ML20099K308

From kanterella
Jump to navigation Jump to search
Suppl to Pilgrim Nuclear Power Station Unit 1 Amend for Single Loop Operation W/Bypass Holes Plugged
ML20099K308
Person / Time
Site: Pilgrim, 05000000
Issue date: 01/31/1976
From:
GENERAL ELECTRIC CO.
To:
Shared Package
ML20099K024 List:
References
FOIA-84-105 NEDO-20999-S01, NEDO-20999-S1, NUDOCS 8411290380
Download: ML20099K308 (10)


Text

g, 7 NED0-20999 CtASS I

~*~

OCTOBER 1975 SUPPLEMENT 1 JANUARY 1976 PILGRIM NUCLEAR POWER STATION UNIT I AMENDMENT FOR SINGLE-LOOP OPERATION WITH BYPASS HOLES PLUGGED BOILING WATER REACTOR PROJECTS DEPARTMENT -- GENERAL ELECTRIC COMPANY SAN JOSE, CALIFORNIA 95125 4

8411290380 840419 PDR FOIA BELLS 4-105 PDR-

s i;,, -

y_

SUPPLEMENT 1

~

m 3

j JANUARY 1976

.NED0-20999

/

if Q'i

5. Departure from nucleate boiling is conservatively assumed at 0.1 second
  • fter the accident (at least one-to-two seconds of nucleate boiling is a

expected, even if there is no recirculation pump coastdown) af ter which the Ellion pool boiling correlation, which has been approved for use during low flow periods during the blevdown is assumed until hot node uncovery. No credit is taken for the improved heat transfer which will result from lower plenum flashing.

~.

2.2.4 MAPLHCR Reduction Factor The calculated MAPLHCR reduction factors for the selected plants are shown in Figure 1. Curves for both suction and discharge breaks are presented because the onset of boiling transition occurs significantly later for discharge breaks.

Therefore, MAPLHCR's limited by the discharge break are more severely reduced for one pump operation.

As explained in Subsection 2.2.3, the MAPLHCR reduction factor is calculated at certain invervals of reflooding time for the 3'4R/3's and BWR/4's with the longest time to boiling transition for two-pump operation. Points 3 (suction break) and 7 (discharge break), shown in Figure 1, are evaluated for plants with shorter boiling transition times relative to the plants used to calculate the reccanrended curves for MAPLHCR reduction. The MAPLHGR reduction factors for points 3 and 7 are approximately 3% higher than those predicted by the conservative curves in Figure 1. This demonstrates the conservatism in the MAPLHGR reduction factor for plants with shorter boiling transition times.

The MAPLHCR correction factor in Figure 1 is assumed to be constant for suction break reflooding times greater than 341 see and

- discharge break reflooding times greater than 298 sec. These are the longest reflooding times for which specific calculations were performed for the respective cases. This assumption results in conservatively low one-pump MAPLHGR's in this region of constant l

MAPLHCR reduction because the MAPLl!CR reduction is not as severe for longer re-flood times.

The correction factor (F) plotted in Figure 1 is calculated from the results of the one-pump and two pump' heatup analysis (MAPLHCR and PCT) according to:

2-7

'7)

NEDC-20999 di' SUPPLEMENT 1 JANUARY 1976 4.

ABNORMAL OPERATIONAL TRANSIENTS

+

4.1 TRANSIENTS AND CORE DYNAMICS Since operation with one recirculation loop results in a maximum power output which is 20 to 30% below that from which can be attained for two-pump opera-tion, the consequences of abnormal operational transients from one-loop operation will be considerably less severe than those analyzed from a two-loop operational mode.

For pressurization, cold water and flow decrease, transients previously transmitted Reload /FSAR results bound both the thernal and overpressure con-sequences of one-loop operation. Figure 3 shows the consequences of a typical pressurization transient (turbine trip) as a function of power level. As can be seen, the consequences of one-loop operation are considerably less because of the associated reduction in operating power level. The thermal (MCPR) consequences from cold water events and flow decrease transients are also bounded by the full power analysis. For example, a single pump trip from one-loop operation is obviously less severe than a two-pump trip from full power because of the reduced initial power level.

