R 2 tp' E' e -

m7* 'sf,t z r I ' '- , 'UyE ;i

- L

., r '.~~..;

p ) 4; ,(l ..t.

r- a.'.EP.t .

w' I' k 'i 8'

E 8

. u  %' R- C N'l, d b.b ". k; b

,D.

w .u . '.-. m ' .

7- 5I _ .Y f

.?

,b 1 JL l /

W ,

L <

~4. ii 3 E:1 9 s r

Eu(_ s_ t,i P  !.i z - - :/

O i P '_ .

2 1 ...r -3lA3 r,-

r v f Y, .

l5

,_ , . . x. .. . _ . ,

d d y

,p .

y al e

' '. ""'; . i h j , l ] i .g lc35

$$l,QWsfp-QQ,g$&._5fQ&-

a g QS b[i A a.i J1 14 ng, o n -

o ne y

y I  !

IIILrI!sili.'{

{Tx: Q7~1f O' /^

. '3 G i M d " l' " #'#

.i s .. n r ;pIH 1 CF p,,,[v-ir i;u N.., T. ,, ia L@cl_'

)y.c i v(

pf

- 5 , p -l fi .; s-h ' -

i

. s.#; a, g  %- ma.E e d .. . I ,

y l -_.4 y,j (. ) as yg '8 -

$f l_ i 2 I"r 2 h ssinOd' r. i Nyg.- ' %h, , f g il j fI <c7J'j I u ]d a i ll .

0 y 4 f 4 4W"{ f, F'

9 f

i

~m %, 4,rN) w, il u%

$ n) x jy =m f ,,] ,

o

- ' e; _. - p }M* .dw . W~

j

%g - -- u h s fl s i " m -53' pf p

~.W
Q:t, iftW , VD x Y V .ytyy 4

= n.s g a gg pts .

3't i . - '9 n; r  %'Z..'~pdol i'i , eUl h'i w d i El' h --

.Iw $

.w ik

'E

' s-i-o%y!

D P ijj g T 4W ( y y . ,V ;e A -b N i r I e d, ; 4; p !]4lH Q ;g (n

,i ?

r$i1:*[: l,'lgbi's!Ef!l'i:hl0jfliffi:

i .34 , w .jg

i ^ ~

i; 1e : ij

=

i g^ m$, g2 w i

,Wyg v_ {n , , .g lm 1

,1, I 1 , ~

! d lt l ' . YI rl  :<

/r, bg a 1

ej g

.t g 3 ,i e. 14 4 -

g g l.2_ N --'- N '. , , F

. , II h E%W I,- f t hef.'k I l

,- p' .j-2 n >. y ,,

'L .

' i n n- ~ ' - -

y i E  ;

- x k< 3 8 E m d t\i  !;  ; ;g IS ifI c'O-y yu

i

, x; 1 mr.. e lI j '

y j y

. ~ I

.u- D d J, . -

l{ ;O '

.g 6 ,;,e{g,[, l l-

!! 4

',$ @ $ l h j)e@f%l ,

E i

e$ Nh@d & ef$

y  !

ll 6 ., h .a

!  ! ( i r . . ,a n'.u d 6

h T

96 p $ ).,  ;

j:

E - . . M 'E S -

Jk i f 5

~ ,/

i i

,,,,i.1 li -;

Nk h E )

x.ii .s..J..I ,.id$5 f @ d x

. ,.a-h

, ,.. _sur

]l . .

?!g 1

g 9

[ .ll I

' - L

, =. 2 ,

i kllh -

nn( 1 +,r + 3A . nw .;f :

n -

9 E %sgi [==k y9{i 43 j, i Ii~ ,

--. r.n gi , *$ t yyi slAAl:!.l 2 na .y >> __- -  ;

N. -N 4ij -

g  : . 4.

1.

.  :: 3 a;

if ~

73 -u, J . _-q q 70 ' fB, m.

t'A d,ggg.,. ajmi, _ _.

e.. .

r -

I _ . ,3,

.( y --

a eo m

3 w ,,

w -

Jw/s1 s

u r-r -e.

z.

'F

,1

.X

  • A l) !

I; y$N,Wi>l h f l lIh ; d g 2{k,,

i[n, ,J ,

~ ~ ~

L. g lgul, 'M .i R g& i 3 Egu $1,,'

y g- g//

$!f ai= p .

p Tyg(,l l gk 4, u

[

b Y ,.

