ML20116E406

From kanterella
Jump to navigation Jump to search
Proposed Tech Specs Consisting of Proposed Change Number 191 Rev 1,revising Ts,To Change Overpressure Protection Sys Enable Temp 329 F
ML20116E406
Person / Time
Site: Beaver Valley
Issue date: 11/02/1992
From:
DUQUESNE LIGHT CO.
To:
Shared Package
ML20116E361 List:
References
NUDOCS 9211090157
Download: ML20116E406 (46)


Text

<

ATTACHMENT A P.oposed Technical Specification change No. 191 Revision 1 REVISED PAGE Revise the Technica) Specifications as follows:

Remove Pacq

.t Pace 3/4 4-27a a/4 4-27a PD AD 0 00 34 P.

PDR

OfA ~ $$ '

'. EEAf,12R COOLANT SYSTEM OVERPRESSURE PROTECTION SYSTEMS LIMITING CONDITION FOR OPERATION 3.4.9.3 At least one of the following overpressdre protection systems shall be OPERABLE:

a.

Two power operated relief valves (PORVs) with a nominal trip setpoint of 5 432 psig, or b.

A reactor coolant system vent of > 3.14 squar' inches,

&EELICABILITY:

When the tenperature of one or more of the non-isolated RLa cold legs is s an enable temperature of.244dF.

l 3Ef ACTION:

a.

With one PORV inoperable, either restore the inoperable PORV to OPERABLE status within 7 days or depressurize and vent the RCS through a 3.14 square inch vent (s) within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />; maintain the RCS in a vented condition until both PORVs have been restored to OPERABLE status.

Refer tc Technical Specification 3.4.1.6 for further limitations.

b.

With both PORV's inoperable, depressubize and vent the RCS through a 3.14 square inch vent (s) within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />; maintain the RCS in a

vanted condition until both PORVs have been restored to OPERABLE status.

c.

The provisions of specification 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENT 4,4.9.3.1 Each PORV shall be demonstrated OPERABLI BY:

BEAVER VALLEY - UNIT 1 3/1 4-27a Proposed

ATTACHMENT B Beaver Valley Power Station, Unit No. 1 Proposed Technical Specification Change No. 191 Revision 1 OPPS ENABLE TEMPERATURE REVISION w

A.

DESCRIPTION OF AMENDMENT REQUEST The proposed amendment (Revision 1) would change the overpressure protection system (OPPS) enable temperature to 329'F.

All other proposed changes in our original request are not affected by.this change request.

B.

BACKGROUND Request for Technical Specification Change No. 191 was developed and submitted to extend the applicable OPDS setpoint and enable temperature to 16 effective full power years (EFPY) in accordance with a

report provided by Westinghouse.

This report also included an enable temperature of 314*F which was thought to have addressed the criteria provided in Standard Review Plan (SRP)

Section 5.2.2 Branch Technical Position RSB S-2.

In subsequent discussions with the NRC

reviewer, it was determined that the enable temperature did not agree with the methodology provided in the SRP.

An additional factor was jdentified that further increased the enable temperature to acevunt for the temperature difference between the reactor vessel bulk fluid and the vessel wall controlling location.

C.

JUSTIFICATION The new OPPS enable temperature of 329 F was determined in accordance with the following relationship where the enable RT

+ 90 F + AT (AT = fluid T - metal T).

temperature (ET)

=

NDT It was previously believed that the +90*F adjustment compensated for the AT between the bulk fluid and the vessel metal.

Westinghouse documented the new enable temperature calculation in the report provided in Attachment D " Methodology For Calculating Enable Temperature Sat Point For Beaver Valley Unit 1."

The report indicates that the 1/4T position is the. controlling location and for heatup rates up to 60 F results in an enable temperature of 328.32'F.

This value has been rounded up to 329 F for inclusion in the technical specifications.

D.

SAFETY ANALYSIS During plant

cooldown, the controlling location is at the 1/4T location and has a

higher temperature value than the fluid adjacent to the reactor vessel inner surface.

Therefore, the AT metal temperature induced during the cooldown is negative and results in a

lower enable temperature.when derived from the equation ET = RTNDT + 90'F + AT.

During plant

heatup, the controlling location switches between the 1/4T and the 3/4T locations and these locations have a lower-temperature value than the fluid adjacent to the vessel inner diameter.

Therefore, the AT metal temperature induced during the heatup is positive and results in a higher enable temperature when calculated in the above equation.

s A.TTACHMENT B, continued Pro osed Technical Specification Change No. 191 Page 2 The enable temperature is calculated from the largest plant heatup rate allowed by technical specifications and is evaluated at the 1/4T and 3/4T Appendix G

controlling locations.

The enable temperature is then set equal to the largest calculated value to ensure the OPPS operates within the required temperature range.

The calculation results provided in Attachment D indicate the bounding enable temperature is 328.32*F and occurs at the 1/4T-controlling location using a 60*F per ho'Ir heatup rate.

The enable tenperature has been rounded up to 329'F to ensure the OPPS is operable over the required temperature range for all applicable heatup and cooldown events.

This change reflects the application of methodologies recognized by the NRC as providing a sufficient margin of safety for reactor vessel protection.

Conservative operating restrictions are applied in the proposed enable temperature, therefore, this change is considered to be safe and will not reduce the safety of the plant.

E.

NO SIGNIFICANT HAZARDS EVALUATION The no significant hazard considerations involved with the proposed amendment have been evaluated, focusing on the three standards set forth in 10 CFR 50.92(c) as quoted below:

The Commission may make a final determination, pursuant to the procedures in paragraph 50.91, that a proposed amendment to an operating license for a

facility licensed under paragraph 50.21(b) or paragraph 50.22 or for a testing facility involves no significant hazards consideration, if operation of the facility in accordance with the proposed amendment would not:

(1)

Involve a

significant increase in the probability or consequences of an accident previously evaluated; or (2)

Create the possibility of a new or differEnt kind of accident from any accident previously evaluated; or (3)

Involve a significant reduction in a margin of safety.

The fol.owing evaluation is provided for the no' aa ificant j

b.tuards consideration standards.

1.

Does the change irso]ve a

significant increm2s in Ithe probability or censequences of an accident previously evaluated?

The OPPS enable temperature is based on the limiting Teactor vessel material RT Branch Technical Position RSB 5-2 provides

-guidance NDfo.

determining the OPPS enable r

temperature where the enable temperature

= RTggp + 90*F.

ATTACHMENT B, continued Pro' posed Technical Specification Change No. 191 Page 3 Our initial submittal reflected this

guidance, however, during the NRC review, a specific factor accounting for the temperature difference between the bulk fluid and vessel metal was not apparent.

An additional factor was needed to rev.ise the enable temperature to RT A 90*F + AT.

The NDT proposed enable temperature has been developed in accordance with this guidance and results in a value of 224'F + 90*F +

15'F = 329'F.

This change was determined in accordance with the methodology provided by the NRC to ensure the OPPS is enabled over the required temperature range.

The proposed cuanyo provides an adequate margin of safety to protect the reactor vessel during normal cyclic loads due to temperature and pressure changes as well as the loads associated with postulated faulted events.

Therefore, this change will not significantly increase the probability or consequences of an accident previously evaluated.

2.

Does the change create the possibility of a new or different kind of accident from any accident previously evaluated?

The new enable temperature provides a wide range over which the OPPS is active and ensures the OPPS is enabled earlier on a

plant cooldown and is discbled later on a plant heatup.

This change is consistent with the NRC requirements and will not reduce the reliability of the reactor vessel during heatup and cooldown evolations.

Therefore, the proposed change will not create the possibility of a new or different kind of accidant from any accident previously evaluated.

3.

Does the change involve a significant reduction in a margin of safety?