It can, therefore, be con-cluded that the transient consequence from one-loop operation is bounded by previously submitted full power analysis. The maximum power level that can be attained on one-loop operation is only restricted by the MCPR and over-pressure limits established from a full power analysis.

A i

9 4-1

...g n,

SEDO-20999 l

1100 1140 Ee 200 3 1120 6

X 3J t

z O

ttoo x

i 5

L z

>z

_.S T,

v

& 130 100 2

=

5 Q

.=a.

d 1o60 na>

>ze ur

$ to40 ic2a l

l 5000 e

I I

j iso RANGE 08 Ex8ECTED L-l MAXIMUM t 1.CCP POWER CPER ATION I

l 1

too o

20 40 so ao 100 120 40 POWER LEVEL M N8R) l Figure 3.

Main Turbine Trip with Bypass Manual Flow Control 4-2 l

t 9

w r,--

m-

+%

y

,,,+g

,--,.-w

,se--y

,--.--pw-.-,------.-,-w,---v

--,,,,---g.-,-

g

--w

-w-+w,----gy,--,-%.

~

m.

NED0-20999 SUPPLEMENT 1

~ '

^

^

. JANUARY 1976 4.2 R00 WITHDRAWAL ERROR The rod withdrawal error at rated power is given in reload licensing submittals (see Reference 5 for an example). These analyses demonstrate that even if the operator ignores all indications and alarm which could occur during the course of the transient, the rod block system will stop rod withdrawal at a critical' power ratio which is higher than the 1.06 safety limit.

The MCPR requirement for one-pump' operation will be equal to that for two-pump operation because the nuclear characteristics are independent of whether the core flow is attained by one-or two-pump operation.

The only. exceptions to this independence are possible flow asymmetries which might result from one-pump ' operation.

Flow asymmetries were shown to be of no concern by tests con-ducted at Quad Cities. Under conditions of one-pump operation and equalizer valve closed,' flow was found to be uniform in each bundle (see Reference 6).

One-pump operation results in backflow through ten of the twenty jet pumps while the flow is being supplied into the lower plenum from the ten active jet pumps. Because of the backflow through the inactive jet pumps, the present rod block. equation shown in the Technical Specifications must be modified.

Tne procedure for modifying the rod block equation for one-pump operation is given in the following suosections.

The two-pump rod block equation in the existing Technical Specification a.

is of the form:

RB = (mW + K)%

(4.2-1) where:

RB = power at rod block in %

flow reference slope for the rod block m=

monitor (RBM)

W=

drive flow in % of rated K=

pcwer at rod block in % when W = 0.

For the case of top level rod block at 100% flow, denoted RB 100 RB100 = m(100) + K or.

K

= RB100 - m(100) 4-3

-3 NED0-20999 S

SUPPLEMENT 1 JANUARY 1976 Substituting for K in Equation 4.2-1, the two pump equation becones:

RB = MW + [RB100 - m(100)]

(4.2-2) b.

Next, the core flow (F ) versus drive flow (W) curves are determined e

for the two-pump and one-pump cases.

For the two-pump case the core flow and drive flow are derived by measuring the differential pressures in the jet pumps and recirculation loop, respectively. Core flow for one pump operation must be corrected for the backflow throug,h the inactive jet pumps thus:

Actual core flow (one pump) = Active jet pump flow - inactive jet pump flow.

Both the active and inactive flows are derived from the jet pump differential pressures. The drive flow is derived from the differen-tial pressure measurement in the active recirculation loop. These two curves are plotted from Pilgrim Unit I data in Figure 4.

The maximum difference between the one pump and two pump core flow is determined graphically. This occurs at about' 35% drive flow which is denoted W.

c.