{

8

'. II

.o it j VEGP-FSAR-15 TABLE 15.6.5-6 (SHEET 1 OF 2)

DOSES RESULTING FROM A LOSS-OF-COOLANT ACCIDENT <a>

Site Boundary Dose (O to 2 h)

Containment leakage a Thyroid (rem) 47--l- 50.6 l13 Gamma body (rem) 1.5 Beta skin (rem) 0.7 Containment purge Thyroid (rem) 0.32 32 Gamma body (rem) 5. 6 x 10 -'

Beta skin (rem) 5.1 x 10 -5 Recirculation leakage Thyroid (rem) 4H4H 2. /

Total Thyroid (rem) 6 53.3 l13 l32 Gamma body (rem) 1.5 Beta skin (rem) 0.7 Low Population Zone (O to 30 daysl Containment leakage Thyroid (rem) 9979- 5 7 E l13 Gamma body (rem) 1.0 Beta skin (rem) 0.6 Containment purge Thyroid (rem) 0.13 32 Gamma body (rem) 2 . 3 x 10 -'

Beta skin (rem) 2.0 x 10-'

Recirculation leakage Thyroid (rem) 4--+ 2.1 Total Thyroid (rem) 99t+- 6 0 Z-l13 Gamma body (ren) 1.0 ,

Beta skin (rem) 0.6 Amend. 13 1/85 Amend. 32 12/96 l l

~ ^ '

r g ;- v;;

_ y.

VEGP.-FSAR-15 TABLE 15.6.5-6 (SHEET 2'OF 2)

Con, trol Room (O to 30 days)

Containment leakage Thyroid (rem) 24-5 2 4. r. 13 Gamma be.iy (rem) -4,,1- 9. 8 Beta.3xin (rem) -60r613' G I.3 Containment purge Thyroid (rem) 0.01 Gamma body (rem) 4.2 x 10o 32 Beta. skin (rem) 8. 8 x 10 -"

Recirculation leakage Thyroid (rem) -G 0,7 Total Thyroid (rem) 25.3 24.1 Gamma body-(rem) 4-s- F8 13 Beta skin (rem) 6'a> 3g,3 l

a. The operator will take appropriate action to ensure that the resultant doses are within the limits established by l13 General Design Criterion 19.

, Amend. 13 1/85 l Amend. 32 12/86 l

s.

2 VEGP-ESAR-15 TABLE 15A-1 (SHEET 1 0F 2)

PARAMETERS USED IN ACCIDENT ANALYSIS General Core power level (MWt) 3565 Full-power operation,. effective full-power 900 days (EFPD)

Number of fuel assemblies in the core 193 Maximum radial peaking factor 1.65 Steam generator tube leak (gal / min) 1.0 Sources Core inventories (C1) Table 15A-3 Gap inventories (C1) Table 15A-3 Primary coolant specific activities Table 11.1-2 for 1% fuel defects (pCi/g)

Primary coolant activity, technical 1.0 specification limit for iodines - I-131 dose equivalent (uci/g)

Secondary coolant activity technical 0.1 specification limit for iodines - I-131 dose equivalent (yCi/g)

Inventories released as the result of a fuel handling accident

. Table 15A-4 Activity Release barameters Free volume of containment (ft') 2.95 x 10' 13 Containment leak rate O to 24 h (percent per day) 0.2 After 24 h (percent per day) 0.1 Control room Free volume (ft') 1.72 x 10' Normal ventilation rate, unfiltered 3000 (ft*/ min)

Time to isolate normal Sfhfr 38.5' ventilation (s)

Time to actuate emergency 30.5 ventilation (s) 13 Emergency ventilation intake -F9&& i653' rate, minimum - one of 6ewr unit # operating (ft'/ min)

Emergency ventilation intake 4700 3/2o rate, maximum - ft.m-of YU)0 '

foer units operating (ft'/ min)

Amend. 13 1/8!.

o

, s VEGP-FSAR-15 TABLE 15A-1 (SHEET 2 OF 2)

Emergency ventilation recircu- 237500 /'/, /co lation rate, _ minimum - one ob 3 _ f-owr unit # operating ( f t / min) 8

. Emergency ventilation recircu- 68-j3OO- 32, soo lation rate, maximum - fenr ef neo fewe units operating (ft'/ min) 13 Unfiltered infiltration rate (ft / min)8 LOv0 4.0 Iodine removal efficiency for 99 recirculation filters (all forms of iodine) (percent) -

Iodine removal efficiency for intake 99 filters (all forms of iodine)-(percent)

High-efficiency particulate air filter 99 efficiency (percent)

Miscellaneous Atmospheric diapersion factors (x/Q)(s/m 8 ) Table 15A-2 Dose conversicn factors Gamma body and beta skin (rem-m 8 /Ci-s) Table 15A-5 Thyroid (rem /Ci) Table 15A-5 Amend. 13 1/85

.