ML20098G602

From kanterella
Jump to navigation Jump to search
Forwards Addl Info Re Safety Parameter Display Sys (Spds),In Response to Wa Paulson 840719 Request.Info Intended to Allow Completion of SPDS Evaluation.Responses Describe Preliminary SPDS Since Displays Still in Design Phase
ML20098G602
Person / Time
Site: Oyster Creek
Issue date: 09/28/1984
From: Fiedler P
GENERAL PUBLIC UTILITIES CORP.
To: Paulson W
Office of Nuclear Reactor Regulation
References
NUDOCS 8410050198
Download: ML20098G602 (28)


Text

_

GPU Nuclear Corporation NUhIME 100 Interpace Parkway Parsippany, New Jersey 07054-1149 (201)263-6500 TELEX 136-482 Writer's Direct Dial Number:

September 28, 1984 Mr. Walter A. Paulson, Acting Chief Operating Reactors Branch #5 Division of Licensing U.S. Nuclear Regulatory Commission Washington, DC 20555

Dear Mr. Paulson:

Subject:

Oyster Creek huclear Generating Station Docket No. 50-219 Request for Additional Information for Evaluation of Safety Parameter Display System (SPDS)

Reference:

Letter, W. A. Paulson to P. B. Fiedler dated July 19, 1984 By the referenced letter you requested that GPU Nuclear Corporation respond to questions on the Oyster Creek SPDS. This information was to allow the Staff to complete their evaluation of the Oyster Creek SPDS.

Please find enclosed with this 1.cer the requested information.

It should be remembered that these responses are describing the preliminary SPDS since the displays are still in the design phase. Even after the basic SPDS is installed and operational (mid-1986), we expect that enhancements to the SPDS will be made, along with the development of additional software.

If you have any questions, please contact me or Mr. Drew Holland, the Oyst -

Creek Licensing Manager at (609) 971-4643.

Very treb f arsi

'. (i h

4100 0198 840928 b /

j

'MDR ADOCK 05000

. B.uFiedler F

Vice President and Director Oyster Creek RPJ: dis:0741f Enclosure cc: Dr. Thomas E. Murley, USNRC Region I NRC Resident Inspector, OC gCP GPU Nuclear Corporation is a subsidiary of General Public Utikties Corporation

7*

ccv.

v, ENCLOSURE N:

ISOLATION DEVICES--

. Question a: For each type of device used to accomplish electrical isolation, describe the specific testing performed to demonstrate that the device'is acceptable for its application (s). This description should ir.clude elementary diagrams when necessary to indicate the test configuration and how the maximum credible faults were applied to the devices.

Response:.

Types of Devices Used:

Class 1E:

'TEC Analog Isolators Reference TEC Qualification Test Report'No.

31041-QP-01 and Appendices A through I "y

Isolation Scheme: Transformer Isolation Class lE:

RIS Digital Isolators Reference RIS Qualification Test Report No.

A-357-81 Isolation Scheme: Optical Isolator Find herein, excerpts from the vendors qualification tests for electrical isolation. These excerpts are not intended'to-exhaustively represent the contents of the referenced qualification efforts.

The drawings and other photocopied pages are designated thusly:

RIS (a))

Where: RIS Are the vendor's initials (a) is the question being answered 1

is the page nu'mber for that specific vendor under that question i

Pages RIS(a)l-4 represent the method and diagrams for the RIS Digital Isolator testing and TEC(a)l-4 represent the same for the TEC Analog Isolators.

)

i

,~.

t NZ5(O) /

E14400 Class IE Isolator Module Test Procedure 7

This device may be used in Safety Related Nuclear Applications and l

comp etie testing must be performed and recorded.

8 l

I

'l Frfor to test' ng, visually inspect module and record model type, S/N, i

and

  • hut voltage requirements of the module.

CAUTION: Improper input tage and/or loading can damage the module.

l I

pst equipment required (or equivalent)

Rochester Instrument Systems Test Set TMM34.

l Digital Voltmeter.

Hi-Pot Test. Set.

c.

gi-Pot Test Insert the module in the hi-pot position.

The hi-pot connector has all hns wired together and the two input terminals at the end of the i ole are wired together.

Attach the Hi-Pot Terminal block to the module.

Apply 4000 VAC RMS between input and output with a 1 ma trip point.

verify and record successful testing of the module.

Functional Test Prior to installing the module in the test position, select the required field contact voltage with Input V SW of the test set per the suffix table below:

Suffix Field Contact Voltage

}

t

-X 24 VDC

-J 48 VDC

-D 125 VDC

-S 117 VAC (Note 1) l.

i

__,4-TP O f3 ax_ hk(d) ROOHESTER INSTRUMENT S as wenTw unica snett. n:catsrtn. Nrw vens iscs

_ o e-m -cu zon %

DC0 AN-1100-633 5-4-79 Class IE Isolator Module Test Procedure Er4400 i

l D00 AM-1100-620 3-24-79 i i'.~

mn m

arv E

DES CRPTION CHK.

A-1032-814 C:

k REVISIONS

/.i. s.

1 SHEET 1

CF 2

R*5 m t

RIs(a)2

@ 18 The 117 VAC connection is via the jacks on the panal and en i

external variac must be used to generate this voltage.

output load using switches SW1 and SW2 per the table below:

t the Output 1 Output 2 le (High Spe d Iso. Out)

L g3 4401 100 MA (Relay Contact Out) 10 MA e

100 MA (Relay Contact Out) 10 MA (Relay Contact Out)

^

gg 4402 10 MA (High Speed Iso. Out) 10 MA (High Speed Iso. Out) gg 4403 10 MA (High Speed Iso. Out) 10 MA (High Speed Xistor Out) gg 4404 100 MA (Relay Contact Out) 10 MA (High Speed Xistor Out)

_ gi 4405 i

er on.

Install module in the test position and attach the P

block to the modules handle.

go-No-Go Test y

yerify that the green light emitting diodes (LED's) illuminate and the red " LOMA" LED's are off when switch SW3 is "ON".

g, Full Test With the module installed and SW3 "ON",

set the input voltage over the range of input witage as shown below.

Verify that the green LED's illuminate over the full range of the modules specified input 71tage.

