ML20125B653

From kanterella
Jump to navigation Jump to search
Loads on Spherical Shells
ML20125B653
Person / Time
Site: Oyster Creek
Issue date: 08/31/1964
From: Thullen P
CBI SERVICES, INC. (FORMERLY CHICAGO BRIDGE & IRON
To:
Shared Package
ML20125B634 List:
References
TASK-03-02, TASK-03-03.A, TASK-03-07.B, TASK-03-07.D, TASK-3-2, TASK-RR NUDOCS 7912190703
Download: ML20125B653 (35)


Text

. Docket No. S0-219 ATTACHMENT I OYSTER CREEK NUCLEAR GENERATING STATION LOADS ON SPHERICAL SHELLS 90000.225 .

December, 1979 7912190 h

1 sEm j

=- .

1 s

a i

1 LOADS ON SPHERICAL '

3

'i SHELLS  ;

i em ,

l l

By:- Philip Thullen Oak Brook Engineering l Department Approved By: )

W. R. Mikesell l 1

Oak Brook E g nee g Department 90000226 Chicago aridge & Iron Company '

j Oak Brook, Illinois l 1

I

CHICAGO BRIDGE ds IRON COMPANY LOAD DEFLECTION TESTS ON SPRIRE .

iW

';= In pressure' suppression containment systems, the nuclear reactor, steam piping, and recirculating pumps are close to the dry well shell. If a steam or feedwater line breaks, the jet from the line I will impinge on the shell resulting in a concentrated load of up j

-to 600 kips on the shell. To allow for pressure and temperature growth, the shielding concrete is separated from the dry well  ;

shell a distance of from one (1) to three (3) inches . The shell must deflect this dis tance before it is backed up by the concrete.

Permanent deformation is acceptable, but the shell must not rupture.

l l

PURPOSE OF TEST:

the purpose of this test was to investigate whether or not a steel shell could deflect up to three (3) inches locally without i failure . Permanent deformation is not considered as failure. It j was also desirable to determine the load required to produce a l given . deflection, and the strain at various points.

k- -

EQUIPMENT:

The basic test section, illustrated in Fig.1, was designed to simulate a 70 foot diameter sphere. The material and plate thick-ness are typical of the type found in suppression containment sys-tem applications. This section was used as.showin in Tests 1 and 2.

For use in Test 3, the basic section was modified by the addition of an 18 inch diameter fitting with insert type reinforcing, illus-  !

tra ted in Fig. 2. -

For use in Test 4, the basic section was modified by the removal of the insert type fitting and the insertion of an 18 inch diameter fitting with pad type reinforcing shown in Fig. 3. Both fittings are typical of the type found in such applications. j i

Loading was done with a 1250 ton capacity hydraulic press fitted l

([F with a 20 inch diameter hemispherical die. The loading rate on the test piece was relatively slow because of the characteristics

'of the press and the time required to take strain _ga.ge readings. ,

i 1

90000227

t :n , ~-

l cQCCAGO BRIDGE: As IRON COMPANY

. Pag 2: 2 i

s% ,

.vgf When a' greater load- distribution area .was . desired, a two (2)-inch

. thick,14. inchL diameter loading. pla te was _ placed between the die 'l

- and the- test section. .They_ hydraulic pressure in the press cylin-dprs was indicated on a pressure gage,l g'raduated;in 5 psi incre-e ments. The _ gage was calibrated while on the press , using a strain .

^

j gage load cell. Loading. configurations for the various1 tests i

areLshowinLin Figs. 4, 5, 6 and 7.

i n

.The tpst section was instrumented with three ' gage rosette wire l resistance strain gages placed at points of expected 1righ stress.  :

A Baldwin Type 17 portable strain indicator was used as the ' read-out' device. Gage locations for the various tests are shown in Figs.'8, 9 and 10.  ;

4 s PROCEDURE: -

' Press Calibration ,

To obtain accurate . force data, the hydraulic pressure gage was f' calibrated while on the press with a strain gage load cell.. l This' method of calibration accounted for the ram weight of.20 tons and friction in the moving parts. It also eliminated. the need '

for any questionable theoretical conve.rsions from hydraulic pres-sure to die force. .

Loading and Data Taking During each test, the same basic loading and data taking patterns were followed. Loading was accomplished by first allowing the ram to rest on the plate. This gave a load of 20 tons. The hydraulic pressure was then increased in convenient increments. Following each pressure increase, the amount of ram travel was noted and ,

strain readings were taken. This pattern was repeated until the ,

ram had traveled three (3) inches, thus indichting a three (3) inch deflection of the plate. When- this deflection was cbtained,, the ram was' withdrawn, permanent deflection -noted, and final strain read-

, ings taken. All testing was done at ambient temperatures.

(55 j

90000228

'f .

6

- $=- g g y g- rr -

kovey-+ ** 1r

' CHJCAGO BRIDGE &, IRON COMPANY Paga 3

=

5"5='

Photographs were taken of significant steps of the test. These will be found in the Appendix of this report.

^

TEST 1 The first test was run to find the effect of a load concentrated 1 The load was applied using the 20 inch over a small area.

diameter hemispherical die contacting the plate directly, as shown in Fig. 4. The load was applied only until permanent de-formation of the plate was observed.

