ML20096F511
ML20096F511 | |
Person / Time | |
---|---|
Site: | Three Mile Island |
Issue date: | 08/29/1984 |
From: | GENERAL PUBLIC UTILITIES CORP. |
To: | |
Shared Package | |
ML20096F505 | List: |
References | |
1004.33, NUDOCS 8409100085 | |
Download: ML20096F511 (42) | |
Text
,
p 1004.33 Revision 7 08/29/84-
,.1 4MPORTANT TO SAFETY-
- ' d NON-ENVIRONMENTAL IMPACT RELATED U
THREE MILE ISLAND NUCLEAR STATION UNIT NO. 1 EMERGENCY PLAN IMPLEMENTING PROCEDURE 1004 33 POST ACCIDENT SAMPLE ANALYSIS Table of Effective Pages Page Revision Page Revision Page Revision Page Revision 1.0.
7 31.0 7
m K) 2.0
.7 32.0 7'
3.0 7
33.0 7
Nv 4.0 7
34.0 7
')
l 5.0 7
35.0 7
6.0 7
36.0 7
7.0' 7
37.0 7
8' 0 7
38.0 9.0 7
-39.0 1
10.0 7-40 7
9 11.0 7
4 7
12.0 7
13.0 7
14.0 7
15.0 7
18.
7 19.0 7
O
$d
[
h h
I-22.0 7
23.0 7
24.0 7
N.
25.0 7
p h
q iM
'W w
28.0 7
29.0 7-30.0 7.
b 2[
A r
.n
()
G S1gnature{j Date i Document ID:
0003W B409100085 840831 hDRADOCK 05000289 PDR I
AO4T L..
- 0a
1004.33 Revision 7 THREE MILE ISLAND NUCLEAR STATION s
93' UNIT NO. 1 EMERGENCY PLAN IMPLEMENTING PROCEDURE 1004.33 POST ACCIDENT SAMPLE ANALYSIS 1.0 PURPOSE
.The purpose of this procedure is to provide guidance to technicians involved in the handling and preparation of post accident reactor coolant samplesforboronanalysis,chlorideanalysis,pHanalysis,(gaqa isotopic analysis and gas analysis, as described in NUREG It is designed to provide prompt analytical results for the mentioned parameters while minimizing technician exposure p e requirements of NUREG 0737.
Specific
, these requirements A ciude:
U M
less from the time a 1.
Boron analys cpyletedwithin3hourgo decision is m to obtain a sa (e.
N wN otopi>c analysis and s-as analysis for estimation of 2.
Ga core daqlage completed wig n'3 rs or less fr the time a decision is made to obt a sample.
v 3.
Chloride analysis
,ted within 96 hourd.
4.
Hydrogen Gas 4 completed withi h r or less from the rN1.ongmadeto'obtainkaampj.
time a dec o
5.
The above pilng and analysis, completed without incurring a radia xposure to any indivi in excess of 3 Rem to the whole body or 18 3/4 Rem to the extremities.
All of the above requirements assume a highly radioactive initial sample with a source term as specified in Regulatory Guide 1.4.
The Chemistry Coordinator is responsible for implementing this procedure in coordina-l tion with implementation of EPIP 1004.15, Post-Accident Reactor Coolant System Sampling.
mU l.0
1004.33 Revision 7 V"^ '
2.0 REFERENCES
2.1 Chemistry Procedure CP N1880 2.2 Chemistry Procedure CP N1904 2.3 Chemistry Procedure CP N1904.1 2.4 Chemistry Procedure CP N1918 2.5 Chemistry Procedure CP N1956 2.6 Chemistry Procedure CP N1957 2.7 Chemistry Procedure CP N1990 2.8 Chemistry Procedyr N1990.1 N/
2.9 EmergencyPla(ImplementingProcedure(EPIP- 004.9, Radiological Controls Do#H m rgencies 2.10 EPIP 004 st-Accident Reac Coo ant System Sampling N V 3.0 ATTACHMENTS
[
3.1 - Post Ac.
pieEquipmentIn(entory 3.2 - Ana frlaSchematic crog oncentration C 4 3.3 -
3.4 C/ Instrument Line-Up 3.5 Attachment-oIon100Contyo programmingForm
~
ost Accident Rea h oolant Sample Summary 3.6 Attachment 3.7 Attachm t 7 - Density Table for Hydrogen Determination 3.8 Appendix A - Guidance for the Estimation of Core Damage 3.9 Appendix B - Calculation of Core Damage using RCS Liquid Sampling Results 3.10 Appendix C - Calculation of Core Damage using Containment Atmosphere Air Sampling Results Ns 2.0 s-e
,w
..,.---m
--.e-.
,m,,
..c,,
c,
,_.m+-yme--,
-,m.y
-.er,
,,..y-
1004.33 Revision 7
.s 4.0 EERGENCY ACTION LEVELS s
4.1 An emergency condition has been declared and a request has been made for a post accident reactor coolant sample and analysis (samples are obtained per EPIP 1004.15).
5.0 PROCEDURE NbhE$
knktiak steps upon cbmpketion 5.1 Gas Analysis 5.1.1 Fissip 5.1.1.1 Performpmple Analysis usi hemistry Procedure CP Wh 1990.1 for guidance.-
O
- /
2 5.1.lf2' Rem ~ove syringe cont Fning ga sample from pig C on b
b 5.1.1.3 In hood No op lock valve near.
inge tip to equalize ge and immediatelyQ 0.5 cc of sample into e 6Nc. gas counting 14 Close lock valve.
s v
P{ce 6@c. counting vial Hf>h Pl a small plastic bag 5.1.1.4 h
'an store in lead pig C Kuntij it can be transported to D
Je counting room to be counted.
NOTE:
Proceed imediately to Step 5.1.2.
5.1.2 Hydrogen Gas 5.1.2.1 Perform Sample Analysis using Chemistry Procedure CP N1957 for guidance.
5.1.2.2 Open the syringe lock valve and inject the remaining 0.5 cc of gas inpo the gas chromatograph using plastic pipet O
guard.
O 2
5.1.2.3 Return syringe with needle to lead pig (C ).
3.0
1004.33 Revision 7
.m 5.1.2.4 Measure.the height of the hydrogen peak from base line.
5.1.2.5 When sample has been completed, shut down the recorder by turning the recorder to "Off" and lift the pen.
5.1.2.6 Calculate hydrogen concentration using Attachment 3.
The sample liquid volume and expansion bulb volume are given mN\\
in the calculation sheet.
Boron, Chloride, pH and Gamma Scan Sample Preparh 5.2 a
7 Eii;--iiististi;;r;;;ii;rs;;rw3igiiis;riiir;r-
___IN_ h.__..________..___
t
(
) g long handled tongspnever possible, the 5.2.1 i-n A
V
. try Technician shg11N emove sample bottle (F) from 1
4 transport pig (C a
ce in pig (C ) (refer to ad t_achment 2).
5.2.2 Remove ca C414clhy and carefully pe ml of sample, usin pipet (J), fr sa ottle (F) to the I
1 ifter7 poly bottle (E ).
ipfrompipet/
to ead receptacle (L).
5.2.3 (Di r
dsMag pipet (K), transfNM from sample bottle (F) to 5.2.4 beaker (I). Discard tip from pipet (K) into lead receptacle (L) and place new 1 ml tip on pipet (K).
Using short handled tongs, transfer beaker (I) from hood 1 to hood 2 and place on boron titrator magnetic stir base. Beaker (I) will be used for Boron Analysis.
5.2.5 Using pipet (K), transfer 1 m1 from sample bottle (F) to I
flask I containing 19 ml DI water. Cap the flask.and 1
place behind lead brick (X). Flask 1 will be used for chloride analysis.
4.0
s 1004.33 Revision 7 s
5.,2.6 Using pipet (K), transfer 2 ml (1 m1 twice) from sample 2
bottle (F) to vial (H ) in hole of lead block in the 2
hood. Discard tip from pipet (K ) into lead receptacle 2
(L). Replace the tip on pipet K.
Vial (H ) will be used to determine pH.