The proposed change vill continue to ensure the reactor coolant system will be protected from pressure transients at low temperatures.

The proposed changa will not reduce the reliability of the

OPPS, nor increase the likelihood of vessel damage or failure in the event of an overpressure transient.

The new enable temperature has been established in accordance with the latest regulatory guidance.

Plant operation will be maintained within required

limits, therefore, the reaci or vessel materials will behave in a non-brittle manner and remain within the plant design basis.

Therefore, the proposed change does not involve a significant reduction in a margin of safety.

F.

NO SIGNIFICANT HAZARDS CONSIDERATION DETERMINATION Based on the considerations expressed above, it is concluded that the activities associated with this license amendment request l

satisfies the no significant hazards consideration standards of l

10- CFR 50.92(c)

and, accordingly, a

no significant hazards consideration finding is justified.

s ATTACHMENT C Beaver Valley Power Station, Unit lio. 1 Proposed Technical Specification Change No. 191 Revision 1 TYPED REVISED PAGE M

Typed Page:

3/4 4-27a f

1

DPR-66 REACTOR COOLANT SYSTEM OVERPRESSURE PROTECTIOF SYSTEMS LIMITING CONDITION FOR OPERATION 3.4.9.3 At least one of the following overpressure protection systems shall be OPERABLE:

a.

Two power operated relief valves (PORVs) with a nominal trip setpoint of 5 432 psig, or b.

A reactor coolant system vent of 2 3.14 square inches.

APPLICABILITY:

When the temperature of one or more of the non-isolated RCS cold legs is 5 an enable temperature of 329'F.

l ACTION:

a.

With one PORV inoperable, either restore the inoperable PORV to OPERABLE status within 7 days or depressurize and vent-the RCS through a 3.14 square inch vent (s) within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />; maintain the RCS in a vented-condition until both PORVs have been restored to OPERABLE status.

Refer to Technical Specification 3.4.1.6 for further limitations, b.

With both PORV's inoperable, depressurize and vent the RCS through a 3.14 square inch vent (s) within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />; maintain the RCS in a

vented condition until both PORVs have been restored to OPERABLE status.

c.

The provis~iohJ of Specification 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENT 4.4.9.3.1 Each PORV shall be demonstrated OPERABLE BY:

BEAVER VALLEY - UNIT 1 3/4 4-27a Proposed

i i

1 l

ATTACHMENT D Beaver Valley Power Station, Unit No. 1 Proposed Technical Specification Change No. 191 Revision 1 WESTINGHOUSE REPORT 4

Methodology For Calculating Enable Temperature Set Point For Beaver Valley Unit 1 I

l l

l l

L FDRT-SRPLO-366(92)

WESTINGHOUSE PROPRIETARY CLASS 3 Methodology For Calculating Enable Temperature Set Point For Beaver Valley Unit 1 Septemt er 1992 Revision 1 Prepared by:

M-M. J. Malone Stnictural Reliability & Plant Life Optimization WESTINGHOUSE ELECTRIC CORPORATION Nuclear and Advanced Technology Division P. O. Box 355 Pittsburgh, Pennsylvania 15230-0355

~

..-s, -

Methodology For Calculating -

Enable Temperature Set Point For Beaver Valley Unit 1 -

-l 4

TABLE OF CONTENTS Section I!!1c Eags-List of Tables

. ii i

List of Figures iii 1.

Introduction 1

2; Basis for Determining Enable Temperature 1

3.

Basis for Determining Controlling Location 2

4.

Calculation of Enable Temperature for 16 EFPY 4

5.

. References :

30-6.

Appendix A: Heatup and Cooldown Maximum Metal Temperature Differences -At (1/4)t and (3/4)t Beltline Locations For Beaver Valley Unit 1.

(

a I-V e

i '

=

4.

t w

U,.w,.-

g---

~

Methodology For Calculating Enable Temperature Set Point For Beaver Valley Unit i LIST OF TABLES IAbb Illk Eage 1.

Beaver Valley Unit 1 Temperature '/ariations 9

For 50 'F per Hour Heatup Rate 2.

Beaver Valley Unit i Temperature Variations 14 For 60 *F per Hour Heatup Rate 3.

Beaver Valley Unit 1 Appendix G Controlling 19 Locations For 16 EFPY and 50 'F/Hr Heatup Rate (Without Instrumentation Error Margins) 4.

Beaver Valley Unit 1 Appendix 0 Controlling 22 Locations For 16 EFPY and 60 F/Hr Heatup Rate (Witi out Instrumentation Error Margins) 5.

Beaver Valley Unit 1 Enable Temperature 29 Calculations For 16 EFPY Al Heatup and Cooldown Maximum Metal Al Temperature Differences For Beaver Valley Unit 1 ii

)

Methodology For Calculating Enable Temperature Set Point For Beaver Valley Unit 1 LIST OF FIGURES 1

Eigurs Iille Page 1.

Variation of Metal Temp. Difference with Reactor 5

Vessel Fluid Temp. For Beaver Valley Unit 1 Using a 50 Deg. F per Hour Heatup Rate 2.

Variation of Metal Temp. Difference with Reactor 6

Vessel Fluid Temp. For Beaver Valley Unit 1 Using a 60 Deg. F per Hour Heatup Rate 3.

Variation of Metal Temp. Difference with Time 7

For Beaver Valley Unit 1 Using a 50 Deg. F per Hour Heatup Rate 4.

Variation of Metal Temp. Difference with Tune 8

For Beaver Vatt y Unit 1 Using a 60 Deg. F per Hour Heatup Rate iii

l. INTRODUCTION The purpose of this report is to describe the methodology for calculating the enable temperature set pomt (ET) that defines a temperature range, (Typ s T 5 ET), for which the low temperature overpressure protection system (LTOPS) must be operable dunng plant startup and shutdown conditions. The basis for determining the enable temperature is desenbed first, followed by the basis for determining the Appendix G controlling W (i.e., (1/4)t or (3/4)t) in the reactor vessel beltline during plant heatup and location cooldown events. An example is then provided showing the method for calculating the enable temperature set point at 16 EFPY for Beaver Valley Unit 1.
2. BASIS FOR DETERMINING ENABLE TEMPERATLTE The enable temperature set point, as defined in the Standard Review Plan, Branch Technical Position RSB 5 2,"Overpressurization Protection of Pressurized Water Reactors While Operating at Low Temperatures"[2) is the water temperature corresponding to a metal temperature of at least RTNDT + 90 F at the beltline location (

(1/4)t or (3/4)t ) that is controlling in the 10 CFR Part 50 Appendix Gl33 fracture toughness limit calculations. Its purpose is to set a temperature range for which the low temperature overpressure protection system (LTOPS) should be operable during plant startup and shutdown conditions in order to assure the Appendix G limits for the reactor coolant system are not exceeded while operating at low temperatures. The temperature range, for which LTOPS should be operable, is defined to be all temperatures below the enable temperature.

The calculation of the enable temperature, using the defmition described above, requires that the metal temperature difference (AT) between the reactor vessel bulk fluid and the controlling location be included in order to have the water temperature correspond to the controlling locatica metal temperature of RTNDT + 90 F. As will be shown, the effect that the metal temperature difference has on enable temperature calculations is different for t

reactor vessel heatup and cooldown processes.

During a plant cooldown, the controlling location is always at the (1/4)t position, which has a higher temperature than that for the fluid adjacent to the vessel inner diameter. It follows that the AT(Tfluid - Tmetal) during cooldown is negative and results in a lower enable temperature set point when it is included in the equation ET = RTNDT + 90 F +

AT. Including the AT during cooldown is less limiting since the LTOPS would not need to be turned on until a later time (at the lower temperature).

During a plant heatup, the controlling location can be either the (1/4)t or (3/4)t position.