TEST 2 The second test was designed to determine the effect of a con-centrated load applied over a larger area than that of Test 1.

Because of the similarity of objectives, the' basic test section was not reformed af ter the conclusion of Test 1, and some perma-os, nent deformation remained. To increase the area over which the load acted, a two (2) inch thick 14 inch diameter load plate and a 1/4 inch thick 20 inch diameter plate was placed concentrically below the hemispherical die. These plates were initially flat, as shown in Fig. 6. The 1/4 inch plate served to protect the test section from the edges of' the load plate. The two inch load, plate tended to distribute the load over a larger area than the hemispherical die alone.

Following the. completion of Test 2, an area large enough to accept the 18 inch diameter fitting with insert type reinforcing, was cut in the basic test section. This removed most of the deforma-tion remaining from' Tests 1 and 2. The area beyond the cutout was reformed as much as possible and the insert plate was welded in place.

. TEST 3 J;.; Here the objective was to load the insert plate over, a localized

'~

area near its edge, as shown in Fig. 6, until a three (3) ' inch deflection.was obtained. The two (2) inch load plate was placed

'90000229

CHICAGO BRIDGE as IRON COMPANY ,

Page 4 i KIP I

. beneath the hemispherical die-to distribute'the load.. The load plate had assumed a; dished configuration during Test 2 and it was employe'd - in this' ' form.

The insert plate to shell weld and the area surrounding the weld were magnafluxed befpre and after the test to find any cracks not evident in a; visual inspection.

With the conclusion of'. Test 3, the insert fitting was removed and '

the test section reformed as necessary. A section containing the 18 inch diameter fitting with pad type reinforcing was then wel.d-ed into the basic test section.

TEST 4 ,

This test was run with the same objectives as Test 3. The two tes'es differ only in the type of reinforcing used around the 18 inch diameter fitting. The load plate was again used, and placed directly above the pad plate as shown in Fig. 7. The test was carried out in a manner similar to Test 3. .

RESULTS: .

The first test showed that a load concentrated over a small area would cause rapid yielding of the test section. Graphs 1 & 2 show the effect of this type of loading. The deformation _is quite localized, and a load of only 60 tons was required to create an eight (8) inch diameter, 0.70 inch deep depression which con-formed 'to the shape of the 20 inch diameter hemispherical die.  ;

It appears that a hole could have been punched in the plate rather ,

easily if this loading had been continued.

i If a concentrated load is applied to an area of dry well shell, that is free of fittings, a condition similar to Test 2 will sr.

gg exist. In Test 2, a concentrated load of 235 tons was required to obtain a three (3) inch deflection. A maximum deflection of 3.3 inches was obtained while the die was in contact with the 90000230 ,

. . , , - . ,,.,.N... - a. , - , . , , ,;<e., , .n-+ ,-,-a -

CHICAGO BRIDGE & IRON COMPANY Page 5

_=_

T5 plate, and permanent deflection of 2.5 inches at the point of loading existed when the die was withdrawn. A profile of the permanent da fn-m" H nn is shown in Graph 1 apd some of the defor--

mation is evident:in Figs. 8.and 9. In thsse.twoop'hotographi.

the pla te has been cut out'.for"Tes t'.3 and s'ome .ofr.the< deform 6d';

area has been removed.. .There.was'.Jno evidence of failure in any, form following the test. The plate deformed uniformly with no i crackes or localized bending. From Test 2 it can be concluded that a spherical steel shell of this diameter and thickness, un under concentrated loading, will deflect three (3) inches with-out failure.

One severe load which can be imposed on a reinforced fitting is a concentrated load applied over a localized area near the edge of the reinforcing plate. In Test 3, this type of load was applied to an insert reinforcing plate. The load configuration is shown in Figs. 6, 10 and 11. A force of 255 tons was required

_ to obtain a three inch deflection. The maximum deflection obtain-ed was 3.25 inches while the die was in contact with the plate.

When the die was withdrawn, 1.95 inches of permanent de flec tion remained. Magnaflux inspection of the insert to shell weld, both before and af ter the test showed no cracks. The extent of ,

the deformation is shown in Figs. 12 thru 15. From Test 3 it is evident that a fitting with insert type reinforcing, located in a spherical steel shell, is capable of withstanding a substantial localized deflection without failure.

An alternative form of reinforcing plate, the pad or double plate, was used in Test 4. Again, a concentrated load was applied in a localized area near one edge of the reinforcing plate as shown in Fig. 7. A load of 285 tons was required to obtain a deflection of three (3) inches . The maximum deflection obtained was 3.125 inches, at which point a sudden crack developed. The crack, shown in Figs. 16 and 17, was accompanied by a loud report.'

((g and a drop in the force exerted by the press from 305;: tons to 200' l tons. In this test, pad plate reinforcing located in a specific l

90000231 1

J

i CHICAGO BRIDGE ar. IRON COMPANY l Page 6.

I ps shell configuration and loaded eccentrically over a small area, j was not capable of sustaining a 3.125 inch deflection for an extended period of time.