Nominal Voltage Range 24 VDC 20 to 30 VDC 48 VDC 38 to 60 VDC 125 VDC 105 to 140 VDC 117 VAC 105 to 132 VAC Measure the output voltage at the Output 1 and Output 2 terminals, referenced to the output return test point.

The voltage, when on should be less than 1.5 volt DC.

e A-1032-814 6

SHEET 2

CF 2

l

__W

i RIJ(a)s j.

L7 LAI M F-i s

o g

g g

A FO

<c 0,

+

-4 n

e o

e r

g

[q) O O Ol d a

a n

a oO

  • 2

]

d a

a V

a o

_y

~

o"_

r r-e t

} =t; as wMe 35

[} our; o '- r d 04OSO e-ia

>=

.o o

ye ax 4

OW k

k d 5 i

9 E go I g8 5 '.,

~

yi o,,w?.

o,n

~,

N

  1. 55 I, '

. '. ' i.r. ~#

.r.

.~

a ru, g ilgl' 2d 2Q g IQ Ik

(

43 N

to y

h k II yN N y

}

$z E

o

! e

%s si

~ 55 25 4

4

^

2 e

e e,

e e

O

~

~

~

~

{d W

M E4 Z

g g

g w

s n

cv e<>

(

E '

c O

Dk O

O n,

g

+

se a

~

o-U.

h WJ d

W O

6 tu cu

)

zo T

et-zeY veh

<22 EIa

~

I e

s 9

er I

fM l

5o a

f (2h E

F

s Y,

.s l _~9 U

b 1

I e

t l!

6 wg j

li 5

i*s g-3. _

+

i

,g 4

i e i

i.

a

.m

,,i b,*> '

- 4, 1

o-p D

e.

..e-O l'y

,4 6

h iwp-F

  • 4h

(

J~

I iTP" 4

'MO

'WN es!

I e al n.

~ '

a r s.

J-

  • l 3*

g j

,7 k 3

  • a 0

...... a

.. 'w.

fI

, V* ),

{ '. f I. *]

~~~

j f.f[

., %._i

-W :. }-,,

L a

gp. i!! L -

..d ZJ.,

m m__a u_..s m

l l.,

r A

.- :s gny e

e

.m'

.@a.

iti-i

. ne

  • g l LD.1 __e.

-w.

T',1 v.

u m..> -.,

j 1..

o i,1

-~~>-

g g

~ ~>-

i

)

4 g

.t{ : hI gli

.i%..

en a::

_ni o.

v g,

I z,.

g "4

5" I

N tg

  • }.

I

...b g.g l

v t

^]N g

- r= -

'8 R,

Q-r'-M@

is@rp b

y c/

[:c;I-

R!

O i n N

]'

, +. <.

W

1ii

\\J

!,l

,_.t.,.

c I!

w::

s%

QlJ t s.

W 8

l'l_

h Qs) 9 T

e, tw l

li '.'-

$ +

s d,-

(g b t)

i a7 Q (%

5.n

~

s r le

=. y.

if

' e f>

l a ms ll

,ir,

.e t L

- p: '.^;+

s ea QK4

- 1.J.

p E

.c I

r. e.
e.. 5

~ - - "

.a of*!!!I!Eh.rp:

e.: t d.,...'i o

\\

0

'8;t

./'71E!

]c!

ih!I[

j. }-

]

I s r,.

It I

. %_3'. w ~:,

y,gj{ 3 g

J p-e 4

,8-s

~

!:s al J

~

93

i r ::... -
f.-

w, q

j 5,,,,,,,,,,

b

. -g M

' j g g.,

gttttt

-u:.

. L : C. E.

.t-?*

~~~*

l *,

.~

v.

)

.)

ft

~

-w m

7~EC a),.

I tu v LtNE

~

QUT 1 NEU" I

uw v:

.v c

c. sce l

.w..

l

.gr g,.

t=,,=u 7 I

I

,xw gar m

__ s

.cu DUT2 zu. ur v'e "V SUA"L Y to d

+

IF#uT I C U" 2 CD M OU.

H V.

12V x

cu~

m

,c u a-eou suo.

l l

DUT 3

wac v:
CUT 1 f*yT gy I

ou csst com' DUT+

WPui v.:

l l

l ruar

- u. a c:u cu-I l

I CASE' cut

  • cou e

i SEISMIC TA2lE l

l I

i

?? 7 M JTh,n yn

  • Rl-W 4 = 2 40 s%

l

,f o

.y, T~

T! "

[ M (\\,.]

~=t

=

-1

,s

.a; v ya l

Figure 1

7BC (qja

~ ~u wa.

~

24 V l.1 NE DUT1 rupvr vf(

cuc cu:

~

QuT

-~ MT 1 QT

.2:r EE i

I DUT 2

=

ZWPUT VS yy gyppg y Zspe

=cc2 y

ccM DUT Hv.

  • 10V

,c u r M

cuo DUT 3 o

ZWWT V5 T

~ 0U7 3 gg i

our

=

can com 1

l DUT+

i 4

WPUT J

ca..r I cur a I

l rua eu.

I i

I s

our s

cast cou

=

=

4 1R R A D I A Tl 0_W R C_CM_. _ _

_ _i i

i i

{

?? ?C rou tm.m n-

$, nu-n zo :a N

I I

1

~

i D {\\i f.,;

if6 G-l Xv 24 t

E W

.?.

(

)

L

[

TITLE NO.

asssa TESTING PROCEDURE FOR TEC MODEL I

'"==

156 ANALOG ISOLATORS

-03 REV.

pchnology for Energy Corporation g

,s -

7,4 Isolation Characteristics 24V Power Sup.

D. U. T.

Com

  1. (+)

'in Vs

+24V

-d-1.35V com out I out l

Mercury battery'

+

2fih5)

[~ CASE com 3

Ice

~

Floating (Battery Operated)

' DMM nA to uA

- d (item 9)

High Volt.

Warning: Hazardous Voltages are Power Sup.

present in this test. Make con-Measurements:

Isolation neenions with high voltage supply Co= mon Mode Rejection

_(('

disabled.

It is not necessary to

-~

get near any wiring after set up.

