ML20091L882

From kanterella
Jump to navigation Jump to search
Voided Rev 10 to Procedure 35110-C, Chemistry Control of Rcs
ML20091L882
Person / Time
Site: Vogtle  Southern Nuclear icon.png
Issue date: 09/08/1988
From:
GEORGIA POWER CO.
To:
Shared Package
ML20091B437 List:
References
35110-C, NUDOCS 9201280280
Download: ML20091L882 (44)


Text

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~

tal Pf uscours No Vogtle Electric Generating Plant

,,[G. 44 W g

I

  • b.

NUCLEAR OPERATIONS

""o" N o gf Georgia Power COMMON em ~o

//

Unit

[ [e-I of 44 CHEMISTRY CONTR0l. OF THE REACTOR COOLANT SYSTEliVOlD 1.O PURPOSE This arocedure provides instructions for contro11ing the c1emistry environment o' the Reactor Coolant System (RCS).

2.0 DEFINITIONS 2.1 DOSE EQUIVALENT 10 DINE-131 (DEQ 1-131)

Shall be that concentration of I-131 (microcurie / gram) which alone would produce the same thyroid done ar. the cuantity and isotopic mixture of I-131, 1-132, 1-133, I-134 and 1-135 actually present.

The thyroid dvse conversion factors used for this calculation shall be those listed in Teble E-7 of NRC Regulatory Guide 1.109 Revision 1,_0ctober 1977 2.2.

E-BAR (E)

Average disintegration e.1ergy shall be the average (weighted in proportion to the concentintion of each radionuclide in the sample) of the sum of the average beta and gamma erergies per disintegration (MEV/D) for the radionuclides other than radioindines, with half-lives greater than 14 minutes making up at least 951 of the total non-radiciodine activity in the sample.

2.3 ZEOLITES Compounds of calcium, magnesium, aluminum and silica that, when incorporated into crud, can cause (1) a significant barrier to the heat tt.'nsfer, and (?)

densification of crud, with the potential for increased concentratio.' of lithium hydroxide at the clad surface.

2.4 MODE Operational modes-refers to plant reactivity, thermal power and average coolant temperature conditions as stated in Table 1.2 of section 1 of the Technical Specifications.

9201280200 911231 PDR ADDCK 05000424 l

9 G

PDR o,,,.. u m

~ ~

  • PROCEDURE No ntyisioN ecct e.0 VEGP 35110-r 10 2 of 44 1

3.0 PRECAUTIONS AND 1.1MITATIONS 3.1 The following list of chemistry related Techniced SpecificationsandLimitingConditionforOperation

(..CO ) apply to the Reactor Coolant Syrrem:

3.1.1 3/4.4.7 Chemistry LCO 3.4.7 - The RCS chemistry thall be maintaned within the limits specified below at nll times.

Reactor Coolant Syrtem Chemistry Limits Part. meter Steady Strte 1.imit Transient Limit Dissolved Oxygen *

$ 0.10 ppm S 1.00 ppm Chloride

$ 0.15 ppm 5 1.50 ppm Fluoride

$ 0.15 ppm 11.50 ppm

  • Limit not applicable with Tavg less than or equal to 250*F.

Action:

1)

Modes 1, ?, 3, and 4:

a.

With any one or more chemistry parameters in excess of its steady-state limit but withir its transient limit, restore the sarameter to within its steady-stace limit wit 11n 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> or be in at least 110T STANDBY within the nert 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in COLD SHUTDOUN within the following 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />, b.

With any one or more chemistrv 'ar.aleters tu excess of its transient limit, be in at itsrt il0T STANDBY within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in COLD SHUTDOWN within the following 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />.

2)

At All other Times:

With the concentration of either chloride or fluoride in the RCS in excess of its steady-state limit for more than 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> or in excess of its transient limit reduce the pressuriner prennure to less than er coual to 500 psig, if applicable, and perform an engineering evaluarton to deternine the effects of the out-of-limit condition on the structural integrity of the RCSi deternine that the RCS rennins acceptable for continued operation prior tr increaFing the pressurizer pressure above 500 psig nr prior to proceecing to Mcde 4 The sanale and analysis f requency is at lee't once l

per 72 hnuts except diteselvtd oxygen wher. Tavr is t

i

< 250*F.

J oir

  • PFsOCLDUAt No l Lt"istoN PAOL No l

VECP 35110-C-10 J of 4 l

3.1.2 3/4.4.8 Specific a ivity LCO 3.4.8 - U effic activity of the reactor coolant shall ;

limited toi a.

Less than or equal to 1 microcurie per gram DEQ I-131, and b.

LeSA than or equal to 100/t microcuries per gran of."ross activity.

Applicability:

Modes 1, 2, 3, 4 and 5 Action:

1)

Modes 1, 2 and 3*:

a.

With the specific activity of th'e reactor coolant greater than 1 microcurie per gran DEQ 1-131 for more than 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> during one continuous time interval or exceeding the limit line chown on Figure 1, be in at least HOT STANDBY with Tavg less than 500*F within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and

  • With Tavg greater than or equal to 500'F.

b.

With the specific activitv of the reactor coolant greater than 100/t. microcuries per gram of gross radioactivity, be in at least HOT STANCBY with Ta"g less than 500*F within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.

2)

Modes 1, 3, 3, 4 and 5:

With the specific activity of the reactor coolant

. greater than 1 misrocurie per gram DEO I-131 or greater than 100/E microcuries per'gran of pross radioactivity, perform the sampling and analysis requirements stated below until the specific activity of the reactor coolant is restored to within its Ifmits.

NOTE Special reports to the commission may be required as a result of exceerlint, RCF specific actisity limits, refer to nrocedure 30020-C

" Chemistry Reporta" and Tech Spec 6.8.1.2.b.

l Iue 4

--r.-

-yw,

,,%,.n-

,_y-,

l i

PhoCEDUML No M[yssiON PAGE No

'VEGP 35110-C 10 4 of 44 1

Reactor Coolant Specific Activity Sample and Analvsin Program i

Modes iie k'hi ch Sample And

-Type of Heasurement Sample and Analysis Analysis l

And Analysis Frequency Required j

1.' Cross Radionerivity At least unce per 1,2,3.4 l

Determination *-

72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br />

-2. Isotopic Analysis Once per 14 days 1

f for DEQ 1-131 concentration

-3. Radiochemical for Once per 6 months *"*

1 l

E Determination **

I t

-}

4. Isotopic Analysis
a. Once per 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> 1#,121, 31, 41,

'i for Iodine including whenever the-Si i

1-131, 1-133, and specific activity I

'I-135 exceeds I uCi/ gram

.1 of DEQ 7-131 or 100/E uCi/ gram r

radioactivity and, j

b. One sample 1, 2, 3 between 2 and 6 i

hours following a t

thermal-power change exceeding 15% of the rated thermal sover within a 1 Tour period quantitative measurement of ysis shall consist cf the -

l

  • A gross radioactivity anal thectoral: specific activity of:the l

reactor coolant except for radionucliden with half-lives less than 14 minutes ar.d~all radiolodines.

The total specific activity shall-be.che tum-of the degassed-beta-gamma activity and the-total of all identified gaseour. activitieu in the sample-within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> after the samale;is taken and extrapolated back to when the sample was taken._ Jetermination 0f-the contributors to

'I the -grosscept.cific' activity abo!! be' based. upon those energy

. peaks. identified with a 951 confidence level.

The latest 1.

1 available:dacc may be used-for pure beta emitting radionuelides.

l l

I 2

r i

s,..s a

i-....,.,, - - -, _,.,.. _,,,,,.,

._......-,.,,,_.m

.,._,,-..__m_._

,m

. _ _. -...... _., _. -. _. ~.... - _ _. _

I P4oCLDURE NO R(vistoN l PAGE No VEGP' 35110-C 10

$ of 44

    • A Radiochemical analysis for E shall ect.siat of the quan:itative measurement of the specific retiviry for each radionuclide except for radioneelides with half-lives less than 14 minutes anTalTradiotodines, which are identified in the reactor roolant.

The specific activities for these individon1 radionuclides shall be used in the deterininution or F for the renetor coolert :ntup le.

Deterrination of the contributors to E shall be based upnn those energy peaks ider.tifiable oftt r OH confidence level.

