ML20100Q139

From kanterella
Jump to navigation Jump to search
Cycle 8 Startup Rept
ML20100Q139
Person / Time
Site: McGuire Duke Energy icon.png
Issue date: 01/31/1992
From: Mcmeekin T
DUKE POWER CO.
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
NUDOCS 9202060151
Download: ML20100Q139 (34)


Text

_ --- - - . - - - - - - - - - - - - - - - - - - . - - - - - - - - - - - - - . - - - -

. ll l tur lum comie> t c Atsrun AkGuir, Nucle-or Garterahon ikpartme et isce bru.1< nt

!!!% llap rs le vn k'ad I AIGolAI (70 tibi5-4wU llanterstille. NCEMib F%5 4I041h754*?lat  ;

OUKEPOWtn f

January 31, 1992 U. S. Nuclear Regulatory Commission  !

Document Control Desk Washington, D. C. 20555 Subject McGuiro Nuclear Station Docket Nos. 50-369 Cycle 8 Startup Report for Unit 1 Ref. Toch Spec 6.9.1.1 Gentlemen:

Attached is the McGuire Nuclear Station Unit 1 Cyclo 8 Startup kuport for Criticality, Zero Power Physics Testing, and Power Escalation Testing as required by Tech Spec 6.9.1.1.

This report is submitted due to the upflow modification made on the McGuire Unit 1 core and due to the now Babcock and Wilcox fuel used in tho. reload.

For questions concerning this report, please contact Kathloon Mullen at (704) 875-4302.

Very truly yours,

( }( y.

T. C. McMeekin, Vice President McGuire Nuclear Site cc -(with attachments)

Mr. T. A. Reed, ONRR Mail Stop 9H3, OWFN Washington, D. C. 20555 Mr. S. D._Ebneter, Region II 101 Marietta Street, NW - Suite 2900 Atlanta, Georgia 30323 Mr. P. K. VanDo.rn Seni6r Resident Inspector McGuire Nuclear Station I

0 0 0 . .., ll ,

9202060151 920131 PDR ADOCK 05000369 PLR-

/ . '/

' 1

()

P 1

,- _,_ - i

. . = _ _ _ . . . . . . _ - - - - . _

s 1

L t

i i

DUKE POWER COMPANY McGUIRE NUCLEAR STATION t

UNIT 1 CYCL.E H  ;

r f

fiTARTUP REPORT i

L J/.NUARY 24, 1992 '

- .f i

i

+

l

+,

+

i L

1 t

I I

. _ - _ . .._.a_:__..-___.___......__..._..-_-._ ___ ._ .

Table of contents I

!212 List of Tables 11 i

~ List of Figures 111 i 2.0 Introduction 1 1.1 Prestart NIS Realignment Tollowitg Refueling - 3 PT/0/A/4600/78

2. 0 - Criticality 5 )

l 3.0 Zero Power Physics Testing 6 3.1 . Boron Endpoint Measurement - PT/0/A/4150/10 10 3.2 1sothermal Temperature Coefficient Measurement - 11 PT/0/A/4150/12 3.3 Control Rod Wor th Measurement - FT/0/A/4150/11 14 3.4 . Control Rod Worth Measurement Rod Swap - 16 i PT/0/A/4150/11A l 4.0 Pewer Escalation Testing. 18 4.1 Thermal' Power Output Measurement - PT/0/A/.150/03 22 4.2 Reactivity Anomalies. Calculation - PT/0/A/4150/04 24-  ;

4.3 MIC8 Incore and Nuclear Instrumentation S;1 tem 25 Correlation Check - TT/1/A/9200/292 ,

i

'4._4 M1C8 Core Power Distribution - TT/1/A/9200/289 26 4.5 H1C8 Incore and Nuclear Instrumentation Systems 28 Reca11bration - TT/1/A/9200/290 l

l-s i

4 c

r.,, , ,r ,.r.,, - - .-, , - , , , . , , , . . ~-,,-.,.,n .L, . . . ..-...L-.,,,. --n. -,-:._...--,.,.----..._-....-- . - - . . - - - - -

. .-- . . - . , .-.~ ,;..... - - - .-. _ . - . - . . . _ , ~ . . _ . .

List of Tables Page 1.. Overlap-Data 7 2, Nuclear lleat a

'- 3. Reactivity Computer Checkout 9

- 4. . Control Rod Worth Measurement: Rod Swap 17-

5. - M1C8 Core Power Listribution Results - 38% Full Power 19 6;- MIC8 Incore and NIS Interim Recalibration Results 20-
7. -M1CS Core Power Distributien'Results - 78% Full Power = 21 8.- Tbermal Power Output. Measurement Results- 23 -y
9. MIC8 Core Power Distribution Results - 100% Full Power 27
10. M1C8 Incore and NIS Recalibration Results 29 9

Y t

?

4 4

1 o

3

- 11

-4 I List of Figures P.*Xi

1. Dait 1 Cycle 8 Core Loading Pattern 2
2. Assemblies to Use for Calculating IR and PR Cc.libration 4
3. ITO Heatup and Cooldown Data- First Run 12
4. ITC Heatup 'id Cooldown De .cond Run 13
5. Control Bank C hod Worth 15 f

t 111

. . . _ _ . _ _ . . ..__..-.._______.._._._m....-m._ _. . _ _ _ . . _ . . _ . . . . _ _ - _ .

1.0 Introduction Core loading for McGuire Unit 1 Cycle 8 was . start ed on November 16, 1991, and was completed November 19. The C se for McGuire 1 Cyclo 8 consists of 117 Westinghouse optimized fuel assemblies and 76 Babcock & Wilcox Mark-BW fuel assemblies. .To control power peaking and maximize cycle length, 64 Burnable Absorber inserts are used. Figure 1 gives the Unit 1

- Cycle- 8 core loading pattern.