8.0 OPERATIONAL TEST This test is divided into two sections: Section 8.1 is for testing prior to potting and Section 8.2 is for final testing. The steps a through i are co= mon to both tests except that the " prior to potting" test (Section 8.1) omits some of the steps.

The result sheet details which steps are performed and provides a place to log data. Also, all limits are on the results sheet.

8.1 PRIOR TO POTTING TEST Perform steps, a,b,c, and h as indicated on the results sheet.

S.2 FINAL TEST Perform all steps (a-i) as indicated on the results sheet.

REF.

(8.1, 8.2) OPERATIONAL TEST STEPS USE THE TEST CONNECTION SHO'#. IN SECTION 7.1 FOR STEPS A,B, AND C, BEL 0k'.

a.

Input Resistance: With the DMM, measure the input resistance of the unit.

Record value and see that it is within limits 642A10 4 of 9

P-i E C_- c q q C

TITLE NO.

,wss l= j=

TESTING PR9CEDURE FOR TEC MODEL 156-OP-03 t

I""

i 156 ANALOG ISOLATORS

=

  • =

REV.

I 1

piogy for Energy Corporstbn r

\\

i

g. (cont.)

f Measure supply current and output current at a supply voltage of 18V, 24V, and 30V and record results on the results shee-.

i I

l Verify the supply current is within limits. Calculate power supply rejection i

as follows:

l PSRR = 20 logio Iout2 - Iout1 in db Vs2 -Vs1 Where Iout is the output current at a supply voltage of 30V. Iout is the 2

y output current at a supply voltage of 18V.Vs = 30V,Vs1 = 18V.

2 I

Record the power supply rejection and verify that it is within limits.

l

) USE THE TEST CONNECTION SHOWN IN SECTION 7.4 FOR STEPS H AND 1 BELOW.

1 AVOID CONTACT WITH THE HIGH VOLTAGE INPUT CIRCUITY OF THE DEVICE UNDER TEST.

i p h.

Isolation: Slowly turn up the high voltage supply to 2000VDC and measure the co= mon mode input current on the floating DMM.

Record this reading on the results sheet.

Calculate the isolation resistance as follows:

Risolation = 2000V Ic.m.

Record this reading in ft on the results sheet and verify that it is within lic: ts.

i.

Co= mon Mode Rejection: With the high voltage supply at 2000VDC, measure the output current. Reccrd this value on the results sheet. Now turn the high voltage supply off, and measure the output current. Record this value also. Common mode rejection is calculated as follows:

CMRR

"'~

"I in db "

E 1O Vc=2 - Vcci where Iout is the output current with the high voltage supply set at 2000V.

2 Iout is the output current with the high voltage supply set at OV.

y Vc 2 = 2000V, Vem1 = OV.

Record CMRR on the results sheet and verify that it is within limits.

642 A 10 6 of 9

1

-Question-b:.

Data'to. verify that the maximum credible faults applied during the test were.the maximum voltage / current to which the device

= could be exposed, and define how the maximum voltage / current was determined..

Response:-

The maximum credible voltage to be accidentally applied to the non-lE side of the Isolation Devices is assumed to be 480 volts 60 Hz, AC. This is considered extremely unlikely in r,

view of separation practices between power and signal circuits; however, it should constitute a " Worst Case" since it is the highest power distribution voltage readily accessed in the plant.

(4,160 VAC, because of its restricted use, is

+

^

considered an incredible accidental contact mode).

The peak voltage associated with 480 VAC is 678 volts phase to ground.

(Phase to phase peak, which is a considerably less credible fault, is 1,175 volts peak).

'The transformer insulation tests of 1 Kv and 2 Ky for the TEC isolators, leave significant margin for safety, as tested, and

.the manufacturers specification claims 2.5-Kv insulation rating..

The Digital. Isolators provided by RIS had the insulation of

^

their optical isolation scheme tested with 4,000 VAC.

. Question c: -Data to' verify'that the maximum credible fault was applied to the output of the device in the transverse node (between signal and return) and other faults were considered (i.e.,

open and short circuits).

Response

The only faults of. interest are those faults that may occur on, or propagate to, the class lE side of the isolators.

{L Given sufficient isolation by the primary isolation device,

'(i.e., transformers or optical isolators for the TEC and RIS

-devices respectively) the consequences of open circuit..short circuit, or transverse mode output faults, become' immaterial.

1 The high voltage tests from input to output as discussed under question'"a" affirm.the level of isolation as adequate.

i i

/

k

3 V

y (c)1 I

DATA SHEET

~

Corporate Consulting ATION MODULES and Development Company.ltd.

s N/A LOV/

Amb. Temp.

Job No.

Ibl bl/A Photo Report No.

Test Med.

N/A Start Date /2 / /2 / '.7 N/A

~

Specimen Temp.

1E I5OLATOR MODdLE FUNCTIONAL DATA SHEET ME CUST0ER LOCATION Hi PO 7 Go No Go FULL TEST T.

PART IN TEST TE5T 78r v?ME C.0MMENTS 5

< n sv IC NUMBER CHA55l5 I".flM Fog F Pos F leR 2aR o c' m e o n-s A1 7

?

?

(J.o ().B Too I

"" ' D AE

~P

?

P

&D o.9, jooE cuo' 3 A3 7

~P

'?

b,b 0.2 5 00 3 sz'i9 s I.x Ay 7

p p

gy 9,4

$-004 E2440E-$ p5

}

"p p

gg Q,g is -o 05 EIV/C2-0 ff

}

'p P

()p OQ

}y -v ol, EIM023 A7 p

7 7

o.D b.o

}c -00 7 ET4402X A8

?

7 7

Do OD

.:vo 005' Eze o n A 'l

?

?

?

?g oz

+

-wo-o 09 fiMd3 0 A /O 7

P P

3.2 00 R64 A"wr ~r~

-W - C'lo EI@o?-J A Il P

P P o.</ o.2.

t:0 -012 i?n04-S A /3

~P P

O.z o.o 2 0 - 013 EPtWID A I4

^P

~P P

0.t o.s 30 s - ol't FIwoH-] A 15

?

P P

az ao 2 -O/QE!4'ioti-x A /6

}>

P P

of D.c Q -O/6 E/MOS $ k l]

}

f h

GO D,5 f

26-017 Ef49dS-D A /8

?