5.2.7 Replace cap on sample bottle (F). Usir}g-s Eh ndled tongs, place sample bottle (F) back in an er pig W
1 (C ) [previously used for transp t ng bottle (F)],
v place act and move cart to-fa side of the lab.
Usin \\ get (K), transfer l'.07]3from 1 liter poly bottle A
5.2.8 gp o 1 liter poly bott (E ) and 1 m1 to vial l
I 1
b (G Cap vial (G i (E ) and place (E )
in the back le h g,r of hood 1 beh the lead brick.
5.2.9 Discard ti pipet (K) into lead-recepacle(L)and place news 1 fiponpipet(K ansfer 1 m1 from bottle 5.2.10 With on pipet (K),.
2 2
(E ) todial (G ) and cap G N Cap (E ) and C
O Qaid tip from pipet '
to lead receptacle (L).
2 CJose cover on receptacle (L). Place (E ) in back left corner of hood 1 behind the lead brick.
2 5.2.11 Place vials (G ) and (G ) into individual poly bags I
2 and tape bags shut; have (G ) and (G ) surveyed with a dose rate instrument.
NOTE:
It may be necessary to remove the sample from the primary laboratory to conduct an accurate dose rate survey due to a high background radiation level in Os the laboratory.
5.0
1004.33 Revision 7
.---_-----------_-- =_
_===._---------_---
=_
f.>--<e NOTE:
For guidance, samples reading > 1 mR/hr will be too active for counting on the Geli detector /MCA system.
(^'] '
i.e., greater than 15 percent dead time..If both samples read.) 1 mR/hr, further dilution of the con-tents of bottle (E*) is required. Note all sub-sequent dilutions of (E*) so that correct volume calculations can be performed.
_----------- _===__
--.. -___==-_------
= =--------------
NOTEI kfbackgroundnobiegas5 eve $sresuktIp E$rkerence$
with Gell analysis (high deadtime on MCA-tqsure shield cover on Geli cave is closed (33Ni liiate compressed air purge of cave.
(} *)
=__
_ -- -- ---------------_-- _=-
.x_....---------_--
A
. = -
_ _ = -___ =-- --------.
If= C ow the use of the T(1(pcktroundlevelsdonoIdGg,Tf/MCAsystem,an_al daybeperformedby NOTE:
tra sporting samples to JRIs2sor establish a Ge(Li)/
,,([NCA stemoutofthehih(CpacRgroundarea.
U N
v-A..$ethevolumeof M
_==_==_ ---------------- -
s,-----
N6TEf' Ifcountingvial'(Q' u
2 volume is 1 x 10-* ml.
cobq ing vial (G ),A 1 x 10-' ml jf~
\\\\
i
.s 5.3 Gamma Scan 5.3.1' Tra(9or propriatesample(II\\fth se reading <1 mR/hr) c WA coqnt,ing room and cou ortgl detector /MCA system s per CP N1990.1.
s w,
~
NOTE:
For a Post Accident Sample, after placing the sample on the detector, check the dead time by starting a count using the MCA keyboard control.
The dead time should be <l5 percent.
===- _
=---------------------------------------------------
NOTE:
Log onto the VT-100 terminal by typing HELLO POSTACCIDENT/ SAMPLE.
Start the sample count by
-answering the computer prompts. At the end of the count, SPECTRAN-F will print a report.
Record results in Attachment 6.
a 6.0
F 1004.33 Revision 7
^
_y y -
5.4 Boron Analysis 5.4.1-Perforgm boron analysis on the contents of the beaker (I)
.per Chemistry Procedure CP N1904 observing the follow-ing cautions and exceptions:
I'n the calculations given in section 6.0 of Chemis-a.
try Procedure CP N1904, sample volum is 1 ml.
b.
I KAP standard for NaOH standard S o 'alay be used instead of 3, as specified in P IS c.
N d sample will be 9
_y _____________________
___=
=-
NOTE:
If boron concentration i 5 (than 500 ppm and a Csubgehu'ent analysis as de' Med by the Chemistry Coo dinator is requi[ed, mistry Procedure CP
' N1 4.1 can be implem,enigd.
The accuracy commitment 50 ppm will st4U ye)in effect.
g 1
q
___==--- = -_.___________________
_______s.
Following titfa k our the content f beaker (I) down
-[V 5.4.2
)
N
\\
hood sinkg y lNsl sink for approx
% 2 minutes with
)
demin a
.5.5 Chloride Anal
(/
Chloridegn s4 ust be comple tpi 4 days from when the sampi 'N
' hen.
Performchlor'bh'h'lysisonthecontentsof flask I' & follows:
i 5.5.1 Prerequisites 5.5.1.1 Before performing this procedure, the technician shall have a thorough knowledge of CP N1880 and CP N1918.
5.5.1.2 To control exposure from RCS Waste water from the IC Unit, construct a lead cave using available lead bricks surrounding the 500 mi poly bottle.
Haste water shall p
only be allowed to accumulate such that exposure rates do 7.0
1004.33 Revision 7 s'
not exceed 100 mR/hr contact on the lead cave. Radio-
- {]' '
logical Controls will evaluate by surveys. Promptly dispose of water in the sample sink to 11guld waste disposal system after each analysis sequence or if~
exposure rates are found to exceed 100 mR/h using long handled tongs.
TheICUnit-canberelocatedtotheest-side $
e
.countertop 5.5.1.3 to minimize portable shield usage eed d.
This should not b cessary if IC Sample p'a hwa
's purged with dem ted7and columns ar changed out regularly.
9 01 calcontrolswille7a1Uatebysurveysaftereach hV
\\/
5.5.
Apparatus 5.5.2.1 In addition t6 Quipment used i 918, use the a.
00, Controller b.
AhtosamplerbyDionex ton Roy Pump -
}NS-33R Glassorpolystyrbh$turetubesbyCorning(16x 125 mm) 5.5.3 Procedure 5.5.3.1 Set up of_ Ion Chromatograph a.
Set up per CP N1918 except use valve and tubing connections as shown in Attachment 4.
I 5.5.3.2 Startup of Ion Chromatograph a.
Startup per CP N1918 v
8.0 i
_ -. ~, -..._
_..._ -,----,. _._.__-_,_-,,-,.___,-..~.-. _.. _.
1004.33 Revision 7 5.5.4 Sample Preparation 5.5.4.1 The required range of chloride detection is.1 - 20 ppm for the undiluted RCS Sample. If the diluted sample reads ~ less than 2.0 ppm, the undiluted concentration cannot be determined within this range. Ther fore, if
\\
1 s.0 ppm, the diluted flask I sample reads less tha 2
1-transfer 10 ml of undiluted sample fr mpi ottle (F)
.O i
into the polystrene tube in the carousek@the Auto-samplergnd repeat the analysi Samp1bna is 5.5.5 5.5.5.1 P
control on the Au 100 Controller for OS e
ystein 1 e
5.5.5.2 ve from LOCAL to-REMO$ on the Conductivity Detector for System 1. c 5.5.5.3 Connect t 'autosampler and minip to t System 1 inter 6te hqxj) 5.5.5.4 Rev
'P gram 5 in the Control nd compare with the
@ tten~ program in Attach 5 using the following q ence:
DEPRESS [ PROG MODE] KEY, DEPRESS [ RESET KEY], ENTER PROGRAM NUMBER FIVE (5), DEPRESS [ REVIEW] KEY TO REVIEW EACH STEP OF THE PROGRAM.
5.5.5.5 Move to Schedule Mode and enter "6" for the number of samples to be analyzed using the ITERATION and ENTER Key.
5.5.5.C Move to Run Mode.
5.5.5.7 Turn the Autosampler and Recorder On.
9.0
1 1004.33 Revision 7 5.5.5.8 Turn on the water source for the Autosampler and adjust v
the flow using the tube clamp so the reservoir will remain full. Use demineralized water.
.5.5.5.9 Turn on the Milton Roy Mini Pump and prime the pump with a_ syringe to eliminate bubbles and dead spac in the sample line. Set the pump to 25 percent p ingjeffi-ciency.
5.5.5.10 Pour approximately 10 ml of the f Qg^,samplesinto pre-labe led polystyrene tubes Plac'esthe tubes in the g
&)
1 cardset-oftheAutosample in or er of sample number.