However, these vessel locations are at a lower temperature than the fluid adjacent to the vesselinner diameter. It follows that the AT (Tfluid - Tmetal) induced during heatup is positive and results in a higher enable temperature set point when included in the equation ET = RTNDT + 90 F + AT. Including the AT during heatup is more limiting since the l

1 4

LTOPS would need to temain on a longer time (to the higher temperature).

From the above descriptions, ar.d taking into account that the RTNDT at the (1/4)t location is greater than the RTNDT at the (3/4)t location, the maximum required enable temperature can be calculated during heatup when the largest metal temperature difference (AT) at the (1/4)t controlling location is added to RTNDT + 90*F. However,if a large enough heatup rate is used, the maximum enable temperature can be calculated at the (3/

4)t controlling location due to the large metal temperature difference values at the (3/4)t location. As a result, when the difference between the AT metal temperature values is greater than the difference between the TTNDT values at the (1/4)t and (3/4)t locations, the maximum required enable temperature is calculated at the (3/4)t controlling location. If the RTNDT and AT differences between the (1/4)t and (3/4)t locations are the same, then the calculated enable temperature for both locations will be the same. Furthermore, when the enable temperature is calculated at the (3/4)t controlling location, one must also verify that the value obtained bounds (i.e., be greater than) the enable temperature for all possible cooldos i rates at the (1/4)t location.

3. BASIS FOR DETERMINING CONTROLLING LOCATION The method for determining the reactor vessel controlling location ( (1/4)t or (3/4)t )

during plant heatups and cooldowns is described below in accordance with the rules outlined in ASME Code,Section III, Appendix GH1 with the fracture toughness requirements defined in Appendix G of 10 CFR Part 50W. The methods used are documented in detail in WCAP-7924-AW.

licatun In a heatup analysis, two distinct situations are analyzed. First, allowable pressure-temperature relationships are developed for steady-state (i.e., zero rate of change of temperature) conditions as well as finite heatup rate conditions, assuming a (1/4)t deep flaw at the inner diameter of the reactor vessel. During a heatup of the reactor vessel, the thermal gradients in the vessel wall tend to produce compressive stresses at the (1/4)t location, and as a result, the tensile stresses induced by internal pressure are somewhat alleviated. Therefore a pressure temperature heatup curve based on steady state conditions (i.e., no thermal stresses) represents a lower bound of all similar curves for finite heatup rates when the (1/4)t flaw is considered. However, dunng heatup, especially at the end of the heatup transient, conditions may exist so that the effects of compressive thermal stresses and tensile pressure stresses do not offset each other, and the pressure-temperature curve based on steady-state conditions no longer represents a lower bound of all similar curves for finite heatup rates when the (1/4)t flaw is considered. Therefore, both cases (i.e., steady-state and finite heatup) have to be analyzed in order to ensure that the lower value of the allowable pressure 4

calculated for steady-state and finite heatup rates is obtined.

Secondly, allowable pressire temperature relationships are developed for a finite hcetup rate, assumirs a (1/4)t-deep flaw at the outer diameter of the reactor vessel (i.e., the (3/4)t iocanon). Unlike the situation at the inner diameter, at the outer diameter position the thermal gradients established dwing heatup produce stresses which are tensile in nature and thus tend to reinfon:e the pressure stresses present.

These thennal stresses are dependent on both the rate of heatup and the time along the heatup ramp. Furthermore, since the thermal stresses at the outer diameter are tenule and increase with increasing heatup rate, a lower bound curve similar to that described above cannot be defined. Rather, each heatup rate of interest must be analyzed on an individual basis.

Following the generation of pressure-temperature relationships for both the steady state and finite heatup rate situation., s composite heatup curve of pressure-temperature values is constnacted based on a point by point comparison of the steady-state and finite heatup rate data. At any given temperature, the allowable pressure is taken to be the lesser of the values taken from the heatup curves under consideration (i.e., steady-state, (1/4)t and (3/4)t finite heatup). The locations under consideration having the lowest pressure for a given temperature determines the reactor vessel controlling location.

During the generation of the heatup composite curve, the outer diameter ( (3/4)t position)is initially the controlling location. However, the possibility exists for the controlling location to switch from the (3/4)t to the (1/4)t position during the reactor vessel heat up process. in addition, the reactor vessel fluid temperature in which the switch over occurs also changes as the effective full power years l

(EFPY) of the vessel change, therefore, the switch over temperature is not a fixed value but changes with RT ur.

N Cooldown The cooldown analysis proceeds in the same fashion as that for heatup, with the exception that the controlling location is always at the inner diameter. The thermal gradients induced during cooldown tend to produce tensile stresses at the inner diameter location ( (1/4)t ) and compressive stresses at the outer diameter location

( (3/4)t ). Thus, the inner diameter flaw is clearly the worst case, and as a result, the (1/4): position is always the controlling location for a reactor vessel cooldown proc; 4.

l 1

--.4

4. CALCULATION OF ENABLE TEMPERATURE FOR 16 EFPY Using heatup and cooldown results from Letter Report,"Duquesne Light Company Beaver Valley Unit 1 Life Attainment Plan"IU, the enable temperature set point calculation is provided below for 16 EFPY without instrumentation error margins, assuming heatup rates of 50 and 60 F per hour. The variations of the metal temperature difference (AT) between the reactor vessel bulk fluid and the (1/4)t and (3/4)t controlling locations, for 50 and 60 'F per hour heatup rates, is provided in Figures I through 4.

Figures 1 and 2," Metal Temperature Difference ( F) vs. Reactor Vessel Fluid Temperature ( F)", shows the metal temperature difference for the (1/4)t and (3/4)t positions corresponding to a fluid temperature adjacent to the reactor vesselinner diameter for heatup rates of 50 and 60 F per hour, Similarly, Figures 3 and 4," Metal Temperature Difference ( F) vs. Time (Hours)", shows the metal temperature differences as a function of time throughout the reactor vessel heatup process for heatup rates of 50 and 60 F per hour. Figures 3 and 4 are provided for information purposes only and are not required to calculate the enable temperature set point. Tables 1 and 2, which contain the data points used to generate the curves in Figures 1 through 4, will be used to determine the metal temperature difference (AT) in the enable temperature calculations that follow.

The OPERLIM computer code [6] was used to calculate the temperature values induced in the reactor vessel beltline for the 50 and 60 F per hour heatup rates. The calculation procedures used by OPERLIM comply with the rules outhned in ASME Code,Section III, Appendix GI9 as required by the enteria of Appendix G to 10CFR Part 50l31 4

o i.

t 50 1m' 150

200 250 300 350 400 450
500-550 -

600 35 35

- i

=-

30 30'-

C i

ca dT 25- -

25 y.

Delta T @3/4T Location j

20- -

20 -

B 18 Eg 15- -

15 3e2 10-1-

Delta T@l/4T Locadon

.to.

i 5

1 5-00h 50 1

1 550 Reactor Vessel Fluid Temperature (Deg.F)

Figure 1 Variation of Metal Temp Difference with Reactor Vessel Fluid Temp..

For Beaver Valley Unit 1 Using a 50 Deg. F per Hour Heatup Rate -

- I e

n n

50 100 150 200 250 300 350 400

'450 500 550' 600 I

i

.I I

I i

1 I

i 35 35 30.-

30.

Ce Delta T@3/4T Location dy 25 25 5

9 20 4

20 it k

15- ~

15

~

sy Delta T@l/4T Location 10- -

10-5- -

5 0

50 100 150 200 250 300 360 -

400 450 500 550.

606 n

Reactor Vessel Fluid Temperature (Deg.F)

Figure 2 Variation of Metal Temp. Difference with Reactor Vessel Fluid Temp.