?

P D.o Do

'20 - bl9 EIMoS*] A l'T P

P P

OD t),c

" biled Tested By - W/

_ Date: /2 / /'/7'l D55ed Witness 9 8~n M Date: /2// 2 en Sheet No.

/

of 2

Approved -

~

3.; W. h-v.

.N

..s.,u g kastft.tgAs @ N G" D N pg r. g SeV!Se nem j h/0RST GSE DATA SilEET FOR 1RRADIAT10N OF M 0 04 307g/c/2.

M002L 156 sr3At.oc J1GP3AL ISOLATOR O M'MS jk e )?e d o ny *T f ( Se V ISOLATOR 1 ISOLATOR 2 ISOLATOT J I.90LATOR 4 Tit'E S/ 3 1

S/N 3

S/H 2

S/N 4

P.S.

REMARK I

3-16-81 E In E Out E In E Out E In ~ E Out E In E Out H.V.

L.V.

I..,_ _

T 12:35 1.35V 1.33V 1.35V 2.05V 1.35V 1*.33V 1.35V 1.53V 2KV 24

.04 No Source 12:43 1.35V 1.33V 1.35v 2.06V 1.35V 1.33v 1.35V 1.53V l2KV I 74

< f. 6 s I

Source 12:45 1.35V 1.33V 1.35V 2.06v 1.35V 1.33V _1.35V 1.53V 2KV 24

.45 Source 12:59 1.35v 1.33V 1.35V 2.06v 1.35V 1.33V 1.35V 1.52V 2KV

'!4

.45 Source 13:14 1.35V 1.33V 1.35V 2.06V 1.35V 1 33V 1.35V 1.52V 2KV 24

.47 Source 13:31 1.15V 1.33V 1.35V 2.36V 1.35v 1.33V 1.35V 1.52V 2KV 24

.47 w

No Source M %. h EQ{

o 13::6 1.lsV 1.33V 1.35V 2.06V 1.35V 1.33V 1,. 35V 1.52V 2,KV 24

.44 Source a

14:00 1.15V 1.33V 1.35V 2.06V 1.35V 1.33V 1.35V 1.52V 2KV 24

.44 No Source 14:35

1. ISV 1.33V 1.35V 2.06V 1.35V 1.33V 1.35V 1.52V 2KV 24

.42 Source 14:15 i

No Source 14:48 Source 15:08 1.35v 1.33V 1.35V 2.6V 1.35V 1.33V 1.359 1.52V 2KV 2/.

.45 Source 15:13 No Source 15:43 Source 16:00 1.3sv 1.33V 1.35v 2.06V 1.35v 1.33V 1.35V 1.52V 2KV 24

.44 Source b_

16:30 1.15V 1.33V 1.35V 2.06V 1.35V 1.33V 1.35V 1.52V 2KV 24

.08 No Source 17:38 1.35V 1.33V 1.35V 2.06V 1.35V 1.33V 1.35V 1.52V 2KV 24

.37 Source Time Start 1/16/81 12:35 D*N Dd"N D T ir-e Stop 1/17/H1 02:37 P

~

Tasted By VWI. A JTS Certifiestien

MhO mGVN g

d n

g e

i n

2 m

w i

r o

t o

l s

m E

f l

S S

r e

t' K

S e

f a*

R p

c Fr ^ A A

a C

'i M

n s

E m

[E i

t T

s R

r s

i eo u e t

e D

T a

s 3Y 4"

0 0

e V

2 2

H ;

1 1

8#

1 1

1 V.

a 4

~

L 9

2 CET I

V.

v V

r K

m H

i I

oA T

4 U

O 5

0N 0

n 5/

4 3o 1S E

2 i

ms i

dv T

3 U

OeR O

1 0M 1

5/

3 Cy R

1S E

3 O

T

/ m A

Xd L

T O

2 U

8n f

S O

6 6 8 4 0N 6

I 8, Pe D

C 0 01 5/

2 E

E 9 9 0 L

1 S E

2 S

T 7 7 8 AN U

G 1

T I

T Pe N

E S

1 U

E L

O 5

M B

G 0N 6

P A

O 5/

j I

2 T

L 1S E

U AN Q

e A

E p

o T

T M

c 6

S N 7

S E

1 MS 5

R H '0 E

I 1

2 E

T D D T

I L

ED O

T M

4 W

1 2

0N 5

5 5/

4 1

1 1S E

T 3

5 5

0N 0

0 5/

3 2

2 1S E

T 2

U 3

3 O

0N 3

3 5/

2 1

1 1 S E

1 lii I

T 1

U 2

3 O

0N 3

3 5/

j 1

1 1S E

L V

V A

5 5

N 3

3 G N I

I 1

1 S

7 r

E 2 5 M

I 2 0 T

, Question d: Define the pass / fail acceptance criteria for each type of device.

Response

Pertinent pass / fail data are attached.

During this review of TEC's data, a question arose Their isolation rg11 stance acceptance criteria is listed as greater than 5 x 10'u ohms. Generally, they measured 4 of these deyices in parallel with a worst case of 2 Kv/0.65 ua = 3.07 x 109 ohms. Multiplying this by 4 for an assumed evenly distributed avert 2 still does not meet their acceptance criteria.

In fact, no data checked meets the criteria.

Upon contacting TEC by telephone, GPU Nuclear was informed that the current involved was in nanoamperes and not the microamperes indicated. The problem was a typrographical error; pending confirmation of this information, in writing, from TEC this question should be considered open.

rst d);

v TITLE SEIS"IC TEST PROCEDUP.E FC*t THE TEC NO.

y

10 DEL 1201 AP.EA MONITOP.,::0 DEL 1204 20043-0P-02 g

HIGli RA"CE M03LE GAS ".0"ITCP., At:D "0 DEL 152 ANALOG SIC::E ISOLATION SYSTE" REV.

TWeiniosy for Enersy Cesarettaa I

4.0 l'I:!!!'U!' ACCEPTAf:CE CRITEP.IA The acceptance criteria for each tes'ed model is shown below:

t l'03EL ACCEPTA!!CE CRITERIA NOTES 155 27.3

> 156

> 1&3 157 4

>158-4 701 1&3 704 1&3 715 2&3 717 2&3 710 2&3 TIl00 5

DE210 2&3 Q 1.