I E$ amp Sample No.
ce Tube I.D.
v) 1 Blank 1
j Blank 2
R STD - (0 10) 3 i
O STD - (1. 0 4
5 h0) 5 6
S L
I' C
O k[surethef5rst 5s d5re t[y kn li[1h ith NOT -
the pipet arm of the Autosampler.
_= =_
_
---___.- _ __ _= -- ___ __
5.5.5.11 To start the sampling process, press the green START control in the Operation Select section of the Control-ler. Also press the brown control on the Advanced Chromatography Module for System 1 from LOCAL to REMOTE.
-These two steps start automatic operation. The Auto Ion 100 Controller is now controlling the entire ~ analysis.
d 10.0
1004.33 Revision 7 5.5.6 Standardization Standardization of the-IC System is required once per 8 5.5.6.1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> shift for chlorides.
5.5.6.2 Prior to' calibrating the instrument, analyze a deminera-lized water blank using the above analysis procedure.
- Thechlorideresultfortheblankshouldbe'lessjthan5 ppb.
If not repeat the analysis or coTn a emistry Supervision.
5.5.6.3 Chloride Calibration a.
Se,.5tandards, whic co 0.10, 1.00 and 2.00 P chloride, are used T librate the recorder, b g Analyze the standgr t using the analysis procedure above.
c.
Prepare ANJ of Peak' Height v. Concentration for
[
the @ ndards-to show linearity.
5.5.7-
-Calcu on Calculations m
s and check sta an be done using a factor g
'A ture Peak Heights o h dards (in mm).
Divide the concentration of the standard (PPB or PPM) by the Peak Height (in mm).
Record all numbers and their average.
The average is the factor used for calculating unknowns.
O G
11.0
?
y,y
~+
p-9 a+e--+.
ey-ra en-r,-
r--y9-.-
---,e-
-m-e,e
,=v,,,,.
. eg' w=r,
- ,-----e-=e*e-,e em w-
~es-,m
~
r es.-*
em-*-
1004.33 Revision 7 s':
Example Chloride Standards Peak Heights 16.7 PPB /mm 250 PPB
+
15 mm 16.6 PPB /mm 500 PPB
+
30 mm 15.6 PPB /mm.
750 PPB-
+
48 mm q.}_
E 48.9 Therefore, E - 48.9 + 3 - 16.3 PPB /mm (Factor) flution.
Calculationofunknownbyfactormethodwi)
Unknown samp
.Clor'deJeakHeight=25m"m}
Fa
= 16.3 PPB /mm Di ution Factor - 2 Mu tiply Peak Height Gx Facto x Dilution Fa $or y
~ fm-k)
Concentration of Unkno
- 25 mm x 16.3-x 20 - 8150 PPB hD
\\
Calculate percent
'cov ries of check stand ^r s.
a CalculatedkonhntrationofCheck,5 Absolute' Concentration of Check Standar#
x 100 - Percent Recovery 5.6 pH Measuqeme q
2 5.6.1 fform pH measurement tents of vial H per Chemistry Procedure N1900.
-6.0 FINAL CCNDITIONS The remainder of 'this procedure can be done at a later time, to allow the radioactivity level to decay:
bv 12.0
~ __.
1004.33 6.1 Lead pig (s):containing sample bottle (F) must be placed 1
ked.
High Radiation Cubicle (for example, precoat filter room) as directed by the Radiological Controls Coordinator. The exact location must be specified in the space below.
_b High Radiation Cubicle location:
x (T M '
I 2
2 6.2 Poly bottles E,'E and vial H must be emp ied the sink and the sink f r 5 minutes wi Siineralized water.
Complete Calculatioy of Core Damage using4 Appendix A Appendix B 6.3.
and/o pp 6.4 CompleteAttachment6,PostAc%cnhReactor Coolant Sample Summary.
s 6.5 Notify heShiftSupervisbha
. O wJ ampling and anedl sis of the Post Accident. Sample have beqn c9 eted and relay Egults.
1 M
a i
f I
- O f
h 13.0
1004.33 7
Revision 7 ATTACHMENT 1
.) N o i
POST ACCIDENT SAMPLE EQUIPMENT INVENTORY DESIGNATION ~
EQUIPMENT AMT. RE0 AMT. IN LOCKER A
4" Thick x 24" long x 12" high I
laminated glass shield
~B Spill catch pan 24" x 24" x 2" deep 1
C' Lead pig-for liquid sample bottle 1
C Lead pig for gas (syringe)-sample 2
C' Lead pig for fission gas vial C*
Lead pig for-hood No. I Q
p D'
Magnet e s. L ase 1
D*
Magq1fic tir base
\\9 1
olybottlecontahlqg 1
E' 1
its 000-mfDIwaterand t4rJ r)
E*
I liter poly bott ont ing 1000 1
m DI water and Qr,
{
F 125 mi sampi ttlehontaining sample (on FtabJecart)
G' 10 ml qcGhti Ya1'containing V1 9 ml o pwater G*
1pJR ounting Vial Conta{nJng 1
9 El of bl water
/l T
Lv H'
cc gas counting vial with p
1 septum H
Cut glass vial and brick 1
2 I
250 mi beaker containing 99 mi DI 1
water and stir bar I
70 ml flask containing 19 ml DI 1
water and stir bar I
0.1 mi eppendorf pipet w/tip on 1
center isle counter top OU 14.0
1004.33 Revision'7
+-
ATTACHMENT 1 (Cont'd)
['
MST ACCIDENT SAMPLE EQUIPMENT INVENTORY DESIGNATION EQUIPMENT AMT. REO.
AMT. IN LOCKER K:
1.0 ml eppendorf pipet w/tip on 1
. center isle counter top l
L Lead pig for used pipet tips 1
-and syringe p2 N
1 mi locking syringe with 8 1/2" I
needle and plastic pipet guard x)
O Stirrer base for boron analysis is,2<
P Laminated lass shield 12" x 12" x
'1
. thick
/
T 3' lon ed tongs 1
Sh^o 1
% S died tongs U
V-ofy4ags 1
W 11 of tape m
1 X
Lead bricks-ge,@I-.,c4at gv 15.0
1004.33 ReviSiOU 7 ATTACHE MT l.'
Analysis Area ScMN d.
,m,
O g
s n8 ml E
5 s
g g
G?
e.
gg{
W w/
S]D D
g
(#
fM 3
I 5
^ wu
,a g
a)
~
'e I$:
hd
~
e
- h O
3
= s
- ,,tt';
Rg,f d
t s
o s 4.
.i
.s x US 3
at y.
,6E 5
W5
(
t N')
d 5
3 h~ -(
yW25 D n
'Q
~
/
g 25
- s e
e 05-5 k
I 2
e,
_5 a
~
i g
5#
1
\\
t a1 4
uu 1
u s1 O
16.0 y
~
d i.l..i~ k.F i..'
. ' '.;.1
..-c
- .. T..Tl lC fi,3.".-[~T i.?'f~.?i.
.. '[ '. ).
~ :
1004.33 Revision 7 ATTACHMENT 3 HYDROGEN CONCENTRATION CALCULATIONS A.
Hydrogen Analysis Peak Height (mm)
Attenuator Setting W ume Injected Sample:
Standard:
(N 1.
Percent Hydroger 3 (% Standard Conc.)(Sample Peak Height)(VF)(AF)
Standard Peak Height N V"
))
x x
Where:
AF - Attenuator Setting for Sample
/
Attenuator Setting for Standard VF - Volume of Standard Injected
/
N Volu mple Injected CalculationofccKofgs 2.
nN x
^
\\.
Sample Temperatu j)fromTI1023 P[1103(psig)
RCS Pressure y RCS Temper \\ (
ators (call control D (in. Hg + 2.0
\\
7-(
Vacuum Pressure using PI 1104 O
Final Pressure using PI 4.7 + gauge)
(\\
Density (from Attac 4 Density Table for. y'dr g Determination) 492NY cc Hydrogen = (% Hydrogenit400 ml) x p 's100,~
Samqe-Temp."F+460 Final Pressure
<9acu'u'!R essure =
14.7 Ny 3.
Calculation of cc's of Gas /Kg cc/Kg Hydrogen -
(cc t.ydiogen)(1000 ml)
(65)(Density)
O 17.0
...e
'e ?