Next, a horizontal line is drawn from the 35% drive flow point on the one pump curve to the two pump curve and the corresponding flow, W, is 2

determined. Thus, aW = W) - W '

2 The rod block equation corrected for one pump flow is:

RB = dW + [RB100 - m(100)] - aRB where aRB = RB) - RB2 * *0N aRB = mW + RB100 - m(100 + 4W)

(4.2-3) 4 6

4-4 1-

w.

~

~

^

^

NE00-20999 SUPPLEMENT 1 JANUARY 1976 d.

For Pilgrim Unit 1 application, the constants from the Technical Specifications are:

m = 0.58 RB100 = 107 From Figure 4:

aW = Wj-W2 = 35 - 30 = 5 Evaluatir.g in Equation 4.2-3, the'one-pump rod block equation becomes:

RB = 0.58 + 107 - 0.58(100+5) =

(4.2-4)

O.58W + 46 This line is depicted in Figure 4 as the future corrected rod block line for one-pump operation.

4.3 APRM TRIP SETTING The APRM trip settings are flow biased in the same manner as the rod block monitor trip setting. Therefore, the APRM rod block and scram trip settings are subject to the same procedural changes as the rod block monitor trip setting discussed in Section 4.2.

t e

4 4-5

a u.

a

pt;e

' i. ;U.

ti.

.b.;.> !l

! {a.l ll

{!.

l.

.45.

_Il I;:i ll;

'i, I

^ I '.*.*

  • l l: '.' ! ! '.:

, ':l li't

.!.l.?

....t

. ?: !!

g...,..

1 t.

1g...nt:i; I-

...l'

g.
t. ?'

t

.r'*

  • *4 :'

+

t

!_t-

' +

J,;.. i. s. i. :1, :; '

. : !.:..l.

=-.I.,.

i

. i.

'.G T. i.,. '. 4. ;,t .,..

!!.' {

-*i t,.

l

.t..

11.. l I.

, a.

l,....

1

.... I. li.

6.

--.e..

..,.. (..

I.... ei 1.

1

- i.

i

.i..

.a

P-
4... I. ; ' *.* I,., ;,.;;'.;;;

,li. t i. t' Il l. ;

.... i.i.t t:t I*S;*

t.". !. t"r.1, l " t.,. t"p..r** '.'!;,. t .;;f'

  • i.t;i

, ;. t :.... T* ;..i:

t..-...

ii..:1 ;.,......

..t.,".

,. t. i.

.. il

't

.1

,..I.

.t,

. Li 1...

11 1 ** ;.. !i..; d. l.; >T: :

.!.;. 9.. l..i.: :0 7 e

.."..' i: ;

.I.

l

.. T5..

l".; 3; ?.!.:..J.L..t U,;; M.l, Lt.t'*,*l',i; t.' *..!!!I.t.f j 'i

!. ;. ;i '.t.!

,r L;r.:l.:

...,,....l.

....t...

L.,

..a

~,..,...

.t..

.t.,.,...

t.........

f u..t......

-.r-- --r.-.. -.

- :.n-

....)

....l t.

.... l...

2...

....l...

.... l.

,l.

- :z -

+-

---. i..r.

. t..

....I...

.gl..

g.

. /,"%.

1..

o..

pu_;.E 11 u]E.

E 1.;..j 'n q

.i

.):

  • l:

if:'.

. a:

....a@..=

i-

]:..p:

E a T-m:

.a. 2

. +

u.. a..; ;

a.......

.u.

u..
4..

i,

.l..

l.

1;

. '. :.".. : c. ~ :..:.a. ;;t. t;.;;f =..,

rt

c.. : : n:J : :. a ;.;

~.....R

,;a, l,a..: t L.

4-

.4...

..l.

~..

~. ~.

..o

..,. l......

.{?

,..i. !

.6

..,..... p t....

..d

g. { g..

..!!......i.

e.,

t.ggg..;!

'g

g. 'g -

t'!!:

ll C!

g:'

't Illl

' tt !!!*

l'!:

'!?:

... 41r*;.*. !..!st'

  • f !'