      • Sample to be taken af tur a miniinum of : ETfD and 20 days of

-POWTR OPERATION Fave elapsed ~since reactor was last subcritical for 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> or longer i Until the specific activity of the RCS is restored within its limitt.

3.1.3 3/4.9 Refueling Operations 3/4.9.1 Borne Concentration LCO 1.9.1 - The boron concentration of all filled port 4ons of the reactor coolant system and the

- refueling canal shall be maintained uniform and sufficinnt to ensura that the more restrictive of the following reactivity conditions ir mets eitheri n.

A Feff of 0.95 or loss, or b.

A boron concentration nf trenter than or equcl to 2000 ppm.

Applienbility:

Mode 6 Actions

' lith the-requirements of the =abc.ve specificotten not sotiefied, immediately suspend all operations. involving CORE'ALTERATIOPS or positive reactivity ebangen~nnd initinte end continue boration at creater than or equal te.30 gpm of.a solution containing greate than er

. equal to 7000 ppm boron nr its equivalent until Keff is o

reduced-to less than or equal to-0.95 er the boron concentratien in restored to greater thnn or equal to 2000 ppm, whichever is more restrictive.

Survei_1,, lance Requirem3nt The boron concentration of the reactor c'oclant avstem and refueling canal shall be deterrined by chemilal analysis at least once per 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br />.

-4 s.e4 enameen

6 PRoCEDURL No H(visioy Pant No VEGP 35110-C 10 6 of 44 l

3.2 All liquid and gas asrociated with the PCf and 2ts directly ccnnected support syrrems is p.ctcntially radioactive and should be tren.ed as such at all tfrer.

Ensure geod henith physics prcetices are exercised wh o handling liquid or gas associated with the prirt.ry systems.

3.3 The concept of time-distance-shieldirg should be folleved to maintain dose as low as reasonably achievable ( Al. ARA ).

3.4 All reactor coolant contains some arount of dissolve d radioactive gas.

Handling of rocctor coolant liquids should be done in a well ventilated arce.

3.5 San.ple verrr1r containing radioactive or potent: ally radioactive liquid chould be tightly =valed and properly labeled at all timer unionr. actually performing analyser..

3.6 When all analyses for a given sample n r,e c on:p le t e, nny remaining sample, liquid or ges. should be properly disposed of as soon as possible.

Do not lenvc unmarked or partially filled containers if liquid or gas in the

'. b hoods or sinks or on counter tops.

3.7 Evaporation or distillation of any radioactive liquid must be performed only in a inborntcry fume hood.

I 3.8 Radioisoto31c analysis, for radioactive liquid and gas sampics, sinuld normally be perfurised as soon o possible after sar.ple collection to prevent tbr l ow, o.

short half-life isotepes due to decay.

I NOTE I

I Certain samples may he held I

longer for decay of short lived iretopes in order to enhance detection of the longer lived isotopes.

3.0 If a r.ignificant discrepancy'develoos in :hemistry parametern between the reaccor coolcnt liquid and the aressurizer liquid samples,(eg., great 3r than 40 ppm s

ioron difference) request that operations inct i t.u the pressurizer spray to equalize the parameters.

I bh

m____

u.

m-i m

. _ _, i NG

~"

PAoCECURE No HIVi$loN PAGt No VEGP 35110-0 10 7 of 44 3.10 The prer.nurizer gas space is normally vented to the l!

VCT through the stenn space sanple line.

Th.r re!! eves the "harc' bubble" tFer enuuem RCi pressure contrcl problerar.

Refer to Procedure 3$515-c, " Operation of i

The Nuclea* Sertpling System 1.fquid" for additional tustructini.s.

4.0 PROCEDLIP.

4.l CHEM 1STM u81,C : *;IVES 1

4.1.1 Moniter Jbe integrity of the fuel cledding.

l Minimi m cred production.ir.c..ativation tiatihy l

4.1.2 reducing the radint ion exposure te personnel, j

4.4.3 Mainttitn adm uste controin tbrough monitering, conlysts, ar9 chemical coaditioning to allcw continued operatico u'.rbic the limits t.itablished by technical specifient f ora. and this procedure.

4.1.4 Monitoring of the chemical shin. to ass.n uptrations; (r the raractivity control.

j i

4.2 GE!:EP).1 SYSTEM DESCP.IPTION The reneter coolant system (RCS) consists of four i

similve beet transier leeps connected in p6rallel te the reactor pressurn vessel.

Each lonp containt. n I

reactu ceclant pump, rteam generator, and associated piping and valves.

In addition, the system includes a

pressuri.zer, pr,ssurizer relf of and safety valves, interconnectirg piping, and instrumentation necestor) for operationel control.

All of the abcve components l.

are located in the enntainrrent building.

(

.During operation, the RCS transfers the heat generated

(

in the core to the r. team generators, where steam is produced to drive the turbine-gercrattr.

cara t er.

dominarnifzed water is circulated in the RCS at t.

flovrate and tempereture et;nsiotent with achi.eving iFe reactor core thermal-hydraulic performance.

The water also acts at a peutron moderatcc and v6flectu ut.d t.r a e

solvent for the nectron absorher used in chemicel shim control.

1 i

u-

_..w.,

s

-em7-s----

_----,--__m.

- n--w m

+s

.a

-se,.,w-r e e em,e a rwm m e er se, e -se-er--=-r-'r->---,-T's--- exiw er m v L

__ ms,a w e- -we

  • -,+w a wwwerwggter > e er ist31=-twvvetrwitaw---T--tvm-.rt.----wsw*v--eg'"*-

t--r-

I' kbEmo

~

musion wmo j

VEGP 35110 C 10 8 of 44 7

The RCS pror.sure is controlled by the use of tbc pressuriner where water and steam are traintained..t saturation conditions by electrical heaterc and water sprays.

Steam can be formed (by the heaters) or condensed (hy the pressurizer spray) to minimize pressure variations due to contraction and eFpansion of the reactor coolant.

Spring-loaded saferv valves and power-operated relief valves connected to'the pressurf er provide for steam discharge from the RCS, Discharged steatu is piped te the pressurizer relief tank (pressuriser relief disdarge Fyrtem), where the steam is condensed and cooled by mixing with water.

I Material of construction for the major components of the RCS are stainless steel and Irconel.

4.3 ACTION LEVELS Three action levels have been oefined in accordance with EPR1 Primary Water Chemistry Guidelines for taking remedial action when monitored parameters are observed and confirmed to be outside normal operating values.

Normal operating values are consintent with long teim system reliability.

Action Level 1 is implemented whenever an out of normal operating value is detected and confirmed.

Action Level 2 is implemented when abnormal conditions indicate aignificant damage could be done to the system in the short term, thereb; warrarting a prompt correction of these conditions.

Action Level ? in implemented when conditions indicate that it is inadvisable to continua operation of the plant.

I.3.1 Action Levt' 1 If a parameter exceeds the Action Level i value return the parameter to within the Action Level 1 value within 7 days or go to Action Level 2 ff the parameter has an Action Level 2 value.

4.3.2 Action Level 2 "f

If a parameter exceeds the Action Level 2 value, return 1

the parameter to within the Action Level 2 value within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

If the ?arameter has not been restored to within the Action Level 2 value within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, a r, orderly unit shutdown should be initiated and the pinnt should be brought to a cold shutdown condition as quickly as permitted by other plant constraintn.

If chemistry is improved to within the requirements of Action Level 2 prior to plant shutdown, full power operation may ae resumed, s,...

^

'w.oCE DULt t40 r.t vi$loN PtOL No VimP 35110 C 10 9 of 44 4.3.3 Action Level 3 If a parameter e>.ceeds the Action level 3 value, an orderly unit shutdown should he initiated immediately, with reduction of coolant tempera.ure e less thoi.

250'r as rapidly as other plant constraints permit.

4.4 SAMPLE LOCATIONS Samples of the RCS are obtained via thi Primary Sample Panel grab sample points.

Refer to Prncedure 35515-C.

" Operation Of The Nuclear Sampling System".

4.5 SAPPLE FREQUENCY 4.5.1 Routine samples are obtained et the frequencien specified in Procedure 30025-C, " Periodic Analysis Scheduling Program".

' 5.?

i:on-routine camplen are ebtained at frequencien contained in guidelines in this procedure.