,:. s ;...r.; ~s g,'.,
_i.,'\\..
',...\\
a,3 f, ' ;.
e.
I'.- '. '...
e-
'5
't,
.-e.
._...;- ' ' '.-. ?m
- ' '.'..i
'. ? -
.s.
1004.33 ATTACHMENT 4:
IC Instrument Configuration Revision 7 VALVG IN 36cr VAyug VALVE Elvent 2n l
l I
y
/N f'y N
be
,r q
y
[4) r..-
C')3 W
g %
is 2
e.,
3
.n
.wnW
- R Q
e,,,,z, a
,(')
s n
Nj r
5 s
U
's
\\. N s
s(
C w
' L b
u
'T S
V 7
m wasta cat: a c,i-6 p
.c-c.u e,.-
'--t=
C 4 c....rs.,
C
%m x y ra.,
C'.., _
R w**'
N>
W
/ L:dt., valve ::
l040.,oFF
/
I,4:c at es valve is :- INJECT
,.o #
1
)
18.0
(
1004.33
.ATTACHME Revision 7 Autolon"100 Controller Programming Form l
sAuetE.hs.t Accileit As. nip:s.+ GI-;Jo>
SYSTEM NO.
COLUMNS _.$.k.3 PROGR1 ;A NO.
ELUENT...Q; D 0,3, $22 y, C43
@.* 08.Z:3. M2 O_M DATE IOC_fa I LN REV __
REMARKS.
ANALYTICAL PUMP CHROMATOGRAPHY MODULE CONDUCTIVITY DETECTOR RELAYS AC OUTLETS
'N 1
2 3
4 1
2 STEP TIME piow Temp Auto
.! aril Ranne (r.iln; Rate Eluent Wmp LOAD- ) A B
Comp Of f *.ct' M
(mL min-1)
No.
Select INJ OFF/ON OFF/Ott (%rc) CFF/0N OFF/O*4 g g gp p
- o. 6 2.1r i
K LdND.,0NF,' 'QFF l.7 oFF N(' )3)
_0FF oFF
~
2
- o. LI LoAp
!/.nY 0FF
! $Al CFF I
3 o, y LOAO f
- \\ 0FF hN ON 4
3, y Lc4D E hNs O A/
O Al s
3, 7 lJdr 6y' 0 A/
oFF f
3
~
Off Off s
3,g lU3 x
0 N' )
/
ff
[ Of f Obl
{ },1 (abh y
7
<~
C
[g, f L040
( /] I ",
O ff l 0,FQ Off is., s v wo v
%, }' pF v
V
'o'er, :oer=
-Eno now U
'("5 )
,) >
0 7 l, w,
12 13 14 15 19.0
1004.33
^
Revision 7 ATTACHMENT 6 Page 1 of 2 7 ~x _
-(
)
POST ACCIDENT REACTOR COOLANT SAMPLE
SUMMARY
l
-Date Time Chemistry Coordinator A.
CHEMISTRY ANALYSIS RESULTS 1.
Boron V'
b 2.
Gas-Analysis (hydrogen peak)
AN'S 3.
-Gamma' Scan b_
Chloridef s
A 4.
/? N A%
5.
~Hydre oConcentration M
6.
pH GKv y
B.
CORE DAMAGE ESTIMATE 1.
' Percent-of fu ds i'th ruptured cl reVeasing gap activity 2.
cent of-rdsoverheatedy tyl releasing activity (F)
'N V --
\\
V
-3..
PercentN ods with molten fuel (M) 4.
Verified By:
(Chemistry Coordinator /
Date)
C.
RADIOLOGICAL DATA
.1.
Dosage Others:
mrem-a.
Chem Tech mrem Name
/ Date mrem b.
Chem Tech mrem Name
/ Date 20.0
1004.33 Revision 7 ATTACHMENT 6 (Cont'd)
Page 2 of 2 POST ACCIDENT REACTOR COOLANT SAMPLE
SUMMARY
mrem c.
Chem Tech mrem Name
/ Date mrem d.
Rad Con mrem Name
/ Date 2.
Exposure Levels a.
Sampling Room (after sampling) mR hryt '
QV b.
Analysis Room (after sampling)
OmR/ rat c.
Sample Bottle.(F)(unshielded) mR hr at d.
Sample Bot pig) mR/hr at y
Vial Hf s ided)
Qx mR/hr at e.
f.
Vial
)
mR/hr at Sampth))orage 3.
a.
Locked high radiati i
location
$\\
V m\\
.V
N b.
Exact sample cat on A
/)'
I c
o%
v Completed By Name
/
Title Date Verified By p.
Chemistry Coordinator /
Date 21.0
i I
1004.33 Revision 7 a
e
^
ATTACHENT 7: DENSITY TABLE FOR HYDROGEN DETERMINATION DENSITY, g/cc, of Water RCS Avg.
Temp JTav) Saturated Pressure of Compressed Liquid from(PI1103 F'
Liquid (0) 500 1000 1500 2000
.2500 N 3000 N V~
32-0.9999 1.0015 1.0030 1.0049 1.0068 0084' 1.0100 40 0.9999 1.0015 1.0030 1.0049 1.0068 Ik0084 1.0100 50-0.9993 1.0008 1.0024 1.0043 1 k2 0078 1.0094 60 0.9987 1.0002
.0018 1.0033 9
1.0071 1.0087 70 0.9974 0.999 5
1.0021 1.
1.0059 1.0081 80 0.9962 0.9977 0.9993 1.0008 20024 1.0046 1.0068 90 0.9949 0:. 965 0.9980 0 9996
\\)1.0012 1.0030 1.0049 100 0.9931 0)9hilP 0.9962 7
0.9993 1.0008 1.0024 110 0.9906
.9922 0.9937 0 9y2 0.9968-0.9983 0.9999 120 0.9888 0'.9903 0.991f A LD 9934 0.9949 0.9965 0.9980 9
130 0.9857 0.9873 0.98kB O'.9903 0.99
.9934 0.9949 s
140 0.9833 0.9848 4
0.9879 0.y4 0.9909 0.9925
'18p 0.9848 Og 4s 0.9876 0.9888 150 0.9803 0.9818 160 0.9773 0.978 0\\803 0.9818 33 0.9848 0.9864
.0 9797 0.9812 0.9827' 170 0.9738 0.9 0.9767 0.9782 3
-180 0.9702 0{97I1
')
0.9726 0.97,4 0.9761 0.9779 0.9797 0.97 h 0.9732 0.9749 0.9769 190 0.9667 0.96 0.9696 200 0.9632,
O'.9647 0.9661 0.9679 0.9696 0.9711 0.9726 210 0.9592 0.9635 0.9621 0.9638 0.9655 0.9670 0.9685 212 0.9580 0.9595 0.9609 0.9626 0.9644 0.9661 0.9679 220 0.9552-0.9566 0.9580 0.9598 0.9615 0.9632 0.9650-230 0.9512 0.9526 0.9540 0.9560 0.9580 0.9595 0.9609 240 0.9467 0.9481 0.9495 0.9515 0.9535 0.9552 0.9569 250 0.9423 0.9436 0.9450 0.9470 0.9489 0.9506 0.9523 260 0.9373 0.9389 0.9406 0.9425 0.9445 0.9462 0.9478 270 0.9329 0.9346 0.9362 0.9381 0.9400 0.9417 0.9434 0.9281 0.9297 0.9313 0.9332 0.9351 0.9370 0.9389 O
280 290 0.9233 0.9251 0.9270 0.9289 0.9308 0.9324 0.9340 300
~0.9180 0.9199 0.9217 0.9235 0.9254 0.9270 0.9286 22.0 9182 0.9201 0.9217 0.9233 0
310
-0.9127 0.9146 0.9164
1 1004.33 ATTACHMENT 7: DENSITY TABLE FOR HYDROGEN DETERMINATION (Cont d)
DENSITY, g/cc, of Water RCS
. Avg.