I.*t;. ;.7.11 T'!. i.. I T. i.n.. r"*. I. T. ;1:1.1.T.*!. !.

L

  • T* ** T.r!"'* lTI s
I

..t!!

'!. t. !.t F. Il M

l..' l i..! ' T. ~.. '

. ? l. l - M. i i

. l :l.III.:

.2..

{

....I..

.g.

l

-- n..

- -tv ~ ~ -,.

M.

.l.

.L..---

e

,..p...

t....

I,.,

a..g.

l

-..i.....

.y..

.i.,.

f.

1 v _ g. a%.

p i

j.,.

.g.

..I...

y l

  • [
  • gt.

gg L' :..**7

. f.-

4...
1. _,.'

i; '

.l'

.l.~..

l'

.J.N :

l.-

r..

1,.

..!Q,..

l..

.t..

.-...f..,..

...l'...

.I....

-....g,.. ".

...t.....

.l.

.1 1

.l.

i.

..i..

.l.

. f....

e

'::;;i- ;

. i,

.....e j

.. t. *:..

(? --

v.

4..\\., :'.;1..

.:1.

t. r -t. b. ~, ' T r. : n.. :.. : -. :.+:_ r.t"t'. :. t.,*:.w).= 1,.:

..r. r.. r r -

-l...

l.;.

... m.,'.. ::};;;*. 3_0...

.i..

.~

.p..

. I!..a...it 1.

.n

,e.

m. :;.~.. :. ::.:.:. m..

P : %.o.:

.f

......t..

m:

c:::n :: : t;. -

.1..

.l _

. t...

.-6

.M

.... /........ Jt 7..

_ t.

-l-..

.I.

p

... 1..

.... l..

.g f..............

...g,_

k Y { n.

.d,.-

.. L..

1

.g.

6

l :.-.:._.- P. A. ~P't

..: - : M[:..:

t, :

.F

-u..:.x...:...,i. v'*-

.1:

-.-l'.- _... ~.

.ut :,..

1.'g....I,.

.i..

..1.ty

.....f.

.. at. q4.-

\\

g 9

. g,,3....

LU

..v.

.q6.n,......

,.4.A g.i..

m..

4,. u.

...g.

. y,.

a.... 4.,#,...

. t..~..y.. t i.z. y 9 t-D- ;,

. f.. L' --

2*hWq.

A: ' e.

.J

.t...

i.. ;

t.

a.a.

,...t..

Q..

..s 1

.c t.

5'

j- :.p-tl: t;g,

\\ i ;-[. : n._:..'in t r.C N.

...r.:.-i :;..

... l

. T 'g l Q : a.. d' : !

c;:py:

I C

tu. t

. --" 1

t*

t

.s e;

.,l..

.,. 9,.it ty. 2. :.. g.

..[..:

i,.f...

.C.. -. - - -

[

g.. ~ d. +:..

.l t.-

L

..'cc %.

tu

.- c.. "u : I.s.

I-s e 1

~ g %a.

.. E;,.q: T c.,.

C,.

s

..s.

g

_~-s

%..q o..

a. "% t. g% :0 %.+. -

A. I l-

.t.

~. *

.A

.gA

- -l..

M.. -

11 6

r n,

  • gg.:..%, :T ni4..m.,M*. :
  • u-.
..t u,.;
..g.
.
p

]::..

L U; N 4

.,- i

.I t:

i.

v t:

,[

t-pp r.

2.

jg

..f.8 Qg (( g W. g - A

..... %u....... g.

...... t

-h e

.........:1 :w

-' n. :1 ; :g.... i r;. s

.,L

..t...

t -.

t-i-

q; :.

6 t-

.e s

. ) T.;L,.,.,..

a

.... - I......_...

...l'.

. A.,

..t

.}

.I'..

N Qi

, -(
4.,......

3

. l........4-..

.t..

. g

.p.

4

.,u Al o

... b g.,g 9

J

[:

l

...t......

