ML20125B643
| ML20125B643 | |
| Person / Time | |
|---|---|
| Site: | Oyster Creek |
| Issue date: | 04/25/1970 |
| From: | Haeussner T HAEUSSNER, T.E. |
| To: | |
| Shared Package | |
| ML20125B634 | List: |
| References | |
| TASK-03-02, TASK-03-03.A, TASK-03-07.B, TASK-03-07.D, TASK-3-2, TASK-3-3.A, TASK-3-7.B, TASK-3-7.D, TASK-RR NUDOCS 7912190664 | |
| Download: ML20125B643 (52) | |
Text
_ _ _ _ _. _ _ _ _ _
DSTERMINATION OF P.b.H. FLOOD HEIGHT
- j FOR FORKED RIVER UNIT 1 NUCLEAR POER PLANT.
BARNE0AT BAY, NEW JERSEY.
}i HISTORIC STORMS AND TIDES i
Storm Occurrence and Characteristics _
c liistoric accounts of early hurricanes affecting the New ' Jersey-
]
New York area date back to the 17th Century. Early chronologies of tidal floodinE from'such extreme svents have been reported in l
References 1 and 2 in some detail.
From the latter report it is noted that at least 80 tropical hurricanes or their remnants have affected the coastal area of New Jersey in the 75 year period y
cince 1889. In recent years, some of the more severe storms to l
have passed over or near the area, whose paths are shown in Reference 3, have been hurricanes " Hazel" in October,195h,. " Connie" p
and"Dian6" in August,1955, and " Donna" in September 1960. The "Oreat Atlantic Hurricane" of September, 19hh passed directly over I,
o the New Jersey shoreline in its northward movement. The relative storm frequency for the area, noted.in Table 1 of Reference h, is roughly one occurrence every 1.8 years.
In general, record hurricanes passing over the general study area have had central pressures of t.
from 27.8 to 23.5 inches and peak wind speeds over the ocean approach-l ing 100 mph. The forward speed of. the acre severe hurricanes, follow-l ing recurvature in the middle latitudes, has ranged from 15 to i
h0 knots. Northeast storms also affect the area, the most severe l'
90000081 l<
1 7912190[d
in recent years has been the March,1962 Northeaster which lasted for several days and resulted in a recorded high tide of 7.20 ft MSL at Atlantic City, New Jersey. Numerous accounts of.that storm, its tides, and the resulting beach erosion and tidal damage have been re-ported.
TIDES AND STORM SURGsS l
Normal Tides in Barnegat Bay are semidiurnal having two highs and lows roughly every 23 hours2.662037e-4 days <br />0.00639 hours <br />3.80291e-5 weeks <br />8.7515e-6 months <br />, with a higher high and lower low as a daily occurrence. Information contained in Reference 5 shows normal and spring tide ranges at Barneget Inlet along the oceanfront and at various locations in Barnegat Bay. Data for BarneFat Inlet, Dyster Creek Channel (off Sedge 1) and for Waretown (1.5 miles south of Oyster Creek mouth) are given below:
Mean Range (ft.) Spring Range (ft.) MTL Barnegat Inlet 3.1 3.8 1.5 Oyster Creek Channel 0.6 0.7 0.3 Waretown 0.6 0.7 0.3 The time difference between the occurrence of high water at Sandy Hook and Waretown gage is +2 hours and 33 minutes; between low water occur-rence it is +2 hours and L9 minutes.
Storm Surges and Extreme Hig;h Tides,. The March 1962 Northeaster generated the highest tide ever recorded along the beachfront of Barnegat Bay, 7+ ft. MSL, higher than that observed during passage of 'the more severe hurricanes of record. Recorded tide data for Barnegat Inlet gage, or gages in Barnegat Bay, were not available to the writer, however, some indication of the peak tides observed i
90000082
at Atlantic City, New Jersey can'be found in References 3 and L.
In general, it appears that surges on the order of 2-to 3 feet have been about the highest observed at that station. This would be correct inasmuch as most of the major hurricanes have passed inland of the New Jersey ares, have lost intensity rapidly and have not occurred on the most critical path for tidal surge generation.
PROBABLE MAXIMUM HURRICANE General Detailed analyses have been made, as described below, of the height of flooding to be expected at the Forked River Unit 1 Nuclear Power Plant site during an occurrence of the Probable Maximum Hurricane.
Basic parameters defining that hurricane were selected from 4fer-ence 6, ESSA Memorandum HUR 7-97. The effect of alternate forward speeds of storm movement on the generation and magnitude of peak hurricane tide in the ocean at shore was evaluated; the occurrence of that storm was on the most critical path for tide generation and with concurrence of peak hurricane tide and spring astronomical tide; procedures used for hourly hurricane surge coqutations were those given in CERC Technical Report No h, Reference 7; estimates of tidal overflow of the beach island and tidal inflow to Barnegat Bay were made to establish the resultant bay elevation; the effect of additional wind setup in the bay was calculated; simultaneous occurrence of rain-fall and runoff associated with the storm was evaluated as to their effects on flood level at the plant site; a routing of tidal inflows into the plant intake and discharge channels was included and, an T
3 90000083
estimate made of associated wave action to be expected in those channels. The results of those studies are given below.
PROBABLE MAIIMUM HURRICANE PARAMETERS Selection of the basic parameters defining the probable maximum hurricane for the Forked River area was made from Table 1 of ESSA idemorandum HUR 7-97. Those parameters are as follows:
a.
C.P. I. ( po). The latitude of the plant site is approxim-i!
ately 390 and h9' N.; that at the point of entry (lan
..1) selected for this hurricane is 39010' N.
Interpolation of C.P.I. values for latitudes 390 and h00 from Table 1 of the l-reference memorandum results in a C.P.I. value of 27.10 inches.
b.
Radius of maximum winds (R). Table 1 of ref. Memo. HUR 7-97 lists three possible radii for each C.P.I...... RS, RM, and RL.
For latitude 390 N. the values given range from 7 to 39 nautical miles. A moderately large-radius storm is required in order to have sufficient' horizontal extent of peak hurricane tide along the coastal reach opposite Barnegat Bay. A storm radius R of 30 nautical miles (3h.50 statute miles) was therefore select-ed as being reasonable for that purpose.
Asymptotic pressure (pm). Clarification and definition of c.
the asymptotic pressure associated with the P.M.H., as derived on Figure 6 of ref. Memo. HUR 7-97, was contained in a memorandum to the Corps of Engineers dated December 3,1968, Reference 8.
In accordance with that memorandum and ref. Figure 6, the va'lue n
of the asymptotic pressure pm for the P.M.H. at latitude 390 is
[
t b
90000084 d
1 30.70 inches. A peripheral pressure, pn, of 30.08 inches was selected to define-the P.M.H. pressu:e at-the outer limits j
f of the storm where hurricane circulation ends. Use of that
(
1 pressure ar.d the C.P.I. value of 27.10 inches was used to de-f li fine the maximum pressure effect at or near the center of the i
storm.
d.
Maximum wind speed - Vx.
Table 1 of Memo. HUR 7-97
{
shows a maximum gradient wind speed of 13b mph and a maximum 10-minute average 30 ft.-overwater wind speed on the order of c j
120 mph. Those values are for a stationary storm; for a mov-ing storm half the forward speed must be added to the latter i
value to obtain the maximum wind at radius R.
I e.
Forward speed of the storm - T.
The speed of translation j
affects the shape and duration of the resulting storm surge I
hydrograph at the coast, as well as the mM== intensity of
[
the storm and the peak tide height.
For fast moving storms a slightly higher surge height will result but for a much briefer duration of time. Also, a rapid shift in wind direc-1 tion can occur during passage of such storms which, in turn, can affect the tide buildup potential at a given location. An i!
evaluation of the importance of forward speed with respect to tidal flood conditions at the plant site was therefore necessary.
l Table 1 of Memo. HUR 7-97 lists alternate forward speeds possible i
of use, ST, MT, and HT. Values of 11, 20, and h9 knots were selected; conditions related to the use of each of those speeds were evaluated for applicability and maximum effect in the 5
90000085
i analysis to determine the critical hurricane speed: surge rela-tionship.
f.
Path. In order to generate critical tides along the open coast the path of the hurricane was selected so that the wind direction of the maximum isovel would be oriented normal to the offshore depth contours and to shore. The stom would approach the New Jersey coastline from the southeast on an azimuth of i
about 1350 from North. The storm center would pass inland some 36 statute miles south of Forked River, as shown on Exhibit 1.
Parametric relationships describing the stationary storm in g.
terms of a wind speed profile, the pressure profile within the area of hurricane circulation, the probable pressure effect pro-file, and basic data used in constructing isovel patterns for i
the hurricane'were derived using a computer program developed and employed by personnel of the Jacksonville District, Corps of Engineers, and run on a G.E. h15 Computer. The output of that program for the three alternate speeds of transistion is given on Exhibit 2 through 6.
Methods used conform to those presented in Memo. HUR 7-97. Graphical presentation of the over-water wind profile for the stationary storm can be seen on Exhibit 7; the pressure and pressure effect profiles are shown on Exhibit 8.
1 HURRICANE TIDE CG4PUTATIONS General._ The problem of accurately predicting the height of tide to be expected at the plant site can be divided into two basic areas of 6
6 90000086 cl 1
D 1
P
. 1 concemt
' 1.
Those factors which affect the-peak open-coast surge,.and 2.
Those which affect the peak bay tide elevation at the plant site.
With regard to the former, they can best be described as:
a.
Storm intensity.
r b.
Forward speed, c.
Path.
d.
Offshore depth configuration.
l i
Coincidence with normal high (or' spring) tide.
e.
k f.
f,dded wave and pressure effects.
Evaluation of those factors can be accomplished with a high degree of accuracy. Factors affecting bay tide elevation are primerily a i
function of the amount and duration of tidal overflow of the beech island, of tidal inflow through the inlet contributing to the main i
vater level of the bay, hurricane rainfall and runoff, and the ex-c tent of wind setup across the bay to include any local wave effects.
The occurrence and magnitude of wind setup across the bay is also a function of the available fetch length, plus the requirement that fairly unidirectional winds are maintained over the fetch to permit a steady state setup condition to occur on the mainland shore. In
[
evaluating those factors consideration must be given to the follow-ingt a.
The shape of the coastal wind-tide hydrograph inasmuch as it affects the duration of wave and tide attack.
90000087 7
8 r
e-,
e
,,.,,.~m
_m,,..-.-------m,%
, 4
b.
The peak value of the hurricane surge, with respect to the beach island profile, The configuration and topography of the coastal beach island c.
witn respect to height and lateral extent of the dune, the presence or absence of urbsn development, roads, and the like which would obstruct erosion and tidal overflow.
p 1:
'F d.
The area of Barnegat Inlet and the extent and degree of sub-sequent erosion during tidal inflow.
The creation of secondary small inlets resulting from coastal c.
breakthrough of the low areas along the beach island.
While some of the above noted factors are predictable and subject to securate definition and resolution, a highly accurate determination of others would require detailed field study with possible corrobora-tive model tests. Perhaps the most critical factor affecting and, to a large extent, controlling the predicted peak hurricane tide eleva-tion at the plant site is the condition of dune erosion with time during hurricane passage and the consequent extent and volume of tidal overflow. Recognition must also be given to the probability of physical changes that will most assuredly occur along the beach island, not only with respect to development, but also with regard to the con-sequences of those chaages on any basic assumptions made in this analysis.
Those assumptions must necessarily be " reasonable" in that,they should reflect the extent and scope of available knowledge, particularly with regard to beach erosion as observed in past events of this nature.
Procedures. The following is a discussion and description of the 8
90000088 l
t
procedures used in this analysis with regard to the P.M.H. tide computations.
a.
Hurricane tide computations. :The procedures used to com-pute the peak surge and shape'of the surge hydrograph at the open coast are those described in CERC Technical Report No.14.
Surge heights were determined at hourly intervals using Formula 1-65 from that report. Offshore depth profiles were obtained 2
and averaged from U.S.C.& G.S.. Map No.1108.
The critical fetches 1
for tide generation were selected and generally paralleled the path of approach of the stom in the area of highest winds.
Computations were made for both slow and high speeds of trans-lation to define the extreme range in peak tide and the shape of the tide hydrograph along the open coast for each event.
Changes in pressure effect were added to the offshore depth with change in fetch length. One foot of wave effect was added at shore to the hourly surge height. The r w alti.ng hydrographs are shown on Exhibit 9 together with the spring tide hydro-graphs for ocean and bay.
Peak values are 21.56 ft. MLW (20.06 ft. MSL) for the high speed storm and 18.25 ft. MLW (16.75 ft. MSL) for the slow speed st'orm. The difference in peak tide heights is 3.31 feet. However, the difference in the shape of the resulting bydrographs is even more signifit, ant as is indicated by the tide-duration curves shown on Exhibit 10 As can be seen from that exhibit not only is the duration of tide for the slow moving storm, at all elevations except above 18 feet MLW, approximately two to three times that of the high 9
90000089
5 speed storm but.also the height of tide exceeds that of the-high speed stom by as much as 10 feet for nearly 'two hours.
p Of even greater importance however is the fact that a rapid shift in wind direction'will. occur in the high speed storm a
immediately following its landfall. Wind directions will shift i
from an easterly component across the bay at the time of peak ocean tide to southerly, thus precluding sufficient time for a i
steady-state surge condition to be fully developed across the bay.
It is therefon concluded that a slow moving storm with a forward speed on the order of 13 to possibly 20 mph generating a peak surge height of from 18 to 19+ feet MLW at the open coast represents the most critical P.M.H. condition for the area.
b.
Tidal overflow and inflow computations. (1) Basic Data.
Available U.S.G.S. quad sheets for the area were used to plot a beach profile for the reach between Manahawkin Bridge on the south and Thomas Mathis Bridge on the north. Those were considered to be the limits of the bay (and beach) area affected by tidal overflow and inflow. The total reach length ll
[
is 22 statute miles. Dune elevation was plotted against accu-mulated distance, or length, to obtain basic relationship for l
use in determining tidal overflow. Curves were established for r
the reaches between Manahawkin Bridge and the south side of the inlet,,from the north side of the inlet to Thomas Mathis Bridge and for the. total reach encompassed by those two reaches. Those y
relations are shown on Exhibit 11. Cross secticns of the beach 10 90000090
~
r J
?
island were also plotted by 1-mile average r eaches to obtain an-indication of the width of beach area at cert i a n elevations for use in evaluation of the probable rate of erosion with b i i
time and increase i.n tide height at shore oth An area-volume rela-tion was determined for Barnegat Bay between th e.two bay bridges using available U.S.G.S. quad sheets and navigation maps. The area-capacity relation was extended inland to th e 20 ft. MLW contour.
Those relations are shown on Exhibit 12 The cross-sectional area of Barnegat Inlet was also obtain d b I
ing several limiting sections to arrive at
[
e y averag-elevation relation.
a " basic" area-That relation is shown on Exhibit 13 shown on that exhibit is the total accumulativ Also e area-elevation relation that was assumed to exist during stor
'i m occurrence as a result of beach erosion at the inlet and from th e creation of small secondary inlets (breakthroughs in the be ach island) which would add to the total available irdet area with ti me. As shown on that exhibit the existing inlet area at el evation 8 feet MSL would be assumed to increase from 2h,000 ft 2
to a maximum of 97,000 ft.2 when the ocean tide reaches elevation 17 ft (2)
. MsL.
Erosion, breakthrough, and overflow assum ti p ons. The assumptions made regarding the time - history a d i
n extent of i
erosion and subsequent overflow to Barnegat B l
ay are probably the most significant part of this entireenalysis.
Available information, including personal observations 1
of beach erosion in major hurricanes affecting similar beach and shore installa-
\\
tions in the Florida area provided some kn I
owled e of the time E
n 90000091
.-u-W""
y
--, - + = '-' -^
r sequence of erosion and resultant effects. Wave action in ad-vance of actual storm passage attacks coastal beaches in vary-ing degrees depending on both offshors' and onshore beach slopes, the proximity ( or existance) of dunes, type of underlying mater-ial, wave characteristics, and otner factors. As tne hurricane tide at shore rises, tne area of beachfront exposed to wave attack and possible overtopping increases with elevation. The horizontal extent of beach erosion can vary; in major hurricanes some 10 to 20 feet horizontal loss of beach has been observed.
In long-duration northeast storms, which occur in late winter and early spring, tide heights do not approach 'the maximum values observed in hurricanes; however, the repeated occurrence of four to five much-above-normal tides plus abnormally high seas and wave action has caused horizontal erosion of beachfront areas of as much as 50 to 100 feet.