Criticality. Zero Power Physics Testing (ZPPT) and Power Escalation Testing (PET) began December 8, 1991. The unit reached 100% power on December 15, 1991.-

k 1

~

.o Figure 1 UcCuire Nuclear S.o ion UnH Cycle 8 Core Loading Pattern QUADRANT ASM8 1 2 rNs e 4 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A JS1 K12 J47 K38 JL K68 J29 A 278KT 304KT 294KT 3 % KT 129FT 26tKT 65 B J32 J26 K76 J52 K07 H12 K17 J69 K73 J50 J37 8 217FT R35 B 61 W R47 B6MA R52 B6MA R34 R6LY R4B 316KT C J70 J65 K28 J40 K66 H54 J74 H49 K53 J75 K45 JG7 J55 C 234KT 257ET B6M6 R156 B6MY R49 291FT 951 B6MH A50 B6MD 24977 249KT D J05 K41 H53 K52 H39 K75 J19 K40 H37 K27 H15 K61 J03 D R58 B6M4 R16 B 6 M'J 293KT B6N3 R28 B6Nn 3 33 rr B6NL 906 B6MF R36 E J43 K71 J46 K54 J27 J20 H26 K23 H33 J54 J08 KA9 J49 K42 J13 E 23f,KT B61U 959 BEMP 279KT 273FT 268KT B6N7 321ET 294KT 276KT B6MR B41 B660 290KT F K36 J33 K50 H21 J21 J63 K65 H2O K67 J11 J31 H03 K05 J35 K25 F 310KT R19 B6MK 295kT 261KT R44 B6N2 902 B6NO R03 243RT 250KT B6NU R39 272KT G J73 K03 H51 K01 H16 K14 H43 K11 H55 K19 G19 K24 H27 K21 J62 G 326KT B6M2 R46 B6MN 262KT B6MX 237KT BEN 6 275KT B6NJ 307ET BENP R25 R6MH 288KT H K31 H10 J25 J14 K62 H62 K63 G72 K44 H02 K02 JO9 J06 H66 K58 H 327FT R17 SS5 - 924 B6MT R22 B6N1 911 B6NA 957 B6NK R10 SS6 R33 267KT J J02 K57 H64 K33 H44 K60 H42 K22 H71 K09 H75 K26 H68 K34 J15 J 256KT B6M1 R18 86MM 232KT B6MW 239KT B6N5 247KT B6NF 260KT B6NN R26 B6Mc 248KT K K06 J41 K48 H34 J58 J22 K39 H76 K56 J44 J57 H57 K18 J24 K70 K 231RT R14 B6MJ 259KT 325KT B43 B6MO P21 B6R9 R32 319ET 338KT B6NT R42 282KT L J61 K55 J30 K30 J23 J71 H24 K08 H01 J76 J64 K72 J45 K43 J71 L 244KT B6LT R15 B6ML 255KT 251KT 274KT B6N4 335KT 287KT 253KT B6NM R23 B6LZ 25?KT

-M J34 K13 H73 K64 H07 K59 J60 K16 H67 K04 H47 K35 J48 M-R27 96M3 907 B6MR 281ET B6MZ R20 B6N8 324KT B6NJ R54 B6ME R40 N J42 J39 K46 J16 K47 H30 J38 H72 K10 J59 K69 J56 J36 N 297KT 233KT B6M5 R18 B6MV R33 336KT 908 B6NE ROI B6MC 332KT 264KT P J07 J18 K15 J28 K32 H29 K37 J04 K20 J01 J17 P 290KT B05 B6LV K55 B6M7 R31 B6M9 RS6 B6LX D04 277FT R J12 K51 J66 K74 J53 K29 J68 R 337ET 330KT 311KT 241KT 258KT 314KT 235KT l 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 l

l l

l l

l 2

~_. - .- . . - . . .- . - - . - . . - ---. -

3.1 Prestartup NIS Realignment Following Refueling - PT/0/A/4600/78 This procedure was performed on November 25, 1991.

This test was used to calculate preliminary calibration data for the intermediate range (IR) and power range (PR) detectors following rafueling.

The set of Cycle 8 preliminary calibration data was determined by taking the End of Cycle 7 (EOC7) calibration data and adjustinr,It-by a weighted average-of the ratio of the sum of the predicted assembly powers for the Cycle 8 loading to the sum of the measured assembly powers from the last Cycle 7 Incore/Excore calibration.

The core locations used to calet; ate the ratio of the predicted

- Beginning of Cycle 8 (BOC8) assembly powers to the measured EOC7 values are shown in Figure 2.

The average predicted BOC8-to-EOC7 IR ratio was -1.07: the average predicted 810C8-to-EOC7 PR ratio was -0.81. Based on these results, the IR and PR currents were adjusted prior to Cycle 8 Initial Criticality.

P-l 3

l l-i

Figure 2 Assemblies to Use for Calculating 15 and PR Calibration Setpoints A

D

'O OIO i

@X o X@ a XX ,

XX 3 4

5 6

I 7 I

B 9

10 11 12 l

XX XX is

@X o Xg "

ooo F E D C B A R P N M L K J H G A

D Core locations used for PR calibration Core locations used for Q IR calibration 4

I 2.0 Criticality Following a Change in Core Nuclear Ch' acteristics -

PT/0/A/4150/28 On December 7, 1991, boron samples were taken in preparation for the approach to criticality. These samples indicated reactor coolant boron on be 2116 ppm. Since it was desired to achieve criticality with either:

(a) -500 pcm of Control Bank D inserted, OR (b) the lowest allowable boron concentration while maint aining 1.0% Shutdown Margin, a target value of 1660 ppm was chosen for reactor coolant boron concentration. This represented ;Trt (b) cf 1560 ppm used plus 100 ppm conservatism. Calculations using the unit Data Book (OP/1/A/6100/22) indicated a volume of 14815 gallons of dominera11 zed water should be added to the system to dilute from 2116 ppm to 1660 ppm.

On December 7, 1991, this dilution of the Reactor Coolant System was started. The dilution was secured after 14815 gallons of demineralized water had been added to the system. After adequate system mixing, Chemistry samples indicated Reactor Coolant System boron was 1670 ppm.

On December 8, 1991, rod withdrawal commenced starting the Shutdown Bank A. As rods were withdrawn, both source range detectors were observed and rod motion was stopped each time either flux level doubled or any control rod bank was fully withdrawn. At these points a set of counts was taken on each source range detector and Inverse Count Rate Ratio (ICRR) was plotted to monitor the approach to criticality. The unit -

achieved criticality at 1533 hours0.0177 days <br />0.426 hours <br />0.00253 weeks <br />5.833065e-4 months <br /> on December 8, 1991, with Control .

bank D at 205 steps withdrawn. The predicted critical position per OP/0/A/6100/06, Reactivity Balance Calculation was 180 steps withdrawn on Control Bank D. This represented a reactivity difference of 88 pcm based on the predicted HZP, No Xenon Integral Rod Worths.

5

3.0 Zero Power Physics Testing - (Z/PT)

Zero Pcwer Physics Testing for McGuire 1 Cycle 8 start ed Decembe r S. 1991, and was completed December 10, 1991 The output of Power Range Detector N42 was used as input to the reactivity computer for Zero Power Physics Testing. All acceptance criteria for ZPPT were met.