. -i.. {. 9'.,,. ' :

4 -

1;.t.t.

1..I*

.j.

.I j.

1, l

..{:

..1 1.,,.,..

.1.,

t-1:

1.

..t I

o i' I

w

.4

' g l

i'...,-.-.

i

,g.g

. i

,.l.

..'.,. -._..l-

+gg i

.g

.t.

{..

~.....

6...,.\\

l

.t.

i...

.\\:.i:

l-g-}

.....t._

..4.

.4.

g g.

.l

n t-t'-

t

%.rf

<., j

.?

l

)".

.s.

. 6 1

in i... -....

6

.\\

1-

...l...

l

.w

.i,.

C 1

H.

<g

- t a

g

.... o.e/.. 4..: 5 x

.; l'

..a-

.~..

..l....

e s...,-.. h...;

. ? '-

I

.l....

6

-1

.a

..t g

1 e..

f.,... \\, t g

. !......4

..,f....

.[...

.l. p.

l

...l

.... g_

t.

.....m o p., ; g..,,w.. p g 4... : p.",g a. t p c gt.:.,:1 g y.7. 4. e n : q/, - l 6 y:

.o c u. p. a s:.. -

7.

?

- ()g.Q..l.>... %,,....

...l..

. _m

.....t...

m7.-1 :f,Jo

. r.. l. : r. -

.. y I.

j 4

,. c

. i va. /.E. pt i..cw.

..,J

.I.98. L <6:.I..:07 ;

rf.

t._ O F.. l M 3-o c. "l

~4

.n.

... - _..OC.....,, _.../..l.'

l'_

... 3.:.,,

.G.

, f..

~

.y M 4

~.

7 '

....^

.l.

..,3 e..

/..

.t*-

f..

1.

e.

l;-
1 l 'l; !!
f!;
!:': 6 I:

P

l*

e-c - - -

y._-.

.v.

_._m m

_~

.n.

NEDO-20999 SUPPLEMENT 1 JANUARY 1976 5.

STABILITY ANALYSES The least stable power / flow condition attainable under normal conditions is at natural circulation with cant ol rods set for rated power and flow. This condition might be reached following loss of both recirculation pumps.

However, the plant is quite stable even at this condition. Operaticns with one recirculation pump running would be more stable although not as stable as with both pumps running. With the bypass holes plugged, only manual flow control should be used.

G e

'E 4

e 5

4 l

I 4

=

(

\\'

5-1 i-

Suppicment 1 Jcauary 1976 NEDO-20999 2300 ao l

z 2200 50 9 C

Un t.

$3 c x

=

5 2100 40 7

7*

5 Ei k

15 30 Os

  1. 2000 e

3d E

isO O

8*

cs '-

"s

'a s

w e

5

!E a.

10 2 1800 f

t f

i 1700 0

0 5,000 10,000 15,000 20,000 25,000 30,000 Pl.ANAR AVERAGE EXPOSURE (mwd /t)

Figure 2A.7.

Peak Cladding Te=perature and Maximum Local Metal-Water Reaction versus Planar Average Exposure, Pilgrim NPS Unit 1, 8D262 Fuel, Single-Loop Operation, Plugged Bypass Holes, Recirculation Equalizer Valve Closed

=

I'E z-3{10 e%

5*

a=

6:

9.3 w2 92 0-9.1

$j 9.0 9.0 9.0 yy 9 (1,400 mwd /t)

Er

!?

1 s

f l

I l

0 5.000 10,000 15,00')

20,000 25,000

~30,000 Pt.ANAR AVERAGE EXPOSURE (mwd /t)

Figure 23.7.

Maximum Average Planar Linear Heat Generation Rate (MAPLHGR) versus Planar Average Exposure, Pilgrim NPS Unit 1, 8D262 Fuel, Single-Loop Operation, Plugged Bypass Holes, Recircu-Lation Equalizer Valve Closed 2-21/2-22

,,,.n

,-n