No loss of function or ability to function properly before, du-ing, or after test.

2.

!!o loss of function after test.

3.

i.o structural or electrical f ailure.

)4 "o structural or electrical f ailure which would compromise component integrity.

5.

Enclosure remains intact.

5.0 DESCo.IPTION OF EQUIP'!ENT l'0U?:TIrlG The !odel 150 Isolation Cabinet will be nounted as shown in Figure 2.

The :'ocel 157 Train Enclosure will be counted as shown in drawing 150CIC05, except for train A3.

Train A3 will be replaced with three racks of equipnent.

The first rack (highest) will contain the :'odel 1201 Area !!cnitor readout equipment.

The second rack will contain the :!odel 1204 High ?.ange Noble 3as "onitor reacout equipnent.

The third rack will contain the TIGOAPH recorder. Train Al will contain four "ocel 15C !solators, full terrinal :: lock, and wiring. One "ocel 1501 display will be r.ounted in trein A2 an: ene "o:el 1501-5 canel will be nour. -

ed in trair. A5.

The Model 155, 7G, 717 u'?1 be t-1tu en the outside of the isclator cabinct 43" fror t e bott:.

This e / o ce

.a. : *ct tested.

es2Ato

rsc (dh C

TITLE N O.

j ss**

  • l" MODEL 156 ANALO:; ISOLATORS 156-OP-03 I" !"

REV.

,,ennobgy for Energy Corporetkm 1

r Input Voltage Output Current (mA)

(volts)

-B

-C Min.

Actual Max.

0.000 0.000 3.992 (4) 4.008 0.500 1.000 5.589 (5.6) 5.611 1.000 2.000 7.186 (7.2) 7.214 l

1.500 3.000 8.782 (8.8) 8.818 t

2.000 4.000 10.379 (10.4) 10.421 2.500 5.000 11.976 (12) 12.024 3.000 6.000 13.573 (13.6) 13.627 3.500 7.000 15.170 (15.2) 15.230 4.000 8.000 16.766 (16.8) 16.834 4.500 9.000 18.363 (18.4) 18.437 5.000 10.000 19.960 (20) 20.040 Isolation (8h)

Co: con Mode Current:

) Isolation Resistance:

(75x1010,jn Technician:

Approved:

Date:

OPERATIONAL TEST (FINAL) (Ref. Section 8.2)

Input Resistance (Sa):

(9.5 MA-10.5MR) 0FFSET ar.d GAIN calibration (8b):

(write ok if unit calibrates)

Transfer Characteristics (Sc):

-A Input Voltage Output Current (mA)

(volts)

Min.

Actual Max.

1.000 3.992 (4) 4.008 1.500 5.988 (6) 6.012 2.000 7.984 (8) 8.016 2.500 9.980 (10) 10.020 3.000 11.976 (12) 12.024 3.500 13.972 (14) 14.028 4.000 15.968

~ ~ - ~

(16) 16.032 4.500 17.964 (IE) 18.036 5.000 19.960 (20) 20.040 l

842A10 8 of 9 l

I

!s

ns (d),

E14400 Class IE Isolator Module Test Procedure

~.

yhis device may be used in Safety Related Nuclear Applications and

[

complet*e testing must be performed and recorded.

r 1

l FTger to testing, visually inspect module and record model type, S/N, and

  • hat voltage requirements of the module.

CAUTION: Improper input tage and/or loading can damage the module.

l gest equipment required (or equivalent)

~

Rochester Instrument Systems Test Set TMM34.

Digital Voltmeter.

Hi-Pot Test. Set.

g, gi-Pot Test Insert the module in the hi-pot position.

The hi-pot connector has all pins wired together and the two input terminals at the end of the W ule are wired together.

attach the Hi-Pot Terminal block to the module.

Apply 4000 VAC RMS between input and output with a 1 ma trip point.

verify and record successful testing of the module.

\\

Functional Test 20 Taie = Ageegalale Prior to installing the module in the test position, select the required field contact voltage with Input V SW of the test set per the suf fix table below:

l Suffix Field Contact Voltage l

l

-X 24 VDC

-J 48 VDC

-D 125 VDC

-S 117 VAC (Note 1) l

- - - - - ~ ~

POf3 ROCHESTER INSTRUf.'ENT SYSTEMS

  • i

, n f_r era

-/

g u. ;...)

255 NORTH UNION $*7 EET. AOCHE5m. hsw vcn W5

%e N!-/'OD -C46 Ef/H /% R/>,._

DC0 AN-llOO-633 5-4-79 El'4400 y

Class IE Isolator Module Test Procedure i

_D_00 AM-110 0 - 6 2 0 3-2 4 - 7 9 M

E

rm owa n'

DE S CR:PTION c Hr.

A-1032-E14 C'

E REVISIONS I..: u SHEET 1

CF 2

R-* m

+

~

. ~

Question e:. Provide a comitment that the isolation devices comply with the environmental qualifications (10CFR50.49) and with the seismic qualifications which were the basis for plant licensing.

i.

Response

Although the Isolators used were qualified for Harsh Environments,- they are to be used in a mild environment,

-negating the need to review the environmental testing.

The attached Seismic Envelope for RIS and TEC, easily exceed the Oyster. Creek floor spectra enclosed, which is for 95 ft.

elevation, which is worse than the actual elevation used.

5 h

t i

< j

.... qg,.s 1

s

,n.

V-

' ~,.

-c,,

~~

FLOOR SPECTRA R.B.' SSE Foa Oy'5Te~R (EEEK

~

5 00 -

EL. 95 25 (MP 41 0F=1 0%

4.6G _

s s

N c')

. 4,g9 _

\\

z,%

ag.

.- Q c3 t

3 50 _

g

- t-w 30'0_ [t

~

s k1

,a p

Q K

2 50.- Id g

j u

u L

)

2.00 - 1 g

s ll 1 50 _

4 M

1 00 _

1 0%

0 50 _

~

h I 'l I I I I

IIII I

l l

l 1I I

IIII I

I III I

I IIII

~

2 00 5.00' 10 00 20 00 50.00

~

1 00 FREQUENCIE (CPSJ

'__V, :

+ -

ca/, / s. os:o 1.t1

^

J/l25l72//)jf,

RI5(e),

e SSED9 PERCENT DIRECTION cetno.

