ML20083K251

From kanterella
Jump to navigation Jump to search
Bedrock Deformation in the Cooling Water Sys Intake Tunnel. Finds Tunnel Fault Produced by Glacial Iceshove or time-dependent Stress Relief.Concludes Fault Is Noncapable Per 10CFR100 App A.Available in PDR
ML20083K251
Person / Time
Site: Perry  FirstEnergy icon.png
Issue date: 05/31/1978
From:
CLEVELAND ELECTRIC ILLUMINATING CO.
To:
Shared Package
ML19289C581 List:
References
NUDOCS 7901190092
Download: ML20083K251 (47)


Text

,m f

}

I l

BEDROCK DEPORMATION IN THE COOLING WATER SYSTEM INTAKE TUNNEL, ?ERRY EUCLEAR POWER 'flANI NORTH PERRY TOWNSHIP, OHIO L-

_.J w

8 So-440/q.q g kb h-l-M Mol)90086

.._ J Prepared by:

(

Gilbert Associates Inc.

i 525 Lancaster Avenue i

Reading, Pennsylvania May 19, 1978 i

Prepared for:

Cleveland Electric Illuminating Co.

Illuminating Bids., Public Square Cleveland, Ohio t s.

7 9 01 1_.9 0 0R 19.m - e a 0-kr

i GAI Report No. 1986 i\\

l THE CLEVELAND ELECTRIC ILLUMINATING COMPAhT PERRY NUCLEAR POWER PLANT - UNITS 1 AND 2 A

c BEDROCK DEFORMATION IN THE COOLING WATER SYSTEM' INTAKE TUNNEL MAY, 1978-

,I

.g s

e ffa

-g

/

Prepared b'y:

-%t/J/ '--), Ad L. D. Schultz )

(~

Senior Geologist Gilbert Associates Inc.

s

,g Reviewed by:

y W."J - Santamour Pro ect"GeSlogist.

\\

Gilbert Associates,~Inc.

v

~

1.;

,7 ',

4 p

.1 g.

g

(,s i

s, Approved'by:

42A,

P. Be Gudikunst Project Manager :s

. Gilbert AJsociates) Inc.'

+

.; x; y.- y.'k

. + -

g

.,. w,

>+;

.s~

_ y

~;..

.1 ec

.g ;

-4,

.k..

k..

? h,,

.h "

, -[' t q

%)

..N-.3 i'-

~,7,

u

_ n?, N.

U

- - - - -- r

)

l TABLE OF CONTENTS 4

l ABSTRACT INTRODUCTION..................

1 i

i DESCRIPTION OF TUNNEL BEDROCK DEFORMATION 4

1, LABORATORY ANALYSIS OF FAULT GOUGE..............

9 DISCUSSION.DN MODES.0F DEFORMATION.... -...

........ _....... 10 Glacitectonics.........................11 3

Stress' Relief........-................ '13 Depth of Permafrost and Loss of Shear Strength...... 15 CONCLUSION.

17 Interpretation of Tunnel Deformation....

18 REFERENCES.......................... 28 i

LIST OF ILLUSTRATIONS Figure 1.

Plot p3sn of intake and discharge structures showing locations of bedrock deformation, Perry Nuclear Power l

Plant, North Perry, 0hio...........................

5 Figure 2.

Geologic log of intake tunnel between station locations 1M30 and 10+40,. Perry Nuclear Power Plant, North Perry, 0hio..................................

6 Figure 3.'

Correlation of stratumon east wall intake tunnel where displaced along fault, approximate station location is 10+65..................................

20 Figure 4.

East wall of intake tunnel where fault crosses r

spring line at station 10+65.......................

21 1

Figure 5.

Fault on east wall of intake tunnel................

22 l

l l

r r

pw--

r

~,

Figure 6.

East wall intake tunnel fault showing drag........

23 1

Figure 7.

Correlation of stratumon west wall intake i

i tunnel where displaced along fault................

24 i

Figure 8.

Fault on west wall of intake tunnel...............

25 Figure 9.

Ironstone bed (oxidized) along east wall intake tunne1.....................................

26 Figure 10. Fold in stratumon east wall intake tunnel i

at station 10+42.5................................

27 APPENDICES APPENDIX A.

RESIDENT GEOLOGISTS DOCUMENTATION.

Item 1.

As built tunnel log.

Item 2.

Geologic progress report (week ending 4/28/78)

Item 3.

Memorandum to Larry Beck, CEI Item 4.

Weekly report of Resident Geotechnical Engineer (week ending 4/28/78)

APPENDIX 3.

MINERAL IDENTIFICATION OF FAULT PLANE GOUGE.

l l

l

?

ABSTRACT l

Flat-lying Chagrin shale strata exposed in the tunnel excavations at the Perry Nuclear Power Plant, Ohio, are interrupted by a low-angle thrust fault. Maximum measured apparent displacement is approximately 22 inches with a throw of approximately 12 inches.

The fault plane is oriented nearly normal to the tunnel bearing and dips less than 17 degrees to the southeast. A small synclinal l

fold with an applitude less than three feet is exposed contiguous

'to the ; fault: plane. These structures presumably are genetically related to lateral compression, and their development is attributed to glacitectonic deformation initiated and completed during the Pleistocene Epoch.

The tunnel fault was produced either in response to glacial ice-shove and/or time-dependent stress relief, the latter subsequent to glacial unloading. Both are acknowledged modes of glacitectonic l

i deformation and herein are classified as " active" and " passive" respectively. Proximity respective of distance and physical resemblance between tunnel bedrock deformation and active glacitectonic structures exposed in the onshore excavation suggests a common origin.

In either case the tunnel fault as well i

{

as those identified onshore conform with the noncapable criteria set forth and defined in Appendix A, 10 CFR, part 100, seismic and Geologic Siting Criteria for Nuclear Power Plants.

[

t

.. -... ~

INTRODUCTION I

4 Consistent with PSAR (Preliminary Safety Analysis Report) commitments respective of the PNPP (Perry Nuclear Power Plant) and its owner, CEI (Cleveland Electric Illuminating Company), this submittal to the NRC (Nuclear Regulatory Commission) provides information pertinent to a i

bedrock fault recently exposed during excavation of the plant intake tunnel.

i

. Verbal andswritten notification as well as photographic, documentation of the ' fault was accomplished by the PNPP resident geologists consistent with their responsibilities implemented for the geologic mapping program. Documentation prepared by the resident geologists provides a chronological reference of events relevant to the fault identification and is attached as Appendix A.

The resident geologists are responsible to the Project Geologist as well as being integrated within the structure of the site organization. Consequently, the Project Geologist and a project consultant, (author of this report), confirmed the presence of a badrock fault in the intake tunnel as reported by the resident geologists in the cited Appendix documentation.

The intake tunnel, one component of the plant cooling water system currently under construction, was excavated initially by conventional " drill and shoot" methods, subsequently by a Dosco Roadheader MK 2A tunneling machine for more than 426 feet and finally by a Jarva circular bore tunneling machine. Each successive method of advancing the tunnel heading was implemented at the I

contractor's discretion (S&M Construction Company) subject to owner concurrence in the interest of increasing production. This action i

was warranted on the basis of bedrock conditions previously experienced I

in the intake tunnel as well as in other plant tunnel segments, l

vertical shafts and foundations excavated on site.

1 i

The geological record of bedrock deformation for northeastern Ohio,as reported in the literature,is discussed in the PNPP PSAR (Preliminary Safety Analysis Report). New data including comprehensive descriptions a of-specific structures exposed south of-the PNPP site along Grand-River aand;several'of its tributaries are contained in Appendix 2L of the PSAR. Foundation excavations at the PNPP site through the glacial l

drift cover into the Chagrin shale exposed both primary and secondary

?.

structures. The secondary structures were thoroughly investigated i

sad the results cosaunicated to the NRC (ate especially Geologic investigation of a portion of the PNPP founistion and supplemental addenda). The subject structure of this submittal was intersected by excavation during the week of April 17, 1973, but could not be observed until April 25, 1978 subsequent to sufficient advancement of the Jarva tunneling machine beyond the tunnel segment containing the fault trace.

The various modes of bedrock deformation contributing to observed structures in northeastern Ohio as reported in the>PNPP PSAR include

1) penecontemporaneous slumping of unconsolidated or partially consolidated sediments during late Devonian or early Mississippian time 2) comparatively recent joint controlled slumping along the

(

i high valley bluffs of present day stress courses, and 3) lateral

! l...

compressive stresses either glacially induced during the Pleistocene

(

Epoch or tectonically active during the Paleozoic Era. Summarily, none of the structures, including the intake tunnel fault, is evaluated as a capable fault.

l The existance of high horizontal et; esses is reported in portions of northeastern United States and adjacent Canada (see especially Lee, 1978; also Voight, 1967; oliver, Johnson and Dorman, 1970; Sbar and Sykes, 1973; and Berget,1973 and 1974). It has been demonstrated by Lee (1978)

, through mechanistic analysis that the origin of'these-high horizontal catresses, as measured.in. bedrock throughout <such.of Ontario as wall.as i

adjacent areas including Ohio,is a viscoelastic response of cyclic j

glacial loading and rigid confinement experienced in this region during the Pleistocene Epoch. " Compression failures in the form of buckles, pop-ups, and high-angle, reverse faulting" are interpreted by Lee as an active manifestation of this in situ state of stress.

Non-tectonic deformation exposed in the Chagrin shale and Lower Till to l

bedrock transitory interval during the excavation phase of PNPP foundations is identified as glacitectonic and is attributed to late Wisconsinan glaciation. Briefly stated, the mode of deformation occurred at the ice-front margin of advancing continental ice sheets in accordance with models presented by DeSitter (1956), Moran (1971),

and Banham (1974). The superficial nature of glacitectonic structures apparently restricts their development to depths on the order of 200 l

meters (see especially Wickenden', 1945; Byers, 1959; Rutten, 1960; j

t i

l Kupsch,-1962; Coates, 1964; and Banham, 1974).

(

l..

1 The intake tunnel fault is interpreted as a compressional feature for i

which the maximum and minimum stress components were oriented horizontally and vertically respectively. The state of high horizontal stresses operative for this fault are attributed to Pleistocene glaciation most likely of the late Wisconsinan substage. The structure closely resembles others exposed in the onshore foundation excavations and can be interpreted as a feature of the ice-margin deformation model. Nevertheless, it is difficult to refute the repeated, confined glacial-loading hypothesis advanced.by Lee. It is.possible that. elements of:both models contributed in the development of.the fault.

DESCRIPTION OF TUNNEL BEDROCK DEFORMATION The fault plane trace intersects the tunnel at approximate elevation 455 ft.

l between stations 10+48.5 and 10+87 along the tunnel invert and crown respectively.

It is preceded by a gentle synclinal fold with a vertical axial plane located at station 10+42.5.

Reference base for all tunnel stationing is centered in the intake vertical riser shaft of the Service Water Pumphouse. Prior and subsequent to the exposure of the fault and fold, the tunnel bedrock essentially consists of flat-lying fissile shale interbedded with thin siltstone beds. All these spatial relationships are depicted on an intaka and discharge structure plot plan (Fig.1).

and a drafted reproduction (Fig. 2) taken from the original los prepared by the resident geologists (see Appendix A for original log).

Measurements made in the tunnel-indicate that the fault plane is oriented nearly normal (N47'E) to the tunnel heading and dips southeast at approximately 17 degrees. Effects of frictional drag of strata i L

rMULTI PORT J

f STRUCTURES DISCHARGE STRUCTURE

($\\

\\

\\

\\,

g

'\\

\\

[ O' E M W E M EL rTUNNEL HEADING ss DISCHARGE ADVANCEMENT

\\\\

TUNNEL ENT.

FAULT LOCATION

.: i (5/12/ 78)

STRUCTUR f-[ EMERGENCYhg\\(v

' BEARING WHERE '1T

~

INTERSECTS CROWgTE BARBS ON S10E OF UPPER P

[ '.

