ML20125B648

From kanterella
Jump to navigation Jump to search
Rept, Probable Max Hurricane Flood Analysis
ML20125B648
Person / Time
Site: Oyster Creek
Issue date: 12/19/1979
From: Sherlock P
DAMES & MOORE
To:
Shared Package
ML20125B634 List:
References
TASK-03-02, TASK-03-03.A, TASK-03-07.B, TASK-03-07.D, TASK-3-2, TASK-3-3.A, TASK-3-7.B, TASK-3-7.D, TASK-RR NUDOCS 7912190678
Download: ML20125B648 (36)


Text

{{#Wiki_filter:, . ~. - 4 i ) i e REPORT i 1 ' PROBABLE MAXD4UM HURRICANE FLOOD ANALYSIS OYSTERCREEK NUCLEAR -UNIT NO.1 ' OYSTER CREEK, NEW ' JERSEY FOR JERSEY CENTRAL POWER & LIGHT COMPANY INTRODUCTION This report presents the _ results of our flood analysis for the Oyster Creek Nuclear Unit No.1, Oyster Creek, New Jersey. The Oyster Creek Plant is located at approximately Latitude 39 49' on the' eastern coastline of New Jersey 1.5 nautical miles inland from the western shoreline of Barnegat Bay as shown on Plate 1. ~ 1 All elevations unless otherwise indicated are in feet and refer to Mean Sea-Level Datum as Zero. PURPOSE .The purpose of our study was to perform flood atalyses to establish design criteria for suitable flood protection of Class 1 structures. The Oyster Creek Nuclear Unit No.1 plant layout ie shown on Plate 2. SCOPE i The. scope of our analysis included an evaluation of the following:

1.. Wind-generated waves.

i 2. Flood levels. 90000143 3. Wave forces. 3 l j l 4912190

? 4 1 ~ 0 1 Work pertinent to'this' analysis conducted-prior to this report ) included: 1. Hurricane storm surge analyses resrlting in a probable i maximum hurricane (PMH) stillwater level of +22 feet Mean ll Sea Level (MSL) at the western side of Barnegat Bay { i fronting the Oyster Crc 7k Unit No. 1 during a high astro-l nomical tide condition.* (Reference 1) y 2. Procedure for routing the open coast surge into Barnegat Bay.** (Reference 2) BASIC DATA AND ASSUMPTIONS Basic data and assumptions for our analysis included: 1. The PMH stillwater level at the western side of Barnegat i Bay was taken at +22 feet MSL as requested by the AEC. 2. A surge hydrograph giving maximum stillwater levels at the western side of Barnegat Bay was developed by using i the Barnegat Bay surge hydrograph of Reference 2. 3. A wind field for the PMH parameters was developed for use in calculating wind-generated waves, j

4..The calculation methods for wave generation of I

Coastal Eng'ineering Research Center (CERC), " Shore Pro-l tection,. Planning, and Design," Technical Report No. 4, 1966, were used. 90000144 D. J. Skovolt, AEC 3etter to R. H. Sims dated 12-29-71. 4 Theodore E. Hacussner, Report-Determination of M.P.H. Flood Height for Oyster. Creek, Units 1 and 2, Copy No. 1, December 21, 1968.

~;3'-: l J -l PROBABLE MAXIMUM STILLWATER LEVELS AT THE PLANT' SITE ) The.'open ' coast surge was calculatedin References 1 and 2. :Its l 1 effects were-routed into Barnegat Bay to determine the probable maximum stillwater levels at the plant site. The PHH parameters'used by the AEC n .(Reference.1) in calculating'the open coast surge were: i j 1. A central pressure index of 27;10 inches of mercury. ~ s 2. An asymptotic pressure of 30.70 inches 'of mercury. 3. A radius of maximum winds of'39 nautical miles. 4. A' maximum gradient wind speed of.133.0 miles per hour. 5. A' forward translational speed of 12 knots and 23-knots, p 6. A bottom friction factor of 0.008. F S 7. An initial rise in water level of 1.1 feet. E t. 8. An astronomical high upring tide of 4.2 feet above j 'Hean Low Water (MLW). In evaluating the stillwater levels at the plant site on the western shore ~ of Barnegat Bay, the following sure considered: 1. The amount and duration of tidal overflow of Isinnd Beach (the beach island). -2. The amount and duration of tidal inflow through Barnegat Inlet and through the eroded sections of the beach island. 3. The extent of wind setup across Barnegat Bay. e t 4. Local wave setup. These four. items were analyzed in Reference 2 for an open coast PMH stillwater elevation of 16.75 feet MSL'. The result was a maximum still-water elevation of 19.5 feet MSL at the plant site that occurred one hour after'the maximum open coast'stillwater elevation. L 90000145-l A .u I... -. . ~. ~. . ~....

i -4: 1 -) j l The approximate stillwater hydrograph was~ developed at the plant site as shown on Plate 3 by considering the following: 1. The open coast surge hydrographs of the AEC (Reference 1) and of Reference 2. 3 2.- The surge hydrograph for Barnegat Bay of Reference 2. 3. The inflow-overflow curves of Reference 2. 4. The hurricane wind field developed using the PHH parameters of the AEC. By using the AEC open coast surge hydrograph in conjunction with the open coast surge hydrograph and inflow-overflow curves of Reference 2, an approximate time history of additional inflow-overflow was determined for use in adjusting the Barnegat Bay surge hydrograph of Reference 2 upward to a peak value of +22 feet MSL. This stillwater hydrograph also includes the ~ effects of wind and wave setup, and is, therefore, used as the plant site stillwater hydrograph. The hurricane wind field developed using the PMH para-meters was adjusted for nearshore land effects and was then propagated across Barnegat Bay. Component vind velocities were calculated along the storm traverse as shown on Plate 4 in order to consider wind setup and wind-generated waves. The time history of these component winds is shown on Plate 5. This 5 wind profile and the stillwater hydrograph, shown on Plate 3, including the i effects of wind and wave setup, at the plant site, were used in the following analyses. WIND-CENERATED WAVES CENERAL Wave characteristics are dependent upon wind speed, wind duration, water depth and fetch icngth. Generated waves were calculated coincidental '( vith the maximum surge hydrograph to determine the maximum fJ ood elevation. [ - 90000146 .,n

,Q h j < ' FETCH 'e R Deepwater fetches were not considered because 1 the larger deep. water-generated waves would break on' reaching Island Beach. The elevation of the island, ranging from 0 to. 440 ~ feet, as shown on Plate 4, would be reduced by1 approximately five' feet along its lower elevations 'by wave erosion Most of: th't. erosion woul'd occur primarily during the surge recession wh { en wave ~ direction would:be offshore rather than onshore. Therefore, the critical wave conditions L would be the-shallow water waves generated within Barnegat-Bay The fetch distance would be approximately five nautical miles (along the hurri cane traversc) across Barnegat Bay from Island Beach to the ' Oyster C reek Plant Unit No.1 as shown on Plate 6. WIND As hurricanes move towards the coast, wind speeds and directions are dependent upon location and time. In order to prepare a wind distrib ti u on for the purpose of wave forecasting, the wind vectors along the sto rm traverse k! were calculated using' the hurricane wind field. A component wind profile was then plotted as shown on Plate 5 using the time history of av erage wind vectors over the fetch length. 1 WAVE CHARACTERISTICS f 3 Shallow water waves were generated by using Fig.1-32 of CERC , T.R. No.4*. These significant shallow water wave heights and periods , based on the fetch length, component wind profile and average water depth are plott d s } e on Plate 7. .The generated wave height and period profiles have a phase shift i in time of +0.5 hour over th'e wind profile to allow for the generatio n and travel of waves to the. site. 3 The maximum significant wave height and period is 8.7 t l l

  • U.S. Army Coastal Engineering Research Center (1966) and Design, Technical Report No.4, 3rd Edition.

. Shore Protection Planning 90000147 ] feet and 6.3 seconds, respectively. This'significant-wave occurs during stillwater level of +21.3 feet Mean Sea Level as shown on Plate 7 at the site location. The significant wave height was obtained from statistical analysis of synoptic weather charts.- Approximate relationships of th~e sigriificant wave .f height to other parataeters of the normal wave spectra were defined. The maximum wave height curve *, as shown on Plate 7 is ' based on the significant wave height curve. The maximum wave height is 14.5 feet but will not occur at the site because of insufficient water depth. DESIGN k%VES Selection of design waves depends on the offshore waves at the j j site,_ the structures being considered, and the available water depths fronting j the structures. Generated wave conditions during the PMH occurrence were propagated shoreward to the plant structures. Topographic data indicate that the elevation of Highway 9 to the east of the plant site is about 18.to 19 feet MSL. As shown on Plate 8 the top of fill elevation surrounding the plant site will be at least +23 feet MSL, and this fill will be graded towards High-way 9, east of the plant. Therefore, as land elevations rise abruptly to the west, waves would break progressively westward and would not reach the plant site area. The only wave action that could reach the plant site would result from possible waves traveling up the 100 to 140 feet wide intake and discharge channels. This wave action would be small because of channel friction, trees, i vegetation, and other obstructions adjacent to the channels, the two bridges in the intake and discharge channels, the 90 degree curvature of the channels in the i plant area, and the fact that the intake and discharge structures are located I on the westward side of the power plant. Therefore the largest wave

  • Considered as the one percent wave in this analysis as requested by the AZC.

90000148

3 E .nat could possibly reach the intake and discharge structures is on the order [ ~ of one foot. FLOOD LEVELS k The' generated waves coming from the east, break far eastward of the site because the minimum top of levee' elevation at the plant is +23. - 4 Maximum waves that might break in the. area of Highway 9 will depend on the - available water depth. Time histories of the maximum wave heights.without breaking (H )-that might reach and runup on the graded plant fill are shown-3 on Plate 7. Using these data, the maximum design wave height was computed as ,ll 3.1 feet during a stillwater elevation of +22 feet MSL. Runup would be less i than one foot; therefore,.there will be no wave overtopping of the +23 feet MSL top of plan t fill. -l 1 The top of both the intake and discharge structures is at elevation i 15 feet MSL.- Because these structures are located on the western side of the plant, they will not experience as high a stillwater level as the eastern [ t side of the plant which is directly exposed to the wave and wind setup. Maximum stillwater levels against the intake and discharge stru: tures would be'less than +20 feet MSL. However, during maximum stillwater levels, a g i one-foot wave could pass across the intake and discharge arructures and runup on the 2;l backfilled slope in front of the turbine building. Maximum runup would be about 2.2 feet for a smooth slope and about one foot for a rough slope such as rip-rap, resulting in a maximum flood elevation of 22.2 feet MSL. There-for e, the +23 feet top of backfill elevation in front of the turbine building j would not be overtopped. The maximum flood level ~ for plant structures would be caused by the maximum stillwater level, or +22 feet MSL. Plate 10 illustrates the boundaries 90000149

-f . o'f flo'ded land'in thelvicinit o a'stillwater level of +22 f y of the Oyster Creek Nucle i eet MSL. ar Unit No.1 during WAVE FORCES There will be no wave forc 1 the intake and dischar es against plant structures MSL protects plant strucutge structures because the pl except for .\\ ant grade the intake res from wave actioni elevation of 23 feet-and discharge structurec As wave action is small at structures will~ essentially b, the maximum wave forces against th \\ stillwater elevation of +22 f e the hydrostatic pressures ese eet MSL. result.ing from a } east of the plant site agai The generated waves will b For design purposes the nst the graded fill during th reak to the this graded fill is 3 1 fmaximum significant wave hei h e higher water levels. g t that may break against eet. \\ CONCLUSIONS Based on the above discussions and analy concluded: ses the following is

1. The maximum stillwater el evation the AEC, is +22 feet MSL site, as determined by at the
2. With the surrounding to Elevation +23 feet MSL p of the plant site fill to at least wave runup.