7,_,3 DAMPING HORIZONTAL N-S @

J4V 1/2 SSE C owa. By.

4g HORIZONTAL E-W csx. sv &

DBE C 3

OBE R VERTICAL out.

3,,,,,,

a

_a,._. -_. _.. q _ _..... d_,.

u

.._2...

90.

._1.

> j ______..

.J -

4 __

i i

L1

= _ _

W_

II,

_A 7

' ' I. i i

w

- ' - + -

s0.

1 =--

hjx.W.

4-i 1-

!hib i

li i i.4jih

,,jj C.J.

..] -

...., ; l. '

..... 2.

o

.j.

l e

i,

.n.

1 m

M

at..

a 5 v t +..

  • T21 !8.

s.

L y:.._r.li

..m.

i

-3:

-. rg

au

.y.-+

20.

=g.2, - : -

u....w uw. w 1.

y:(.

. *. - t**:.*. :.

.. ')

, j, j.!.

, l"..:01;r

?:::y..

r 7:17,g. -v 4,, '.:.f.~

.~.'l M ~;

y.1 l

.I,

=- -t + :-I+.

.**_h..

fr.

g-g.

.p t

a e

y m

W-g a

- g..

.. p.-

e-

. J.

.i i 3

'[t.

J' 4 X, p-s f.-

g i f, i

-a o

o-

/

mim/ fl

e. ;+.,. e t t..l-IN

- --J mi..

i

1.. y "4 5.0

'r,y

..mi-i

v

.I e

-s 3, --

i

= = = ~ -..

E g-

.-~ -

l l

L..*

.
l *-

e O

-, j..: : :J us:1 l

.._.J__

.7

..f o

' l :_ _ _..

.).

Lu

-m.

a..

g 2.0 I

r.,

': I t

4 *-* * } ' *.r.i.-

.J,.;.'

j **?

J, ]

I

_ _g- +:r

~

- -f *;,,,,,; ', ; [*,, ;.

  • M

j m H I.'.

1~

. 1.

O'

J..

.f;**.'..:'l.

.I

., 3...!

i 4

.t

.n 1.0

,_ 4 4

_J - -

I

.J

a..

_,. M.

I

j

__i_..

'7

/--- - ;,

!L l 'It i

' T 8 l 6.

j prm
Pl/

aiti

~l-

'd I.-

i j

g.;.p.

.:;.q.

_. j..

..j

. g..

.j.

r....

),

!.q-

= 6.. y A..

.. } l' j.2..t 6

y.,

_y

.v i

k, u 6

r 1:

==-

iEh

.r

..2...: _:

3.d{;[iM :':t-l-

l

~

Tin' 1p;.J

--n-

E L

v

~

1

i j.i.!la..l....I.

rf. !.~

Nj,1.

1. :.

j u

T r-4

,o 4-i.

o.

a. 9.Li

.l.

4 m.. 2 1

1 2

5 10 20 60 100 200 600 800 FREQUENCY (Hz)

Figure 3.1 Horizontal Earthquake Required Response Spectrum corporate consulting & Development company, Ltd.

consultante constructors ECOG E.4 WEBOUTIV E CENTER R A1*E 80 M. NORTH C AROf !M A Ik

._?_'J-b_---

RIS(e)2 SSE N PERCENT DIRECTION e

CCL No. 7 9-1361 U2 SSE DAMPING HORIZONTAL N-S L_]

owa. ev. Sav y

DBE HORIZONTAL E-W cm. ev.GM 3

OBE VERTICAL

@ om:

3,,,,,,

,o,

___j_..__ mju

.___.m_.

.3 g4._.__....._._i..g.

.j..l-ja

.q

~__ Lq.

.2_

.. p...

L

':.: l: - ".

-- d-l Q:{u 4'

I l-l c_.,.

1

' }

l,,.

50'

~

lj iiM i

.1q_..

4,..

-.' l W

~ ' '

.. pi.

.p.

.L J

!l 6

iI 7

I j

  • H-
  • ?).I'-

1.

t 41.5

?

i

. I.i

..W_

15

~l

'3..,

5 kWi u.

' t: J '*

I; 20,

_-J ~~O' - g..-

-.::.ic
rng..

.. :- ? !!-

.i m -~ - n '

f,,,

,..j

  • l ;;,,

M j d

"{.( _)

  • ~ "

d'y** **J. ' * * *

. '.. I

... 'I-

. ;..I',j* j 'J.

e g

d,,

-=*;

..l '.

  • g/)

s

..J

\\.

~.4****-

[.

l 1 t+= 1 ** =

4 s

i i

i I '

L..

'N I - L 1

4.

f

-_I

_3.J.

i 4.J.

Z

/

X i

,_4_.

~

O

/ I /

'N i

h

.-l^

4

. g* {$

. [1.

- I*

  • I l

f-i i :

J e

5.0

-- 3 3r

,-l

'.' 3

. g.

,s '

2 : *~.

  • f :=

l.

-~t-f T

..I

.n uJ

. _~il : _ a

.4...

.A

-}..

a gg

.)

o

.:-; i. :

i l

.,. _ 1

... [.

s

..r.

j i

p-g 2.0

  • --l-

=

... w.

....a

.=
-n

.. =

y

. =:.:

r,:- c.

.l

,. =:. a 4

..f

-* f 4 *

  • ** f W 'f, '

l is

/

- 4_

p4i

_. _Ca" ILm Tc t

o

r. :..D i '!

i ii

.J.a_

.1 -.

l e

i

-1' i :

5 I

EE I

I *

  • If'*

1 I

' O l' l

I

1..
2...

l'

.I l' i

[

t.

. j.r.

e

. -t q - -* * '

7~

~

~

.,1

?* '

.;= b..

3

> 1.. ;

v

.2

=.

= _:-m___.:...

,"q ; g:.

r l

l

_: i.....:.L..

_.g !..

p b,,.

a{l.

r

,.C.