Such storms also have associated serere wave action lasting from 36 to hB hours and longer. The March 1962 Northeaster had 5 successive high tides with wave a'ction of nearly 60 hours6.944444e-4 days <br />0.0167 hours <br />9.920635e-5 weeks <br />2.283e-5 months <br /> duration. From Exhioits 9 and 10 the tide hydrograph of the slow moving storm (considered applica-ble for the P.M.H ) and the tide-duration curve indicate that the beach island fronting the plant site will be subject to j:
joint tide and wave attack for about a 6 to 8 hour9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> period.
Exhibit 11 indicates that some 5,000 feet of beachfront is at or below elevation 10 ft. MSL and about 18,000 feet is at 1
or below 15 feet MSL. The duration of tide height above 10 ft.
I MSL, as shown on Exhibit 10, is approximately b hours; that i
o 90000092 L
u 1
I
I
+
t above 15 ft. EsL is about 2+ hours. Based on those data and
~
i the general width of dune and beach in the area'an erosion rate' of l' foot per hour vertically was postulated, bEginning at time T-6 for beach areas at or below elevation 6 ft. MLW.
For those areas the maximum erosion depth in the total storm would be on the order of a 7-foot vertical reduction. Comparable hourly rates were assumed to occur with increase in beach eleva-tion and with hourly increase in tide height at shore. In this manner a final " eroded" profile relation was established,- as shown on Exhibit 11, which was assumed.to exist at time T+1' hours.
The progressive hourly changes in beach elevation provided a basis for computation of hourly over.ilow volumes (as described later in this report). The total inlet area relation shown on Exhibit 13 was based on an estimated total 7,500 linear feet of breakthrough of the beach, occurring'at about 7 location within the2-milereachsouthoftheinletandinthefirst1) miles north of the inlet. A total erosion depth of about 10+ feet was assumed to occur in those specific locations, down to about mean low water. This assumption depends in large measure on the type of material underlying the beach, ie., whether entirely sand or composed of limerock or some other non-erodable material.
In view of this unknown the assumption is considered to be extreme.
(3) Overflow and inflow computations. The:e computations were i
made simultaneously to evaluate hourly changes in bay volume and stage. Hourly computations of the volume of overflow of
- the beach island were based on a series of hourly erosion pro-u 90000093 4
L i
s
. _ _ _. - ~ _,,
I files which were related to tide elevation and were planimetered
{
f to obtain a "mean" depth and area of overflow. Mannings formula for turbulent f1ow in open channels wa's used to compute tidal overnow of the constantly changing beach profile. As such the l
{
flow is non-uniform through the various cuts and troughs which 1
comprise the eroding sections along the reach of beachfront con-sid ere d.
r !3 1!2 where 2
Q = a7 =
s n
u Q = discharge in cubic feet per second j
a - hourly area of overnow in square feet V = flow velocity in feet per second a
r = hydraulic radius, assumed to be equal to the mean hourly depth of overnow, s = water surface slope, estimated as the hourly average head
{
across a 1,000 foot width of beach
[
n = roughness coefficient, assumed as 0.03 which is noted on page 7-17 of King's Handbook of Hydraulics as app 11 cable for natural stream channels, with no rifts or deep pools, but containing some obstructions such as stones.
The maximum hourly overnow rate of 1,775,000 cfs was reached in the hour T-1 to To. The marimum average hourly velocity, 9
based on s1 ope, was 12.25 feet per second and occurred in the period T-2 to T-1 The total volume contrication to the bay from tidal overnow would be h05,07h acre feet. The orifice formula was used to compute inflow. As defined in King's Handbook of Hydraulics, an orifice is an opening with a closed l
perimeter and of regular form through which water flows. The
~
movement of tida1 inflow through Barnegat Inlet during the P.M.H.
under both relatively high head conditions and the inf1uence of f
90000094 j
1h
winds in excess of DO mph was considered best represented hydraulically.as flow through an orifice. That formula is:
Q = CA 2gh where t
Q = discharge in cubic feet per second C = empirical constant (used 0.6h based on similar computa-tions made by the Jacksonville District, Corps of Engineers in design hurricane-protection studies)
A = inlet area (from^ Exhibit 13)
J g = gravitational constant. (32.186) l h = average hourly head across the inlet.
?
The marinum hourly inflow rate through Barnegat Inlet and the various breakthroughs was computed to be 1,050,000 cfs in the f
pericd T.1 to To. The maximum hourly average velocity was
[
16.2 feet per second from T-2 to T.1 The total volume contri-bution to the bay from tidal inflow would be 310,010 acre feet, making a grand total volume of 765,08h acre feet added to the bay. Graphs of the hourly inflow, overflow, and total volume aoded to the bay are shown on Exhibit lb.
The rise in mean hour-ly bay level (stage) from that inflow can be seen on Exhibit 15.
The peak stage reached in the bay would be 15.8 ft. MLW, and 1
would occur at time T+1 hours.
j c.
Hurricane rainfall. As noted on page 7 of U.S.W.B. Technical t
Paper No. h8, Reference 9 -- " hurricanes may dump as much as 12 inches of rainfall in 2h hours over large areas and even more over areas of a few square miles".
In general, the amount of rain resulting from any given storm is a function of several j
factors --- the moisture content of the storm and influence of surrounding air masses, its path, ie., whether over relatively sl 90000095 15 s
9
flat terrain or mountainous areas, where the effect of cro-graphic lifting can result in torrential and widespread down-pours, and other meteorologic conditions. Examination of rainfall records associated with the passage of intense hurri-canes over or near the northeastern seaboard indicates that rainfall distribution.in those storms has been light along the coast, with heavier amounts noted inland due to rise in topo-graphy.
The heaviest rainfall has been found to occur in the area slightly ahead of the center, this being the area of maximum moisture inflow and convergence, and that most affected by orographic lifting.
For the P.M.H. a total pre-peak tide rainfall is postulated, ranging from 3 inches along the coast over the Barnegat Bay area, to a maximum 12 inches some 25 to 30 miles inland. The total contribution of storm rainfall over Barnegat Bay (0.25 ft.) within a 214-hour period prior to peak tide occurrence in the bay would be small in terms of its normal average depth, and even smaller with respect to the added volume of tidal inflow and overflow noted above.
d.
Runoff. Little or no contribution to the bay from upland runoff from such streams as Toms River, Cedar Creek, Forked River, Oyster Creek, Gunning River, or Manahawkin Creek is expected at the time of peak bay tide occurrence because of the normal 3 to 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> lag between rainfall occurren'.e and the time of concentration ir peak runoff from those watersheds.
In this re-gard it has been observed that the effect of hurricane winds plus high water levels in coastal bays and rivers can and has 90000096 16
k delayed or caused a further lag in the time of occurrence of l
peak runoff owinE to reversals in slope upstream.
e.
Barnegat Bay wind set-up computations. During the period of P.M.H. surge occurrence along the oceanfront the water level in Barnegat Bay will have risen up to a peak at time T+1 At that time peak hurrierne winds are directed across the east-west axis of the bay causing an additional rise in water level along the mainland shore from wind and wave setup.
Following passage of the hurricane center inland wind directions gradually begin to shift to the southeast.
For the available h to 5 miles of fetch distance across the bay a minim"n duration of at least i hour is considered r.ecessary for average winds to be effective t
in creating a theoretical " steady-state" setup condition along l
l shore. Accordingly, a mean i hourly bay level of 15.M ft. EW j
(from time T+g to T+1) was used to compute the additional bay l
f tide. The formula i
p S. Ms L N l
WD was used to compute the slope S. in feet per mile, across the bay. After several successive approximations e node line was established and setup and setdown computations were made. The water area in the vicinity of the beach island will "setdown" because of the shallower water depths.
A half-hourly averaEe-wind speed of 120 mph was used, based on a slight reduction in storm winds due to the e.fect of overland friction and normal 90000097 17
a storm filling following landfall. A geographical sketch of Lj conditions used in the computation can be seen on tathibit 16.
d The peak computed tide elevation at shore, including the y
c eff ects of wind, rainfall, and wave action, was determined to I
1 be 19.83 ft. MLW (19.5 ft. MSL). That tide elevation is con-1 sidered spplicable at the plant site.
f.
Wave runup at the plant site.
1.
General. Location of the plant site is approximately 1{ miles inland from the western shore of Barnegat Bay and about 2,000 feet east of Highway 9.
Topographic data for the area fronting the plant site was taken j
from Topographic Survey " Baywood Farms" dated January 23, 1970, j
sheets 1 through 7, prepared for Jersey Central Power and Light Company. Those data supplement the U.S.G.S. Quadrangle Sheet-l Forked River, N.J. 1953, a portion of which is reproduced on Exhibit 17 with the plant site location indicated thereon. Four ground profiles for the area fronting the plant site are shown on Exhibit 18, one extending north-south along the base of the plant fill and three east-west profiles bracketing the wave approach area to the plant site.
2.
Wave heights in Barnegat Bay. Evaluation of wave generation conditions in the bay was based on an available east-west fetch length across the bay of approximately 3.5 statue miles, an
[
average beach-mainland depth under the wind tide profile (Exhibit
- 16) of approximately 18 feet, and an average wind speed from the east-southeast of 120 mph. Wave height and period were obtained with the above data from Figures 1-35 and 1-36 (extended for wind 90000098 18
speed) of ETL-1110-2-B, dated 1 August 1966, interpolated for
)
an average depth of 18 feet. From those curves a wave height Es = 8 to 8.5 feet and wave period T = 7' seconds were.obtained.-
l 3.
Wave heights and characteristics in the vicinity of the plant site will be a function of available depth of water some distance eastward of the plant embankment.. Water depth decreases progres-sively with distance inland from the mainland shore. The higher waves will break on moving inland as their breaking depth is reached. For example, an 8.5 ft. wave will break in approximate-l ly 11 feet of water, or about 0.9 mile inland from the western bay shore, barring the effect of any physical obstruction to its forward progress inland. The wave height that can be sustained without breaking in crossing the area in front of the plant site i
fill and that will break on and run up the fill slope was deter-mined using the topographic profiles A-D shown on Exhibit 18.
If the effect of the dense woods extending north-south for over half a mile east of the plant site can be ignored, ground eleva-tions of 15+ to 17 feet will control the wave height reaching the plant fill embankment. Using an average tide elevation of 19+ ft.
and a controlling ground elevation of 15+ ft. the maximum non-breaking depth of water for waves reaching the embankment will be about h feet.
For that deptb a 3.1 ft. wave will creak (Hb =
0.78 x h = 3.12 ft.), indicating that the height of the wave break-ing on the embankment will be about 3 feet.
L.
Wave runup en t,he plant embankment. An embankment slope of i
90000099 19 l
one vertical on 3 horizontal is planned for the bay side of the d
plant site fill. Wave runup for that slope was computed. Gener-alized relationships between water depth, wave height, and wave lenEth were derived, as given below; equivalent deep water relations and runup criteria were obtained from Techanical Report No. h,
" Shore Protection Planning and Design" by BEB, OCE. Wave runup
[
and wave runup elevation (non-overtopping) for determining plant fill elevation were computed for two conditions:
1.
A smooth 1 on 3 embankment slope, and 2.
A rubble (riprap) coated 1 on
!)
i 3 embankment slope.
Determinate data for each are as follows:
n General d = db = b feet Hs - Hb = 3 feet H
t-T = 7 seconds L = 5.12T2 = 251 feet d/L = h/251 = 0.0159 d/Lo = 0.00160 j
H/Hb = 2.238 H6 = 1.35 E6/T = 0.0276 d/4 = 2.96 Condition 1 - Smooth 1 on 3 slope: (Figure 3-2)
Cot a = 3.08 d/Hb=3 R/h6 = 3.9 R = 5.3 feet (Correction for Model Scale Effect - Fig. 3-11 = 12%)
Reorr. = 5.9 feet Runup elevation = 19.5 + 5.9 = 25.h ft. MSL 1
Condition 2 - Rubble 1 on 3 slope: ( Figure 3-12)
Cot a - 3.08 d/H6 - 3 R/H6 = 0.96 R = 1.3 feet R
= 1.h7, say 1.5 feet eorr.
Runup elevation = 19.5 + 1.5 = 21.0 ft. MSL 90000100 20
.l
' FR03 ABILITY OF OCCURRDNCE The return frequency of the probable maximum hurricane has been de-fined on a probability basis in ESSA Memorandum HUR 7-97 wherein the frequency of C.P.I. occurrence was derived for various coastal zones at a 1,000-year return period. Numerous factors, both singly and in combination, influence and comprise the return frequency of this storm and its associated maximum water level at the Forked River Unit 1 Nuclear Power Plant site.
They include storm intensity ( central pressure index), the selected radius of maximum wind and forward speed, the requirement that the P.M.H. occur on an exact critical path for peak ocean surge generation, and the further requirement that the time of peak storm surge occurrence at the coast coincide with the high monthly astronomical tide level.
Tne absence, omission,
(
or failure of any one or more of the above conditions and requirements will result in a less-than-critical event than that predicated in this report.
For example, assuming al.1 other conditions met if the peak storm surge occurs coincident with low astronomical tide at the coast the resulting peak surge elevation would be over h feet lower than predicated. If all other conditions are met but the storm patIh is to the north of the plant site the resultant surge height would be minimal. An exact determination of the probable return frequency of the peak P.M.H. surge elevation predicated for the plant site would be.eadremely difficult at best and would have to represent the com.
posite probability of occurrence of each of the conditions and i
combinations of conditions stipulated. As such it would be an i
L.
90000101 21
extremely rare event with a return frequency estimated to be on the order of once in a million years, or possibly more.
EXTFI:!G LOW TIIE ANALYSIS Various factors affect and to a large extent control the value of the probable minimum water level elevation, or extreme low tidr non-dition, to be expected at the intake canal. of Forked River Unit i nuclear power plant.
They are essentially as . lows:
H 1.
Hurricane wind direction, duration and intensity in a P.M.H.
q occurence passing either a sufficient distance offshore or a sufficient distance to the north of the site area so as. to prevent the buildup of tides alongshore and in Barnegat Bay, Winds in the i
bay area opposite the plant site must be directed toward the east so as to create a setdown in bay level along the western bay shore'.
~
2.
The occurrence of the storm, with applicable winds over the bay, on a normal low astronomical tide condition in the bay.
3.
The location of the plant site with respect to the principal axis of the bay.
h.
The average depth of the bay with respect to wind-tide genera-tion and, 5.
The general orientation of the bay with respect to anticipated hurricane wind direction.
An occurrence of the P.M.H. is postulated on a path generally parallel to shore at a distance some 33 to LO statue miles offshore. Peak off-
[
I shore winds (corrected for offland friction) in the left rear quadrant of the storm would be on the order of 90-95 mph (100-110 mph x 0.89) r 1
90000102 22 l
l i:
i
\\
l over the bay. For the Forked River Unit 1 plant site tide-gener-ating conditions in Barnegat Bay are minimal. The available east-l west wind-tide generating' fetch across the bay would be of some 3 miles maximum length. The plant site is located at or near the nodal point for north-south tide generation and water levels would be affected the least under those conditions. An assumed normal low tide condition in the bay of -0.1 ft. MLW (-0.h ft. MSL) would exist h the bay coincident witF the tine of maximum setdown along the weste-n bay shore. The formula used to compute wind setdown in the bay within the plant intake and discharge channels is that l
described in Reference 10 That formula is:
S = L JTs N where 5D d
S = total setup over the respective fetch,in feet.
L = fetch distance, in feet.
hts = tangential wind shear stress (1bs./ft.2),
[ = specific weight of water (62.h lbs/ft.3).
-D = average depth of water over fetch L, in feet.
q N = ratio of setup to depth (after An average bay bottom profile (west to east) was constructed for a 2-mile wide bay section, shown on Exhibit 19.
From that bay profile, shown on Exhibit 20, average bay bottom elevations were a
obtained to determine average depths and bay volumes. The nodal point in the bay was estimated initially and subsequently finalized by a volumetric check of setup and setdown volumes. Outflow from 90000103 l
23
~,, - -,
y
-y e.,-.
r y,,
+----,
-,--.m,-
-w
.,-,,y
,w.--
i
?
a r
the bay was considered negligible, assuming the condition of normal-I low tide plus wind setup against the eastern bay shore would be act-ing against a rising normal ocean tide condition. Basic computations
'and data all shown-in tabular ~ form on Exhibit 20. An Extreme Low Tide elevation of -3.1 ft. MLW (-3.h ft. MSL) was computed in the bay at the intake canal.
t t
CONCLUSIONS j
Based on the above analysis the undersigned has drawn the following conclusions:
J
- 1. - That attainment of the maximum flood level in Barnegat Bay at the plant site is a function of the maximum volume of inflow to the bay.
2.
That that volume is primarily dependent upon the P.M.H. tide duration curve at the coast.
3.
That a P.M.H. with a moderately slow speed of translation is required to provide the most critical combination of conditions for Conclusions 1 and 2.
h.