, plant structures are protect d e against

3. The maximum flood elevati
4. Plant structures on for plant structures is +22 f are protected against wave f eet MSL.

orces. 90000150 ,4 ,-m,..,..,y m- .-_...._.-._._,.,..-.,.._....=,..-..-..,,s,_,...,

~ .9-The following Plates are attached and' complete this Report: b E Site Location [ Plate 1 . Plate 2 Plot Plan Plate 3 PNH Stillwater Level at Oyster Creek, Nuclear Unit No.1 -Storm Traverse. Ih Plate 4 i Plate 5 . Component Wind Profile f Plate 6 Storm-Traverse Depth Profile Wave Characteristics and Stillwater Levels 1 Plate 7 !0 versus Time.- Plate 8 Site Plan !I Plate 9 Intake & Turbine Area Excavation and Backfill Plan and Sections. 5 Boundaries of Flooded Land during the h Plate 10 PMH Occurrence. [ e b + Respectfully submitted, lE l' DAMES & MOORE lh Philip Sherlock PS-UK-bak '(5 copies submitted) s. 90000151 i 3 I l = . - - - - = w w ,.y,

w w .d w .L h f. 7 74* r L ~ W ~, w, L, y, m'tr s m,,...:.. 4 ,m Y a., a 4 ll

  1. Y 4,

mm O D 0 9 lj, 601 lol I g J,k a n' n f2 40t %a' \\ ^##' /,3, ! y('"2d@?-i* I# w N \\ di its 'n S i gg!ng w Q rp ,I,,Q,,</d p ' ga" - x n l,k l su iffg :l* g a,,i e g, ....i.. 1 [ 8',3 l M;;"q" 3

sc M. k.4-.m*,,

al %k 3 \\ w. s.- T ;i ,a s u it - n us, e s so = SITE Pl e t a 4 g' N:' [ f41lcsn,e. $)/ > \\ I' gg K u ( u g 't j', ~re st 2 >., 1 h g a/ \\ a R . j i 7,,,i s' j 12 ' ...k'**~;;b,h.n;.,0M("\\ .;i \\p-l->' 12 t. >~. J.,1JL,& g a f": ~, nem l \\ g i,. e w.l:~ .,f'4,'[st* * #*'f ., q s2 c eo ". '%f 8 'l g D \\97 3 13 ' /11 tt ' 't /e / 71 ' u p is / 1: \\ l ,s 12 O ,5 -mi !.o n / [' g i &#7 / @*mk.- g,,, a\\ 1 pp ja, n R ,/hs,/ 4 j,e g i. 1:: gbQ " r,[7 ar h. 1*'/ -g */** 8 a'th,8/ }J './ a

  1. .,)

C S 12 13 s 13 e, se y t$1

  • .t /~.

/ \\ 'k .g,p.4..2) ! iou [,'2 A a a u .*' f[3,' s i c,, y. s, W 0% ,v 12 i r I R* - (4k e + w, ,.e ' (s"

s.,

4 g,,e, ,, u. q 4 Q,~ u~ " d y lj A {'.j. 4; y<fPy ',,j"*,,, pm, k,, 't s ,3,,<g # ;.yf,; sste I u 12 p DANGER '"p %w + .L \\ y %.,W

g.,iy's$ #\\'1

\\ \\. ytt j I i A8t **'A 9*.. su... s,:: t 6 .. a, v~ :... w, e g, y .. !l_ l x n s s m.b };,t ,jy,y>d. 'st &.r, &grE4.#., l& st d. o* ri.nwr to

  • rtskl' 12 e

o,1 {i s gy "i* m.. M r. u s -4T'j % 's.& w g:- N ..f=> a? a e i C,, ,~ l (Approaches to New York) SITE LOCATION l... \\ 1%(.. ,e SOVNDIMC$ RF# $ATMQtf1. $(4( l 400 0 r.,w.w.. w..x..,i. D. c. 90000152 00 NAt't0NA1, OCEANIC AND ATMOSrHU.fl. DEPARTMENT OF COMMERCE N ATION AL OCEAM_11m""~ MIN"8TRAtip _ -- -- ~ _,, ERIC AD \\

y ..,,.c m ...,. m _ _ w owe t =, me % ,,,asa..---- ~.-. i m 4 ___.u_ .\\ t !..,. el 6

.,. ;--i---- EfA6 r

c. q j. c., . -- w it, 14 ._ o '...- g - I g' l -r 1 t /~f- .., ~r i t ca.,==, } , N.. S ".E u-s _,.. m.t _ e~ y l ..___L.

v.,,*G.

t,_, p. ~.- e a t -( 4 -i _ J c'" e y. .,_ta-n - y] ~,,, w,a l ' rs. 1 e E a 2 a. y 4' e-, d L . ~.y j *. **** t

  • i s

g . e o.o ase .w I.; g o [s. mtua e. E .u !. ,' "3-3 i ( j!.,,, I i ", i ,.m s t .., 4. - ~ 7 p _m..._...... - M)r h.n _Wr,se.$~ C2 )p""6= % _._M =s -~ N.__x 7~' '_._._p_ _ -/ = ,5- ~

-~n'a.' J %+,a,e1., e e...'~*.* a /

v.s r... u.r.va.u,:e -- I - a. r*. s, h;*," . e-r I"r o m ***yll iq; ' ",.a t,.--a* li p ~.,,8 f f --l..'~' A ;- % g~N s h*,i. ..a ;-en' ,j ( ', i l 7uF t on / r r,,r ;, x y em. w.c., 4 l g - {- 8 e / ......i, w reae =

a. : +

) n..d " .g.. , d.)s.. _ss \\ r' .f. ,,.. i I, (.,..,

      • as i~5 p

,.ig-J l sue L%, e.,- e... s l j, 7 F.. _df 9 M N **l* \\ ss s ? ~ ij cc.a..s <e} l

  • 4*= N4,- -

fI! i

  • }

O' s,, e...g' l h es h s q' 3 '1' 1 ,i t ma==<. s i o i \\, e 1 N [ >\\ fW 7Ef a,t.a.4.Aff su \\ ' ~~ ' ~ ~ g e' ,,p I n*l ,e. Q-i., + -+

u. w r 4 _ _ sh_ pe,.

s " A".i N# b _ _.bN - ~,[e ar.dC.r[---h _-- ~ ,_M" w"-d 6-*< v ~ \\ v- . n{7

====*ae ^- u r r, ,,,a=,,. T. P. t iiii { / ., 9"Ei W l fEi Tt] I ~ ' ' ' * + \\ cr *:: n "~ a - [ ~ l l; j S n) u.s - w U g l6.. m ?. ,e 3 ^~ 1;,.~W.. ? p, i l l q L .f5 .s#. l+

( 1 5[,
o.,

1 lii X i r'is( 6I i ^. L 5m'a s/y,j g" _ _~-8 h-4 O." iM'ad',* J' ~*b.*m es= '" "L

f,P

% **z f*Ce't _ to at _ =a *aa h** , v.s sa -. wer jdey ~ i l i \\ ~ 90000153

D"P D " D 'T N

    • "'f L,,,w, I\\

.+. - ..._~~ _.-, d u e a a e.ary is.* 4: sta "T ** t. s,)N f'M. ~ -. a i -NoE w _ _._..

    • }

.l..._ g.,,,,- mew g t -- a g .___-_.g l 4_4.-- .u 'x6 4 "4 -7 I l t ---T~~~~~~ 4 . _ T _ T ~ y #*** g-3 c,' uso 449 0 3 _.-a-g- l - -i .;j j 4 [ g (' de 80 v r; p 7' 7'1... -.= is (' '.f l 1 .__ _ a in t l 1, ,r .a l f-f is I is. I Il C r-f. I l i -) s g l i 3 I 'a l l i 1* i V s ty f )Q g R AowA$rt avnow I ! #,f *

  • j i f

i g i RE**To sono us i g..x.g gl ......... y .9 1-Las q g %. f Ei i o, +y-g,...., - g, ;, 1 1 i, g- %,u. "=__ c..,- i e 2ma aouoiwa y e 7' - ( E8"==- 1 w.., s. e s 4 e L.__u to e .j - -%.p g._. V. s 3 b-nrd,_e,y 3,q"S* l uiee

g. *,D g.

H.j;.,..;,, =. F*'d, / -- f h,,u e .. e i ip ml erarr-my" E-km. ; a d B 4 L l l-i . P

  • hI m-

,g g, g g o n. n, 7,.yL r.. W d..s w.a. .,z

  • i.

er, ~~ W.4 i },' y ,, 5 41 t,,.... 24% i 9 j __ ii~_;_Q j-$tN,, / 'e,.J t m.... Q /. 4 W.L >, wt:y, ;,m,-' { 8r ~~q j.l < :r w

  • Nr

,-i 8 / G,,R,. M..!. j g' n!- -+ = C-1 4 r F* ~7f h,'$* - # {,3, e s /. ' "- [ t__,..,I,,, .1 e. ) l

--L...- v ee nansaa tan 7

m; s l fh d [~~ ~ ' I ~,, g, ~ ' - ' -[

  • WO'.0' 4

' -~"e L' \\'O.*J'

  • h _) "T '~ ~ ],~

I \\ 1_ i,,..r w_' ** - c r 1 ju=" u e

m. L

,s,..m ., e wv"t ~= ~s i+ ' i ..., n a a < 9im ; - 1 # <- i e m.m.&j

C.-,

. x < 1._. + _ m fr I l

    • "1,,,,,,,

-- '"f i c. _. s 'orm jp[ '-. h%' l w Belo . e q r*"" s f._'m*".d_ g i r% "' 'Yp{ 7=. __. w _ x ~ . s -, w ~ m,,. q / d / 4 . M,' +g ,..m., f_. _x 4 4_ y. g. i -7.+,,\\--*_**_*.. ~

    • ~

W. - 1 w;m..m " - ** **"*-*,"

  • _* *-. -- -

" * * * * ~ ' ' ' ~ ~ 7 s m. 80 o N 90000154 sN. y N ...,_.m~..u._, %*r [ ...e a*- r y Es 256 t ctutaAL sucTsc coa & ANT atomic powta soustermt etpL ,E111L.ni.... m.m m.n r.na, sinai smL C4ascese. m6 lasu B itNS AND N f i m i,if si 5, Hg t.e6 8 89. win.ec. i se o r es sme,.s

=c.u.uas.ao cr.0s 5NC rnucn=s uns a mn

= ) ft#.AGabeesy m. Wit %.1ve r ae a t.e.a,ewa w <an. sm,s.e s,s h m.1g plot Pt.W a J :s a. se (,.( edde a s.,.. .,o,, es ee,v.e.a.l me.,s.,s. r.,, esas g{g Qg .$.es. **

  • a.

4 F6e f &.4k hig peta.n.,,w .u a.:, i 4 804 s w,,,. on corn m=u,.,,, '* *

  • FM18P ' ' ' ' M ed M

+ {

== es - ma. P' 4 'W.O.2299 s-"- ten,ts. t M Iz[d*L S ow & - -

_ - m

U U U u WG W 3 i 23 4 4

pit,

..,.."J 1 _3 3.'.1 T ' 1.1 1 ..l.[.4iji'; l..1:..l. i'jj 4r. 4 ia a l -.1. T, 1 -.. __p_. .. 4 .F22'MSLhl __l J. p-p

4..