For Beaver Valley Unit 1 Using a 60 Deg. F per Hour Heatup Rate

-6

0 1

2 3

4 5

6 7

8 9

10 11 12 40 j

j j

j j

j j

j j

j j

4 r

-f i

35- -

A 30- -

30 eo d

]

?

25- -

U 25 g

Delta T @3/4T Location 5

20- -

20 lil k

Ey 15- -

15 3

10-Delta T @1/4T Location 10 5-4 5

0 0

1 2

3 4

5 6

7 8

9 10 11 12 0

Time (hours)

Figure 3 Variation of Metal Temp. Difference with Time For Beaver Valley Unit 1 Using a 50 Deg. F per Hour Heatup Rate -

,=

^*;,.

0:

1 2

3 4

5 6

7-8 9

10 I

1 1

i i

i i

i

-40 35

_.35 30 30 k

Delta T@3/4T Location d7 25- -

g 25 8

(

20 B

20 a

5.

Ey 15- -

15 3

o

^

2 Delta T@l/4TLocation 10-10 5-5 0

l l

0 1

2 3

4 5

6 7.

8 9

10 o

Time (hours)

Figure 4 Variation of Metal Temp. Difference with Time For Beaver Valley Unit 1 Using a 60 Deg. F per Hour Heatup Rate

~

Table 1: Beaver Valley Unit 1 Temperature Variations For 50 'F per Hour Heatup Rate Time Time Water Temp. (1/4)t Temp. (3/4)t Temp.

AT @(1/4)t -

AT@(3/4)t (TwaterlF)T(ty)t)- (Twaterg T(3g (sec.)

(houn)

( F)

( F)

( F)

(

( F) 360 0.100 75 72 70 3

5 720 0.200 80 75 71 5

9 1080 0.300 85 79 73 6

12-1440 0.400 90-83 76 7

14 1800 0.500 95 87 79 S

16 2160 0.600 100 92 83 8

17 2520 0.700 105 96 87 9

18 2880 0.800 110 101 91 9

19 3240 0.900 115 106 95 9

20 3600 1.000 120 119 100 10 20 3960 1.100 125 115 105 10 20 4320 1.200

- 130 120 109 10 21 4680 1.300 135 125 114 10 21 5040

.1.400-140 130 119 10 21 5400-1.500 145 135 124 10 21 5760 1.600 150 140 128 10

-22~

6120 1.700-155

-145 133 10 22 6480-1.800 160 150-138-10 22 u

6840-1.900 165 154 143-

-11 22-7200 2.000 170 159 148 11 22 7560 2.100 175 164 153 11 22 7920 2.200 180 169 158 11 22 -

8280

'2.300 185 174 163-11 22 8640 2.400 190 179 168 11 22 9

Table 1: Beaver Valley Unit 1 Temperature Variations For 50 F per Hour Heatup Rate (Cont.)

AT @(1/4)t AT @(3/4)t

'Ilme

'Ilme Water Temp. (1/4)t Temp. (3/4)t Temp.

(Twa, Tgf4)t)

(T t, Tgf4)).

(sec.)

(hours)

( F)

( F)

( F) w 9000 2.500 195 184 173 11 22 9360 2.600 200 189 177 11 23 9720 2.700 205 194 182 11 23 10080 2.800 210 199 187 11 23 10440 2.900 215 204 192 11 23 10800 3.000 220 209 197 11 23 11160 3.100 225 214 202 il 23 11520 3.200 230 219 207 11 23 11880 3.300 235 224 212 11 23 12240 3.400 240 229 217 11 23 12600 3.500 245 234 222 11 23 12960 3.600 250 239 227 11 23 13320 3.700

'35 244 232 11 23 13680 3.800 260 249 237 11 23 14040 3.900 265 254 241 11 24 14400 4.000 270 259 246 11 24 14760 4.100 275 26, 251 11 24 15120 4.200 280 269 256 11 24 15480 4.300 285 274 261 11 24 15840 4.400 290 279 266 11 24-16200 4.500 295 283 271 12 24 16560 4.600 300 288 276 12 24 16920 4.700 305 293 281 12 24 17280 4.800 310 298 286 12 24 17640 4.900 315 303 291 12 24 18000 5.000 320 308 296 12 24

- 10

i

- Table 1: Beaver Valley Unit 1 Temperature Variations For 50 'F per Hocr Heatup Rate (Cont.) -

AT @(1/4)t AT@(3/4):

Time Time Water Temp. (1/4)t Temp. (3/4)t Temp.

(T T( f4)t) (T T(3f4)t)

(sec.)

(hours)

(*F)

( F)

( F) water lF) water lF)

(

-(

18360 5.100 325 313 301 12 24 18720 5.200 330 318 305 12 25 19080 5.300 335 323 310 12 25 19440 5.400 340 328 315 12 25 19800 5.500 345 333 320 12 25 20160 5.600 350 338 325 12 25 20520 5.700 355 343 330 12 25 20880 5.800 360 348 335 12 25 21240 5.900 365 353 340 12 25 21600 6.000 370 358 345 12 25 i

21960 6.100 375 363 350 12 25 -

22320 6.200 380 368 355 12 25 22680 6.300 385 373 360 12 25 l

23040 6.400 390 378 364 12 26 l

l 23400 6.500 395 383 369 12 26 23760 6.600 400 388 374 12

-26 24120 6.700 405 393 379 12 26 24480 6.800 410-398 384 12 26 24840 6.900 415 403 389-12 26 25200 7.000 420 408 394 12 26.

25560 7.100

.425 413 399 12 26 25920 7.200 430 417 404 13 26 26280 7.300 435 422 409

3 26 26640 7.400 440 427 414 13 26 27000 7.500 445 432 419 13 26 27360 7.600 450 437 424 13 26

! l

m

~

Table 1: Beaver Valley Unit 1 Temperature Variations For 50 *F per Hour Heatup Rate (Cont.)

AT@(1/4)t

- AT@(3/4)t Time

. Time -

Water Temp. (1/4)t Temp. (3/4)t Temp.

T (Twat,- T(3j43)

,p (1/4)t)

(sec )

(hours) -

'('F)

( F)

('F)-

wat 27720 7.700 455 442 428 13 27 28080 7.800 460 447 433 13 27 28440 7.900 465 452 438 13 27 28800 8.000-470 457 443 13 27 29160 8.100 475 462 448 13 27 29520 8.200 480 467 453 13 27 29880 8.300 485 472 458 13 27 30240 8.400 490 477 463 13 27 30600 8.500 495 482 468 13 27 30960 8.600 500-487 473 13 27 31320 8.700 505 492 478 13 27.

31680 8.800-510 497 483 13 27 32040 8.900 515 502 487 13 28-32400 9.000 520 507 492 13 28 32760 9.100 525 512

-497 13 28 33120 9.200 530 517 502 13 28 33480 9.300 535

.522 507 13

28 33840 9.400 540 527 512-13 28-34200 9.500 545 532 517 13 28-34560 9.600 550.

537 522 13 28 34920 9.700 550.

540 527 10 23 35280-9.800 550 542 531 8

19 35640 9.900-550 543 534 7

16 36000 10.000 550 545 537 5

'13 36360 10.100 550 546 540 4

10-36720 10.200 550 546 541 4

9 i l

~ _. _-

Table 1: Beaver Valley Unit 1 Temperature Varicions For 50 'F per Hour Hestup Rate (Con Time

. Time Water Temp. (1/4)t Temp. (3/4)t Temp.

AT @(1/4)t AT @(3/4) -

(T**yog(if4)c)

(sec.)

(hours)

(*F)

('F)

-( F)

T (T,

gj4g w

o 37080 10.300 550 547-543 3-7 37440 10.400 550-548 544 2

6:

37800 10.500 550 548 545 2

5 38160

.10.600 550 548 546 2

4 38520 10.700 550 549 547 1

3 38880 10.800 550 549 547 1

3 39240 10.900 550 549 548 1

2 39600 11.000 550 549 548 2 l

39960 11.100 550 549 549 1

1 40320 11.200 550 550 549 0

1-40680 11.300 550 550 549 0

1 _.