A minimum of ont decade of overlap between the source range and the intermediate range detector ; was verified on December 8, 1991, via the Control Board indication, the NIS panel, and the Operator Aid Computer (OAC). The results shown on table 1 reflect the data from the OAC. _

The point of adding nuclear heat was determined December 8, 1991. This was done by establishing a slow positive startup rate and abserving a change in plant parameters such as an increase in the reactivity trace and an increase in pressurizer level. The test was performed twice to establish repeatability of the data. Table 2 gives the results of the two trials which were used to determine an average nuclear heat reading.

Nuclear heat was determined to be at an average flux level of 3,928 x 10^7 b amps on the reactivity computer piccammeter (N42) and 3. 347 x 10-7 amps on Intermediate Range Detector N35 and 3.849 x 10'? amps on Intermediate Range Detector N36. From these results the test band for ZPPT was determined to be 10-8 to 10-7 amps on the reactivity computer, on December 8/9, 1991, an on line checkout of the reactivity computer was performed. This was done by withdrawing Control Bank D until a positive reactivity insertion of -+25 pcm was indicated on the reactivity computer.

The time for the flux level to double was measured and from this doubling time (DT), the reactor period was calculated (period = DTlo.693). Using the reactot period, the am'unt of reactivity was determined using the predicted data. This reactivity was compared to the reactivity computer indication. The test was releated for a reactivity insertion of ~+40 pcm.

An on-line negative reactivity checkout on the reactivity computer was also performed. This was done by inserting Control Bank D until a negative reactivity change of -40 pcm was indicated on the reactivity computer.

The time for the flux level to halve was measured and from this halving time (HT), the reactor period was calculated (period = HT/0.693). Using the reactor petlod, the amount of reactivity was detennined using predicted data. This reactivity was compared to the reactivity computer indication.

The test as repeated for a reactivity change cf -25 pcm. The final 3 results met all acceptance criteria and are given in Table 3.

An electronics only negative reactivity insertion test was also completed satisfactorily as part of PT/0/B/*600/55, Reactivity Conputer Periodic Test.

6

_=__ -___ _ _ . _ - __ ~.

l ~

i  ;

- : e e -- i I  :

4

-7 i

l l :"

TABLE 1 4 i l t

l t

l Overlap Data l on December 8, 1991 i via the OAC i l

l

'I Source ~ Range Intermediate Range l 1r amps cps  !

I N31' N32 N35 N36 l When-IR on scales. 328 647 1.42 x 10'" 1.3 x 10-" ~

After-1 decade f

. increase on IRf 7880 15395 1.3 x 10'20 1.5 x 10'10 l i

When SR blocked:: 7880 15395 1.3 x 10'1 1. 5 x 10 *10 i i

h i

1 l

i

)

1 i

L 1

t i

?

r 7

i-I' l-

- . ,.....-..- . .._.._--u._ ,.._ _ . . _ _ -. _ . __- _ _ _ a

J TABLE 2

)

Nuclear Heat t

Heactivity_Computet' Intermediate Range ,

N42 N35 N36

. Trial' 1 3.880 x 10'7 3.580 x 10'7 4.135 x 10 7 Trial-2 3.976 x 10'7 3.113 x 10~ ' 3,563 x 10'7 Average 3.928 x 10~7 amps 3.347 x 10~7 amps 3.849 x 10'7 amps-

.i.

Test Band: 10 to 1) amps on N42. .

Y r

~

s-I 1

l' s

J d

8-

+ -

, - - , . - . - - .v, ,em- , ,, , , - , -

TAPsLE 3 Results on December 8/9, 1991 Reactivity Computer Checkout

! Doubling or Reactivity Beactivity from +

, Initial Flux Level (Amps) Period' 'f Italving Time Camput er (Ap) DT or IIT (Ap ) Ap Reactivity Computer (Seconds) (pcm) (pun) Z Error

[. (Ser nds) - l ,

3.31 x 10 233.33 161.73 27.91 28.35 1.58 -

4.02 x 10-8 176.66 .

122.15 35.67- 36.11 1.21 5.98 x 10-8 -233.22 -213.29 -27.27 -27.96 2.47 ,

4. 00 x 10'8 -269.15 -186.52 -33.17 -32.68 1.51

+ l AP - ape l x loc :

APc L

t P

y e a .

3.1 Baron Endpoint Measurement - PT/0/A/4150/10 This test was petformed December 9, 1991. Three set n of dat a were obtained. In the first set. Cont rol Bank D was initially at '! 15 steps withdrawn, the Reactor Coolant System boton concentration was 1669 ppm and the Pressurizer boron concent ration as 1673 ppm.

Coatrol B mk D was pulled to the All Rods out (ARO) Configuration and the result ing react ivity change w;.s converted to equivalent boron using t he predicted Differential Boron Worth. L,ont rol Battk D was then reinserted to the just critical cotidition and the test was pe rformed t wo more times.

The results of those reactivity changes were each added to the initial Reactor Coolant system t,oron concentration to give the ARO Doron Endpoint. The values were averaged to give the final result of 1670 ppm. This value met the acceptance criterian of the Hot Zero Power (HZP) ARO Critical Baron concentration of 1686 +50 ppm.

10

~ . - - . - - _ - . - ~ -~ ~ . .-. -- -. - ~ . - .- ~. ~ . - .- ,. _. - _ . - - - ~ _ - - - . ,

.+

3.2 Isothermal Temperature Coefficient Measurement - PT/0/A/4150/12 This test was performed on December 9, 1991. The test measures Isothermal Temperature Coefficient (1TC) by plotting Reactivity versus Average Reactor Coolant System Temperature. The Modcrator Temperat'are Coefficient (MTC) is found using the relationship was follows:

MTC (pcm/ F) = 1TC - Doppler Temperature Coefficient T',' acceptance criterion 'on t he ARO ITC was 0.62 +2.0 pcm/ F. The predicted Doppler Temperature Coef ficient was -1.45 pcmf *F.

The Ructor Coolant System bcron concentration was 1679 ppm at the start of the test. A heatup/cooldown was performed while keeping rod position and boron constant to determine reactivity change versus temperature. The heatup/cooldown was petf m ed a'second time to establish repeatability of the data. The t.sults are shown in' Figures 3 and.4. The average ARO ITC was t'ound to be

-0.29 pcm/0F. This fell wit.hin the acceptance criterion band.

This 3 eve an ARn MTC of +1.16 pcm/ F which was within acceptable Technical Specification limits. -

l' .Following the completion of this test, FT/0/A/4150/31, Determination of Rod Withdrawal Limits to Ensure Moderat.or Temperature Coefficient Within Limits of Technical Specificat ions was ptrformed. The results of Gi: test indicat.ed there were no rod withdrawal-limits needed for Unit 1 Cycle 8.

f:

A i:

[ ..