1 _L ~ 8-t-i W 1.... " + ;

  • i 2.1 i.,

. A__. y.. -Q .}..q.. g.. _ t ;_ ._.a_. L l L. .....c. i. t _t. . 3.p t h 3 {. J.; ,.a.. ;__;. _ 3,., :.. l j

1. L J

t... H F.{_- _.,_..q..9.}.p j..4.; p 3,.3.,,J'.. . ;.j. i. ,t.,.. ..ii.,. 3 I ..{.. .4 .i 7 .j.l. . j i, l_ .]j.__.. . p. ,4'..,. .,...pg. ; 7 ..__.h..j }.. ... 9 '(l -4.y 4.q ._L._. J _,..A 4_...g_).. 1 a.. 4. }, ._.f .q. . l.. .,'l!r1-j. 3.._}.... .s .w 7 .a_._ ..i...., .. r g I. - l q. .,j.. 4.

  • y 4 J.. h.,

1. l' j l ' h. j. . _-) J J. s ' p

4., g,.,

.i t - - i 4 '!-+Y --- F}-- t " v- - H i + - 3.. . J..,. 1 4_J., - 4 4.,, p...l..,.i. -t

d..,.r

' i-3 J..._ i..H.. ": 19

4.. j

. ;_. ~.. 4 4. p.. --. 4.:.; %......a.aw i.. :...; .! j _t.4 m.L.:. ._ 4. s.2 . '.j.4. ;,1.J aa.4_; 3q.- a .p j p.. j. p;.: q _3 . i 4.p_ _ g... ; t.. i l. ?] {.. l_. a 1. i 3.., t _J a_ !,- ,...:. } a l. 4 __,t i l. l. J ' _4._. ..1 _p L . 2 m .:, 4 4 a. . !-H M .a..L s .i. . i.!...~..f. 3 t r j. a,i,j j [.J !..

  • 4.

. 4. ; 4. _!.;. ... ;. ;.1.

. g.

...T. j;l _p 1.... 'J ..,..j.q.. ".. _:.;.;.a+., .e , p., o. .-+};g--_ ..H a..-j ya.;_3.:.+-. [ .j..;,:i. j

t..j a t. p p q.

i t- ;, ',,i.,i.. p.. .l.+.T r,. t-- t i +,e ii.,,. pl m,--- g q'- w _p. p..,, .;,..._. n.. ._. r. r i ,,m,i..;- +3 i " ~ "H -

.M;t 1-

.. T-

  • iiti

-. o ',' 'i_.'.. P;._g i ,._.p. ;. ;,.. .. 7__ ._...__t_p' i:44 ! Ps l

: ' ' ! ! F,"

,.j. .l. t .L...q. -ii i .__j.. 2 ,4...._ .} J, p o t. __1 . I. 6.,.i..{ 4__ Wi .t - % !!:::i -;H M J g.15 [ q . _p_y - 44 9 ._..+-H I i'-HlN.. .., f. ' '- '_4.I ..i. C~/? _. 7:_. 'i i ii'.._L.2_-- ' i ' W. i

4_t..

w w .{.. ..J' 1. v '. i i i, i _J [ s. i i J_. ..Tl i i i u i e i: i i ti c is e ,1 i i i i- - y_ N +- 1~ E i w _;r:T .. _J I u -H-h iT A+-+ y TOTAL STILLWATER LEVELi \\ '+- dt-ie..(INCLUDING,_. WIND & WAVE SE.TU.P)t t> z J Z.._ +. .

  • v i

_.J .2 ,s i_ _,I iiI 't i I i M ._}b l _l.. II3 3 8 h p_ i ' '.. wL 1.,,_..+ ..i I f""" .;..T.. i i l 'i .t +. i., ~It,g i .9 1 i 4 _g_ 3 ..g ~ ~ . L.} .}. i .._q' _.i.} .. j.. J., i u k- . a 'I t i _}-_t-_ l l _ _qy__.. r _i . J..._.__. i j.. 4 4 ._g _...,_ p _ 2...,.._ l p-l 4g .J. y. ...] _ ' a..___ _._..t pj ; y j. + ni . __. {.._ _._2 4 ...a.. ....i. ' _i .__._a L-- 1 T. i i L._ .1 .{. _._ L J _. _4 ._L. t_ 4.J. .. 4._ . 4.. __J.! 1 ;.. ._.;.3.! 4 t. .l . a. i ''T+"+ 7 '--!, a. 'I4' I i i" '! -2 -1 0 +1 +2 +3 +4 TIME (HOURS) SINCE PMH STILLWATER LEVEL AT OPEN C0AST (ISLAND BEACH) l i PMH STILLWATER LEVEL 90000155 j j e AT OYSTER CREEK NUCLEAR UNIT I L c Q PLATE 3 l J

mm -m l\\ A\\ 1 InL m a 3 7 7 3,. p +, 3 i.. ..,' r y f _ -..,. ~... , q '. g .a-s. ~ y,C4 s, ty-. ', } u. g,i ~ ; l:,..,, w,. ,N' / ...,;g" g. 3,% ~ .,. f, *.g. /j..:.. .. ; - -;. y.t,. (s/ - %.,,,,,yf',

,,.,3 4

\\. - y. u m \\ r %. ?.7 f-g,. ,,,i .s.c 3 f.

--n

.f f ,=s.. e 3..c.. a , f. .,:.;r,,y.s,. ',.. ~ s.s Y. s, .-a. ',, J'%r A~q ' ' WY t: y,. ./ ^%. (._. ~.---

  • =..c.h. ts..% ' * ;.-

c ".*.*Q~..- _ M K \\.h,). W. >,_~' ^ Qn', ~ !.;h* ?. ':.' _ %_ G'. :: 5.L

  • ll ". #D fy % '*}

\\ ~ ' " - s eyf %"/ Q ~ if l? _,.k i --M,. ~Q

,=>.

v.- / w 4 ' ._,,.,,. ; ;..f>.;,.. e,.4 .r y.;.&rr,%... ca, ~ s dy .h<.: i 1.] (.1 y o,,,. x., 6,g

2..r:,,7 L. e

~;- '. . rc gi s .s.t.r. s +. w p,o,e w,. -)e ;..,,r,,.,,,,, ,1 e. . ;,~,- -..- w 7e-Ng.,.

1.. : L x........

y .8y y. .;. ~ y,'. v p- ., -,,)t r. g ,M; ;.,.' ;. i ?,.*,. ] s'g p.g*

.m e

s, / ~ ,.'..~..-.;;- ;+; ;'.*9 n,s,- r t.,,,,f, g.,; W,r h.q. y/ i w 1,""-*'N,.e i ,. ~ ,f--- - a u w. s. .t .:L,. ' %g.I y *,, + ]".Z.,,, g,l *A,.s.,4. y, . a,'% v %o rst f

7

,.r" - ks .,<,g*. ,M N h. h4... -. %,,p-h,qo t ../... s,,,,, N.,K' ) y( N'*['.* d. i'. ' 3 "'*.,,' s,.' N g n.'. 1,. . V M. ,.:.'N _ *t.- 7.% ^ b e..,=.-.'. ..r 3.q.: r sa w, -. A;. p j.- w y-m . +,,.,., #,.s,

g..

~ ..,. -. A... .% f %, ,s

e,..

gV ..._.s r ...3 , :./ . -- 5 $' N~ 6'. ?.t.'. R .1.... Y. - ~' _.a _ ___... L, ~ $E,dMr.Qc:i..*.#. bd ., ^l,'^ @' 5 ' --. > u a.+-n x... p- %.s :..i.M... 6' ~;i.~.,W ~ '..i.. D- -e 1 ,na a r..... r..w w, .,g..,. o ma ...m -t:. -.:. ::t q., -. ~.-.~ "r. .::../-;--- ? _4w%- ::: . ;.~.,.... 7

i
: _...

q ~ . m;.. ,,r -/ -- r*s ~ %.-&. '.:. :;5g; !;. (W. :v:... g:+5. e :..

r P

. - J;*:r.= 's:.. n.. c' y ::: 5

c n.. -k.

s +c: -.,

A.\\

. t.*a: p:) / /.- .g.. y~~...,_. z.:. -. - ^ a M..;' - A,*J \\. b ~ ; TN =. I.,~ p.: APPR" (:. < f,* J.;. ~ * '.,. ; or sTe'xWATE UM V7 w -2. _.- n -- ; .s.. -. o'. . - ~. - ev TRAvtesn .~ ??-~.. - -. - - ., :),, s c .p - -,..-. k. c,n .,-a #l,, y ,--+ :P =. . ;;:g a, .,u, -; c.S .s r<w....r.;.. .e... i ... n..... ,A -.,w. ,%;' ' %m..,. s.- c_ ).g... Y~ A 2 : z.. . '.'... :.-...c. - '1 ~~ ~ ar t p- .,.,/a~., ~,.n.. . w' 9-sro g YR -, >, ~ .s-Q\\. ::'g -

$,;:4-y : q g n.-

) ? --? h. 4. :. ui - : N!*' 1 &fRst,.s., n 4

  • L c:.-- c~: :3 &.: ~_:.y-r:,.,.;x% ::f".3.~c.% 5. %

-:...,j ~ ~:.8 c 2~~ ~ n .m 4 -. ;s.s 3- ~ .- -. :.,4p:;.:. .~ : e. _-.1:.:. .s,. ,..a Y, ;b~ g.9 \\~s b,. A,.. - c 1 y ,p. e.

  • "' f *

[ l - 1 l, Yr ?i *? fp' = {A:./.,,,A : J&.,.,, - v 4.% % / .s ,( Y,..,,.. * - s

c

?' t :. y:. pr- --.::- ~., s

j
$. s o.a - s,

~ ..y, p.. *. ) \\ DL/ -s..+ E W{,/g... ~ #"~N-, *

y..,r,.. ~ "? # ~~;--(.,,5 $ $ '. m '[ A p s,

<, m. -c. r% sYi~ / ~ ~~- .e .2 s.e~' ~- c em uv'"9~7 gj:),s-Q. yr-. si V*~ f- - =- .,;,';;, R Q - 4.y-p.- 4 f;4= k.^

Y-

.itA y.:g. a + 3.,,,,,,,, h Y .,.$v. Q+.j'- i.s, \\ ur~r..R . _ ~ - 2 <?:e. n..e- _. - ? 3.,..,. ;,, p. &'-@~. e = = ;x ; Gh

  • r

~ ~ ' E ~ e -s p. e

  • = r+.',

i , y#.

  • T~~'**...-'

,a .,4

== 'fh",.,,, ;,, e& * '.Q,,z. W g", &Q, E" 5_. _a.. j .X Q..+' 's g,,,

  • A.'.?!

W 4., ; d,]: i -~ V ~ - t. + at y.. f, 3 ;. & ~~ , ~~ #.\\,, u,,,,,,ek... T%/.g f,,.~ %.c e, -[ ~ "'"' s : Q>9 :$. j . L,. cc Q s. :..,, .s. r. ')~ e aw 's. .w. g ,.H h- ,,,,. -.N u.,.n-,.-.-,M..... fn.. ~ -e

  • s.,. ;., a*,

s t i d.1 -..,. - d /- t -

  1. '""_,.---__*-a,

,J ......~ y, - A,a s. .V..e. ,.s. l y 1-o.