That such a storm, as described above in this report, will generate a peak tide elevation of 19.83 ft. MLW (19.5 ft. MSL) at the plant site, 5.
That an added wave runup' can be expected to occur on the f-planned 1 en 3 embankment fronting the plant ranging from 5.9 feet (elevation 25.h ft. MSL) for a smooth slope, to 1.5 feet (elevation 21.0 ft. MSL) for a rubble (riprap) slope.
90000104
^
2h
l i..
4 6.
That the Extreme Low Tide. elevation to be expected in the bay at.the plant intake and discharge channels is on the order'of
-3.1 ft. MLW (-3.b f t. MJ.L).
i Submitted by n
/b'll 0ts t.t x L v Theodore E. Haeussner Hydraulic Engineer Consultant Jacksonville, norida i
f April 25,1970 I
90000105 i
i sg 25
.. ~...
N i
EIHIBITS
(
t 1.
P.M. Hurricane Path 2.
P.M. hurricane Parameters 3.
P.M. Hurricane Wind & Pressure Profile Data
[
L h.
P.M. Hurricane Overwater Wind Data - Slow-speed Translation 5.
- Moderate-speed Translation L
6.
- High-speed Trans1stion 7.
P.M. hurricane overwater Wind Profile B.
P.M.flurricane Pressure and Pressure Effect Profiles 9.
P.M. Hurricane & Normal Tide liydrographs 10 P.M. Hurricane Tide Duration Curves
- 11. Dune Elevation vs Distance
- 12. Barnegat Bay Area-Capacity Curves
- 13. Barnegat Inlet-Base I-Sectional Area & Total Area Relations 1b.
P.M. Hurricane Inflow Hydrographs 15.
P.M. Hurricane Hourly Stage Graph 16.
P.M. Hurricane Tide Profile across Barnegat Bay l
- 17. Topographic May - Forked River and vicinity I
- 18. Topograhic Profiles 19.
P.M. Hurricane Wind Setup Section - Barnegat Bay
- 20. Extreme Low Tide Profile - Forked River Unit 1 duelear Power L
Plant 90000106 I
r f,
i.
i l
REFERENCES 1.
New England - New York Inter-Agency Committee, "Special Subjects Regional-Hurricanes", Volume b of the Resources of the New i:nE and -
l New York Region. December 195h.
2.
House Document No. 350, 88th Congress, 2nd Session, " Tidewater Portions of the Patuxent, Potomac, and Rappahannock Rivers In-cluding Adjacent Chesapeake Bay Shoreline - Interim hurricane Survey". August, 196h.
t 3.
Harris, D. L., "An Interim Hurricane Stom Surge Forecasting l
Guide", Nat. Hurr. Research Project, heport No. 32, USWB, i
August,1959.
h.
BallenzweiE, Emmanuel M.,
" Seasonal Variations in the Frequency j
of North Atlantic Tropical Cyclones helated to the General
[
Circulation", Nat. Hurr. Research Project, Report No. 9, USWB, p
July 1957.
[
5.
Tide Tables,1969 East Coast, North and South America, U.S. Dept.
j of Comerce, ESSA, Coast and Geodetic Survey.
j I
6.
U.S. Dept. of Commerce, ESSA, Memorandum HUR 7-97, " Interim I
Report - Meteorological Characteristics of the Probable Maximum hurricane, Atlantic and Gulf Coasts of the United States".
H.M.S. Weather Bureau, May 7,1965 7.
U.S. Army Coastal Engineering Research Center, " Shore Protection-Planning and Design", Technical Report No. h, Third Edition,1966.
B.
U.S. Dept. of Commerce, ESSA, Memorandum HUR 7-97A, " Peripheral Pressures for Probable Maximum Hurricanes", H.M.S. Weatner Bureau, December 3,1960 9.
U.S. Dept. of Comerce, Weather Bureau, Technical Paper No. LB,
" Characteristics of the Hurricane Storm Surge", Washington, D.C.
1963.
10.
U.S. Army Corps of Engineers, South Atlantic Division, Civil Works Investigation Project CW-167, " Waves and Wind Tides in Shallow Lakes and Reservoirs", Summary neport, Jacksonville District, June 1955.
90000107 D
J
p.
iais c 7--. fri 7.=
g(,-, y \\s i t
.w i s-
- - r.;;
3 6
l A
./
ll
!(..
l
--l.-
.l A*W
- l **s '
' *?%
- g }
I
. t 4.. f....id OO 7,['
l 8'
$ Q Sandy Hoonf ll (l
l
... l l
l if d/5 l
_1, i
l l
g, t.. t Et, _ p
_J l
Lt.r.g faunch' l
l l
l r
I l
Asbury orb l
V795
)\\
l I
l sh 4 a, sal #
I
_ _p _ _ _ _ _ _._ _ __ _3_12] 5.
t.~ ~ ~ _
~
lim M'onekvoS T g
l 1.o Monosquo inlet Pi P ooione fisoch l
-d 795 I
l i
l s.
I I
7
..k~
8 N
/
O I
e.
e
,ob
- $[
l i
w O
l l
i i
gee E
"*o,;a.
5.
- 8""
I 1
A s.oc, Doc.
l i
g l
A 5 U
l x ;
I l
+
l' I
e g
A I
)
I 4
l l
1ac : )
+
l l
T
[
%d T
I so.
l 1
N inlet l
Lorne at N
g A
I l
I
/
y I
l-8;%4 I
d'D"'
I INqa~d[#<.g 3.4 t
I g'
'ik,
n@F]b
/t g
]j ]Q(0 D
3l
'...,g',~och i
e i
l N
%g.,, js et j l
_ _ _ _/3 _ _ _ _,,-
y__
g E*E... /.._L _. __ 4
/___
,y ____.__ _ ______ly?.:
j mu, r.,
i FOPJID RIVER, N.J.
/
/__
__l f
/ e g "'2" 1
P.M.H. PATH l
r m.m L f9
,f n.
i l
90000108 na= 2 l
L
.i
~
1:a PROBABLE MAXIMUM HURRICANE PARAMETERS po = 27.10 inches p = 30.70 inches g
pn = 30.03 inches R = 311.50 statute rlies ST = 13.-dles per hour IR = 23 nilos por hour HT = $6 niles per hour 90000109 D][$ 2,k,ErN)a f
L L.
l l
1."ulIBIT 2 i-l
I
=.
t BASIC INFORMATION l
DISTANCE FROM OVERWATER HIND I
~l CENTER PROFILE-FiiESSURE
[
8.6 39.88 27.17 2'5.9 106.0'5~
27.59 17.3 76.97 28.05 34.5 118.03 28.42 44.5 104.61 28.76 54.5 91.80 29.01' 64.5 84.38 29.21 7 4. 5'.
78.46 29.37 84'.5 72.22 29.49 94.5 67.05
_ 29.60 114.5 60.78 29.76 134.5 55.50 29.89 154.5 50.77 29.98 17 4.5 46.48 30.05 194.5 42.55 30711 214.5 38.91 30.17 234.5 35.51 30.21
.'(
254.5 32.32 30.24.
90000110 8
e m
f IntInIr3-
.s-..._-
- ~
~
gg g ggg.
ANGLES NEASURED FROM L INE Ol' FORWARD HO) IGN
'0IST.
25 55 8 5 " -~-~ ~1 15~
LTS F75 205 235
~ 265' '-~ ~295 " 325 ~
~355
~
8.6 39.9 43.1~ 7.' 5 ~.~i 4'674' 4 5.~5~
4 3. i-- -- 3 9'. 9'----~ 3 6' 6~~~ ~ - 3 4. 3 ' - ' - '. 3 3. ' - - ~ 3 4. 3 '
36.6 4
17.3
'77.0 80 2 82.6 83.5 82.5 80.2 77.0 73.7 11.3 70.5 7L.3 73.7
~
, 25.9 LO6.1 109.3 L1L.7 IL2.6 L 1,L. 7 109.3 LO6.1 LO2.8 100.4 99.6~.-' L 9 0. 4 -102.8
~
34.5 118.0 121.3 123.7 124.5 123.7 121.3 118.0 L14.0 112.4 111.5 IL2.4 114 8 44.5 104.6 107.9 110.2 11L.1 110.2.
107.9 104.6 101.4 99.0 98.1 99.0 LOL.4
~~ 4 5 MT8 95.1 97.4 98.3 97.4 95.1 91.8 88.6 86.2 85'.3 86.2 88.6 5
64.5 84.4 87.6 90.0 90.9 90.'O 87.6' 04.4 81.L 78.8 77.9 78.8 81.1
^
74.5 78.5 81.7 84.L 05.0 84.L 8L.7 78.5 75.2 72.8 72.0 72.8 75.2 94.5 72.2 75.5 77.8 78.7 77.8 75.5 72.2 69.0 66.6 65.7 66.6 69.0 94.5 67.L 70.3 72 7 73.6 72.7 70.3 67.L 63.8 61.4 60.6 6L.4 63.8 114.5 60.8 64.0 66(4 67.3 66.4 64.0 60 8 57.5 55.2 54.3 55.2 57.5 134.5
$5 5 58-7 61.1 62.0 61.L 58.7 55.5 52.2 49.9-49.0 49.9 52.2 T154.5 50.8 54.0 56.4 51. 3 56.4 54.0
$0.8 4 77'S 45.1 4475 -
4 5. L
--47.5' m
o Ef.4TS 46.5 49.7 52.1 53.0 52.1 49.7 46 5 43 2 40.8 40.0 46.8 43.2 O
194.5 42.5 45 8 48.2 49.0 4i1-2 46.8 42 5 39.3 36.9 36.0 36.9 39.3 2i'475 38.9 42.2
- 47. 5 45.4 44.5 42.2 - 38.9 f5Q B."3 3 2 ~.'4-'-" '3 3'. 3 ' ~ ~~3 5. 7
~
234.5 35 5 38.8 41 1 42.0 4L.L 38.8 35.5 32.3
'29.9 29.0 29.9 32.3
~~
25'475 3T 3 35 6 37.9 3 tf d 31 9 35.6 32.3 2971 2677-- - '~ 5.~8
',2 6'.1 "- ' 2 9.1 -~
2
?.
ED!IGIT h
e
.o 01ElWATER WRG SPEED DATA
-f
)M)ERATE-SMED TR&RSLATlun
~
~
ANGLES MEASURED FROM LINE OF FORWARO MOTION
~~~-DIST.
25 55 85 LL5 145-175 2d5-ZT5 flis
~295 325 355
~~
~
8.6 39.9 45.6 49'.8 ST.4 4978 45.6 39.3 5~C.~f -
2979~'
25.4 29'.9- - ~ ~ ~ 34.1
~
17 3 77.0.
82.7 86.9 88.5 8 6. 9,-
82.7.
77 0 71.2 67.0 65.5 67.C
-71.2 7
25 9 106.L 111.8 116.0 117.6 116.0 ilt.8 LC6.1 100.3 96 I 94.6 9 6 '. l.
'10 0. 3' ~ -
34.5 L18.0 L2'3 8 I f8. 0 L29.5 12if.O ~ - ~ -
El'8.0 11273-108.1
.106 5 108.1 IL2.3 123.8 44.5 104.6 110.4
,114.6 116.L
'L14.6 L10.4 L34.6 98.9 94.7 93.L -
94.7 98.9
+
54.5 9L.8 97.6 LOL.8 103.3 101.8 97.6 91.8 86.1-81.8 80.3 81.8.
86.L
~
~
64.5 84.4 90,1 94.3 95.9 94.3 90.L 84T4 Til.6 74T4 72' 9 74.4 78 6 74 5 78.5
-84.2 88.4 90.0 88.4 84.2 78.5 72.T 68.5 67.0 68.5 12 7 S'4TS 72 2 78.0 82.2 83.7 Bih 78 0 1272 66TS 62.3' 6 6'.~7 62.3~
66.5
- ~ ~ -
~~
i 94.5 6741 72.8 77.0 78 6 77.0 72.8 67.1 61 3 57.1-55.6 57.1
- 61. 3.:
IL4.5 -
60.8 66.5 70.7 72.3 70.7 66.5
.60.8 55.0 50.8
.49.3 50.8 55.0-i 134.5 55.5-6L.2 65.5 67.0 65.5 61.2 55.5 49.7 45.5 44.0 45.5 49'.7 154.5
.50.8 56.5 60.7 62.3 60.7 56.5 50.8 45.0 40.8 39.3 '
40.8 45.0 m
v L74.5 46.5 52.2 56.4 58.0 56.4 52.2 46.5 40.7 36.5 35.C *.
36.5-40.7 O
-~O-f9E5 (2.5 48.3 62T5 54.0 52T5 48.3 42.5 3'670-- " 3576
.W.d 32.6 36.8 -
~
O 2T475 38.9 44.7 48.9 50.4 48.9 44.7 38.9 33.2 28.'9 2Y. 4.
28.9 33.2 234.5 35.5 41.3 45.5 47.0 45.5 4L.3 35.5 29.8 25.6 24.0 25.6 29.8-Po
~ ~ " - ~
"~~ ~254T5
~~T2.3 3871 4273 43 8 42 3 383 32.3 f6.6 22 4 2 C.~8 2224"~~26.6 c
~
n e
-y
.m.-nes.
h
OYERNATER WIND SPEED DATA HIGH SPEED TRANSLATION ANGLES MEASURED FROM LINE OF FORHARD MOTION 015T.
25 5$
-~5 115 145 f75
~205
~~2'3 5'-~ ~2 65 '-~~~ -~29 5 -~ "3 2 5 -'~~ ~ ~ 3 5 5 8
~L 1'.9
~LS 6- ~ ~' '2 7 9 3429
~
~
7 '.~ 9-6471 53.9
~39.9
~Y5s9- ~ ~ - - 15.6 6
~
~
5 '37.'9 6471
-'- 76
~~
8 L7 3 77.0 9L.0 101.2 LOS.O 101.2 91.0 (I. 0 63 0 5
49.0 52.7 63.0
~25.9 106.L 12 L
L30.3 13 4. L 130.3 120.1 10671 9'2TL-81.~8 7 8 '.~ 1-~-
1.' 8~~ ~ ~92.1
~
8
~ ~ ~ 4-~ 5 118.0 LT2 T)
L42.3 146.0 142 3 132.0 118.0 104.0 93.8 90.0 93.8 104.0
~
- -~~
3 44.5 104.6 118.6 L28.9 L32.6 128.9 Lt8.6 10ft. 6 90.6 80.4 76.6 80.4 90.6-
~$4.5 91.8 105.8 LL6.1 119.8 L16.1 105.8 91.8 77.8 67.6 63.'d---~6'776
~77.8 6TTS 84.4 98.4 L00.6 112.4 100.6 98.4 84.4 70.4 60.1 5674 6071
~ '7 0. '4' ' " ~
74.5-78.5 92.5 102.7 LO6.5 102.7 92.5 18.5 64.5 54.2 50 3 54.2 64.5 84 5 72.2 86.2 96.5 LOO.2 96.5 86.2 72.2 58.2 4870 4T.2 48.0 58'.2 ~ ~ ~
~~
94.5 67.L 8 L. L,
91.3 95.1 9173 81.1 67.1 53.1 42.8 39.1 42.8 53.1
~
114.5 60.8 74.8 85 0 88.8 85.0 74.8 60.8 46.8 36.5 32.8 36.5 46.0, 1"34 5 5E5 69.5 79.7 83.5 79.7 69.5 55.5 41.5 31.3 27 5 3 G3-~ sl. 5 ' ' ~
~
15'475 50.8 64.8 75.0 78.8 75.0 64.8 50.8 36.8 26.5 22.8 26.5 36.8 O
174.5 46.5 60.5
.70.7 74.5 70.7 60.5 46.5 32.5 22.2
.. L8.5,
22.2 32.5
~
.~-
O 194.5 42.5 56.5 66.8. 70.5 66.8 66.5 42.5 28.$
l'8. 3 l'47 5 i 18.3 28.5-
'O-
~
.O
~
'21W $
38.9
- 52.9 63.2 66.9 63 2 52.9 38.9 24.9 IT 7' 10.9
.14.7 24.9 '
M 234.5 35.5 49.5 59.8 63.5.
59.8 49 5 35 5 21.5 L1.3 7.5 ~
L 1. 3 21.5 18}3]
2 5 W ~5 32 3 46.3 T6.6 60.3 -
56.6 46.3 32 3 18.3 8.1 4'.~3 8.1
' T**. T r1PP /.
e-a
-.....a a
. a s G
.e J-9 De %
i.
gl I
- V).
.I i
oc
-o f
L.. I g
O 2
o
.:8
\\
- . k. 3((. g Aoo i
k.
g tg h,. -
l' j
i LaJ l
W N _.,. :. _. ;..t...._..
I....
OC J
..J..
I ic!
..L 8 s
%%W-e
. tn.
- i h
t O y }
o.