4.5.3 Technical Specification 3/4.4.8 requires sampling for DEO 1 131 between 2 and 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> following a thermal power change exceeding 15% of rated thermal power within a 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> period.

When notified of this power change by Operations Department, log the notifications, perform RCS DEQ I 131 analysis and log aapropriate DEQ-1 131 analysis information of Data Sheet attached.

Rovte to foremar for review.

4.5.4 Technical Specification 3/4.'1.2 requires sampling of the RCS for DEQ-1 131 and monitoring of the noble gas plant vent monitor, (and under conditions of primary to secondary leakage, the condenser air ejector noble gas monitor,) for effluent activity following each startup, shute;wn and areater thnn 151 thermal power change within a one hour period.

When notified by Operations Depcrtment, log the notifications, perform required RCS DEQ-1 131 and log appropriate DEQ-I 131, plant vent nobic gas monitor readings and condenser air ejector noble as menitor readings (if applicable) on Data Sheet attached.

NOTE Uce the ten minute average reading of one hour preceding the event as the pre-event value.

Use the ten minute average reading taken when sampling :he RCS for DE0-1131 for the post-event value.

Other ten minute averages may be used upon Lab Supervision approval.

_7

detouct so dvmon notho

"~

~

VEUP 35110-L 10 10 of 44 4.5.5 To dettermine 11 the change in betivity monitored by the gaseous monitors indicate a positive change ebeve the statical deviation of the background (such as when PERMS monitor hourly average is readin.; at or near r.ero rather than a significant poritive num)er).

Perform the following calculation on Data Sheet 5.

( ^i Bcpm X 0.62) (Yuci/cc/ cpm)

Z uct/cc

=

B = Current background subtract reading iti y tr Y = Current gain factor sotting in uct/cc/ cpm Z = Level of activity which current reading raur i te above in uci/cc 4.5.5.1 If the pre-reading is less ther the statistical deviation calculated in 4.5.5 above (Z), nultiply the statistien1 deviation (2) by 3 and compare to the post reading taken to determine if it it a factor of 3 greater.

4.5.5.2 If the pre-reading is above the statistical deviation calculated in 4.5.5 above, this actual reading to multiplied by a factor of 3 then compared to the post readirg value taken to determine if the pont reading in a factor of 3 greater.

4.6 S,41PLE DATA RECORDING 4.6.1 Log all analysis results on the appropriate attarbed Data Fheot in accordance with procedure 31045-C.

" Chemistry Logkeeping, Filing And Re cords Sterage".

4.6.2 If the lithium concentration falls outside of the control bands of Tigure 7, take actions, as indicat ed on the figure, to ensure that the lithium concentrattor la returned to the appropriate concentr.n M,

....o.3 Immed s'ely notify the Laboratory Foreman (,1 any out u

specittention conditions.

Immediately notify the Operations Shift Supervisor of confirmed technical specification violations.

4.7 CHEMISTRY CRITERIA System chemistry perameters, specifications, nne corrective actions are set forth in Table 1 through Table 10, 4.8 SYSTEM MONITORS In-line radiation monitor CVCS Letdown Pocitor -

RE-48000, is located downstream of the letdown heat exchanger providing indication of abnornti activity levels in the reactor coolant system.

l--.,

M).4's

---,--m w

yw

' P'toCLDUAL No A[vi$loN PAGt No VFCT 35110-C 10 11 of 44 4,9 DATA CCRRE1.ATIONS 4.9.1 Relation of pH And Conductivity Based on physical chemistry fundamentals, a relation exists between the pH and conductivity of ^ rere solution of an acid or bose.

In pa-ticular, for a given pH, the conductivity must always be equal te or greater than the value indicated in Figure 2.

In situations where the reported data (pH/ conductivity) place a poir.r within the " impossible region", the data evaluator c.

confidently state that one or both terults are incorrect.

4.9.2 Relation of pH To Lithium And Boron Concentration In the absence of rfgnificant concentrations of impurities in the primary coolant, a well-defined relation exictc between the pH and conductivity and the lithium and boron concentrations.

The depender.cr. c f pH on '.ithium and boron concentration at 25'C is shown in Figure 3 and Figure 4 Similar infotmation for the conductivity and the lithium and boren relation is given in Figure 5 and Figure 6.

Such information can be used to verify the consistency of the data.

If pH or conductivity deviates from the indicated values in Figures 3, 4, 5 and 6. one of two conclusions car N

reached, a.

One of the measured aarameters is in error.

Review of trend grapia for each parameter can sometimes give a rapid indication of which parameter is in error, b.

Presuming the analytical results are correct, an unidentified species is present in the primary coolant.

For example, a neutral salt (laCl) will increase solution conductivity, but the pH will remain in agreement with the expected value.

A strong base (NaOH) or a weak base ( NH,.0H ) will increase the pH and conductivity comp 3 red to expected values.

A strong acid (H, SO ) will 4

increase condue:1vity and decrease'the pH compared to expected values.

4.10 USEFUL INFORMATION AND FORMULAS 4.10.1 RCS Volume (Including Pressuriter)

Hot 61,346 gallons Cold 93,227 gallons a t 6.*

  1. .. i.

r*

rm, w

eme

-w

-~m

I PROC [DumE No.

g,E VliloN PAGE No VF.CP 35110-C 10 12 of 44 NOTE The above volumes are equivalent gallons of water at STP.

4.10.2 Puriftention Flow Normal (gal / min) 75 Maximum (gal / min) 120 4.10.3 Furmulas a.

Purification Half-1.ife (T1/2) 0.693 l

V Tij3 -

Q Where:

Q = Letdown Rate V = System Volume b.

Decontamination Factor (DF)

DF = I"l'I"I ^#II"iEY Final Activity c.

Infinite Dilution - assumes pure weiter for feed CF = Ci x e- (Sh)

Where:

CF = Finni concentration Ci = Initini concentration Q = Bleed & feed rate T = Time elapsed V - System volume d.

Volume of Bleed and Feed to Channe Conce tration VF=VSinhf~-ff i

Where:

VF = Volume of feed l

VS = Volume of eystem l

CF = Concentration of feed L

C1 - Initial concentration Cf = Finni concentration 1

~

PROC [ DURE No-CLYl51oN

^

PAGE NO VEGP 35110-C 10 13 of 44 NOTE If concentration of the feed ic zero, this formula will not work, use Infinite Dilution formula above.

c.

Theoretien! PCS Ilydrop,en Concentration Assumes VCT tempertiture between 100"F and 150'F.

Formula incorporates conversion from mole fraction to ec/kg and includes llenry a Law Coef ficient.

(1.13, (P )

RCS li (cc/kg)

=

p g

Where Partial pressure of H2 in the VCT in P

=

g psia.

For example if VCT is operating at 30 psig and 801 H '

2 (30 psig + 14.7 atmospheric) x P,

=

(0.8) 35.76 psia 112 P

=

g f.

1.ithium Removal, Calcula*. tons of Time to have CVCS Cation Bed in se,rvice r

- (V/Q in Co/C1) / 60 V

= RCS volume (gallons).

Q

= Lerdown flowrate (gn11onr./ minute)

C,=

Initial Li conc. (PPM).

C! = Desired Li cone. ( PPit ),

time to place cation bed in r.orvice (hours).

t n

p.

Grams of Li-OH to Add.

LiADDITION = 0.023 ( A Li x VRCSI Li

= desired increase in Li (PPM)

RCS volume (gallons)

V

=

RCS grams of Li-OH to Add.

Li

=

ADDITION t

4..-

. r~4.

PHoCf DUCE No QtyisioN PAut no VFCT 35110-C 10 14 of 44 4.11 CllEMICAL ADDITIO!!

l 4.11.1 Chemical additions to the RCS.rce made using the Chemical Mixing Tank 1(2)-1208 T6-005 located on le'i1 A Elevation 195 of the Auxiliary Building.

4.11.2 Refer to Procedure 30006-C, "Laboratery Safety Manual",

when handling chemicals f(r addition.

4.11.?

Notify Operations when chemica! additions are to be made.

4.11.4 Request that operations isointt the Chemical Mixing Tank 1(2)-1208-T6-005.

4.11.5 When the Mixing Tank has been isolated open drain valve 1(2)-1208-U4-180 and vent valve 1 ( 2 )- 1208 -t'4 - 17 9.