  • , '*:'.. ~:.'
    • * :s s~

s.[ . J .,2., %l-l., - l S ._. T-[Tk. i.w,".11-s,.[~".' '. '..**.., t, i S.# .Q, ~.,-," p: Q ~~C '-4 #., e ~.-*'.<=',p** ',Y

  • g.,, -

i j l -4 ,,,,,,y. -+F,,,: e'. ,..y 'g- - = ~ .g. ~ /, k,. l ' P a. f l Y,-d ")i.,w.' N. ',; y.' -,. e ~'s,,~" .t .y -, p -,.,. w< Ly1., v. n.. h: :-... ~, . ~- ~,,, s a a .y,,' ..rb w. N 's sh.,c u, v e.,,7,g*,-;,. Loxc T s .,,,**s, f - h...-.:.-.,. s ..rz

  • '4 f,Q

,.g ' *, [. t6% ee ~ =*. 9 . Y

      • ag.

M/,,, ^ - [ n

  • * :)s

/,, i - ',,+. - -= ;- s.; - %;\\ u' ,.,. 7 l .i*[, E [ b 90000156 k \\ C,... */ 5 [Ni.

) W (l i e y, I I,! I 'f = / l -., :,1 ,,f.; '. .r

  • r.

,i 1 -4 I'\\ r, 7 ,n.e. !.,.g i* - e .r-6 ,i,,r ( [ k . f.;.. A V i f i t I, s, ..T ( , e. l i L .A C E.Y c.,. ' 1 ?> y 4 t** -~ a ,/ E, ,3 s'**', l'

  • 3 i

. w ,.t..: ~. i . o i ..+ ... v. 8 s y u = c' :,." s. i' A T L A N T 1 C m . '.;{ & Y ~" O C E A N, .g. \\. h Ab. i,i e',, ~ ~ (: ....f i ._,., n - c., .w, s' , x i.L.3w ,I :. 4 .<.'l. e l. {;.t. 'T I /5 q ' N o. f } } h(') f ' * - T.. * ~.% 1 n ' D., j - a s.e ~#- ,/ o ... :.. g a ..+p%w(. 2 i s .6.. xi sam s-i r' w,. e \\ y g m-t i... a ~. !; ',7( _Q **,,,/. + - 3u. 4. p '.,.3... ; a 'n / . s 900gg1 s.7 r w . ;..?. .g g f. T,e,. s. .s a.v s. s i c o. y. w. --: c. s. \\ , ' ' I, / p.C's . 9 2 k. J / 'a STORM TRAVERSE .A, g g ,..' l he. j e*-- ' " g = f ht inso h,$/-

  • -- (N#p

\\ \\ 'q ~i+sh \\ (, ',. \\, 5, [ f A s =% __.-' _;r.

=m r *

\\ ','.. '.,

s..j..ap.-

t g,. 6 g '- a u m P s. s ]. i N s fij.,;;y,.,.,,,,,, p, g g ' g 2,. E - 0*.'2**.' '** t "*2 * *..?'"O

  • t'.**f 7 ;"

v 7 % '...' 8 EA CD . p h., f,;^., .4 r.Q.K I'

  • ~~~;'^**'*

s,_ /..,/ h.N gj at riatutts, "l- . g9,jm .h..,.. r. e:. - '*- r.onxco ive.n. w.,

a. mas. c o.ar t.ic..sr

., g 3,

s., g.,.

._.>a .6q.-y y aamco a n== = ...... ~., r sa a ar r* a

DMD O D TK A I M LM f E dM 120 l I 1 I 3 ! l i I j t I l E l I .l

  • I i 3 i,a e

i , I i-i e. ' i i i i F - .,,(,j. ! >( d t i ' ',,, g !g i I t 4 ._b.a_',I I '8 I 'A..,...wj) i ..p J_. 46 3._ _ >l

4 L.. -

i . a. a.. 42. a,. l s.:.,..__-.r..: a _.. ~. x: i.' i . i --- N' -...L. , i A - a e

4. H ', '

.. A .;..p._ i 5 ! > 't .4 ','l L 4. J. J J a.J _... . _ y. 4. i ,'w,,'..y. a..... y-y + .L -,-46, ---.-t-_ -te - ..e E - 4,1..- d a ..4 2..

  • ' = ii',

i _,_.1..- ..44_ 4 54 ' m.se ..'.a... 100

i. '

- 4 _.. ' i i iI ' ' - i ._..J..__. . i.t.u +;. . i.. ;. ... ; u a.:.2 Z l - ' i .,_./_ 4. .....64 J _ L.4AL ...L.4J. 7;;'l , i., I I I : c. g ';1........, ..... 4 4.e i 'a : ' J L4., 4.. (._. _ 4.g ....l...._ a...

      • ? 't* *t b..

8 4 W-i!, -j. J---h l' ".\\-----6-- , TN-h*/ i o ...,4...-. iA.y ,.14...La% amL. 'J'3 ~\\._ LLI ll ,p w' 90 .a ,,a;, ,:9.e_..+....+ ~_ +a.,+a.. m. pa.

,- _p L..,_.

.-?...!-*_t.*. -* _" a*..*,.-t T "t v. m j n'"r T*"." - *. 4 1 I ' p. J 4 4., a4.4

4. 4 _ *

.:. 4 iI !4' JJw i i O h 's .. -. J...9.. :.. a....a..., i I ...p.4.;, a_, .Ja. ! E ._ a.. ... 7 a_,.u _._u l l l l' 4,' .i---- 3; !.i ' [k... b. .. a a ~ " ~ " ~~~~" '"~l

  • i-id --d

--+ b ' l "ri-ta - - t N " ' - " ~~ 80 ._}._.aa 4 Ja - iiie i -. i - m_ g__ r;+.,.,M_.,.,, .n i_ -- e- ._2._: aa .s .,..a > - -,, i 1. I ..p: z .a. w .a.L. ma n m. s,... e I'l,_. _. 3". p,., a - ia. .._._6. :,3.p _ ' ' g' ' :_ a,i a., a.4 1., a _.,.;a... ...w..;. 4. z + i :; J _.: a- ".r..d..', r j. ha. ', ; I.1..v,-_-M., ; -- ....' a l. ' l ' ' l y.p. -- . --- r l g _H;+,.-{.,..v4 4. 6--- + - - i ,..c4 _.c.. .... e ;, ,,i ....e i O ) u 70 a.- ..; y .p+. _ 4. ....pp J.p., a.pg, a.a 4

,,, ;.p_gL;_;

4

.4... pJ...

a. i i-4 i 1 r - ...J. 6- .pq a.nr.

,-..-. j-p..H.r....M a...J "a. !-

,.i ' 7m. ..i._ _-j4-,.q.. +. L d- ' l ', ' l l, + - 5 . 2_; H ; - j 7" - y ;i,l! p p._ ta ' '...:.u. p.;4 i

  • _- _ L- '-....:

...+.-+..4--- i-_.r. q- ._. i. .._,. u.1._ i' i .>. i p . 'I : ..r.. li-i: ,,, : _p 60 a..,.,2 p. , _ _ _. _..a..,,. .,_m. m. ', g i ',', - i - J,,,. i1 i '

4.
..4;

...4.+.g.'.,_.... Lp _L u.: , 4 p._z i . + i>!. o o.m.. 2 a.:. +., a.

,.2.

- - Ja aa '4a '-. a pp.;.

.,.4..h.--R t

ii' i',': . 2. { }.. J j J. p,. : ' ,; a.g,. .. s. . I a_.;j. 4.4. a

. p.r ~.3

...a.r...a p.a ..; 4, i ,.a, 2 ,2a

p.... a a_...;....

.. t;. p... :.... a.g 4,. g4 .a _... u_ .m. _. a _,... :,. 4. .g ; ;,2.g i 9__. .g _.. .. _. p..... _4. 50 -1.0 -0.5 0.0 +0.5 +1.0 +1.5 +2.0 +2.5 TIME (HOURS) SINCE PMH STILLWATER LEVEL AT OPEN C0AST (ISLAND BEACH) 4 COMPONENT WIND PROFILE FOR 5 NAUTICAL MILE FETCH (FETCH SHOWN ON PLATES 4 & 6) L 90000158 I 'me

(

SITE 30 30 l 22.0' WITH WAVE SETUP EL.+23' 21.0' WITH WIND SETUP N0DE S 20 20 ....-y LINE MEAN WATER SURFACE 7 f( $fk! ~ [ ii. i d@o%. g's M 10 .c:.;....Agg!! !!!:i:iig-10 - hi M .v.._ fi{i [ d i @ _O C E A

.:.;.,xS M A I.N L A N D i.: '*h BARNEGAT BAY _
gjj;jj :.

iiffis ji;j;j]ig _jfi!BEACHN " 0 m:. "$MF:W:::i::s $: " 4i4.. ."I ni? :':E:' " " ^ ^ ('t 3 -mi.:::: .c . m... r:i::; vi:5:.;g_. p. y.9I ;i '-i {,t..; e,.;-), ;, ~ 77-g. , jf.g f

j:,3,

.;;g..; -,WT .,....: r !.:iiipiefi.W.f M6[;; ~ !!.$ da d$f' M s.'ij3t:. ...:M. ;vg:: &# l: a: k::: WS;h fBs - - 2P si!!

':5 "

iiiji ?:3~+:: Wiin's. :i:::::_ .iiffI ' ~ " ' -10 Nimi!.2":i i as i::: -10 i

o z p.?:6i

...::. 5 :- it.s.: vf;;!!! sin gi:?h:: s::i.r::ss ... e ^= m .$!. 2 '"!

.NI:.:..,

ug.,- yp. k-; h.ni:i.i.Q:.::!:yilifjyYg A[Y .;_;.gg..:e..,.: \\..,.... - -

mIt
...{..

1.i i. 27.; ~ y:.j.: u .: = -. y ;q.:. +p.:.; y..:::;; -20 ~ -20 ]0 0 1.0 2.0 3.0 4.0 h DISTANCE (NAUTICAL MILES) -ELEVATION (FEET, MSL) L f a! 8 STORM' TRAVERSE DEPTH PROFILE-o N O C) O m U"3 3U z '- E-~l - - r 1 1~ - ~~

O D

  • g 3'{

_ c c Ju W Ju 16 22 .].. ...j - _i.a ._{ 4 . i. g.'""K. i.y, . L.,. . } T'. J _. g 3 ,.,4. .)^ .. _ [.

  • f ;s, J..

j p. l8 4_ _ a.. .{ 2

4. pl _,..q_.#

g,4_ } } ..j g. q' _ ...._.._.g. E 3 h A. _.., aw i - *i i l ..i.,f, ; ; l' M ll', ;, 3 r N ,,,;,,, _ T y.f_ i* i J i .j ,i i g \\ i r i /1 1 3 m N' i ii J 6 Ii l il 614 e e i __g,'" j j ,l_. . ; J. i n. i Mi i' i L. i i t i a i e j. L 1' ! ii /M i t 41:ll t,rh. .4 J Nlll$ l l ll ._-1-t er r ~ c n ,,i.,,,, 12 )g 4 _.] lf "j-[ IIAL'.[.%.j:>l ( [(ff'{ { I!'!! h 4g..p+f._. p4 4.p,g_.![W_.. __...;_l y,

z,l;-

7,7, 2.: l i 4 .g._t ,1i i .a. L. I 3' y.

f..}

. ! L. ~. i 'l g [ -- l r - b- -{--- -t f, !i,ll ' k l. lh

. 10 5

i + i ',oT, _ ' ' j _m 4.. _.._t 22 .a - m _.p_...f l ' ;' 4 lll 7 w

C L t__ _f.

