ML20125C811

From kanterella
Jump to navigation Jump to search
Forwards Responses to NRC 791203 Questions Re Seismic Qualification of Westinghouse-supplied Class IE Equipment. Responses Will Be Incorporated Into Fsar,Amend 64
ML20125C811
Person / Time
Site: Sequoyah  Tennessee Valley Authority icon.png
Issue date: 01/04/1980
From: Mills L
TENNESSEE VALLEY AUTHORITY
To: Rubenstein L
Office of Nuclear Reactor Regulation
References
NUDOCS 8001110544
Download: ML20125C811 (36)


Text

-

~..

h e-TENNESSEE VALLEY AUTHORITY CH ATTANOOG A. TENNESSEE 374o1 400 Chestnut Street Tower II January 4, 1980 Director of Nuclear Reactor Regulation Attention:

Mr. L. S. Rubenstein, Acting Chief Light Water Reactors Branch.No. 4 Division of Project Management U.S. Nuclear Regulatory Commission Washington, DC 20555

Dear Mr. Rubenstein:

In the Matter of the Application of

)

Docket Nos. 50-327 Tennessee Valley Authority

)

50-328 Enclosed are our responses to the Instrument and Control Systems Branch questions transmitted by your, letter to H. G. Parris dated December 3, 1979. These responses will be incorporated into the Sequoyah Nuclear Plant Final Safety Analysis Report by Amendment 64.

If you have any questions, please get in touch with D. L. Lambert at FTS 854-2581.

Very truly yours, TENNESSEE VALLEY AUTHORITY b%

~

?,

W; L.M. Mills,Manader Nuclear Regulation and Safety Enclosure 90022257

\\

i s o o 1110 5e

. Ar1 Ecual Capor*um:/ Er"cloyar l

EhCLOSbRL RESPONSE TU IhS1KUMEhT AND C0hTROL SYSTEMS BRANCH QUESTI0h5 I.

Seismic Qualification of Westinghouse Supplied Class 1E Equipment We found the response to Question 7.60, particularly Table Q7.60-1 unacceptable as follows:

1.

Specify the lot number for the Barton 763 and 764 Transmitters.

2.

You state in Table Q7.60-1 that the qualification of ASCO solenoid valves is given in a letter to Westinghouse PWR-SD.

Provide for our review a copy of tr.s letter.

Should it not contain informa-tion on monitoring of the equipment's operation during and after the test and the test results, you must provide this information.

3.

The Safeguards Actuation Racks were omitted from the table.

Pro-vide information in the table showing their seismic qualification or justify and provide bases for not providing this information.

4.

Provide more complete identification of the Safeguards Test Cabinet. State if it is the model described in Westinghouse reference drawing number 1054E95.

If not, provide the drawing number and complete information on its seismic qualification testing.

5.

Verify, by note or otherwise, in the table that the Limitorque valve motor operators supplied by Westinghouse are the same as those supplied by TVA.

If they differ, identify the differences and show that the differences do not affect the seismic qualifi-cation. Also revise note b to reference the latest seismic test reports (Lockheed 3521-4811 dated June 17, 1974, and Aero Nav 5720 dated January 6, 1975) furnished for our evaluation.

6.

Identify the pump motors (Centrifugal Charging, Safety Injection, i

and Residual Heat Removal) and for each motor type provide a copy of the seismic qualification report for our review.

7.

The Containment Spray pump motors were omitted from the table.

Identify them and furnish for our review a copy of the seismic qualification report for these motors.

Response

1.

Lot number of Barton 763 and 764 Transmitters for Sequoyah unit 1:

Barton 763:

Pzr. Press., Wide Range:

Lot 1 Pzr. Press., Trans. (4):

Lot 1 Barton 764: Main Steam Flow, D/P: Lot 2 90022258 S/G Level, Narrow Range:

Lot 2 Pzr. Level, D/P: Lot 1 SIS Autoswitchover D/P: Lot 1 2.

The requested information on qualification of ASCO solenoid valves is attached.

i 3.

Refer to revised Table Q7.60-1.

4.

The drawing number for the Safeguards Test Cabinet supplied for Sequoyah is 1057E21. Westinghouse has performed a review of the design changes and determined that they do not affect the quali-fication reported in WCAP-7817 and Supplement 7.

5.

Refer to revised Table Q7.60-1.

6.

Westinghouse is obtaining the required documentation which will be provided as soon as it is available.

7.

TVA has contacted the motor manufacturer and will supply this infor-mation as soon as it is available.

90022259 l

J 7

O Table Q 7.60-1 WESTINGil0USE NSSS SUPPLIED lE SAFETY-RELATED ELECTRICAL EQUIPriENT (SEQUOYAll - IN-CONTAINt1ENT)

~

FUNCTION (S)

QUAL. REFERENCE QUAL. REFERENC!

CATEGORY EQUIP!!ENT t10 DEL PERFORt1ED IEEE-323-1971 IEEE-344-1971 Instrumentation Narrow Range RTD's Rosemount[

]

RCS By-Pass L'oop WCAP 9157 WCAP 8234 A (16)

Coolant Temperature Detection Wide Range RTD's Rosemount[

]

RCS tlain Loop Coolant WCAP 9157 W Test Report 11/7 (8)

Temperature Detection Differential Pressure Barton[

]

Mon it.o r: Pressurizer Level NS-TtlA-1950 NS-TtlA-1950 Transmitters (23)

Steam Cen. Levb1 Steam Flow O

Foxboro [

]

RC Flow (e)

WCAP 7817 & 8541 l

O (12)

N Pressure Transmitters Barton[

]

Monitor Pressurizer Pressure NS-TilA-1950 NS-Tt1A-1950 N

(6)

RCS Pressure N

g Power Range Neutron Westinghouse Provice Feedback on (e)

W Test Report 1/79 Detector Neutron r!ux Density lleate rs liydrogen Recombiner Westinghouse Maintain Safe Containment WCAP 7820 WCAP 7820 liydrogen Cor; centration Supp. 1-4 Supp. 1-4 Valve Operators Cate Valve Motor Limitorque Activate Safety Related WCAP 7744 b

Ope ra to rs (6)

Motor Operated Gate Valves NS-CE-692 NS-CE-756 Globe Valve Solenoid ASCO Regulated Air Supply to NS-CE-755 c

Air Operators (10)

Air Operated Safety Related Globe Valves Revised by Amendment I s,

9 c; 1010.

^

Table Q 7.60-1 (Continued)

WESTINCil0USE NSSS SUPPLIED lE SAFETY-RELATED ELECTRICAL EQUIPttENT (SEQUOYAll - IN -CONTAINt1ENT)

FUNCTION (S)

QUAL. REFERENCE QUAL. REFERENCE CATEGORY EQUIPflENT HODEL PERFORf1ED IEEE-323-1971 IEEE-344-1971 Diaphram Valve Solenoid ASCO Regulate Air Supply to NS-CE-755 c

Air Operators (3)

Air Operated Safety Related Diaphram Valves Gate Valve Solenoid ASCO Regulate Air Supply to NS-CE-755 c

Air Operators (2)

Air Operated Safety Related

,pate Valves Instrumentation Pressure Transmitter Foxboro [

]

ffon i to r: Steam Pressure e

WCAP 7817 &

(18)

Containment Supp. 8 Pressure WCAP 2541 Ist Stage Turbine Pressure Differential Pressure FoxboroI

.1 Monitor Feed Water e

WCAP 7817 Transmitt al (8)

Flow Rate WCAP 8541 Panel flounted Ilydrogen Recombiner Westinghouse Control of liydrogen e

WCAP 7820 &

Logie and Control Panel Recombiner Supp. 7 Switchgear Lyuiement Process Control Foxboro tionitor Operating Parameters, e

WCAP 7817 Cabinets Initiate Reactor Trip and Safeguards Actuation Signals Solid State Protection Westinghouse Initiate Reactor Protection e

WCAP 7817 System Functions Supp. 2 & 3 O

O Nuclear Protection Westinghouse Initiate Indicating Control, e

WCAP 7817 System and Alarm Signals for Reactor Supp. 2 g

Control and Protection WCAP 8830 Ch Reactor Trip Switchgear Westinghouse e

WCAP 7817 Fevised by Amendment

I I

i Table Q 7.60-1 (Continued)

WESTINGIIOUSE NSSS SUPPLIED lE SAFETY-RELATED ELECTRICAL EQUIPMENT (SEQUOYAll -0UT-CONTAINttENT)

FUNCTION (S)

QUAL. REFERENCE QUAL. REFERENCE CATEGORY EQUIPMENT MODEL PERFORMED IEEE-323-1971 IEEE-344-1971 Safeguards Test Cabinet Westinghouse Verify Safeguards e

WCAP 7817 l

Integrity Supp. 7 Sa feguards Ac tua tion 11_

Initiate Reactor e

WCAP-7817 &

t Cabinet Protection Supp. 2 Functions Valve Operators Globe Valve flotor Limitorque Actuate Sa fety Related e

b Opera to rs (6)

Motor Operated Globe Valves Gate Valve Motor Limitorque Actuate Safety Related e

b Operators (40)

Motor Operated Gate Valves Diaphram Valve Solenoid ASCO Regulate Air Supply to e

Air Operators (7)

Air Operated Diaphram Valves c

i Glove Valve Solenoid ASCO Regulate Air Supply to e

Air Operators (9)

Air Operated Gate Valves c

Pump Motors Centrifugal Charging Westinghouse Cha rge RC Pumps,

e d

(lli-liead S. I. )

(2)

Emergency Care Cooling sg) Sa fety Injection Westinghouse Emergency Care Cooling e

d C"')

(2)

CZ) rsj Residual lleat Removal Westinghouse Supply Constant Flow Through e

d rN) (Low ilead S.I.)

(2)

Residual lleat Exchangers, PNJ Ch Emergency Care Cooling N

TABLE Q7.60-1 (cont.)

I

?

t a.

Numbers in parentheses indicate the number of that item supplied by Westinghouse (if greater than 1).

b.

Seismic tests performed for Limitorque documented by Lockheed Report 3521-4811 (5/17/74) and i

Aero Nav Report 5720 (1/6/75). The Limitorque valve motor operators supplied by Westinghouse sg) are the same as those supplied by TVA.

C~)

Seismic testing was performed by ASCO, a letter summarizing the results has.been provided to c.

CZ)

Westinghouse PWR-SD.

psj d.

Seismic analysis of the pump motor structural assembly to demonstrate structural integrity was 7

rs) conducted by the vendor. A copy of the reports is retained by Westinghouse PWR-SD.

Ps) e.

There is no change in the environment due to any accident for which protective i

C7' function is required.

t (f4 i

'la AUTOMATIC SWIT.CH COMPANY siisa ep

~j..

(

VALVE DEPARTMENT i

ENG!NEEl%!G REPORT 2

r F

OtSTHmuTED TO:

Q I Y.

REPORT NO.

144 O

SEISMIC TEST REPORT FOR G7134 f.g.,,3 WALDRON INDUSTRIES (AWV)

T6d2n (Ref)

E Nc nc.Joo enOJEcr NO i

P.O. W-1210 R'

10UU ASSIGNED TO

[

ATTENTION: B.H. Sellers, P.A.

///g /7.,p o,7g r

/

/

{

LWO 3159 S.O.

46595E I'

I

.i

! SUBJECT OF THIS REPORT:

Itv200-921-2RF, 120/60

~

I.