Temp' jTav) Saturated Pressure of Compressed Liquid from P.11103 F
Liquid (0) 500 1000 1500 2000 2500 \\
3000
~
(916g) 0.9180 320 0.9076 0.9094 0.9112 0.9132 0.9153 q
330 0.9019 0.9040 0.9060 0.9074 0.9096
>9112' O.9127 340 0.8964 0.8984 0.9004 0.9022 0.9 O!9d58 0.9076 350 0.8904 0.8924 0.8944 0.8964 0.6984 0.9004 0.9024 360 0.8845 0.8865 8884 0.8909
([hh934 0.8949 0.8964 Og8N 0.8899 0.8919 370 0.8787 0.8806 26 0.8852 380 0.8725 0.8744
.8763 0.8789
.8816 0.8838 0.8860 390 0.8659 0.867J,U 0.8696 0.8{25 0.8753 0.8777 0.8801 400 0.8594 8617 0.8631 0'.865 0.8687 0.8715 0.8744
-410 0.8529
%8548 0.8566 0.8@
0.8621 0.8647 0.8673 420 0.8457-0.8473 0.848 F 0.8520 0.8552 0.8580 0.8607 430 0.8387 0.8402 0 84 0 8451 0.8484 8511 0.8539
@4
.834 0.8382 0.84Q 0.8446 0.8475 440 0.8317 0.8332 450 0.8257 0.8272 0.828 0.8323 83 0.8391 0.8422 Q83h 0.8343 0.8387 460 0.8173 0.8194 0.9215 0.8257 470 0.8090 0 81J1 NO.8049' O.81J 0.8215' O.8257 0.8300 7
0.8090
,0.8131 0.8173 0.8215 0.802 p 0.8049 480 0.8009 490 0.7730 7 5U 0.7969 0.80 D 0.8049 0.8090 0.8131 500 0.7852 0.7871 0.7891 0.7930 0.7969 0.8009 0.8049 510 0.7738 0.7757 0.7776 0.7814 0.7852 0.7891 0.7930 520 0.7664 0.7664 0.7720 0.7776 0.7814 0.7852
'.7610 0.7664 0.7701 0.7738 O
530 0.7556 0.7556 540-0.7450 0.7450 0.7503 0.7556 0.7610 0.7664 550 0.7346 0.7450 0.7485 0.7523
-560 0.7248 0.7348 0.7399 0.7350 570 0.7151 0.7248 0.7314 0.7382 0.7119 0.7199 0.7281 580 0.7026' 0.6994 0.7057 0.7119 590 0.6904-600 0.6787 0.6875 0.6949 0.7026 0.6702 0.6787 0.6875 610 0.6647-23.0
4 1004.33 Revision 7 ATTACHMENT 7: DENSITY TABLE FOR HYDROGEN DETERMINATION (Cont'd)
DENSITY, g/cc, of Water RCS Avg.
Temp)
)
jTav Saturated Pressure of Compressed Liquid from PI1103 F
Liquid (0) 500 1000 1500 2000 2500s 3000 d.6647 N 0.6759 N
620 0.6485 0.6538 s
N N 630 0.6331 0.6357 6485 0.6619 640 0.6161 0.6459 650:
0.5977 0.6306 660 0.5762 0.6091 670 0.5524 0.5804 0.5562
\\D ~--
680 0.5252 0.5151
\\/
690
.0.4884 700 0.4341 d
0.4462 pe o
&w 1
r i
I O
QS M
i i.
I O 24.0
, _.... _. _ _ -. _..., _.. ~, _. -.
1004.33 Revision 7 APPENDIX A: GUIDANCE FOR THE ESTIMATION OF CORE DAMAGE (1)
Fuel Damage shall be reported as follows:
Substantiated Calculation 0%
0 - 10%
11 - 50%
51 - 100%
To be reported as No damage Minor Intermediate Major b
Forexample,resultsofG-50%,F-10%andM-3%shallqereportedas intermediate cladding failure with minor fuel overhea. @ d dl r fuel 1')
melt.
m euestant,a,e <.lcu,,L 1a,le,. s_t,.., ant _te,s,o, est,.at,on o, c a s a
%v consuitTak,AdditionaiconsideCrons,forgutd (3) fJ 9
Q e
N a
y y
O 25.0
G 7_.7
]v 1004.3, i:
'Revisl L M -
APPENDIX A (Cont'd)
TABLE 1: SUPPORTING PLANT PARAMETERS FOR ESTIMATION OF CORE DAMAGE
- Absence of higher than normal concentrations of Xe-133,.Xe-135, Kr-88, Kr-85 NO
- Hotleg temperature-< 700*F FUEL
- Saturation margin monitor >'.25'F DAMAGE
- Normal' containment and/or RCS hydrogen levels yadiationreadingsnot,be used to verif f n(o
- Justification for hl x uel damage" condition
- I-131 and 1-133 shou
-If100%,fueloverQa andl el melting are also 1 c
if RCS purifica ys as been operating during fuel failure
- Use noble gas activity e'sp(sRCS'lettlown (RM-L1)
- Slightly higher than norma radiationp is.(< 10% cladding failure)
CLADDING FAILURE
- Significant increase (> 8000 cpa)f dn
-L1 (> 10% cladding lure)
- Significant increase (> 100mR/hr(in' ntainment area radt tion levels (> 10% cladding failure)
- Hotleg. temperatures > 700*F (> 10%^Cla d,1figsFallure)
- RCS pressure transients (> 10% Claddin fi(l'1,u e)
- RCS hotleg temperature
-900*F 25'F
-Saturationmarginmon/(to-Higher'than normal 1elv 1s hydrogen in RCS an['c ntainment atmosphere FUEL OVERHEAT
- High radition (> 10R)hr) n 6 tainment (RM-22/Z3) w v
- RCS hotleg temperature > 900*
long period FUEL
- Saturation margin monitor < 2 MELTING
.- Measurable quantitles of barium, lu i and ruthenium in RC
- Higher than normal levels of hydrogen r RCS and containment a' h e
- High radiation (> 10 R/hr) in contain nt (RM-22/23)
T/
26.0
g!
's 1004.33 Revision 7
^ ~
..N)'.-
APPENDIX A (Cont'd) 6' 2 TABLE 2: ADDITIONAL CONSIDERATIONS
'(a)
-If:the. cladding' failure and fuel. overheating estimates-based on s
1-Iodine and Noble ~ Gas are significantly different (1.e., Iodine and
' Noble. Gas estimates are in different groups of the reporting ~'
-matrix), recheck-the estimates and if necessary obtain w samples h
- same, to determine new concentrations.
If the resul rely on Noble Gas estimates unless the lodin es are considered to be more reliable due to Noh Ga oses.
damage estimate i teJmined after a Intheevent\\
m
.(b) containmenCp g peration, ensure tha -the noble gas and hydrogen conce r
'are corrected to f' ec the initial concentrations pri the' purge operation.
-(c)
The sam es taken duri Ater stages of t M accident may e
re damage esti an those taken p
provide for a more g I
in the-early s '
s f (the -accident.
c It must be no hat equilibrium sa. le ar not available from
^
I all sample-
$nsatthetime p fng. Under actual hsamplesanalyzedhyllymay'be'significantly
[
- condi lo
i i-differen }hanthosesamplesanalyzedduring~equilibriumconditions.
i This is due to the fact that the fission products may not distribute uniformly at all locations and also due to the fact that maximum core degradation may not have occurred at the time of a
b sampling. Therefore, the samples taken during the later stages of the accident may provide.for a more accurate core damage estimate than those taken in the early stages of the accident.
- O j.
27.0 i
1004.33 Revision 7 I
APPENDIX A (Cont'd)
(d)
-Because of the chemistry of Iodine, the Iodine method should not be used for loss of coolant accidents that release large quantitles of
. Iodine to the containment atmosphere (i.e., ruptured pipes, welds, valves or fittings). Should.the Noble Gas method yield\\ N consistently higher results and Iodine loses be suspe te'd.,the core damage estimate should be based solely on.the h s' method and verified by other plant indicators.
l O
+
o e
e a
Q w
j~
l O
28.0
1004.33 Revision 7
~
y APPENDIX B: CALCULATION OF CORE DAMAGE USING RCS LIQUID SAMPLING RESULTS
('~
NOTE:
For the purpose of this procedure, all radionuclides shall be decayed back to reactor shutdown prior to core damage. This may be performed automatically with the Canberra by assuming reactor shutdown as the :
sample time when prompted by the computer.