41040 11.400-550-550 549 0

1 r

i

- 13

'l Table 2: Beaver Valley Unit 1 Temperature Variations For 60 *F per Hour Hestup Rate -

Time Time Water Temp. (1/4)t Temp. (3/4)t Temp.

AT @(1/4)t -

AT@(3/4)t (T

T waterg (if4)t) (Twaterl T(3/4)t)

(sec.)

(houn)

('F)

( F)'

( F) 300 0.083 75 72 70 3

5 600 0.167 80 75 71

'i 9

900 0.250 85 78 73 7-12 1200 0.333-90 82 75 8

15 1500 0.417 95

'86 78 9

17 :-

1800 0.500 100-91 81 9

19 2100 0.583 105 95 85 10 20 2400 0.667 110 100 89 10 21 2700 0.750 115 104 93 11 22-3000 0.833 120 109 97 11-23 3300 0.917 125 114 101 11

24' 3600 1.000 130 118 106 12 24 3900 1.083 135 123 110 12 25 4200 1.167 140 128 115 12 25 -

4500 1.250 145 133 120 12 25 4800 1.333 150 138 125 12 25 5100 1.417 155 143 129.

12 26 5400 1.500-160 148 134 12 26 5700 1.583 165 153

'139 12 26.

6000 1.667 170 157 144 13 26-6300 1.750 175 162 149 13 26 6600 1.833 180 167 154 13 26 6900 1.917 185 172 158 13 27 7200 2.000 190 177 163 13 27 7500 2.083 195 182 168- -- 27

- 14 r.--

.m

  • a Table 2: Beaver Valley Unit 1 Temperature Variations For 60 F per Hour Hestup Rate (Cont.)

Time Time Water Temp. (1/4)t Temp. (3/4)t Temp.

AT@(1/4)t AT@(3/4)t (Twater - T(1/4)t) (Twata - T(3/4)t)

(sec.)

Mours)

(*F)

(*F)

( F)

( F)

(*F) 7800 2.167 200 187 173 13 27 8100 2.250 205 192 178 13 27 i

3400 2.333 210 197 183 13 27 8700 2.417 215-202 188 13 27 9000 2.500 220 207 193 13 27 9300 2.583 225 212 198 13 27 9600 2.667 230 217 203 13 27 9900 2.750 235 222.

207 13 28 10200 2.833 240 227 212 13

-28 10500 2.917 245 232 217 13 28 10800 3.000 250 237 222 13 28 11100 3.083 255 242 227 13 28 11400 3.167 260

.247 232 13 28 11700 3.250 265 252 237 13 28 12000 3.333 270 256.

242 14 28 72300 3.417 275

.261 247 14 28 12600 3.500 280 266 252 14 2R 12900 3.583 285 271 256 14 29 13200 3.667 290 276 261 14 29 13500 3.750 295 281 266 14 29 l

13800 3.833 300 286 271 14

.29 14100-3.917' 305 291-276 14 29 14400 4.000 310 296 281 14 29 14700 4.083 315 301 286 14 29 15000 4.167 320 306 291 14 29 15300 4.250 325 311 296 14 29 l L

Table 2: Beaver Valley Unit 1 Temperature Varistions For 60 *F per Hour Heatup Rate (Cont.)

AT @(1/4)t AT@(3/4)t Time Time Water Temp. (1/4)t Temp. (3/4)t Temp.

(sec.)

(hours)

(*F)

( F)

('F)

(T T

(T waterg )(if4)t)

T(3f4)t) water lF)

(F

.(

15600 4.333 330 316 301 14 29-15900 4.417 335 321 306 14 29 16200 4.500 340 326 3'

14 30 -

16500 4.583 345 331 315 14 30 16800 4.667 350 336 320 14 30 17100 4.750 355 341 325 14 30 17400 4.833 360 346 330 14 30 17700 4.917 365 351 335 14 30 18000 5.000 370 356 340 14

-30 18300 5.083 375 361 345 14 30 18600 5.167 380 365 350 15 30

+

18900 5.250 385 370 353 15 30 19200 5.333 390 375 360 15 30 19500 5.417 395 380 364 15 31 19800 5.500 400 385-369~

15 31 20100 5.583 405 390-374 15 31-20400 5.667 410 395 379

-15 31 20700 5.750 415 400 384 15-31 21000 5.833 420 405 389 15-31 21300 X.917 425 410.

394 15

-31 21606 6.000 430 415 399 15 31 21900 6.083 435 420 404 15

'31 22200 6.167 440 425 409 15 31 22500 6.250 445 430 413 15 32 22800 6.333 450 435 418 15 32 23100 6.417 455 440 423-15 32 t..

Table 2: lleaver '+' alley Unit 1 Temperature Variations For 60 *F per flour lleatup Rate (Cont.)

T @O/4)t M @(3/4)t Time Tuna Water Temp. (1/4)t Temp. (3/4)t Temp.

(sec.)

(iiours)

( F)

( F)

( F)

(T.3:yg T(if4)i) (T T

watug )(3f4),)

( F)

(F 23400 6.50 460 445 428 15 32 23700 6.583 465 450 433 15 32 24000 6.667 470 455 438 32 24300 6.750 475 460 443 15 32 24600 6.833 480 465 448 15 32 2490' 6.917 485 470 453 15 32 25200 7.000 490 474 458 16 32 25500 7.083 495 479 463 16 32 25800 7.167 500 484 367 16 33 26100 7.250 505 489 472 16 33 26400

)..?33 51(,

494 477 16 33 26700 7.417 515 499 482 16 33 27000 7.500 520 504 487 16 33 27300 7.583 525 509 492 16 33 27600 7.667 530 514 497 16 33 27900 7.750 535 519 502 16 33 28200 7.833 540 524 507 16 33 28500 7.917 545 529 512 16 33 28800 8.000 550 534 516 16

.s4 29100 8.083 550 538 521 12 29 29400 8.167 550 540 526 10 24 29700 8.250 550 541 529 9

21 30000 8.333 550 543 533 7

17 30300 8.417 350 544 535 6

15 30600 8 '30 550 545 538 5

12 30900 8.583 550 545 539 5

11 i

. l *f.

Table 2: fleaver Valley Un!! 1 Temperature Variations For 60 *F per 11our llealup Rate (Cont.)

@(1/ )t M @(3/4)t Time Time Water Temp. (1/4)t Temp. (3/4)t Temp.

(sec.)

(hours)

(*F)

( F)

('F)

  • ScT (1/4)t} "*8e7 0/4)t) p 31200 8.667 550 546 541 4

9 315CO 8.750 550 547 542 3

8 31800 8.833 550 547 544 3

6 32100 8.917 550 548 545 2

5 32400 9.000 550 548 545 2

5 32700 9.083 550 548 546 2

4 33000 9.167 550 549 547 1

3 33300 9.250 550 549 547 1

3 33600 9.333 550 549 548 1

2 33900 9.417 550 549 548 1

2 34200 9.500 550 549 548 1

2 0

34500 9.583 550 549 549 1

1 34800 9.667 550 549 549 1

1 35100 9.750 550 550 549 0

1 35400 9.833 550 550 549 0

1 s

- 18

4 i

in order to determine which Appendix G controlling location is controlling for a given reactor vessel fluid temperature during a heatup process, the following two tables are prcvided. Tables 3 and 4 provide the Beaver Valley Unit I controlling locations for 50 and 60 'F per hour heatup rates, respectively. The tables reflect which controlling location has the limiting allowable pressure during the reactor vessel he: tup process. Note, this table can be generated with or without instrumentation error margins without effecting the end result of the enable temperature set point calculation.