The failure in Test 4 can be partially justified by pointing out that the test section was not truly representative of condi- l tions found in containment system applications. In the process' l of constructing the section for Test 4, a flat plate four (4) feet in diameter, was welded into the basic test section, as ]

shown in Figs. 3, 7 and 16. The pad plate was also flat.- In a normal situation,,the pad plate would have been dished and welded directly'to the spherical shell. During the process of. )

the test, the force on the pad plate caused it to pull the flat l l

section of the shell into a dish of the same radius ai the basic test section. This induced an excessive amount of bending, in the shell at the toe of the pa d plate fillet weld. Strain gagee 7 was located on the path of the , rack, (data in Graph 13), and 7 it indicated excessive bending strains quite early in the teat. l This gave an indication of possible failure. It must be pointed out that the plate had held a load of 285 tons and a deflection of three (3) inches for a period of 20 minures while 72 strain gage readings were taken, and was holding a load of 305 tons and a deflection of 3.125 inches for a few minutes before it suddenly' failed. While this explanation cannot change the fact that r failure occurred, it does point out a condition which caused the test to be overly severe.- l An inspection of Graphs 2, 3 and 4 gives an indication of the l overall rpaction of the test section to the applied load. The )

I amount of deflection due to a given load was approximtaly the same in each tes. This 4.ndicates 'that local conditions near the point of loading have.very little effect on the load-deflection characteristics of the shell.

s= It would be expected that' beyond some distance from the .poiist of l load application the effect of the fitting and. reinforcing could I be neglected. This is illustrated by ,the following strain gages

90000232 l l

CHICAGO BRIDGE & IRON COMPANY Page 7 fi 7 of Test 2; 9 and 11 or Test 3; 11 and 13 of Test 4. The gage locations are illustrated in Figs. 8, 9 and 10, and the data is illustrated in Graphs 5 thru 11. While the bending strains dif-fer in each case, the average or tensile strains are quite simi-lar. At about 2'-6" from the point of load application, or

~2'-6" from the reinforcing plate if one is present, the same 2 general tensile strains will be found.

The effect of load transmission by the reinforcing plate can be seen by comparing Graphs 6 and 7 with 8 and Graphs 9 and 10 with

11. Gage locations will be found in Figs. 9 and 10. Comparis6n of this data indicates that the reinforcing plate was rotated as well as forced downward by the load. This type of reaction is to be expected due to the eccentricity. 6f the point of load appli-cation on the relatively stiff reinforcing p, late.

The reaction of the support ring will be found in Graph 12. A

~~

graph of the theoretical radial strain in the shell, calculated assuming the shell to be a membrane, is also shown. It will be noted that the experimental data conforms rather well to the theoretical values. This. indicates'that the shell was acting in ,

close conformity to the approximate theoretical model. I Strain data from the gages not discussed here is available in CB&I Technical file 9107-3-4.

90000233 r?:

+ .

CHICAGO BRIDGE & IRON COMPANY

. Paga 8 g@g..

~

.: - APPENDIX FAGE.No.

ILLUSTRATIONS Figure 1 -------------- '.-- 9 Figure 2.----------------- 10 ,

Figure 3 -------- -------- 10 Figure 4 ---- ------------ 11 Figure 5 ----- - --------- 11 -

Figure 6 ----------------- 12 Figure 7 ----------------

12 Fi gu r e 8 - - - - - - - - - - - - - - - - - 13 Figure 9 ----------------- 14 Figure 10 ----- ---- ----

15 PHOTOGRAFHS Figure 11 ---------------

16 Figure 12 -------- ------

16 Figure 13 ---------------- .

17 Figure 14 ---------------- 17 Figure 15 ---------------- 18 Figure 16 ---------------- 18 ,

Figure 17 ---------------- 19 Figure 18 ---------------- - 19 Fi gur~e 19 -- - - - - - - - - - -- -- - 20 Figure 20 ---------------- 20 GRAPHS 1 through 12 21 through 34' 90000234 OO-

@l?

l l

i

CHICAGO BRIDGE & IRON COMPANY GENERAL ENGINEERING DEPT.

1 l

6ek mku Asamuzso sw. .

i

. ..' N J

,,/"/

l

~

.....p,w

. / s l/ .

/' ,. -

.rsa -

t \;

e 4f .i.2 -

si i,

-+- .-

.l

,/ / . 2.k $ A .\ k m

/ / /

/ *s'  !

N.s

% J m% \

au M...

/ss . a_ o._.___.

c(p7 4

a

~~

  • \

m...-.-.. .

./.._E. C. . . ./.Z. >. . . . . . %

o g$

I.? [ 1 4 ~

lt f ~ %'W n f

l y ="

-.-p/ .g i _ s"' t -

\

/

2- / "#' &u.1, / 'o A%e, liejaa .

Bua .D.. .ers. ,it m g,g, y,,,, - - - . . . . .

3"scr/od I Bs.uc ;24.r;- Sea, c a 90000235 p .

ne./ .

a. .

u ..., Em.c zsu ..s.h i,w - .

r.r.u,. ...%c.% ... i ,

4 CHICAGO BRIDGE & IROH COMPANY GENERAL ENGlHEERING DEPT.

n 9 i

-1

/ 7 +,.

- /// q.

.. e, -

9p, 1 Ber/c /E.rr

~

I

.t 2-a /ed . - .runoa n, y ..