INTRODUCTION:

j s

An ASCO valve HV200-921-2RF, 120/60, containing Buna N gaskets and seats, was functionally and scismic tested per requirements of Waldron Industrics (Division of American Warming and Venti-lating, Inc.)

P.O. W-1210 according to TVA 34-820197, Supple-mental Requirements, June 30, 1976 Page 5, Para 9A, and TVA 34-8203 97 Appendix D, Page 23, Para 4.1.2.3: " Assuming a valve whose lowest natural frequency exceeds 33 Hz", and sub-para (a) : "the seismic loading shall be that which results from input accelerations of 3g horizontal and 2g vertical".

These values were applied simultaneously resulting in 3.69 at' p

34,. inclination of the normally vertical solenoid axis, when

' (,..

l tested in accordance with Seismic Test Procedure TP-1-024, Item 1, attached.

~

II.

RESULTS:

Energized, the valve had zero leakage (for all positions) to 40 cps (12.3

),

the limit tested.

De-energized, the valve 9

showed no leakage over the allowable lec/ min. above 34 cps (8.99), when tested at inlet pressures of 150 and 1/4 psi.

Cylinder tank pressure through 40 cps remained at zero when de-energized and at inlet pressure when energized. Functionally, therefore, the valve is satisfactory up to the 12.3g tested.'

III.

CONCLUSIONS:

The valve, HV200-921-2RF, 12'0/60 is satisfactory for use in a seismic environment up to 8.9g under ASCO static leakage requirements.

Functionally the valve is satisfactory up to the 12.39 tested.

Q* / \\ FEY 1'~Jg7O

__ FOR APPROVAL ]

m o _ i m,, m.,oe.

APPROVED

'e

., w * " "

~.,,,"7,"K M- (hx 9 7 G.

<<o-a~ ~" or w wo-u ",> r p

l i o,.. wm,~. a ew.,,. -o.i. o o s

jgg30 1978 TENNESSCE VAREY AUTuoRITY em -wi-i i

e.

. :e_.r,,.a;, 'Q,y AMERICAN WARMING

.g E

p --..-- -

U AND VENTILATING INC geg m m,,,,,,,,,,,

Anid N ltr i y

t el I

I

(

8!

AllIOlllullC h=Wik.,ll (.,0.

inlet C i n#4td IG5tilO Dy NO.W h 02/> (d[

j/

c.i' Pr.Atrr c5,,., g t

VALVE Ll!GirlEllt!!!G DEPT.

t. )

/

O 0

CHANGE LETTER c,,

4

/

sv O a.i O O4

.E SCISMIC TCGT PROCChilRC:

^^ O O

D^3tl N '

PAG

]

OF 3^

Af4:0 IN-l!OUSC cal'Abf l.lT'I O rs O 4/9/76 1

'l.

PUP.POSC:

To qualify a valve or other component for structural integrity and operational functioning during and af ter a scismic disturbance.

&y t

j ':

2. SCOPr.:

To assure' natisfactory operation of the valve at minimum arid maximum

.jh(;,,

rating under tent conditions, while vibrating the parts at frequencies f,

and displacements npocified, within the range of the equipment availabic.

fy,;,

Basic parameters tented will be physical damage, excenniva seat or external Acakage, cycling ability, locating of resonant frequencies,

,. ):i durability at renonant frequencies or at the highest frequency required, J-and effect of orientation with respect to shaker motion.

Additionally,

.j '{'

' if Icakage is encountered on 3-way and ts-way va.1ves in excess of ASCO i'

,e standard allowabic rates, the chanr,c in pronsure at the cylinder port (s)

,3 will be report ed.

After r.eismic shaking the valvo is functionally tested and inspected for damage.

  • ..{ 3., SUllJCCT:

Ungrg. Job.

Project I,WO Report No.

Cuntomer Shop Order I,ILs VI

'l W 1-1/*61

.3i51)

Het tML 02c^) IsttA M95E

...i.

u tt it

{&

h

/ l W)kl=*

A Catalog Parla List f, Assembly Test Rated Prens.

A, Number (Change Ltr.)

Procedure Procndure H a.n.

Electr.. I.orm Hax !e<).

l[t] H f,,

f,ff,;'

/

  • M -%I (f.') /U/20%

f N f.

lT!s'JUC_

b f,$' O

/M I

.t!

-~

.ff V1-002-Joo(d]},RI'M-. _[

. 0; b,......

C'

,) '{f.(,%.W~

3D.-. D MD

,f 5 CQUIPUCNT:

A.

The ceinmic vibration simulator.uas manufactured by All American

.(

Tool and Manufacturing Company, Model Number 100HA-D.

, v.

11.

The machine has a total load capacity of 100 pound t 10g.

C.

It han a displacement from zero to.150 inches, which is infinit ely

,f adjustab)c.

Tabic trave 1 is horizontal, with sinusoidal motion i

and acceleration.

D.

The frequency range is 9 to 60 hortz..

2 C.

g =

. 0511 Df, where g acceleration, D :

Displacement and sj f :

frequency.

i. AGSCUDLY:

The valve shall be assembled per the above ASCO Assembly Procedure.

i. PUNCTIONAL' g-The valve nhall be functionally tested per the above ASCO Tout Procedure.

Included shall be:

A.

A Check for. solenoid noise at full jine voltage.

, *\\

' -1 B.

A check of valve operation at minimum and maximum pressure at e

3

)

/*

test voltage or current.

l.

C.

A' check for internal Joakage at minimum and 10'l, over maximum r

rec =ure.

90022265

@rrc/' ' p m

([R 7 TM_

  • il.

6 i

./

r

/

. /.

o NO. U ~l O

[

.irn O uornO 1550tO ny billOII,Ml!$C h..{f.l} ba..O.

l a I:. K. P1Attr

,, a o,

1 Ar@rj(.,uW/

cilANGE LETTEFI VALVE EllG!!!Etiti!d DEPT.

/

.. O a O f

6

. j,E

^"

n SUISilIC Tl:ST PROCI:DUPl*:

i

^^ O O oAtt issurr>

pace p g,

3 A".C0 Ill-ll0USC CAPAnlt.1TY O n O 4/9/76 5* FUllCTI0llAL D.

A Check f or external icokanc per the tent procednec.

'j*

Tl:5TS:

,/ f'.'

(Continued E.

F.ecord the above tent resulta, gap,e and inntrument calibration information, such that they are available to the cuntomer.

'{.

7. POUi! rIllG:

The test valve chall be rigidly mounted to the vibration tabic.

For testing, nimultaneously in horizontal and vertical directions relative to the " valve instal}cd ponition", mount the valve with t he core tube.it an angic 0 from the installed position, in a vertical plan.c defined by the shaker motion:

~1

  1. 7 0

=

tan g /g

~

3 y

h b'

where g d3 horizontal acceleration, in multipics of" 38G in/nce.2

' g e J, =

vertical accelcration, in mult iplcn of-306 in/nec.2 Unless the necond orientation is not required bacause of symmetry, rotate the valve about its normal vertical (core tubc) axin by 90a for the two orientations of vibration at a renu]Lant g-loading:

  1. d' (U

(C }

+

g h

v Afrequencynearchnhallbeperformed0D=,/{.fjfN.donble,nnplitude 8 * "C I",ti t C h,

A.

in the(

The valvc nha11 bo Ior.1ed with the notenoi ( g heelz ranne.

d do-oncenized anti cuergized al-tr nt voltane, for maximum and minitunm dcnign presnuren, Af 4 GEdItC[] Tric D IO 6,2 &}{GgL T HA N OG / Mib.I a n-Fevel Cgtes

+- n-q FntL t

t he rfiax unum -

at mj n unum and D.

Dwell testn shall be run at sj '

inaximum prematrc) for a miniinum of ~30 necoinin at cach renonant frequency (indicated by avat leakane) found in

'A'.

Jf none in found, the dwell test chall be performod at the hinhent frequency for uhich the valve in to be quali!' icd.

Cycle the valve several l

times at the sinne points.

C.

Durinn and af ter the tent inn indicated in Paragraphn HA and Hil, sufficiont monitoring equipment shaJl be onod to indicat e.nd reurd. st/W valvn malfunct ion, such an m:co ::ive :"at l oaka e.0, nienetural failure, l

broken or Joonened partn, impioper opcration. etc.

Calibration information of the equipment chaJ L he recorded.

U.

f.cak tenting chall be perf ormed durinn nuvop and dwoll testa,'at maximum and minimum prc:: aura, cuernized and de-energized.

l ma m.

9 3

90022266 o

r

.~.

If~~lic m.r/ imam e,- J ove 1 f or I ho dwr1I Iontu in t h.i t n.1 ovo 1, ahnve wh ich failure occurn f or the part icul.ir oriculat inn and prennure.

.e

/. '

MlilUlilullL 0 %llLil L,U.

- ~ ~

O U 3:.K. M ^lif

' I~'~ l - 07D

3..' * -

VALVE ENGINEEmNG DEPT.

Q As y C}lANGE LETTEft

,:n O <a ritLE O an O Ok

~

av SCISHIC Tl:ST Pittit:1:liURI::

  1. 4

^^ O

()

DATE ISSUEra l

^

ASCO 111-110l151: cal'All t i.f TY

,J;%

g,s O

4/9/7f2 0

A

9. POS'.;F SC I SHI C Al.ter tlm.7.cisnu. e testiny, has Imen complet ed, t he va.lva shal.l ar,a tr be tested in accordance with Paragraph 6 to annure t hat the valvo a}s 7gg g

.. ', o.

'MN still functloning properly.

A'

' s,':l.,

The valve sh.ill he dinasnombled anel th'.srourh.t.; examined af ter completion

.. 7, of tentn.

Any physical darnage or failure to function properly shall bc

,j; recorded in the test report.

LO. RCPORT:

A fornal report shall be furnisbeci to the customer at: the coinpletion of.

the alsove tests, in accordance_with ICCC Standard 3'14

.c;.

h.0 05 ro m=E-.7

^ &$..cw' i.2=G = f R 0* D E ~ & Y

.~yr; t--p u

,f W Pr DDP4-J&

>0.--//v-krn; s:h2;6

.p2-w W:MJ-3 6. j- -

()

povM TJAl& i/S f Eu w.'

.tm n.

A B

/e T4GLE 40T(0W f

i t

  • /

o 337 o

3 3..

y D**D 90 TYh

_p

.LL%

m'9 '

90022267 w

l'.RV 77.790 - Inittal 1.; e.ue - 4 /') / 7(i - 1: K.P.

r e..- v.r. i n c. n r.

- 1.,

j'f ;u o ',i e

.j i y gi g, g) s g

3 3-

$/

[ N d ef.,' '

$,{t.

'!,'d f

v es g,

v t

g..

4~

sn n

.s.

,.y.> -.t t o

v t

N A' 4 4

-, 4

s 1't t,, 4 ; *y 2

s o

r y

s u

os l (v

%n

.s q

'h a

=

i, c. N M

}

.=

  • 'T Q

p'

  • Q o 2 l

~

[

d 'l n

f' Of

',3 S.n

/

s D-.i lo.

,) l t

e en 2

m

,3 'jg

.,f lc

,r, 3 i c i

g o

'l

,$ A R

if A E

i &..i.