-- _______------=-_-___-__-_____-_-____ -
- - - = - - -
Average power level for last 22 days xN I %
up until the estimated time of fuel failure (P)
Average RCS temperature (T..) at estimated time of fuel failure
- F su from PI1103 psig RCS sampling system $r If reactor powe a\\
ged more than 10%
last 22 days:
Powe befor y e change (Pi)
P.
=
Power ter the change (Pr)
(P ) =
2 (T) =
b hours Timetomakethechang%(
.a s
c Time from completio % chinge to when fuel damage is suspect t& ave occurred (c) A hours s
2.0 RCS Sampling Analys Res Ms a.
RCS Liquid a e
A I~~~N0i~{.g%Ciic~~:~i~yCii9~G'" ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~
pC1/g I-131
,.Cl/;
I-133 pCl/g Ba-140 pCl/g
('
Cs-134 pC1/g Cs-137 pC1/g Ru_103
('N Te-129m =
pct /g i
i pC1/g Te-132 29.0
1004.33 Revision 7 APPENDIX B (Cont'd)
- Psf, y
y
~2.2 RCS Noble Gas Data
-NOTE:
1 pCl/Kg of coolant = (pci/cc or pC1/g)(1000) pC)/Kg Kr-85
=
Kr-88.=
pCi/Kg y
.Xe-133 -
pC)/Kg pC / g(
Xe-135 =
3.0 Equivalent Liquid RCS. Activity Concentrations These calculations [r required when Qmary<:
lant has been w\\
65 released from t itt o other system compo ents e.g., RC make-up tank,
(
b sump. Calcur ateg valent activity cqncentrations (A.) for I-131, I-133 and Ba-40 as follows wher :
[
A,=equivalentRCSact:lv(tydententrationinp[1/ gram A = activity conce6611t toNforeact. systems a in pC1/ gram liquid ma each component M
=
v
_-------_---__--,--7__-___------__-----_khotrequiredfor
/--- ce Ju)m, ruthenium a%.
tv 1ent concentrat NOTE:
y'grium.
3.1 Obtain density from Attachment 7 and calculate M. for each component sampled as:
Mi = (volume in gallons)(density)(3785)
O v, x
1004.33 Revisien 7 i
APPENDIX B (Cont'd) 4
?G*
. b 3.2 AeI-131 = (A -131 M1 + A -131 M2 +
+ A -131 Mt)
I I
I pCi/ gram
)
1 2
i
=
i (2.17 x 108 g)
M)
-3.3 AeI-133 = (A -133 M1 + A -133 M2 +
+ A -133 i
I I
I (2.17 x 108 g) 3.4 AeBa-140 " ( A a-140 M1+ABa-140 M2 +
+ A a-140'Mll B
B 1
2 rF)=
pCi/ gram (2.17 x 108 g) 4.0 Power Level Inventory Corfettion Calculate the power coh T
factor (x) as follows w ere:
Pj (from pla section) =
('
P2 (fr antJa'ta section) = ~\\k m\\
T (from'ppntdatasection (from plant data sectio'n c
M t=
+c + 24 =
t)=
b /> hours If there has bee [ yssMan 1(5 power ch(hg i t last 22 days:
4.1 h100) (average powe d
)
If there has'be[ greater than 10% powe ' change in the last 22 4.2 days, X m e calculated for each isotope as follows:
X -131
- l'30
=
- 4. 2.1 I
7
-0.0864t'
-0.0864t]
P \\e
) + P (r 1
2 1-e
)
X -133 =
100
=
4.2.2 I
-0.796t1 P \\r -0.796t] + P ((1-e j'
2
)
1 e
4 X a-140 =
100
=
4.2.3 B
r
-0.0542tl T
-0.0542t' Pke
)+
P (1-8 f
2 i
31. 0 i
+n,--v-
-.--r
,,-,w-,----,,,-e-,w-,--
,,,n------w.w-,-
,s.-
-m-,,.w,-.-mvenw-w,<,w-,~,nw-.s-mww----m-e,-e-,-
r w- -
1004.33
~
Revision 7 i
- N*
APPENDIX B (Cont'd)
-k.
5.0 Estimation of Degree of Cladding Failure 5.1 Using I-131 and 133, estimate the percent of rods with ruptured cladding releasing their gap activity (G) as follows:
l G = [(1.863 x 10-2)(g'I-131)(XI-131)] - [(8.31 x 10-3 IIA' -133)(XI-133I3 N
where A, is the activity from Section 3.0 (or Section if'3CS h
hasn't leaked) k X is the power correction factor from Sect o(4J.'
G=
[1.863 E-2(
)(
)1 - [8.3V'-
)(
)]
G=
/\\O N
5.2 If leakage fro ~m3he RCS has occurred, calEulate estimates of (G) usingcotanmge atmosphere air pl g results per Appendix B provided no leakge from the RCS ha occurred. Utilize the O
individua noble gas acti obtained from the RCS gas sample to O
'?
If the s & Q calculate estimates of((G)sassfollows.
ample,was taken,
ff N._
N v (G) using ate less than 20 hours2.314815e-4 days <br />0.00556 hours <br />3.306878e-5 weeks <br />7.61e-6 months <br /> a er ctor shutdown, a Kr-88.
Ifthesamp[Ewastakenmoretha 20 hoprs after shutdown, calculate (.G) slng e-133.
g CN)ohtected RCS noble gas \\ activity
~
G=
100 pergent theoretical noble gas gap release (100)
(A) (X)'
~
A(100)
(100)
=
where: A is the individual noble gas activity from Section 2.2 X it the power correction factor from Section 4.0 A
values are obtained from the following table 100 Atuo 4
$Kr-88 = 3.995 x 105 pCi/Kg$
O
- Xe-133 - 3.943 x 107 uC1/kg :
32.0
1004.33 Revision 7 APPENDIX B (Cont'd)
V G=
NOTE:
If (G) is greater than 100 percent, then fuel over-heat has probably occurred releasing additional acti- :
l vity from the fuel. Values greater than 100 percent :
shall be reported as 100 percent.
^
NN 3
6.0 Estimation of Extent of Fuel Overheat 6.1 Using I_131 and 1-133, estimate the percent of fuel hthatare overheated with activity being released from h uel-(F) as follows:
h F = [(1.864 x
) hI_133)(X _133I3-Eh3x10-5){g'I-131)(X.131Il I
I where A is t t vity from Sectioe2.1 fac r com Section 4.0
)Vi e7 ower correction <sf F=
[1.680E.4(
)(
13. [3.64 E.5(
)(
)]
F=
7.0 Estimation of Extent of Fuet 7.1 Using Ba.140, est te the percent of fu qwi h molten fuel (M) as foll bowOy 0%
t
'W I
M = 0.002 Aba-140)(XBa-140 i
where A is the activity from Section 2.1 i
B is the power correction factor from Section 4.0 M = 0.002 (
)(
)=
O 33.0
1004.33 R3 vision 7 APPENDIX 8'(Cont'd) r TASLE 1 Density Correction Factor K A
Temp Saturated Pressure of Compressed Liquid from PI1103 (Tave) Liquid (0) 500 1000 1500 2000 2500 3000 32 0.9999.