Table 3: Ucaver Valley Unit 1 Appendix G Controlling Locations For 16 EFPY and 50 'Filfr IIcatup Rate (Without Instrurnentation Error Af argins) 50 'F/Hr Fimte lleatup Rate

(

II (1/4)t (3/4)t

"" I'3 * #

'"*0"8 Allowable Allowable Controlling Tene

^" ** *

'85"

Pressure Pressure Location I

I *'sme (PSI)

(PSI)

(PSI)

PS 85 570.48 487.95 516.56 487.95 (3/4)t 90 583.96 480.09 518.81 480.09 (3/4)t 95 594.92 475.04 521.24 475.04 (3/4)t 100 603.82 471.91 523.84 471.91 (3/4)t 105 611.49 470.54 526.64 470.54 (3/4)t 110 618.01 470.38 529.66 470.38 (3/4)t 115 624.14 471.41 532.89 471.41 (3/4)t 120 629.54 473.25 536.37 473.25 (3/4)t 125 634.90 475.96 540.12 475.96 (3/4)t 130 639.91 479.29 544.14 479 29 (3/4)t 135 645.07 483.33 548.47 483.33 (3/4)t 140 650.13 487.91 553.12 487.91 (3/4)t 145 655.43 493.13 558.12 493.13 (3/4)t 150 660.70 498.87 563.39 498.87 (3/4)t 155 666.44 505.23 569.17 505.23 (3/4)t 160 672.41 512.15 575.39 512.15 (3/4)t 165 678.76

- 519.63 582.07 519.63 (3/4):.-

Table 3: Beaver Valley Unit 1 Appendix G Controlling Iocations For 16 EFPY and 50 F/llr IIeatup Rate (Without Instrumentation Error 5fargins)(Cont.)

50 *F/Hr Firute Heatup Rate (1/4):

(1/4)t (3/4)t Steady State Limitmg Allowable Allowable Controlling Temp.

All wable Pressure Pressure Pressure Location

('F)

Pressure (PSI) pgg) pgg)

(PSI) 170 685.47 527.81 589.25 527.81 (3/4)t 175 692.62 536.69 596.98 536.69 (3/4)t 180 700.21 546.27 605.28 546.27 (3/4)t 185 708.31 556.63 614.08 556.63 (3/4)t 190 716.84 567.67 623.68 567.67 (3/4)t 195 726.10 579.71 634.00 579.71 (3/4)t o9 736.02 592.66 645.09 592.66 (3/4)t 205 746.62 606.62 657.00 606.62 (3/4)t 210 757.93 621.51 669.69 621.51 (3/4)t 215 769.94 637.68 683.47 637.68 (3/4)t 220 782.99 655.04 698.30 655.04 (3/4)t 225 796.92 673.61 714.05 673.61 (3/4):

230 811.71 693.72 731.18

'93.72 (3/4)t 235 827.74 715.18 749.58 715.18 (3/4)t 240 844.95 738.42 769.20 738.42 (3/4)t 245 863.15 763.22 790.48 763.22 (3/4)t 250 882.97 790.08 813.13 790.08 (3/4)t 255 904.07 818.74 837.73 818.74 (3/4)t 260 926.69 849.72 863.91 849.72 (3/4)t 265 951.02 882.87 892.31 882.87 (3/4)t 270 977.N 918.41 922.60 918.41 (3/4)t 271

  • 982.63
  • 926.08
  • 929.14 926.08 (3/4)t 272
  • 988.22
  • 933.75
  • 935.69 933.75 (3/4)t.

Table 3: Beaver Valley Unit 1 Appendix G Controlling Locations For 16 EFPY and 50 F/llr lleatup Rate (Without Instrumentation Error Margins)(Cont.)

50 *F/Hr Fimte Heatup Rate 3

(1/4)t (1/4)t (3/4):

ater "I

Allowable Allowable Controlling Temp.

85"#*

Pressure Pressure Location

('F)

Pressure (PSI)

(p3g)

(p3g)

(PSI) 273

  • 993.80
  • 941.42
  • 942.23 94I 42 (3/4)t 274
  • 999.39
  • 949.09
  • 948.78 948.78 (1/4)t 4

275 1004.98 956.76 955.32 955.32 (1/4)t 280 1034.98 997.86 990.36 990.36 (1/4)t 285 1067.00 1041.98 1028.02 1028.02 (1/4)t 290 1101.60 1089.31 1068.42 1068.42 (1/4)t 295 1138.54 1140.10 1111.83 1111.83 (1/4)t 300 1178.24 1194.64 1153.48 1158.48 (1/4)t 305' 1220.75 1252.92 1208.61 1208.61 (1/4)t 310 1266.38 1315.82 1262.47 1262.47 (1/4)t 311

  • 1276.16
  • 1329.29
  • 1274.05 1274.05 (1/4)t.

312

  • 1285.94
  • 1342.75
  • 1285.62 1285.62 (1/4)t 313
  • 1295.73-
  • 1356.22
  • 1297,20 1295.73 (1/4)t L

314

  • 1305.51.
  • 1369.68
  • 1308.77 1305.51 (1/4)t 315 1315.29 1383.15 1320.35 1315.29 (1/4):

320 1367.83 1455.12 1382.35-1367.83 (1/4):

325 1424.04 1532.57 1448.64 1424.04 (1/4)t 330 1484.40 1615.29 1520.22 1434.40 (1/4)t 335 1548.78 1704.01 1596.56 1548.78

-(1/4)t 340 1618.26 1798.89 1678.81 1618.26 (1/4)t 345 1692.15-19'O.46 1766.78 1692.15 (1/4)t 350 1771.88 2009.13 1861.06 1771.88

-(1/4)t 355 1856.87 2125.21 1961.94 1856.87 (1/4)t

- 21

.=L.

l

4 1

Table 3: Beaver Valley Unit 1 Appendix G Contmiling Locations For 16 EFPY and 50 'F/lfr lleatup Rate (Without Instrumentation Error Margins)(Cont.)

50 'F/lfr Finite lieatup Rate U

}'

(1/4)t (3/4)t aw Steady. State Limiting Allowable Allowable Controlling Temp.

Pressure Pressure Location

(

55"#'

(PSI)

(PSI)

(PSI) 3 360 A?1 M49.10 2069.82 1948.04 (1/4):

365 N.t1 "t1 2185.28 2045.43 (1/4)t 370 2i.M.

iJh 9 2308.81 2149.51 (1/4):

375 2260.76 2672.77 2440.69 2260.76 (1/4) 380 2379.53 2832.59 2581.38 2379.53 (1/4)t

  • Values calculated by linear interpolation.

Table 4: Beaver Valley Unit 1 Appendix G Contwiling locations For 16 EFPY and 60 'F/Ilr licatup Rate (Without Instrumentation Error Margins) 60 'F/Hr Fimte Heatup Rate

(

)t (1/4)t (3/4)t ater

    • Y' * *

"I Allowable Allowable Controlling Temp.

M ** '

Pressure Pressure Location

(,F)

Pressure (PSI)

(PSO (PSD (PSI) 85 572.98 486.22 516.56 486.22 (3/4)t 90 588.25 476.50 518.81 476.50 (3/4)t 95 601.20 469.56 521.24 469.56 (3/4)t 100 611.73 464.58 523.84 464.58 (3/4)t 105 621.21 461.48 526.64 461.48 (3/4):

110 629.21 459.69 529.66 459.69 (3/4)t 115 636.63 459.23 532.89 459.23 (3/4):

120 643.17 459.70 536.37 459.70 (3/4)t -

22

o 4

i Table 4: Ileaver Valley Unit i Appendix G Contrulling Locations For 16 EFPY and 60 'F/llr IIcatup Rate (%1thout Instrumentation Error Margins)(Cont.)