G l'E

r. =

... ~.

l I

i, se en R

l m

Ci o rj :s

'N f

sj 4 L

>3

~7 4

"-D I

O..,O.i o -o

,1

  • 8 iOoa o _._ c. -

U dZ 4,

l I

JL C4.C t;

i la U

c O

O 11 1

  • c H

ci i

n o

O U

n*.

s

%=

N

'9 4

j.

N 4

g

%N m

i

\\,N.

v4 Jt' p

e--

k%

') t 1 ** O O

c%

o-.

9 l s'

'a#1 D'

y lJ R

I

~

o, a

~

~

u,

    • O

. ya

?d E k

,o e,. Ou O

m O

U ;j

,1 O.O l

4 ta y Q

0 6-s o s.

'O

,('.

41 U r3 cr-4 cm g-b N

[y h>

3

-S o.J e

.p g

N.

44 N.

!h I

T j

'.,4)

,c, b h*

___.=

I i

l __.

=

m

s u a

M O U

.d O

I c'. N O

  1. Q J4

,el O C V se C

o ;,

C-4 e4 M

tJ ej ;1 g. (

.i O

H u) ed a

H m ft

<>) '0 r

rI k

N

'M dC IJ m

s N-

,-4 oi 3

'J 4

'u

.R W

y a ts! m u

La O

m N'

s.

L p)

N Ig f4 p

y es v

um e

) >

H U i

.< g n

o

- ei

.)

g A

['

y

  • n t.t-(

4.!

'l p 2

.' o t

u.

en 3

7 n>,, -tM M 9:

-1 9 '.

e a

tt 'm' ? i-o na m-8,,

mu n

.f.s g

2. s

_.a..__.__

e x

> a

~

~

4

~

c a

.a

.a.,

.a.,

p i.

?

c_

o,,1

.i.

P i

O v a

u 3-a e

<t e

o u

o

.s t; x

e a

9

,8 3

T-I o n-a 4

.T 2

'd

(

T i

j 8

_h_._a 8

3

'a

. ___.. d ___. 'a w

l i

i D

Of D

o Y

N

-9

-)

b 7

-6 a

% Y ( N n

O

~

n'.'

't.

)

O C

Q (M N

[

M O

6 v4 3 J ro

%)

~.. "a -t.n c;'

.;.)

yn u,

,, c..

s.o rJ O O C rL N e

e

> i t. % <.

m cE.

c.','.

oo o

. m A

D D

D i

. 2

..I oo a

_a 9002226F

~

~

.nw$:oest U lS.010 By tJ O.

U.%, 6.302, p/

kO[UINU[,lc Sw.tch Co..

, e _a J. rit e ne TP-8315 1 ~ '-

i

.g

m. y CHANGE tETTEft bj VALVE ENGINEERING DE?T.

e m a, ti i k ' W*

T flTLE W U Ul

/-

I < 2.',

TEST PROCEDURE: BULLETIN 0300, 8302, O

O DATE ISSUEO O

O 11/1/62 l

OF2 PAGE

's 8315

  • g D.... . \\ ;,,'i,l.9.

."S 4h

?-

< l. *.. *

s e v.

,..v..m.)

. ;.g v:n.<Way lever operated colonoid valve. ', Resilient and rnetal ocating..J'

  • P.'.',.',"7.

l'y;.0$SCRIPTION.;:. 3

..,.s.... a

........ - - = -.

g c GENERAL:

1.

Check general construction and appearance of valve.

..2 1

Check nameplate data for conformance to shop order specifications.

9 2.

.I

.. *t Y

TEST. MEDIUM:

- 1.-

Air i

.......s....... n.

o,:.au m. cw

.y

, (.

J.

2.

Mentor Oil if chop order specifica oil only.

>.i.

.. *,., g,. ; >

~

y

'E.(j. TEST FIXTURESTA-981-ll448 P37. Valves s.~.w.r.d,;4yrgic. 537-9075ur,w.m: m.~ rry s+4 sung',37 g,

TJ- - ti - ;

g;-- a..

p AT-8300C-F-1 TA-905-9984 P38 Valvea el;

}

@f:

TJ-905-10168

.i-

'y,. TEST VOLTACE

,'.73 AND CURRENT:

1.

All D.C. valves are to be tested usinv.,.,,t;he t, cot,,cu:;rept,Ji,g.p,dJ,9fg,g, &

A, '.

the specified voltage on Data Sheet No. 26.

g.,,.,,.;,

,#, [

2.

All A.C. valves are to be tected using the test voltage, listed on ?~s.".T

'.'J

..., ;,1e.jf u..g.,i.,.,d,w. ji, jam.*q,,..

.4, %..

... 'h f

. Tes t P rocedure TP-1-003... g......Q,. :........

As

,as

??,i:CE;Q,*a'p,d, f.?'=

.Q 4 l.

s]':.

3?

i E);TERMAL A

LEAKAGE:

.Tcat for' cxternal leakage as follows:

' ~ ~.%

,. r, (c) Brush acamtest solution around all joints.

....\\eg,,... r.,

.n (3);. Pressuri;;c valve to 1 V2 time:s maxinten. operating prescure/h Any ' U.vt k

  • J 4r.

(.

bubbling or foaming, tinless otherwise stated, is reason for rejection

'. ~

(Ref. TP-1-009)

...s

..-,.7

.,,,,,,,,,,y,,

t:0TE:

To avoid neat leakage or noise caused by the possibic presence of dirt !.yr 3.;

f)g or loose chips, blow air at maximum prcosure at which valve.,u,i.c.l. oper..at.e.,i.! 4 l

g, 3

i 4,

thru the valve before proceeding with testo below.

r W M.<,,c s.

y Vi d.,

.f.. SEAT LEAK-Check valve for seat leakage at maximum operating prcosure. ' Allowabic 3:' 'r Buna 'N'

- 0

.h (s.?l, ACE (HICit leakage:

'S.

    • [

{;f PRESSURE):

Resilient Seats - Cast Urethanc - 50 cc/ min.

,c c

., ', w-.

f.,f Metal Scats -

1.5 SCFil y,,

y

.. :,(

011 tested valves muot be dripicos.

a...

q 0'

a,<

.. v.jp,.

. /.

NOISE TEST:

During the operational tests, chech valve for noice. Any chattering ory

'Sj rattling in exccan of normal A.C. hten 10 rencon for rejection. Valvo f:huuld be tested at test voltage. first, but voltage may be increased to '

i.-

f ull..li n. e. vo l t age i f,,ne c, ce..sa.ry..t o p.a.s s.s.he..N..o,..i s..c, T..o.e,.t,w.n, ly. ( Re f,,. TP-1-015,)

~.

t o o

~

,a

..... u., w 4,%,,.

s

\\;i.,,

y,

..: g y.

~

y;..

,"7

.y >

. *w

.g,..

.,...;,,,.,,y,,2.w....,..,

,,m,.,,, m,;

90022269 J.:..

' f.

g

..;[l. )4.. :..,. v. p,s.

I,{

,,,.,g',

,,a,,.

i I.'h.

.(U.

lC b N.(C b b U.. ~ 5 on, Ohom0'issi>Eo Oy Nd. 8300, 8302, P

f '.

k O [UlflYl{.

1 a,,, 6 J. Fitz h no Tp 8315 d

- y s

vat.VE ENGINEERING DEPT.

Ob OJ APP.DY CHANGE LETTER DE TEST PROCEDUE.E: BULLETIN 8300, 8302,'

O cATEissuto a.'

8315 PAGE c.

g a

11/1/62

.. r.. 2.. O F, : 2..,

.c e.g*

.. ' r.:.* 9 'r. p wm.. -

},.~.5'

,'.h

.'.1.':.'.. *. t el*!Q,V3 4

  • 2 O Pt.PATIONAL

- 'i e,*.

A s

'"] TESTS: x :e 1.

Operate valve at least"10 timec'at maximum operating precoure.

- - f-Ic'. '

i.) h.-

2.

Operate valve from maximum operating pressure down to minimum operating

)

prcosure.

Valve must operate perfectly at test voltage or curront.

f.,

,r.

ff, SEAT LEAK-d.

u.

A_GE $LD'.I

  • W PRESSURE) :

Check seat Icakcce at.10 psi. Allowable leakage:

.6

-f Buna

'N- 0 R e s i l i e n t S c a t o C a s t U r e t.h.a n e - 5. 0 c c /m. i n. 'O W/WN.5f" W e.

~ ~~': -g.p.7,7'Ff.O pl ':IfcLal Scats s**

iY:*. : l. -

i p

./

1.5 SCFH v, ;

s.

s.

(f.

Oil tested valves must be dripless.

,3 COIL TESTS:

1.

A.C.--Energize solenoid and check milliampere reading. Value,should agree with that shown on Data Sheet No. 24,.

. s-

. ~..

..M 2.

D.C.--Energize solenoid and check volta;;c reading.

Value. should.dy,.re c-o s

..... ' a 8...

with that indicated per note 2 on Data Sheet Ho. 26.

J...

"l' 4 1.i.%

,j i, p.

D.'f

'c fh h'

^'

PREPARATION N g' SHIPMENT: Sealallpipeconnectionswithplasticthreadprotectorsandhankcoi18;[j. 'b leads around bonnet.

~ ~ U '.b_.

. T.,[. '

.,.1.4, CORRECTIVE

~'

".l

  • CT10H a,<

.... *...s.

g....

.l sl IGCORD:

Maintain Test Log (Form 1109) on all large production runs.

r'

...,...,..,..y,

,...,,.... g. c w....... w..,,,g.,,,,

. j..

.1

..y v,).

;.&.o n

..'e

.d 4

4 69.- I a

Aj,

. I.~

'.t 4

o D mmD 3-

~

4 d r :6.i.

.t..-

s.

t, o o o

1,.'*

C'

......r.,;

,7, Vc

.,. e

[

6.I Yb

[

, 'k... Ir

..d.1 a.c.

'.'. i.

.. F....

. 8J. i.. 5,, L*n.4..T;D d

.:.& l

..w

-a,....

....,,,,,,.,a.

, +,

n.

90022270 J:

V.

1;RV

'/h's 1 O ( l') Rev ir.e d - I/1b/W. - P.W.C.

dlg ERV.-66906 (E) Rcvined - 5/17/73 - J.C.F.

f,.

___ - 66736 (D)'.,Reviced & Retyped - 4/23/73 - J.C.F.

ERV

N

/.' : 5 AU10MNrIC SWITCH CUarma 7-- -

VALVE ENGINEERING DEPARTMENT L.W.O. 3/F9

~

f. '. ' '

P o

PRE AND POST SEIS.IIC TsSTS OFilV200 D/-2ff 3

230 0 Ref. Test Procedure Dulletin M.

g_s 0-2 S.O. No./>[. ff f f$/5 Report

/4///

PRE-SEISMIC POST-SEISMIC APPEARANCE g

j((

AIP.-

,4,7z,'

TEST MEDIUM AC:

Volts /02/4f7 COIL EXCITATION DC:

Amps X

O[

h[,

COIL AC:

Amps.2F g

CONFIRMATION CllECK DC:

Volts X

COIL DIELECTRIC TEST

~

EXTERNAL LEAKAGE @

2.26' PSI

~

0..

0 es.

IIIGil ENERG.

O P'

~

PRESSURE SEAT

@ JgOPSI DE-EN.

C p

LOW ENERG.