SERVICE AXIS OF M HOUSE SYNCLINE LAN

  1. sd' SERVICE WATER PUMPHOUSE D

fody 0

BARGE SLIP 4

s e

\\

r O

8 G

N W

  1. p o i=

-NUCLEAR ISLAND COMPLEX 0

/...

300 oo SCALE IN FEET FIGURE I. PLOT PLAN OF INTAKE AND DISCHARGE STRUCTURES

(

SHOWING LOCATIONS OF BEDROCK DEFORMATION PERRY NUCLEAR POWER PLANT NORTH PERRY, OHIO.

4 N **

O GREY CLAY GOUGE ALONG h

pt N FAULT PLANE 6" TROUGH E-GN f

S N

f E

GAS h h I"

G WATER g flNVERT 5% &

pr-( l-l/4" THICK,) A 43_

[ hE 54" biw. t

~ IRONSTONE FARKER BED 3

LAY 22"biw. t SAMPLED p-WEST WALL SPRING LINE h,

,,a "samt.E CLAY FILLED FRACTURES, R,8. 1 a

,33. bv.

NO DISPLACEMENT a

43"obv. E g obv. t

~

a 4

BEDDING PLANE FRACTURES i MOISTURE pCROWN ef*,f

/

TRACE OF FAULT %

FEAST WALL SPRIN"J LINE f

(IRONSTONE MARKER BED SEE ENLARGEMENT l.5 /-(1-1/4, THICK) 39"

'.I flNVERT II" l

GAS BUB 8 LING P

l THROUGH k -

E STANDING E

WATER IN

, SHALE TROUGN OF 5%

-SILTSTONE E

\\

(SHALE IT

  • TUNNEL

=

EXCAVATION N

ROUGH j

12e ENLARGl: MENT OF FAULT TRACE PROFILE LOOKING EAST FROM TUNNEL INVERT e

C FIGURE 2.

GEOLOGIC LOG OF !NTAKE TUNNEL i

I BETWEEN STATION LOCATIONS 10+30 ' AND 10+90 PERRY NUCLEAR POWER PLANT NORTH PERRY, OHIO.

~..

\\

l adjacent to the fault plans and probable marker bed correlations

(

are interpreted as rather substantial evidence of a low-angle reverse or thrust fault. Maximum apparent displacement was measured on the west wall at station location 10+61 to be approximately 22 inches i

accompanied by 12 and 18 inches of throw and heave respectively.

Geometric relationships of tunnel bedrock structures may be examined l

on Figs. 3 through 10 which comprise a series of photographic enlargements reproduced from 35ast. color slides. The tunnel dismater

. including overbraak rarely exceeds 12 feet.thereby, greatly. restricting I

the area. coverage normal to tunnel wall. Consequently, the photo-

grapher had to resort to non right angle views which contribute to apparent scale distortions on several figures.

l The fault plane varies in width from 1/2 to 18 inches, although the i

~

1atter is more indicative of gently flexed and/or abruptly kinked or otherwise simply fractured rock. Typically, a gray-clay souge of tough leathery consistency containing small angular shale fragments occupies the fault zone separating adjacent hanging and foot walls. As shown

)

on several photographs there is a slight splaying of the fault resulting in a subparallel fracture ranging up to three feet in length with an apparent displacement on the order of a few inches (see Figs. 3, 4, 5, 7 and 8).

i A general sense of symmetry between the east and west tunnel wall is quite good for most fault features discussed above except for i

kinking (see Figs. 7 and 8).

Presumably, kinking of the bedrock is limited laterally. Nonetheless, it is considered representative of.

i the somewhat ductile behavior demonstrated by the Chagrin shale in 1

response to the high state of horizontal stress operative for this portion of northeastern Ohio. Kinking is evaluated as contemporaneous with respect to the faulting. No significance is attached to kinking either on the basis of its presence or asymmetrical characteristics with I

respect to the intake tunnel excavation.

A conspicuous absence of characteristic kinematic features and forms of mineralization commonly associated with faulted bedrock attributed tornonglacial tectonic crustal disturbances is uteworthy. Included i

>within this category ~are slich=a=4das, en echelon faults and/or l

fractures,euhedral crystal growth within fault plane or fractures in l

proximity to fault, or mineralized fault and/or joint surface coatings, quarts. calcite or other mineralization within veins, and inter-i formational large-scale displacements. As the intake tunnel provides considerable exposure southeast and northwest of the fault, it is unlikely that fault-related kinematic features or mineralization could have gone undetected.

l Horizontal exploratory boreholes were drilled in advance of the tunnel preceding its excavation through the portion intersected by the fault plane.

These borings yielded gaseous emissions, essentially methane, and some connate water..Both conditions are not unique for the faulted tunnel segment, inasmuch as ample documentation of each from l

PNPP onshore and offshore exploratory programs, regional experience and/or the geologic literature can be cited.

Geseous emissions have been detected intermittently by other exploratory probes since commencement of underground excavation and most recently at considerable l

-8

i distance beyond the faulted tunnel segment. These occurrences are I

not considered anomalous in spite of their potentially hazardous nature, especially in the case of methane.

In fact the impact of these conditions as well as the total impact of the faulted bedrock tunnel segment have not necessitated deviations from tunnel design.

i LABORATORY ANALYSIS OF FAULT GOUGE Fault-plane material includes fractured or otherwise bracciated rock

_(Chagrin shala) and a gray-clay souge.of. tough leathery consistency.

' lions of the constituent shale-fragment' and gouge 1sinerals can be identified by magascopic techniques. The fault gouge which contains clay and small angular shale fragments is derived from the contiguous hanging and foot wall blocks which produced this material during faulting between station locations 10+50 and 10+60.

l Samples of the tunnel fault gouge were collected and submitted to the' Department of Geological Sciences, Lahigh University, Bethlehem,

)

Pennsylvania for complete X-ray mineralogical identification and l

quantitative analysis of the two micron and smaller size fraction. The results of these analyses are attached as Appendix B.

Summarily it is I

reported that.the clay souge predominantly consists of illite clay, i

approximately 80 percent, with a characteristic muscovite structure.

The other principle clay minerals are chlorite and kaolinite contributing l

10 to 11 and 8 percent respectively. Quartz and plagioclase comprise i

i the other principle constituents. One peak slope differentiated on the

{

diffractogram, representing less than one percent, may have been masked by I

a chlorite structure but was tentatively identified as smeetite. -..

4 The mineralogy of the fault gouge clay is virtually identical j

to that of the Chagrin shale as documented in the PNPP PSAR and geologic literature. If this information is evaluated in consideration l

of the fault plane kinematics, it is readily apparent that the fault i

plane source was intraformational with respect to the Chagrin shale and j

did not involve interformational displacements.

In conclusion, the fault gouge mineralogical analyses are interpreted as further evidenes of the relatively minor displacements experienced along the fault ssegment. exposed :during. excavation of the intake tunnel.

I DISCUSSION ON MODES OF DEFORMATION The ensuing discussion includes an abstraction of information respective of glacitectonic structures previously assembled and evaluated in the interpretation of the onshore structures and other supplemental evaluations (for earlier evaluations see Geologic investigation of a portion of the PNPP foundation and addenda)..Moran (1971) and Banham (1974) have contributed data and glacially induced deformational models which are evaluated for structures exposed in both the onshore as well as tunnel excavations. Most recently, Lee (1978) has postulated that stress relief mechanics are operative at considerable depth well beyond that of the intake tunnel invert. He attributes such of the brittle and plastic deformation, identified in the glaciated areas of Ontario and adjacent' northeastern United States of the Interior Lowlands physiographic province, to relief sought by soil and rock rigidly confined under repeated ice loadings during the Pleistocene Epoch. The l

1 '

f applicability of the Lee hypothesis is evaluated for the defonnation identified in the intake tunnel and onshore foundations.

Glacitectonics Glacitectonic structures are synonomous with glaciotectonic or cryotectonic ones defined as " complicated and deranged features and deposits found at glacier borders and consisting of material that has been overturned, inverted, folded, and transported by the shoving action of glaciers" according to the AGI Glossory of Geology (1974).

- Moran (1971) identifies three fundamental glacitectonic structures:

,(1) simple in situ..daformation.(2) large-scale block inclusion, and (3) transportational stacking within single till sheets. The PNPP onshore deformation,previously cited, falls predominantly into the first category,in situ deformation, although lateral transprt for an indeterminable distance along a basal glide plane or " decollement" was most likely involved.

The mode of deformation as described by Moran for relatively small, in

(

situ deformation was caused by normal stresses exerted on the upstream faces of protuberances from the bed (ice push), shear exerted by-moving ice along its bed, or a combination of both. This concept is augmented by lateral transpert along a d[ncollement characterized by reduced resistance to frictional drag and shear strength.

The nature of the decollement probably represents a material property contrast such as:

(1) bedrock overburden-bedrock, (2) weathered-unweathered rock, (3) abrupt, vertical density change in soil profile, or (4) the presence of a fluid interface.

(

l

t 2

Shear strength reduction which is attributed to a corresponding reduction in the effectiva normal stress corresponds to elevation porewater pressure, i

as defined by Terzaghi and Peck (1967) according to the following expression:

5 =

c-U where total normal stress a =

effective normal stress i

5

=

U porewster pressure

=

The above represents an extrapolation of the Generalized Archimedes Principle applied by Hubbert and Ruby (1959ab) in their classic solution of overthrust faulting in the southern Appalachian Mountains and elsewhere.

.On a considerably reduced scale, this mechanism in part acert=d by l

lateral compression is presumed to have been active in principal at the PNPP where the development of glacitectonic structures consisting of 1

upward thrusting, singular and imbricated, and downward under thrusting along dicollements was accompanied by intra-fault block folding and fracturing. The specific mechanism for loss of shearing strength along a given decollement has received considerable attention subsequent to the work cited above. The salient methods of analysis include:

(1) bench-scale experimentation, (2) computer-mathematical simulation, (3) mechanics, (4) petrofabric ma*.ysis, and (5) kinematics and (6) various combinations of two or more of the preceding.

Contributory conditions for the onshore :PNPP deformation are as previously cited (Gilbert Associates Inc., 1975).

The compressional model of Banham (1974) for glacitectonic deformation is an excellent summarization analogous in many aspects to that reported upon for the PNPP. Banham is in agreement with Moran and both argue persuasively in favor of porewster fluid pressure build-ups.- More-(

importantly, it is suggested that the relative rapidity of loading attributable 1

to glaciation precludes the extremely, deeply seated failures,

..f

~..,__.

(

such as the Rubey and Hubbert overthrust style of faulting, to much shallower depths, probably less than 200 meters.

Stress Relief As documented in the INTRODUCTION, independent data collection, analysis and evaluation by a host of cited investigators strongly indicate the existance of a high state of horizontal stress, albeit uneven, for crustal materials throughout the world.

In response, affected rocks and soils strive toward re-equilibration in newly imposed stress environments.

Lee (1978) demonstrates through: mechanical

< analysis that:repeatad glacial loading and unloading during the Pleistocene Epoch in Ontario imposed heavy loads possibly exceeding i

I 4000 psi. Under conditions of rigid confinement and fairly uniform'

(

loading (oy) distribution of lateral stress (oh ) is given by:

ch v

o

=

y 1-v where v = Poisson's Ratio Subsequent to deglaciation in the context of elasticity, horizontal stress (ch) should be fully recoverable. However, Lee submits that creep or J

visoelastic compression of the confined rock mass accompanies elastic compression such that

(

'Ach

  • E Aty 2(1-2v )

where R = ~ isotropic elastic modulus Poisson's ratio v =

i Ach = incremental stress ] subsequent to initial I

Ac,=. incremental strain 3 elastic response Under rigid confinement, sh = 0.-

(

This incremental stress component being time dependent is cumulative

~..N

--...#.u.--

a throughout at least 4 major stages of glaciation as well as substage j

sequences of retreat and readvance. The sua of successive incremental

^

stress build-ups is retained as a " residual" horizontal stress even subsequent to elastic rebound of crustal rocks. Rock mass accommoda-tion of a high state of horizontal stress build-upany not be possible resulting in anisotropic adjustments, or simply " stress relief" annifested by post-glacial bedrock deformation.