..,7 '] !.!

!M

! '.i -~w 4

. l

~4.]n l

l

+

4,.

,.. ai I

2 5

10 20 60 100 200 500 800 FREQUENCY (Hz)

Figure 3.2 Vertical Earthquake Required Response Spectrum I

i i

corporate consulting & Dovelopment cornpany, Ltd.

oenaultante constructors MOQWM N X BOU TIV E CEMTSR RALWIGM. MORTM CAMot.INA m

D EC e i m

Safe Shutdown Earthquake (SSE)

Horizontal Acceleration Vertical Acceleration is 2/3 of Horizontal Acceleration P

Operatina Basis Earthouake = 1/2 SSE 100.0

.,...i

%.',. mi. a of :

.e

.J

..._r 4..

4 r e,w s. r s.: -

at... :.

s..

i ea 50.0 t=^~;i m.-

m u.3

.,+ u w i m.a a

z w.w n. n.

- i. a '....:

s

.... _....... +....

u,g s.. s e.

2 4.,..' r..

e 3..

. i 7. C's 'p' dZa. r i._3N 1.:

jCf 3.a.4 wa m. - :i 14 t.,

..a...

.. ev..

.r i.. s, e t.

.C, 2K h.=1. 3 r.i.: j =i==_-#.2t cgj[.4 -,.rJj i: r s - ? -d W p:

si-P.; y,.

..._ z a =_ _, ; _. _..

..=__...._._.._,;._-...au a

..___=.--.:---..~:.-:.;:-==-..=.---..=.=.-..

..... ::= ;---

__.,..n.

L 10.0-s

.. n.) _v..

._ x...

.g

_i

,. A M f,,,. m. 3..

...\\

s.y:= p= a-_... m.r.-.r-r--,u.t.. dj\\-y.U=p-s.y.s.J._.r:,.% 4 n sn rir y}J y \\ 3.- _ v n,o :

5.0-

  1. . - =.C- _- _- 1 M-# ~~'WTUE= =,5'2

_. ' E #-TNE Y- ",_'".;.,.+.,,# '" *,,

~~

Ef y_

M-Y e r M 1.d.%.! s r..; a - t &.: ' ' ~f MM..s m n-e he,,,-.

.r.

A.

s 8.

'u 4 w 8 J - \\ '- -

~ ~ ~

[

T-7.*.'*."

-E-9-6 ps / \\ =PV i-~y'-4 + t '

~~.s~-

",S ZZ. ~. a =.. 2;i-IV.\\ Nr+f-C__--Ei:_GE=. '.-m W. ~.44-% "-"

C

_.. - -. _ -__ _. _.:==.:

,O

.. : _- : " ; :. _ :..2. ?..:..::-. _

't q,

l~_.,-_,m-----,.

3_

y

=

~?___

b

_... - '. - =

.'.- ;* gp.

e

.e,.r e,

1.0 3

1 s 1 s s 1s s s y p &

\\. s

.1 _ 1. g.v i i.1 a.. _.

1!4-d'\\LU T.T \\ %& \\ :\\ 1

<1

'a -

2-".

%-Wt A '\\'Y.bT 4 '.h.*- 3'-w' f f '

.a O' r 3' ' n?

' 8M "5\\@\\ 'O'AN \\ Ah\\N ' ~~1 ~E II-I

'T 4 ~~ '

~ ' '

0. 5 -- t.= (_h y -

- - - p._-. : ;~ -. = ;;.,.=... _ a = m.:. :.2.-

. ~

p_.. s-

-1

- _-- : --- :::- -- - *._ r.-- -

.t..-

,.1 - \\.<A. 1, -

Ar.\\ _\\ \\ J. ~ =

r g g w...y....q qA- \\ ' ;, T -ia i..- :..s.-

n ---

p.

.,4...<..,;.,,.,,,,_._.

a

..._.i

1. A %\\M.A AWMV. _......-

..v.==-- n

....'... a-A_ =...

..__._-__---.:......___._.__..=_.-__::.=....;

_ _%_A-p.. \\.. !iAE. n

.w..,

e M

k M-1

'. i i,;

-_--c.--

1, s

g.s' '

' '.. i s

1 x

s s 2 0*1 I

i l

5.l0 I

I 0.1 0.5 1.0 10.0 50.0 100.0 Frecuency (Hertz)

Timure 1.

Recuired Response Spectra (RRS) for 2* of Critical Camping S

7M.r LamsT 2 of 10

, Question f: Provide a description of the measures taken to protect the safety systems from electrical interference (i.e.,

Electrostatic Coupling, EMI, Common Mode and Crosstalk) that may be generated by the SPDS.

. Response:

' Analog cables consist of individually shielded twisted pairs in all external cable runs to attenuate Electrostatic and magnetic effects.

Digital cables employ twisted pairs, and cables have an overall shield.

Shielding techniques have been employed that should eliminate any tendency for ground loops.

The isolator input impedance is usually high compared to the class lE source impedance, and this will tend to attenuate noise leakage.

Common mode rejection resulting_from the primary isolation

. mechanism helps keep noise propagation from the non-lE side under control.

The digital signals are inherently more noise immune because of the lower impedances and higher voltages involved.

Fcr the Analog isolators, radio frequency immunity tests were run.

Initially they were run under TEC 156-QP-04 which adaressed EMI and Surge Withstand tests. We have not reviewed 1

f these tects, but assume they are the basis for the 1 volt per m6ter recommendations, made by the vendor (TEC see Table '4-1 of Test Report).

Additional EMI tests were since run by TEC under their Program shown in Appendix E to 30152-TR-02. These tests demonstrated 10 v/ meter EMI resistance; however, the configuration was not identical to ours.

It does lend credence to the initial 1 volt per meter. figures however.

1 4

h

3 4-

+

y L

f ' l

' c 4

. HUMAN FACTORS--

D Question:. Provide a description of the display system, its human factored

' design,'and the methods used and results from a human factors program to ensure that the displayed information can be readily perceived and comprehended so as not to mislead the operator.