I ,i

, 9 o s

===== "i[ s 1

~ '

{,w n,u?3 f i. , .-

l

% f'o ,b re

/forr.e m x. .4 rc/

1 A/C.2M.4l/ZE;O

/8 ffirns/G A/$rH /MTERr SPE 0'N702U/'~'G __

/Ts. 2 l

mo m - - -

oJu.J.Azrum

, 'O J o o Ju  !

e EV _ ,

j p 's# ~ a/

T , .

i ssia 7zer

~

j[ $ w  % S c C r / c A./ ~-~

.J-.LA --

{ 'm % v 8

%-- y 3 v

. _.a/ '

s@ ;I r u .

u, ti gorenrc l

>r/ crc. emu A/.'.:. sav ey w;u2:o l . -

! iergl/ 7 , ,i u s . u r a s w ; 9 x ' s w c a e v a a l ,

l h.. .s.

. fra 3 .

90000236 l ,

S

. Msna. 0x J J 'r.. . > .

. ,,c CHICAGO BRIDGE & IROH COMPAKY GENERAL ENGlHEERING DEPT.

R^re $

ai.=c risr n ,aa _

/0

) -2o fix& . Die u.: owe.i..v.

y

(

._ x d i

z c-wsu a . rest / l n a , 4' i

1 D" D lD 'Y T S lIo o n o AL A llib N.,

, -2o p' A6 asswo. <e. l a.) ' .

' Die  ;

O  %

lon t.: /O;?[

t L - -

w, :

c B/ sic /r::-r Sec7 /c /-

~

/1 _

=

20 ,

.d. _cu._ i._D/A./G - 72sr 2 e;c . #

90000237 n ~ :. e , J +' ,. <. .c

e -

y GENERAL ENGINEERING DEPT.

CHICAGD BRIDGE & IRON COMPANY

+

Y ASSd /~rsovc .

,fd./: rw A:.rc1. r St~ EEsuM,ec%.'s Sire f~ 20f/Vr/C'3PNEK'tc*A.C.

L)/c .

&?D R//7~C Y E

E Q >

r l

.. l g

d oA D/ud -._N._.57~ 5 Act, 6 D*"]

" TT

]D

_own om 2.1 .=

,/g& p;,., ,ua

.4vbrw P.ko 7 W:c- ,Q,nre f~

A'es v n: /: cwv's -Zopf /4 / rs.:,n,<< .e i n .-:.:.

- Zbr 1

  • ' 'dc/?D El/>.nt-A b >

l

_ J

.+

dodt.> tug Rsr f Ac. 7 i

90000238  ;

1 (em 2:::-

. c.,,.. f4:'%o./chS[. ,'"ss,. ' ., l

s. 6 .- . . . . . _ . .

1

GENERAL ENGINEERING DEPT.

CHICAGO BRIDGE & IRON COMPANY

.,;;;eyAGc / Ect-rot 7 CM. Y .

';;;&=

o

/y-

/

/ <

x x

it \

i t,b 47 \ -

b s 6 _)g b

x +f ,

\

+7 t 1 v.if

~

ono cnme j

+ t 3+3 -

,1

/

.c-who i .

\ / .sen e

\ )

s x ,

/

& /

/ l s r x. m G:..>.- & vir.'.- w

}T.#./ /r y b.'

l C "" # 90000239

. ,...soo6 o 3,v:.J.-. r.ss,. . . . . , _

V GENERAL ENGlHEERlHG DEPT.

CHICAGO BRIDGE & 1RON COMPANY

$nGes/2'$/S*

$A GC / 20.~.n.v

  • 0/./4 V

. 2= . ,

UE G.fs' t'$' p'. . l" /' R'.Wf /hf.s'G' a

?

b'PPGP'?~ Gki /e,f I

, z%,g 7 l

, '...- ~~--~.,'% "'"'"

s  %'N

,N,  !

'& A3

/0 \\ ,

j

% \- s.

(4 #

'\w61 6 6 %o .-q

\

f Y b. 0MER5 9 ,. ~' l 62 ,\ ',q'g;,'g __

+ -

Knc: 9 -

Mp v o  %) \

.\ F F f f

s b .-

f'b a  !

//

's F  % .

Y . .. 'ti h .

/

2/0 - -

E- Q -

g g 9 3 y1 g- ~'

$0inLa

[hs J\\ g.

.5ncvisu QQisg_Zccw7 seas.

/8W /7en.~ c Adr.s- A :.c.er 7P,c5,6insontuwG 64= g ,. y ~

90000240 na 9

-. - /M < /s n u m u.s . . .

.. ;u,,. 9; ,_[ ,. ,, p . _ .

(. J

e  :)

CHICAGO BRIDGE & IRON COMPANY GENERAL ENGINEERING DEPT. l l

, ..j] A*G C.,.T /,c. d [c7-mM DNt ,>/

b5'GE / W "",>

iE:: V_ s SAGA E' yA f ,75,o Qpd4 y y

' l '

.Juppcur ..

( j bNIGa~ /S,//w,Ac* N.4G '

  • ~ '

W/NG ~~,.? j

$ce /9, l 1

e j

\ _s i

/ . N i 8

&y

/,./ /6 s

/2 ? V6 l

e

,. w o

/ ,. - .

cwrm -

j #1 '8f-p .j-!/ \92'7N

_ l y,N i.gs 1 e

A n\

4hs.