.J.. i J. j_l: i w .n J...l'. H s. '_.A.. w . j.:. .l T .J

i..

u. _.L_.. .__. a y} 11. h. r dM -t + l _p -t {- -- t g:. ;4___. d.. .l.. %. i L 4 ..f.-i-i: n-r U 1 .J._; C ii i, w . a, x.>i., i g 2 "i g 4 '-f-

hy l

g .__- -1...y W d j '-. i4,-H-l'l y.. W ~~ f $.2.) 3 l -* 1 } i, ,ig, i d..!.Y. ' ' i 1 W 2.I ].

4..}

I .q ' ;q I;D;:;\\; i g 2 .__ g. .. p. 3 j_j.j.;.j. ;4 -i lit- - A-t-H l W-i 4 nW h -ri t._ e iie iA i e i i i M a i i e iJ e - L': li.44~m 'T' i! '+ i s' ' i ' i i 'l y gq.._p _f. T_i K. __!._. .. _/r..._ Tj.4 7',~}. g,..- Hb = BREAKING WAVE HEIGHT , _L. Hs = SIGNIFICANT WAVE HEIGHT-b.CT_:j..._ ___.:: ~ !:. Hm = MAXIMUM WAVE HEIGHT [ 10.'.g : :.- (1 PERCENT WAVE IN h THIS ANALYSIS) .4 P 3 :.' r .~:! I4 I I 1 l,l Ts = SIGNIFICANT WAVE PERIOD-i .i ~

; i Hb i l 14-lll l ;'

l 4_ ..T_7! ~ 'T ~,(i i l y;s.\\j l. 7--g ; i f _^l 3. $.I;; i= _ p i.. j .q' ~ ~ ~ 8 L. ' _. ..j LJg' _' _' j j_. _. ;y,j, Q 6 2 _sc_.._..k.._ s .w z:.. j s ii x a: o _ / i w $a.o. r .. I 4' u. w w. e _.!.... M' 4' ' JTt 0 q ..a. > U"!.. _j _.i. 4 i h. i .+.;. _ -1.0 0.0 +1.0 +2.0 +3.0 +4.0 TIME (HOURS) WAVE CHARACTERISTICS & STILLWATER t . LEVELS VS. TIME 90000160 Pt. ATE 7 'l

n ~ l_; N { h h { h b.h i \\ /-' f / / i / / i / ,/ r ,I / / <l l It','.:';t.'.T. !;! 4'. # ffir% i / 1 i i i l 'l1 1 I l I i r I a l I l I,'-...,---_......._..... ,,,,,,T i wr WT ._.3%, ~,, v - ~,.. 4 t u -s m n I 1 l. t ..w.4 i ame,. N i.c I s..- .e

  1. gg 9 -f

--l .,,,,.,3_ g - - S *

y l

n-..,.~,.-- s. .l l fpgr% __,.- m

c l.
,n
,-_

y_.f,--- g; y&w j p .) ' ~ ~

- - n v nl l f-l.

<rse g -,, ._.. rc 3 d "l

  • ,}),

r,1 .+ it. L,. m\\' M;& - m n.c. ~, l / -N-d v .gx q - q ecj g' 7. t s --.;r s-V .w, ~ t 9, ( e.s e.s..

    • *a86,,j';,e gg s(

w.j

d. -

l s D i, .Y Y q- /', 3 s

r,i

.~x.: -T-l h. i t, 'g,a. m: ',,s-. ',,.s' E4314 '. 7 **** -c2L. y / ::".g . cp g e =-_ .7 L. s) \\ n.es.or '\\ M'. 184 i ./' .jp s a N +# ,y. g t y,;p,:y- ,/ -. n... r.. i,. 1-4 ,/ s,. l u y..., l-S,. + r 5., w; *".t:Gr. .-.,,m..{ <w-m g q / $ mj i: i 1 \\ 's j'/* a ssa f[*- W,)'/ ,/ / i ).' s 3 \\, .,5, t g .; ' % / / i.. \\ 3 4 a., a a- \\ \\ ,,9, / N \\ y,gy s i .e.... e.e.v.,...........\\ s, x- -gf. \\s,'s 4 s x s 4 .- x, s s. s )s i ; 2.2 =.r s s 's s w ~ JW EE= 9000016i. s. i ~ . a t .___._i ._a = = -. - - s# ._1._. 4wn.wwum ur-.=r-- _t:aw.*ssa-e -3 f6 3. stes 1st 2MJ KK?AL B A.F* tasoftonen 6tD-.SMu Af'% .- - e e

g 'g

  • I

) {, f .I i .( i o j] l l$ i

8

,t-i.f i i 5,b ! \\}\\ i pe.s.- - i i. ....*ae++=} FTase ,,e , giv \\ ,, c.- .M i .t. 7 _, R. ... e. o ~ A

p;\\

f',@~,*",, j,-. a...: ~ h \\. ./ -. ;.: n: ]k',. 4' ed E'. f:, Fv E'N' Ep _..=- *_ -. s' aua ;/ ]jE-7 C. 5:TE I 1 .% _._ J + -h-- 7 / g 1 u.w,, L* 9) i,,,, e _ -[ : ' g I 7 a, - w .c \\ t s - mm3

s. i t

o' "g m o.4 ",;ci. t i, l! i t i a m.. i a. ,i j !u2 2 v. .. "p: eg;p,;~j~. f

    • h' "E _ w -~~~ D....

, a..:. f " ~ a.V " ~ ~~~~'L -.,, l','" O' -t "r**M- .m e> 3.d / g 7;;..;.,g I ,w~ J, %' u,,,,,, 1 2 ~' m \\ ps,2. - l 3 .iee .m c eT .df].[ H 90000162 F s v..s ,-... ~ y i e e snit ts-4 e ee8. l 1, 0@ +.... \\ a- _-,a I~{ sac sues==a i i ems uoRoc.=c DeresNUM5 AMD CDetSTauC1tAS gt., M'gi. y one emus. a T. l / 5 .. / a.....,., S nc Pt.AN ..ao '%.,,'"'w 4 KRSEY CENTRAL POWER 4 LKsHT CEL 9 ,w,. orsvra car.1x statum nawr es %d~~ _'*;.-7 Y *__aJ 4==LA [ .c ~ W.O. 2299 DWCL AU3ET caurs a woont

b, ' t o ")g ]o' o q.. s e I O b b i / i ?- g a .5 /. 34 [4I 4.e- - -p -._ - g,., ,*l }{ws,anoss }~~~ / i / N.,,. g / r f' "T" e* 6.s. su sa.os [t N e 6 6 o ---- 1L 6 l \\ J r w},y i i o .a. . - w a [1+ I INTAKE ( tes n > =,g. ,g S T A u C, T u A L [,* * *,'f'.' g E' - 4 7M+ .s omd.s a 8,,7_ / '^ w l, [C*.-p.--

,.'d._E...

/ I% ~ ~: 1 ' ,o n d..*r" ' " ',q e f ~ ),,' / " ~ #b... _ _ _ _ _ _ _ _ d _ _ - M/ ' / i ",;.T.~.s. T -* r j 1 l l I l f.l [l.f 8 # g u.j gca.see ns. po'1.I.f l.' r e 'p i '_ f s* .. ~ ,~6 7, g 3 r4g 8 I g b

  • ,,,[
  • g#

ib .e/ o4~~ t v g~ 6

1) P Of f"*.4.ap a*
  • a L-=

.3 ,.s .... ~, s ,t,..a,,*-' } i u.......... $h .nm z... <- p 5 9 !/,f ,s n-- I lf e..

6....

t e. n.e- ,,s .t / 'fy,;,';.. _k.. _ l c c. .....,u.-. t i s w s.* s. ns ti-o. s j l \\ PLAN 1

gon,

....w..- - snaar os go -,' uw 'a'-** thleAl b!A.FC106M1 t ~;=N 1 / u u;,.., y xx-' -,= g,,i~" r =: :, / i ' yt - a ,n on r- _U ' a a uar orneii.de SECTION A-A ,.3, s .e '. ' ' i r put s.ws-I Jeeps is Ae'#* ( pot aaae n,

  • 3 --ees.d4IWW ne e,.4 a.4

( p.stumaa voet's ass >=e mesef p.- ---- p f ,,,,g l ,D' pk !_g. - 'd ' f. e #" I etata s TM g 4% y7 4v'.., f ~* ,.,y,,,,, y -,,,,.g,., s ,,, jg .ge war eartM i os v f, ,g-w, a '=&1 - l 4' s ~ - - ,, u,.,a e-n ,r so-o-y /U *W 8' s s l ( s..g.ga L.

        • 8"*

\\ 6 e E1.Es!.~ 10 N (ALONG FACE OF INTAKE STRUCTURE & C w TUNNEL) S tat t I"

  • t0 O" 90000163 r n <9 u wa.ty_,_o_.-9y.93w... me.' t-.e,ai es

%~ ity gw

iarme :: -c.

s sJ u.c o..u a ac o w E.Y' N YJ44= 1

- -....y <r 1 gem fao].D~

  • ]D f \\

d g f6 oJuul.

=

f N p \\ T%!.. m ', ' 8, ~' ~ r ~~ ~~ ' ,d Q.t ) ,_ !".[f ^- i ./ i

y.....

3: s 1 4_ g. ,-~.,'c' _M l .s me v t. A L}. ~, REACtoa .,~, p t s ui t o.uo E. 7 1 t4 p- -7_,,,. t e V A b,N L B u t L D #.J G D o i ' J,svaa caen. j _p y# i g - g.. ..._../ 6 W DA AIM atst TREWCH PLAN a t I b ... ~. i. nons ,m.~..,__.....,. ,t, . ~.......,.. ~5,.,,,.,.,_-- , ~.. m,.:r =.:: ::.:: r.:=~ ~. ~~~,. ~- ~.. ,= GAL s s =.' 90000164 LE CTIC N. E. Is DR AaM AGL TREN(M ..,,,,.t m s2 u a o.,, e i $f% m ss. u.e. ~. 6 s.,,;p q ]I M-

t. o.be%

.. f b *R *

  • GENERAL ELECTRIC CO,MPANY l

p yg,J',p. ) i.i,i...'.',,.s w m 2 aro.ic ro.cn touaus ocn. r 'd * * ' X 'r n., - r de s -** .e j 1 q, Q, ! *l. i g, . %'.#,=c g.., -.. _ g~ 1 ,i

    • ~~ss-<

e

    • w retrAs,,aeunws Ano Rot.ucions ew.

c7sr ~ " ", ' t o.,** t -,r.,...r s L Lc 3 INIAKl C TUROWi AR[A l IIClail0W t f.ACKillL PL AN ( SEcil0N C.C SICTIONS 5(461 4'*18 0 JERSEY CENTRAL POWER & LJGHT CO. OYSTER CAE2X STATIDet.Utiff #4 [,'",,*,"',,.;**

    1. h io.in &~t-l ***'o.e e, I tt*.,_

N ~. W.O. 2299 41 4-e,,,,rs. oo.,e f ^ l'* owc mc*

, f -.c e _, m, ~~ _. -. D T -.~ .e e m

e. AL 2..k
s

' ' * * ' * ~ ~ * * ' - ':* e"~~ W p- _, ~.y,, a..., ] ?[., JQ L. f '-Q

*'b 3

h ,:~ . G'T=_.,,p; w;; a '.;! . ;., - Q:.j y-~k,; L ' ^ k a f ' * ", ..-l !,'.i. h :.R Y. ' ' Q Q.h 'n. ; r '~< i '1 q' 3.w s:w&~~.or,

n. ',

~

  • r.-Q::ifi'f k:,- : x~?I'." y w:7 :;. e '.

j [,,,y?,4.y,. 1 [,,.. *,)*. * ?@,.Q?,ft }s % ~ & f M -a. ~ n x * *

  • ns *

~~.s -7 N-f.% r 3 -s,/,, < p..* )e y;. +==s~,',l / D

7/
    • f,' @**'N,,

[ g'*

  • ~~..-J.p.'n.*....

q s .,.~

{.+.