J
...t.
,. 2
- p *
- h. s, M g ;..
- i.. L
- r t. -
[
I h.s i.
m E
t "h.-
..f*.
4 X. g,.
i r-i N
g.n.
80. g
.s..
I 4
D.-l..It...!_....
,,-I
. i.
E w
,c...
- l-t
- r........ 1 t.
- th, i
3 p
g :.
. g. 3
.. p'
.. T..
i
.I o
.:3,
- h.. L.;.C.... '. '..;
- *'.4 J
.. !.. j. 1 i
Q t
9 ts
.s.;-,tr u,
.t t
.j i
l e
- h..
.,. ). p.
- 3..
- g...
k
! 4 D.
l.c.
- .;i
- i.'.i,+
o.
l i
i,
. j h.
3 8
l e
t3,
.l
% t.o
.'d, 7.....
j.g.. y _.%. :W.,.._..
F 6, G ge, g g:.. t. ;..- -
- p..
g,
- [......
I
.. p gi gl;,.h;,
. i.
l e.;.
.n. q i
- - p.
l-s
. :% % f(
.g k.K_U -
.h'-
4...I.....
g 2_..i;.
g-i.
i N
i; u _
g. : '....
I... e..........
....g,....... 1...l,.
..,. t
..t i
i
.L. A.
- 1...
.., s
. l.
....i
- _...'t:
J'.; de-. p:..
3
~..s...
~
'g. i n..
.1 J
....... f..
.i M
.; } '.
,,3.i....
...q.
. i _,..... p:.
.. i.
... i
.p
_. l.
.1 r, Q :.' J.'..t'..
... :;...i
..a....
....i....:
..., t,: J;I.t.:.L.
.s.i..
j
- ~
. t.
' >a".
Ib.I;-.. i :. a. :
t-r 1.:
.d..
.c
.1,
. - *r k,...
..i- +.
.D
-..l.*.
l.t
.. i...... a.. '.;.-.
.1....
... t. -.
,_..,....+....a
. :1..f./ n, ; t t ',.
g :-
r.,
ir
- .". *;;]
i: t.
,. l 8-
.": t l
,.. J.
./.. '
. 4 ;..
.r^
.{..O.
q; "..t i... i,.
h
.4....
- r. ;.. ' t.!..,...; ;.,.,. "l ;",..
m.
o-2...,.
.-. N "1 "t
._q L. ].
_t.e :
1 s
. t. _.....i.._.
9..
g..
..,I
..,'.3 glg..
d...
..a.
.l.
.,..gJ.p....h.;....Apr t u, '.g o.
J ".... g411;g
...J'
.t
.y
.i t.
.t N;h ;..
g
- ;q-h.* ;,.4 c" I.,
.~
ia ; j:.
...: y 2}
- 7 :t.a r; l. f i.- ;
. :,, ;":'; r.!.".
.S..N... f.i h'.:l.:.
' 5'
'g.
p.; ;; -
d.:,
.ti ;.
.I. -
./.
'?.. : ;.
2.
- . *1.
4p,:;'N '* t : '
..> r
'.. sg :jl.u l;. -
1:.s I'
M:. 7 F t.1.
. ;,J.:
71
,1)..:::l b.j:. y : 4
- e h.. ';,.'.,'o.,.
F=!
r.l.l':.a.: '.r
- ..F_.t,
'1l' its.g s c !. 4..,4j c..J L,.
!p M.:.1.
7:.
Tra ri
.. ". J.. '.
a..-_)r
.e
_i.. l.:,...I.
L.._t,t ;.
i
~
,c...
a
.,....'3...*;;
.g.,,.
+ w. l.... -
., r' la.,
- c...
- g.,... 4..
g,.
.i..
r 3.
- g... u P.p. :'.
.2 T.,...
1 r:
in - J '
p:.,
!J t:
1.!.
- r.h:1 f.c.
r:, -
.+.
h.'. {
- )
...a ft.
.,,o
. -'. T. l.,.:
._,1.: '.<.. j.j
..d., M...
. h.
ssi
!3c, o..
.d.
bly. * - >,.
i.
f.,
4*
lg l.,.,
L,,.
.i.
.g
._'J'.
.l; g.!.
.i. l_i ;
- 1* *.. f.t.
! ;!.'... 9..1....
,. l.;. ".'..j * ;;:.
.,..- 7 i_. t -_IJ. T ',.
- .7.'
7 6'
- s
_3.s:.. - -
1..s.!.,"_J.'
- e h;.0
_1.
m
.....t....
T.
- t.. O..t.J he ~}[.. *i.i'1 14
.r$. J. r-
.T3..
'1.
'l'
.I 1,:,.
.,..c : g Pq up :m t c :1.
o'
,..}'...,.
t".
1 M ;t-e.;
.. 2. i f
u
...,1
^
r-*. ;.. - ' g" -
-- i t..,
- 3... ' :
,g - m"...
- 1. I..... -
.'y 2 ;- Q t
.,. g..
.yq
.1 hg
- y
- t:
.. uj ).
-. 3.
.:.tf:h....
1.-
. m i:
ts :l 4-W P.
- 8 "J.
, r; {
- L
..:.3,], r: :
1::
- ..": 1
...r.
. i
._3
- t -
..1t..-
.,11!,
I.3.
..T, i r
. 7.. n. !.1... - -- qi:.
- - b - -..
q'l.. '
-+
4
- . r.
4
'J
' :1, u; a':.I'g-J r :
.c fl:9 t'
.c" 91:1 Ft: - - -:"
..P:
m
'1:
't.y.
' i, j.
.41.-.i ! *. ; ;.*..m[. ~.. l T--
.,"*,r----- -;'--
4 T.....,,.
I 3 '. 1. a.!.q'.
p y
.. 7. ;, '.O., _*l ;. !.,., h*
/? g
.. '89
.. i.l.j t.
T t!. '.
Ti.:
.,.Y*
. *l
^l
. ' I ' !.!
4:
... p,
. J.
y'
_!: i..
..1. ; ' '. T{. '.
.i g:}JF *-
.;: 1:..
- .tf '
i
{, 8.f : _' '.
i !
I.
'.t *.a *.:
j:.'
t:
a.'.
'4.
l
. ~. '..
.a'. ?!.T T :.1 *.!!. ;*'.* :',
- i*-.}'-
.., It')
.4, :. o.l,. t
,L,. g.
1.
,.3 4....3.
3.,.. i..
....f.,.
..L.
gg.
,., i.,...- '2.
11.
.J. ;
..t4
- 3. I -. g !---
"' r.
-- ~ -
c
- . I.-.."'--"'l l
. :1r :.
-"I.. *
.. lr!.T '
..v r.
m-
!:8
.:?:1
' / 11
'l I
...Ir..l_:.*
l
- .*4.-
... _ :d t -
. ~'l _'
'],
1st
. 1i
".g r
- U
.. j. N j.1I.n;.l:.
-.'n ipt? T
- 1. * ;L
- i. In. !.M. i_n...r.
- ..:_r _r..
. i.: g c.'. n. e r.:.
- .
- n,.
i; 1..l..i.
._-]..
...- [,.
..i t
.."..*!- i i... :
n
- t.
- i q
- ...r.
. Lt L'
- n. ? ;2".
, y-.
..!.,,,..........n].
n#:
- _ild. _,.'.;i t "
i i
1-
- .i.
ci 1n
, * :l,j.
- -.8t.P c..-
8 i
l
.. n.....
%.t _.
.s.
., t J. :.4
_, 6...d:
.,.m..: h.
.F.,. T.
..-t-3
,,.r. r.; *. h-1 =.....t.
........ : ;,:.1"P.d a
g.
5" th 7
- 1 s
o.
.. P. _l'....... c__.L._!
_._. l. _.
... t
...,r.....
-.._.n.
..1....-.1.,,.,
- ~
,t.,.
t.;. *.* :, L _... '.
l
.. ('a'=.%m-
! +;
t.
... t.
4 d.
. s ;.,1"* i t.
.....l.'
e i
,T H.:
,gq..,.'.4.
...J..
24,.:.
. l
]
a j..
tg
. g.,..
.....g....
...g.
A..a l. i..,
- f. t.
. 1.]...l.
et
.j.
4 8
.5l l
.,. J 3..
4
.A 3
y g
=g--n
-~:--
..4
..!....-4. "i m.,- r-
- l. 3 I,1 e..... j.,
s..
.i N
e
.4
..j.
I e J.
.. cr.,.
1..
.,.,.w... A.. u.: :
... c,... t
.e_
.4
.I
.a L
.n.q...,.,
.i i.
2
~
E,..g...y.
- 4. 4,4..' g. '. g, a
- .. v q.,4.A,.q
%,. o s
._.t.....w...,..w. 2_. 9. w&. qw m l Wwwt.w
, r..
u
__. a_.....
- y._...
l,,
ww l
0*O
' 3' 90 J]4 NC 7-a t
t; l_........,..
1 I
l i
ty M
M
-d l
th N.
p.
l 4
,4 w
. w.
is v
s e
s u
_L.W.17.d iV/
L.?2.:U :1 -Jo W U/7.rS :7D'c/
\\
z W.
1 r
< u. LD 11) ad tu i
.t F
..)
...(..
4
>.g,. la8g u,.,.,.s t
..._ [, _...
g
.l.
.-I l
.r' N
1E, E La Cr *.3 ::s o
- ...' u.
.q
.. p
..1..
- .2 mE
' i L
o Q 4 m th, i
_..l.
1
... j...
gg us gg Y
i g
it l
1
-. e
'i E
O. a.
i
- ~
l.
i ca.,
4.
i
.s.
i i
.t...
t
,N i.!,
., q..
,..l.
. J.:
l l
4
..; I.. J.
.a
- l.. ;
r.-
t i
. i...
1-i.
-l l.
L..
e 4
..I.
.. i.
.~.
. j.........
n o,.
.. i s.
l.
...,. a.i.,.........
..L
.s.
. ~...._...
.n-.
.1
.......r.f
.i. :. *
..1
.L. ' _.:,.)c.
3..
c.
n;.:i.l...._l'..
.i
, ll 4 a.
u g.... tr _ it :
4 J,
1 t. m,...,...
i t..
.,.,.6
,.y.*
.,.4.. i.-...,...I
...J,..
t,.
8
..a.
i.
., t
- 7.,,..
....,...,. i.
4
..t.
,4
..J-.. _.._.
I,.....i 3.1.,...
4.
a.. t..
.1.
o -.
.1 I i...;
.s.,
.i.
si...,,1_;
.1
. 1,
,1..
. tr.
- 1. 2..
,ri u
.i..
..... n.
....; i
.,o g,
.ii ' 3 '.
I
- 7..
. -.. l
,T,,
f'
- i b., JIl..
3.
pi j ;4. u
.p,I,.i s.3l.
1;.0' :' l':
.I r.J ;'.
o_d.i._
.:.,?. ". _., i.. '..t a
4,
'1-
_I ' t.,;..
. l. ;.5_:;..
IP.
. T.p;;.r' l.J 1.. i, l
1T ! !. _.' '._.i
.IU
_. : : :.!_*. ;.t_;l
.!.L 1_. V. :.... I.
- 'n t.y-t Tg
- n..rri,.
..r.
i ; g. 9...
o,.4.y.
l.
- 14. s p.,-
4.i,
..o
- t..,..d. F r
,- y F[..4 y :.
i t
- . m..
I..iJr.
,..jo e,.lp4
- o....
t J
.p:.Ti m -
.1
..14 1
i
_i.i.
1:T
.i, J.t..,:
- l...-
.p.
."t 6
1..T.
I..
.l.
- h..
.,I.
., l..l.c..-
I..
1 I
a.L... l
.a...
,.'L 3
.s i..
, g...
.. l,
- l..
I. t.....
i
. e.s ek
- 3....
a
..t..
.,4 I. 7.c.
4.,.
g
...A l.
Q.
,i
_.4
..e
.._,l..
t.
.g...,1..,
t p, A.....l.
a.
J...,. e.....
.,..L....
. p.
.......,4....
3..
- 4..4l.
t
,..l t....
.. 6
..,4.pg.I p..
.[* I U.. l.
.c.
j..,..,.p
,,..i
.1 4,.}.I..
I.
e I,,.
{... 7.
+.
... l k.
ll f.....
.. j. U... f..
,7 b.
g
-.5.,
,4
. o.
4
..e.....,g
. g i
.r y
, L.
..d
- i. i,l 1,.d.B,,.,r.
.y
- 4...,i_i.n : 2.c i r..,3...
- t..,,: h._., t."
. d......a m.r. 4.,n.., "
- :r... -:
3...
.B...
3i.rt M.-......, r. u,,
,r.r.t
_f.u.,.,i.ra..s.e....!
m u
tr..
a
._. w.
,i
- o.. _...
s o
'+ '.: ',;i.n.. 1,,.
P,.4. 71..
n l.;.
l...!!.!. t,.. }'il,.
T
.,, 1./;+:.r tr W
t. i...u :.. :...
...rt.:t..1. : if.
-d r. T..
I'.,.1.,.r 12, r
- y
. ~.
l I.,. 1..t.f}..,;r:p_.1.*1'..N..r
,.t,.;
1:
p.'.,L
. :t.
t-.,.
t.
i..... I.
...3; t
n
.1.1
... t.
...r..
i j
t. r.,.,-
4.
=
.t:.1
- i. 2 ;.p.
i
. I..s
- d...
. 1..4.,3J..
i
.,, e.1.
I 3.,
I 4 T:
1
...L..,.
.,..1.J I.
1.t;.,. T
} g-...d,.1
.t.ti,.l-
.'.l I.
q;.,-{ yln. a.r.. :::
..+
..i.T-r 11..,
1 1,.
- I3
- g.,I.
1
-s d
.r
.l t+
a
..j..4.
.* n,.
,.4 T.
..u r-r.j 7:
. " :7 y
.gt, ;ij{. Q.'
ri t; r r
- f.,
.41 a};, t. b.
,.4.
$.3 t Jd.-,;.p,e,.
.g.
4
.,..d!
me.9 w..
- u t
r r.c
-- n
- -..r
- h..
3 y.:
t
- n t. :17. i g
- j::.y.. nr 3..
.g
.t ci u n.r
- -. ----7 {,.
1
,., e j '.,T,..a
.I Q..,
~=~3
,.. j 1.j.,
,.4
.2
, t.t..
..i. 1....,
,,4 r., h..
.., }{t.1 rii
- 4.....
., M g.
U. ;.. j.....
-. 1'..:.,.r...i q.
r dg.
T.r T.i.rr
.L ' :t I,,,4
,. - hg ;.
.e s---d h.1..t,.
tu.l.-
- h l :1.-
+
1
.~.1 4.
,r. ;
4
- ft 2.*l*, n;;d-
' t.
.I.J.,.t.,i.
': n m.1,. -. ra,..!; ; : i. :
, -2
^
.T q.::
--ca..
..t i.t r'.
m. :,
.,. I*...
f u.1 r.,.,:P.., r. ::.:
p
- 7..:
4 3
e..l.
.l ft,. o..,,.
..1
,-t. a.
... 1..i,
. i.
6 j'
e-
.a r3
!..1
-i....
..,. J.d
.i.,,..
s...
3.4t,I
.i r,..
1.
1..
4
, e!
1.,
8 4
1.
.i.r l.
l...J..,...,..
.g.
{.....
. j4.,
e.
.... la. s_.. e l.
I..
...,. !.j., p.
.,.3,q..
.,.7
- i l, '!. : - ?..! *
- r...7 4,,
gj T.
i e
4 Q
- t. rn.,.. t,. !; !'.,
y.,a.
! !".1".f.'.
.j.. I,:
p:
.g
.r y
.*j
...J.
1 : ',
3.:.....--
.1',.'
- T'.
1.:1..
'.*.. [l :.'. t
-I '
- ~*-"
'~' 3
--" 1 4"
. n. ' j;
- .."$' ;"
- , 'J'*"'
I....
l I
..l,,
t-
"": T* I. t,'- ";. :'f : '.
- f'.
' U"ll :r-
.l t*f.
- l;..
l' I
.l, l
.j- '.
- d.,r ::-
- T,p..t...
'., :i rk.
1:,'t;
- ,i 6 13
!. _.l'.. '
...... - :... j"... t.
O 1.i '.
l. M.. i.
' i'.
.l
,..l'.: : '.
J 3 3..
I li. t
~..
r 3
5.
.u
' l i. t "*
,.'e e.
t,,>
n....
L' J ' l l1-. l f. ".. '...' n' '..
'. :.l...f..yf i-l.' *.. 't "!.:.j 81..'
i
+:
- 1. 13: n ' ~.' :', :
'1 I
.1 ij JL j
1: -
' r.... g.-l*.-
T-~,..T - ?:
....; L
-jg I-- :
4:qtl ;.*. h*
j.