Drain all water from the Chemical Mixing Tank.

4.11.6 Close drain valve 1(2)-1208-U4-180 and open fill valve 1(2)-1208-U4-178.

4.11.7 Slow)v ndd chemicals through fill valve, 1(2)-1208-U4-178.

NOTE the volume of the Chemict.1 l'.ixing Tank is 5 gallons.

Do not overfill.

4.11.8 Close fill valve 1(2)-1208-l'4-170 and request that Operations vent the Chemical !!ixing Tank.

4.11.0 Close the vent valve, 1(2)-1208-U4-179, and request that Operations open the isolation valves to the Chemical Mixing Tank 1(2)-1208-T6-005 to add th Chemicals to the RCS.

4.12 P1Gil ACTIVITY IN Tile REACTOR COOLA!JT SYSTEM 4.12.1 RCS activity limits are listed in Table 1 and Tad!r 5.

4.12.2 Symptoms of high activity include:

I 4.12.2.1 Alarm on the CVCS Letdown Menitor (RE-46000) 4.12.2.2 Abnormal rt.diation levels at sampling stations, 1

.n--

Pl.OCEDURE No

EVISION PACE No VECP 35110-C 10 15 of 44 4.12.2.3 Abnormal increase in any routine radiochemical analyeis (i.e., greater than 251 increat.c in trornpic activity betweer equilibrium conditions).

4.12.3 Actions 4.12.3.1 K,ap Operations informed cf all activit ice miC resui: a ro,that recuired Technical Specification actions car t<

eaxen.

4.12.3.2 If the CVCS LetJown Monitor Alarms, perform an isetopic aptlysis on the RCS to determine the validitv of the alarm and to assist in core dr. mage assessmen't.

Draw sufficient renples to prevent unnecensary edditieral sampling.

4.12.3.3 If sample results are normal, check monitor operation, including local radiat. ion levels.

4.12.3.4 If the first indication of high activity is discovered during routine analysis, determine tr.e cause and inform Operations.

NOTE Confirmation of the cause for high RCS activity is made by la) oratory analysis.

4.12.3.5 If a fuel defect is suspected, perform:

a.

Dose Equivalent Iodine b.

1-131/I-133 Ratio

'.10TE If the Iodine Ratio is aaproximately ten (10) times tae normal ratio of 0.05-0.07, fuel defects are indicated.

4.12.3.6 If the Dose Equivalent Iodine is greater than 1.0 uCi/gm, perform surveillances in accordance with Technical Specifications 3/4.4.8.

Refer to Step 3.1.2.

of this procedure.

4.12.3.7 If high activity is determincd to bc f rou, c r ud, ched, the following to determine the magnitude and source or cause of the problem.

II,I I

8 PCDCEDURE No REVISIC N PAGE Mo VECP

  • 1' 110-C 10 16 of 44 VCT covec g;c (type of gas and overprassure both correct?)

b.

RCS chemistry (i.e., dir.no'.ved oxygen, chemical contaminants, li thiurn concentration, hydrogen concentratiot.).

c.

CVCS demineralizer exhaustion.

d, Recent chemical addition.

e.

Review operatirig conditions, RCS pump starta, trips, thermal transients.

4.12.3.8 Corrective Actions a.

Plant action should be in accordance with the I

i Technical Specifications, b.

Cleanup can be accomalished by ircre,u it.g purification flow, changir.g the CVCS dettineralizers, purging the VCT, and/or bleeding and feeding the RCS.

5.0 REFl:RENCES 5.1 Chen:letry Criteria and Specifications - Westinghouse Electric Corporation 5.2 FSAR 5.2.1 Chapter 5.0 5,2.2 Chapter 9.0, Section 9.~.4 5.3 PWR Primary Water Chemistry Guidelines - EPRI NP-4762-SR, Sept. 1986.

S.4 P&ID's 5. 4.1 -

1X4DB111 Reactor Coolant System 5.4.2 1X4DB112 Reactor Coolant Systen 5.4.3 IX4DB114 Chemical and Volume Control System 5.4.4 IX4D114-ll8 Chemical and Volume Control Syst em 1

, _ ~.

=

PROCEDURE NO l REvtStoN PAGE NO VEGP 35110-C 10 17 of 44 5.!

PROCEDURES 5.5.1 30025-C,

" Periodic Analysis Scheduling Program" 5.5.2 31045-C.

"Chenintry Logkeeping, Filing, Records Storage And Control And Im>1ementation Of The Standing Order Book, Sliift Turnover 1.og, Requireb % ding Book, And Laboratory Log Books" 5.5.3 34200-C,

" Operation And Celibration of 1.iquid Protenn Munitors" 5.5.4 35515-c,

" Operation of The tiuclear Sampling systen" END OF PROCEDURE TF XT 1

l t

I

. ~..

PAoCEDURE No-AEViSloN PAGE No VECP 35110-C-0 18 of 44 i

_=

i TABLE 1 l

SPECIFICATIONS FOR RCS SHUTDOWN /RHR (MODES 3, 4, 5 and 6)

TkANSIENT PARAMETER SPECIFICATIONS LIMIT C0fP.ECTIVE ACTION j

Chloride 1 0.150 ppm i 1.50 ppm Increase letdawn I

Action Level 1 -

purification flow, ver'fy

> 0.15 ppm makeup water qualicy, check CVCS mixed Led outler quality, free Ster 3.1.1 for Tech Spee required action)

Fluoride 5 0.150 ppm 11.50 ppm Increase letdowm purification flew, verify Action Level 1

> 0.15 ppm makeup water qualit.y, check CVCS n,ixed bed outlet quality, (see Step 3.1.1 for Tech Spec required

-action)

I Dissolved 5 0.100 ppm 5 1.00 ppm If Tave i '.50'r add Oxygen Tech Spec limits hydrazine to attain a when Tavg is 250*F concentration of 2 t iene s Limits do not apply

he dissolved oxycen if Tavg-is 250*F concentration.

IY Tavg

> 250'F see Step 3.1.1 for Tech Spec required action.

I NOTE Control of dissolv+. oxygen must!be achieved before the reactor coolant system temperature exceeds 180*F.

Before exceedin; 180*F dinsolved oxygen must be less taan 2-ppm with excess hydrazine present in the coolant.

This condition is to be achieved with coolant in the RHR/RCS, a'l pressurizer spray lines open, and a nitregen overpressure established in the Volume Control Tank.

If-dissolved oxygen is r,reater than 0.1-ppm a hydrazine! residual of at least twice the dissolved oxygen concentration must be present in the coolant before heatup heyond'180'F.

The CVCE inn exchange system should be unived out of service while hydrazine is being used for oxygen scavenging.

If ne diss lved exygen is prer.cnt in the RCS, no Hydrazine addition is necessary.

m

,__...m._-

.. _. _ _. _. _ _,. _. _ _ _. ~ ~.

... ~.

f-k.

e l 'ROCf DURE NO

' ng vlSloN PAGL No l

VECP 35110-C 10 19 of 44 l

I TABLE 1 (CONT'D.)

I

'.RANSIZNT

' PAPJdiETEd SPECIFICATI0H3 LIMIT CURRECTIVE ACTION Baron

  • Varies with plant condirlon and fuel burnup l

(Nominal 2000 ppm when system I

in refueling Ltthium During heatup Lovi add 1ithi,;i 7 i

prior to exceeding hydruxide.

las1i' 180'F, establish Highi use appropriate L

g a lithium CVCS demin bed l

concentrayion (using Li OH) that is coordinated witn the amount of Buron present.

(See Figure 7) 1 Grosu Activity 5 100 p uci jg, j

(Req'd in Modes 3,4) uci Isotopic '

i1

/gm and See udine Figure 1 i

MOT:, '

Isutopic iodine required 2-6 hours following a therm.il n

power change of 15% in 1 hr. period.

(ie...

A trip to Mode 3), and if gross activity is out of specification.