Herget (1974) found that the vertical component of in situ stress I

measurement data with a global' distribution exhibited a linear i

'ralationship respective of. depth demonstrated by the equation:

= (19

  • 12.6) kg/cm2 + (0.266
  • 0.028) H kg/cm2 av where vertical stress

=

av depth in meters H

=

4 i

The preceding expression is applicable to a depth of 2400 meters on the basis of overburden weight.

The horizontal stress component shows considerable variation with depth including values of parity as expected but also increased and decreased.

angnitudes respective of vertical stress. Moreover, 75 percent of Berget's data indicate a higher horizontal than vertical stress as I

given by his expression of average horizontal stress and depth:

= (83*5) kg/cm2 + (0.407

  • 0.023) H kg/cm2 8h

.where horizontal stress ah

=

R depth in meters

=

This expression is applicable to a depth of 800 meters.

(..

-~

. -.,, ~ _, _ _. _ _ _

i j

l l

Horizontal stresses which exceed vertical stresses cannot be explained l

on the basis of overburden weight. Heavy loading attributed to l

glaciation succeeded by erosion, assuming rigid confinement,is an even when oy > oh during glacial i

i alternative explanation where oh > ov loading of the same rock mass.

i j

Additional aschanistic analyses may be performed to graphically portray l

brittle deformation employing envelopes of limiting stress conditions determined either experimentally or empirically. Although Berget only considered elastic properties it is presumed that his working 1

4 hypothesis.on: stress data should be applicable in principle.to the viscoelastic behavior of a rock mass as presented by Lee. Admittedly, i

allowances for the dependency of creep behavior on time mat-be satisfied.

T Nevertheless, the collective works of Lee and Herget demonstrate

" stress relief" through elastic and/or viscoelastic behavior of a rock mass as a viable passive glacitectonic deformational model. Further, 1

the stress relief model of bedrock deformation exceeds by several times the limiting depth of 200 meters generally associated with the classical " active" glacitectonic deformational models of Moran and Banham.

Depth of Permafrost and Loss of Shear Strength The behavior of soil and rock under temperature conditions presumed operative during Pleistocene glaciation is evaluated as a factor, presently of indeterminate magnitude, for development of glacitectonic deformation. Tystovich (1975) reports that permafrost depths in soil exceeding 300 meters in contemporary polar climates are typical and any reach the 1000 meter range. Although these depths are representa--

tive of soil, it is reasonable to assume that the depth of perennial

-15....

i i

subsero C temperatures at the PNPP during the Pleistocene prevailed i

1 beneath the depth of bedrock weathering and probably much deeper. Ice coatings and wedges, undoubtedly, occupied some bedding planes and fractures as well as the overlying soil particle interstices.

j i

i j

It has been experimentally determined that the strength properties of i

t frozen soils while exceedingly complex are dependent upon temperature, external pressure (loading) and especially time. Generally, strength properties increase with negative temperature but decrease with loading and time. The time dependent plastic-creep behavior of ice

.is well established from. existing knowledge on the physics of ice flow as well as from empirical data gathered by glaciologists monitoring existing alpine and continental glacier movements. Further, frozen i

soils will exhibit a considerable loss in ultimate strength properties.

For example, Tystovich documents a 90 percent reduction from initial i

to ultimate shearing strength for a frozen clayey soil. Apparently, a considerable portion of time dependent strength loss is attributable to reduced cohesion.

The behavior of glaciated rock during the Pleistocene similarly is characterised by reduced strength properties and especially shear, i

parallel to planes of weakness. Flat-lying bedding in the Chagrin '

shale is interpreted as the most likely rock mass defect susceptible i

to incipient._sh_ ear _fsilure. Satu_ rated _, bedding-plane separat_ ions.probably were enhanced due to the ten percent volume. increase incurred as B 0 solidifies 2

below its melting temperature. Discontinuous ice wedges along bedding fulfilled a function similar to that of joint plane rock bridges.

Ice wedge strength properties, however, would be considerably less l. _

.. ~..

1 l

than rock bridges. The two conditions described above are presumed to be exemplary rather than exclusionary.

Glacitectonic deformation initiated along decollements in the soil and bedrock at the site of the PNPP in response to compression has been previously discussed. It is suggested that these zones of uncoupling may owe their origin to the behavioral properties of soil and rock affected by permafrost.

It should be emphasized that the role of fluid pressure is not negated by permafrost, rather, the

.arenal mechanism of. failure asy,well.have involved._ complex interaction of both phenomena.

CONCLUSION Throughout this report considerable discussion of glacitectonic deformation has been presented in terms of active and passive styles.

Several salient conclusions of a general nature are reviewed below:

(1) Lateral compression was operative in the deformation of soil and rock at the PNPP and induced aither by in situ horizontal stress buildup subsequent to glacial unloading or direct contact along the advancing ice margin front.

(2) Glacial loading has received considerable attention for its contribution to the vertical stress component required in the stress relief model discussed in this report.

It is equally appropriate to assume its capacity to directly induce plastic and/or brittle deformation of soil and/or rock in proximity to the basal contact of thick, glacial I

ice sheets. _

l (3) Pore pressure generation along decollements as f

described by Hubbert and Rubey in their classic solution i

of the " thrust fault paradox" to overcome a frictional resistance is considered to have direct application for i

the thrust fault observed in the intake tunnel. This is also probable for the onshore PNPP deformation. Factors involved in pore pressure generation are controlled by the pressure and thermal environment imposed on subglacial H 0.

2 t

(4) Soil and rock strength properties were effectively reduced by permafrost conditions to an indeterminable depth in j

competent rock respective of time and ice sheet loading thereby l

contributing to the general state of material behavioral response optimum for glacitectonic' deformation.

i (5) Moct importantly and in spite of the complex interaction of conditions, principles and material properties briefly outlined above but imperfectly understood, the precipitant deformation agent was continental glaciation.

.1

{

i Interpretation of Tunnel Deformation i

On the basis of all available information, the tunnel structures are interpreted to have been formed as a consequence of glacitectonic deformation during the Pleistocene Epoch. Movement along the fault was completed either in response to " active" or " passive" glacitectonic deformation as discussed in the literature and this report. The fault

(

and fold exposed in the intake' tunnel are presumed to be genetically related and the result of lateral compression. The similarity of

-18.

I

(

these structures as described in this report with the structures exposed in the onshore excavations also suggests a genetic correlation.

The elevation differential between the intake tunnel and onshore founding grade structures is on the order of 100 feet (30.5 m ). Limiting depth for " active" glacitectonic deformation is on the order of 200 meters while that of the " passive" style is considerably greater.

.perhaps as much as 200_ asters. Some of the.onahore structuras are known to extend nearly 30 feet (9.1.m.) below their respective founding grade 4

selevations orless cthan 70 feet (21.'3 m ) above the intersection of intake tunnel crown and fault. This elevation differential is relatively minor in context of either the 200 or 800 meter depth restrictions.

(

It is not readily apparent on the basis of depth which model best fits the tunnel fault.

In consideration of all data the tunnel fault nest likely is attributable to active glacitectonic deformation as defined in this report. This conclusion is submitted on the basis of field evidence, laboratory analysis, literature research, qualitative analyses, postulated models, speculation, interpretation as well as the similarity i,

of the tunnel fault to those identified onshore. Alternatively, 4

j passive glacitectonic deformation cannot be dismissed and remains a viable candidate.

In either case, the tunnel fault is neither l

earthquake related nor capable and therefore will not experience l

movement of a recurring nature.

(

l -

~

e, W

i i

i 1

2 i

4 l

4 i

.f l

4 I

d N

P b'

,. 3- ~.:~~ ~ ~~ ~~..

FAULT GOUGE AND BRECCIATED ROCK j

.. - - ~.

l t

~.:::..

' ~~

SPRINGLINE

- ~ - - - - - -

\\

l

./

i t

~../

%'N t

\\

t i

.. )

1 i

/

(

-]

t i

I G

URE 3. CORRELATION OF STRATUM ON EAST WALL INTAKE TU E DISPLACED ALOh8 FAULTi APPROX 4 MATE STATION t.DCATION OTE FLAT-LYING STRATUM ABOVE AND BELOW FAULTED INTER PNPP 4/27/78 L

' m2 so %.a -

=k i at::c ::

scN '-%hn.?>W;em12:aw,

,.;, n... e

~v + cess amm -c u ~. w.u

.~c.

~

_p

'y q.

e,: L Y.,

d 9 i:

s

~..

.v.

% g.,- % w - 3. _ hr ;u..

,'~

', ^ '

l..

QC W[p'!i7%

..' y:>?L' ey.,

y J;n o

g.

g$,.,

.. ' - h

. t.. *fT ~. : [

W,(

MA, e

f

. h _ < fI h/

Q Q g A.3,.;g ({,$. N 4.gf 73>

h Q'M f'

I g.:

  • T ' '

Y

'N c '

p e

b.

__t

.y

- ;,#,... /,s*

7s

-.. -,.3

.se c-.

,)

\\

{

3, g

,.5.

.a

.p.,.

' l c

i y Yg::Wam

,i e f,

N' c * (..Q. W& -*

...pw.; p m

, y c.

(,

', -.h [.-

,g 4 -

~1 *,. _ )y>. - '.,..

5 e

%.7 3 p,.

s.-

w w.y%.. _.. m.. :,h., -. t, --

e, v.

,~.,

u n

,-. - 4 y.

.a e.

7,,.

. [

t

,y) A.

3

-c

. ~f..#

f s

f~ %$

?

- ], l

..$ f.

Y

?

s.

5, 4

./ LMMI Y.. M O%.T}:Mk/.Q1.) 01.y

?

'*rL

%1,-

.'s u..-.y

., L.;

'.

  • f. '. !*Y....-

.O

k. %

,,E.

<, ? N1

- }

i.

. ' Q Ny.J.

{s;.(.[4,

}.{.

../ /

.L ).

k,1 ' 7* j 7.p;",38{.[ijj:( [ -g, '

. ~ :

. e,..:

Q 6, r.: :..

.;L;' y'.'g.7,kAq:p.. :.f..

%.4' x~.;...g.g:, yr v f st t:.

  • y.

s:

. : ~

,c;. ; y.

4 u....

Q 7.s...

- Q y?. :. w..

. 4...:

n. :, _., e.

n.

. ' v h

  • ' t C.. a vh.,; Q,} [. p}..

2iM.[k.[3.u[.[

...+

n

~.

u.

. - y' h -

... u

-.m v.

. p u

I -

~

s

...w..

L

  • k ,, j ~h G.y,-

JM ~s

' % r,.. L ; :{, ) W:%c. '. t,

+&

w

,..y"y,,

q:..r..y.,4%y - 3.. y g) - *., ;W : g",W ;.:..' :

g r._

.,. 7,.

-.e r

. ].y ' Q. ~..:.. y,.

..h. '. Q_ a.,4 -..&

c...g g. Q 1 a....*..

n%,*

.:b

+ ; '

py*

z..,..

g....a

+

2...

,.,.,, ;ep,, ','I [ $p.o

.y :.,, ( :,.,,. ;y, M ' - -

.g$,,y...

g.,,

x

,; n.

.: y -. '-

4'

.. r. :: < - 5s. ;.. _,.,,.:. R. ~q

., y ?.f

+

q.

t. p. :,,.

?

_M;!.$ '.:. ",, p Y,'. ~ -

"... 3 n,-

,.I' d i M g,- 6 Q t

'..f ? i,W.

V i,

. '.] [

W**

, *;9'

.i.

k. - : t

-; h.. Q.

e

, :. ip

.9.4...a.,.:. t.i 4 h g.... + "

,t

~ p; W*

,.. J g ".;. _ y., i ". y p.... p...:.. g.;. ' ?

C 4

.y,%

W, C /[.'W --

3 $ Y'

..._.;. _y,_,.T._;;;. c. 4,.