I a-a "i
-e 13
.31":-+a 8.**
.. J.
m.
']
.. I..'
g.,..
....r_
1
! ?M
- i 1_.
_i."_._i_l.. *- ' ' '.
,..,....i.,a.
t.
,....6
! j..,.. *q..
j-.-
l. * -" -
e..
.,i i.
l.
'T'
- i'.
a 1.1 1.
j iTr["-[
- '. - -,j +. - *1 "
- .- t 'v.-
1 ----.p-'
y--
'. !. t
- 2."..d.u' t... ' '.l l,.1
..! f.;.- 1.2.?.l.1.E.'. '! 4
- 1 "- -- --..'....;.
' " ~ ~ ". " ~ ~ '
In -
t
- '~ ""~~
~~~**~
i 8
. e t
a.
D
.. I' *
.f. M1" (yy.
.g t
...~
.1 r
t
- 0 l
i,l-(. I, l
....;.L..;.; '
.,.;....'. 8:
- l, (1.3
.. l 1....'.
J
'.n.
s '.- f,.
1,.
g j e t )v.'.....
e
- l.=.,
1.e,4 4.
1.*
. 3.. l'
.l',.
g q g =,
i I..
, e l
3 i
. 1.*. '. ;. ' *.f ".. t...
- i. 8. i i
.1.
- 1..
.4.
s.
..I.
T~;3,..
g i
l
'l L., s !., ;.
is;.
F1,.
- l.
c ::' i 1l...
r
...i f'ji t.' " j..,.. -
..t..
...q.,
.. t J...
.g
.... p.
,,.. ~.
. g.
g.
q.g,.s
,..,. y
. r..i..'..'...,......a...Q.
i 4" D ' ' ;.1.f.;.I.,... l.'.s.
,. r r.
4
.k
_.d. 8 4 *..,_._...l__.
1
. d?
!'M J
..i....
.i s.
.tt...
.p.. i..,,
.j
. m. : n
.4 S.8.. vt...
/,
.M...y r25.r.3 Nc/.
i i
3,.
-~
n g.
l c
Q
' U.. ; 91. li 4 L9 g
, L. i. p *l.
4.
i Q..;.. g.... ;. 41
.. es., ed
'tf N
- ts 3
i
'N
' tn
- M M
it N
tg tg q
q
_. a..t _ t. u.. _1... !... __ a
, _..J._._.... _.. u -
.i.
D]{
O
~
~
i
.....j...,........................
i i
i
.'....... t..
... l
.l Entwo.
s i
l 1
i 1
i i
_ y_... !. _..
i i
] S.W/NG DM' ~ WMEOW% B4wr4AT'.64f 1
i
. ;... t_., _..i
....a.
.t _
I c
8,Me.r.cc M* Z..A._n. c..r ocrAM a
.I
- ..O_P. E. N C hAST !..__! _
__.!...'_ _ _... _ I I
3 EMA. 7~orAt. n/sqr //fMqdgApg *(fbgwgpSyggo:=73my,)
z.c i
n'
- _.a..J....c.l_.m
.. _ i. :....!
l l =;
.__.-[-
> 1 a
=.M//WU a
i
.. a... -.,ef,fdW.em l..
7.
i.
_ r.r. o I
g/
g*
n
.q.....,
i.
.,i p
i
_1.._L..
L.
.s; _.
Ia g
w
/7 y
/f.v.s".M.L.id,
..,_.,_...I, '..
i l
l' l
s
. ys
(<.
3..
i
.....i...,._.,
y
,i.
i N
.,p. :..... __
.... A.4
- ..g
.c.,
.a
, { /7
[!.
I:.!
l\\l
-.i
...i.
a
-/.rol.
s'.
'I fo
-..-I
,- 7,
g -- -
4.
j 6
i e
i t
I N
.).
6 -- -
1-2 - E @
, - - -i - ' -H -
- -- -- - -- - r !. '
.._I,
....,..I
.5 l
h i
i
- j..y g;
1
/. _.
._...._t
.....L_./ _. '..
L..... '
!q. i j
i t
e i
i
_/4.0
- Qs.
e l
i i
i
- _...... :..__i. -S.L.
,i...
..... f..
/o i
. i..
l i
....__...t
...i.
.f
..r...
r
.a.
i i
i i
i
.r.,..
j
...]...._... - __i
- r.. a
..,._..a.
i.
i
.c
.. :.._..'..i:.,....<
...'._i.
3 f.
i
.--.c;-l
.,e I..r
- e. - >-. ! -- -
.1 -- -.
i l
- l-.
2.
r,y /.. :
i i
t.r....;.
c -.
...c.
. O.f., J
..4_......_
.)
t g
I
-l
[
.=.=.4'_.,,,,
== 8 g-
.. ~.
..a.
1
- ~. ~.
s 7 7.~ a s u W a u g.s.
~
- l
.i..
...... t... f _....;...
NORMt $ P.WR
~
t
,i.
TLDE HYDR 0 GRAPHS i-1 i
1 1
90000116 me 9
~I i
-1 i~m.
l'
.i
- ~
..!..] l,
j'q.~.,._
k00h 0QIjQ
... ?
i 1
t.
1
~.. '
i i.
~I
..l'
.. t.
. t.;I~.:: ~. !.
/.~.;.
> ~.
l
',j.
['"J.l-
' ! ~ l:. ' ; l. r l-l
.-l
~...
l
~...,...:r( : l.:. 1 1
~.t 1
j.,
..~.
.~
.;;. :..,..i i :.
I... I
.~.
2 u
....s....... -...
,,4
... :...;.. :. 'l:' . l:;
'l-
-l.l:.
.a u..
... ;....i.
.. i..
~
..~
. ~
' l. l.,.' l ~ l:f'. ! ;.i'} f....... f; ' j' 'l.
l. l. ;N..
l j.'.
I
./
~ ~. 1 :. j ?.
n:'
... ~ ~ ~ ~.
'y
).
.~ !
I
/
,o
~
... /.
!... lY 'h'll
'W
, l '.'l.(
].l..'.hif.,,
l l
Ne 'l'l
... l:f ;.' il:r!:: f. i b.... I i
- @' 5%/
6f b
... %l lT. -
. r~.. * ~. :.
Ve. ", ;j j.,i j-
, sog..
xG7 i - f.. l. 'l*
..j. ". }'i~ dll '.
.i
~.'. :..
l "j.l l l..!
,,.i l
../.
. ~l. :, ' I -.t I
i
/c i
r j
. -l~..%~h.7~..P-l~.j t... :.:.i.
1 i ' ~. l..
l l
i
- '~-l,...I
- !,, 'I - L.
"I q-
. r ~,
l~,..,....
e
\\
l
~ ' ;l '
. ' 'l';I'm; :pi:
~ j.
- ..... / *, j.. ;
P' I
l',l. I
.;l,, :.. '.. ~...l.
.. )..:i
./
.~..,.:
...o
. ;. _.j i~ '.
,". 'l~. l;,,,' %..:..l.
- 1..
e.
1 l
l
.l '.. I.
[_,.. ll
. :l.;, l. '.
.g
.i w
~.
,~
o.
.?
1
~.
r.
,...... ~ ~
i
. ~~o.
. t..
.o
- )}
. : ~, ;p;,_ ;_ ;l!'.' I'((l.j\\:
j ' j'.!.
N.
e,.
.l,
..l
.r
'&.&l~
u.
I i i.
- '. !
- .n
, ~l'r.l
'. ~ ?;-
ll :
t:
s
..I
.:3.:..a 11:l'ol
~a.~.
~;.
.l
.?. : i:t..
- i :' ~.
r
,., 'ti... * ; ~ r J.
. ~ r. :
.y
,. ' r
' ' l:..,
l : *. .
~. *'
t 1.
7 l.
.:7~l- !, :.
l.-
~'
. ;;,... J:. '
- o.. +, i.
1
', : c::. i '
o 1.
t:.
~.m.l ;a ? '. :j; -- : : l :
). ' -.
...,j. -.~j*'
til a
1
- ;p. -
t
.,.s
' i ~.:
.~
.e
-.~
~. j:..,.;..
..,, : f j,.~,1*,:';
.: all* -,
.~l
~. l..:.
.,1 9 '.
,.. ~..'f,lv'!i. [*
ul..
.,'Il
f.a j;
' f,NL.,, I.
},5y.
'l
?
'j~ l.l,
- /. -.... e.'
d II.,....;.. l. j
~
=
l-
.j-
.. ~
. j '.j, E ' ; ' *. '.
' ~.,. l ll.'
- . l ~.s;.
- ..
l.
.If lll'
/
- l }, * * * ! *. -. '.'.f. '
- L*.;
~
. si.
,'i't d ::..
L
.~.L.'. I ; ;:.
1 :- ~.
~ -
~..
I} * ~: -
- pl.
sL l;.
- ~
.t*...
- }~.
'~
... ~.
s.
" ? -lN' ..~l -.
9..
l
- ef !$.
ll'll
., fl
!.,'l-
"!!l: & l g b, +. iji?.~L'c
- !".:,% ;.. J. -'
' ? f~
l l.
]::.._j.%..:.'.':-:.i l-l::.. 4 h.: l...... N ~...
- s.., y. g.j,y;.
J-
[
-l;-
. ' ~ r.
t-
' '. -,.g, i i.m./.,: i. Ll.
1
.. ' p.~
.~
l I
- ),- ' '.;,,,
,j ' '.
. ' '....l-l 4.,.
~.. '
. 'j
,f.
r ' '.,
_..'..tl',
- ~.. ;G.
....j i:,,:,.
.~4..'
j I
~
. !l l
- i l ' *
~.' !
s
'L
'.&b
- t. ~. :..J'~.j : ; ~ L },.
l' y
l l
. $. *3.'..
l
~,
- . r
~~ :;. l ~..i.;
s; e
~~ y, ;
t l
I y
o
- ~ ~.::!
?.l,'t.~14.-
oi
~'L.
. t
, ? ;
~. :,1
~-
- ,~
.I. 'j
. l...., '
'i "l ':%..:.1 i
! ' ~-l..
l
.t :.. l-
. o..
j r~ '. -l l
l ~ ;.
T...:
.'*1
^
~.
y..
. ~.i..y.'.
. l.~ 1": l '.; >
l i.
~,
s, ' t
.. : 7*...,
. f i[
l kt') n.
n a
- r i
j-
- g.
i..
. -i 5,
.... L....i-
.T*ff/:. 8.1/ m.d In' /.sf 1
_H_.o.n..s./. _a._sk 4 BA eV.e....fo ' Sosa /4 n
./
. s.
I.
l f: h.l
-i 1
t' -
4 I...,.....'
...i
.g
}'
I
..I g
.,y
,n
.t,
- l.
i. j.. l...
e e
.!..]
l c
..I l
i g-l' i
1.
l s
I.
.. 94
- 4...,
...,[. _..i._...,!....
.i 8
8_
l.
. l....... _... i l
g e.
l l
. I '.
3
. #I i.
1.
- i..
...!.... F i
.. -l.
u y
.. j r
yp... :
p......
.r..
..j.
t
.q
% ff
.,j i
i n i
i Y
l :1
-l.
8 U //
l
,- t l.
r
. i.
...u s
A i.
- e a
I l..
.I e
i.. p-l l
t l.
i i
0
{
l l.
g 1
l l-
'X.f.
79 Jf 4
- f',.S~J
.f'5" j
~;
E d
/ i" to i
q "j
l
.' -' ' l ;.0/.V7"MNC,E =l
/.' s.so, F'.cg y-i L 5..... /U d
'te!
I I
I 4
%t.
)... r/WlYt fa' B&ib.l/K (id hawarrib/v'J4 p&a.)l I
l
%, nti n
l.
w
..-I
- _ _g!
o a.... i,,i.
(%l
. l'..
... l i
le.
R.,,,.
.- l1 l
- i. !
l L..!.4.j I
hu
.;... i j.l:..
rs*
v-
_.1._. __._.... ;
q;;;;;D
.. i.,,
r_.;
. _...,i
.' k pf.,. :.!..
- l...
i1-
}
s
!. l, l
i i
... - l,.. '.
o
(
- l
.i ol e.
3 g
Ov
__., y a 1-g fel--- e ---
t-
.r- - !
. ll a Q
...in //
l.
..:l.
- i;.
- "-
i v..j __
j
- ?
I.
p:-
.c le
..l.
i 1
j
..j
..,*"i..].
i
- . y
- .- :; i :3
- e
.I...
&=
. g jp
.1
.i
..'.J. : j
~ +- 1 g~.
t.
.j.
e
...d
T.
- 1. ;i.
.. i I
- e
~
l a
i 3
"1 -
.t-b..
_i..'_.
1.' j !.!. ".11. l.'.l-
! j._.;._... ;._ l k,
l, g
.{
a, l,
. _.. f g
i.
y
,g
_ p _..
l o.'
' t: l:,... 'h-
- 4
- .1 i r.. :. - ;f..' l " -
I-i i
r a.
. 1,. l
._.. ::q _s.
_ g.._...p.,j y _....i. g.n,,. + o,.m. I. ;...,.
..... -y.
3.... :. 4,. _
- s. -
a,
.r.r... :n!, zr.., n
.. i-
.,..c
,u-
- .ss
.g
...i "o
...r e :1 : '
I.
i
- e......_.i.,
.r i
@r..$ _...p....6
._ d:..%....4.h1hr%a.t M:sthis {iBnW
. i 1
- i. 8..:
i
.J.
n i
l.
.5. _..l
. ':... ;..] _. l-.
ko i.:,!..
Mendhad.d.8 % _.
l l
i;
. q:'.sf. i.._
._ a.u : ::.=___',. p:,.; 2.
._... i i
i i
i-n.
l
.;. j l
i
.d.......
.b.
s i
e
.s..ro.
s
...: r 1 8
r -
i I
i i
ala V
1'.I
.t I. !.
.l'.. ::ip.:. ! ' '._"
4 s5.'l:'
i:
,i I
I 4
l l
Aq
-3 t; !
.g 4
.i...;.
y e. n
.. {.
...'....,...y__.
.e l
. t.. j
,l l.
,i
...l i
. { ".".I'..' ;.1.
I
.. g 'f
)
."7 llott
- l. I l.
l
(
}
OfA W
}'..,,..?. i.
/0
)
i
'. M./ 8..
i l
.!S
.. d *.
- h.
. ; l.I
!.'.~.::.,'. -
(M ##5/7~4".*
8
.c r.
j 1
3 l.
e L t
i.
...i o'
,,u
.,.,.g.,.,soa. p gg.,._
W.
?
74 44 p
/#, //o e
/a-za..ra
- 3. W
,i.
i l
.;.3
- ._..,.-... g.
. 7..,.. (
.o e
...c,...... -.. t.. ! -.
_. __ _ 7 pygg f*LH/1T/0H
,:.. w._.
l i
5 1
/.,,7/$fp"Qf)M.
l.
l
' f.-
I
.I'
, g ;,..- ;
- .,. -. p' ' - t~.. I., - e l.. ]..
e o
...u.. l..,i.
._.,... _..,..... a.. _.s
.:L.. L.. :
i 90000118-3
U) N
>t H
- Di h.
IO O M y.)
u g 3
g
._...s...-
m g
A
<W J
F( o.> < >x O <O x2
< o
.g.. 1......
~i 3
.w i
m I
..i 2 < O :t s:
4
. tt w i
, 4 (f 5g
...s
.co <C
- n. o I
'.:;.j u
.._I._..
... g i.
.,.... 7,,
.l.
s i
n
+..
l 1,
.,i....._..i,_.'.._,
,n i
I l
M' i
g l.
>1 s
I
~
.s
.. J _. '
i 3
yc 1
i w
x I
.s l.....
's
.._l... _. ! _.... 4 _.
4 g
l 9,
u (i
j L v s
q e
s.
.v
.._..y.....
%o m
i
.t x
...l,..
i i
,o
.... ;..j __. _>.-r:...g_,..i..
.i.
g e
] _.. g _.,
i s.
e
._.j.. _.:
.._. t I
l y..
.... c..;._..._...__
i j
1 i
1 l
'O
'8 t
8 8
.,.. _'. _....,;h....#._1.... i.
j. _
.1......,
g 4
l i
4 r-
-.,., g.
.l i
I i
t I
.. i i
- - T i.
- T.. :- C T~ :
~~'I' i-~;.' P i ' ' ','- " ', ' -;
4
-- [.. p. -~{T,-[..
"~
- l
.c.
I, w
l 1.[.-
, i [ - {....,
1,.
n h, k
i i
i
. t. _.,m._.4 - ; _......:.,_.._.......
s. V.-
...____.,_,...q _.,. 1
.t.
i
- s. ( 1 I
. l...; j 3l... _f
{....