Isotopic Indines are required once per 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> in modes 3, 4 and 5 until gross activity returns tu within limit:

NOTE If Boron 5 300 ppm notify engineering to perform Tech 3

Spec Surv. 4.1.1.3B per procedure 54009-C.

i i

l

..,,....,_,...,_.,m

,y,.y

...,,. - _.,.. _ _ _.., _,,. ~..., - _ _ _ _ _.,,,,,,

moctt UAE rc H(yl$10N PAGE No V.GF 35110-C 10

') of 48

=g-TABLE 2 GUIDELINES FOR RCS SHUTDOk'N ddR (110DF.S 2,I:, S 8.ND f. )

PARAttETER SPFCIFICATION CORRE "VE ACTION pH at Vcriable. r.c e Check Li, Nil at J D!r rel red Oxygen to deh,'rmine cause.

Add rigure 3 01 4 chemiccis anc/

use CVCS purif f cat ion nr. nece r.:. cry.

-Conduc.1vity at

Variable, Check Li, NH and Disselved 25"C 1-hos/cm corsistent with Oxybentode2e,rmine cause.

Adi additives presee.t.

chemicals and/cr use CVCS see Figure 5 cr f.

purification as necessary.

Silica

$ 0.100 ppra Chec.k CVCS mixed ? ~'

performance, che:1...a. -

ater, check boric acid sto4

,nks, use new CVCS mixe '

  • reed and biced.

Susper,ded 5 0..,50 ppm Check VCT cover gas for oxyger, S o '. i d s Check RCS dissolved oxygen, Increase Letdown Aluminun i 0.080 ppm Check makeup water quality increase purification letdown flow, feed and bleed ar required.

Calcium +

5 0.080 ppm Check makeup water quality Magnesium increase purifi4ation letdown flow, feed and bleed ar required.

1*aguesiun 5 0.040 ppm Check m.ikeup water quality-increase purification letdown flow, feed and bleed as required.

Sulfate 5 0.100 ppm Check makeup water. quality increase purification letdar flow, feed and bleed at required.

.e....

m m -w

'~

PHoCic.**'t %J '

FIEVISloN PAGE No VEGP.

35110-C 10 21 of 44 TABLE 3 SPECIFICATIONS FOR TPE RCS DUk1NU NORMAL POWER OPERATION TP.ANSIENT PAP.AltETL R SPI'IIF ICATIONS Lil!1T CORRFCTIVE ACTION Chloride 1 0.150 ppm 11.50 pnm increase letdown Acti n level 2 -

purification flow, Verify

> 0.150 ppm makeup water quality, Check Action Level 3 -

CVCS mixed bed outlet

> 1.50 ppm quality (see Step 3.1.1 for Tech Spec required action) 5 0.150 ppm i 1.50 ppm increase letdown c'luoride -

Action level 2 -

purification flow, Verify

>0 150 ppm makeup water quality, Check Action Level 3 -

CVCS mixed bed outlut-i

> 1.50 ppm quality (see Step 3.1.1 for

~'

Tech Spec required action)

I Dissolved 5 0.100 ppm 5 1.00 ppm Check VCT gas space for Oxygen Action Leve' 2-hydrogen concentration and

> 0.100 ppm overpressuru.

(See Step Action Level 3 -

3.1.1 for Tech Spec

> 1. 0 ppm required action)

I Boron Varies with plant controlled by operations I

conoitions Department j

tutermined by reactor power, 4

tuel burnupi Normal range 0-z000 ppm, at power < 1200 ppm Lichtum Coordinated with With lithium 'oncentration at or above tne control 7

as Li Baron,'See_ Figure 7_

value for Li/B coordinated curve, use CVCS den.in bed to reduce Li concentration te lower control value.

Lithium concentration below control value for Li/B coordinated curve add Lithium-7 hydroxide to upper control value.

b NOTE If Boron f 300 ppm notify engineering to perform Tech Spec Surv. 4.1.1.3B per proce*ure 54009-C.

1

~'

PROCEDURE NO REVISION PAGE NO VP.CP 35110-C 10 2? of 44 Tall F 3 (CONT' D. )

TRANS;ENT PARAMETER SPECIFICATIONS LIMIT CORRECT 1"F. ACT1oh Lissolved 25-35 cc(STP)/

Chick that VCT overpressure llydrogen K gil.,0

> 15 psig.

Check byA egen concentratlon, increast or Action Level 1

<J5 s'ecreare overprcrsure as

> X cc(STP)/

required: Low H.,

inerease, KgH 0 liigh H.3 decreashi Putge if 7

Action Level 2 -

concentration cf E.,

is low.

~

L15 cc(STP)/

KgH,0 5

Action Level 3 -

1 5 cc(STP)/

t-I EgH O 2

Dissolved 5 5 cc(STP)/

Incru.te icedovr, perge VCT

!!ydrogen KgH,30 witti nitrop.en, pu r ge-prihr to opening presuuricer Steur: rpree to the RCS VCT thru NFSC.

PRoCLDURE No it $t.up '

pact No VEGP 35110-C 10 23 of 44 TABLE 4 CUTPELINES FOR THE RCS DURING NOR!iAL POWFR CPERATION PARAMETER SPECIFICATION CORRECTIVE ACTION pH at 25"C See Figure 3 Check Li concentrationi Check or 4 Dissolved Oxygen concentrationi Add chemicals and/or use CVCF letdown purification as necessary.

Conductivity at See Figure 5 25'C umhos/cm or 6 Silica 1 0.100 ppm Check CVCS mixed bed performances check boric acid storage tanks.

Use new CVCS mixed bed or feed and biced.

Suspended

$ 0.200 ppm Check VCT cover gas for oxygen, Solids Check RCS dissolved oxygen, Increase Letdown Aluminurr 1 0.050 ppm Check makeup water quality, increase purification letdown fl ow, feed and biced as required.

Calcium 4 5 0.050 ppm Check makeup water quality, Magnesium increase puri ficatien letdown flow, feed and bleed ar required.

Magnesium 5 0.025 ppm Check makeup water quality, increase purification letdown flow, feed and bleed ar.

required, Sulfate 1 0.100 ppm Check makeup water quality, increase purificarion letdown flow, feed and bleed as required.

I

,, u,s

l*4cCtDUAE NO HE V15:oN lPAGE No VECP 35110-C 10 24 of 44 i

TAv.; 5 RCS CPFRAT!!,T. RADIOCllEMISTRY SPECIFICAT10t!S PARAlfETEP TFCH SPEC L:ltIT CORRECTIVE ACT_Ijlfj D<t.e equivelent 5 1. 0 ini crcerurie See Step 3.1.2 for required lodine 131 per gratn etion (DEQ 1-131) 1 See Figure 1 Specific See Below See Step 3.1..'.

for irquirod Activity action (Perf ortred a s part of Gross Radioactivity Below) 1 Gross

$100/E See Step 3.1.2 for required Radioactivity mi c rocur ie s / grain action 1

of gross radioactivity 1

Specific activit.y analysis (gamma spectroscopy sanple ecunt) cormally encompasses -1,oth dose equivalent iodine -131 and g rr+ s activity analyses through the use of additional reports f.enerated upon renuest of the gamma spectroscopy computer software.

I

,,..s

.... - w.-

____-_-.__m

R~OCEDUHE NO REVISION

< o'GI ko VEGP 35110-C 10 25 of 44 TABLE 6 R C E O P F R A T ! N G P A P ! 0 L t!E!!1 S T R Y G U I D L1,'. h i.T l

t PARAMETFh VAtt'E Iodine Ratin 0.05-0.07 T-131/1-133 Nominal without fuel defects 0.5 - 0.7 l

' n in.a i fuel defects RCS Crud Activity Tr!; lum Hafnium - 181 Mr Note 1:

llafnium - 181 monitored as an indication of RCC/s t hi r r. i ng er cracking per NRC IE Information Notice No. 87-19 l

ed ge

i s

..__.._m_.

~ - '

l FROCE6UGE NQ QEUl$loN POGC t '*

VEGP 15110-C 10 26 of 44-

+

l TABLE 7 i

PRESSURIZER LIQUID CHEMISTRY PARAMETER SPECIFICATION CORRECTIVE ACTION

Chloride, Same as for If a significant Flueride the RCS difference between Boron the Pressurizer nr.F RCS.(eg. greater than 40 ppm beren) increate pressurizer spray te equalize the RCS and Pressurizer, then follow the entricris'e actions required per Table 3 end 4

. 0344%

i P90C(DURE NO (IE VISION PAGE 50

~

VEGP 35110-0 10

.;, of 4e TABLE 8 PRESSt'RIZER VAPOR SPACE CilE!!!STRY CI'IDELINES NORMAL PRIOR TO OPERATING OPENING PARAMETEP SPECIFILATION SYSTEF.