. q,.g 9

33 _

~E' k'

?

.'I

h. I'; [$ h [. c 8 'T f.$).C ;- i..e.'.

.< E i -

a, '". i d,' ' k Y "

-v M

..M.K f I..:.v:.?._.%.;j, C i.,f d

4.NM. t'-

i

. gf f,

.k ;.. g i',y-r,'.

97-

_. %;.;.a

.. :,(A.

f:

_g yn

h,,....., w" n,

.. 4.

s.. t,

R.

i.

. *a

.r,.:n. '.$y;y. q$ <l?..$ ',T*::.3 g ' v.

Y.'? :.^

+ ;f N S%I N:*s y

L' :.W

..:. y. Y.; w '. )Q ' A '

'l?

t; s %;t ' -.. 5 9 L

-:j;.4 ;x:

yW.

~n:

m

.u.

'?i

>* -: A

- s Mt

r

, g r. F %. 's,

  • Q)':.'. e.@.,.'**%.'-
  • C.

9 4. ij a%.. '.4..

g'?.g;4 3.' *

.l^ '

....p'_ f. T ',. %

..?71' n ;g

.... ' _.. ~

5

- e.

g.

  • p
t-3

< q V.

n

- 'V. ha,-

' f-k /n ; :' e

.4g:

'.s L',,, f. 'p, M -

c,.

r e..?

v

-~ g u

.;c

%..- e.

.t.3.

.g, t

. ; "a.

,~ s.'..,y 4.

,t.

r, v..:4 v'~...

4 :s-v 1
g

. ; i:'..J,..' L. 1 f.h.,.eh. M :%p. 7.l..< ',I. :. !.

...e... ~ -....

z yx

.=-

...,.. ; 9.,y :. ; ~. u..;.p:"

34.

x.,

. s.

3.y y...

a

i.s ;v.
2.

..,..~.a.: 3...:..,

5.:, :

w.

m:s 4.,.

c..

~;.( ?.

ll ;.. ;.

' *.j.l5'_

.f. '(,. _

b;kb

%.w.; '. e,.. g :%..p.. ;.

. 3, y..

-i.;. ;;.[.*..._

.?a_.. r

.q v....

... _y.. q ^

s.

1 ad...... '.,

g. C. c., i 1.h
n..

L.._..,' :.%..m.....,

.3 A_; :.'.N

,.~,..;..

'* l

_j<

l {

),

s.

., y,. s m,.

a.

V

.p......a. u wg.

      • '^#.

' '.:=. '.. ' ' ? ;'. l.

m. *.\\

..~,v s'. '. "..

f,,.

.g.

,; %I.

- 3 l.,c

  • ~'.......4-Q- ",

s,.

,...7,

..t

,.:. W s.

p.-

,. _ -. y

['.

.?,L..^. t - ', ' '

PV

,.4,..

ss

  • .., y./ ;., i

.c.' $

g:,,M.,- -

?. *" _ g '.; ',~; _

^'.

' d-;- %, i : ' _

T'["- }; f,.,j.

.; ?. 4. G... '[ _ _

h.. lp.., '._l-)]..Q[-%

.)

d ::.. '

Y.l 4:j.

- ) 4., 4.p.

e - ; e..y..

.?-

  • ~
y}.;-.-

. x. m? :..,

x -.. x.;.:

'.s x.. m. '..

.G '.

.b

.... ?

$ w.,_..

n

~:,.

._,g.,.,-

. 4..;,.'

.t

.,L

__.. ' i,,;

t_p

.,.1,'w.:,..-

w

.[

.j,. [ g

. [h.

.fA.;

jh.[.

j' h[,-

}').; j

O i

FAU.LT 0000E & BRECCIATED ROCK I

f DRAG ALONG FOLD (FLAT-LYING STRATA

]

SPRING LINE 17 6"

1 o

4 j

q g..... ~

j

/

[ k.

)

j a,...

(...

g

/

\\

N DRAG l

\\

/

i l

?

i I

i i

FIGURE 4.

EAST WALL OF INTAKE TUNNEL WHERE FAULT

?

CROSSES SPRING UNE AT STATION 10+65.

y pe r a:3 y.c.;w;

,,.;,. ' ' w > '

PNPP 4/27/78 e

- 1 l

~g m. ~..

.n.

. o

. pc. ?. ps %c-Q- }

> e 4 y 'S p *d # g; w, p. g e

. c

.r 3 g< j*.. ~ -

.s y

k$ p -

v o

8 ;

r.

~i r.

g y,.[ #.p f " ' %.

J,

).d,'g.

ph [

-; ' ~

..y.,.?

. f..g '.

  • Y--

....-,.'.'E t ' 7.., ;. ' 7:... ' ' ' ',.. *

- ^,p

..a..

3..q..

&. gv.,,, i........" *;. - : y;.; ::

r.r.

. :-; g y

L.,. : '..a <...y

~-

s.

a N '

,2' g

y s.

[.,5 ~

,-t

,)

J 4,i. h [ (.[. Jh. %

['.

4j] % [,Y d (

. u.. s, %oe 2... ? w>.. %' n, ;.y,4 s,. A..g :c. ~

. m ;. e. x.y. g 'd y g.

kg v, a..

a, y. s... i

.k,..

<_.$ j. - J.. * :

-. r. s

.sN $. y.

,'. %...."../.> f' e(. C..

} _~ t.;. t,. 4," ',j V.,i

-.f J t.' i

....",(

-, 4N..,

.v x

s.

O

.. a' gh j'E

,. M.

  • - **5 8

<.,y'tt.1

. 3 f,

. '.,.;.4

3. q e., g;:v+ 7.:.g.

s.

1.,

y

. j,1.

,. 3,

.'.v... A t...;a e.; *..

r

.aa

.. t s.

,8

.y 4 Q%.9.p~..g. i M '..' F,g?,'

c+

.+ :..

e,,8 W

L. '. :. I ? :: :" y i,'

. t

's~Q.;

A l

.'%?.

  • :,; dm Sa.f. ; a g. 7
4. p. g.m s *. c c

. w.

e

&. s-..

~ ' -

,.r

,1f f f;,
n.~A.:e p.g..~

. L..

s.

e.

.f g.,

r.'X)y

' '., y ' y'.M c.: g r.. )iP. - MJ... ', -.

L'%'

. y.f.

. d.,

._..L.. ; #

4

. C. "' f _f r, '.. "> $. ;.  : ), L--4. ) g,.. ) -

s +

. s:".1

=

y.

~)

r

,.r.

s [..- 9;;' }%.Q Q 73' :. :.6',Q.~ n: f.z.

.n a

9 y, h y, Z

r m.

a-w

~..

g

?

Y

~

\\

1

% %_ gl.%. r. ?n.....,, eQ Q l yL M:. J.

., n:.,. ~

,- g.

v

.~

c+

n,,. [

y

  • r.

4.

~.^ l,.

1. =

?

.[.l : [._

y, 's.

g

% - [,...

.e.

-T I.

3

  1. .. :.Q '+.j.- l.'_'y t. ;w,. p. >., ". ; %^ '.'..%:

9,

' f... s :

.k *

.4 l;.

t-l'

. y.r

% *:, }."... A ;s$' g (,. -. ' -.

s.;

+

s c

? -

"?

..';n.c,

,E

.v

v...
,+.4 a 4.>

.A

',f.p-.

d ' b....'.L,' d,. 'a

  • h...*f.

. ' [ $, f%Q_ul,. :...[...

i 4

h;s. y,;0.~,.V f

~ ~ 4p)..n-e,,~*y(*E.l

...t %,f,1

. ~.. N,.l g y..

w., a

'2

%,C:

~a,Qj: j4l_:.;nW,;,g~e+, r

+, [J.. #. m s,

' 4 0, is e t.

l,.' :.

~. hN.6 4'%ek.;Y.

.b K,g? &'N.

l,'

, ~, _ '.. 5 l.4, w.

A

' Y; '

w

-'[M Q [ AJf* h J?- Q Q :k h-e M.n' ?. * :: ] &

(.

d%.h %5f.L..h.:. r:.[. ':1.:V Q..Q 6 Li?.;[W

% a,.: y...

,._ c. ~.

.y 4

I

[

.)[

, mky hjpg-gy ;

pw s,,.: g: := y:f.

.i.w

... w-..

,. ~. s. s;

,.x

.3

.. %7

.,.. p,

&.t,[n..

N

. 9.,4

. A - s9P 3 f

,4 g

. *J,

es

. ~,:

n

%.~

.p, s

% ^. i.

',l'}{flg.4vlj>.w. ?.l-ql'.h k :l,Y,@.? &.c U 2 ' ;.

' ~i Q

s.

,, w.

m

~

o.

c

. p.

n..

c '-

.. w w :c.x.

s.u

~.

..,, a, n

. i. -

o c~

Y.,. fs

.. f. g 2

'y'w.:2' V l --

.. :. m

~ t4f s,

f j y g)y fy;Q1/ f.;$d. N; ej

' q :l '.

t x

vn

. Ol'.

Qff,, - h *. '

.te ff]..

N 8

W j'.

l-

,.,. f ~

.,,k ' 8

~h. / +. s a : A)$r g

hk?)w.w g r : j,... ) 7 3:> f wa n Q-A w.... &,h Q q; Q i m..a,

wn h g-J.:Kc.

. ;.3 3 y

. Eq1 3 4? M4 t

' - /.

x M %' '45/-

o +

.w-4 -

f

.f,, -

i i

l i

I i

SPRINGLINE i

i i

I l

l

' *%z.

1

..........A

\\

r TRACE OF

\\

l SHOWING EF F

e'

\\

l 12" 1

I l'

i 1

.-?

i

^

.t FIGURE 5. FAULT ON EA$T WALL OF INTAME TUNNEL; NOTE DEFLECTION OF BEDS ADJACENT TO FAULT.

PNPP 4/27/78

  • I

4 i

b w a ; %;,. W" 4 s qM.V?

aa c,:

9 : 4s%. @I'44 hM 5

,47

~ '.5 ' % % E M u" T h M @' ' ' 4 :i N 'M A 1 42'~

i ~

g.

g C}y

. p$1 '.;.

. x..ng 9.y s.. M wn +c.Y)e i. 5 yn k,,(4

'k f.7.y j

( } {. ;

h._..j.n-[.

.re. -

f, 4,, -. s..

~

a u

~'

h eh-w

-[,;'

a

.,y

.,s..

k 'r:'.; ; ; j.,. 3gw',. *... ?. ?.

d.L :>A,%e p

,.., : +:..r -.

.. g. >.. 4 : y,1

-- 9 Qlp%, G.3 y ;- [~,_.n;%, k g:, (y _.
o

^!.

,y

.y q y,...

y 7,

W - [_ ^ '[4;l-y [.y. a; y

h. f.. O. i ? i 3,%. >. b r.; WO Lf
  • $.i' y 9

j;f:4

.. - Q ()* ".y %

~'~

j.

L'*

.e.E

_ )g, -

i

.~

.e c

, pp.:,.3.

.4

,,..w., (..,

e,-..m.

.3

=>

4

't,.

  • ?.l.$;e l_.,.*, -

lh 'gg A%% ?,,5gl?

w

,;* g.. v,1

, i..<

.c

'h

'.Q l q1[k..

.*' ~ ' ' '.', M. )..

  • i::[

. f,)6.]:,%

Q

[

%g.

3 i

[....

?:

y.

m f %. :'.

- ; M

'*W

~

,;. p'.:.

_l.

> t' '. Q : a.*.., y

..........l

.. Q: '

/ '&g%

1 +;

a ;..,

6

. p..

.y; g

,3,

y;Q. _

p :-

7

,f.._

-1 u.

5 h' x... :he

' #l 1

-OI,

.hi

'[ :.

?

J _.,;._. f..[ -

_ p.

_ y.,

y, s (l,.

~..k_.(. _

-l -

,. h $

i.ky '- '

l ' j." ', ( ' O '.~

.-;,;{ [

^

V-4. ;..

p h J y ::

e. A.
  • 5...,; ;.e,. :.