(/

h PRESSURE

@ M _ PSI DE-EN.

p h

NOISE TEST pg O/(

i OPERATIONAL TEST 10 TIMES @ /f D PSI

' d)g l

O/(

~

YH Q,i[

g )z FROM ITD TO pg3 DATE h-3/ ~ 7h TECilUICI AN d (L G/ (f//thfLl o

90022271

F f

l 5,.o r.s ;. ut*i 1 J j u r: ws, Q.r.ty ' <. l.l: ' t '.

  • t t Q t h *. **R s a s-

/s>

..: u

,% \\/6p.N

).,.,.. );, g [, $gt p },. 's

.';'::-- Q.~..s.,

. l, 7 - ; ;. ey

.t

,..;g l

. t.

s)

, g.l j g

c. : f..,...:
s...~..t..m.. ; _.e

~' 3,

  • p.4

.t

-),

.;r,
p. r

,... / r/...v.;,.+ a~<. o e-.e.

s;.

a r y.;-

<s,,o.-.. y-..... 1

.ud. -

.,p. e.,7""

.;; (g.,Os,~'

('S pq,#.

s

.,,j;.*

T.

-0 s.n 't.,...

1

.C G.,.6..,.l..O; f..s..-..~r &..i_

$. ", :;:,.l:. W.

. ; v.

' ': cy

.:s....t..!

.b'.dcA'.:)

.t.

^

s

" s*.

lf%/%. '?'.Ieros.*. NE A *Q :*,.

g*

  • 87. %,/ t ',.

.J}.*f. y '$,...\\y.. f W, e...tirg\\; g.t g

\\ 1..e..,, '.<.,.4. F v....', {.

a,,..

j-f Sg *.

h

'd ' '.

' 8:.N. ' Q) **

8.',

Y' i

I 5.. '.;.

.s e m,O

' :."w

e:p
j

,9.;"

...-;;. e g.., i..,,; s \\.

'o s. s, g a

.t..,f;.x.. t

. m. 3

. c...... a...=...,.c. n.n..:.. ;.

f ~.

,..a,,.. x....,n,,,

.. ~e,...:.:,a,..

.:. m..

g

-- y Y8

" h, y*-lt..,' li 7

  • *.*,.Z..**.'*.-
, t

).r. s.'/..,.. d

. u...s i.1.'

n.

t,a

.... h. \\..-

J\\

s k:*'

.,; :.;*e.L: 1 w. 5 '.~

.sc

..I J,.,.s.p ;

i, ; e4:. ? y_. y>, ; a., v..

.'. : n, 5 i b. J:.

,...r..,.,,.,,.!*.

. e;, y,

..y

.s._-

,e.

w.'.:k.

.s

...u

i *.7?

I:v?;L4.;:j.;.;s.s ',y.

.,:?,9

.a

.... -s.

.... r A.., !

a. =..

.*j

., t -

,.}

s

[///. !'iN. m/ /

R, ) </).I,',)..P. 'U[.,.,a I.I t,..m, ~7 n(E.:.x +N i

h g / *,.,

.1 p

... g, n v..

la.}?k<t?wl.'NS.%;..Re.c.-:q,a:

m r-

> v. b

,h' I.

&.bE N.' ' G**:

n l f v :'.'esn %. &..

x r

e.....

.e

~

s :.a,.

g.a>.

,.,, / c :t.q',s.,;....,. %, J.

4., ci,,e.

s v.

,.'f

.,s

  • :* s.

.e

@.' Jg, '*w..

'k..'

.h...,'.

J,h.. h..$- Y.$$b'0 D
~

..... '....,.,.. :[}<.[,,T.,.{-y,y:.75;.

,\\Tf:}

?..'

<;.]....',

b'** ' $.,, y;., 4';.;i%, : d;.h.;".. l?@WI%@,h. $1.c.j

s. ',..\\
  • t
  • C.,' \\

df.

f b

b..~.::......I. ',W::"; rg.'U<.:.N:;.?(4 Q.:.t" ~-li 1

?:. '..-

f, *,i. ';l's,$.l.?D;. ::.:.ckfr;c.d:.' # m~=h;; i-.;;-- -

1 ph;N :.. W';

b,;9%). g t r.

~

h*

.a.

.w. ::q<,,. yy.~~ysg ; %e.-

....\\,

s

.w

.s.^..-

m..
. v. n,p....

., n.p.

  • p:
y"
.u

'_. :. ~. 3 I

..c:,,.

A',4A*. ' : y.M. W ': !* -::7.;:,-* * ('.. :.. t: '.

il'j

  • l

,.3..

%..'E'

. l. '.' [j. h.

' 'S

,.,..f'iAM' '7.f.'%.

%e,;,.

.. ~

m; i r,.... '. w. :.,,;;,

.m.&.,.:.,.......: :..,...

7

....s y>.,.:

l,-~-...*M.

...,w.....,.

,,tq4.[.ts..-.....e.--

v

..s w

c.'....

w 8

l D"D

  • ]D'T]\\.Lrua h

o Ju 2..

  1. o r

90022272

/.

e

9,,:.. -

/

/:..q ; n

- g

. 0

' (P 'o n.-

9 mm r

AtlTOW. TIC' SWIT'C11 COMPA!N

{

vg Valve Enginecr'ing Liboratory i

3; o

a INSTRUMT.NTAT1011 CALIBRAT10?!

A j

Customer b

./,i.:

/,f>h Date

['N~ N Assembly Dug. 300 -77 / p Jol.4.oChg. Ltr. /I -

Work Order 3/}7

'Ca t a lor,l}J D op.9) m p;_ y,,)

>.0,) - I Ap Shop ordct

~

K,nufacturer Calibration Calibration Instrument Serial tio.

Model tio.

Range Date Duc Date ht \\0 ( - (

~$

N.J's

' o

' s..,..

l.13-T) l o 'I F 'O -

I l

a i

yLoa c. -200-n

t.Ul
.ila~

g g., g 9,,

y, y,pp i

i I I d ' ' "'

.V L P6 Loo-1 o -(, o n.,

(, -C, -T)

/o-(2 777 i

i o-G:u,'.,

l f-l? D

/J-, - 7 )

V L (> 6 (coo--l I

i n.

! ~ i 'l 5 'oi b J

I th y ( p g

,,3. / (,.

o39,3, p.j p 7 -)

jg,_ j,_ g )

1 y [ F n. :.w.,-- l

  • * "l '

o -100 n/n.

10-14. 9 b l lD-ibm i

l k)so.f,?.

I y(, ([

D;')3 Lf O~'I0,\\!.;s'Il l0-lq k j o _ ya ))

i

-1

/(

, ')

  • /

Tcchnician /

  • W l ~ ' ' ** ' ' ^ r ]

90022273

. +n::.

. w--

m.,......

-o, a. n.. o. y,i. J1 0

,u,,c n. m

.,+,c;,,e. -

?T; '

Re lD R O N IN.'0 0 tT RIE s, I N C.

T^c" dunmaq/2

. d.r.

.)g.'.'.) 4..... : DIV. AM,, ENICAN WAR 5bjG AND VEYll'ATINGT-INC.

?'

T. V.

A.

': t f.d.

017 $UMMIT STREET P.O. BOX 1717. CENTRAL STA.

/'

i' 7.~7 "#,

TOLEDO. OHIO 43603

"" "C " ^ "

C""

    • '^G" Ana c e n o. ALL invoic c.

,. e q

uusT

>:'..-.,r.s?.

PHONE 419 243 7151 TELEX. 286 442 pacicaces e.nierw. P AcEns

,. g....

. la

" $ *l,," ',,,

tarers..

s.ur unp,.oEst u v

  • nca por tousi usuat r.o.s.

'.,3 7/ 5 / 77 "....'.'v.....,

- ~l b t qlp

. o se.s u.4 s.s.s'u,.o..o 3 9/2/77 X

"'.'KO ' '

/.

.* w,.:. fj~g/C,.! p ;, ',..

.t. vs,, con,:9 i,.,.

6-

.i y

i1,

i s o.c.

. A,g.E'i. 's n.u

,Y

' Automatic Switch TO wALoR0s mo. n o." r y),.lj pp%.e.y

.c

/.~.$@'.l)'Q"l.HanoverSt.

" ' C-WALDRON, MIC. 49288 jf h

35 WATER ST.

.,. V.,.d...a... '.E..Tl' F.l.orhan Pk, N. J.07932

/

k '[

a.. r. w.. :i.... ; <:t r.

s..

.s s.

l.,

'r-.m :..s

,,..:.c,f.f.'in's.v.y>s n,::* q,c-ag.

s a, y. w.pL.

.s '.+ :

)

r-

.. >,y np...

  • r;%**r w.s

'v "l

. '...KOU A N T I T Y.'

PLE ASE ENTEft OUR OP. DER FOR THE FOLLOWING UNIT PftlCEi Yor AL PHICC

m. w p$. h //
5 f

'.;>f;:'7,p?$M.

-r

'q g,g04 F,/ F

2d1, Asco Solenoid Valves O ;.Qf;,.

8300 CG1FR 120/1/60

    • ', M
,g,n'M.9.<

0 5 Asco Solenoid Valves

. lV l/ ).d

~

}.

c..

~ '

,. '. M," i, W,, C,

.,......m,'

A.v'..,W. '.

8300 C58FR 120 VDC

//.

~.:-(,Z.

..,p.e

/'

e

i. :a

.. s t.,....,i w i

... + y.

.h

.:. 3

N...P,. e 5

. V...b @;.....

.g:.;. s

.,t.
.s,.

,s.

f; f. ; M r..l

g, p;'a.f(f e:

" Valves shall be supplied i.i acord.

cy.hh: :e g

.,':g, g..

W/page 5 Par.

9 (a) of T. V. A supplemental

/JYFe,

't.::. y.Q

.,[(,

. ~,.. J..,.,dl !/

^ d*.

requirements.

  • . <.' s,

, w.. ;. g.

.,e ;.

a.. *

.f. ' ',t.&j'#,

5,.$ y'.*;,11:pt, Please supply seismic certification in accordan ce

,s

. j
.g

'/,$,,.%

w/appelfdix D of T.

V.

A.

spec.

P y

'3'.Q:

34-820107 and supplemental requirements pages 1

,.?:

C

'4 -

3 : R....

.f..

<;1,thru 5 herewith attached.

c :.... m,. : lp. +FC m-

.g 1

...';:.N

.<. :;.,1.:.:t-

<v.t.m;y

. q.6.;o,.a -'

e sp.

.a...-.;, p.

.. :0,

...,,,f l. t sg,c,p.

,p a : m.

g,5

.pr..g, gtn.a v.
m..::...,y.,s

. 3.

)r mm m

.s D

D y,

.. <.. m -

,,.:.;.<c::m;r

.e. -

.a

~

aw w

.m.

q

?

v.p. w,5..

  • t.. d.w.

n

~.f.,.

e e

6

~

.cc.s.

.4

1....
  • ..y,...

U# i s.i:',I$r$

6

  • o..;y,;..

i..

,r

$$h,:.;.'!

@ '.pt:. ~

  • t ism.'.h

"' *,9 s... -.._. n...n.,.... wi..rv..:t r.a... e..m..u...r.r..u...:.cr. mm cr rn n.r sm.

' ;,,; ;;;,,;. J. g ;,,j/,,,,,,.