CORRECTIVE ACT 0]j Hydrogen

-2 98;

$ 4 '.

Purge to VCT 1

Oxyger 50,1

$ 0.1 Purge to VCT 1

Nitroge

< 21

> 95:

Purge to VCT 1

1 Verify RCS dissolved hydrogen and dinsolved oxyger, are in specification.

Verify with operators that correct type and prerrure of cover gaa is being supplied to the VCT.

I l

l l

1

PROCEDURE NO REVISION PA(i NO VEGP 35110-C 10 28 of 44

~~

TABLE 9 VCT VAPOR SPACE CilEMISTRY CUIDELINES PARAMETER SPECIFICATIONS CORRECTIVE ACTION, Ilydrogen Same as for Increase / Decrease Hydrogen /

0xygen Pressurizer Vapor Nitrogen pressure as apptcprlate Nitrege n Space and purge to Caseous Waste Management System

w

~

PROCEDURE NO ME VISION PAGE NO VEGP 35110-C 10

?c c,f 44 TABLE 10 CVCS DEMINERALIZER GUIDELINES PARAMETER SPECIFICATIONS CORRECTIVE, ACTION Chloride DF Monitor If detectable on efflucre immediately notify Laboratory Supervsion Cross Activity DF Monitor If Low (IE < ?). verify no chemical contaminantr. In effluent, have Laboratory Supervision evaluate for possible replacement, Log DF results as sell as date resin loaded, date placed inte r.ervice and date resin discharged in the remarks section of r.he RCS 1.ogcheet, updtte information on the Laboratory Resin Bed Status Board.

i-I t'

[

.w

..n.

. -...... -. - ~ -. - _.. -

. - -. - -.. -. ~. _. -. - ~ _.... -. ~

- - _............ ~ _ _.. _ ~. ~. ~

... ~...

PROCEDUHE NO nEvtSION pat i NO VEGP 35110-C 10 20 of 44 1

i ne

\\

I A

Il' l

g p-

.S S

e 3

S S

S S

MS

~

~ ~smerf ep RATSTW9thAAL88W5 l

Figure 1 1

Dose Equivalent I-131 Reactor Coolant Specific Activity Limit Versus Percent of Rated Thermal Power with the Reactor Coolant Spectiic Activity 1.0 uCi/ gram Dose Equivalent I-131 l

I.

i l

1 I

l

...---..-4

z___

c

_y,,.

_. 2....

///

i

\\

//,

'7\\\\

r /

I I,'/

"V / /

I,

/ Pa m

/ / /.

i.. // \\

// /

l '/ /

f //

/

~

.., / / \\

b / /. /

f f. /\\] f*T'T /

'$ / ~b.l-l l l l/

...,. / / /. /./ / /

Figure 2 Restrictions Imposed by the Conduct.ivity/pH Relation

'O $ d'

E I

"4 i

Wocedure No gm p

g VEGP 35110-C 10 32 of 44

)

r-se -

{-

j.

p II i.

y 84-3 i {.

L e

t i

l

. "i l

]

.9

  • e i
r. 4.r a

i e.e fip-h 2 a-x i,.=

f.

li nL s

2: j-i

.?

f. :- 3 E,

fb 2,

. 4

< y' ',

2-l

. m

,,, (,

~

?

_-_; l. ]

.n 2.

i a5

[

Sores pee i

)

Figure 3 - pH of Lithium Hydroxide / Boric Acid Solutions at 25'C

(

1

[

Prot +cwe No Hews.on Page No l

5 VEGP 35110-C 10 33 of 44 t

l LIMBIER CItuttantles. gen S e e+e 0.46 e.25 9.56 e.75 1.44 1.25 s.Se 3.75 2.ee 2.25

2..,e C

7.00 9 54 9.e4 84.48 84.14 30.23 3s.33 go.3e 3e.43 go.gs go.53 l

/ 1 se 5.78 7.42 7.62 7.44 7.72 7.82 7.ft 7.97 e.e4 4.09 a.34 see 5 63 4.e8 7.88 7.29 7.48 7.51 7.59 7.44 7.72 7.77 7.st l

154 5.54 4 43 4.93 7.se 7.23 7.32 7.4e 7.47 7.53 7.5e 7.43 2ee 5.47 4 54 4.79 6.97 7.09 7.19 7.27 7.34 7.37 7.44 2.47

D S 5 37 4 30 4.40 a.77 4.39 4.99 7.47 7.33 7.89 7 24 7.29 l

Ce 5.29 4.45 4.44 A.42 4.74 4.84 4.93 a.Ts 7.(r 4 7.09 7.33 4.94 7.ee a.93,4.e4 See 5 23 4 42 4.38 4.48 4.48 4.74 4.78 4.e5 4.29 a.ef See 5 87 5 98 4 2e 4.37 4.49 4.59 4.47 6.73 700 5 12 5 00 4.49 4.26 4.34 4.4e 4.54 4.42 4.ee 4./3 asie Sem 5 07 5 78 5.99 4.36 4 28 4.3e 4.44 4.52 4.5e 4.63 4.4e M

5 42 5.42 5.96 4.67 4.39 4.29 4.34 4.43 4.47 4 54 4 58 i

3W 4.97 5 54 5.es 5.9e 4.34 4.2e 4.2e 4.34 4.44 4.45 4.5e Stee 4.93 5.44 5.73 5.9e 4.42 4 13 4.39 4.24 4.J2 4.37 4.48

' I 32ee 4.e9 5.30 5.45 5.42 5.94 a.e3 4.31 4.se 4.23 4 29 4 33 l'

3 3ee 4.e5 5.32 5.58 5.74 5.se 5 96 4.64 4.se 4.34 4.28 4.75 2

34ee 4 32 5.25 5.58 5.47 5.7f 5.re 5.94 4.e3 4.e9 4 34 4.se

~

8500

'4.79 5.19 5.44 5.44 5.72 5.82 5.99 5.94 4.82 4.07 4.st 4

same 4.75 5 83 5.37 5.54 5.45 5.75 5.83 5.e? 5.75 4 e4 4.e4

."17ee 4.72 5.es 5.31 5.47 5.59 5.4e 5.74 5.s3 5.se 5 73 5.to gese 4.ae

?. 02 5.24 5.48 5.53 5.42 5.7e 5.37 5.s2 5 87*.5.92 I

4 3900 4.45 4.9s 5.2e 5.34 5.47 5.57 5.44 5.75 5.74 5.s1 5.0-i 20ee 4.43 4.93 5.85 5.34 5.42 5.58 5.57 5.45 5./;

5.14 5.se P

.+t 25'c Figure 4 - pH of Lithium Hydroxide / Boric Acid Solutions i

i 5

noccou. no n~s.on ce no VEGP 35110-C 10 34 of 44 y

- - r-g f

a i

i l-j-

!l: 8 l

-4

!al g

g s

l

~i 1.-

l 1,

8

~

w ii l

i, l

.l e-1 f.so l.

i.

25 i

3 8 I-g 1.

1 a

4 t

I

< l.25 i

1

_d

. _L _l-I -j-l e

I

-!- -j- ; j.8. l

=

l I

i El i

E h

-l-- -

r i

..I.-

-4 g,

3

~

I, l

1 I'

L, 1

L_

i is t

I i

t. -l-i.

g w

i 1

I l

i so r-i 4

  • -l l

l l

}

- l lg t.-.s -

3-l l

l

! l l

is g

1.

i 7

g-

___ g,75 I

g l

l j

s-8 i

I e

o s

.e i

I.

L e

e l

_ _g-

.j _

l g-o

_l.g s

-.l.0 y

. g:

. i n

i i

u

l I

-F

-c

__l_

-t-

_g _ l

_l_

_ l_ _

e lo,yg u3g i

e i

e I e I I'

l 1

.0.50 i

j 8

g- _,-

g' s

0.25 f

a e

s l

I - Tg

- lt e

~

ill el

, prei I

g j

l l

1 l

l., l y

..;g.

c 2

i e-I, s.-

.i s

i g

e g

j

. - ~.