Response: Description The Safety Parameter Display System (SPDS) is an aid to the control-room personnel in determining overall plant safety status during power operation and post trip along with identifying abnomal conditions. Since the SPDS provides an overview of the plant safety status, the primary users have been identified to be the Shift Supervisor and Shift Technical Advisor. The SPDS allows the user to obtain a minimum set of f.

important: parameters at one location. These parameters are organized into five (5)' Critical Safety Functions and displayed to allow for easy and unambiguous interpretation'of the information..

The user will interact with the SPDS by means of the Plant D

P.rocess Computer System. The computer alarm processor will be used to alert the. user'cf an abnormal condition identified by

~

tha SPDS_ logic. The user will respond to SPDS alarms using the same human consnunication system and methods as all other process computer alarms.

The SPDS interface will consist of ten additional points added-to the alarm database. These ten points will consist of 5 priority.2 alarms and 5 priority 1 alarms. Thus each critical p

safety function will have a priority 1 and priority 2 alarm L

. associated with it. The priority 2 alarm is meant to be a i

warning condition while the priority 1 alarm will' alert the user to a more severe condition.

1 Once the user receives an alarm from the plant computer alarm processor he/she should go the specific SPDS display for the critical safety function in. alarm. On the display the numerically displayed parameter (s) which are in alarm will be l

displayed in reverse video yellow for priority 2 alarms and reverse video red for priority 1 alarms. Graphically displayed parameters will be identified as being in alarm by the parameter plot crossing over an alarm line on the graphical display.

l The SPDS displays will use CRT hardware in the Oyster Creek.

l control room. A push button on the CRT console will provide access to the SPDS' displays. If a CSF'is in alarm the menu will show the alarming CSF in reverse. video yellow for priority 2 and reverse video red for priority I alarms. When the user selects a display from the menu, the computer will decide whether the power operation or post trip display will be placed on the CRT.

L r

-4 y

e x

y

~

-A'hard. copy of any-display sh'ould be able to be obtained upon

. request by the user.

If a CRT is displaying an SPDS display, this display shall not.be automatically preempted by another non-SPDS display. An SPDS display may be preempted bylanother SPDS display.

Methods and'Results

^

.A committee was formed to develop the SPDS displays. Team members who contributed to this design process consist of Human Factors Engineers,.STA's,. Design Engineers, Computer Applications and Shift-Supervisors. A functional analysis,

~

following the. general guidance of NUREG'0700, was performed and used for parameter selection-and generation of displays. Only the strict need of the user was considered in adding data to the display.

' Preliminary displays were created and provided the foundation for the development-of the final displays. NUREG 0700 guidance lwas followed while: developing the preliminary displays. The user's needs were evaluated with an. initial survey and j

.walkthrough. Final display criteria will be generated after multiple walkthroughs have been performed by Human Factors

Engineers'with designated users.-

i

.During the course of this program, more than one display may be

. presented incorporating the same information; In each case, the display will be consistent with NUREG 0700 guidelines. This will allow for a number of different ideas to be presented and evaluated.

-A more detailed survey will be conducted using a set of displays. Results of this survey will be ev'aluated and translated to modify the displays..Walkthroughs will then be scheduled' including all team members.

All the control room users will be trained on the philosophy and use of-the SPDS. The' training will allow the user to utilize the SPDS in determining whether the plant.is responding in a normal or abnormal manner. It will also allow the user to interpret the adequacy of the actions taken by the operators.

The training. department will comment on the displays based on these criteria.

All walkthrough connents and survey results will be used by the display committee to finalize the displays. Display criteria i

will be generated and the final displays placed on the CRT for review. A final walkthrough will be performed once the displays are coded. This walkthrough will use transient data to show the response of SPDS to different situations.

1

.~

,g k

g-L iResults of the Human Factors Program will be to consolidate the m m number of displays. The use of consistent formatting with

. regard to location of information, use of color, identifying

-labels and standardization of method of presentation of data L

will be effected. The principles of the checklist Process Computers 6.7, NUREG 0700, were followed and principles of grouping, ordering and usability were' adhered to. Structuring
and organization of the displays.is logical and consistent with

.its intended use.

. DATA-VALIDATION---

-Question: Describe the method used to validate data displayed in the SPDS.

t Response:- The Data Acquisition System (DAS) will perform validity limit checking by comparing the newly acquired signal to a minimum and

.a maximum limit.

If the signal exceeds one of the limits, the point quality is changed from GOOD to UNRELIABLE.

Where redundant sensors are'available for SPDS parameters, a validity check will be performed by comparing the signals of the redundant sensors.

l Question: Describe how invalid data is' defined to the operator.

r Response: Quality tags are used by the DAS to indicate the quality of all displayed _ values. The following tags are used:

Blank GOOD (Sensorisreliableandonscan).

=

t U

UNRELIABLE (Sensor exceeded a validity limit).

=

E-ENTERED (Manuallysubstitutedvalue).

=-

0 DELETED (Sensor.offscan).

=

F.

FAILED (Scanningofsensorfailed).

=

These tags (unless GOOD quality) are displayed in reverse video imediately following the engineering unit value.

Invaliddata(otherthanGOODquality)onX,Yplotswillbe indicated by displaying the last known value and the quality tag as described above. The plot trail will be displayed in a flashing color.

PARAMETER SELECTION--

Question: Provide a commitment to include SRMs as a parameter for monitoring events at low power or further justifications of why this parameter is unnecessary.

Response: The selection of reactivity monitoring instrumentation for the SPDS is considered consistent with the guidelines set forth in Supplement 1 of NUREG-0737. That is, the function of the Oyster

r:-

s:

o

. t Creek SPDS is to aid the control room staff during abnormal and emergency conditions in determining the safety status of the plant in conjunction with Emergency Operating Procedures (E0Ps).

In considering this function, the modes of operation in which the SPDS would be utilized were power range operation and reactor trip. The startup mode was not considered and therefore, SRMs were not considered necessary.

ONREVIEWEDSAFETYQUESTIONS--

Question: Provide conclusions regarding unreviewed safety questions and changes to technical specifications.

h Response: At this time the design of the SPDS has not been finalized.

Therefore, no conclusions can be firmly drawn. However, a current review of the SPDS has not uncovered any unreviewed safety questions. Also, there have not been any changes made to the Technical Specification or any pending due to the incorporation of the SPDS.

4 9

..