,/'/ -

5.......

w p

g, ".:jg. g,,-

,fi*,.g..... I ILL iN P45 00t.nla O'.d Ot.L..O.'t Ow A<X J. LOT'Y 6 HE turn To 05 n.o., s r n e/

n.,s 4:sseico vi.c o. n.

, y.,e,/ /.,,.

.,. s

-rS. *...U....

ii

......,. i r : 5,.e g ;ly> =*'is.w ue t o r a t t i s t us wi L L a.c w a p c

_s i

.W ' ' '

He

*;..l. Q *.,\\M,-

i

(.,.

__. ~._,,., J,....

.., i, ::m,m m u.,. __,.,,. _.,.

m s... r,.r.s.,,,,

,,,, b.

dt M4%fI O elifIC A1i gv [ x( A.ir tio,9 Ai... r r....p..., s.. vt.,,,,. f.,, p.. e et.,,,, s. 6. s,,1 r..;.l. i c p,........t p...,... i, p., s......,....

q.,,, n,,,,,,,,,,,e.,;,.,n,,,,,,,

1 o

,r....s.,.....,.......,,,,,%ni.,,,,s.,o,a................,i.,,,....,,,,...,,,.....,;,.w,:,,,i.,.........,........u,,.,,,....,,,,,.,,,,em..,,,i,,,,,....;.,,,,,,..

11.., c,.s r:c

.e i

.t i o....., :n f.,,,,

,,,...t,,.,4,4 cad it.oH 1., c ue...i. e cJ n pus 8 c.I rm f c.,tce i,..a. e n si.e of.c., s c.. d v e...,...la u N oe f r e.o ri..I.

, et pf oc cu...j.

t

? c d.re * *e. 5;nned Al..w; Conyny. Sy: Nye,, ger 4.uce. I. ele. 4,ee. Add,en: $cc..l.a.c. D.eie" ',rc ul.

,e.

( n..,ma y Us r.

,.I m a y

$,,,0 g.73 @ ; - - - -

.jl -y 3

~..

g,. 9. "i, a."% a..

3, I

e

.m.r_-.

.z-.

, u.h \\.,.,,7; e f v

,g:..: / j.k..

d

'. *[, s.. g-...s t

h<*

.:.., ' A,, Q,h.

,/,

. : n"4.f.5, ** *

/'

I. '

.., e,36.ng q' s'.

! @,.<.e p t #...

9002227.4

    • ?,.,

.. 1r.2. _

\\

l..y.y.- - -..

g n...

,v ;.

t

p.. ;.

.:pur,%;~/

~

.:. e -

g..n.....-

t.h

w. t P 10

P o,,c m E W'A1.D R O N IN'D O NRIE5, 1 N C.

T duEnk/3

  • bh..,,.'?c'i. c DIV. AlV)'dlCAN WAMIUG AND Vi-UYlEATING;-INC.

T. V. A.

. -) P.'

~'

017 SUMMIT STREET P.O. BOX 1717, CENTRAL STA.

/

. 'irI

'w TOLEDO. Oil!O 43603

"""s f a va c'e ri ej[A L L iN v0 c"E s 5

C"^"

' " ** **G

^

.P :( f. p uu PH0HE 419 243 7151 TELEX 286 442 PecxaccrAmf,nippov,pancns uttry.

se va.* ;. ossT W AY WHC88 SW P MNSB US U A L.

f.0.8.

,i\\,,

d*j ' " *'?[ y'[,,,,,,

J7/5/77" 9/2/77 X " 'A* '" ' '

. T @ c.W. r W - N.. i s '

.1 SHIP

.o n:. u...n.,,.... a.

p.,

di.8? 3f[' ".'. ' Automatic Switch TO wALoR0s iso. n.. M gppy.s.:g7 r...

..m APWgr:'.nanoverst.

/P WALDRON, MlC). 49288 g

.gy.

35 WATER ST.

.v'., $.n.c :.:.

7 c: ' Fl.orhan Pk, N. J.

07932 c,

., ;....g,...%... g;i.;s. :,..

a.

s, e

......r.

e:..

..(,,,.,...

p

. q kt. l.1..

e.

, g,y. f.~ L..;. ;E'*n -

_j

.s v.

.. j. ; 4.t o ','d... ->.s

...1 pyg; g,g.-

d.

'4 i' '.y 4

c,,

'T Q PLE ASE ENTEFI OUR OROEft Fort THE FOLLQwsNC UNIT PftlCC i TOT AL P AtCC

W@U AN TIT V.

y'),Q % h/

f

.]l2 Mif.W) i i..

. h..

lql4.(k','.'<

Asco Solenoid Valves C

$ f~M/h 7.'3 95,

8300 C61FR 120/1/60 I

' 's ik;r>

.k-

...A.'y '. -.

Asco Solenoid Valves

.('/ U ). d

p. - c. )!..
0.. d...

Y r-8300 C58FR 120 VDC

,v.b.w.g.,

.' :..., g:

. f, i,

/

e c,

.s.

g,1..,;..gn,

..m

.';;4,,q.v

" Valves shall be supplied in acord.

j,'l%i

. g,..:.g. r.;g

.r.

<.Eg. ;0n;'

.,s

' PlD. '

'l

't.},$.,g%

f

, [b,e.5g',I l'i/page 5 Par.

,9 ( a) of T. V. A. supplemental /

{,&{.

c requirements.

Q v u,,a

..'-w v.d.

l$.n.W v,.

. m. p s'..

j.1, p.w 3

Please supply seismic certification in accordancc

. j.j ', -);"'N;;y[

.t.g.

f w/ append.ix D of T.

V.

A. spec.

,.,%.g l

lH

@y,
P 34-820197 and supplemental requirements pages

,.:p 'h,') MS,jh

~

75. -
  • 1.thru 5 herewith attached.

, q ~.

.s.

W kn.> % h.

.. m.:

.M.;U ;.:r t

n s

, h'; ; :M

?.

s w&)

e

,e

  • s.,..

.4

' lI'fl;,..!

'.:*s ;\\.r.? V.',.,

.Q'&.,W,.

3..y..o?t.,%

,c.

3.' ';: &

.s 4

- Q< n. 4

\\

.... y e, :: o

.h.:

~ d.

.,~, s C.,&:.~.L.'.,r

  • &f

.",..n..'

.f s -

t

\\ r l6D a,y;.Is M t<.

-1.(.! * ?'QQ:.T s.-

=

N;

. 'r e.,,$,.,t

, -M 3 y!h.

ei h,,i ;e n.l

  • ;0
  1. f s.

,{

i 1

.? O g,,, e,p

,f.

i

  • ' (-l.:? *,,4 s

I.* * '/.a, '.././/.7.d'.~..* f.N7.b 'Y.58.7e =l.fef'

'....+ng,, e n / b, ['L '...cg,rhw, ru.w.w:

E

8Y'E

!* U

~

,3"F

' ",ag:lj

- F

..... " 1 ILL IN IPJ 0lP.lA luyJ UI.LON Ow A8:

Kid. COr'Y 0 f1E ruRN TO O',

)

......... 1o

.,.v,e...m,.........~..

.. ;..,8 ;.; n.,,.. eq..,.c

"*,marm=r= m-~s r= a.:r : - - s. r m mJ _.::rs..t z==-. - - - T.

t::. -. r..

.-t. J. fr-:...

....s-r-*.

- ". r sa:r.v-=, z.. : '. r 4 e m.*

  • m..

..a. s. um. '::.as

At ti'( f (l,[stf( Alt Of ( x[ut.f spN.

Al,n,

(,.,,.g.,,.., s.n t,, g r. s. t.,, ii.ns

,I., n,,. g l.. of e..jhi p.n n

n.,l

.y.g.c, f g o o g ion,. g.. p

.L,,, n,go, ',(,, n c,.

,,, nf,,, 3,,

i

'q sf dn8r o'.l.;g e...sc,o y,.ee gh.ll 1.c po.gl.ntrJ se.nr u. s c.n.

r shr Ih...o e.a ufroc.l.a..r c il r Ia 'b* r"e'Iw6 '.aa 'I "arbl* rena" H i

8'. ale I.y a sai l.x f u'..

t 'are'It 0

Ih;s t es hl;c a e 6 11 (.,.il.nye in fo,e e.,.o:l se cl ed end.holl be r ua.obved u pur' cl get l o.<les q..e* to el e obove s r*.ed we.usu

' rdot tunaj.

s 1

..aleu ike 0 det;i es.I e s

b r ea.'se. $;v,ined. Al..i,e C omony. By: N yet,ser.ibuve.

I.II* Nyes. Addre nt: Ser ubr>.c.

D He * *,er sao,a. Compoar Lit eau..I ear : $*a nha,..

.'yr+*~it

= '

,'J;*'s t

= m es..a e.. y

..=

g

..6,,.,. 6,;i.y +.

~

_-+.-2

i,g i... -

.t,);f.g 3

n.

~'

m.,. *.

y.t f

  • r.0

\\

[*., "a

s.m 1

n.hp h y

f..,i-

)\\.-4 h.

x I;. % s

. e

- u.

a t.n w

m ww v m ys A ;

l $ %

IR N LiL R llkL ci

. a, v

a o\\

. e t.

h.

k

's o".v..

w

~

. s.

.g s

O.

n s

a.

~

,.. v.

,=

i e

. n..

u-s

n>

o e

s.

a y,

qe...,..

.,= n

<o

r..
o..

a

.n.

.u.

n c-g sp y.

e.

. u.,

)

r, Ou =. ' 'i. T,'

o 3

m..-

en

- = -

o,

w..,-

Ta u-umw-j p!

y.:

u s-b

- =

,P p

't

&. ':S O

.,. n, s

n n.

=r e t ')

' Ld '

o.

g at

. *o at2

. 4
a.

w o-

  • x

..O w

o r,,

a.

.g s _,3 3 1u CJ

}

L.d3u 6

a w-9 5n yI

,, o,

s\\0 z

2

.- ),'k' v

$ Wt w

ve u :: T.

i.

A.

I ta

.l V in a s i$ 3 0

oH M

m c

O is E

.E.

b. o,'%-

' s a

on a -

i c

e

.c ts gVN g

m m u a

u N

.fo

,n o

u N...

g OM

..e S D*

A mth<: n

=

n-

u....,

g s

a

-a m. --

m z

.w o

3 3,'

<g ;

e g

gq

_.g__________________.

.I 6

LL Q'

." 4 SN
c. ?

f'.

a

. v..s ll

~4. / y-.. _ _.,4... - _ _ _ _ _C_ )_

u..

o O

  • E z

,, o LL td v

0 z

,t3 ~N.

H N *.

4 o

C,3

..Q-e is t

i;

.;; e t.a

- 4'- -

O,, j M H,.'

N o

91

=r

  • *
  • 4 o

-0 ye g

n gg o

~~ ~~ ~~m ~~~~' ~~ ~ ~~ ~~ ~s'y\\

J_..