8

,4y y c

..._i

\

' }

i'

,l\

' (

\',p\6 ,

l F \, '

\ ,3 x

--4

\

//5 g

/

h- -

me 2'g N. - 2.'_o n

./ .o /

/

3-o e

e

,. / .

n --

,/

oo m ~Q

/'

,, , . JL m

.5,mv Gsae deesrmus \

l y$9 f ,r*f*/Af G Y D / .Y 1? h/'d* k /USAE'Yll  :

'2" # 90000241 n c./c iv. >- i n / . .. .. -, , . . . .e . . M ~ .c l

l

.g b

CHICAGO BRIDGE & IRON COMPANY ~~

. Page 16 h f~. w.:..w.:wgsr w.. --

m----- TAE 1

e ::.. , pg.mp;p ~ >

.Q -.

u C k. E R & A Basic Test Section 5 E ' W^# %.J##~7. M  ? .c. [ Following Tests .I

& .2d Z?;t% , -__ m _ -

i 1 & 2. Cutout for  ;.

i. cs;.

4@

.y, NWW"g mm ,.x.cm

_ _ . _ . "g " = r-R '

Test 3.

tion Evident at Deforma- i t

., x s- 'gjj e y =

~cshe . _ . . - lL l_T d_ ~~

_ Lefe of cutout.

7:whw.w. s. . .;=wp.,, n w,

% ~.

w .M %dt i.y

~.km c3 .
M .
~.. .,. s. ~ ~>.n ~;$

L- m v-:~ . . ..y.

k f

-%q . . w c - s v*u.q 'n. .. w:- . - - a

% 4 Wi i " ;X";9 i w sw%a%Vg.w =r R-- Mec 4gg ^_ w ' %' %;j* @m . .

c T z==

f-; NDk '

m E/ g; gy . .;- 'ipd I (7.s%$~,.m.a.p..

1.->.. -

__cw:t% 'f a -%

.-** 2. .~ Q f.:' t .

,e . -

&cl*c;.my. .. .e wro., . ..'

7. n -;,.9. ,..,2

~%=;wgw r , , .

s. - - - - - - --

5lW%&NN.W .;vL;i. %:,b$ l" ?i W E;'.:. :5. l r

_ c

  • === 1 x (

.y -,.a . ,. S y -s' g. .( -y i Basic Test Section

_Y.Yl/M. ..ld{'M,. * / I. . <N_ . ., _T k, ( h. <!

4.  %. g h':

~

~

..- .. . r- s, .s >

_~ ~ .. -

Following Tests 1 & 2 , J .T ._u - / q_. .S.O .. A Qgg_ gg; ye Cutout for Test 3 .g?

Deformation Evident g -4 e 3 y % s.f. -- .

_ p-e.hp . _ gg At Right of Cutout. - --

a W-d N~J - ~ mgg q. . s .

, 1

,,,y. x - .

Ms =

FIGURE 12 M.,

w d.fm_ I ,W .ii O C, .. T.W" pM .. ..

  1. .' M. P ~E .~#_ _'"

.p.:^.'.'.~m**.L. C.. ^^ ". _f- M* _ .. -- -- 1 r ; -

x;3 MT m-

. - MW., ,m.,_ .e-; . M,auspag m, i

$e-=-.

.m-  :

L ,.24- g,,

4.M... M.e s: . . . , , , . '

e- - -~-~. . -"- ~ ~-

^

-~~ ^

__ ~

. .-=

  • ^4]Y'.Qg .x Q.E:a;%g> gpy ,,.EL) *

. . 4%, - .-

s-.. , 4 .Q. g:t.w ,E / ~ g "W mag

.t. , n. ..u .

., a %p=,*

lVn - yQ w;,. .p % g w. q%

h,

........w..

, - ^.g.ra.w;.,ts,p%+~'.

.-9 w

.pw. .m. . . .

l . (. ., ':7. N

[ . .

l '

A*

nQ g

j 1.2. . ~ u.; a o - .- .

.g s a3ux<.

9'??..

1..

l 90000242 l

1 l'

l l

. _ -. _ _ _ ._ .- . ~ _ - . _ _ .__

CHICAGO BR2DGE & Ib JN COMPANY

"- Page 17

  • L';.*:.;'

Up-- g/ <

--p y wg., -f- ., g'.. - m ,

yg g p ; p __ _

,y

) _

m p> ,_.~-

p p-fm

w
a

.~. - .--

a ly.

n-

.- - - - I  :

,g@)y m.,h MtAM'.'_f[,

Q-g.e4, . h%m

, ,%y*'w- '- QF * -

L y a' 1 Test Seetion in s

Position For Test 3. '

L WMI' - 20 inch Diameter Die

[pE*f2$d - aNPAT.r M $ y  ! .f 'T: ~

3bi j Directly Above Load MA J}$3 -@ Initial Strain N g$CO.. '. 3Y h@yWW h,.,7r W}' Gage Readings Being

^ Plage.

g ..

,, y _ w. . -

FIGURE 13

^~~'

h p. ---- - 651. ~

_= . _ .

1 w. Psd2.n e'st  %'N
y;M u-mv

- ~

~ ,,,,in -

=qm _.

s2 9 ..

g A- _ ?$EW ' =

l

$7WW*.i%:l GMwN'% .

u ,.  % &:lN...v.e

..y:qwp. m ..:

, +in.or

.g. '

av - - - -

t t : . ..

s.