.'.cy m~:n ; - )a y *s.

%.. y% ' : : _

t j

<f;..; -

,f

.s

-;.t.

',.s

Q

' 4 '.&. f_ +.

1.4 ll.&..yL.Y y a, u v.f

, (._

hr, ' <.,;c.:.

< =.

'. b. /,i :' '

g

+

d

-.. 3 ' ::.

.;.. g ;{ Q.:y.!

~

.. _ *.a

}%;};;mw jy G ' L.

F~'i f~.-%*:=

G. A: ;., l - /.-

~

....... f4

.v. g.. s - Y...

.9 7;.,

=

9,Q, W.4h., ;"g n-

..y

_ l*

,,. : z

,c

^Y

. 3. ),.M.:. ],.

.ty

.. ' '. a.

we.. ;.... -,

? 'l.l ~

i ' )m,, l;

... 'g '.

?

y :i '-

+ *

$... 'f,

$.i

4. l

,f

' g, '

A}: ';8 *

.4-y.x s.;

-..4

- 4..

f.

g.

g

. ~.

l'

^l A.

h. < h. ',...

-.v.

9 p

. ;..h ! '

\\'[:"(

..h_

. 7 )

^

l " A*y

_4) :

_b '

~: :.l3 f;

  • j
. ?.O l lQllff, a p l[^h__[W.hs?Oh g;r~ne

~

y xn mg.e mwq a.> s ;8...

a L

e r e; x.. y 4s; uu

...e

+

..e y? ~^'n % ; eca[

N N Y. Q f *. N,

.[,d f

&r, -

-% ;., W. x w v.;; A l, :

a. s.. -

. _ g ; > %, _ Y

.H t

. ;.y... :.-

~-

h

-.; 'Q

... j ;f f : x:

g.:'

l.&_m gu dg 3..f gl 5

_ [t % e g et gen n p.; g. v. 3fg&yvyv:.4 r

. ~ '-

z.

3

..3 mogjFn.ws.,

q7: y_;g g yp:} g gtgflg g:-}( g.g

.....-~.,

l

' ~ '.......,

BRECCIATED ROCK

~ ~ ~ N.....

i i

....../"

? \\ /t

+

.........*../.........

i FIGURE 6.

EAST WALL INTAKE TONNEL FAULT SHOWING DRAG, ANNOTATED STRATUM BEDS ARE INTERPRETED AS A PR08ABLE es;givgu.gggCORRELATION DEMONSTRATIVE OF DISPLACEMENT (~22 INCH p..,

PNPP 4/27/7s

., g_

N

t a

b 4

- n ':

.q. - y <i y

~; 4 3@.;;;-(; y y ppgt.

p'.

4.-

- " - - c.f,.a.,. gr ;f *,e <;,,.: : ;.

3 nf p

.r t

L.,

' s W. e

--'s &.g

$-., w,.,. ;i@. ;.%.

y :D. e $.-w.f*;* '..;'. f...: f :,..

y,:. "- p :.. y

'.?

m. +..A n '.- ". -,

?

,L,;

L..

v.

. O s.Q..T,.

-%3

's r.

,. p w n

  • g, m' y.
a., u., a.

w.h W5 5

,.0..-

  • w-

, 9

.,,.." h,.,. g. - e.f,. g' s

'..n+-

.-... F $

. t:g-g..,y'3-,

.-. ;<; f,,. ', L,.. : - '.1--,,.,

i

" y.;

>i.,

e d., ;

2,...,,.g^

v.

c :, Ccr

- 4,,

.t-. x ;-

3

,.. gs...,

4 ~,

..' x.,4,.. V g;, ",. 7 * ',a ph ^ w..,,

,5. ' *;-; i, a p33 -

-Q. - ;-

.> g;a n: - < q"

<wq

,. ' > v,,

Mn *4\\, - ". W '

- N 3-6-

f t -

g

,,...~..: yJ.

s - 'n!..;y y., y g.. g,7 c,_ g'..g. g

u-

?

,,1 w

J.-

s 4.q p W ogfr m e

..$.,g..,q ;. - 7.

s'

...M...,

a.

p,. g'.r..,

, <,g

..., ' r i

JW., i...-

Qr.

s. -

,s N=

4

. ? j U L g.) E. + l,U P '."&. b..$. :

[

l, W ? ^- l. '.. ' '# - s,;,.% syk' ~ t.

Q.f.

0

'q..

].w l. '. c '_ aul:'W V_ _Q s..

-M. %.j,,N.h.

  • K.. C.v ' : l [ l.

A. *f

,,s. L:..^ '. %.i: y '..?

y a.

+...m

- - a

+ --.;

g, p.

.2

+

y, g

7, Wh

$yj.N 'N. DO Y ?'[,.Y:.9.- f"._'E

.4

$Dl,l '.?

  • ?I -

O.s$.k.. tfs..

..,...? * -. ;.-

."'.*d..

.a '. ?.

/V.'* - l 1'..a ) '.'.h.,,..,:N d.h.

~. '

- ' ' -' '.4 y.

[

..../ -

'r 4

w..;

- E '.O l-..,_ *.,.v;J # -.'

' /.A' W - '.'*.f.W - f 4 4 k&,;M.Y' ~- j ll I b'l W[,., b.'l..R 1 h y ; -,, [f ^.7~

% ? '., CI..*.',l.

  • Q L 'Y p%,,? Q,.

.+.

~y, l.

.6 G,

c. y '

j " -., '

,w -g-X p-p.

,,p.

s y,

- *.. /., iis.. f.

  • g y

,,._..,.-_s'

.. - p +

c

3. ~ -

. g C

.x G4

,.+,9,. 9,_

(,...,.

g. j$ b -

1

'.y; (.J. y,.9, y,v. %, '.i : '7. 4.W..'.;h. ' ' *. ' ~ '.:.

.,',g[-e.

. e.%

/!

e,..n: :.. y

. _. +*L. a

=

~ ;.:. -

.. u.,".

--..sb,,- (A. #

e.~

n

.c

,o,...-

n a

~-

, q$. 4 h

,M bMN,*.,-. v (ey -.

,s.., y". [.

Y

~

.-A,'-g *. - '..- -

n 4

f N h '.,. 4 r

.W *

';' i E*

- +

.y a3

+, * )*E fi.

)

4#.,

'N 4 h I '

p 4." ' ( '.. -

. f.,,',.,'. ' '.. ' [ ' 1[%. 4

. g D^

Y Y..,?r,y,? '];

'Jh,.<q

- - W % h "-

V j'M 1; 1'gg q,,r3 17'., ' i L $. .

'}.,

c-g.

  • J-
  • ** S g p' N *,, -. g?i

'r

.c c-

-M

'. -1 e*.9 m

T# k. J * -. 't. -$ ',,,'?g

'..'E

  • s.

. - g.

e <.; W Dg.-

's,....

3 f'

' f M, 4", ".7,M~ [S.,7 '

'(,

'4

, y g - ;_-" ', " " ".

'4 $. 'j, ' -

y 8-

i. '. al l,h, p. y a '.

3. ? g';. '

.' *.v q ;.

.. y f.'[

, 1;.,Q.

.2. j th l < )

".'.p, 4.:j q.;.['.'.;p [.* % *.L : h 1ik '

ys7?.

'Of'6,7.. y d[F y 3.{gf Q f^f.: [ '.}j } 's._j-i p-

.- ;4,,, -,y r, i *o.

{

p(..,. a,) %

x.,,m

, t

.t,

,..,,3.

3. s.

f

.l

,f. 3 p

.;( ' '.{. c. F_ 4 ", A

-lg % ".,.

V.....s...

..,.4sj

.~

.?

V.%'.

  • , g ; p., %' f 4

,.. y..) ', 4..%,,? Q:4'i.

3 j

..-z-

.. Q g.

? [1 47

_' )%.-l..,;. g,4 u, I y '.h W.'.1.[ y,',M, ~

p>.., M.. a#,*~ (,.

. }M ' > - h 4

j'

.~N.

,"a

. k,,. * +, & ~R.

c

'.-f i. igg.. G,.

. n h.

t-c ';.. %,

.,u

.7%'. y' %,^* g y...

=,g )..;-

1 %. W u'.'

. L.~.

m m,',.4._.

gy p.y m

,x,pg-

. x,. s...

g,v 4

s g., p~. w$

4

,... -,..: e s,,,;

y _, _. -

Of

.. 1")'yp%. 3 5

'v. -

h '. m..

e w

.s e,,

-:,>..s w.. ys -

e

  • c P.' i h*;Q...

r ' s.

9.%Mflj.. R i.... -

' f,, ]

  • Jy3

.. g 8>

4>-

'w cu., 1 M

9, x'.:

.) g 1,.y ' -.

P?

.v -

> +; ; e : -q y'

'?

t

j. -
n.&

p

g. _

g 3-.. ~ 9

- a i p. ',l.9l-f.,'l ;;'q,L f

  • ..4.,

-j e

,e w ".

T*h. j.c ;.. 'j y *,~ &[ j+u.[

s y 'g:.

, _ q '..jJf.{,.

s.

2,'

v A.-

m.

.y-

. n.

,F.-,3-Y.'

i

+

e

4

&.. "; p' -. ;g., - * ~;),4 3 ;

.is g- Q - y J y.,', s, (

r i

s

..L

.W y-e, 9e p<.,,j -

.4

<,/

..{

+

s

..,c y.,

  • ,.;g,-f

,' e

.y -,

7

~ q. +,, a f,

..s.

c i,

a y

,. h,.,

+' 'y-f; +n.

p. $Ia

-. c,s * -.

,:.yy 5;m..X +.-g+q ;, g,y p.

Mly[,'-

  • J :m ' g.y
r. 4 h; s. yM..g g.. M,'

, '.'.,y 4

O.

, e p.c

.n, q

i.-

,e

,q g

y{ :? <s g l :

+

2.f.). h.., e.

J ':., ' :. + ; _.

. g.

i

  • p b

- '[N ' $ -

3 N,

y,

- Q f..:.'t.1

,.,d

,j *

(, M g

',.'.Q-j,

- g.

A, ?. ' -,. -$, ;..y'. :

.. '~%.c %..*'-H'%., 8 y-f..., '

.f

..:.',, n y.'

' $.. h.;r-..

7.

s.

'.p_,. +$.

  • l'4 k

j

'y o

. d - @.r '6 ' -

S.'

-7 n'

t-

~. ?

[.,. a.,.

r

. '. y..

%, y

' i.$ ( 7 "', *Q.

[

y.

.g ' '.

i..,

O

(.,g.,T j a

, d: i'

?'

.". f ;f 4 g;,4 i..' ' g V Q. '*;. $n;-; I.h. yJ,,-I Y U h.[ Y i. M,. < :yg.'^
1.. g e

..p. v e.

?p.

j.

v.*t r

4. Q. W.

7~

,.,A

,. u y

b y

7~g w.

q >

l.

y,p\\ m,... -

. q

..? y g

.J.(3k.

4 r i,; f. ?,....*

f e _

r Nn Qq

- p V ~J. -

>m

,.r.

_,J. 9.Q[(.f,.g)lff

. p.' N y.{;g y j%

(,1

/

jWjTVg 3gq

f. 4.. t. *f%.M M ; h! d.[.,7 % 7 h. y:

v.

s..%.c $ -

~

%K

~ c.

.m o

j l5

  • k=

EM b.'

% f p,.( ([ M..

I"

3. er

}L [. [ l p e O. n:g,..y.

,w.,'

(.

g.g A.>

m.g c,..,g M,..,

s 4

i.

6,.. '. *..

p.

. 4,7 s,' g.

g.,..o.

ps

5,.., '

e

..u..

A f~d og%.' -.

S

,1 F,

d.