E l.

i.

l^

11

. -.-.~...-...--.----.-..-.-.-..._ -- - . - ~ . - . - -- - . -

n .

.__. . _1 - . :- -

guro

-n rt=_ w_ =; t = p-=.

~

. . _ p. -

..O.E W TTC Heatup and Cooldown Data: First Run v

- j

\

.!. .~. C. '.7. '- '

N"".

I q.

.=-. .- -';.. ]

$ g '-

% ^ .; '. q**,*g .

~

..e

.u

,-s..- ~

- .- I N.g .

..s. . *4 .

l

.~. f +-> ,

' ~ , ,y . I e

(.

  • Z._-._

F'* L;:.. .; I*. "'%. , -6 t 3 & >

i .

_. _- 1.,

p , -4. ,

y . . ..

( . .-

i L - . - . . ~ - - - . - I

,i .L.':_ _~  ::

l

._ - 9 Q..

y

. .~ _

. _ . . . . . . _ ...~ , .-.-

--- m, , . .

~.~ . , . , . - . _..~. . .

'J.*.~~'~-' C; .; ~.. _ L. _. ..~'.*.L. ._ . . _1. - ' ~ - ' ~ - - -

7._

- ' - ~

~.:~~ .; ;

.'*.' *-^2 ;- .=;:_

l. . -_ .._. . . . _ __ _ . . _ _ - .

. ~.

9 -., , ,

~"

l-,_

= a. '** T

.s

. . ._. _'M.._~.' -- ;C_C.. . _ _~ 1 . ..

_. ~*2.'T.'_~.7_=.____~--".

.i _. e_. ..__..

s . ..

.. . -.._.,...-o,-.~.-. . . . . -m i

_4 r.._. .

t .. .., . _ __ _ . . _ _ ._.-...r..... .

._ > ~

..-...-._,r..-.

, ,L ,

r.

._.~ . . .. . _ .. . . , . _ ... . . .

. 4

-r.......-

_._._m~_._.._ _

, .. ..t . ._.. .. . .> . ... .

l

. . _. ..._....--..m_.....

. . ._.... =_

. . ,%._. +

., . . ~

~-

l._--.... ._ . . _ . .. _ . . . . ._._. . . .. ... .. _. _ ....

. .. ,. s.

+

~ . . . -. ..

. ~ . . ..

b- ..,.... _

~--

. . -.p. ..

p* . . , . .. . . - _ . , _-

o _ . ...v. .._..

_ f ... . .. . . . . . . . . . _. ..

. . . r- ,-- - -

.._ p ? . . , . _ _,

i.,_ . _ . . .

.. .. Fl -

---,.__-4 ... n.,=~{ w . T. . . .. _. r_- ._ ..