.j.;.
t I
lx,
__ q.
!....... 9
..i. _,i __.i l
_1..
I
- 1..
i
..........og j.
g I
I l
j j
j l
.i i
i 9
I f4 s
3 i
. _;.. I. e.,.. _ J.
i.
1 i
')
1 I
8 i
-i g--
g-1 g
r-
l.
j -- l-
~----l
{ - - l' i
i i l
t,
.n 1'
l' i
s-
.. g a....._t...__._! __.
.___..l 1_. l
,k.
4{-
}
.y k
l g3
,._.;._..._q...q
._p' g
i i_
I
. Q...c. _L -... _
~ 1
.l.. _ _.'.
^
l 5
I
't
!.. I. i...._.,.......'. i. -
..l.
5 t
\\
4
.,i j
l _._. i _. i i
8
'y
.g g
.i.. j...._ _e _...
,g e
i
}
$4 i.
,i,.:
,...l....
._... 1..
s
'.!t
... e-l t
t...
...,. L. i.../..-._ _. 1. _. _;.. i _..... _.,..
s a'.
g Q-i.
- t. -
i
- D... l.l. F lt. t2' t' i
-i i.
. Nl l i.....
W7'N 'l /
'o g
4 % 'e.
- 4!
W
'+ a w d
I I
i l-4-
I ii 1-i iI I
I t
i I
t l
l e
4 k $ 9 N
7N D
N M
..k _.. N Q
t l
,'7pM.. M A, 77 9'.
<g.. N. i. N 3
i I
I i
i S
. w 9< e.
g g.
{E D * *
]D ' # ~D)7 Y [i\\
I
.l j
k${LT 4 %q 43 i
1
. N
! l g.
oJB oJL J. 1.
h
-t i
RSk s
- y M
g E. l... :...
l
' t, kk4Vt i..;..
....i i
._4.
Il.
i j i.k l
- S 4 k.Qj
- l. i 4,
l......
...... j..'
'4
.h y$.s i.
.;.j 1
(
o._
7
[..
i i
i.
gt y
i r i rj -
g9
, g.
,. _ 1...
...[.
i 1,.._.L..",._,....,-
.j..
1 3
y
- j..
s l
t. q)1 l :.
l i
l 0
i
--i,,. ! 'M l
i i
i
. q_..,...,... ' p.j.,.;
g..l.
.- ;....... ;. $..I.
j l
.I
.1.
.. l.. g.
I
- i. n 1
I 9
a.,:...;
.i w:
.,'...n I.
j
'N N
I i.
i e;g,-
l t
jh..).....e:....Qyi.. '.. '...l. l..
i
?
.i. l g'M l-
.i Ii i
1-I. '..p ;
i i
l l
t (1 l i
i,i.
ly.r i
g.,
- i. l l
j
% g: _ ; '...e__
l i
9 l l
1
,,.1
)
l I.
4
. 'i.. '.
.l..
l L k').
I 4,...
y i..
y
, to i.
e....l..,.,
g
.}
i
.k..... :-),__..
. _4. :.._ :.._.i__.l.
- p. :
t Q..
54 1
1 i
i i
I i
'T i M
i i
,,j l hs g'( f 'j; '
,f -- f < i- ] -
i I
I g.
L
- ... _. i.......i... !.....qt i
Q g-
- i..
..4 i,.
(
....i V y..,
. :....... n.
.I Vj l,a.. %.
! Ni j
tg i
l i
i
. i. :... j. r..
... L.
i o, i. l.. Bp i._ m c.:.
1
.. I...
.j i....
i
.I 4,.
y._ _,._: : n v
i.
_ j... i... l. _.....,..I.
_...-l...._
e.3, _-
.s p-
...l
,--l 7... -.,1 N
..b
... y..s l
l g h.
. '...... t r i
e
.i.
.g.
l
.i rm.-
.+.;.
,j.-1
' g h-NNj.r -..,] 3?- --d - T-.
v.
y--
i
--h'- - - f -- [ --
C b k' i
.: _ [
l
%g
- .,.. l.
. 4
..... 7..
4 M
4
.,. +.. n..
_..-[. _.o..g
.t.
~
l y
d I
-- ; - l--, - t kt
' f:.:.. y:. P.-
%q-i- - --+-d --i -l
. - - p,
gi-1 X
b ic -
g
....c t
. __... 4 ss. t..
i....-
j.
i i-
.c-i I
...:...J..2._.
d-
. : L., - l -
8-0 t : 4- -
a, i
p j _ _-
. i '. ! ---
g4i j'...I..,.
. i.
....._.r-
- l ' '. h l
4 I
h-..Ji:f,[i.
' ' T...
u L -
'3
.i
.l 1_
.4-g.t...j _.. t 3.1_'
_j,....;].;,
- l...j_.
q.
i, 1
,.i, i.
i i
.. l
.t.
l N
l
.. t. t.'.,.. i. j.
l
. a 9,.. ;
- )
% i i
i.
3,..
j.
4 i
y L' t.w.._. : _l:,_:. :_....;1.,. 2
- ._3 i
e,.-
t.-
i
.i.-
.. D..: i i
- q
.n g.:
l.... j
- i. %
T,..l.:.
i s.
r-
.i..
l.,i
.;..i-
. a..
- g
i... :.
1 4,,ll.-
.. i.
l
.I..l.
i
- {. i l
i t
i.
i l
Q e ;
l.
' l:
..p. : i p_. : J 1:.
- h..;.. :. {l
.:.'i.-
i i
a.
i l..
.:Q i..
l I
P i
p-Q
^
I.*
'j
[Y 7h M
I ~ '
e
~
2:
. i. fl-
"id.i. t :[T p'ii.4n a @i hi A
4 ~a:
- 'a i.,;,,u4.n
- i a
i i
i o
y i
g
.! qi
.r y.
._....L.a. M. _:9;.v.S-A.y t
q w
m %gnqs rF ce.2 g4.2 7.y i
'..i
.H.
- a.,1
.I I.
._. :..... z......i QOn00?)1 U7.i:141T 13
,f i
I D
' 'y ' S Dqb A
- 'I
.F*'~~'
9
.._. 7,...._ i..,. _... - r 1 i
f l-
<j I
.[!..' ',((b.[ ",
! [.6 r
1.
n
. bo j
-[,
j l' ;
j j
1 _.......
i
.l.
- 1.,.
/ 5tTN..<
j....
. i.
. 6...
7 a..
l.
. 4..
y i
i.
...i__.
...t...;.....
3..... _...l -...,
3..:.:. 2 :
'h.
i.
8VH 'o ;. 8. __ 3. ' _
+:
i
'+
j.
../
.CM.
/. uwras77NL r(~ Mp BAY,4x, 7W...rab7..
_..d
'\\;.
'~
.. e i
.I.
......l...
i
.i.
.e f 4..,. # #...
.l.-.[..
(Da. ds. t. d..Nf,.
._ i....
1..
a.
\\.t a 8 4.~. R... A.
,a. Z. b,.Z. _.. y TD..
m V. D.?. a, w..
E m
V.. J.;.
. m.....T.
.l.
4.
. 4... i..
..1, i
u... i. -
..r.
m 7.22T?f.t VUl/ME H)@A'.02A.
...1 i
i i
i.
i
-. 1
- g
..V".
l W l". n.i.
. '. 3M.. n..s ia.. _... r. m..
..i..
.....i
- r..
.. i,.
- i....
. t.
c._.....-.,__i_
....i
.i,.._.
r...
. i.
...i.,......i.,
,..a, o...
., i
. i.
.........r..........
... i.
.s...>.
...,. i..
i..
.i._
.a.
..o i
e
....a
... i,.
.o.
...i,.
i..
i..
. i....
I
.i
..i.
i
.......i,....i.
l
..i
..L._. _...
..s.,
4
.i.
- o.. i
.....i.r..
..i.
.i.
- i..
. i....
.. 1, _ l.. _..
i i.....
. ys J
- a. _.,.
m.
._..,. _ _. _.. a,:...
~
i
- i...
i..]..,
4
. i... _.
.. I.
i...
i.
..i.
3...
i.. i. :..
.. fo.
....... v..
. t _.
.i....
..i i..i.. o,... i....
.i t.....
e
.i..
i.,.
.i.....
i.,
. i..._
.i
..e.,.
.. /f.. _ _..-_.
.i.
o....
.t,...
t,.
_....i
_i... i.. _...
i.
....<u
.....t........
..4
.....2.._.
........i.
.t.....
.II...
1,.
- i...e i
4.
. i.....
... ~. _.....,.. _
i..
.. a 1_.._.....
- . ).
..,l g.
1.g...
. a 3.,
1 a3 3 1,
3 1.,
f.
.t
.,1.. t l
T.
f.
.J.
.)
.4 t..
J.,..
e_f,. o.
. I.
..l
.9.'.
,.6 t
,...i.11..
11._., '. t -
l
- ]
1. l....
- 11...
4..
4..I
.... ! _.<.,..., i._.
.. 1.
.D.
3
.. f...,3.y...
.. J.l...
3 F.;...
.U.
..d. s,.
l.1 I
t,
... _1..
I
,.i...
6 i-4....,... 1
.i
. 1..
.{.
a.
.....,....i l
_. l...
..r I.
.a.
- j..
e....,.
-.. ]
.l
....1>
... a 4
. a...
.!e...
I. 14
.-...,g._.,.
..q..
7,,.... I.
i l. l...
,,1..
3.
... t..
I.
,.,il.1..
4.1 4
....+. 1
..l..
1
.e...
i
..l
.......l.
t
...{i..,.
6..
., T..
g.l..
(.
.l.
j.
-,- g
..... 1.....t i
..I !.,
1.
.. 1 j
.1. t..
1,..
,.1 1..
l
.. 1
. 3
~.
1
.l.
I
!.,l
.sl...
J J
..I.
....a.
l l.!.1..(t
.l.
1.
.., r.. a.
.,. l.
s 2
./J.
..1.
I f....._._._._
.s,...
1..
3 :. 4....
.l[. '.
.,. q l
.g.
I
...!.g.
1 l.,
..I
.t
. ~,.
.. l,..
..., '* )
!!y
.f l'.
I.
. ~ ! : i.....
- ils
, gg..'.l.t t.
,i,
4 ll.
- 41. 4
.i
('...
l1
..g...
~
j
.l
.g
-l......
.1 4.
.i... l,.....a.
.l..
t..
..l.1..
J.
e
.,e.
5,..1.. -.i
..l.
.4..
i..
f. o.
l i.
..... -...~
.l.
l..l1..
- i.y.,
. 4..
..g 1..
6.....
.J.
.i,..
_.,.2...,, -
... g.
2T,t
..,7./4.
\\
.i l....
L,...,
1.
..,l..
- d..-n-l u...1u'.1'. - : 1.
si Eb A R NE G AT BAY 3,
7 1: :
i.3,s.j
..?
.i.::t l.
- 7... pB, a.,.;/..L.._._,
. l.,:. I. 7. c'.'
~)'_, f :...,.[.
/ ::..
'.~.
1' *:_4.g...
- p. y. y.
2............
..n.. : 2.i,. y _.
_w<.......
- i..i
.,i,... i......
. r...
.a.a... 4..
. o.
t.i i
.......i........
. t..t.,........... i _.
,.. i : i.
i.
m i.,
L.
- i..
.i os
.ii 4
1,.
.t :..1.......
.t.,...
L..
i.
... n..a.,,,
.).
.t....
i.
u..i..,,_._.
90000121 q1
~3 Qm o
- 9, D
D owl 2_.\\
o o
o-_. 3__
j,T
-1
'i
& H-
~
., d'.
,'% d. -
~
_m
.-I r F
Z.-
A 2s F-'
- A Y
2,16 YrG-
_a
,q l
JVf X.
E
.r r I
\\i a
T l
1.
g, y
=
1<
-.1 zi -
!.I1m
\\
l
' LJ'-
,e
-uL
.M.'.y T
T 2
EdW Y'..
1
.-..I.r'
~.
y
,._a w
W f r
hJ--
A
,Yrr' TTF h
E '
. ' A.-
z e r,;-
2-si
- P -[-.r
- ri wis-1
. t ru 7. a v
-v-re-a,... ;
-,c 1 -
< W y
i
+.+ an~+:
d m
I JE I
p
-TI EIE-
_ -y
- 'I I
.A l
.'w m_
~Y Ic rr-2
~
I '
1
.,E w_
- + ~.-
u===
i e.up.4 w..
s
- W p==: tie = =8y-+ + ;.
M%-.K
-.?
Ti A*g.g, j
"S-Q<f= [_;;f,n,E-LkfC[f S:
WZWW' w}*M5 L l
g
-e.*h l
h
-,A_.
rw 90000172 sxste.1r is
l D =u l
h.] f...f.. (
D j i
.p a.1' I
i p
.,.J w
4 U~
_.] m go i
j..
4
....,,,_.t.
.p m
,m d I LL O >-
l l
i
- .1 l'
J';. z
'i i
!- 11 8
I I.......
0" 1 CC (g 4; O
r 1
- l. !. ;
y0 g
j.,.
,... i. '.
ij.'g.'.j.;_
,...:. f..
i g
i; i..
j l
g g D- (W 8
..l
.__...;.,_...:. _ n L _;...: m".12..}u.,s.... 4.
4 g
z l
W gg
. '....,.j_.. l. l ;.......
. j 4.,.
t 4
l
(
8 g
.i 3,
.j O
4 o
.j i
n,
..,..l a..
.... l..)..,t.. -
..'. j.._ ".,1.g,."...t..__,
. 'l u.
t-ID
.1..
Q.:. I
- 1 i
i V lI.
..9
..q...,._..j.A
+
l m p.
e.3... i..,. _. g.
i
_o
.i
...e r..
m._.
.a
..t
.... v ;i. p...
9
-;.4; j.
f.
pi
..:.. ;.:. p:,, 2.pa:
l..
a;
...1 >
.l.
t,
,,,,j
,,q e
4,
.g.
' 'l..
f j
l l
I,.
)
{,
,li l
.e a
._..i.
1,4, iii,
_ _.,_..j 4
. t J
y.
s p'
I e
T1/r'W l
Y. I.
I-i.
l%.
.... _l..:._ ;t.
.. h... 4..
..I
..r
-e--
.l I._, ' ' *. *.
j-l l
.7._.,
f' '
s l
[
f 4.,
a.
i I
i
~i e
r,'i.:
1
. '..i:. ]
t-tr,,-'. 4. y --
r-r
- + -
h I
D. U lj N..... _. l.
l I
..:_L :...
t J.
.: i t... -
. 4..
- _, i
.,q i
j
,n
~ 1, 7
t.!.,
i, I.N.
.f.
- ..l
. ).. i..
. l.; i -J.:.j2 l
l i
i
_.t.l.
.e.._..........:.L _
4' ;._1 o...
. q._
.I
_.:._u..
s
_ ;..q. _ j. _..
,3 * :
I
'dl j
. ; '... :,... ';2.:.
t:
i l
.1.
.,'- I
..j j...j.;:.
- [
- 1 ' u.
.l.7 i
t.
-l 1 l. g Y_
. I i
l
- 8..
- .m.- -:- -,- - - -l m -- -
- r. 3..j.,,
.-,1::
.,r 3
t
, 'p._,,.i_ __ t,, _, _.
4_
u
- ,,p y '.
': :} Ji.;,..k i '..
t "0- ip lt[l-UT."
L i l R:.
'b-'~~',-'- ~~t, -
..- T :'
1,.
. j g
.:r; s --....
c.N I
-!- q* j W j + " }}--
G-a
'(S@:-(. g r f,- 9
";i
- - p idz.'...h "N-m.
8
- _.1.. -.. L l'
- ~
~ '
.. A.
.1.--
.qi
/
i
. q
.s: y..:i,...
o
. (1.
. a :n
.i..t n
. g..
....N.,
.4 p.
- 3 f.p*._: : l..
- [,
'1 l
8
'l
.. t.6 '.,-(
l l
i
. M.g.,
_(.
,q._.'..
- p. s
..l a
e I
. I
.*l
' h r"-,.,.
l
-1. "r 3-t
- g;
- t t
I,
.- -(p. - r. 7 u
1 i
e
-l"~
g y.-
- . -(
.. }-
~. - W.$
l/
4 g
I 4,. Fi.
.d I'!
.l....
D. t..
- I
_, '..,k, %
i
?.. l'.;_. _..
.. '.. i.F~-
.. l..
..:.24..;
-i t
j..
,?e x'
-l g
i l.
- 8 s
1 a-r g g.r.nl-1:-P.Q;'i
..k.-
~: -
T
- " r l.
h s'..a
...j.. !
. h,..L.
.,. (..
j
.[
- 7..
.i......{
I e
t.
1, l
i g,
.g g _ p;.:... pl.. _...;. / j
].
i N.-
p x
t --" I--
-~~.O nJ c : -'~1--'
_m
~. !.