1 .. '-

' ~ J' S,a _"%!$f ' :7

- c. i . .

'..f - }; . JEW ' ^g]' i;. ) ;g y Detail From Figure 13 .. i J ;  !.

.- ,2bN f & i. hb  ; M = : '?

Above

, .. v-J-

FIGURE 14 I- W.s ,D f,Ny # N.b h. P,

c. I.y. .~'<* *, tb '

7.. . E. e , .g y;;;.6 e. M M..

m :.,.,.

.s m, em m, M1 .c g

gg g- e y .

.: ,m . .,. - . g g .

Oy

c. . -

^

  • '
  • E  ?

~ w .. . -se .. x.

R .pg.

.' ~ L . .*

Qf

% . .re - er . 0 4..

-., . sap A' , -

g7.1 6..

7 w . E5a * 'n

~^ 438 R'Wesjg a. < x ;; .

675. .c -

. .m..

p.p .

v
  • . 'ee i ., .&

. 's . .-.? yl' i

l 90000243

. . _ = __.

CHICAGO BRIDGE & IRON COMPANY

= Page 18 .

- -p.. ,.

@s,pu~ ^ ~ ~ ,M&_+ -

- .m r..i,,. -

.. -e A Mw.. R w. - -

Permanent Deforma-w w q c_--g-

g. p..- . ,.

Qm n:jBWDg _m

- - c !:,4 '

---M%.d3eitrr.i= tion Resulting From Test 3.

. . ~ A. ~ 2 ..

v; IRA

.. fy: . ;.3 f@:.

1 -=3#' g,InsertPlateInitially jLPM.EC h DM T -3 M 4 g Flat. Note Evidence

-m Q.sp '- _ < ,.

3 '

3 of Insert Rotat2.on.

gh X.4% ,3_.C,' gjen. ~<.::

%c,7c

._re%_. _ ..&# . %.; q,

, }@.3 . .., _' QMm = .:. -

FIGURE 15

~

kg. . .

gpapg y~ . s.- ,"

E =:

Qy# - )" ~ ~

Mh *{l Y Q 3 _

.yQ~$g:[.,.si."~- ~ jf>R:-

%%C. ^ ~. PE t <

Jd.vw.r % .>.. ,-

, u.<

.,y g-

._2 2$z)  ;

--N%.

n:u m ., '-% ,. m: P MLW> . a ==~ - x___.-

- -wc

.=.

%e -

)

Same as Figure 15 View From Opposite Side

__'N. - _ _ _ ""=mA_rw mi

_ _ . ~

FIGURE 16 - -? " --

~. -

a+w -

=,,YY h

w .g.Y _ , . .

D7Ii Q_

, g -

~

m- , m_W~ '""' x.m

'm -

s-.. u- +

5m.r.g;g* mn

.,_~

-. d n EY'#'b,*y' s w--- .e, . - ,

~

@ M ' - - ' ~ -

h s= w w * %. ~.. _ .

y4 ,,.i 1Qp%

' .L M* :m L ..

% g- y,44:i.mj ., .*w*; g,s'PQe.,p'r- ? .

s _ [ F 4=*'are,Fe, *-

T @-- Cf"-yM "^ W &*m.:Qw.

--% A-.-="d @xtt,7< %M, g

,5.,

< .w:>

Q. . ' g4;.'t,4

., g ys y y T-gu.c.C's,i "

$,- eh. ' # ij l

=-

h;, ,. . . . . ,

a , *. " > ~ ,

,,, f... r. h.

c . . . . ,. ~ , . _

. . - [5. -"""* +15N"m pa3 k ~.

44
t

. .g 90000244

.- - . . _ ~ _ .

t CHICAGO BRIDGE ar, IRON COMPANY

=..

-W Page 19 4

Permanent Defor-

. ww- rr. .c.- < q r FS- mation Resulting

g. *M,e w- V4en. pw&-g u . 4c r%-" LypS u g"P@~.; From Tosty... 3.

w}?u@.- . .4. 4.

.. _m. g. ,g.g..w - arr-LF Bot-

. .._ -~~_ tor' view- -

K - = ~ ~ _ ~ ~ - - 2

~"%

&.pp, w.s-m,hmWMm s A

. h,hg$$

~

$5?dF&$1Y Y

@.M23 FIGURE 17 3: .

- &v.r'7fn W ' Ti .z..{fQ@ & 1 W,

% m-. ,

N..

N e.Q....Q.,,%'

r ,c$. ,/ h~ %..+.c~~'

-f.,p r. . . . -

%ss.- 4. h%..u. . *  ;- ..

w. g

.,.,:a . '.,.**~'%.gan="p,#

2'  : . .  : -,

~ '

. .&.+ . .=%. w.; ,~.-" . ".*,..~~  :&. % . . y.,; :.;,;; _-

y- :p

._.--.e~m, a, y. m.

. . ~.:, .

i

. sag y--.m
1. ;y m

,: 4...., w .:,y.p a -

'yl4gp:w;.v2 l. t: ::W x , - ~; .:.. . .

  • . w.~.