4

't.:~

  • ""*--7-~~~*" 3 .: ':.:'-
1. -

~ ~ - * ' *. : = .y =,~=N w1*. = . -

.-y .. . .

~~~"*

3 . _ . ,

3

^

. . -.-.._...L._ .. _ . ,.

a

u. . .... .

. . . . . i

~---m--~%.......g.........._._

I~~+ _L ...

- -.:u.1_ .-

.v __... . . ..

.. 1 - ~

_.._ ...., l

~,.,.1.._m__-.}.._...

i

~. .

~ ,

.. . . _ . . _._ 9 .~_-

,_..-.v.. ... , .

6.__ ...I.,,... . ....... . .. . . . . _ + _ , . , ., . . . _

% ^ . ..

1

.. .~ . . . . .. ,.

. . . .W

~.. .. 6..s._. .

....m..wh+.,

mue.

,, M , -

. - ~ ~

, -t p q3sw.

._._~.L_.. ~ ..

- + - . - _ _ _ __.. .

4

- . - . -p_._ s .,,.,,....-_-,__.._._.1..

_..._..,.n_..n._..

, -4 < , s .w . .

[-._ . . . . . . . _ . .

. . . . - - ..p.

~N= .. . . .

. . s. ( (<g . . . ,..

-o..._...

.-.e_. .. y* _.-A, r __~.n.

g w. .R.. -

w a......._. ..... . . . . . . . .p..._.4. 4. . .r..- _ . .

i

7. ! ; ~ .ty_  :. iM@ ~D;_ 4 _, ' " - " .*

_ * " ' ,a.' * ~ ' * * ' - " ~ ' ,

'Z.

.1

~~'

f**_^_.._d--'~'.

w_-.y

. _. .%._ _._,z._ .

.....-. . .. _... .__ .. _ . _ .r. .. . . . .

..-p. .. . _.....,v...

. - - _ .. _.~_. ._ . . . . _-

.- - _ . . ., g.

+

..,.w t

_.,_. . . ....' g ......,._g.,-.~.._.

I -

'. ~ ~ (4"' k~~

t ** O _ _ @,.

_ . . . .Z_ ' : . ~

..J._.......

"~~ ! ~Z Z .'. !

r e .-'

. . l

. . . v1_ .

g *I .p_.~ .~ __ .l'_-

.,".5.....t._..__._...

A

..,...._4 __

.3 p

.....__%.4 _-

s.

. 4_

7..._ ._..$...,+ . - - . . - - . . _ .

s ,

g

) ....._..$.......

%...v.m_. .- - ._. _.. .. _. . . ..,4_.4,__. .... . . . . . .

p..,..,,f,..

~

L- p ! ) . W'* ~*T

. . , . . . . i

.~:_~~.:'."":1'.'.'*:.."":'.',*~~*~'_~..~.r*:.

_._: ;m * :L v'. ~~~~rVrv -V* ~

. . .- _ .= ,___._ -_ _. __ .._._.._._ ,._ .... _ r,

=

_r_ a m _

2 ..

. . _. .g .

-.,..~u..._._,, ...-,L._.r_- .

. . . . . , . - _m...

.m. . .. . . .

..,,_m.. ,

g.. . . .

. . . _ . . . . . . . _ . . . . . . . ~ . . . ,. _. .-. .. ,_, ... .. .. __ ... _ . . ...

..,,.,4,.

_ . . , _ . . _ . . _ . . _ . . . .. ._ . , . _._ . . . . --__ w .

o - . .

. 4 ,. . .

.. ... - + '

.__.: * '.: ~

' .~ *

. . *_* M. , .* i...&_.

._..'.. ^~. _ ..^.- .. .. _ . . ~ _ _~. _

t,.

.. . ~ .,. G. ~. .. ' .;.". C. ._. ..::. ' -- -. _. . .. .r .-, . .

.t, t..

g . .. ... ,

. _ . . . - . _ _ . , . _ _ . ' . i. _ , .._.u. e,,..- . _ . _ . ,

. . _ . . _. . _._ _ . .. ...e_

ae.* * . - .

._ e

. m- - -~+

.... ...._..g..._._.-_.4,[... .._ . . + .

, 6

. ..j f +

--t. ,4s . . . . . g , . - _ -

p.- .. . i..,,.a.g+.r,.,,..s. 4

.- y e-.,...i,._ 9 #-

{N._W..th44-.g_-

.,-_.e y {

.g - .-. . _ _ ._e..-4..e-y.a.+....ee3,.

q.s hgue .

s% .e

....,,n, e se a.g 3--...N.

p g,

+ .

g...

_ ..g w. w 9 k .

. . _ . .. _e.. . s m

,1 l 3-__- _ .

.--..-~...

1--. _ . . ,. 6, 4

- s 7- .. a

}

w.

__._._ g ,

s s .

., -. g

.p .._ . 5 g . . .

1 p .-- .... , .. . .. ~ g.a. .... . . . . , _ . . ,

g _. ,_... j i

.p, ._ , . . - _. ,

-~ . . . _ . _ - . .. . -J' 4- .4. _ ... ...- .. . ,

. -~. -~

_ . . -w p.

. ,m.

., , . . . , ...s._._.

4 ._ .

4

..p..

4 l

1 i

- _ _ _ . _ _ . . _ _ _ _ _ _ . - . _ _ _ _ _ _ . _ _ _ _ _ . _ _ _ _ __ _ - - .. . . w -r-. . . - -- - - - - p

1:!i \l  !!4iii,!l l!j, jj ),ji1l;ii ij _ ;

i !.

"!g, -

i

~so =2; 3 a3g,:$5 *g8u ac n .

i: D i

Ige d[

li Ii

$ M,Gug.L

!n!j pn I

9a. gMf! S:-mln0m!

/'

L u , m1;.

h. 'y mi. $

i.

Ii0 . O h .!

I lnii ! .

ih -

.ig. i ii

. . i ih Y

[, i

i. p l !! .

N%J.- !n ilbo0N.!md!!iSf;N

. 1  !

1

h. gmi i

. Hi:!. .  !

"i  !

!.Milsk9.y!iOmhd l

l!UU l

s. - L .

n!!i!! lj.!h7!In!n.!d m

!m

! hk. - . '

I lN 3!m!g&ha Ui u.!ph! -- .

i

    • H@!.f dl4$%m!

.  ! } .

a.

!j fa jM.aui i

' .. ' O

!cd l

1 !ii  !

h  !!  !!!

'M

!{!af1l

'I MS!mO.aRI!!!nh7Ojh r

ud.

k.

[!;

jfLI.!

! ,I do l gg ..

j i  !! .!

i i!:

, ,ij k il!

h, _$

R "hgilIia gI!I+S . Em

  • N
;1

!1 . dn 3 E.L i

!ll i

L!

!c r.pi!

m.gdg.n .

ll i[d i!n.!!lI l! !l[

[

b!i  !

L LdIi!q!l

! i i.

I

! l I. j n E ;.! 4 l

.ajT..

_ n' ,!

U F iaM

! . l  !

il!rj knli!ehi!4

_  ! . j!

i!

i

[

L .

i

!!mi7l riii i I!! l:n[ .

itk f ;g![M '![ !l

.Af 1

. t ih. l! l . !' i ll k r fl!!". ll ib n '

u ,]mjii L. rl!h ii[o0i!M I

U

.. }

Ui-@7

_ li i.

. j!

kn[ "JI

] WjL.

[ll  !

{' " !E!>7i 4-:

~

.j

?

[ d.

i

/

4 f l f Jil .

{

if 'e,1j s .

~i

. i

'y

[ .l ~

i

- '[ '.

.I' l Ttn ll jl .-

[

I ll.lI il.. . . !et 11

! I  !

,; .L

[ .

J

!i .

H

.i{ .

If I i ;g}l.

I 4

N ' .

Il I

  • i+

I[ >j.

.j:  :

+

t t l l.

_ I.1 9

l

~ !j; j ,.

1 t

i Iil-iiq l

_ i 1i IIIi

}Ii l,f' 5I

_ L

[L J!I! j 3 1 .

it

- yf@ hjl w

, L .

I;

. q 3 7 1 .

l h j I

j I t.

iI i

1

! 1 t

1- .

dA j

.* c . '!

1 Il l

f. . .

'ngpd'.. .

1 d,.~[, ~

i

[ i m ,. h: 'h! ir a!!.,lr:i ' I L [ I.+! -

lq I t

N fp;a{ t .

+ !1 t

t I

D1 .i-p,i ~

' +

i! 1

I  ! l'lI;

. p,;J r 1 Ib w .  !.;

1

!i.l '

if.

t; f f bq;i *i*ilj

. [1I i!

. t.

. !pi1 id!b  !; .

1i i h+((;N..J j i. - .

.  !( j 4 f

m. ;i i9 . . r llri '

salIl" .

1

' "g i f

c

}

'b

[

m,!  ! '

' P ',; ': "II

3.3 Control Rod Worth Measurement - PT/0/A/4150/11 On December 9/10, 1991. Cont rol Bank C rod worth was measured uaing the established beration/dilut ion method. There were no other rods in the core at the time. Control Bank C was predic.nd