P. %

~

~~~~~~~~~

h3 W ld t

0 l

vI

/; j

_N__,M._______,..

CL N T

s to m

ss w

A g.

g o

QM i

e c

I 4

qg w

+

H T

Hm V

N O

HT I'

W Z

,'-,j H

J C.

0 cI L;

D 5

M MO C/.

M

.4 l O lJ j 8 ,

q t

M 5*

g._.g.

y-ld

( N C*

5 M

td n:

'c.0

.. __.O.,.--..

l H

O X'.

2 g

2 O

v D

IN C

f

. f' N

M ~E 3 Z.

n s

c n

o

-i r

i r, )

9 N

Ld c

',i H

H H

E 5

. 0'

..b _......._..:D..

s

--' ?

g h

hO

'~ ~~~ ~~~~~~~~~~ ~ ~~~~~~~~~~'

p w

WO n

'l*} "*

a.*

H td a

N U

- -~~

,d ;o H

G"

.J O-I

. %...Lo.___

j E

o D

H 4

0 C

c' N

l Q

H 3

Q. H o s a. e -487%

i p

N n

g o

N w

Q*.

{'.,

I d ~'/ n -

u.

D I

s O

Ld

~1 5 CJ O

2 H2

??

O - - --_.

d,\\

E-t; o V

O cO c :.

r u.

I

  • .>s oc e

3a 3.O-nd ii H

90022276 iN

.i.

.do *

. 3 o.

a a

,a n2 o

, u,

,k N.

8,.{, ci y rf

II.

Environmental Qualification of Westinghouse Supplied Class IE Equipment Your response to Question 7.60, particularly Table Q7.60-1 was incomplete in these respects.

i 1.

The information contained in NS-CE-755 did not address the qualifi-cation of the ASCO 8300 series solenoid valves for use inside the containment. We require that:

a.

a test report showing these valves to be qualified for service in the worst case environment in the containment be provided for review, and b.

these five items from I&E Bulletin 79-01A be complied with for all solenoid valves used in safety-related applications inside the containment.

(1) The parts of the solenoid valve made of acetal plastic material should be replaced with similar parts made of metal which can be provided by ASCO.

(2) The valve seals and gaskets which are made of Buna "N"

material should be replaced with viton elastomers, considered by ASCO as suitable for the service intended.

(3) Review and determine that the coils of the solenoid valves installed inside containment are Class "HT" or "HB" as required for high temperature environmental conditions.

(4) Review and determine that the solenoid enclosures installed inside containment have at least a NEMA 4 enclosure rating.

(5) Establish a preventive maintenance program to assure replacement of those valve parts identified above in the time period recommended in the appropriate ASCO valve bulletin.

The acceptable alternative to the above program is to replace all the unqualified valves used in safety-related applications inside the containment with qualified valves, provide a copy of the envitonmental qualification report, and institute an appropriate preventive maintenance program similar to that identified by (b5) above. Provide a response showing how the requirements of this position will be met.

2.

Foxboro E13DH differential pressure transmitters are located inside the containment to provide the low coolant flow trip.

Provide information showing that these transmitters are envi-ronmentally qualified to conform to our position that safety-related equipment shall remain functional in the accident environment for a period of at least one hour in excess of the time assumed for its operation in the accident analysis.

l l

t L

90022277 L

3.

The Safeguards Actuation Rack, Containment Air Return Fans, and Containment Spray Pump motor were omitted from Table Q7.60-1.

Also the following listed equipment, located outside the con-tainment, did not have any documentation listed in the table that presents the environmental specifications and shows that the equipment meets them. This equipment includes:

(a) Foxboro Ell GM pressure transmitters, (b) Foxboro E13 DM differential pressure transmitters, (c) Hydrogen Recombiner control panel, (d) Foxboro Process Control Cabinets, (e)^ Westinghouse Solid-State Protection System, (f) Westinghouse Nuclear Protection System, (g) Reactor Trip Switchgear, (h) Safeguards Test Cabinet, (i) Valve Motor Operators, (j) ASCO solenoid valves, and (k) the Centrifugal Charging, Safety Injection, and Residual Heat Removal pump motors. Revise the table to provide references to documentation that shows the qualification of this equipment to survive and operate in its worst case environment.

Response

1.

The environmental qualification of ASCO valves for Sequoyah will be addressed in response to L. S. Rubenst-in's letter to H. G. Parris dated October 17, 1979.

L. M. Mill's letter to L. S. Rubenstein dated November 13, 1979, provided a schedule for responding to the October 17, 1979, letter.

2.

The reactor coolant flow transmitter (Foxboro r;1DH) is only required to perform a safety function for contained faul,s.

There are no adverse environments present when this instrument must perform its safety function.

3.

The Safeguards Actuation Cabinet was included in Table Q7.60-1 by the response to Question I(3) above. The remaining information requested will be provided in response to L. S. Rubenstein's letter to H. G. Parris dated October 17, 1979.

L. M. Mill's letter to L. S. Rubenstein dated November 13, 1979, gave a schedule for responding to the October 17, 1979, letter.

90022278 i

.-m y

III. Table 3.11-2 Concerns Table 3.11-2 is incomplete and certain portions are unacceptable. The following additional information is required for us to complete our review.

1.

In several places in Columns 7 and 8 of Table 3.11-2 the entry "NA" is given. This entry is unacceptable since the normal opera-tion radiation dose rate and total integrated normal operation i

dose applies and should be given for each of the nonaccident con-ditions. Revise the table to include these values.

2.

For the entries in Column 9 of Table 3.11-2 identify the time period over which the dose is integrated.

It is not clear from the table if the integrated accident dose includes the " normal operation" integrated 40-year dose in addition to the integrated dose resulting only from the postulated accident.

In some cases, the " normal operation" integrated 40-year dose amounts to as much as 50 percent of the indicated accident dose. Therefore, if the integrated accident dose does not include this " normal operation" l

40-year dose you must justify that the equipment is qualified to i

function in the accident environment. Revise Table 3.11-2 address this concern and revise FSAR Section 3.11 to clarify and justify your response.

3.

Table 3.11-2 does not consider the effects of a steamline or feed-water line break occurring in the Auxiliary Building near the penetrations or in the vicinity of the Auxiliary Building venti-lation air intake which is located immediately above both the four j

main steamlines and the four main feedwater lines for each unit.

Revise Table 3.11-2 to include consideration of these occurrences for safety-related equipment located in these areas. Table Q7.60-1 should also be revised to ensure that these occurrences have been considered in the reference to qualification documentation for safety-related equipment located in these areas.

1 l

Response

i 1.

Table 3.11-2 has been modified to delete "NA" for normal operation i

radiation dose rate and total integrated normal operation dose for each nonaccident condition.

2.

Section 3.11.2.1 has been modified in response to this question.

3.

Doors A101 and A105 at the entrances to the main steam valve rooms have been designed to withstand the pressure resulting from a break i

in the main steam or feedwater lines in those rooms. Therefore, the affects of such a break would not be transmitted to the rest of the Auxiliary Building.

Temperature sensors are provided in the Auxiliary Building ventilation air intakes to initiate closure of isolation dampers upon high tempera-l tures resulting from an MSLB in the vicinity of the air intakes. FSAR Section 6.2.3 has been revised to describe this fea0:s0 2 2 2 7 9

TABLE 3.11-2

SUMMARY

OF OPERATIONAL ENVIRONMENTAL CONDITIONS Opera-Pressure Peak Peak Normal Integrated Integrated Analyties!

Plant Building tional Extreme Temp Humidity Dose Rate 40 Yr Dose Accid. Dose Re f e rence Location Location (s)

Cond it ion (psia)

(F)

(%)

(arad/hr)

(RADS)

(RADS)

I t. FSAR Outside 2

ATM 97 100

<l.0

<5 x 102 NA Sect 2.3 g

3 11.4 NA NA

)4(4. /. O Jht /. 9)f /8 NA Sect 3.3 Contain-Upper Compartment i

ATM 85 98 103 5x 3

103 NA Sect 9.4.8 ment 5

26.4 170 100 Jia' /8 at( 5"/#

  • 7 8

r/10 Sect 6.2.1 Vessel 6

18.8 140 100 DA's o 4tA f//6U NA Sect Q6.56 Ice Condenser Compartment ATM 15 100 5 x 104 2x 107 NA Sect 6.5 4

j 9

8 5

26.2 170 100 atK$feo mC2 /0 3a(10 Sect 6.5 4

Lower Compartment 1

ATM 120 98 5x 10 2 x 10 NA Sect 9.4.8

.y 5

26.4 244 100 Jt( S f/8 JEL2)(pe gj(go8 Sect 6.2.1 6

18.8 327 100 NA~ffte f Nft X /8 NA Sect Q6.56 M"fg/O f NA{f /07 All Canpartments 4

13.9 NA NA NA Sect 6.2.6 Shield Annulus 1

ATM*

120 98 5 x 104 2 x 107 4

7 NA Sect 6.2.3 Bldg.

3 ATM NA NA

  1. f [ f/O Jf1( 23/ 8 NA S=ct 3.3 7

4 12.4 NA NA JiA~f)(/6 JA y/0 NA Sect 6.2.6 5

ATM*

150 100 Jefff/* Y JAgyf/

E 10I Sect 6.2.3 Auxiliary General Spaces 1

ATM*

104 98 1.0 5 x 102 NA Sect 9.4.2 g

Bldg.

5 ATM*

115 100 Jir l. 0 g6 104 Sect 6.2.3 Individually Cooled Roons 1

ATM**

104 98 2x 103 10 NA Sect 9.4.2 y

y 5

ATM**

!!O 100 pA',2f/D yd'f 8 0,

10 Sect 9.4.2 7

Board Rooms. Aux. Control 1

ATM**

75 50 1.0 5x 102 NA Sect 9.4.2 g

Room, Mech. Equip. Rooms 5

ATM**

86 50 Jt(/. D

)#dW/8 103 Sect 9.4.2 Reactor Aux. Board Rooms, 1

ATM**

104 98 1.0 5x 102 NA Sec t 9.4.2 103 Sect 9.4.2 Battery Rooms 5

ATM**

104 90 jdA'/ D

  1. r {f/a Shutdown Board 1

ATM 104 98 1.0 5x 10 2.

NA Sect 9.4.2 Transformer Rooms 5

ATM 104 80 DA' / D

,,Nrf##

103 Sect 9.4.2 Control Main Control Room, 1

ATM*

75 50 0.5 2 x 102 t.

NA Sect 6.4 Bldg.

Mechanical Equipment Rooms 5

ATM**

75 50 DrOf Mr

/0 102 Sect 15.5.3 Aux. Instr. & Computer Rooms 1

ATM**

75 50 1.0 5 x 10 NA Sect 9.4.1 g,

Consnunication Room, Battery Rooms 5

ATM**

75 50 31 ( 4 1. 0

)1A'g)f/8 103 Sect 9.4.1 D

Diesel Diesel Generator Rooms, 1

ATM 100 98

<l.0 c5 x 102 r_

NA Sect. 9.4.5 O

Cenerator Diesel Aux. Board Rooms 3

!!.4 NA N4 NA'J /. D Jig 2fM8

<103 Sect 3.3 E

i g

Bldg.

5 ATM 104 90 4t( 4 /. O JWr~g f y/d 103 Sect 9.4.5 g

NOTES:

N A.

Operational Condition Definitions:

N 1 - Normal Average Day 2 - Hot Day, River Cooling Water at S3 F g

3 - Tornado (Sudden Pressure Drop of 3.0 psi) 4 - Erroneous containment Spray Inittation Accident 5 - Loss-of-Coolant Accident, Hot Day, River Cooling Water at 83 F

(

6 - Main Steam Line Break (worst case small break) l l

B.

ADI indicates a pressure equal to atmospheric pressure will be present.

Normal atmospheric pressure at the Sequoyah Nuclear Plant site is 14.4 psia.

C.

ATM* indicates a pressure slightly below atmospheric.

D.

ATM** indicates a pressure slightly above atmospheric

)

E.

All dose t'ates and integrated doses shown are upper limits for the sununation of the ganssa and beta contributions.

F.

NA - Not applicable for this operating condition.

3.11-5

.IL a ( _-

. O, GG A 2',

'^M i

l

3.11 ENVIRONMENTAL DESIGN OF MECllANICAL AND ELECTRICAL EQUIPMENT Information showing that sa fety related mechanical and elect rical equipment is capable of f unc tioning prope rly in the worst possible local environment.s at the

~

Sequoyah Nuclear Plant is presented.