.Y.

arf.:h[,f'bV [l.fg )&*[,Q:jfQf Qh.j-- 7 'd 4 e i

2,d / ,~I l: t e U". ? $~ s ~ 5 %e:) k .i. tg 5 is it ' M \\*"; O kd I, l~ ;j k 7 a w

  • 1 m

jef 1 >n %lT ?! lll 6 E

s I

/*! b I."4 IE 2 tai 3 4 e3 1.si !=: =b l j"l SQ* . -2 ./3) MO = h I go / 3F r

  • / x3

/ 2 4 I _ a-t g- "N* *S C i O O @ j ES$ I HE/ 3 i OQ! mN en 3 p/ e,t fm Oat 28 9 2C O OM W om f. ug E Y \\ m A m 4 mgw I.O p m,$% 3 3$z ~ ~..,'**., .9 6 l + 5 t a Y.- sS i

I 1 l i i J' l ( L i. M $h.,v.giEt.+.4 S:fW"OW,i.. pOG.n#w#c w q % WM.WA : g . L,%;s s e&. 4p me. w'. g,.A 8. m ~ w m %...su..,,W.* l' o .? gw. / v e

l..' M ',QPf.. ;.. x. s. v,., ;, 2 w%.". ) v. %

c s v .%. F yer .),. a ?.4 .} ( '1 ' A.;'* ', a :. y'id n g.(. .+. y< . n '- g y[ ' $ Y y. i g. ( )[ } y, E Q.h,Id,.I. s,.;fk+f.' [.) hh%,..N'h; g'N.

  • h

,,a...( _V "e;'.g M' c . 'fk.,.NM ? I U ff' e. 5 4 N .,, g..; fr 2 g. % \\ s A . i..' f* ,'_".). 'u.'f5rr , r % w (s,. %, f;&g *,y' s?f%,' ~. ' " &., ' '.' x.9h,4-s, .s

v.,

?

p. 3 1 - ;. ;. '

n . ';> r...,.:..

u.. g. a v 7,s

, ' 1,: s ,t M . p T ' gil 'g:q. ' L,: p,-

'. m. ',

t 9.- . 7 ..a, c - Q & ), Q h R i E D. J. ]4 y, 4;.$?y Y f ? Q.t.~ r.-.. ..g +~s.1, .:.e, y v 'l.., -d. 4 y 5 g .m -g v,.. J..s', ~ 4, ,f ,.9 . f_.N - N#.,. , _ r.. .. J ',} r.sy.y; *,,,. ' '.. b.,~[ g[. N,, N< '.,,, M..a... Nj. 8 ; ',- .. q.9 . p. ,o. sh k k, k.. ,j, a e 5,. S, tv .. ",. p% * - e, -.y a. ', _ ' '....,a?. p g,. -g y*f, ..f:g[n, "N_ - . ', - -' f. .%- g, * .., g ;. ; ~,w-. = .- ~' n... ,.4 ...L f 9 .._,.,2 - }, '

v. t

.. ~.1% [,,o y. '4

  • x l..

',.t -.%.1,, f. M 5 W " 'u. L yy ^ y..g "'c..- ' * :'. ".' 'w'. 0, ; g d;.4 ~...$.g..,, p,;(--1 W - % Q 1p., 4 %. m c g.: : .,,,m r. g. m. p w%. ,,. -., w. t Wx-y' n _,.. m ' , e% w,.: y... ;, ,s. S&. g[,': ?. ",..'.$, A' : '%,& $'\\sl'*c ' , N? g.l Y y 3 K,pl -];. v ; bV$Y, : ;. p: W -- . x,. p s, M,t p, ;..,... - =' y 7,;,;..... - r 5

v.s. 4.,..

s (,. u. s v - - !_t T.5 ....,7 -e

g s

m.'.w'.y4.y re t; x~ (; a .. _,,. v. a.. s g ,4 ~up s q .,v- :. 5 - *:,L .,.; 4... .y* ,'e,l - p, 1 , t..,,; ...-,,...W.- ,=,m.#, 4 ,...,,.,. +. -..,,,. t s. i s-s i 4

g., x,3 %r,

"' "% l, 3.;v.a 6.,l'; -)w fQ-4 l_ Qle _~,G. ::.,,.,," a ; R > Q z.._ ' 4.. &g er

? > b.,, %

.9 4 ,:

  • 2.

.2. ' >.. .g M. ; 'M.s*,,. L .. "',, e f.-, 4 d.% " . ,.n,t ; s;-.h,,, k,,.. q. '. s. e..a,,f,_r,'..','p .. ~

  1. .m.y
  • ' * ', p ' s.'; *.

.'W ,E. '..,..,- y ' : .'. 7 _,i.. _-. ~' ". '. y- ,t s -- %, ).5. -P- \\.k(. ',.,u.. :,~.-,,.*; t. y%t_ 1 ' ': ~,, -.s ,m t ,, + 1 '.T '. g*' ' p,$. ', s ',*g 'y 4y., .c -.* .-t 4 f. :l" ,.,{W' r.; e 'l '. - W '

s. - -$h.~k.

1 ...L +, y

  • p u i,

l,. f.. 3' g. ?.

p... % :p g f.,:.,f
' ".* ~. ?

i-:,hl' f?:llh,.y n. M% W g "q.s p,uT,: f k' ' ~ c~ f N, ll } ' ,'f T. *, W.] Y l ~.O l. '?...,'Wil'f,. %ts,".i y*.i Y, q,# '. ?.,^3. ?, q w-w. Q

  • ll[.7.",

i

  • 'Q ! ~ ',k

, ? ^. I.y h. ~,L X'. ?,$% ...p.p'c A_ i 9 ; g. g ; w 1 ..w s.7 v 4 S,'- T -k [N ), ;- D,- } ( h.[f e i _ j%. [ @94 a.. Q g. Q y,..[k. p(.?y}.Y.g @; h:1 7 U h,.,,, + bTQ , A w;_, w. '.. >,+4., y)' w f.. -2.%.;Q, Q*;p.%.: M_

.
y..
;'., :.!g

%- sv;.* y ..s " 5, i .,Ag ~ . e-* 'm _.,c_._ ~ .r, n, +- f. f 1, z, + _g+... c. s 7 - -.... g , ;... 4 -

4. %,.;.,w.hw -*, e. -

p'f;'., y.,h- ~, x h .sv...,;....,.

~.

m v. ,,n:~ y,r ,y. ss..o <t .-.y'- g' 3.ev-e cy.,

x

.. y - ~, y' n a ,4 s s 1 s

~

r

<M. >s +.,..,., *3 - f...., g e ;;./

n; q.,..,,.,=,. j 4' s p. .y

.g - + s, a

5 e a 4. g. -,..k g.:. .,7 J, e_ J h U

[..

~ A k. f.' ' q/ ' y 4., - p .s y.7 ...q ,,4 4$ . v. ",4 .$,g, g , - y , t.. o.% ' '. - 7.. ,s 4 g w .2,, f,.,.g..ai k. *3 + p[ .,9 ? ,7, y# " %~ x \\.. gue,r w;..'N-...l .~,,, t S.g i *

  • A 7,,~* ' s T,N s'.

4 , 2 2.- [meF,et 4. -: '

  • J' 'e 4 (. s

.wn ~ }<. %;h.. ;- e,: .A n a. N . h.y O - 3 W < '..~ ; ) r. + ' t, /,'.m w -%.. w. e v >... ~. .c 1 - '+ ^ .'z, y* v. , 'c i"

s. A:

h- + T*hh '.. >+* , : ^ J y d:: - tp.: e c<. y ", g

s. y.: #].. j J -..; 1.1.

? *- + l' '-.5-2.... y. ,,.s. ;, c @y q,,_,,. A. g< s' p - t . t y.w nr-* ~ ~

  • g3
m. y,u..

-:;&u *%..g),._lL'," i [v,y #*'. ,. e,.. 7.., .c xQ, '.;. ', '.,,.+2 ' 7, e,_'. -l n' ~ M....,,.,' . i .g r. - p; i + .r... > 1 n ..4 g.A . ; 'v.--

  • . q. d.s.

c.... .,y.~ j,,,i ye_- ,,.,,, g. p-4 7 /,y 'i, ( ' q.4j, ) "G.:. g t..J. [ y'...[r M..... r'",eT s.y -. 4 g-s.- c .r g g.

g. a s 4 -

u m,,,'. W,f )[,,, ' ", *$.p..' -,. $ -. i.- t-w h.. j -y A g (y ;( .e.g 'q{u.'.W' j 4 g, g'. jg., e- .j m. y+ i.f .%~^> m.7.J;V- .. g - L., J N. R. y: br, y m. ~ -. _.-q;.>v r.;..%. s, r.

+ y,,,,, u.:r.s c

4 o y s -.:, .s : y. m.s. s' d.A t- -f y, et 3., e _y., + C'- e - v,, -+ m: - g m

a.,T, h

C

  • F-14, s[ b. -..,

4 _.aj g 4e ,w., ' J 3~,. A ' 7-f,,, ( '. [ k.., ',>

w. ' y b.

....-' ) %' u ' g; ' 'f W,.5'\\4ve..,y, 'k~. : ~.'. yjQ '. ' g, 4. * ;. -'.:. w{W)g.g' . ~, . e; f }V }.f ), -,y 5, r, ~ + 1.s, .n. n u i

r. '. ( :,d m. ;.

l'.' Q. ', ~ i' ,( w l c Q V .'[,%. Q.;,, fy L 9 , y'

  • s '.  ; -

3,5'.y % '); aTf L shy,f..t'.g.g.. :. ?.p,[...i,-.._'q.'* . p. j'?- .a., - v .s. %., ~e - 4,[ l's, f',l , -t.; # 3, e,.

s..,... -.

x7 2 .. y...m...r#

g

. ; = n, g.?.s: +n. . s. w*g.. s +i.3- +-d '.a 9 gsrw 3 l '._. [- %.f,y. r(*. - y s. k .t. ~ - e.. 8.? - -. h* ,4 ,. 79 w. ~. .I G; n',. '*", b ' .c.. y - - sg vs ,g. ;. ...n. ,..sc:< e . 8,..;. ..,...; J 37 g

/

h,

  • d. 7hj Q ' h y h,-

h, . 9. t - I.N. b N h [ U y [ G @ $ 2 3 % Q k h. } U # k [ [; D } [ t

hw,w.,, ow%4pbjpg4gggg; _ _.. ~ v -e m_i. ,I 1 I I f s pt-1 1 1 I i i DhAGq i .... s .....,,::::;s \\ l ........ J. g........ KINKING DUE TO 1 S SSES r j D3" / l / i- [ i l I i t RE s. FAULT ON WEST WALL OF INTAKE TUNNEL. l PNPP 4/27/78 -W i ..4,. 4

1 i t l e io l l l \\ o -,.;,-. ... ;...,,, - -~. y._.a .s... ,.r,.

i.. - y

.A M.l q.. V ...(. .w.. g.

,A n

.w 4 ,- e.g, g t.

y s

.i Y " y; h(p. . ) d :.d '.G ' 9; AN.. -)h.3.s. [ V '*. :.1 .$);-~Y--7 ~ .c -f

. ' ' 4.,... V
' L. = :,l a v ;/
h. f. '.. r
  • Q;;...u."c v.

v e. s m.m ,.._a $:- '. M ' ;.h J.:..&.

3 :. ; 'h If

.i_ ..W: '. N N.??- [ :.~. N.c 'g. y.:..,., L wl+.f p. 4,,qs:v :i y a..

.s q.4

.Q.f 4 ,.fi'.;-y j, ;; : k ., ),. ' '4 + - 1 p . f f ;3 4,.y%j Q:y, ];l:.. 1 y

s., b.

ss y .. r. g : h :: -. .,...~:,.,......; G :'.' ? ;. 3, c. . ;. u..y

... pvi 1.
..
y. M,
s~....y.. - 4..

. p.s. %v. :% if . g. f ... g:. ;p% s e , p:.. n.g. : (.~3..,, m ',. :t y s-q.y

w -

f.y }Qlf}l,.g..; p g, 7:., _f' . $ _:, }& ,.,j a. -ll- , ) y ' y ',y. e. .x j f.. . *'_'r 5 z (-Q : ::g._ t 'fj.* Qs ? y:- .. } \\ '* %: 7. .Q, &.,. j. a -f)f L 6 '_ ;

2.._..y

. y;

?