, to be the highest worth bank and was va ssured using thin met hod so as to serve as the re f e rence ban't for Control Rod Worth Measurements by Rod Swap.

The measured worth of Control Bank C was 771 pcm. The prer'ic ted worth was 824 pcm with an allowable band of +124 pcm. Th!s ,

represented an error of 6.9" and was within the acceptanca W c riterion of 1151. Figure 5 shows the measured integral and differential cod worths for Control Bank C.

I s' J

t D

)

.9) e ci m

14

Fi?re5 McGuire Unit 1 Cycle 8 Car; trol 01;nk C Rod Worth Dif ferenital at d integral Rod Wcrths i Differential Worth (00rnistep) Integral Worth (pcm) 9_-. . __

__ goo g_ _ _ _ _ , _

--- 830 i '

r%

4 s

7___ _ _. p_ . , ..

--- 700

\ _

i t 4

t i , i

~ -

6----- m - - - - -- - - - -

- + ~ - - - + - - - -

-t-~---- 600 i

i  !

=;

5-- - -- -- - - - ---- ---- p - -- -* --~~--r----  !

r- ---4--- + - - -

- 500

s i i l l l',  ! _

< *  ! e-l ,,* ' '

- -- ~j i ,  ! i s 4 -+ r -- -i - ,I

't- , f-

, c--- 400

- i l# .

st y., (

i s

r

- i i j i .

3

-- J --+

t d- - - -

+-- - -

- 300 l,

{

, l  :  ! . s .

i ,

l I i -

2 +--,----- --&

] +

r--

200 q

,  ! i  ; i-l s-

, l l i_

i g _ _ _ , ' ,}i ..

f._ .._..__ {i _.1 --  ! 7____ _ t..- 100

_, 1 . .

0 ' ' ' ' [ ' ' ' ' [ ' ' ' ' l ' ' ' ' " ' ' J afA ' ' ' ' [' 0 0 25 50 75 100 125 150 175 200 225 '

RCC Bank (RCC A) Position (Stops Withdrawn)

- - - - Ditterential Worth Integral Worth 15

3.4 Cont rol Rod Wort h Measurement s hud Swap - PT/0/ A/41*)tif 11 A On December 9 1991, the rod swap met hod of cont rol rod ' . :h -

measurement was begun. Control Bank C was used as the l e retw i bank and its worth was measured by the boration/ dilution :v t l e ,.

(sco section 3.3) kti With t he reference bank essential;y all the way in and the am 5 just critical, each cont rol and shutdown i>ank was mearvrad .)= cre exchange. The integral worth of the bank being ric.u ure'. !!,e., { Y the test bank) was determined f rom the diff wrence a ' the " 'ti. fI$

rod position of the reference bank with and withnut f\e test t ink in the core, j N

I The measured bank wo .hs were compared with piedi. tod wortbr and j ,

all banks were within the acceptance criteria et 90'+ or ;400 pon g whichever was greater. The mersured total rod worth wat >90; et ,

the predicted worth which met the ac.:eptance criteria. Ii addition, all review criteria were met.

The results of the rod exchange tc.st are given on Table 4.

16

TAllLE 4 5

'out r'31 ; iud A rth Measurement i Rod Swap i

i pas - m - cwwe7---w_._.._, ,

Predicted Measured

' lic k l Wo/th Vorth Percent +

l r Idcht.iicatapr v.cm pcm ++ Difference k! Cm t ral ka o' E 771 *

$24 6.9

( p red.i n e d 4% ie 'v.-- ' e i

g _

ban 3J L en w w n - -

w m -- <

i Cantrnt Mak A 311 343 9.3

! Cont ro'1 Bank B 675 615 9.8 C"ntrol Lnk D 490 469 4.5 Shrtdown Bank A 265 1-1

( h 268

-~-

f '

N tdown Bank B < 804 793 1.4 Shutdown Nnk (~ 408 g 392 4.1 408 392 4.1 i L - htdwu - Bank D Shutdown Dank E 459 476 3.6 l

l Total Rod Worth 4644 4519 2.8 J

  • Measured by borat.lon / dilution method

.l Predicted _3lg 399 Measured

++ Rounded to nearest pcm 17

. . - _ _ _ - , _ . . _ _ . _ - - - _ - _ _ _ . _ - _ _ _ _ . _ _ _ _ _ _ . ~

-?

e 1

- 4.0 Power Escalation Testing McGuire. Unit 1 Cycle 8 Power Escalation testing started Deccober 10, 1991, at the conclusion of ZPPT and was completed December 31, 1991.

The unit went on line December 10 at 1706 hours0.0197 days <br />0.474 hours <br />0.00282 weeks <br />6.49133e-4 months <br />. The unit experienced some hvids during power escalation which were scheduled to allow testing per PT/0/A/4150/21, Post Refueling Controlling Procedure for Criticality, Zero Power Physics, and Power Escalation Testing, and to allow Chemistry testing.

At ~38% power on December 12, 1991. TT/1/A/9200/289, MIC8 Core Power Distribution, was performed. The results from the full core map taken were used to project a " limiting" power at which F, or F g Tech Spec peaking factor margin would be maintained. This projection indicated that the F Tech Spec peaking factor margin would be maintained to 94.5%

power. Table 5showsthetest.results. TT/1/A/9200/293, MIC8 Incore and Nuclear Instrumentation. Systems Interim Recalibration, was also parformed at -38% power. The results of this test were used as calibration data for the Power Range excore detectors. Table 6 shows the test results.

At ~78% power on December 14, 1991. TT/1/A/9200/289, MIC8 Core Power Distribution, was performed. The test results are given in Table 7.-

All test acceptance criteria were met. The results from the full core flux map taken were used to project a " limiting" power at which F q or F3 , Tech Spec peaking factor margin would be maintained. This projection indicated that both the F Tech g Spec peaking factor margin and the F, Tech _ Spec peaking factor margin would be maintained for power.

levels up to 100% power.

~