.... se' s.u g..,.:- '. ?,#. -) ? %. ^c s< 1" r M., _ &*. *f,5'6l**l Eq . 3 m +

  • O *.,

1' ~. m %.m ^ 6;.,

  • k.' 4;~$' f D i@f *.l~

J. ' ; t"$ I 4 . j& ht ~ '- @y . n.-: L%.51.'.~e; :. " M M-n=2hl, 4.'d d c?. i~q % ': W ~W.W : n',O g,, y p.: t - 3., 'w..b;':'; 9,,+' *. ~%s a ~ %e ,.y ~ VQm C - f,) A.O ...: p. r., e 7 s . ~..

  • c. 3. :

. -j. =>-~_J..c~,. -[4. & g,a. ,,.. r w;.

.4,w*

~. - - [* {.. .4 c : 4. A,.,,, ~~

4 -h.. r v,v" pu.. -

~.,1 s. y- ., 5%. -S. s m. t,:.- w d,, = ~ x~.,, r e -y g m . k ;^~ ., ~f \\ $D r j$$fb$* f'. .I k~ ft.f":*

    • t. &
  • Q & O "g.R, J.* y&[,,f T N

? ' ~% ff-f}?.& ^ _ ~'~.f**d *l!h,' i??-Wkh*..Z4'"hf [l * "Ws

  • fj.

&&Y kk b&_.h-N -[ l

  • ~

~$~_ 5, .*. l ~~ ~ 5'

  • ;~.;

,,,.~.$.*Y Nr :. f5% k --$ $~5h h b5 ~ f. ' -"~.. 'b'f. b.*?*; G.gfkE.7.T %u eggf.; v?MifMMdW.., Ze(Q &f;^f. Ef ( Q? f-4 '. $-1l.%.:E M. 't: f - s

  • e @ A.r-,v.h iwege::%

~ g m. eu cr~Ap.,g_,. V, n -@rs, a w1 mG / y, d*. ~.4 s* ' 'go p 'e.M; -'r 2 s-yL*;#3" ,, n.w* ; c.%,, b hl,& Q,1 i f f.:.<:::-9 . ?@0%%Q ': 4 %f,h. t Q; ..sc,.,~,. s,e... r-W w.e,.,-w.:n y,='.. g..;.%.. - yg.~@;; W -. ..r' '. . 4-,l..: - ~s. z., w.. .- w.a m.-- . s. g'.W-TU Vp-- e cc.:. '

% ys.-i+;8kf.'*i.
  • f

-r,.. Y % '*. 'gy#h'"'m h:m.c - YJ.@* 'W,. ~ k h; ~~ ~ hf ~Lwpgc,' 5*rgM%,, s ~

  • Q,Plg&.'s.L~~.h*- -J,p'".~~;w f L, i.

v., d- . J.w!,SW "h&"w.'$~~~ Qs Of' NY~ WRSE' %, ~,,. x nq w. W. %n,.. - + t*'.l ,3,-s e-m c y< ' r~, .. f.,. l.5 :. & ;~.*fl^.* Qi h.~ ? ?- W + Q,Q~g, f '*?* '-j.

    • [-

a' sy,. .). w. m -.' > a 9:t

=

~~ p g '.,- yL Y m.+. - r e, ) ':s- < ;l9.., ? m,'Q8"' / , - m..g, .==e-i., rq a.. .g+-,v., w ,a, g im-d,- = --g - e T .,c '. ~ ' '. f, 4 s ; i / 4 /*h h- '- n. f** M Ts,* .1:. /s' I ^ W f ~{(- s.d )t,,"q; [ & ) Wi.A.,}- -c:A.ris:.+,. u 't < 7 'c. ~ 's A d ~

  • N,,e.,

^ vo - ~ g n. q y'> p.-) - p h. g ',s Wj n_),, #_ ' g,y s, e r e X..-> -n/&

  • Y?'

j. ~.f~ * . $C ) {, f. ( <#I ~.., / < R -b 7 ~'f h,'.'g, -N. w s r' - 4~--nd.. s n q 'v - 'k 4 + "7 '[.,. h % ' D_Ny,, ET , af bg,., -e $. 5, 4 N 7

f.,..,0Y $

r ' w.* ~ . ~.

  • l I
  • [ -]

5-rY

h. W ~.l~,\\.

Y + l 1 I ..~'[.. 3, ,f~*t.% M. *i,.'.. ' y.. s. i, 4.- l /l .1 I , ~. y*Wo-1. - =.... * %",N,' % a. gV, : %. N w -s % - l e ~... 9, /, I g .- i. gsy%.-;. s/ .;;.. 2.' t ~~% .~ v w d -.: po,. - ,p.n$-w: d,, n,*. - t a 'N \\ L08C ! '.?El-Y ' % ~, 'sN .eg--i:::-N e,.O2[t, =...%. ' 4 M).4.(4 ~ : n- & > s,c ~ =. a.y. -!( sN, g { ' b [%j-... d % e gggggj . k. -s. -::4 -j s J....- %. - 1 .., d'.* g., /UUUw3 ,b.D. :Y f' 1 1

. ' + 1 .}< b \\\\ U. k vu uuGJUUWubt 1" Oa. , y., es,. 4 ^- ,t ?..:. r r / 1; .~ ?A n \\ ..; :f.:.r. W .? i . 's < 4 . Q, ).

y g

'i /u:

i.' 'i g..

m.:.,. m:;. u.4:.bggn.h:, Hy.. q a ). L .,...~.r 1,. ? +. 1: e ,., K [" t.p t. y ( c h( [.' y';9 fv: 7 .y s, s 3 V*

s.. +

Q t. ~ >;) s ..=.. f< g ^ \\ ] J @g y .1 -\\ ~ 8 i s.v'){UN{'lL.\\ 1 't g s w e =""s 2

c. rRgl r,

S-i f r,. w L i-1* '- :w e Y '/ y 'h,i.(. ,A .,... - u. \\ ? ~. s., i .p ) '!, ?.Q*/s 'eee W{ Yc Qi:!hi N '~ ersx g 1:

  • \\ '.,.s,-

A,t l* o c W A,"_ / a?..A8 I e t q ~ .p n.. ;m\\p.

  • l.0 Ae\\

g<b= s; ),. wp 1 ./ c,yg. \\ ,t l* 7. s,. '~~~~ _~~~' ;t V *f. & ' E ... f.,.) r g *'p f. n.+ 1 5. }.,.y, ~ J-. 8 4 r.. uy ~ ( - Q f,h .v.J,.. _ em ign +- f f5..B %, g pl = d \\\\ L.. x ; p .y. Jz.h 4.g . ( q y; . s_. ^ H.. ., Og'8 0"..y.a.M 1 . " z e.. y. . -. f. 4 A k J 3 e. . &.. v..,:N... ...h-g. d '/ h<s., 90000166 4. s 4 r. ..u \\ \\. ). 4.*.,'.\\, P'$ M.k. 1, eouNoat?pgg c.OODED t.AND OF Ft 1 , p. a ~~ N ?, y \\ h( [y U h 'v Foa Ta cCURRENCES y Ad5 v. N' . rrn ) >, h.% - ( I" 'O. l.- a,na . v a. 1 .c 5 \\. p *..; y, g.:5 R J[' - ~~. s, AJ4N.,~.,. a. \\ \\\\ 'C o \\y - ~ bt.' k I,' g.w l v\\ \\ .w:i,,,,,, '~7* " ~ ~ [soe5 \\ .h ~ ( wh k' s t 'g -.w .,..xa. =w ( h hpgbl - :::.s.;. v:.- s .. m..r w S Lff-5 D

  • ~~'

ggggg(ECEI1 y .e as u, ~.-l.., :?;ey.9 g pg g e, p s i . r.h 1I ', ... a p> ?~

  • q.

=, ,,-.. a * " " s. y. pg to.

3y is t.. e:

ll. ~

- p 3; \\c o

s; s

t J.' I i \\ ..,,e N f 1 ' Docket No.;50-219-i.

5.

k

t

.3 t 4 4 i i t i .;r i 3 ATTACHMENT.E .i 1 - OYSTER CREEK NUCLEAR GENERATING' STATION CODES AND' STANDARDS-FOR- ' CATEGORY 1-STRUCTURES y: 90000167 t t 1 C l s r 1 t [ December, 1979 .'l e I h i f r/ --f... 1 r * , 4 ~ r-m v. .-v-.4 .-r . - * ~

e UShritllS g = OYSTER' CREEK b COMPONENT / SUBSYSTEM !QU.\\l.ITY GROUP-SEISMIC: RERARKS:-

. ?

f PLANT R. G. 1. 26-PLANT R.G. 1.29. . NOTE ~l DESIGN SRP 3.2.2 DESIGN SRP 3.2.1 g STRUCTURES ~ ~ ~c0 -1. REACTOR BLDG CLASS.I SEISMIC 3R.G. 1.29 : C.1 L O/ (V.3;5] ASME SEC VIII ^ CATEGORY..I:' o 2. DRYWELL,'IDRUS, VENTS 1962 Edition 4 I / CLASS I-. (SEE)' -O R.G. 1.29 C.1.o/ (V.3.5) 1270N 5 O ~ 3. CONTROL ROOM PANELS 1272N-5 CLASS-I .' I O.R.G. 1.29.C.1.n/ (V.3 ;5) 1271N '4. SPENT FUEL POOL SEC. VIII CLASS I. I' R.G.-1.29 C.1.1/ (V. 3. ! ASA, IEEE, ASTM, N/A i 5. VENT STACK AWS, HBFU 6' FED CLASS I NSI. (OBE) STATE 4 LOCAL 6. TURBINE BIDG. i . < CLASS-II l 7. RADWASTE BLDG. CLASS II~ NONSEISMIC' SEESRP;11.3l CATEGORY I-(OBE); 2,3 9. INTAKE 4' DISCHARGE CLASS II SEISMIC I? IF 11 TIS-IS ULTIMATE HE SINKITSHOULD'BESI-p R.G. 1.29(1g).J LO. SCREEN HOUSE CLASS II i l EQUIPMENT NSSS. i !,2,3 1. REACTOR VESSEL ASME BPV [ASME BPV A CLASS I SEISMIC I ,Pg. IV-1-1/R.G..'1.291 SECT. I ' SECT. III C.1.a/ (V.3.5)

. 2 2.