Q..g% b. - Q A.

r..

W..,m. 5. :,.. s 9 p;$ (y. s z...... :A.g. .T.. - .~ J.<*. : '.i y. st .'.,.9..,.. ,% *. r..

)..

' ;--... y _: g.a '. y _v,y..; : 4 . ; r, ; u. A & :'. j'. El { ,e ".y f% h J 1, h L'. & Qli;,{h;- f. ' b';,. ~ t. \\ h* 4f }:.h

  • j f f-)_

f y..f.,_ f:4.fl ~ '. + __ !. ll ? . l h'. }.. ~. f}' ^ 5 'V k ) f.{ h [l N

b -

'[, ll. - :.1 [ _l [ '. - j;;i_I'l_! } } a R&Q f. f, l f i.. ( ) k. __: Q ' '. ';): ; ~' f .,\\ I' N.u.5 -- Q-j p, %... c r t... : >.3 c r- . y .. 4.9.;'..f. ; 4 3 ~ ;,4c* 7,:, ;g ; ;..., - ,f - f,.

a7

.' g,_,t. 9.p-

.y.3

.y ..A... o.. - -.a _... (

m. _ 9,.

r. ,.,3- > - m ydf,, L ' _: ., at.~ .) w y- ,?. m ..,.e. - $.. myy 4. .y 9 c- ... 3 .,e ... <.....<N.s..,... .c, e f;;_ q:.; 1.y_ :.%g.qr.;fM.[

  • 1-

?' x ~ ['.~i -,y . ~.. s ;. j _ ' x;. ';_ , g ' :).: - ...p g. 3 :. s.-..; ' ) - k k_... &;' Q :.,. e .l.? E, ;. ;s% '. W 1 ;_ .L l!; M .. _{5 e ,,,.' ?. : +. '. ' '. C g '.. [. 4 k g,, } .Q* ',, er, y ;.,, g -- w. . ' A.q; ~ }y' M.E p' ** E .g 'y,. *7 ,L ., f.,,; *y' i ' Q,.y...:. lf.,.* '*l y; z ,dy r- , ', - ( j

4

+g 3..3 . e, w,.3. .., />. ' a n. m_.. A r?u ) w:..,. W'

7
}.,_;5y g.4}t n;

. _ n. ; c- . ;,.;. ::.)... Y. :.J. Qa. ' .. _l, : 2 r.,.. h I- ) ~ c. ~,... . w. ' N. e w w"O Q([ J &, f M,,, m n y s'- - '. ~DU ~, =7 m ww-4y:..m: t.ra%; e? pr s p. ~.Q:W. y.V.y. q :);m.. ux 1 t' ,g.. r ;. ~ y g% g :- y.,p.a %[.+JlQ.%[.M., W,

:L.%.... s.4 ~i* ?.. M ^

y iQ m.j; ,c., :. ..? + Ql: r ? f f; M,7. . -gt ',* : ' ' ' :v,([y.?v,- N.. x. @ [ fk}.? y '.'T Q,_j... & ') s.: bi _. i} T -l ;....} j* f.a y y.. (Q t ' 'V .y ..p %g.; b.%-

e..- '

M ".?_.'. ' < <. :

- ?.:.
  • 7.;
9

- p r$.D. . ',o .s ' n,.g....* s Q ph;$.M[.{.h' .%.~.. .~ yL g c .52 : :

'. L. gp p

!6 4, a.. , y : .(.) : M.g '._;,.p ..( r {, } m J_ h, 6 .a.. t. s. ~ w: 9;-:y.f.f; 'k ei,'?.'.,., z +$.,g,4.Q:. v :.,;,,,.

4..:!.

v n-

}.

..y&. L'

":.'gls*-

uA q;

  • ' :w%.. e:

1% l-46 i = . j i Fy I-f.f**,.f?.\\-l{' :, '. - ? J', ' q WlQ* ~ Y

  • ll %$'if -? "f'.T~:

&' M. ' ' ? f 5 n.7 @M.v. ). t:g<A*-- aix u.. 7 f .o v d.g 4 Q *k,, G. .v.. g'...i y f. y.4 '. w t...

  • .r

.) -g 3, ;_ 4 g s;. s r <..a; :.. a. y,. 7:; / m..,.ek..~;,,R ':# _,,, .. A.y

, m.,

. ;.: :. ' - '..,). w 5.... e s ..y. 3 y

  • czy.

'_r. j-l.(,.f. ;f,3..:, p

  • , 4
  • 1.. M.,

.. 4 c 'I ;.j:..: ?. u y'- $m ' h.<5 7J.-g s 6' ~- T .).g (,i g- . Q.s#*-[ ~.{g ( a d: g ':..: 4 g rv 4 .s - a g g: w M % 9 "' 6 ; - Qn$.

,}.
g:- 1%.

.? Jp A r ,p. o a.. %-..a > A' y s .e <V ) sh:w - f.2. l, W :.(.. f ;_'..g^_&.*,. ..f }, 4 m-w a

  1. . r3 s s.-

f.4 QQ* J'.p. 'f.! ; .h h'. 5 y.m u e '[ [., .}d { , {, [f f *u l . ;) l A l ' 'M ' ') 4$ ;., J' [ l M..O.?.f.,.. :..,<,. h;;.,7 f i " :. [ ~ 3 .- - t a..

- ; g.
  1. ...?

9 y 9 :., -;R. ~ 9 Q ,,.9;..."'..*... L .; f.y':f,..h y f.- s'

.s..

-[ t j (. ! [.E ' [ ' F.' f *;' '. ? [ [ y, 1.1, f '., k ' j ?. / +

. ', 4...-

&n.g _.x 3 g e qq :, R ;.:.. _ ;.r.,., p m. 8-

.; y.q y.

4, g ;. 4;.:7,3 4'n -W. y;1 j. 4 .~ ,c u g Y.f, ' ' l ' y L. ,? ,f -f; ? ~. g. ,? k / ^ . - h 7.s. - ;f. qt. 61 m h f,* '.f.g.],s .g g., .. - [ ~ , J '- 6 ' .N.4. % p.A > L;'7,. fl.d 'g pp\\

  • h.h,,

_.& ':f a. ;z C '-). .......ll;........ - -~ ....,.-i' ~. v 4 ; 4- ,y i ..s Y [....+,-,- f 4. i -... ,,i l h.,. [..1 c.., g y[y 4

6..

.o V. p-

  • %g 6

8 s' Ay 5,;p, y g gg a f. [ ^; [ J. " [ 'N ^ .?*.r...;,[.

.m.
; :, n';;y$Q, Q,'

.' y 3 3..,y'g. g n g,r; y - s f _..,..j - 3 .{,, - _..; 3* [.'.* k_., . J,.. g"^,A r $ :. _s qG..s.. 3,,_ .p r. ,7, g... y % - l

,.,.
..- 1., ',., i..,a r

/ 4 9 a: p...ar,-,.,s. '. ' ' :]. L.g ; f "j gl. y ot-3 g.q. - J. ~. ..n....,. ....f 4 Q. Q. g ' ', ' _: )...

by

[ I Q}, .,../

. F

.,7 ..t a : n, ~.. a.; .v: ~ o 4g. - g., g. u(3, ;,, -, 7 g,, ., =,. v. -., y,....- y se 9 ,. ' ej, E 4 ;., ' -x ., N.\\, 'I[. ({.'.[, f.. k l : 4 '), h 2p a Mq <, },.. ', E '. .4 "j,. a ~ .l.

(. f ' 4

,J g -p f.{.p f.e,.. ". 31. ; a. nM j.}, y 1 -n g, ~.c...... .v.~. c. n ll.. .., ?., ,.;. '. ;. ?.E :.'..... w..l i; 1 '.....~ 6. jg_W$.fy;e .... ;-Q. q '.., l\\ n. 2 e w.

a......

u .-c L' ll

,3 ; e. FIGURE STRATUM ON EAST WALL INTAKE TUNNEL AT STATION 1044 NOT PHOTOGRAPH ARE FLAT-LYING STRATUM IMMEDIATELY ABOVE G IAND' 8ELOW FOLDED SEGMENT. ' 2T/78

-f ,h, i .'y,

  • 4 l.,.

ww 2 m. c, o.m. 4' h;:w2,w.n n. n.a~ w 449 g v. a .c - n - a.. h' I Y.[.~.;;, 3. ,, : j, Y j'., hlN U?hkQ $ J.h){ $ fD.; D y l E, k .b _, I .-k

  • N'i. -

/ e- "A,. '. 4 5 h} .i f *-

  • )-f

/ Lb W. c ,m -+ , 9E '. .,,.,"%.4,,,.-e s.,..,. '

  • ..m.

-S q,. s...,,. e' q. + ,y4 -,4 p., ',f 'S

  • =.9

. -,i g 3 c 5 . g( ~ s -t, j 4 e n..... A::-- h -.. :., - k - 5,.g., y, i R '. l., p.* '. $,' :. g.. y f- %.} ::, t-, L.' ky,~.Y S 7 ~..b..":.<.W. ' h.1. ;.9.,yt' h.. - 4 4 L T g ~,.., y$. :t -y g 4 .,e.i; t 'e ' e y

  • k. p.,';i A._' rv-' I :.

h.( k h f.'. '. 't '.W me c t +* - l' '. A, ?- ', W. * ' &)-[%l ,} .A .'l-

h' y t p +

..i .s_,.-' n Y. , ' < -' -fy _, _ q=. '%}, 'Y y g f.R L,% A - k, j... h,. 4 }, N ~f( "2 24; [ ?. T_ ['.5c.M',[ J f y,,"f.; J f' "]:";'

  • * %., f f * > 'I C

k, ~r{ 7.7 [ 0.S.k W.k-I ; ' A h,h,.-.,. ; '[. ,: '.2 } ' _' d, i +b' k.', 2.', ~ ,. } ,%. a. g.;,

f. _ :M p

(R.. &...y .., z, 9 Y _ [j.,,. -~,;

pu 44 s

w 3..,~g., Q,. g) n; -.. 1 4 nw _, 9 3. e hy,f 15. fy,.. _ m '.,,-., =,.. ! g,. :Q K;.4 >gn,. p,.,. < 4 g x .$.. z. '. ~.. ~. t. - -., ; -,y , > = r ..,n

a. >,
c. s *. :

-. 4 ? .'yy 3 .g

!,9 g
.,J

- 1 N. t, , J.E.Y h.4 . Q,] y.u,,, - -, %. ',.' 4

f. "

A-i- 4 N' b a. g, e <.' t 4 . ;,..f p M,;. ' ' t e ( . i ; ;. -.i ;.; -. -.'3, e.., -'.e.c 7..,.~.. '.. < 9 ;.. _ s ('i. ~ - _,5 5,.g.q ;,e ,..s 5;= 4 ,k; p,%g s, ..,. w ;. - - -p,, y. ;.,.. u.., . 'Q..g. u,., l ,,\\

3..

.c g e 4

..,... h.

g.,_ b,- .,%u > 4 w s w a f ', d v' g *. 4",",. b.h s....:,. 1MFA.,.- ,.. n... 'r..% 4 ~ f.c.o '.i.( ' . =. ~ p.s -p - p -Q ..,. <...g,.h.'> .A & $2

m..n...q

-3<7 b,[,',g? ' :.i.i - M 9,^-g 'ff),. O.~, ;y &{'s [ %,, b.Wh".. J. 3..v*. C 'fg%};;.I,;lp[s.gr 4.%. ya. .,". ~ : :

d. <y':..

eg -, f,, -G %;, S ,.*f*- W ^g p,* 5.e ' y 5,. -, c s

5

,gg,,. o ,ag a -e...3 f ..ar. 4 iv ,.. u. c., g " 4t. * ; .9,, -.-,r.- *, ' / ' 3 3,t, ' -<. M ' Q%

  • 3

,s +3.c'.".<.& n-.

y.,

r ,. =,.. a.., gN..,,;,q -,. x *+ , y

, 4-.

c -, .5,._,,. v J I.:f,* y c.:,.. ..,'{ e-w < ;. ' Q'<, , 9 '..,,,,,.,) [. ,q { 'l . s,k - , ' [.,

  • (
  • - ; e, y'. ' %.

y a s. 4 e,

.. ? /.