'TT!1/A/9200/282, M1C8 incore and Nucicar Instrumentation System Correlation Check, was also performed at -78% power. The results of tnis test indicated.that the maximum absolute difference between the axial flux difference (AFD) from any Power Range excore detector channel and the indicated incore AFD from the full core flux map was <2%. Based on the guidance given in PT/0/A/4150/21, no further calibration.of the excore detectors was needed until achieving 100% equilibrium conditions.

( Power escalation then resumed at a rate,of -2.5%/hr. Upon achieving l -90%,_PT/0/A/4150/03 Thermal Power Output Measurement. Lwas performed I (see Section 4.1). The' remaining tests designated for llot full Power L Equilibrium Conditions were performed on December 18-19, 1991. .The tests and their results are described in Sections 4.2 - 4.5.

18

o a

e TABLE 5 MIC8 Core Power Distribution Results 38% Full Power NOTE: Axial location 1 is the bottom of the core.

Axial location 61 is the top of the core, Unit 1 Cycle 8 Map FCM/1/08/001 Date/ Time Map Taken 12/12/92 0713 hours0.00825 days <br />0.198 hours <br />0.00118 weeks <br />2.712965e-4 months <br /> Power Level 38.6%

Cycle Burnup 0.2 EFPD 8.1 MWD /MTU '

Boron Concentration 1639 ppm Control Rod Position Control Bank D at 202 steps withdrawn Maximum FT SUB Q 1.7462 at Axial Loc. 43, iloriz. Loc. E-04 Maximum pin F" SUB All 1.4305 at Horiz Loc._B-13 Maximum error F" SUB AH (f rom predicted) 5.42% at Horiz. Loc. E-04 Minimum F-SUB-Q-OP Margin -22.050% Location D-04/15 Minimum F-SUB-Q-RPS Margin -34.1775% Location b-04/15 Minimum F-DELTA-H Margin 42.5745% Location E-04 Total Incore Axial Offset 7.747%

Incore Tilts:

Upper Core Lower Core Quadrant'1: 1.151%' Quadrant 1: 0.573%

Quadrant 2: -0.271% Quadrant 2: 1.124%

Quadrant 3': 0.562% Quadrant 3: -0.203%

Quadrant 4: -1.442% ~ Quadrant 4: -1.494%

19

l 0

)

Table 6 M1C8 Incore and NIS Interim Reca11bration Results Exceto Carrente ard voltages Correlate 0 to 1009 Fall Power at Varlows Azlal O!!sete Unit ! Cyt;e e FU1,1 Pr.,%R DETECTOR O'.*RRENTS ;M:" ROMPS I :*0RRISPOC1No % VARI'A'S IN00PI AX1A1. OFF31**S

ETECTCR N+42 ;ETIO*CN 3 43 OETECTUR N- 44 1NOCRE OET10 TOR N*41 AX1AL T 5 T B T S CFTSET T B 252.0 178.5 246.0 180.5 240.5 118.4 30.0 231.8 165.4 193.9 231.5 197.2 226.1 194.7 20.0 217.8 179.5 236.6 221.2 209.4 217.1 213,9 211.0 210.9 10.0 203.8 193.7 205.8 224,4 202 6 230.5 197.4 227.2 0.0 189.7 207.8 240.3 188.2 247.2 183.1 243.5 10.0 175.7 222.0 190.5 175.1 255.1 173 7 263.9 to8.7 259.7

-20.0 161.7 236.1 271.2 159.3 260.6 154.4 276.0 30.0 147.7 250.3 159.7 1.0000 1.0000 1.0000 1.0000 1.0000 r* 1.0000 1.0000 1.0000 NORMALI::ED DETECTOR vo:TAOIs (V01.!3) AT VARIOUS AXIA2. OFFSETS DETECTOR N-43 DETEC% R N-44 Or!EC20R W 41 DCTECTUR N-42 INCORE AX1AL T*8 T S T-3 7 8 T-8 OFFSIT T S T*8 T S 10.112 6.522 3.590 10.146 6.541 3.605 30.0 - '10.176 6.629' 3.547 10.198 6.613- 3.585 2.390 9.518 7.124 2.394 9.541 7.137 2.404 20.0 9.561 7.194 2.365 9.575 1.185 1.195 8.924 7.727 1.197 8.935 7.734 1.202 10.0 8.945 7.763 1.182 8.953 7.758 0.000 8.330 0.330 0.000 8,330 8.330 0.000 0.0 8.330 - 8.330 0.000 8.330 8.330

-1.191 7.736 ' 8.933 -1.197 7.725 8.926 1.202

-10.0 7.711 8.897 -1.182 7.707 0.902 7.142 9.536 -2.394 7.119 9.523 -2.404

- 2 0.'O 7.099 9.464 2.365 7.08S' 9.475 -2.390

-3.585 6.54a 10.138 -3.590 6.514 10.119 3.605

-30.0 6.484 10.031 -3.547 6.462 10.047 m !NCCRE/EXOORE RATIOS FCR QUADRARTS 1 - 4 QUAD 2 QUAJ 1 QUAD 3 QUA3 4 N-42 N-43 N*44 N-41 M = 1409 M= 1.394 M

  • 1.392 M
  • 1.386 20

O e

TABl.E 7 MIC8 Core Power Distribution Results 78% Full Power NOTE: Axlal locatloa 1 is the bottom of the core.

Axial location 61 is the top of the core.

Unit 1 Cycle 8 Map FCM/1/08/002 Date/ Time Map Taken 12/13/91 2209 hours0.0256 days <br />0.614 hours <br />0.00365 weeks <br />8.405245e-4 months <br /> Power Level 78 Cycle Burnup 1.27 EFPD 51 MWD /MTU 3 Boron Concentration 1439 ppm Control Rod Position Control Bank D at 203 steps withdrawn T 1.6181 at Axici Loc. 32, Maximum F SUB Q lloriz. Loc. 0-09 Maximum pin F" SUB AH 1.4153 at F7riz. Loc. G-12 Maximum error F" SUB AH (from predicted) 5.05% at Horiz. Loc. R-08 Minimum F-SUB-Q-3P Margin 10.2461% Location D-04 Minimum F-SUB-Q-RPS Margin 12.6412% Location D-04 ~

Hinimum F-DELTA-H Margin 24.4233% Location C-08 Total Incore Axial Offset 0.127%

Incore Tilts:

Uppei, Core Lower Core Quadrant 1: 1.011% Quadrant 1: -0.239%

Quadrant 2: 0.105% Quadesat 2: 1.168%

Quadrant 3: 0.520% Quadrant 3: -C.049%

Quadrant 4: -1.646% Quadrant 4: -0.881%

21 l

- , _ _ _ . _ __ _ .._.. . - . ._.. . _ . . _ . - _ - . _ - _ _ _ - . . . _ . --. ..___..__m __

4 o .

4.1 Thermal' Power Output Measurement - PT/0/A/4150/03 i.-

This test was used to verify that the primary and secondary heat

"~

balances on the plant computer were consistent with primary and secondary heat balances on a benchmarked offline computer. The test was run on December 14, 1991, at -90% F.P. The results are shown in Table 7.

The acceptance criterion of 1: difference between the offline computer and the plant computer was met.

l l-I' l

1 .

l 22 l

r

s.

TABIE 8 Thermal Power Output Measurement Results Plant. Computer off-Line Computer 2 W, X W, Primary llent Balance 88.69 3025.23 89.14 3040.57 Secondary lleat. Balance 89.86 3065.30 89.87 3065.47 i

i 23 l

7._.__..

e.