CRDS Housing ASME BPV. .A CLASS I SEISMIC" dR.G.1.29:-(C.2/(V.3.5). SECT. I t,2 Supports GE CLASS I-SEISMIC I~ R.G.'1.29 C.2/(V.3.5) 6E ^ ~ 23 4. EL EL.ME S CIASS I SEISMIC:I! lR.G.~1.29'C.2/(V.32h GE 2,3 5. CORE SHROUD N/Al CLASS I SEISMIC.I' R.G.-1.29 C.1.b/(V.3.'5D A,, 2, 3 6. CORE. SUPPORTS I f SEISMIC I R.G.1.29C.1.b/(V.3.5h ,.2,3 7. STEAM SEPARATOR CLASS.I-SEISMIC I~ R,G.1.29C.I.b/(V.1.5 ASME S-Ix CLASS I-SEISMIC:I-i 'R.G. 1.29 C. I.b/ (V.3.5D =.

.

=

c. ~ OYSTER CREEK .m. COMPONENT / SUBSYSTEM QUALI'IY GROUP._ SEISMIC , REMARKS? PLANT R.G. 1.26 PLI NT-- R.G.,li29 NOTE' DESIGN SRP 3.2.2 DESIGN SRP 3.2.1 1 31,2 A. STEAM DRYER. ASME S IX N/A ]3 CLASS I g SEISMIC I R.G. 1'.29.lC.1.b/V.3.51 3 9.- PIPING FROM REACTOR ASME SI 1965 to first ASME BPV SIII C1 CLASS I e . SEISMIC =I' R.G. 1.29 C.I.a: L VESSEL TO 1st IS0!ATION ISO VALVE OtfrSIDE DRDELL A 'O VALVE EXTERNAL TO DRYWELL' then ANSI B31.1-1965 O 6 NUC Code Cases to O 2nd ISO valve. O RECIRCULATION SYSTEM '- 1 l '. : PUMPS ASA B31.1 ASME BPV SIII C1 A CLASS I SEISMIC I -VI-1-1/R.G. 1.29-C.1.a- ' 2. VALVES ASME BPV I. A CLASS I-SEISMIC.I IV-1-2/R.G.-1.29 C.1.a1 1 3. PIPING ASME BPV I A ASA B31.1 CIASS I SEISMIC I IV-1-2/R.G. 1.29 C.I.A< EMERGENCY. SYSTEMS 1. ISOLATION CONDENSER IV-1 2,3 -SHELL ASME BPV. CLASS I. SEISMIC I R.G. 1.29.C.2-SECT. VIII C

  • 1,2.3

' RUBE ASME BPV ASME BPV SIII C2-CLASS I SEISMIC I R.G. 1.29 C.1.b-i S.III C1.A B SIII CLASS 2 ,1,2 3 PIPING ASME Sec. 1-ASME BPV 1965 SIII CLASS 2 B CLASS I SEISMIC.~I R.G. 1.29 C.I.b. H 3* 2. LIQUID POISON SYS. ASME 31-1965 ASME BPV

  • Only if CRDS fails to ANSI B-31.1 1965 SIII CIASS 2 ' B CLASS I SEISMIC I R.G.: 1.29 C. I.b

) operate 6 NCC PUMP ASME SIII CIC B q TANK API ~ B 'l 3. CORE SPRAY SYS. ASME BPV SIII C2 CLASS I SEISMIC I R.G. 1.29 C.I.c/VI.6.2) 1,3 PIPING 1 ASA B31.1 A/B 4. REACTOR BLDG . CIASS I '2 CLOSED LOOP COOLING ANSI-B31.1-1965 6 IASME BPV ~ CLASS I j SEISMIC I.V.3.5/R.G. 1.29 C;1.g. C

i. Nuclear Code Cases SIII CL 3-1

.g 3 5. AUTOMATIC DEPRESSUR-I l Part of ECCS; should be 1 A I Seismic I, Class 2- } 1 ~ __m ___m-_______.

Sheet 3 i OYSTER CREEK COMPONEE/ SUBSYSTEM -QUALITY GROUP SEISMIC . REMARKS. PLAE R.G. 1.26 PLANT R.G. 1,29 t ';0TE. DESIGN SRP 3.2.2 DESIGN SRP 3.2.1 1 REACTOR EMERGENCY SYS. .o ASME BPV 3 SERVICE WATER SYSTEM SI 6 IX ASME BPV CLASS I SEISMIC I R.G. 1.29 C.I.g/X-3-2 TO Ist ISO-SIII CLASS 3 C O LATION VALVE ~ O REST ASA o' 1331.1-19SS+ w CHANGES TO 1966 3 CONTAINMENT SPRAY -ASA B31.1 ASME BPV CLASS I SEISMIC I 'R.G. 1.29 C.I.c/VI-7 SYSTEM ASME S VIII SIII CLASS 2 B TO Ist VALVE OUTSIDE CONTAINMEE X STANDBY GAS TREAT. SYS GE B** CLASS I SEISMIC I* No description.of system

  • if system removes H2 E
    • no req't if post accid fission product removal'is not basis.

ASW, A373, O.C. uses H 2 inerting system SPENT FUEL AND NEW A24S, 6VA,BGC X FUEL STORAGE FACILITIES ASTM, A240 C1 CLASS I SEISMIC Fuel _ Handling-Not Covered.by R. G) 304L 1.26:R.G. 129 C.1.L requires seist I ~ EMERGENCY ELEC. SYS. ASA, ASTM,ASW CLASS I SEISMIC I R.G.1.29 (G.1.q) CIASS IE ONSITE 1,3 BA'ITERIES IEEE NEMA,NFBJ POWER SUPPLIES IEEE 344. SRP 8.3. NEMA, LOCAL I 2.3 DIESEL GENERATOR ASME,ASA,ASW k !A R.G. 1.29 C.I.q Class IE Onsite IEEE, NEMA,NFB J I Power DEMH, LOCAL 2,3 EMERGENCY BUSSES, ASA,IEEE, J R.G. 1.29 C.1.8 Class IE Onsite' l ETC. ASW, NEMA Power Supplies IEEE 344. SRP E.3.: ~

.-Sheet 4 0YSTER CREEK-COMPONENT / SUBSYSTEM QUALITY GROUP ~ SEISMIC REMARKS 0%. : o. PLANT R.G. 1.26 PLANT R.G.'1.29 ' NOTE DESIGN SRP 3.2.2 DESIGN SRP 3.2.1 .1 STEAM SYSTEM i I 1. Piping to Ist.I.V. ASME BPV ASME BPV CLASS I SEISMIC I R.G. 1.29 C.I.a/IV-1 SECT. I A III CLASS I A

2... Piping to Turb SV

-ASA B31.1 ASME BPV SEISMIC I R.G. 1.29 C.1.e-SIII CLASS'2 B 1 3. MSIV VALVE ASME BPV ASME BPV CLASS I' SEISMIC I R.G. 1.29 C.I.a/IV-1-2 SECT. L SIII CLASS 1 A ASA B31.1 GE SPECS 4. TURBINE STOP VALVE ANSI B31.1.1.0 D NON SEISMIC I SRP 3.2.1 i 1 S. SAFETY VALVE ASME BPV ASME BPV CLASS I. SEISMIC.I R.G. 1.29 C.1.a/IV-1-2 SECT. I SIII CLASS 1 A XNCC-1271N

l 6.

RELIEP VALVE ASME BPV ASME BPV CLASS I SEISMIC I 'R.G. 1.29 C.1.a/IV-1-2 SECT 1 SIII CLASS.1 A SHUTDOWN COOLING CLASS II X-2-2 SYSTEMS ASME BPV ASME BPV CLASS II SEISMIC I R.G. 1.29-C.1.d~ 2 PUMPS SECT.III SIII CIASS 2 C' SHUTDOWN COOLING ASME BPV ASME BPV CLASS II SEISMIC I ,,e TUBE SIIT SIII CLASS 2 C R.G. 1.29 C.1.d CLASS C - - - - - = - Y*

Sheet S . N. N 'Oi' ITER CREEK ~ COMPONENT / SUBSYSTEM QUALITY GROUP SEISMIC REMARKS -o oo -O . 0% - PLANT R.G. 1.26 PLANT R.G. 1.29 . NtTTE DESIGN SRP 3.2.2 DESIGN SRP 3.2.1 1 i 1 .2. x SHELL. ASME BPV ASME BPV 'C CLASS II SEISMIC I R.G. 1.29 C.I.g SECT. VIII SIII CLASS 2 SIII CIASS 2 CONDENSATE STORAGE CIASS -II SEISMIC II CONDENSATE STORAGE SYSTEM ISI TANKS 4 PUMPS Analysed for RELATED TO SAFETY;'ECCS SMALL 0.11g seismic BREAKS USE CRD WHICH HAS NORMA event - 0,K. SUCTION FROM CST ISOLATION-CONDENSER CAN ALSO TAKE SUCTIOi t FROM CST. X LIQUID WASTE SYSTEM API 650 ASME BPV' D CLASS II STANDARD SIII CLASS 3 WASTE MANAGEMENT SYSTEMS IS: UNDER DEVELOPMENT SRP S.4.8-REQUIRES THAT PIPING FROM 'INE RECIRCULATION LOOP TO THE OUTERMOST ISOLATION VALVE BE CLASS A, SEISMIC I X ' REACTOR CLEANUP SYS. ASME BPV ASME BPV CLASS II NON-SEISMIC X-2-1 SIII SIII CIASS 3 C ( CLASS C X- -AIR COMPRESSOR 6 NOT COVERED CLASS II NON-SEISMIC AIR OPERATED VALVES IMPORTANT *I l . RECEIVERS BY R.G. 1.26 SAFETY ARE REQUIRED TO HAVE - SEISMIC ACCUMULATORS 2,3 STATION AUXILIARY BUSSES N/A CIASS II X MOIS1URE SEPARATORS AND REHEATERS ASME SEC. N/A CLASS II VIII NOTE 1 - #1 denotes equipment required to, hold together to prevent a LOCA due to the seismic event

  1. 2 denotes equipment required to shutdown 6 hold in safe shutdown condition following seismic event

~

  1. 3 denotes equipment required if plant experiences a LOCA X denotes equipment not needed for safety during seismic event

~ -- e- -.x =- - a m-e - v-a-

. +. She;t 6 OYSTER CREEK ~ COMPONEhT/ SUBSYSTEM QUALITY GROUP SEISMIC REMARKS PLANT R.G. 1.26-PLANT R.G. 1.29 NOTE DESIGN SRP 3.2.2 DESIGN SRP 3.2.1 1 INSTRUMENT AND CONTROL m 2, 3 REACTOR LEVEL INSTR. B31.1 SI 6 VI CLASS I SEISMIC I O R.G. 1.29 C.1.k/V.3.6 2, 3-FEED WATER CONTROL VALVES ASA, IEEE, ASME, O ASTM, ANS, NBFU, 6 STATE 6 LOCAL op; fLIQUIDPOISONSYS. INSTR. 2* 1 ANUAL REACTOR CONTROL ASA 6 IEEE N/A 2, 3 ' CONTROL ROD INST l 2, 3 . CONT. ROD POSITION l INDICATING SYST. ~

2. 3 jREACTOR PROTECTION SYSTEM

.2, 3 l NEUTRON MONITOR SYSTEM ASME III C1.A i FUEL RUPTURE DETECTION SYST. Pressure Parts lAREAMONITORS CLASS I


g fTURBINEGENERATOR X

ASME, ASA, ASTM, Class II No Seismic Req't/V 9 IEEE, NEMA, NBFU STDS OF TUBULAR ~ u .EXCl! ANGER MANU-l FACTURERS ASS 0- ? CIATION CLASS R. N/A N'oSeismicReq't/V-3-d l NJ G LOCAL CODES X l CONDENSER ~ HEAT EXCilANGER Dynamic analysis i INSTITUTE N/A Class II for 0.11g seismic i event 'FEEDWATER SYSTEM ASME S1-1965 ,IIEATERS RV TO 1st VALVE