1.0015-1.0030 1.0049 1.0068 1.0084 1.0100
' 40 0.9999 1.0015 1.0030 1.0049 1.0068 1.0084 1.0100 50 0.9993 1.r:09 1.0024 1.0043 1.0062 1.0078 1.0094 60 0.9947 1 0002 1.0018 1.0033 1.0049 1.0071 1.0087 70 -
0.9974 0.9990 1.0005 1.0021 1.0037 1.0059 1.0081
' 80 0.9962 1.9977 0.9993 1.0008 1.0024 1.0046 1.0068 90 0.9949
'0.9965 0.9980
,0.9996 1.0012 1.0030 1.0049\\
100 0.9931 0.9946 0.9%2 0.9977 0.9993 1.0008 M0024 N
-=
110 0.9906 0.9922 0.9937 0.9952 0.9968 0.9983 0 4999 d -
120 0.9444 0.9903 0.9919 0.9934 0.9949 0.9965 4.9980) 130 0.9457 0.9873 0.9888 0.9903 0.9919 0.9934 Q.994&
140 0.9433 0.9848 0.9864 0.9879 0.9894 0.9909 OT9925 150 10.9803 0.9818 0 9833 0.9848 0.9864 0.9476 0?9888 160 8.9773 0.9788 0.9803 0.9818 0.9833 0.9844 929864 170 0.9738 0.9752 0.9767 0.9782 0.9797 9812 0.9827 180 0.9702 0.9711 0 9726 0.9744 0.9761 f.9779 0.9797 96 0.9714 0.9732 g.(749 0.9769 190 0.9667
- 0. % 82 (
200 0.9632 0.9647 h
- 0. % 79 0.9696 Os9N 1 0.9726 210 0.9592
- 0. % 35 96ak 0.9638 0.9655 0.%70~
0.9685 019609 0.9626 0.9644 N 0.9661 0.9679 212 0.9580 0.9595
' th9$80 0.9598 0.961 D J.% 32 0.9650 220 0.9552 0.9866 230 0.9512 0,9526 0.9540 0.9560 0.9580 0.9595-
- 0. % 09 240 0.9467 0l9481 0.9495 0.9515 0.953 0.9552 0.9569 250 0.9423 0.94 W 0.9450 0.9470 0h. 8 0.9506 0.9523 260 0.9373 0.93842 0.9406 0.942 % h 45
'0.9462 0.9478 270:
0.932
$.9346 0.9362 0.93M 0
00 0.9417 0.9434 240 0.9281 (0.9297 0.9313 0A332
.9351 0.9370 0.9389 290 0.9233
)9251 0.9270 6 S249 0.9308 0.9324 0.9340 f
300 0.9180
.9199 0.9217
.j2 %
0.9254 0.9270 0.9286 l
310 0.9127 0.9146 0.9164
,9t92, 0.9201 0.9217 0.9233
\\
320 0.9076' O.9094 0.9112 0.9132 0.9153 0.9 14 0.9180 330 0.9019 0.9040 0.9960 014074 0.9096 0.9112 9127 340 0.8964 0.8984 0 9904' O.9022 0.9040 M 058
.9076
~
350 0.0904 0.8924 0 (44 0.8964 0.8984 A900 0.9024 360 0.8845 0.8865
. 884 0.8909 0.8934 0.494 0.8964 370 0.8787 0.8806 0.8816 /
0.8852 0.887 x88 0.8919 380 0.8725 0.8744 08763 0.8789 0.8 6
0.8838 0.8860 390 0.8659 0.86
' 8696 0.8725
- 0.87 1 U:5777 0.8801 400 0.8594 0.8 631 0.8659
,4.8647
.8715 0.8744 410 0.8529 0:4644 8556 0.8594 862 0.8647 0.8673 420 0.8457 0.8473 _. 0.8489 0.8520. 0.855g2, 0.8580 0.8607
.84.01 0.8417 0.8451 0.8484 0.8511 0.8539 430 0.8387 440 0.8317
,83'3N 0.8347 0.8382
@60 7
0.8446 0.8475 0.83 0.8391 0.8422 450 0.8257 2,72 0.8287 0.8323 460-0.8173 0 T94 0.9215 0.8257 0.8300 0.8343 0.8387 470 0.8090 0.8111 0.8049 0.8173 0.8215.
0.8257 0.8300 400 0.8009 0.8029 0.8049 0.809C 0.8131 0.8173 0.8215 490 0.7730 0.7950 0.7969 0.8009 0.8049 0.8090 0.8131 500 0.7852 0.7871 0.7891 0.7930 0.7969 0.8009 0.8049 510 0.7738 0.7757 0.7776 0.7814 0.7852.
0.7891 0.7930 520 0.7664 0.7664 0.7720 0.7776 0.7814 0.7852 0.7556 0.7610 0.7664 0.7701 0.7738 530 0.7556 540 0.7450 0.7450 0.7503 0.7556 0.7610 0.7664 550 0.7348 0.7450 0.7485 0.7520 560 0.7248 0.7348 0.7399 0.7350 0.7248 0.7314 0.7382 570 0.7151 580 0.7026 0.7119 0.7199 0.7281 590 0.6904 0.6994 0.7057 0.7119 600 0.6787 0.6875 0.6949 0.7026 610 0.6647 0.6702
'O.6787 0.6875 0.6538 0.6647 0.6759 620 0.6485 630 0.6331 0.6357 -
0.6485 0.6619 0.6459 640 0.6161 i
650 0.5977 0.6306 AM 660 0.5762 0.6091 670 0.5524 0.5804 680 0.5252 0.5562 690 0.4884 0.5151 0.4462 700 0.4341 34.0
1004.33 2r Revision 7
..d.;'"
APPENDIX C: ' CALCULATION OF CORE DAMAGE USIhG CONTAINMENT ATMOSPHERE
-/
i Nf AIR SAMPLING RESULTS
. NOTE:
For the purpose of this procedure, all radionuclides
- shall be decayed back-to reactor shutdown prior to core damage.
This may be performed automatically-
- with the Canberra-by assuming reactor shutdown as the :
sample time when prompted by the computer g LAverage power level for last 22' days up until the estimated time of fuel' failure (P)
Average.RCS temperatu
...) at estimated time of fuel failur
psig hanged more tha b d ring the last 22 days:
If reactor w
ha Pow horethechange-(Pi)
(Pi) =
0
' Power a ter the change (P ) =
A 2
- Time.to make the chgn (Th
-(T) =
hours
~
s Time from compt t o o) hange to when f e damage is sus e&@ ave occurred (c hours
=
~2.0 _ Containment Air Gnemas _an Results b\\
Kr-85.-
q-pC) pCi/S c
Kr.88
=
v-j l-Xe-133 =
pC1/Std cc Xe-135 =
pct /Std cc l
.3.0 Eautvalent Containment Air Noble Gas Activity Concentration
.These calculations are only required when fission gases have been released from the RCS into containment through leakage or venting.
Calculate equivalent activity concentrations (Ae) for Kr-88 and Xe-133 as i
f follows where:
7 A. -~ equivalent containment air noble gas concentration in pC1/Std cc l
35.0 I-L
1004.33 Revision 7 APPENDIX C '< Cont'd)
,~x.
A. - specific noble gas activity concentration'of containment air in
(>)
-pC)/cc (STP conditions)
.I A.cs - specific noble gas activity concentration of reactor coolant system in pCi/Kg of liquid pr = containment pressure at sample time in psig (from control room)
.tp - containment temperature at sample time in *F (from con rol room)
A.=k6.0202x10)lpr+14.7)((492
$(A.)
+ (2. Q 10f) (A.cs)-
(
s 3.1
(
14.7 Ltp + 4600 As s
6.0202 x 10'"cc
}
/[4 I
492 /
2.17ES (A.cs)
+ 14.7 6.0202E10/hN
+ 460')y _ '.
14.7 Q
6.0202E10
' y A. Kr-88 CN pC)/Std cc Q
A. Xe-3 pC1/Std cc 4.0 PowerLev(lISentoryCorrection Calculate th ower correctio or (X) as follows here:
p 7
\\
Pi(fromplantdata,sectg
) 'D Pr (from plant data, se t'l
()-
T (from plant data settion 1) -
YN N
c (from plant
'ec't l on 1 ) -
o' ors t-T+c + 24, 'Q t=
( V hours v
2 4.1 If there has been less than 10% power change in the last 22 days:
X = 100 + (average power level) 4.2 If there has been greater than 10% power change in the last 22 days, (X) must be calculated for each isotope as follows:
100 4.2.1 Xu...