. ~ e. . . . - , . ....'>..r'..~..7j,7. ' .-

, m*e

.d 5,. .gx r

, : ..hi.$

. . . '. -q

, .

  • 2 o, .
n. m , . , ; y '-t* 'd'R
4 ";,9

.. . + ;-$tiG.$.,s-;4,':*T7 C:$Fe%C. ...,,..m

._ _ , ? ?,p$.m$&. 0 vs *;g(' 3.$t:&w*.

~

  • N gj,'W

.N.

{.,a; -m A'Og.

diK.,qe****i . ;  % .%%_eie,+,n ,%;m_ t y-dTh -

- - - ,ws mw w.n .,

v.E:c.

1 i

Same as Figure 17 View From Opposite Side. Insert Rotation .-

Evident. - +F m.,

. .,.p y- ?.%.ssa -s., m. c . . . .z., w. . ,.

F

.,-,g- -

_ _' m

$,55%LSkWE%iY ^

w w w w ,2 ke b* ;

W ..gg p.2 pisg?m%

m . . W 3;5-% .

oo a mu - - 4)C&.v,yeww'W)f.

-- '- r_M4;M -- . -

4er: n.

%n%.h';i.L

  • ' i ,~N;  :. :6% *' ,26;w,,,,,

s . -

Q Q "'-

y~,j g #,,M%..( n.=am%f- dp$'f78N If e' p-', M 9 =

g *-h !M 'd b ; b N=%.-f: i cc w d '"3

-, c3%r .g.v y

.!, p~et:r

  • v-
  • Q%c.w. i
. ,',.'j%%4.f'h.-' . .c nv s.w.=

l- s g.g *. + g

,A:=dn *- qg.Y:4f y, t tit T- .*. .._'.

2 lRWi.4]&l $$;. .$$$5 m

t:::::....

x : .w 90000245

CHIciGO BRIDGE & IRON COMPA.NY $

2:::a 'Page 20

  • r.=:

' , -= =

4 g,g-- m;ag _c_.- # --

Top View, Fi.tting  ;

1 ,, -- 2' ns.- -

With Pad Reinforc-

, g -_ - ing. Crack Which Developed During '

,,fN,

3. @ .'$. ' a .- @?. . . . ,.
a. ,,q, D .>~ ~ . ,n m.%~.
u. . g Y Test 4 Evident.

.s xcap.)

w;.C.h' :p#

M'I - .; . ,,% .? .~

.g,;5 e7 FIGURE 19 C+i*; A7Qy ? :.e:^? wd.Q 33%-W 9 -5.ets eq

.+ = = % y.l. ,:cg;.Gsg%:.. K= $

4.

p- , a f, e+-u e-- % e  % gig; pq y y :.

-4.p w 94.ry u.r ~

eh= h;  ;,?Y~ f fk> f .~ &

,,e,.

YMQ.

.r-

..er w-m;:,a e e- *MN*g ,*'%*

r,

.~

3 t

Bottom View, Fitting With Pad Reinforcing Note that Crack Initially Follows Toe of Fillet Weld.

FIGURE 20

$E' C E>Tf"N~~.- W " T- sMEhkh,yN$pj me+ % - sdhh

..A13. -

.c , u _ - .= -- t

~.

. - -=.q- a -

. . .-:;. pre;.4,

- 7wh ,,~ ~~ " 1 .. p. 7 .1

,  %.IphMM~w%

0%- ./-

W rYQhs.:  :. %nu.A>J$.Wc) wh - 7.;_:./.4'

~

.Wmmipfge%- -

. r--

,- . .,,,.4.g)

, . 4 ~ .# . .

y

.Q . D Wi*4.Y. * =' --- ' ~"

  • ' 3 ~-

D** ~3~

W

- .x

"'d

' 4&e% 42 sDO. c':. . '.

wc a ,

), a J- ~ : ~~  ? .e QW . . . . . . -~ , .. .. -

l~

.h

.;c.

.y m. :- -

p ;, .,

h- .7

  • h.b., r g.,. .g;&,, , ' ' C'IE. .s ,

g- . -e. 'i it 2: . . #. N'" , '

=

. . - s -

y ;a . -; , _.

... .~a -

p,

. h. . G:.Cf?. '

. tr . *

'Rh .  ?'{ ~):Qa:ff', t- y_ . ., p

..=

.Y&' M * ~~* -

-=- .r.e .

. 3., ; ., s.

=. 7 r

,.g;4,*. ~ .%;. .

.2

,ss % y.. .s

~

90000246

4 .

.T - j;~# f 3

~ ~

7 t -n ft.

t

&' s.

  • Q.. d 4e' pg -n g a

4, .+ .

g}z

% & k 3

.- k &h q4 %

hL- g#@

q, . g

)

+ t i w,, ,,,, ,__

\

~~

y y ---

gs(

l . . . . -

l EdV7g l

CNj- I g l k N k

-,n-

=

\~'

,p ,

a ,

}-- I l

@ ' ' ~ '

  • I .. . .} . _ *Me .s N.

I  !

- 1 hf

~ ~~ 3

o'ap,:e y

~

PAA1 TRA VEL - lOA D 2

  • r .

r3 y

  • o 7?cr /  ;;

D Tesr 2 $

SRAPH E y

'N

'I L

3 '

s

. s

,- o j

- r Q -

?