T l

a ll j:

i t

l i

g g

,t 8

a y

l g

a l

l g_

2000 n'5'I

'~]~~

1500 gang a

ser

.p Figure 5 Specifir renduc t ivi t y c f Coordina t ed Li/ B Solut i< r r.

I as. Function of Eoron Concentrarien at 25'C U

~

~ ~

~

, y.-

s

l..

Prcredure No.

Revesson Page No VEGP 35110-C 10 35.of 44 L

i

.LIMOW N 05.sps a;

I' es. po.=

e.ee u.25 c.5e u.75 s.ee s.25 s.5p s.75' :.00 2,25

2. e, i

g e

.se s.2-s&.5 24.7 32.9 es.2 49.4 57.6 65.s 14.,

a,2 SS_

-.64 2.Pl S.6 a.4 as.2 se.u sa.e 34.6 22.4 25.2 :s...

Set 99 2.5

-S.&

S.4 s1.2 819 36.7 s9.5 22.3 21e 27.9 e'

834 8.83

  • /. T S.&

S.4 88.8 BLT B6.7 39.5 22.2 25.0 27.3 4

M 8.17 2.9 S.4

a. 3 as.8 83.9 34.6 39.4 22.2 24,9 27.7 309 8.45-2.9 3.6

'E.3 8s.e 83.8 16.5 39.3 22.0 24.7 2?.5 4se 8.92 3.e 5.6 S.3 88.o 8L7 86.4 39.8 23.3 24.5 27.2 m

2.29 3.8 S.6^

S.2 te.9 13.5 86.2-se.9(28.A 24.3

21. s=

-6ee 0.68 3.8-S.&

S.2 te.S 83.4 86.I 35.7 28.4 24.s

&. 7 7eo 2.95 3.2 S.6.

e.8 av.7' 03.3' 35.9 se.& :s.2 23.s 26.5 See 1 38 3.4 S.6 S.8 ges. 7 SL2 15.8 89.4 25.0 23.6 26.2 900 3.48 LS A7 S.I lis.&

83.2 05.7 33.3 20.9 23.4 24.u I

seet 4.97

' 3. 7

' 5. 7 S.I Iu.6 33.3 35.6 98.2 2u.7 23.-

7.. e.

gles 4.43 LT S.S s.3 8u.6 010 3L5 89.8

u. a 73.8 2"i. e

. pace 4.90 4.I S.T R.2 33.6 83,e 85.5 as.e 20.5 23.0 M.5 13ee 5.15 4.4 4.8 S.2 Ise.&

83.e 314 87.9 2v.4 22.9 25.4 34pe S.es2 4.7 6.2 m.3 s ee.&

83.o sig 87.9 20.3 22.s 21 3 sm 6.30 3.0 6.4 S.4 tu.7 Shu i 35.4 87.8 20.3 22.7 :L2 game.4.33 5.3 a.6 a5 so.s eta 314 F.e 20.3 22.7-Ls Svee 7.32 L7 6.s s.i so.S e3.a eL5 s 7.s 20.2 22.7

Le l

3 Agee 1,seg.

6.8 7.u s.9 8s.u IL 2 315 57.9 20.2 22.6 21 e 39ee.

e.45 6.5

7. 3
9. e e 88.I SL1 816 s r. 9 ru. 3 22.6 21 0 3ese se. ges a.9 7.4 v.2 st.: SL 4 45.=

t e...

Ov.3.22. 7* ' 25.,e L

4 i

Figure 6 - Specific Conductivity of Coordinated Li/B Solutions l

as a Function of Boron Concentration at ? ': ^ C

~3*

e w-

Prcredure No h

Pape No VEGP 35110-C, 10 36 of 44 3

r g'

-p 2.8 -


l 7_

v Flace CVCS catte= he is serv

-( Notify Lag S c ryts 2.6 -

2.4 ----

f

',(let Klet!

r i 1 Intarmland by tag _ [

_\\

'/.

i egnetten ofstep4.jo.3.f.

i l- - -

'2.2 -

--l-L'W M -

I l[ ; f l-

/

i --

2

- - -- r-

/

/

/

/

I y

1.8

,N

/

/

i a.

-- hy'*

L 1.6 r

e-q.

y 7

14 -

p h LgldB6 (aahydrows)~according

- ]-

o te DA7 A T VE ET G.

I e

/- -- - -- -- - /" M:_'

_w

- -I I

e 3

12

'/

/

m..._

3 y_

I Notify Lal.Supervisi O.8 -

-rOR h-

- ~ ' --

i

~ ------

~ - ' - " ~ --' - -

'~

~

l

-~~I-l 0.6 a

l

~=

- - ~ " - -' - - - - -

~'-

--l l

- ~~

i 0.4 -

O.2 g ---

- -----l----

l-

~l I

O,!

I SO 150 250

.550 450 o

r BOHOtt(PPM)

I Figure 7 Lithium / Boron Coordination (0-500 PORON) e

% g Si

1]jll tl :

\\

4 4

f o

~

7

~

3 no A

t g

?

il n

,i itva 1

d r

r

- e-o e)c sh m(hC c

p u

~

a b

a s

L u

y o-r f

dC

=

i y

o

?

t N

o a

n e

n o

a

~

g NM 2

r a

P a

rlWQ 1

B 0

m i

L p

p ddo N

At

)O 0

e I

ri d

a sT C

v dA)l r

nRd aT e-e sNu 0 se.

~

+

h f.

uEn0 nt oCi $

3 h Nt(

i 0

eimy

~

T 1

1 1 (On n r bd e

1 Co o c

e4 i

nn N( t oip

~

O a

aes

\\

me i

3 R

n O "e t rt -

i ct Brd ef Sdo~__

g r

u o C

o Ves_

i Cme ii FC e

y=larue h

ett -

n c

a o

m oq r

8 o

Pf e n

v 0

B e

i R

v

/

r-r e

m u

p-i m

5 h

t

'b i.

b C

h t

0

't _

h' e

1

{N 1

6 5

3 O

1 2

3 9

8 7

6 5

4 3

2 2

2 2

2 2

2 2

2 1

m P

GE V

z i UzOU23 oN e

tuoet o

rP ll

!l(

A

==e

+

a-

-*wA.a.u.a4

.AA

.a

--64---.--e.eh-----.aa----

.-_m

,e 46

  • .4J-*

a---A

-+---*..m 446+4h4 A

44 2-w

~m.

.4---d*e-I,4.wm--m..45.-M.4W--A4d

.eMe-i.m..sa.J.h,...

._s wM

-- -- M

(

{

l

?

I I

i, II

! 'n

/

!n a

2 2

t m

=

g

/

i-

/

f

' O

?

n N$

ra u N

9

)

89 j

s y

j j

g

/

t ~\\ /

I g

f g

g 3,

,' E,

l 2

)

2 Oi

/

/

/

^..

n

=

g g

a g

a m

x a

sa a

=

a l

8 t*Puewumw Gas NCX1YO Ol64JL SNOTTVD l

l 1

1 i

-- + - - -. -

--e-,

,,. e

,,y

---.., -e.

r

.i...--- -. - -, - -,

g u

w.

a l

8

l
l~

e Il i

I 4

0 T J

E P I T

0N A

FI D

4 I;;

8 I

W 4

HT M T f

CI R I o

EN ON

/

TI F I l

I

!t 9

E HT 3

^A CI 0b F

E N 0 p L

TI 1

p U

iIl!i t

1 S

F 9

0

,i,6

~

0 0

.S 0

I 0

PD 4

5 E

2 a SI p

UL S

GA 0 p SO K

e P

S R

r 5

A u

il M

d E

e on b

R c

5 p g

e eg 2 p M

rp h

5 r

Y e

B b

p 0 p a+

g D

E 5 p C

N i

i B.

W 1

Ii; R

1 3

E M

I b

O l

V G

0 p l

T i

E T

1 R

N 5 p A

I N

I I

5 T

O R

F 4

A 0

7 M

T R

0b 0

P 1

p S

.l 0

V E

0 p 1

5 R

Y 2

t O

R T

S O

0 M

5 g O

I I

1 E

3 k 2

T SV T

.C I

SI SE T

T

- /

H S.

N OT LI P E

S 5 c E

Y 2 c T

O RC ASS H

S M GA UY S

N QLH T

. )

O EAC A

N R 3 R

NE T

A A (

O DY R AT A

L T

V B

R UT O

O RI YM D

O I

I T

CV NTR O

N C

U g

I I

AI O i7 I

N ST RVF R

F L

O CC TI R O

M R A TE SCP l

n T

SA o.