/-5.9396t[1+P,(f
-5.9396t) 1-e
/
P.(e V
36.0 i
1
.-..- a
1004.33 Revision 7 APPENDIX C (Cont'd)
J
(
4.2.2 Xx..i n -
100 f -0.1315t
/
-0.1315t)
V Pi(e j+P (1-e
/
2 5.0 Estimation of Degree of Cladding Failure Estimate the percent of rods with ruptured cladding releasing their gap activity (G) for the individual noble gas as follows where:
A is activity from section 3
_)
X is the power correction factor from section 4 NV
g If time of sampling was less,than\\g-y ---fter 20 hours2.314815e-4 days <br />0.00556 hours <br />3.306878e-5 weeks <br />7.61e-6 months <br /> a NOTE:
3 reacto shutdown, calculate.
us t'ng Kr-88.
If thels" wastakenmoretd hours after shut-
- d6wn, 4ulate(G)usinpXg-13.
hA.)b (X) then deternfn (G from Figure 1 or 2.
5.1 Multi V
\\
G-5.1 For Kr-88, (A.)(X
-?
)(
)
5.1.2 For Xe-133, ( O^tX) =
)(
G-
) p\\
(q
\\C
\\
l C \\
=====--------- N' than 100%, t fu M erheat has NJ NOTE:
If (G ssg e (y ocyt a>l activity from e19pa)rredreleasinga proba lues greater t a shall be reported :
th.
- w ----------------------
N 6.0 Estimation of 6t'ent of Fuel Overheat ()
offuelrodsthat\\
verheated with activity being EstimatetheD%e released from the fuel (F) using the corrected activities for the individual noble gases and Figures 1 and 2 as follows:
6.1 Obtain the (A.) (X) product for each noble gas from section 5.
Determine (F) from Figures I and 2.
6.1.1 For Kr-88, (A.)(X) -
,F=
,F-6.1.2 For Xe-133, (A.)(X)
=
C(")
37.0 l
=-
y Revision 7 APPENDIX C (Cont'd)
=
[
7.0 Approximation of Extent of Fuel Cladding Oxidation
.V The amount of fuel cladding oxidation (Z) is used in support of the
' estimate of the extent of fuel overheat. The fuel cladding oxidation approximation is'made using the standard cubic feet (SCF) of He in the RCS, the SCF H in the containment and SCF H consumed in a hydrogen burn, if one occurs.
_?
7.1 Calculate the SCF He in RCS as follows where:
Hr. is the H concentration in the RCS in Std
/
(from, E 004.33).
7.1.1 SCF RCS - (H.)(7.66 N std cubic ft.
2 A
'\\9d 7.2 Calculate GF H: in containmen a ollows where:
Hac he'H/concentrationiACgnajnmentairinpercent(from contr'ohoom,recordersARr42R74R) 07 % ~
(A P is containment press b t' sample time in ig('\\ from control room)
-s m
T is containment 1:elnp1 ature at sample tim in *F rom control room)
} '
7.2.1 C Ha* n Containment -
G7.Hc)+ 100)(2.126x16' 492 P + 14.7 2
'Q V (T + 460) ( 14.7 /
standard cubic feet 7.3 If a hydrogen burn has occurred, the standard cubic feet of hydrogen consumed in the burn (SCF Nc.) must be estimated as follows where:
H4 is the He remaining after the burn, in SCF He is the H present before the burn, in SCF Ta is the average containment temperature after the burn, in 'F a
38.0
1004.33 Revision 7 4
,,q.
APPENDIX C (Cont'd)
- (
)
-V T. is the average containment temperature before the burn, in *F Hz, is the H2 concentration in containment after the burn, in %
concentration in containment before the burn, in %-
Hz. is the H2 P4 is the containment pressure after the burn,-in psig P. is the containment pressure before the burn, in p Q Q
CalculatetheSCFHr.beforetheburnps-follSs:>
7.3.1 100)(2.12E6)I 492 P + 14.7 SCF Hr. - (Haa +
(460
(/14.7
)
\\
%460+
}((14.7 /
(
+ 100)(2.1 1 / 492
+ 14.7 l
j stan ubic feet 7.3.2 ate the SCF Hra
't r he burn as follows:
E6)[(460+T(((
I P. + 14.7 492 SCF Hr
- (Han +1 14.7
/
. M 00)(2.12E6)(/._4 hI
+14.7)
(b 460 j(
14.7 )
Q
)
standar eet
=
Es t.i t
Hc. as follows A N 't SC 7.3.3 H.-H.-
)
(CfN( liv.
2 2
\\[
rd cubic feet 7.3.4 Approximate the amount of fuel cladding oxidation as follows:
Z = SCF H, in RCS + SCF H in containment + SCF He.
2 3.95 E5
=(
) +(
) +(
)
3.95 E5 percent
=
v 39.0
a
- 2004.33 Dau f e 4 rin 11
~ ~ ~ " - - ~
. - :- _ - - _ Z-1
.4
_e-~
-n**
.Ne m_
^
>/
\\
' ~ - -~~^
^'~~_T
=: - r
_,,,. ~.. ~
-. - ~
_~ C J
^.""
A.- & _
( /
- * ~ ~1 ;;-A.;.;
j
- ' i.
~._,'.O O* A._ a.,
f-
- r _"--
,__;..{_._._3...;.-_"~--. -.* "' * *Q..
_m.
I f,. ",' f."
- h...
-.6 Q L _-..
- * : ** : t.*. ""."~..~ ;....
".T'* ; *.
- f 17. ".
2_
- "- E g.
s..
- C..t. _
.:*~~~....
_. ~.t
~ ; **.* L ;.
- ...;".4.,;' *. * ~ '9 -
.,.. - 4.
- /.
- 40,.
k b.
~
+47 p NN '
.suo-d/
[l h) jy-.-
._n.\\s a
.=:
.n m
W
$00
.., _..s
\\/
b
\\
/
( \\,
r--.
.A.,
.'v..w.....
a s
l/. l'1
%s
\\Y
[ \\[
r
- 4. -. _. - -..
yy g--....
,d<
'N'x.
sir.
ci'\\
jee_V d
A N
i i
f
\\ \\\\
\\
_s
...x >
m s Y
\\
h h
- i
[.M a, r s,.1.2.
\\
a
~ft
..Yt.* R R \\,
Cu 4s ned No _
=
3 a$
gy W
i f.o X
/.
. 1 A
, 17 aL
- tg-...
~
'I
'I c.v
...:......._..:..:..; m ;
....2
~~:
+i pft, __._..... p -~r-Q_ = -4 ^ ~~...:..
_~....._ f.,13. _r.p* _--
.l n.
- ~-.
tcY.
b%
iN*
40.0
T i
1004.33 Revision 7 2,yc~
H
- p -:. 2 _. - _
v-4 si *
.E'.~--*_ m___.__.___
.~
y'N
, _ - - - - z - - - --
[
j l.
-e-__-__t--_.=.._.__._.
.; __ -. r.;. _.
- - - - - - -- :; j =. _-... a.
"Y e
.a-..-
f s_ j
.]
- 'E.--...
^
j
- 3.
. p.
j..
e==
g :. -- - - - -
i
~
p,-
? -*,,;; = *
,6_
A
,.u
./
f
?
M i-
!.= - " -i f-(N
(
g N
tw./
_3$7 I
,y 74x) j.\\k))
$V f
/ doc
~-H
- -: =.
\\,N /
f
.= :. -
l g
Ny....
<q/
^
\\_\\
. ~~
7"*
N
. f.. O /. h.
\\..
x'v; (N N
/=\\nW
/ya g a m m r
-[- - -
, \\.')
.x, (p)
M N Q.. _. vi..d....
(\\.-
de%
p'"'N
\\b
~
e%.
M 'N' 4 Cs N /
/
h w. / o ~.
B
'ig.,6 6p y.
/
o
.e-( N s \\
\\ N/
['\\s N
bdab_-r d dif"\\
3
.A. '
58 -
(.
s s
$j N
_ _ - ~ _ _..
2 no.
')
=1 32 W
g.
Y
.f 8.c*
A
__/,, h
.i*
g%
.-c.L* +.y i
(v)
- .
- A -.2_.=
~
2
+
=
-.=
=
,-_..=.=.=..=_==_=_==*'**_'7J'
- s=.. = = - -. - - = -. _ - -
- ~~~'
--~... _.. -
J' f.
W NL Tef
/d4 %
W 41.0