- ?
i
.s, I'
a f
'. l ~ - l
.e 1
.t-
'l 0 - l 5
.t-
- h.. '0 '.
.A.
g.
1 "r
4 i.
.g"
.4 (M
+
i
- t
.t
_.e ( c:s:.I_..)..g _
l.
l' d
I
.l,:-
lp '
- j.
i l
_'..'.:... u.. >.,...
i
(,
gL,,.
.. ;[l.
7; g,.
(i.;
g.
- . j,.
l
.)
.g 3
n.',.
.. i.
1., -.l.,d g,.,..
.. i.,-,. :,
.q a,
a; r.'. T
- . l..
X
,s..
m
- 4.... 4 r.
i
...a.
i
- i.
..,.q-g i
l 8
. Ql: -
4.,...
.[
p 3... -
j g.
k.
7.
,...._:.f. _;:. qj :.H
,_n e,; _. -.p i....
i
.. j: _ g
,..If 7
-e I
i i-t
.l I-
,r
_ L _... _:
- s G.
- _. mw:u - mm l
t 0;
& ;.g.,. 4 I
y i.a,...
w T
6...
_, _... _ _.. _. _ _t. _s,_ _... _ _ _.
.3...__..
90000D 3 wnue
- [*}'3'[
D o
Ju. 2.
o o Ju w.v(.x
- +cw =.=-. m*...
- w' mg.
~ w:\\:i
- h. % z~'h P Iy,Ml'/M [(-p. d.f ( },.: q. so a.~;. % ;:.~
W U
)/
' ~r
/
-~ ~ %
3 - } b. %. '.-V
.t v
.s
.n u
g
.5 w
M...f.... 2 e. S. J /. ' e
- s.,.
l!
P.. e -'
T. - 1. FORKED RIVER, N. J.T. $'.
i 4.t s
~
Su m. m....a - om
&(W.. A,#.? %. 'Tf' f?',9 &' \\.i'..Q
''*;. -j J L.%
%..j.
" ' ' ' ' ~ ~ " ' ' " "
".. ~ ~
N3
/ ForkedSiver- !
9,.
e
' f',I
^2'E '} ~_ ]s e,
./.
' k (,.~K
.k*-[.h
\\:$
x,.
,. ~ '
u fN.
Q.
A
- %'.f,f
%.y
- j. j l-l f & *.
Yl f.l.y. ':
'{-
f ' h }*,?b h
U.~ s h '
t.....h p s-h.l %,t 7 -
4
..r...
2.
.s
,.(
.. :...-,a.,u,
i t
.y
.e
.*a; -,b.. -
s
~-
Q;., w *-T:~ ~ W. A wl-5' N'&,~gmbjaj%._q '-5$Rh,,.n
~
e'
_, ~ M_ ~, _.. p%,.c - ---- -:: e c
m.
/-
a y
y
...:,Q
- frer
.,..*. :,/ >],y; Q. ~*.~.~ ~/....:. ~} y.
I.
b
~. ~ ~
~p
,uas,
..,,/
1._.-.
-m
{:.,- =. ~m 4. --:
_ u-B_r,g <.r* Y.-.~ j g-
~~. _
.s.f.. '.. f -. %,;.,.*.
..G v
.* s Vs ~* *a
.,. }l.
., ).
.. :... ~.. ~_~ l). ".~~...*_;***e
's.*.
2
.. ~...
= =..
.p.
c
. _. :..-.a 4- /
~
3_
_... _.. a
.>p b, ~.. %. _ _.
..J&
~. _..
- l ::.5M.~Wid=_yfk,..,,..
nv i?y:
_. f : {.,..
l 5-
~*
$..,~a z2l_.L !!? m
~
p*,-
<.....',,o.
-.~
i
- . ~, _- ;, ~. :.,;, y _; ~"~
x em
.- g..
_ g,.
/
[
1BfS)
&..[~_K. Q.dbI~ ~.~~ 3 5 h
..,$h 6.. ~._ d
~
V'2hw s
- ~
'[
~
8 W
. ~,,ebc~~5f
~~
=
-D tf
% gbght
.3(S) 1 m
r
]
y, *..
I.
- = =
{n.., -
p.,.f}7
_f,._.-1.V,l~. -
'.n~ saas na,
~
%,, ' ~ L I
p in. J.Q 9.,M -- ~. ~
- ~ :..
t
' ;k.
..~., eM\\ t'....r.
p.i#" ~ g p' _ ~.J'.~ /.%_ M
\\
-w-
-- Har6er
\\
.M.4.. 9
_y_
'.;. ~..,*- -
~
g
.J 1
J
,.fj ~
.V
.~,, -"
. y) r -.
_ u..-
%N..J,,)' 4.
. J. 2- @ g' A.V N
1 f-
/
g e
w.,,,,'.... _ _...f, -
/,8 s eono,
,/
.,, Pi t,.
3 s,
-i. -
vc A. %,
- . w,...-.
77 a
- BM
. ~ ~ Creth,-
/
,i;.4 s
s,,..-
- -.7 f
J V.l
-, ~~.
C ~_. r.-.
G..,.
4..,i S *,-
6 a
.~
li, n+..c.r W;.,)
.y.-.
o
^ eM p
- *'.'.' s).,aW lla.l A.*
.~. j]
P*!'*.
~~~ ~ -~ ~ ~ ~ ~f
- (U tc oo*"s r
.4,[9
[' N'rWarciowb h *.f.h [~ [ M
/C North Hareor g ' % d..r dp-s, L.,,
- f
.M%/
f T.",.'.
w EXHIBIT 1*/
l i
l i
i
,,.,. w.
... s -< _..4..
9.
e,.s.3
_Z
-h~=T jQ;%Qf*~ /' ;ri7'"--y;q gg*4 W-".~_.--
._.J- -..
> r..
{._.-.
.e r.__
.,.--n.-
.4
. %,.y._
I i
,,sm,.4 s--
n 4
J
.. _ _.. r.:.m. c a
.,, m
... _. :1,,.r.<.,,
_ smw.g -
4_
1
- .1 ~ -. t.,..
-s1 1
X
\\
,p*
.,. w-l.A
"*X- %-
^
M L<
~----
.C,V. y..
i E.
.1
.LeAGW rr
~
.s=.--
- wm c w
l
- g j
}
lMK,,,l m..
_-, x_.
- .m-M. -_ n m-(g :.-
l_-/y ___4
.ppggpry/ ;~ -
-4_
4,-
w-w.
^n 'b+
sT
~b"$Wfl$.Y15.h_5.,.1 E
Y~
- -;,md.rjy*;rp%nr47
- ?e=
3r- -
%w cu.-
-.6_
4.-
=~m
=~
M r.
r s. [. ET 't LW.LamL4..'
.4I 1
L'-
14 f.~.}
_r_L.
W.,
~,
~,,
-a
~
- - -w-
,e
_m sg z
mr w,
m
--':
W
,^,,. -- -1L- -
1,,
u W.
.- s 2
e
,.e rwr s,e2 g
r i
["~1
-12 i '-a+
4
~
r_*
I
.- 1.A J. ~p d"I j
)
r r
1.
m _ u.*
me 1_.a 1
rr Q
,n,a-,.,-,.,,
m-.
M.
M. 4'* -
E r r 1__
,-E E
-m i
1-1
--1 sm~~
1s z
,r
-av
_.1~.
,.,11
(
}
- p..,.
_;=_- -
s.,c s :
I 1._
A O
a.k
_m7L A"
AI
}
_E a
f.
w'.vmn
]
1 1
n
.mW i :[fWM.- - ;, ~., - V-M }F i
Oc-m
- _=
- un
.Al
.E..
,.A.
,A,Ed E.
M 3
sa.1.
W
-HW fS,. Aw -rAR'..m AV-Fx sR_A "a.g*uy a
M BW n
a,
' A
.MI
^'-*
.- r1_- m --
D.a F A M ew r,A EM FEALE A wm'v_'s'hW1ps I s3 a'g K'
z A,1 A
O' m
YM
_A F4.F'sF
.E
,A_M
.sa
,,.w",
11 1
m 1,O,
L m.
-#-n-e,..
1.s,%
w x,'
s.n i
wF._4 F
Y d
d.
M'zz aAA'M=
ml
.y oM" r-
_Jm m
_I."
1%,i.
r--
-13 M r-- -
3.m.NJA T-
.L k.*
r_.
I sm
/.
m__.=
,& @'- K
!.4,%.5:-- -
h v.4 y W M g e n Mfp
^' ' W
_A M,
-M.A.'
1n
,1,M F'
,.M E
M sm
_s
,un M
a1_.= -
~,
.ns ~- r
.-.r
. r=*"~,..,.n....
~
~-]=
(
I rig gr Et r 1
3 3
-1 2"m-.1,wi-m'T--,hlh rh.
in'M s
uw s._-.I
. n_.Jimr
.w 1s b
m
~f.EK M
., gr i
,i g
_~.
-1
. 1 a
A
$ %F dgfTir&&,kW)f_ -
I '"i i a.
a
. M
~
v e m]'e~" n"ww 1.I
,MF..
,r i
E
,g yv f f, A-b' '
.t 1
. -F A.,
,14.-
..-.1 sm t
h
=
- w #" 6 4 -
- 1rw-
_. -_m
=
.m,,_,,
E"
.Z".-
.'K_
BW A.Am _1A
.~.
- j=pgg>.
e 1-
~
g"
~
)
,N j
.@.'.L.
8
., *y= ;. y /t t*f.~.n'.....
l 1
. n__.
- s,.
1 90000125 tmsrus
1:
'l I
,'s i.-
b
[-
,','s
.3
..,(**
t il 74
>i
- * %,t., *, ** (,<*
of
'.'f
. '. ' * * \\< y a.
b6 o
9i
. }
$,f 13 J6 g,
] nul.fi llist leur i,
p, [, 44
!7 f
/-
10.e t.
3 e
l s.,-,,.I -
y
'I f L4 8
/r' 7';= w.-
[.
( L' 9
g g,
e
, p'
- ta *.
e' iIf * %,
marse.
3, r
t q,
- "" # ^
4C' t)
?
y.
7 6
y 3
j
\\
,,,,, r. (
80 W
{s p,
's 9
o p
7 y
v se j*=%
9 p.Ser
~
N, ' 4 13 43 f.,
p Tvn $L.u.I
,y
,y
'\\
en.l,, i lt e.,.
u 3
t
_.____~....,....;...
s' a.
..s.,...
. K y/ // [ !.*'
s g
f
/ t's 10 l'
4 li.
39 i
t 45 hm<~. ** se g
^ '
g a*
- . cf j..,
y Os ",e )
>F f
i, wJe V. 6 #
4~
(
.lj:
,N m/
I
' 2b 3
-'d
[
4[
l,w e
b 75 E
f f6 3J 4
3
'. d liL E M 72/ 'I 4,
3.
2 22 38
<.c
- t
[
,.-- ~ C,--..l! & ^. b,' i,9~ 'M, ',,, f e
'b.,
,, ?
~
(
5 >
<~
s eWnces.. w 3,
1 av,4 s.
rico ;,u n * - a,,..
.~,o
-- u es 1,
n g
s y
- Q* 4
=
' E ' ; 'a
', 24 3b
,,,5
'"'*
- la
.6 b
8 Vs g
.a b
y 3
e le 3G m.
+\\
p
- (
- :6 p
7 3
3D
.:g\\
,,,,,,, M
\\
si.
4, 3,
3, e
b 7
.. 4 b
',3 i
g
'.,8'.'
< 4,g
't Wnretown Jit. '/ '
2 *'
4 *J
- 3W I
' l.):
. 4h..:, *)
8 I7 T,,,9 ha.,9 yi 5.-
.o
,c
.m l
+
n
,.s 2, ! -
s e
t
.<,.1gy;.
p'
,'N
,y'f;L;$.<gl',h,g?
6 '""
i C "'?
'.b -
3.
7 s
Y ; $' @ 'E Q f,
ao f
I'~~"
- ~
r ui,s I
9 I'
g une at N.Y/ /
g
,d
$ g so isfil ei es,,# #'V a..,4,.
O -
3.
,.3 p;. ).
V gg / 20
. tC, D /
g
~
4.3 2
9 a. 4 y
29 Db 46
, d/ * /= )
Cw'J'Isn 7 y
g
/
/
2 7
4 g
,8
'/4
- a.*
[I 3
49 3
j,
gy pg.
3
3 pp,3 8
,,I.-
fe r
E Ab
.Oe l
t s.
n 2
7w p.
3, ao
.s '
i 2c P.M.H.
\\
's M SETUP SECTION
- "2 y ' *,,,-
[
Q),)
[
h ' h.~' _E. L." ;.,.
== mr r&bv.tf,
,. 9/..
EIHIBIT 19 90000126 i
(
D""]D
" D p~ }@
o o m a lf
_ Lll..I b b 111111111141111111111111111110H11111111U1l11111111101110H11111111111110111111111111111111111111111!!!111 I j I
i l
t:::j
=
Mile Section Fetch Vav.
A Ts Day.
S
$S Eler. (f t. MLW) j (ft.) (mph)
( f t.) ( ft. ) ( f t. )
-0.01 (node line)
' [(~
t}:r(-j'j,g-t
('
l.
SETUP PORTION m1; 2.1 to 2.6 2,6ho 93.5 0.0995 3.h 1.18 1.18
+1.17 a
2.6 to 3.2 3,168 9h+
0.10037 3.3 1.h5 2.63
+2.62 f[-
3.2 to 3.5 1,58h 95 0.101h 3.3 0.71 3.3h
+3.33 3.5 to 3.6+
550 95 0.101h 2.3 3.31 6.65
+6.6h Max.
__ ; _j
}.
{
~
[
~
l'"){
,_Il l
-- +
~
SETDOWN PORTION
]
~
l
{ !
3
{f '1]
I y
1.6 to 2.1 2,6ho 92.5 0.0988 3.6 1.11 1.11
-1.12 i,
- i. t:
Q[j
. M5#
1.h to 1.6 1,056 92 0.0982 5.7 0.29 1.ho
-1.h1 l{
l
' l3 JE t
0.6 to 1.h h,22h 91 $ 0.0978 8.3 0.78 2.18
-2.19
__ _l.. l g
p., ?3NT h
0.33 a 0.6 1,h30 90.5 0.0963 2.3 0.93 3.11
-3.12 Min.
J:
i y[ pg lpi.a: j; ;
P H
E
')
l l-I f 6-f:? h,' !
I..{
j l
.g.
. h I lIl l #
t uU
~t u
- j "ll i
l!il 1]!!i
!i' i!. !!
$ ri l
.L
+
g 1 m
gg p ygy 1
y
- -Ti~iigi
[Q iij 11
%df
[ (
Mih
[(
f m
g, u mL y
- +v
_- ~
t a
n n
,e upg y
g y
pg g
y' M49% p
,9 jJ l.
l l} ti il i
1 IApty:y Np,J1 11 It itL iD
+
l i.. 1 i 51 j son,msu
- 7 i p i
.+!i l#jl[
2 wh uh Ae*
it i
g 1
9 M !iii f I
t!!!!
s I i I%i i
a,i-i i ;j j-t 17ju t
i a
NifNISIIlIIdI liJ h Il
!!I IIU pr i: i H 'lilii!,!
fbd}" #I}P NI$iEI ili! iill lN ii
hVRRICANE TIDE ESTIMATE - 1/250 YEAR EVENT FORKED RIVER UNIT 1 NUCLEAR PJrER PLANT GENERAL i
A preliminary estimate was made of the tide height to be expe::ted in j
L the vicinity of the Forked River Unit 1 nuclear power plant during
[
an occurrence of a hurricane with a C.i'.I. having a return frequency
[
on the order of once in 250 years. Basic parameters describing the F
H storm were taken from ESSA Memorandum HUR 7-97; a critical path for
-)
n peak tide generation in both the ocean and bay was selected; available topographic and oceanograpnic data utilized in tne P.M.H. tide report were employed where possible; basic tide computation procedures dis-cussed in that report were used; tidal inflow and overflow estimates to the bay were calculated to obtain a mean bay level for wind tide generation across the bay to the plant site area.
Those data and the criteria selected as well as procedures employed and results obtained are described in the following paragraphs.
j HURRICANE PARAMETERS _
As noted above, selection of the basic parameters describing the once in 250 year hurricane were taken from ESSA Memorandum HUR 7-97. They are as follows:
C.P.I. (pol.
Interpolation of values from Figure h of the a.
memorandum relating central pressure to latitude at the point of storm landfall (approximately 39 degrees 10 minutes north) 90000128 1
1
resulted in a CPI value of 28.05 inches.
b.