S. 0b

)

R E

0 S1 0 p 1

2 O

I 1

3 S

p

( 0 T

T l

a I

3 3

SOG 1

N 1

1 I R h O

.GI I

R S. 0b M

I I

GFE

'F VOE 5 p T

1 p

CY A

N I T TI m FI TRG Eg I V AN S. 0b

//

CI SPE S.

5 p l

01 ET C

T p

C l

T 0C PC RSY C

1 u SA AF

)

F I

D 2

I ET 0

R N

(

NO A

O 1

V C

YON LD 1

1 m

3 P

M 5

PYP 3

R S. 0. /

g 1

A P

ATP 1 1 I

I V

T C

TV0 RL i u Q

OI 0 EE E

NT3 WV D

C SA$

OE E

PL P

OCN C

E E

DI O E

M M

FR I

TI O V

I o

S T

S T

I CB T

ME 4

t T

1 I

e I

I 6

I PF u

H M

M LSI r

o T

R I

E I

E c

N A

L T

L T

) ) )

c e

w o

O E

A A

1 23 P

M Y

D D

( ( (

r I'

i

?

Procedure No Remsson p, go VEGP 35110-C 10 40 of 44 i

t f

DATA SHEET 2 HUNTH PACE 1 Or i RCS SHETDOWN/RtiZ j

YEAR (MODES 3, 4, 5 ANO f> )

i UNIT T.s.

T.s.

T.s.

T.s.

  • s.

t i 150 $150 i100 i1000 {80 < 80 1 40 < 0. 35 (2)

(23 ' 100 < 20 ( 3) t LIMITS VAR. VAR.

ppb ppb ppb VAR. VAR.

ppb ppb ppb ppb ppa ppb ppb i

f (4)

Ca g

g I

(I)

+

SUSP.

GROSS DEQ TOC TECH.

FORMN.

) ATE TIME P

COND Cl-F-

[.

INIT.{lNIT.

H Mg Mg SOLIDS Activity 1-i31'50 0

Li BORON SiO Al i t

g 2

2I 4

I t

i

}

i r

l f

I

{

f i

i i

i l

i r

l i

i I

I i

j I

I i

1 i

I 1

I f

l l

I I

i L

i i

I I

i I

I I

I I

i 1

l (1) LIMIT DOES NOT APPLY IF RCS T AVG. IS T ESS THA : OR EQUAL TO 250* F.

f (2) Gross Act.'vity req'd in modes 364, DEQ 1-131 Req'd j

l In mode 3. to 6 hrs following a trip; once per 4 hrs I

In modes 3, 4 & 5 when DEG I-131 1 uci/gm or Gross I

Activitv exceeds 100/E.

l (3) A total organic carbor analysis should be performed anytime the fuel

~

transfer canal has been flooded with the reactor vessel head off.

The f

analysis is to be performed prior to heat up above 180*F Laboratory supervision is to be notified if result is above limits.

(4) If Boron 1 300 ppm, notify engineering to perform Tech Spec. Surv.

l l

4.l.l.3.B per procedure 54009-C.

,i n

RIVIEWED BY

/

p im1E j

r I

f

%.c

- s.

- gf L

i 4

l' l

lll!il f

j >

I k!

v l

f lI ( I l[

1 li1 ET A

D 4

4

/

f W. T o

RI I

O*

1 FI 4

1 HT CI I

EN F

TI O

1 l

EC AP o

N e

Y ga B

P D.T LE I

VE Y

R R

TS I

M E

H 3

C T

D 3

E I

1 E

U H

Q S

I L

A S

T R

T A

E T

R D

Z I

A I

N M

R U

E U

R S

S C

S R

E R

d F

na no r

p e

1 z

y i

N r

O u

R R

s.

A O

st V

B e n.

rpm t

nr e a ep C

we t D S. 0b e

0 5 p b s 1

T p

F n

1 1

e o ci 5

nt 3

e a S. 0 b r r 3 p l

e e T

1 p C

f p f O 5

i d y f

P mi G

pt F

po E

H n

V I

0 4,

S T

o T

S n

N K

> o I

e H

M R

r ru T

I E

A f a M

d N

L T

I B

~

e E

O A

c R

1 o

M D

rP il l

lll[ll

!lill itj

Lilt.!l[:

etti Fli

!i (fit i5 rtitt t!!:I!.Io

'tt i

l5tl':i!{.

!j t

i i

I r

T A

4 D

4

/

N.

f MT o

RI ON FI

?

4 HT CI EN i

TI F

O I

f' i

E C

A P

o N

e Y

g S

a P

SE k'

E I

V E

R E

C 4

AP T

S 0

E 1

E R

H O

S P

A A

V TA T

T D

C I

V N

U SKR AM E

R no ss i

m4 f

2 2

N C

1 2

0 0

0 1

1 5

3 8

2 9

H 2

PG E

E M

V I

S T

o T

S N

I K

e H

M P

w T

R I

E A

d N

A L

T M

e O

E A

E e

M Y

D R

c W

1 f.

i,

'i!i j: ', : i-l<il!j l'

iiI

.'ljI!l.I' l

. j'

-. i '

i -

Ii

l l

PHoctoudt No EE MioN PAGl No VECP 3$110-C 10 43 of 44 i

DATA SHEET $

i Pok'ER CHANCE EVENT NOTIFICATION _ RESPONSE A1 TYPE OF EVENT Startup Shiit down 151 Power Change /Hr Time /Date Notified (Central)

Time /Date Of Event (Central)

Nocifisd By (Print Name)

B)

POSE EQUIVALENT IODINE (RCS)

Prr-event Value uet/cc Date/T!ce (Centra 1)

Post-event Value uci/cc Date/Titne (Central)

Pre-event / Post event Ratio S3.

>3 (chnck one) 1 C)

P'. ANT VENT (Caseou a Monitor Reading)

) 2 Pre-event Value uci/cc Date/ Time (Central)

(\\__cpmX0.62) IgaO factor in uci/cc/ epm) uct/cc

=

12 Post-evon alue uct/cc Date/ Time (Central)

(l__epmX0.62) (gain factor in uct/ce/ cpm)

.uet/cc

=

12 Pre-event / Post-event Ratio 63

>3 l

(check one)

D)

CONDENSER AIR EJECTOR EXKAUST (Gr.reous Monitor Reading)

(Required when secondary water ir contaminated by prirrary water).

2 Pre-event Value

__uci/cc Date/ Time (Centra'.)

2(Ti_cpmX0.62) (gain factor in uci/cc/cym) uci/cc

. Post-event Value uci/cc Dete/ Time (Cent;al) l 2(\\__cpmX0.62) (gain factor la aci/cc/ cpm) uct/cc Pre-event / Post-event Ratio

$3

>3 (check one) 1 12444-C values may be used if 12442-C is out-of-service, same monitor must be used for both readings.

2 Use ten minute averages (ensure background not being run during period used)

PERFORMED BY:

l DATE/ TIME (Centrol) l REVIEWED BY DATE/ TIME ICentrJ1)

'OM e >

  • Tiiv.co7:ENo

{simios eact no VEGP 3$110-C 10 44 of 44

,l DATA SHEET 6 cal.CULATION FOR LITHIV.M ADDITION ItNIT A)

DESIRED INCREASE IN LITH!!fP CONCENTRATION (PPM) 1.

Present lithium concentration, L

=

ppm p

2.

Deuired lithium conctntration. Ld" PP" AL='p-Ld"I

)

I

~

B)

RCS VOLUME (GALLONS)

VRCS = 61,346 gallons VOLUME HOT or VRCS = 93,222 gallons VOLUME COLD C)

GRAMS OF Li-OH TO ADD Li

= 0.023 (A L

  • VRCS)

ADDITION 1i

= 0.023 (

)

=

ADDTTf0N 2

Li

= Grams of Li-OH to add ADDITION

-L

= Desired incraane in lithium concentratfor (ppm) as calculated in Section A V

= Volume of RCS as datermined in section B RCS Technician :

/

/

Date Tt*

Independent Verifice, cions

/

/

~~

Date Time Foremnnt

/

/

Date Time I

l inun

-