A lis ting of the safety related equip-ment that must function to properly mitigate accidents is provided first.

Fol-lowing this is a sunmary of the worst-case local environmental conditions that are possible at plant locations containing Reactor Protection System (RPS) and engineered safety feature (ESF) equipment.

Accompanying this summary of worst-case local environments are references to the analyses thet defined these circumstances.

Environmental design criteria utilized for the RPS and ESF eqelpment are then given.

Policies employed for assuring that properly quali-fled equipment was installed to perform these safety related f unctions are next defined and a summary of the environmental testing performed to qualify these items along with a list of test result documentation is given.

Follow-ing this is an evaluation of the. environmental effects that would follow a loss of a plant ventilation system when it is being used for. cooling RPS or ESF equipment.

3.11.1 EQUIPMENT LDENTIFICATION Safety related mechanical and electrical equipment that must function to prop-erly mitigate accident effects are listed in Table 3.11-1.

3.11.2 QUALIFICATIUN TESTS AND ANALYSES Qualification testa and analyses were conducted to assure that engineered safety featurt equipment capabilities are compatible with their particular op-f~

erating environments.

Initially, environmental design criteria were obtained from analyses of specific situations that could occur at specific plant loca-tions containing RPS or ESF equipment.

These findings then became a basis for ESF system design component selection and component qualification.

. 2.1 Environmental Design Criteria Tw

  1. erent approaches were followed in establishing environmental design crit it f or RPS and ESF equipment.

One of these included a survey of the en-vironmen_ 1 qualifications of available components suitable for use in such systems, the selection of appropriate environmental design limits and the sizing of environmental control equipment to maintain acceptable conditions for the RPS and ESF equipment during the worst possible set of circumstances.

The other approach utilized to establish environmental design criteria began with a se ries of analyses o f various plant operations, accident condition and nat-urally occuring outside environment extremes and concluded with a review of the analytical results and adoption of the worst case situation as the environ-mental design criteria for ESF equipment installed at that particular plant location A summary of the results obtained in these environmental analyses at plant locations containing ESF equipment is given in Table 3.11-2.

References to specific analyses performed to establish pressure and temperature cri-teria are also given in the table. The radiological criteria shown are those for containment air and are upper limits for the summation of the gamma and beta contribution. The largest accident dose data assume a duration of accident conditions of 30 days. No attempt was made to com-bine the expected 40-year integrated dose with the accident dose.

In those cases where the calculated accident dose is large, the 40-year dose is only l

' " ~

90022281

a small fraction of the accident dose, in cases where the 40-year dose is a significant fraction of the accident dose the latter is so small that the 1

l inherent radiation hardness of equipment exceeds the combined total.

90022282 3.11-la

SNp-the.nnount of air drawn from this enclosed volume in a manner to keep the pressure at this desired negative value. This is done with a modulating damper that is controlled by the differential pressure transmitter to adjust the amount of outside air introduced into the duct network just upstream of the constant capacity fan described above.

Such action will bring in sufficient outside air to keep the fan flow rate at its rated flow at all times.

It will also draw enough air from the Auxiliary Building Secondary Containment Enclosure to establish and keep the desired negative pressure level.

The controls for the Auxiliary Building Gas Treatment System were designed to provide two basic control modes. One control mode has both air cicanup units in operation simultaneously. The second control mode has either one of the air cleanup units in operation and the other in a state in which it can automatically come into operation in the event the operating unit fails. A low flow signal from the operating unit is utilized in this control mode to make this failure determination. This operational redun-Jancy is achieved with spatially separated power and control circuitry having different independent power sources to prevent a loss of function from any single system component failure. The term " train A" is used to identify one complete set full capacity equipment and the term " train B" is used to identify the other set of full capacity equipment.

Power for both equipment trains is supplied by the Emergency Power System.

Operation of the Auxiliary Building Gas Treatment System begins automatic-ally upon receipt of a:

1.

Phase A containment isolation signal from either reactor unit, or a High radiation signal from the fuel handling area radiation monitors, or a 3.

Ilign radiation signal from the auxiliary building exhaust vent monitors.

4 High temperature signal from the Auxiliary Building main air intakes.

(To close isolation dampers and prevent entrance of steam to the Auxiliary Building as a result of an MSLB in the vicinity of the Auxiliary Building air intake.)

a capabili.ty is also provided to start both trains with a hand switch in the main control room. Another adjustment capability provided in the hand switch in the main control room will change the operating mode to the single etain operation with the redundant train in a standby status.

Employment of this operating mode is expected after the first 30 minutes of operation.

In this instance the main control room operator has the capability to select either unit to remain in operation.

6.2.3.2.4 1ce Condenser General Description The function of the post LOCA iodine removal served by the Ice Condenser is accomplished by chemically controlling the alkaline ice to a pH range of 8.5 to 9.5.

This is accomplished by adding sodium tetraborate to the Grade LS A feedwater in the solution of Na., B 0 10H O with 2000 + 100 ppm of g 7 2

Boron prior to ice basket loading! During the accident, the melting ice provides a medium for removal of iodine f rom the containment atmosphere and tixation in solution.

4 6.2-72

~

IV.

Table 3.11-3 Concerns Table 3.11-3 is incomplete and portions of it remain unacceptable.

The following additional information is required for us to complete our review.

1.

On page 3.11-6 the listing of components for the Reactor Protection System contains these omissions:

(a) containment pressure, (b) low head flow, (c) accumulator level, (d) steam generator level, and (e) UHI accumulator level instrumentation.

Revise the table to include these parameters or justify their omission.

7 2.

On page 3.11-6 the total radiation dose of 2.1 x 10 Rads appears to be that listed in Table 3.11-2 for the 40-year normal opera-tion dose. ?rovide the basis for this number and revise the column headed " comments" for the Reactor Protection System entry to show that this safety-related equipment will remain functional in the accident environment for a period of at least one hour in excess of the time assumed for its operation in the accident analysis.

3.

On page 3.11-6a for the Containment Spray System, the piping, heat exchangers, valves, and pump and motor are all located in Auxiliary Building cooled rooms but three different values (115, 150, 104*) of temperature are given. Provide the basis for these values. Also the spray header and nozzles are in the upper compartment of the containment and have a design tempera-ture of 190 F.

The Containment Air Return Fan is also located in the same upper compartment but its rating is 250 F.

Provide the basis for these values.

4.

On page 3.11-7 for each of the total radiation dose entries pro-vide the bases on which this total dose was computed.

5.

On page 3.11-7 for the Containment Isolation System entries further identify the containment location as either upper or lower compartment.

If the equipment item is used in both compartments, confirm that the design conditions envelope the most severe service conditions.

6.

On page 3.11-7, for the airlocks and equipment hatch entries:

(a) Explain why a 700 peak design temperature is used for the s

airlocks, but only a 220 F peak design temperature is used for the equipment hatch.

(b) Your inclusion of only the airlocks and equipment hatch appears inadequate since our requirements are that the containment retain its integrity for at least 30 days after the accident. Revise this entry to consider the need for a higher radiation qualification dose that should include the 30-day accident dose in addition to the accident and " normal" 40-year doses.

90022284

7.

On pages 3.11-7, 8, and 9 for those entries where the symbol "c" is used in the " peak design temperature" and " peak design humidity" columns provide the values of these parameters that are used in the

)

equipment specifications.

8.

On page 3.11-9 specify the value to which the humidity is regulated for those entries where the symbol "d" appears.

9.

On page 3.11-9a for the equipment in the Auxiliary Feedwater System furnish the expected dose rate and total dose.

For the instrumen-f tation and controls located inside the containment state whether they are located in the upper or lower compartment.

State also if the specified total radiation dose contains the " normal" 40-year dose as well as the postulated accident dose. For those instru-l ments used for post-accident monitoring the specified dose should contain the post-accident period dose. Justify any exceptions to I

these recommendations.

1

Response

1.

Containment pressure and steam generator level instrumentation have l

been added to Table 3.11-3.

The other items are not safety related.

2.

The governing dose is that to the containment pressure monitors which must be operational for three months. These sensors are physically located in the annulus rather than in the containment. The integrated 3-month dose was derived from an interpolation between the 1-month and 1-year gamma dose. The similarity of this value to the 40-year inte-grated dose from normal operating is fortuitous.

3.

The peak design temperature listed for the containment spray system piping and heat exchangers was incorrectly shown as 115 F.

It should be 190 F.

This temperature is the maximum process fluid temperature, which is greater than the ambient temperature. The peak design tem-perature shown for the valves and pump and motor are the ambient temperatures listed in the equipment specifications. Temperatures listed in equipment specifications may be greater than the expected I

ambient conditions and will not necessarily be the same for different types of equipment.

In some cases, conservatively high temperatures l