Radius of maximum winds (R). A moderate radius of maximum vinds of 30 statute miles was selected as being representative h
I of stems in this area (see Table A, Zone b of HUR 7-97).
g i
Peripheral pressure (pn). A peripheral pressure of 30.08 l
c.
inches was selected from Figure 6 of HUR 7-97. Use of that
[
value and the C.P.I. of 28.05 inches results in a maximum pres-h sure effect of 2.31 feet at or near the center of the storm, t
d.
Maximum wind speed (Vx). From Figure 9, extrapolated to f
f a C.P.I. of 28.05 inches, a maximum 30-foot overwater wine speed for a stationary stom of 75 miles per hour _ was determined.
Forward speed of the storm (T). A forward speed of 20 miles e.
per hour was selected for this storm based essentially on results of the P.M.H. study.
Adding half the forward speed to the maximum wind for the stationary storm results in a peak storm wind speed of 65 miles per hour.
f.
Path. Tne path of this storm would be generally that se-1ected for the P.M.H. as being critical for tide generation in the area. The storm would approach the New Jersey coastline
'from the scatheast on an azimuth of about 135 from North. The storm center would pass inland some 30-32 statue miles south of Forked River.
HURRICANE TIDE COMPUTATIONS General. Factors affecting the height of tide to be expected in 90000129 i
2 l
i
Barnegat Bay in the_ vicinity of the plant site were discussed at some length in the P.M.H. Tide report dated April 25, 1970., In i
i i
general they relate to the height of peak tide reached alcng the oceanfront; the duration of tide above the ' each dune elevations b
alongshore; the duration and volume of dune' overtopping and over-flow as well as the amount of inflow through Barnegat Inlet which affects the mean water level of the bay at the time of bay tide
'{
occurrence.
. Procedures. The procedures used to compute the peak surge eleva-tion along the oceanfront are those described in CERC Technical Report No. h.
A complete surge hydrograph for this storm was not computed; a theoretical hydrograph was approximated patterned
[
generally after the shape of the P.M.H. tide hydrograph for a alow moving storm. As will be shown later in the report the duration and volume of tidal overflow is small compared to that of the P.M.H.;
the primary contribution to bay volume increase is from inflow f
through the inlet.
Peak ocean tidal-surge elevation. Computations were made for the
[
i peak ocean tide at shore with the storm in a critical position at h
i I
shore at time To. A total fetch of some 70 statute miles was used generally deHring the limit of applicable wind directions over the f
fetch. Average wind speeds ranging from 70 mph at shore to a peak i
of B5 mph in the zone of maximum winds were used. The initial elevatior. at the ocean end of the fetch was b.70 ft. MLW (astronomical t
tide) + 1.h it. (pressure effect) or 6.10 ft. MLW. One foot of wave
[
y 90000130
effect was added to the computed peak tide elevation at shore.
The total peak tide elev'etion was determined to be 12.66 ft. EW (11.16 ft. MSL).
Tidal overflow and inflow to Barnegat Bay. Area-elevation rela-tionships for the reach of beachfront exposed to tidal overflow as derived in the P.M.H. tide report were used in this analysis.
Based on an estimated tide hydrograph for this storm the total duration of overflow would be less than L hours and would involve less that a 2-mile total overflow section of beachfront. Total overflow volume would be on the order of h8,000 acre feet, or about a 1-foot contribution to increased bay levels. Total tidal inflow volume through the inlet would be roughly 100,000 acre feet. With an initial bay elevation of 1.0 ft. EW the added effect of tidal 1
inflow and overflow, plus a one foot added height for pressure effect, will result in a mean bay level at time To of approximately h.0 ft.
EW.
Barnegat Bay wind tide comentations. Procedures and formula for i
computing wind setup in the bay for the P.M.E. were employed in this analysis. An average half-hourly wind speed of 70-75 mph was used; averagebottomelevationswereobtainedovera3hmilefetchacross the bay for a two mile wide section of bay fronting the plant site.
A wind tide elevation of 5.21 ft. EW was determined; an added wave effect of from 0.3 to 0.5 ft. can be assumed to occur along the mainland shore which would result in a total peak tide elevation in the vicinity of the plant site of about 5.6 ft. EW ( 5.3 ft. MSL).
l 90000131 a
CONCLUSICliS Based on the above analysis the undersigned concludes that:
1.
An occurrence of a hurricane having a return frequency on the l
order of once in 250 years on a critical path concurrent with high astronomical tide in the ocean will result in a peak tide level of 12.66 ft. MLW (11.16 ft. MSL) along the beachfront opposite the plant site.
2 Minimal tidal overflow and inflow to Earnegat Bay wn1 raise h
5 bay levels to approximately L.0 ft. MLW.
i 3.
Wind effect in Barnegat Bay occurring on that bay level will
)
result in a peak tide elevation on the order of 5.6 ft. MLW 9
( 5.3 ft. MSL) on the mainland shore.
G Submitted by az
. Haeussner Theodore E Hydraulic Engineer Consultant Jacksonville, Florida B
April 25,1970
}
6 90000132 3
I I
-~
1
,l
- ^
.,.,~<.-*j.f,-.,(
=
t 2, A
.s.
8
.,. r
'.g *,r..
.4
..,.,.v.,-
s.,.,
,-s.
s
., g. r..j.
.u,
- ' ~ 7. ;'a (% g.u;a,,.s.
.e
... +.
.s...,t ri.u,iy..J u,.,.,
.u.,,
e
~.
~
,.,~.m o y. a,.. a.~m. n. _,.
.v. %c %.x@w..
- 3. :.
- t...c.@.:.?
. p:,.,,
~' :
n
- Mi
.m ' 3.i L :.
- p. ;g..,,..
.p.
..m. s.s.o.. ; p.,g.g.,,.. u. 2..z m;m.g D kllld,VA,4h.. 5..A.y y
. q./..a,
.d } N yf*(.";.&%;7
.4-w l.,..
t. 2., m.z.. - 5;' " b l.T. f. ' r.."J 4. T-Q. 'I,.9]J M.G"(* 1? v ~
, u,
.:.+m_
~.
- .; f f,.. m.
..v e.
f:
u.1,,y :f22..%*?D*% <p.:t* A:l ~~ ~
'
- N* a.
t.f *M*b 'w,..'..
~.,
^
6;^'-WQ.
p-g a
.-7
,., 9,.,e m m.n k d. v. ':W
. h;,.. ' a
.s>
~'3 :
s.
. < a..f-4. ?-
C
~
'd a
.g.,.
o.
- l * &. d,.,,.-.e. :.~. y:
~
,... 9,.
'T. %,.,' # :
. N%?%.WW 2,b s' <.M.d
+ -
i
... - mw.c.nf.%:.%:y...y, ;
L
,. 7,. -.
.t... :.. -
.7, m ;rv.r-~ %.- m,.
a s.. r.or
?-~.,
.g.c :;m.W.n,.v :
.a
< ~ - -
,.y.
g:. ;,
,.,.~7*
- . g,7.r.;
a.-
n.:,w.&g...4....
_x
- j. 3
- 7....
a
- n.,,m... ~. n.. -- > ~.y
.,,,.:. e:.,:
.,....r.
. x
,.a.
.~,~
f<
i.
g:gy-u..~y y n.v.
w.w.m ;.w.w$,r **"'*'...
.y P
.x.-
a'-
e
~
- s
. ?.u :,'
.' j. g, w ~ e-q*
Me". r, sQ.,...f.1.
',a.
1
.c.
e u.
y, l..,. ',. Ry y
j
.o
...e,
.+< e, m... 29, x.
.a. g,...
.- m.:.=v>r r e m.a.
v.m s-M..v
. l t N pyy.MQ.g.g.....
. :1 w.
., Q.'i <Q,.y..,,,. '...
- e. m
.s....
? -
~ q. n. : _
~
.gg.p.-
-~
n.w n
~.:e.
h' ^ i.>.<
.s:-
s
. x? -. * -
~ t W.Q,W}p,.. n n@.%g.
~
.... m*'
s,;R
' * ~. '"t :.. f.....
?l, Q',.,
d.. &< l;. % '@.d *.NB m. 1. :,.W m.%.l,~LibAW$.s.WW.. t y.J.{f.y - v
- ' 0
^ '.
~.-.s.v't.,M.e::: m *~,
.v. m...
c.
a
.c
.. a..p o-s w..n.n.,m......
..a. W. e.. -. r.. '.s r
. ~..,.
y /..
v.w a....
,r.
,, f m.* %,.(*5. '.;,.).u}.- e
,..,r.y
..L.
'..w
.. s t
. /-
. ; N,,,:. u.~.d;. -
.. 7. :'.6.. 0,.
c 4 l Y.[,,h.@c-j.(? m S
~...n....
x.
r.
a,.
&.s a..
2 ~<
~
.Y.:.
,)
. M. h d '.. RICHARD [ EiTb', h U E' 22,1970,'.Q CIRCULATING WATER SY e ;
h
M:
'Y.
Sy..,.. 7. j y r.
' i M
.,i W pQT,;; gMy.
W n T,'Q M &.7' Q.; gd.y.<-.~
Q Q.t.[f5.._ENVIRONMEFTAll~ CONSIDERATION c
.N....M..
ph =r v.
T;b.,m.w,.A n,, 4;$ N %q@b,M M ?@& %g&' i p ( Q,% b W %
.~i" MM f'.
'i Q.f:X@.,
4 uMi :
X :. -
.: 4 % Q:&MM f, E,;iWQ yfl W %e w M m ?d=
}{NjpiiW "ta;XJ3jr.
WM@.$.
s f.
- n. A.s y % y a = w % w %s w# c & m.. % ky ggym.sm%uhyw;,w;gQgQ:y'w.W*%.
ww.
m
- Am6
%m
- h wwpw&
~.
w&'y 1;QWW ni=+g&9c:.
~
Wgg w
er e$WQ 4 *?.?~f's. ' %.1 9
-..w;,
. y. ~,... g. w
.m m h. s. gh =,-
3 M cg5...Q. W:;&m.j.p*.-e q'Q hy Q + &m e.w; p wry;'.'*-SS,
- s. wwy.:
i"-Th G *4. ' '
Q
%,$s e%y' w. g.
q',V.
g,.s m.wyyy?jf;f'Uw&m:(:y%*Wkj:
w.
.;e.w' g u.a
- a. j g,,s. L~} e 3% ffst iM.M a%ry w 5
. m(q$;PC%,%,y6y=:
M. V "Q:..G. *.- M. l;,?.fgidp,";;w.% a.',:"?t~%r f.e k W p q]2 n
?.
t*
f~~M,
,%$t
.g f
TlL 5
g.; w-. n.m. m &g.c. gJ.w Y% Y,;.
~. f. ':
4;.g:.
3 s ;,g1n...w-r.
~. - >> ;..c p, w. 4 s
m y u.e..
y
.n v
~
n g 7d~~a
.. ~Q q. h b..l w;i W Q ?'. m..:.. ?@,G W M.g,,i M.*. ?:
~
.y.,
wq@.~f 54
.GQ,.,.,W4.%
a lR
. x, n.w&s ',mh'.{g,.,.. 1&,t..
.m$%W.u:,..m:s
.,v e-w
+&;-Q'i..
m
. t E. %.,.y %. a, W $ M. % % *Gi)f. i2*$. c. Q' M, ? w% s.t:. A. a, M
n,r.+.- %....m
--. N W.g..a.., JW 'd...e%
. b..
4
,(_..
.s,
, ' a.i s.t,he**
r tP e 9
- i..
., 7 4.,.
'.5 <
.k.te f.d:
?
(
t
,c s
1,ce
+ * -
- f*O
..,m -
m fv --.xdvdf
- a..J 't *,4 **N:.g m x'. u.'-.
- 4 a. png...
V.$.,y h,t*,w. ' p>.44. i.e.*H.
ed e,. >..; %y +9'n p 7 u*. y,,.F..r*g%
-u
,e..
r
- ..*h*
a*
p
..e.
'., h!.".'.' h'5'5f hWNkW. $a.;-Q 63* *
~,
D,.
j l
,r:. g,s
~
~~
.e
- y,' /* r. 4....
- h hhL*Rfgbh$2
.h Y h
r
. e,~.u ru e,
h h'".,Yl w m. m :. =v.: m.v.a.. e. m m. n w.
4 3.dgM;'.14GW%g,m jp%.g,,g,hf@p.. s' 3
3 E lcg:
< py.4.n nn w.e y g,p r W,u g M Q w b
.w.n s
- m.y. gtn.t;m.o.w.r.
- 3. M..# q%.p.g.gn. ~.@.k,.y,..a*j #., y.1.h.e -sa.qki'3;,c
- f. w.,.n.,
m.
@.php.
,..v.y %..,,W.g y
g:. e s..
.m...
... 2 ~;n tg.
g-M/;. s
..ca;..w.ns)},W,7 a.
r-F.
.ww 2q
&n +
q..p
- .., t -
v.t 6
. h:
m g -d; 4 +*.*' i ~,.,
- i.,- C9 -Q...,;;
')* L
,c. _
. T.' l
- 1,; -;a.Q;-Q Q:;f,!jn *[of:kQ".
' Q.l.W 44
,. %. :;..Z. ;n;,,3.. w;.;.'y.
y' ;rg&. y,%#9..g ;Jf,.Q;M
,,.R@lf%,.s&m, y&. f~yt?
- l a5,
- p.
.:; b f.
v-,, q;,a.. -Q.:.s. 4.y*
..'x.. :: w%
J %,!
..,r,,~%;,, -
. s. g. g a.). n s.
, :.: ' e w
..; <.s. @w. y!,m,;
- . n,..
.s
.m.
.,.c.,.;..
t
- 3. y, vJs. ~....,.n
.*;-s.
a.
W"'d
,s...
- .4,, ff, * **.. / e *#, *, ~ p" *..
w.;:g, t
c,
.-...g..,-.
.- ^Y k.gi.,
.. +.
w.y. ;-.s.m,,g'* Mb 3,.
l Aa b7 bene,
4..p %,.[F*
,. r m,
I.
y
.n.,tmm-ds'p*, m.v.a. u g",u:.v. u'.. c... L. Mg b'.r.e.
,P
- d.'.
,. '. :'AA*
d.
4.
e.b 3
.4
- a
.a w.g.,. g W. g.,.
.... b
.,...,.,.,e
.:.:.i g
w.g
- v.u...
v'
<.6
,n..,u.3.
p.-
- s., Mm.
p %..., A.,ae
-W.., n. I :
, - w, -
n
...w 8
+
$$[ff.k. '-; Mh+ &, 4..y.f..th.4.m. mW- - r e..
..m c.n-v #.
.^s ^..
fp'gW.' W b,:G.'f&,Ih~Ekh8khh,b.,g.M.W.a.~
+'.*,.u<-g.e.e.t.a..'.
.m.$'<^** dx x. gat < g%,g,7 h
% l M 7 h h.d ** 4 f;lh ;a a
, e.
... ~.,.,..:-
-w
~i ;., i ;..s,
....(.ti.;y,v,..~, ; o m,, tF t A.
r,
%..- 64 A.
- ,-sN n.u
<rs
.g % g.r' W,a W-,hf
%, M..
. e. g.
' A
- a. V'..,xp-P>.. W c.
. Q.,fp,4,6,.
f
., g y'M.
- 5'y.. ~., ' t..
- d
^
.p!
-Q%
W
,q.j;f.
W s
n :m% -
%%. u'GpqWi'X.9:n.
. n.,n.,. a.y,...a.;; h ' m' D he M9 M
C n,n.,. e w w,
.. t,;,+n. s.. y% w 'Q. %gn.,r_g?%,n,.w...;...s, >u.r.m
.n.-.
n.,.
.p% 9:.
a
.n.,
s&,.e's. ;
M,Q.'7 1 '
e w
y
. 7.
n &; Q.Jye3 y< q c..:, u g.up.,~.g + v%w rt.,.:.,.
wy {;
Jr
. t.y
.-u..,qq
,.p
., :. 5. q..:q.2ixyQLw.
?
. m n.; w.
,m
.s
.w,Q.y.m:;;.e n -w w
-.u.
g n p...,
y
,.. ?j[.j F;*'.hw s.%,.m...y @MWeh, 'W.hW,95W. u., 4.J.h. m
,c n, y*[,pt..f-.m, g4 c f., e,,y@,c..hf 1-g t.krig $ M.y
- m, e.
g g
A.~ d 3 n M M M M e s.d,h % $@;.=9, @ M M F N E.
m$ h, Q, V 9 f A D, ~ M. M,a..$
w("'.f...ary f,wa6 d g,g T
%. s.
.m
..q s
..3..,
q s.
,f.. c
..w...
f
,'1*tM'@-M* f'
.%.t 3..c.' x. %,
3T '.'M R
N 4.lhf,n>;R W#b :
i
.srh Ui d
h.gdM&c
. ~ ~... e r u:
NAGMsats M,,w...
.s C