60 'F/Hr Finite Heatup Rate

}*

(1/4)

(3/4)t ater e @

ate Luniung Allowable Allowable

.femp.

Controlling 55

  • Pressure Pressure Locanon

(,F)

Pressure (PSI)

(PSI)

(PSI)

(PSI) 125 649.48 461.17 540.12 461.17 (3/4)t 130 655.30 463.35 544.14 463.35 (3/4):

135 660,97 466.33 548.47 466.33 (3/4)t 140 666.61 469.93 553.12 469.93 (3/4)t 145 672.36 474.21 558.12 474.21 (3/4)t 150 678.14 479.07 563.39 479.07 (3/4)t 155 684.14 484.59 569.17 484.59 (3/4)t 160 690.33 490.68 575.39 490.68 (3/4)t 165 696.82 497.42 582.07 497.42 (3/4)t 170 703.61 504.78 589.25 504.78 (3/4)t 175 710.63 512.84 596.98 512.84 (3/4)t 180 718.25 521.47 605.28 521.47 (3/4)t 185 726.31 530.96 614.08 530.96 (3/4)t 190 734.92 541.21 623.68 541.21 (3/4)t 195 744.05 552.30 634.00 552.30 (3/4):

200 753.80 564.14 645.09 564.14 (3/4)t 205 764.04 577.05 657.00 577.05 (3/4)t 210 775.21 590.95 669.69 590.95 (3/4)t 215 787.10 605.93 683.47 605.93 (3/4)t 220 799.84 621.93 698.30 621.93 (3/4)t 225 813.27 639.30 714.05 639.30 (3/4)t 230 827.92 657.95 731.18 657.95 (3/4)t.

235 843.52 677.92 749.58 677.92 (3/4)t 23 -

4 i

Table 4: Beaver Valley Unit 1 Appendix G Controlling Locations For 16 EFPY and 60 'F/Hr ifeatup Rate (Without Instrumentation Error Margins)(Cont.)

60 'F/lir Finite lieatup Rate (1/4):

YyS**

ar li"5U"E Al w ble Al w ble g, re Controlling p,

Pressure Pressure b "'I "

(op)

Pressure (PSI)

(PSI)

(PSI) pgg) 240 860.09 699.53 769.20 699.53 (3/4)t 245 878.04 722.60 790.48 722.60 (3/4)t 250 897.28 747.56 813.13 747.56 (3/4)t.

t 255 917.67 774.25 837.73 774.25 (3/4)1 260 939.82 803.07.

863.91 803.07 (3/4)t 265 963.25 833.92 892.31 833.92 (3/4)t -

270 988.72 867.00 922.60 867.00

. (3/4)t -

275 1015.69 902.74 955.32 902.74 (3/4)t 280 1044.91 941.00 990.36 941.00 (3/4):

285 1076.05 982.06 1028.02 982.06 (3/4)t 290 1109.38 1026.12 1068.42 1026.12-.

' (3/4)t 295 1145.36 1073.44 1111.83 1073.44 (3/4)t 300 1183.83 1124.25 1158.48 1124.25 (3/4)t 3:5 1225.01 1178.76 1208.61 1178.76 (3/4)t

-310 1269.24 1237.21 1262.47-1237.21 (3/4)t b

315 1316.59 1299.91 1320.35 1299.91 (3/4)t 320 1367.45 1367.12 1382.35 1367,12 (3/4)t 321

  • 1378.34
  • 1381.53
  • 1395.61 1378.34

.(1/4)t 322

  • 1389.23
  • 1395.94
  • 1408.87 1389.23 (1/4)t 323
  • 1400.13
  • 1410.35
  • 1422.12 1400.13 (1/4)t-324
  • 1411.02
  • 1424.76
  • 1435.38 1411.02 (1/4)t 325 1421.91-1439.17 1448.64 1421.91 (1/4)t 330 1480.23 1516.37 1520.22 1480.23 (1/4)t

- 24

.. ~.

=. -.

~.... -., -.. - -.

. =..

Table 4: Beaver Valley Unit 1 Appendix G Controlling Locations For 16 EFPY and 60 F/ifr lieatup Rate (%1thout Instrumentation Error.%fargins)(Cont.)

60 'F/Hr Firute Heatup Rate (1 )t (1/4)t (3/4)t ater Steady.Ftate Limitmg Allowable Allowable Controlling Temp' All wable Pressure N

Wess re

(*I9 Pressure (PSI)

(p3;)

(p3g)

(PSI) 335 1542.82 1598.90 1596.56 1542.82 (1/4)t 340 1609.85 1687.68 1678.81 1609.85 (1/4)t 345 1681.59 1782.43 1766.78 1681.59 (1/4)t 350 1758.47 1883.83 1861.06 1758.47 (1/4)t 355 1840.49 1992.18 1961.94 1840.49 (1/4)t 360 1928.85 2108.19 2069.82

'928.85 (1/4)t 365 2022.96 2231.66 2185.28 2022.96 (1/4)t 370 2123.68 2363.91 2308.81 2123.68 (1/4):

375 2231.16 2504.67 2440.69 2231.16 (1/4)t 380 2346.27 2654.54 2581.38 2346.27 (1/4)t 385 2469.03 2813.67 2731.33 2469.03 (1/4)t

  • Values calculated by linearinterpolation.

Usmg Tables 1 through 4, the calculation of the enable temperatwe for 16 EFPY is as follows:

o the RTmyrvalues for the limiting beltline region for 16 EFPY are 22432 F and 187.94 *F for the (1/4)t and (3/4)t locations, respectively (See Ref.1).

o Using Tables 3 and 4, the Appendix G controlling location temperature ranges for a 50 'F per hour heatup rate are (85 *F s T s 273 *F) for the (3/4)t position, (274 *F s T s 312 "F) for the (1/4)t position under steady state conditions, and (313 *F s T s 380 *F) for the (1/4)t position. Similarly, for a 60 *F per hour he:,ttp Iate the Appendix G controlling location temperature ranges are (85 F s T s 320 F) for the (3/4)t position, and (321 F s T s 385 'F) for the (1/4)t position.._

1 l

50 F Per flour.lleatuo Rate For the temperature range (85 F s T s 273 'F), the (3/4)t position controls, therefore, ET = RTNDT + 90 F + AT ET = IP7.94 F + 90 'F + 24 'F = 301.94 *F where, AT = 24 F represents the metal temperature difference (Tawd T(3f4)t) when the (3/4)t controlhng location reaches a temperature value of 278 F(i.e., RTNDT + 0'F).

For the temperature range (274 'F s T s 312 F), the (1/4)t position controls under steady state conditions, therefore, ET = RTNDT + 90 F ET = 224.32 F + 90 F = 314.32 *F Note, the metal temperature difference, A l', is excluded due to steady state conditions.

For the temperature range (313 F s T s 380 'F), the (1/4)t position controls, therefore, ET = RTNDT + 90 F + AT ET = 224.32 'F + 90 F + 12 'F = 326.32 F where, AT = 12 F represents the metal temperature difference (Tamd - Tgf4)t) when the (1/4)t controlling location reaches a temperature value of 314 'F (i.e., RTNDT + 90*F).

i _

i 60 'F Per Hour Hentun Rate i

For the temperature range (85 'F s T s 320 'F), the (3/4): position I

controls, therefore, ET = RTNDT + 90'F + AT ET = 187.94 'F + 90 'F + 29 'F = 306.94 'F where, AT = 29 'F represents the metal temperature difference t

(Tauid - T(3f4)t) when the (3/4)t controlling location reaches a temperature value of 278 'F (i.e., RTNDT + 90 F).