' l

& !q g <r k k u a 4 j

k. ,

9 t

s N

s -

-k / \

) / l- l

/ l

<(

/

</ ,/

l 0 ,

.,.. K. 200 .3 00 m.

Icso &cas) 90000248

A JFs' n 77m yn. - Los o if!:

7e' s r 3 SHAPH 5

/ '

5 . .. . . . . - .

--/

/

/

- s

/

/

/

N /

/ -

N l o /

s 2 '

"' k zf' U

N N ,

l- e

)

6 0

0 a n,,,,..

/00 200 soc t

?'?

90000249

P l

PAM TRAVEL IoAD I

=

5 bb TES7* $  :

0RAPH $

~

r -

j i

i /

5 3

W i' t4 o

t ,

e '

N a U 2 .- .... .,

4 N 1 k

4 s .

N

/ -

tt

= /o0 soo soo 7.=w Loso  % s) 90000250

\

, . l>

i l

e k

S N m

a u  !>

-3 i R g 4 k'  !  % kJ 2 \N l

('

t s s set 4 t

.h R $ RNT  % g O ( O <3 O 'j  !

a %n l 4,. w

  • V l g

(g B \ l N b t k l y\-

t N l

- r3 ,

W l h  !

2 9

'l  !

l

. . . . . - - . . . . . . ==* - - * * - * " * * * * * * '

_ o

  • ,)

^ ^_ W ' L

$ 2 ,~ % ,

^ o

~

< xx ~

n <

i  ; Y Q  % D 'D h D h D h O k) '. A) 9 N N N s s

= (swuj away i b7$$ $3.}Q 90000251

1 i

  • Im i i g g, i _ ._ . . .

g a

'2 e

% 6 y b w7 4

k -

  • tu (g S

su Gea 4 w s '

&es 4 kh N5N b $

h[ % o c l

4  %

$$a V '

N

(

tr Q@s C _

k N .

N ~ m a

UN NO N D

= <m NO - <

% k b k $ N

% w ~ s s (S N Oj) G V0 7

L ,' ! l. -

.n

. Eha: .

I b

., ; k I

-k k & D 4 % i k wGw k m

' d is i t Rh

(

R g t 1' y t R@T 4{ '

Wg i

- <c ...._g{e

,a

~ a, t Qkg \

w

_ _ag

= -

c N _

~ _

O g O

^ t , .. .

q q y gy N lN N <J ~4J \J D D D D D h D h D h N N N. N G (sau) avoy f$1N$ nil $m 90000253 3

LOAD STRAt/V kW/AL.

h? l L r

w, soz// r.2esorron

. Cc- >

" Tes r 3 EE5 )

==- , e<,

5 c==

)

~

3 . _ . . ... -.

u g

2o0

. W m o Top Gsce 6 .BorroM GAGE

$ h .

o Avenscs j.

h 150 ,

4 I g

y a . _ . _ .

/86 di IP .

i e so ,

i O

O O

  • ^ G e' x e x 8 u

+ o l l

/000 2000 4000 6000 I

STRA/N f/f/CRO/NCHESl/NCH)

trL%95"LTv u<

s t t

@ 0 .}$

k ss b

.; 4 I a$ 't a t kb h EkN d us i

. 8

+t e

a m -

t b e t k

A N @%

N w .

l Q

N N -

= < = = a = v b y ks k k n s (SNOj} OVOf n

90000255. . . - _ -.

b p..

se a t Q A

% D - .

I b 6

@A e

} -

, T* i z- " 1 t

s M

\ t w W

Q b

q QQ' eA h

% x v

k 1

c .4 D

4%

so s ,

\

s uE ,

1 k

e n% m.

D

% \

, g

.m \

C \

4 n g  %

\

p O' a

\ d'

  • G g o o O O h D q D  %

q s s 1

f.lc.e

=

(SNOL) GV07 -

1 90000756

= .%

e a e t

i B w t l

~

h }.

4s

  • t als (B e g *.

A l

t L  ;

w I j  !

E RJ l da @L 4 d W W s

<o . . . .

ea o w kk g4 N tB l

.= g s

mh e

m :%

= c w r = <: < a c

@ 8 @

n n ~@ t l

l (swej) avoy 1

90000257

r

~

ha M 1 4

4 o <3 4 a -._ @s g,

,s k 4 k h in 3 g a

kD ' ' . . _ . _

=

~

T fN

@  % N a

a y (s5 a-.s s t, s

s g~ a k k

~~

, W tg w C e (swez) "07 j'

/ h(

Il

,A' *

?

$ o k<

x Y

~ .. -

~?e O 4

,f .. .... ~

i

% 4 G

I 90000258

. . . . _. . . j. .  !  !

d  !

R l

!y lw d k a t iw 3q .

!a g u kk sm ik s ,

,i

& fq 4 d  !

.* u$

N O < O  ;,

%g ( . _.

w k g  :

!h ( i w

3 b

~

@ t iN

'N D i

< l l l n k

m g  ;

u w

) 4

% ,k M . _ _ _

k R t%

h kwi s o a R k9 ~~@

J  % - . .

g tr)

_  % , w s

... -: / q w

(SNpL) OV07

__Q N

v

~ .. .

90000259