4.2 React.tvity Anomalies Calculation - PT/0/A/4150/04 This test compared the -act o.ii core reactivity to the predicted core reactivity be taking into account the actual Reactor Coolant System boron concentration, Xenon and Samarium worths, rod positions and power _ level and adjusting these to the ARD, Hot Full Power (HFP), equilibrium Xenon and Samarium condition.

Theoretical-and actual Reactor Coolant System boron concentration

-for these conditions were then compared.

-The test, performed at -100% on December 18, 1991, indicated that the actual ARO, hFP, equilibrium Xenon and Samarium condition boron concentration was 1168.8 ppm. This compares to a ficted value of 1171 ppm. The 2.2 ppm dif ference translated into a 17.3 pcm error between actual and predicted reactivity worths.

This was within the acceptance criterion for the test of L +1000 pcm.

L

( l-L l

i.

l

=

7 l

24 l

l

~. .- - - . - - . . . .~ . - . . - . ~ - --~-

O e

4.3 MIC8 Incore and Nuclear Instrumentation System correlation Check -

Tr/1/ A/9200/292 This test was used to compare the incore axial flux difference as indicati.. by a full core flux map to the axial flux difference indicy ed on the plant computer by the excore detectors.

The test was performed at -100% on December 18, 1991. The ludicated incore axial flux difference (AFD) from flux map FCM/1/08/004 was -1.695t. The results of this test Indicated that 1 the maxirm.ur absolute dif ference between the AFD f rom any Power Range excore detector channel and the indicatd incore AFD f rom t he full core flux map was <3 .

25

e e

4.4 MIC8 Core Power Distribution 'IT/1/ A/92M/289 On Lccember 18, 1991 TT/1/A/9200/289 MIC8 Core Power Distribution, was performed to verify the Core Power Distribution Technical Specification Limits for operatien would not be violated. The roa; tor was at -1000 full Poser and equilibrium conditions.

All acceptance criteria for this test were met. Table 9 gives the test rcsults.

26

t e

TABLE 9 MIC8 Core Powei listribution Results

-100% /ull Power NOTE Axial location 1 is the tiottom of the core.

Axial location 61 1s the top of the coro.

Unit 1 Cycle H Map FCM/1/08/004 Date/ Time Map Taken 2/18/91 1031 hours0.0119 days <br />0.286 hours <br />0.0017 weeks <br />3.922955e-4 months <br /> f rs$r Level -109%

Cycle Bur.iup 5.4 EfPD 219 ffa'D/MTU Boron ConcentratJon 1168 ppm Control Rod Position Control Bank D at 21' '210 nteps withdrav.,

Maximum Fr SUB Q 1.602 at Axial Loc. 31 lioriz. Loc. D-09 Maximum pin F" SUB AH 1.1401 at Horiz. Loc. D-09 Maximum error F" SUB All (f rom predleted) 5.72% at floriz. Loc. R-08 Minimum F-SUB-Q-OP Margin 8.2625% Location Il-13 Lucation C-08 Minimum F-SUB-Q-RPS Margin 24.4113%

Minimum T-DELTA-Il Mt.rgin 12.7355' Location C-00 Potal Incore Axial Offset -1.695%

?

.incore Tiltst Upper Core Lower Core Quadrant 1 0.480% Quadrant 11 0.422%

Quadrant 21 0.7501 Quadrant 2: 1.238%

Quadrant 3: 0.225% Quadraat. 32 -0.381 l

Quadrant 4 -).461% Quaatuat 4: -1.280%

1 27 l

..~...y-..-_. .-

- - - - . ~ . - - . . ---.. - - - - - -- -

a O.

1 4.5 HlC8 Incore .an! Nuclear Instrumentation Systems Recallt, ration -

Tr/1/ A/9200/290 This test was perf ormed on Decernber 1H-19 1991, to obtain recalibration .iata for f.he excore detectors based on the incore axlal offsets. The NIS ampilfler gains, the f(AI) roset fut.ction for the over power diffterential te...wrature protective setpointe,,

, and the OAC excore power distribution mon; M r were all callbrated on December 21 1991. The result s of the test are given in Table 10.

b 9

i l

I 28

  • -9P*gr1P'499TNP*-f'W"-'W'-M"gW T 3

4 -

c.

Tablo 10 l

i MIC8 Incore and NIS Recalibration Results 100% rull Power ,

1 I

e. :.1.t.a s. 10:s tala te .

.s v. 1. . A=1 1 Orr..t. l 1

.1. i t 1 Cyca. t 7".it KeTR ltTl;'?;n OVWW78 '* MMIS ) ::W5MN0lN3 'O IAN;'.5 ;NO3 AA;AL ;Ti$r:3 Ot;IOT*;P M 43 ;rit 7tp 4 43 OrTt;;ca N 44

50;PJ  ;ET!;;tk N+41 AX1AL 1 i s  ; a
rtrtT T $  !

211.4 '. e 5 . 6 ;61.6 st.1 240.4 .44.$

,0 0 246.5 169.4 257.0 773.4 249.9 204.1 245.0 203.1 30.0 333 1 146.0 242.5 221.3 236.2 324.0 231.2 221.7 10.5 120.6 202.6 219 1 .23.1 243.6 218.7 24D.3 0.0 207.3 219.2 228.1 213.6 216.5  ::8.0 262 3 303.1 258.8 10.0 114.0 235.8 199.1 at4.5 49% 1 181.1 107.6 4??.4 30.0 160.4 213 4 154.7 293.3 181.4 299.0 177.0 295.9 30.0 167.5 369.4 0.9987 0.9037 S.9980 0.9466 0.9909 0.6475 r* 0.W991 0.9473 N;; MAL!EED OETECTOR YOL*. AGES (VOLTS) AT VAA10V3 AAI AL crf SETS 0t71C%8 N 43 OETECU M*44 OETRO% R g di OCTECTCA W-42

!N0048 A1LAL T8 7 9 T*8 CrTEET T 3 T'S T 8 f*3 7 8 9.068 6.407 3.463 10.011 6.399 3.611 6 438 3.467 9.914 6.4?? 3.434 30.0 9.935 1.043 2.4c8 7.094 3.393 9.355 7.048 3.308 9.450 30.0 9.394 1.069 3.331 9.346 1.146 0.443 7.609 1.154 8.890 1.4*6 1.304 10.0 8.063 7.499 1.163 0.836 7.713 4.330 8.330 0.000 6.330 0.330 0.000 s.330 0.000 4.330 9.330 0.000 0.0 0.330 1.204 1 166 7.817 3.971 1.154 7.770 9.974 9.790 0.961 1.163 7.803 4.948

+10.0 9.617 3.408 7.274 9 966 3.393 7.305 9.413 -3.300  ? 810 30.0 7.366 9.991 3 335 6.793 10.313 -3.463 6.649 10 381 3.611 3.447 f .7 46 10.10) 3.434 30.0 6.735 10.333 4

AfD 1900AR/EXCORE RATIOS FOR QUAD 7Alff81 QUAu 3 QUAD 1 QUA0 3 QUAD 4 N.43 W.43 N.44 N 41 m = 1.433 Me 1.454 M

  • 1.444 M
  • 1.384 29

- - _ . - _ _ . . _ . .