For the temperature range (321 *F s T s 385 'F), the (1/4)t position controls, therefore, ET = RTNDT + 90'F + AT ET = 224.32 'F + 90 'F + 14 'F = 328.32 'F where, AT = 14 'F represents the metal temperature difference '

(Tnuid T(if4)t) when the (1/4)t controlling location reaches a temperature value of 314 'F (i.e., RTNDT + 90'F).

t i

i

20. 40. 60. and 100 'F Per Hour Cooldown Re Taking into account the cooldown rates used in Reference 1 for 16 EFFY (20,40, 60, and 100 'F per hour), the ET calculations are as follows.

For Cooldown, ET = RTgor + 90'F + AT at the (1/4)t position.

Using 20 'F/Hr cooldown rate:

ET = 224.32 *F + 90 *F 5 F = 309.32 'F where, AT = 5 'F represents the metal temperature difference (Tfluid T(if4)t) when the (1/4)t controlling location reaches a temperature value of 314 'F.-

a..

e Using 40 'F/1{r cooldown rate:

ET = 224.32 F + 90 F - 10 F = 304.32 'F where, AT = 10 F represents the metal temperature difference (Tauid T(if4)t) when the (1/4)t controlling locanon reaches a temperature value of 314 'F.

Using 60 F/11r cooldown rate:

ET = 224.32 *F + 90 *F 15 'F = 299.32 'F where, AT = 15 'F represents the metal temperature difference (Tauid - T(if4) ) when the (1/4)t controlling location reaches a temperature value of 314 *F.

Using 100 *F/11r cooldown rate:

ET = 224.32 'F + 90 'F - 25 'F = 289.32 'F where, AT = 25 *F represents the metal temperature difference (T uid T(ij4)t) when the (1/4)t controlling location reaches a fl temperature value of 314 F.

The results of the above calculation: rze summan2ed in Table 5 on the following page.

The calculations show that the bounding enable temperature set point occurs at the (1/4)t controlling location using a 60 'F per hour heatup rate. The value calculated,328.32 *F, includes the AT metal temperature difference value and supports up to 16 EFFY using heatup rates between 0 'F and 60 F per hour. In addition, this value defines the temperature range, (T.p s T s 328.32 *F), for which the L1DPS system must be turned 70 on dunng reactor vessel heatup and cooldown events to ensure safe operating conditions at low temperatures.

If the heatup rate of 50 'F per hour is used as the maxiinum heatup rate, the bounding enable temperature set point would be 326.32 F. This value decreases the enable temperature set point by 2 'F. !

Table 5: Beaver Valley Unit 1 Enable Temperature Calculations For 16 EFPY ifeatup/Cooldown Enable Rate Appendix 0 RT o + 90 'F AT N

Tem op {7,)

Controlling Location

( F)

('F) op 50 Heatup (3/4)t(85 FsTs273 F) 277.94 24 301.94 (1/4)t(274 FsTS312'F) 314.32 0

314.32 (1/4)t(313 FsTs380'F) 314.32 12 326.32 60 lieatup (3/4)t(85'FsTs320 F) 277.94 29 306.94 (1/4)t(321 FsTs385 F) 314.32 14 328.32 20 Cooldown (1/4)t 314.32

-5 309.32 40 Cooldown (l/4)t 314.32

-10 304.32 60 Cooldowm (1/4)t 314.32

-15 299.32 100 Cooldown (1/4)t 314.32 25 289.32 In conclusion, the enable temperature set point must be calculated from the largest possible plant heatup rate using the equation, ET = RT )T + 90 F + AT. This equation M

must be evaluated at the (1/4)t and (3/4)t Appendix G controlling locations and the enable temperature set equal to the largest calculated value to ensure the LTOPS system operates within the required temperature range during plant startup and shutdown conditions.

In addition, the calculations in this report remain consistent with the heatup and cooldown assumptions contained in Ref. 7.. '

e

5. REFERENCES 1.

Letter Report,"Duquesne Light Company Beaver Valley Urut 1 Life Attainment Plan", N. K. Ray, et al., February 1990.

i 2.

NUREO 0800,"Overpressurization Protection of Pressunted Water Reactors While Operating at Low Temperatures", Branch Technical Position RSB 5 2, Chapter 5.2.2 in Stridard Review Plan, Revision 1, November 1988.

3. Code of Federal Regulations,10 CFR Part 50, Appendix 0," Fracture Toughness Requirements", U.S. Nuclear Regulatory Commission, Washington, D.C., Federal Register, Vol. 48 No.104, hiay 27,1983.
4. Appendix 0 to the AShtE Boiler & Pressure Vessel Code,Section III," Protection Against Nondtetite Failure", American Society of hicchanical Engineers, New York,1989 Edition.
5. WCAP-7924.A. " Basis For Heatup And Cooldown Limit Curves", W. S.

Ilazelton, et al April 1975.

6. WCAP 9186," Documentation And Verification Of The OPERLIht Computer Code" O, hiceuwis, et al. August 1977.
7. Westinghouse Letter Report DLW 90-528," Beaver Valley Unit 1 Low Temperature Overpressure Preventioa System (LTOPS) Setpoint Analysis at 16, 24,32, and 48 EFPY", January 23,1990.

1 30-

\\

a s

I APPENDIX A Heatup and Cooldown Maximum Metal Temperature Differences At (1/4)t and (3/4)t Beltline Locations For Beaver Valley Unit 1 p-w w

n e-r.

Table A1: lleatup and Cooldown Staximum Stetal Temperature DifTerences For lleaver Valley Unit I lleatup/Cooldown Rate Time Water Temp.. la AT @(1/4):.51ax. AT@(3/4)t (Tweer Tgf43)

Uwater, Tgf43)

( F/Hr.)

(sec.)

( F)

(oF)

( F) 50 lieatup 34,560 550 13.463 28.127 60 lientup 28,800 550 16.08 33.57 20 Cooldown 9,000 500 5.390

-11.308 40 Cooldown 8,100 460

-10.569 22.202 60 Cooldowm 7,200 430

-15.596

-32.789 100 Cooldown 6,300 375 25.286 100 Cooldown 6,480 370

-53.245 Al

e o

ATTACllMEllT E 4

Beaver Valley Power Station. Unit llo. 1 Proposed Technical Specification Change llo. 191 Revision 1 REVISED l' AGE Revised Table 1.1, Page 1-3 of the Westinghouse Report "Duquosne Light Company Beaver Valley Unit 1 Life Attainment Plan"

?

O' e

TABLE l-1 BEAVER VALLEY UtilT 1 REACT 01 VESSEL BELTLINE REGION MATERI AL PROPERTIES Cu Ni 1(a)

M(b)

(Wt.%)

LWt. %)

CF

(*F)

('F)

Inter. Plate, B6607-1

.14

.62 100.50 43 34 Inter. Plate, B6607-2

.14

.62 100.50 73 34 Lower Plate, B6903-1

.20

.54 141.80 27 34 (167.9)(c) 37(d)

Lower Plate, B7203-2

.14

.57 98.65 20 34 Longitudinal Weld, 305424

.28

.63 191.65

-56 65.5 (191.4)(c) 44.05(d)

Longitudinal Weld, 305414

.34

.61 210.4b

-56 65.5 Circumferential Weld, 90136

.29

.07 132.90

-56 65.5 (a)

The initial RTNDT (!) values for the plates are measured and inital RTNOT values for the welds are generic.

(b)

Margin (M) as per Reg. Guide 1.99, Rev. 2; the standard deviation for the initial RTNDT margin term is assumed to be zero since the initici RTNDT values were obtained from conservative (i.e., " upper bound") test results.

(c) Numbers in ( ) corresponds to surveillance capsule data.

(d) 'oA is cut into half, when surveillance capsule da,ta is used.

f 1-3 ini

__.__._____._______.__________.-._m.__m____..____i.__.

___J