may be listed in the specifications to ensure additional margin in the design.

The peak design temperature listed for the containment spray header and nozzles was incorrectly shown as 190 F.

That temperature was

)

intended to represent the maximum process fluid temperature for this part of the system, 115 F, which is less than the maximum upper com-partment temperature of 170 F.

In this case the components are insensitive to the temperatures expected in the upper compartment.

They are constructed of type 304 stainless steel. Peak design tem-perature for these components has been changed in Table 3.11-3 to the expected upper compartment peak temperature of 170 F.

90022285 l

I, i

f The peak design temperature listed for the air return fans is that l

temperature to which the vendor generically qualifies fans for thi type of service.

in the upper compartment is significantly less than th s

M to which the fans are qualified.

The conservative design of this equipment should only enhance the safety margin provided in the 1

overall design.

4 of the free-field 30-day beta dose (~/.3 x loThe hydroge s Rad) and the external 1

30-day gamma dose (~5.4 x 10 7 Rad) for a total of about 2.0 x 10 The estimate of 40 percent of the free-field 30-day beta dose is base 8 Rad.

a on the dimensions of the hydrogen recombiner and the range of 2 MeV betas.

Total radiation doses given for the components of the containment isolation system should be 10 8 Rads.

highest expected 1 year gamma dose inside containment (7 2 x 10 in upper compartment).

7 Rad TVA is presently evaluating the beta dose to sensitive parts of these components and expects to show that it will be small.

It has been determined that the possible maximum dose, gamma plus bet:,, from six months' operation at 5 percent of rated power will be at least a factor of ten less than the estimated free-field dose.

Since the equipment is qualified to 10 8 at 5 percent of rated power for six months will not result in possibl Rads, operation unacceptable doses.

5.

Table 3.11-3 has been modified to distinguish between upper and low compartment.

ditions, as can be seen by comparing Tables 3.11-2 an r

& b, the original equipment specifications.6.a. The peak des rom changes have resulted in a change of equipment.However, subsequent desig revised to reflect the specifications to which installed equipment wasTa bought.

As stated in our response to item 4, the dose should be 10 the seals are protected by the massive hatch coversdo 8 Rads.

Beta e

field 30-day total

. The maximum free-qualification of 10 gamma dose of I x 10 7

Rads is well below the seal tion in the hatch covers. Rads, even without considering the photon attenua-7.

Table 3.11-3 has been modified in response to this question g

8.

Table 3.11-3 has been modified in response to this question.

9.

The radiation dose shown is sufficient to cover the higher estimated 30-day accident gamma dose inside containment and the expected 40-year dose because of normal operation.

to specify upper or lower compartment.

Table 3.11-3 has been changed I

90022286

t

. Revised by Amendment TABLE 3.11-3 i

E'iVIRO:GIENTAL DESIGN CRITERIA FOR ESF SYSTEM EQUIPMENT Peak Peak Peak Dsgn Dsgn Dsgn Radiation Total ESF Essential Plant l

System Cc=ponents Location (PSIA) (*F)

(%)

(Rads /lfr) _ (rads)

Comments Press. Temp Ilumidity Intensity Radiation Reactor Instr for Containment

74. 7 327 100 6

Protection System

-,5 x 10 2.1 x 10 pressurizer lower Pressurizer pressure pressure &

compartment 1

level, high required for 0.5 hour5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />, head flow, pressurizer level 0.5 accumulator hr, high head flow 5 pressure &

min. accumulator pres-sump level sure 5 min, containment sump 3 hrs, containment Containment pressure Annulus ATM 180 100 5 x 10 1 x 10 pressure 3 months.

4 7

Instrumentation Auxiliary ATM 104

' 95 for UV & UF building

+

U Instrumentation Auxiliary ATM 140 98 O

for low feed-O building water control N

SSPS Aux. Inst. room ATM 120 95 w

y Foxboro Racks Aux. Inst. room ATM 120 95 i

l Panels Main control ATE 120 95 room Ice k

Ice bskt, ice Containment 27.8 250 100 10 Condenser 6

i bskt support ice condenser 1.2 x 10 Door rates are for seals l

structure, ice compartment compartment door

~

& door jambs

~ ~ ^ ~ ^ ^ ^' ' ~^^

.?

.iI

[

l i.'

r y

r d

u 1

i o&

u h

r l d f e F o t

f t

s s0 ss r7 y si t

el i 1 t n

c f

i e

m

&d oe rr r

i m

pu o, m o

t

- t C

fA u ma n

Ch ur F 0. %

me e

m I

i p d

0 0

xm n

5 f0 ae 2 o1 Mt em A

no) y li s b

at d t aa d

oir e

Td(

s T

a 0

i I

R F

1 v

E f

e i

R P

ny) l r

I ot l

l i i I

Q t s/

E E

ans i ed e

d t a t

E anR o

T RI (

N S

g YS y

F t

S k ni E

agd) 0 0

0 0

0 0

9 5

esi%

0 0

0 0

0 9

R PD m(

1 1

1 1

1 O

F lu l

3 A

k np) 1 I

agmF 0

0 4

1 R

es e*

0 0

4 0

1 0

5 9

5 0

7 E

PDT(

2 1

1 1

1 1

1 3

I I'

.)

E.

R k usa C

agsI I

7 7

l B

eses M

i M

M i

A PD rP 6

T T

T 6

i r

T T

l T

G P(

A A

2 A

A A

2 I

SE D

t g a

t I

rn r

A t

t m

m m

t a ei T

n n

,o o

o n p nd l

el y

l e

e o

o o

e m Gi rg E

n m

m gr gr gr mo l

t o n

t d

d d

n c u

an l

l Oi nt i

r l d id l d i

lb i i at ara b e b e b e ar e

l d R

l a sr il t ep l

l l

t et I

P c n pm xo x o xo n pn eo xi V

o opo uo u o uo ope D a Ab' V

it uu ll L

C uc A c A c A c C um E

0 1

1

- vs n wgt sKd wV v onn n

r oKK l i o t

r r

r a9 ad e

s r. o t00 s rf t c a

o e s s

ok c e

t d e n

e t6b u88d l t t c u& y h

o al e

i h44 r an oad r

l Gd r n

,nS a

e z f

i e mb rt h z na usw o

t n l ai or o vssb

,rei g

s o

no e

l d ed Kdd ewu n

e y n ep ypoc ih v

p a

sri t mt rrt sm nsmpr pc l

m rd eox ur u0 aan so asa i

i x a

u p n it u h oh 8 ooe EC F ad& c P e V

P S a D aa Sf s4bbV m

t t e nn nt er es y

mu my c

nt n S.

n m

e i

e m

i e

aI ay gre t

Da woONNNCc r

F t t

t a r et S s nr n nr ews E y oia op moy S

CAF CS EPS a

u

  • gY7 5

,l 1

,l l

lili 4

i:

l 2

Revised by dmendment TABLE 3.11-3 (Continued)

ENVII;ON llCITAL DESIGN CRITERI A FOR ESF SYSTi21 EQUIP > LENT Peak Peak Peak Dsgn Dsgn Dsgn Radiation Total ESF Essential Plant Press. Temp Ilumidity Intensity Radiation System Components Location (PSIA) (*F)

(%)

(Rads /lir)

(

__ rads)

Comments 6

0 llyd rogen lleater element Containment 75 300 100

- 5 x 10 2x 10 Withstand water spray Reconbiner upper with 2500 ppm boric compartment acid & sodium hydroxide giving a pit of 10.5 for 3 nonths 6

8 Containment Sensors, Priuary 26.7 327 100 5 x 10 1.3 x 10 Isolation monitors containment System upper & lower compartments g

Elec cables &

Primary 26.7 327 100 E

10 penetrations containment u

upper & lower compartments 4

tiech penetra-Primary 26.7 327 100 tions containment upper & lower compartments 6

8 Isolation valve Primary 26.7 327 100 5x 10 2x 10 operators containment upper & lower compartments Fuel transfer Primary contain-32.1 180 100 canal valves ment upper & lower compartments & aux b1dg 8

o Airlocks Primary 26.7 327 100 E

1 x 10 Seals are the limiting O

containment component N

upper 6' lower compartments g

N Equipment Primary 100 E

1 x 10 26.7 327 N

hatch con ta inmen t CD upper & lower compartments W

(

(

(

~

Revised by Amendment TAllLE 3.11-3 (Cont inued)

ENVIRO:! MEN TAL DESIGN CRITERI A FOR ESF SYE t E21 1:0UIPMENT Peak Peak Peak Dsgn Dsgo Dsgn Radiation Total ESF

' Essential Plant Press. Temp llumidity Intensity Radiation System Components i.ocation (PSIA) (*F)

(%)

(Rads /llr)

(rads)

Comments Emergency Accumulators Containment 60 Core Cool-lover 327 100

,u ing System Containment compartment 26.7 g

piping I"

Pump & motor Aux b1dg AT!!

104 90 E

10 assy Tanks, pipes, & Aux bldg ATM 104 90 heat exchangers general spaces I!otor operated

..ix bldg ATM 120 90 valves cooled rooms Other valves ATM 150 90 O

ERCU Pumps & valves Outside ATM 108 100 Required function in C

water spray h)

Pumps, valves, Aux b1dg indi-ATil 104 90 N

& heat exchanger vidually cooled g

room g

m

_ -.o m

a Rqvised by Amendment TABLE 3.11-3 (Continued)

ENVIRON!! ENTAL DESIGN CRITERIA FOR ESF SYSTU1 EQUIPMENT Peak Peak Peak Dsgn Dsgu Dsgn Radiation Total ESF Essential Plant Press. Temp Ilumidity Intensity Radiation System Components Location (PSIA) (*F)

(%)

(Rads /Ilr)

(rads)

Comments Component Pump & motor Aux bldg ATM 104 90 Cooling assy valves general spaces Uater System lleat exchangers, Aux b1dg ATM 104 90 surge tank, general spaces and pipes Emergency Air cleanup Aux b1dg in-See next 5 items Gas Treat-units:

dividually ment System cooled rooms u

h Fans & motors ATM 104 90 4.2 x 10

3 x 10 t

5 Filters & adsorbers ATM 170 70 1.3 x 10 10 Elec IIcaters ATil 170 100 E

10 1

Valves & dampers ATM 170 100 E

3 x 10 Instru & controls ATM 120 90 Aux Bldg Air cleanup Aux b1dg in-See next 4 items s()

Gas Trtmn units:

dividually CZ)

System cooled rooms CD I\\)

Fans & motors ATM 104 90 N

(

5 Filters & absorbers ATtt 250 70 1,3 x 10 10 Dampers ATM 104 90 Instru & controls ATM 120 90

o Revised by Amendcient TABLE 3.11-3 (Continued)

ENVIRO 2nUIT AL DESICII CRITERIA FOR ESF SYSTE!! EOUIPMEIIT Peak Peak Peak Dsgn Dsgn Dsgn Radiation Total ESF Essential Plant Press. Temp !!umidity Intensity Radiation Systen Components Locatien (PSIA) (*F)

( 7.)

(Rad s /l!r)

(rads)

Comments Auxiliary Valves Aux. Bldg.

ATF1 120 100 Feeduater System flo t o r s,

Aux. Eldg.

AT!!

120 100 Assoc. Pumps (Gen. Spaces)

Turbine, Assoc. Aux. Bldg.

ATFt 120 100 Pump (Gen. Spaces)

Yp Instr. and Aux. B ld g.

ATF1 120 100 4

Cont rols (Gen. Spaces)

Steata Reactor 26.7 327 100 E

1x10 30 day accident dose Generator Containtaent Level Lower compartment O

O N

N N<

N

I ^""" " "E TAftl.E L 11-3 (Continued) r E!!VIt!OffilEllTAL DES 1Cll CRITFRI A FOR ESF SYSTEl! EOlllPHE!JT i

Peak Peak Peak i

L'.sgn Dsgn Dsgn Raillat io n Total ESF Essential Plant Press. Temp thimidity Intensity Radiation System Components location (PSIA) (*F)

(%)

(Rads /Ilr)

(rads)

Comments n

Aux llidg Instrumentation Aux bldg ATtt 120 90 Isolation Airlocks, pene-general spaces Equipment tration seals AT!!( )120 90 Aux Illilg Fa n s, is to rs,

Aux bldg ATF1 104 90 Ventila-dects, dampers, shutdown tion air-condition-board room System ing units Ca nt ro l Fans, motors, Control b1dg ATil 104 90 Bldg ducts, dampers, mech equipment Ve n t i l a-air-condition-room u

L tion ing units 1 7 System Control Filters &

Control bldg ATM 250 70 Bldg adsorbers mech equip g

Ventila-room tion System i

Notes:

A.

Temperature limit shoun is for the first hour of the LOCA.

After one hour, the design temperature 4o reduces to 220 F for the remainder of the accident.

O II.

Designed to uithstand a 3 psi pressure dif ferential acting from inside to outside.

N i

N C.

Equipment of this type is uneffected by the types of environmental conditions calculated to be present in N

the area ubere the requirement is located.

i 4

~

u D.

Ilumidity is sufficiently regulated as not to effect equipment operation.

E.

110t specified.

Integrated dose is cont rolling.

Equipment does not see doses high enough to impair operability.

Equipment not sensitive to dose.

1 I

t l