  • =The FWS is used as TH IPUMPS OlTTSIDE CONTAIN-CLASS II dundant ECCS to the ADS for Small Brk(

MENT and single fal] ure requirements. ThiC ASME SECT, VIII f wouldrequirethattheFWSseismic'I,l l TFMA STDS. Amend. 38 pres nts results of seismic i analysis to sh, that the feedwater id

Sheet 7 QUALITY ST/.NDARDS N O. NRC_ QUALITY GROUP A_ NRC QUALITY GROUP B NRC QUALITY GROUP C 'NRC QUALITY GROUP D ~O ASME Boiler and Pressure O m :- ASME, Sec. VIII-Vessel Code, Section III (pressure vessels)- ANSI B31.1.0 Class 1 Class 2 Class.3 (piping and valves) Mfg. Stds. (pumps) or or ASME Boiler and Pressure Vessel Code, Section III Class A Class C (pressure vessels) (pressure vessels) NRC Quality Group A equivalent to Licensee Safety Class 1 ) Also seismic Category I NRC Quality Group B equivalent to Licensee Safety Calss 2 NRC Quality Group C equivalent to Licensee Safety Class 3 ) Not always seismic Category I t NRC Quality Croup D equivalent to Licensee Safety Class 4 or NNS ) Non-seismic Category I~ =

Docket No. 50-219 ATTACilMENT F l 1 OYSTER CREEK NUCLEAR GENERATING STATION j LOADS COMBINATION j i 1 90000175 December, 1979 a

i-OC-22 ; ' 1-A-1 -l i(? QUESTION i

1. A Describe the load combinations and provide the stress level tables as requested per question IV-1.

ANSWER . The information requested is presented in the attached Tables 1-A-1 through 1-A-5. r l l 90000176 1 l I l k 1 I .I i 1 t

C r p-TABLE 1-A-1 ALLOWABLE STRESSES FDR DRYWELL CONCRETE SHIELD Reinforced Steel Reinforced Steel Concrete Concrete - Concrete Maximum Allowable Maximum Allowable Maximum Allowable ' Maximum Allowable Maximum Allowable Loading Condition Tension Stress Compression Stress Compression Stress Shear Stress - Peripheral Shear 1. Dead Load Plus Live lead 0.5 Fy. 0.34 Fy 0.45 i' 1.1F 2F Plus Overpressure c c e Plus Maximum Temperature Plus Design Earthquake 2. Dead Load Plus Live Load Plus Maximum Temperature 0.5 Fy 0.34 Fy 0.45 i' 1.467k 2.667k c Plus Ove_7ressure Plus Double Design Earthquake O

3. - Dead Load Plus Live Load 9

Plus Maximum Temperature 1.467( 2.667( 0.667 Fy 0.454 Fy 0.60 i' Plus Design Earthquake Plus Jet Force NOTES: a. Dead loads and live loads include contributing maximum loadings from . building floors, columns and walls, pool walls, slabs and plug. b. Overpressure = Maximum 20 pst reaction from compressible joint. c. Temperature = 55* F maximum gradient d. Design earthquake = Loads due to 0.11g basic ground acceleration and includes proportions of the drywell vessel, the surrounding building, the reactor vessel and reactor building equipment. C 2 e. Jet Force = 566 kips over a 3.14 ft area at any point of the spherical portion and o 466 kips over a 2.54 ft2 area at any point of the cylindrical portion (below El. 94'-9"). g O t N N O

c 'W TABLE 1-A-2 ALLOWABLE STRESSES FOR REACTOR' VESSEL CONCRETE PEDESTAL i Reinforced Steel Reinforced Steel Concrete Maximum Allowable Maximum Allowable Maximum Allowable Concrete Maximum Allowable-Loading Condition Tension Stress Compression Stress Compression Stress Shear Stress s l. Dead Load Plus Equipment Load Plus Jet Loail~ [0*133i'c (bending)' 0.25 Fy 0.10 Fy 0.55k' Plus Temperature 1,0. 116 i' (direct) Plus Design Earthquake 2. Dead Load Plus Equipment Load Plus Jet Load Plus Temperature 0.25 Fy O.10 Fy 1.1[* ( 0. 232 l' (direct) Plus Double Design Earthquake NOTES: a.- Jet plus seismic loads per J. A. Blume's " Earthquake Analysis: Reactor Pressure Vessel." o - b. Temperature = 40*F maximum gradient .9 . I$. TABLE 1-A-3 ALLOWABLE STRESSES FOR CONCRETE VENTILATION STACK Reinforced Steel Reinforced Steel Concrete Concrete Maximum Allowable Maximum Allowable Maximum Allowable - Maximum Allowable Loading Condition Tension Stress Compression Stress - Compression Stress Shear Stress 1. Dead Load Plus Wind Load 0.30 Fy 1.1[ 0.375i' 2. Dead Load Plus Wind 0.54 Fy 0.67 i' 1.1 j i' Plus Temperature c c O 3. Dead Load Plus Design o 0.30 Fy 0.375i' 1.1[c Earthquake Load O c O 4. Dead Load Plus Design 0.54 Fy 0.67 i'

1. lfc Earthquake Plus Temperature N c-00 5.

Dead Load Plus Double 0.96 Fy 0.67 i' 1.1[c-Design Earthquake e NOTES: a. Maximum wind velocity = 110 mph I b. Seismic loads per J. A. Blume's " Earthquake Analysis: Ventilation Stack." c. Temperature = 100*F maximum gradient L,

m B ~. ^ TABLE t-A-4 ALLOWABLE STRESSES FOR a) REACTOR BUILDING FLOOR SLABS, BEAMS, COLUMNS, WALLS STORAGE POOLS AND FUUNDATICN b) CONTROL ROOM SLABS AND WALLS c) BATTERY ROOM SLAB AND WALLS d) EMERGENCY DIESEL GENERATOR AND TANK VAULT

  • e) INTAKE STRUCTURE (SERVICE WATER AND CIRCULATING WATER PUMP AREAS) f) ' STARTUP TRANSFORMER FOUNDATION Reinforced Steel Reinforced Steel Concrete Concrete Reinforced Concrete Conettte

. Concrete Maximum Allowable Maximum Allowable Maximum Allowable Maximum Allowable Shear Walls Allow. Maxinvam A!!owable Maximum Allowable 8 Imading Conditten Tension Stress

Compression Stress Compreselon Strees Shear Stress able Unit Stress Per'pheral Shear Bearing 1.

Dead Load Plus Live Imad 0.25 t' (Fb11 f.) Plus Operating Load 0.5 Fy 0.34 Fy

0. 45 t,'

1.1 F, OE P, 2 f, 0.375f,* (<th M Plue Design EarthMe 2. Dead Load Plus Live Load 0.333 t,' (F411 A) Plue Operating lead 0.667 Jy 0.454 Ty 0.80 f[ 1.467 f' 2.667 t' 0.50 l' (<1/3 A) Phe WM 3. Dead Load Plus Live Imad 0.333 f,' (F4U A) Plus Operating Lead 0.9 Fy 0.8 Fy

0. 9 t,'
1. 7 3.4 f,

0.50 f' (<t/3 A) Plus Double Design Earthquake

  • Although the intake etnicture is defined as a Class II structure, the supporting slabs and walls for the service water and etreulating water pumps have been investigated arut have been fuend adequate to withstand seismie loads of O. lig and 0.22g using the tabulated allowable stresses.

L: O O O O ~_

n r .\\. 4 TABLE 1-A ALLOWABLE STRESSES FOR STRUCTURAL STEEL FOR: a) REACTOR BUILDING ROOF STEEL, CRANEWAY COLUMNS, CRANE GIRDERS, VERTICAL BRACING b) DRYWELL RADIAL STEEL FRAMING AND RECIRCULATING c) REACTOR BUILDING PLATFORMS A325 H.S. Bolts With Thread Excluded from Shear Plane A141 Rivets Bending Tension On Shear On Tension and. Tension Shear Tension ' Shear O~ Loading Condition Net Section Gross Section Compression Compression (psi) (psi) (psi) (psi) o 1. Dead Load Plus Live Load Varles with

0. 60 Fy
  • 40,000 22,000

-20,000 15,000 Plus Operating Load 0.60 Fy 0.40 Fy . Slenderness t (0.50 Fy) (0.27 Fy) (0.56 Fy) (0.42 Fy) Plus Design Earthquake Ratto. 0.66 Fy 2. Dead Load Plus Live Load Varies with 0.80 Fy* 53,300 29,300 26,700 20,000 Plus Operating Ioad O. 80 Fy . O. 533 Fy Slenderness to Plus Wind (For steel (0.667 Fy) (0,37 Fy) - (0.74 Fy) (0.56 Fy) 0.88 Fy listed as item "a" above) '

  • 0.60 Fy or 0.80 Fy is reduced for members with excessive unbraced comprension flange length in accordance with A.L S.C. Specifications.

W .l o o s. O En o o

Docket No. 50-219 i ATTACHMENT G OYSTER CREEK NUCLEAR GENERATING STATION 4 METHOD OF COMBINING STRESSES 90000181 i 1 l 1 December, 1979

Rsvind 12[O 1-1. 19/67' --3: o ,g _ hf QUESTION i i IV. Structures i ' : 1.. Please provide tables,' similar to tables V-3-2 and V-3-3 in the FD&SAR for all Class I. ' structures and components..Specify the method for combining loads to a loss-of-coolant with ' ' " normal" and seismic loads. ANSWER - l a. ALLOWABLE STRESSES FOR CLASS I PIPING. Loading Condition Allowable Stress - l 1. Thermal Expansion SA 2. M.O.L. + S.L. Sh 3. M.O. L. + 2 x S.L. Safe shutdown can be achieved. M.O.L. = Maximum operating loads including design pressure and temperature, weight .l of piping and contents including insulation and the effect of supports and ~ other sustained external loadings.

5. L,

= Seismic loads due to the design earthquake. 2 x S. L. - Seismic loads due to twice the design earthquake. S = f (1. 25 S + 0.25 S I* g c h where: i = stress range reduction factor for cyclic conditions. S = all wable stress in cold condition per ASA B31.1. c S = allowable stress in the hot condition (design temperature) per ASA B31.1. h 1 The two classes of structures applicable to the earthquake design requirements are as follows: Class I - Structures and equipment 'whose failure could cause significant release of radio-activity or which are vital to a proper shutdown of the plant and the removal of decal heat. Class Il'- Structures and equipment which are both essential and nonessential to the oper-ation of the station, but which are not essential to a proper shutdown. 1.. L 7 '90000182 3 1

IV-1-2 OC b. REACTOR VESSEL SUPPORTS 1. Seismic - Allowable stress = normal AISC allowable stresses. 2. Setsmic + Jet.- Allowable stress = 150% of normal A1SC allowable stresses. i I 3. 2 Seismic-- Allowable stress'= 150% of normal A1SC allowable stresses. c. INSTRUMENTATION I The control room panels and avixiliary racks are usually shipped assembled and therefore these units must be designed for normal shipping shock which is in the order of several g's acceleration. Certain components are removed and padried to reduce vibration effect and exces-sive acceleration. In all cases, however, the design analysis is made of the panels and instru-ments. All relays in safety circuits are energized; and since they are capable of closing against. 1.0 g, they can certainly maintain contact during an acceleration of 0.22 g. k 90000183 t t 1 J i W f I i l

()

1 L. d}}