, 4.,, _g.. - %%g .q ;, ' : s " ~ -V _+' m,, . j u,_ , q 7 : p *a,: - A.. f., V.. y.',.O,.,., f ;~ - V. ', .4. ;s, .g. 9; _y y y',. > .a ,.,.e,..' ,..%f f.., 'f.. -.y,. L - a i - ~x -( ; \\M.. _ {. ' ' ( '.q,' , f4 ) ^ p *r'i.-.:+. ,Q ~,.$ K.k h{ J" ,' j,N % y.e, .; w'l.'.,,l ' ^ -4__, ^-7 &' ' f, _.*, l- ** .Y. p 2 y.. l u - .5, ;>, p. .w.a vi +- A ~; .,,.+, m.,,' ylI' ' Q-)* - " -.s - ' C g.,' \\,'i.- l ; e,;.f 7, ,, _..l*e. ~~ i fr + W = y. pf. ' .,[,. 7 ./ A ;. 'e ' -V.'i., ,..3 ' d.

  • f g e,

je.*

  • . q; g4 i*

.., - gj, g - + P ),m, c ' "g-( *,* ;, '*- - .')' ,,,l -4 p "

  • +,.. h. *.. +.j

., 3 .9 ~ s f.,.,, -e +, - 8,' ..f e - i,. 'R,4'.., f... .'..v,)",..i.,e t.... L% '." '-. ,A b,. y-m. <S- . -:, s. a >r a ; --,.,, - c. t. a. s.4. : = ;v% w.a ,y y 4, .--,,,.., -3,g _. fg ,( f.g;9 / -- ; g.;,, 4 ' -; s; ,.:, a,_. ,u y.)j.... '. ; ; 4,4 g 3 4 + y- - t ,.,a f (

  • 4,' q,..,...'. ;
  • y t,g.

s j, - y a e, y,y 4, e s,; _y .e

. U'. f :l4.,

+ c.- ' '.f.

  • :W ' + - -&.1._i 3

%. % ', w,, # .. ?? ; .(

'.i.,...-

'-% R *'.> .t,,-- ,'?" .+ = ..',.~.5.. 'm s ,.n. % pa w '. ? $ h,- n q. i... t, ' 4, y: s c .d'. k,k,. '.', ge ' '- -$...,7-.(,.O,,%',a , - ri. ,.i-z,* '.D y-My -.s,.. 4 j,' _ M_ .i ^. %5 %. ,8 "j - .i.k,**,..> g y _a

p 4
f. :
4. ',.I : -',

y" :...,. >j,,.. sga.. i k -:,..,..,,, i.,.,'l [ f y. m 3. g,1+

j

,,.,. p.. g.%.,. i.. ,c.4 .ww,..v .t ., e, .( ,4 j;.- 3, 4-x y .;i1.;,'. i .. e. s. .. *s,. 4

,gy, x,.,.

...,3, ,a - s,,.* ,2 \\<^, p ? 5 4 ,. r.. .e . g., s "g -;'a',- .,," g ', ' g. 6

p. ' j.,.-.,

0- ~.t.- 3, g

  • 21 f e..-,.

C' .g 3-p. ,s u 2 3 ...-- ',w . g., e. A .y. '(,"; t,9

r... -.,-. g.

,y

  • /: -

=. s-,.,s. ' -. ',. ,.p: ,.y...y.

.,g.

4 g,..., - s g- ~ i. b, ..e..,,,.. p ~ .' e ~, .m. 3 g - y 3 .1.c. ', v ; t.p * %,. /.,. - Y,. s,, g s. A, j- '.g , -. y j - '- gk.., n y-J ?.; -... r. n e., ,.8...,+ -~ m.: r ,..4 - (.- L ..- + w.. ;,. _ ;,a. 1. ~.... fs. +... 3 ' 4,, JI,'k ). ~~

  • h,.Q 'I

< I "{ ",, p. e,_ v. ;, 7.1 t s j we .y.%f %.. -3... [,4 i y * ; ,,.s,.O,... .e,, d ( q'. 4;. - m. ,j. . ~.,.. Yy+. -,e. -.- r s i n.. +_ ? 9.. e..) '.c.* ',- %, x 1 1 +, / - V.f,.y -,. i.. -3j

is s

s,y: y ,T t,,,, i i

s:.,--

e.l. .,e. - -- + 7,,- m z _- r,

w',,r,

.v. ,. ;. w ; ... n H,i. _.,., g4 -.f.v f :,.., _ '. ' A. J,.. :, > s. -4...z...' ~ ,e t e n, =g +.,,

3
  • *r

.r r,* - 4 k '" 9 y. ...,.s. " "e.,... 3.,. e W. ..; ;.x, - ~., np,.~' r,, l, ? l '.f;. 7,f ~.. ' . 4,,i.. -%. :., g..r Q.4., *+ e.. q. **,.: s. ,..s. 4, ~ '...& S - ' ' ?, ' * * '>,.,. 4 ' fs y ' * y-M l v-A< p. e.- ,n' .v n. 7 -,- c.. W. 3' 's< . i: *' r .., i ,'y ! .gu ,g +, = * - w ..,5 n. g ,., b, e y, .. t ,s-.....O,- " *** t, ..>, f, E' 9 i ". ' y. ' h l'M. f. .w v.- es. ,., i.,. p3 .. p;; s - 7 } ~< 1 t. .$' g... ~ c, n. o',.,. i'.,. '... .m .. y.- e y i k'[

  • [,,..

t 5 g, J., .r p_._. t nn p,. s.e., - - g g [. ,,-(- F*.*. j. " y ', * / '. - :, '. y.;4's W. .f. ' 4,...- F ".*.,.. a.

  1. .'.J,

-.,. i,... * ..qu F* y. -t { k .~

  • w$ q
  • d
t

.y; 5', p, * ?,,- ., ':s " _. '. - ;...' I I L 4 na y 9. c...:..,,, ., '... ~,... n f,g. ',-',,.,gA"','., .. l:, , ;.,. &,p q s - - g.. - l 7 ~ -: '. 4' 3, e s. - ' r. .,r m; R.z,,_ > A

,, ". r.y.'

Y. t. .r-y.,, g-r.v

m y m.v. ; s m.c o c'1 s e s m eme.
nm

REFERENCES ( Banhm=, P.H., 1974, Glacitectonic structures: a general discussion with a particular reference to the contorted drift of Norfolk l in Wright, A.E. and Moseley, F., eds., Ice Ages: Ancient and Modern: I Proceedings, Interuniversity Geol. Cong., 21st, University of Birmingham 1974, p. 69-94. Byers, A.R., 1959, Deformation of the White Mud and East End Formations near Claybank, Saskatchewan: Trans. Royal Society of Canada,

v. Lill, series lil, sec. 4, p. 1-11.

Coates, D.F., 1964, Some cases of residual stress effects in engineering works in State of Stress in the Earth's Crust: leerican Z1savier, p. 679-688. i DeSitter, l..U.,1956, Structural Geology: New York, McGraw-Hill. Book Co. " Gilbert Associates, Inc.,1975, Geologic investigation of a portion of the PNPP foundation: report submitted to Cleveland Electric Illuminating Company, cited reference comprises attachment 1 with appendices (3) and addenda (2) submitted Jan. and March,1976. Herget, G., 1973, Variations of rock stresses with depth at a Canadian 3 Iron Mine: Int. Jour. Rock Mech. Min. Sci., v. 10, p. 37-51. 1974. Ground stress determination in Canada: Rock Mech.,

v. 6, p. 53-64.

Hubbert, M.K. and Rubey, W.W., 1959a, Role of fluid pressure in mechanics of overthrust faulting I. Mechanics of fluid-filled porous i solids and its application to overthrusting: Geol. Soc. America { Bull., v. 70, p. 115-166. 1959b, Role of fluid pressure in mechanics of overthrust faulting II. Overthrust belt in geosynclinal area of western Wyoming in light of fluid pressure hypothesis: Geol. Soc. America Bull., v. 70, p. 167-205. ~ Kupsch, W.O.,1962, Ice-ridges in western Canada: Jour. Geology, v. 70,

p. 582-594.

Lee, C.F., 1978, A rock mechanics approach to seismic risk evaluation: Rock Mech. Symp., Stateline, Nevada, p. 77-88. l Moran, S.R., 1971, Glaciotectonic studies in drift in Goldwait, R.P. I ed., Till/a symposium: Ohio State University Press, Ohio, p. 127-148. l f )

= i l i Oliver, J., Johnson, T. and Dorman, J., 1970, Post glacial faulting and seismicity in New York and Quebec: Can. Jour. Earth Sci.,

v. 7, p. 579-590.

Rutten, M.G., 1960. Ice-pushed ridges, permafrost and drainage: American Jour. Scl., v. 258, p. 293-297. Sbar, M.L. and Sykes, L.R., 1973, contemporary compressive stress and seismicity in eastern North America: an example of intra-plate tectonics: Geol. Soc. America Bull., v. 84, p. 1861-1882. Terzaghi, K. and Peck, R.B.,1967, Soil Mechanics in Engineering Practice: New York, John Wiley & Sons, Inc., p. 59. Tsytovich, N. A.,1975,PThe Mechanics.of Trosen Ground; Swinzow, G.K. and Tschabocarioff, G.P..eds: New York, McGraw-Hill Book Co., i

426.p.

I Voight, B.,1967 Interpretation of in-situ stress measurements: Proc.1st Int'1. Cong. Rock Mech., v. 3, p. 332-348. Wickenden, R.T.D., 1945, Mesozoic stratigraphy of the eastern plains, Manitoba and Saskatchewan: Geol. Survey Canada Mem. 239, 87 p. 4 I t J 4 i Y

1 F t APPENDIX A t RESIDENT GEOLOGISTS DOCUMENTATION Item 1. As built tunnel log. Item 2. Geologic progress report (week ending 4/28/78) Item 3. Memorandum to Larry Beck, CEI Item 4. Weekly report of Resident Geotechnical Engineer (week ending 4/28/78) 1 [ --y-4 w< m .., i ,e--

e w ICSE 1. .y eF *,g g n' / st* /. $ 6 rif ge &>. s'. t z =.~ e.., ~- (1. f.. !l K.... s.. - h ,w 4* j ,,tf...b ' ' -~ W- "- J.E. .d I I f o O' O T '. j 01 O O D g e o E C' f g w i

  • g v

w g g t 4' ,.. 'o yw a Qi j .b i s s ._---.a-_ E - g..,.g [ 4,.\\. N._ cr***. " J.%,,,,.a (* 1 _ a,.t p..

7. *.

sV* I g ,.,,,( g '.V.. p.<*},5.Ls,,4 s o s ** -= I 44 p w g M*' f,. b g . an. 9 ~.. M. ..p.. ..f..._._...... 1... p. p.. L ~~ [L. s. a .........a.. i 3 g,.g.) l .,,,. tNu *

5.,

i.1 g u*. ^ 6p,e,,3,,equ' g h Y/*[ia.h't9~ ..,s. i ....,s83. -L ca.. e *rr* *J 1 .. t. ws.r..W ....a-7 die F M + -t y ,z,q, _IQ-I .t/ d~fe p g6.. __.. _..~..........l. I I twel.S L I l_ Enau,,ft*.rn AU8 rot.1 ~ c s i 4' 4 = s t 4A M.49tfe /dr, Er,. t ,l 9 (-G fSk 5e#*1!. y.JWf s I i iI /~J/ f gigirld.g ~ Wy.lfMt*ef -_L y ** y* y y t ..b "r= w rc.F.e u v.3 1... g.,H... o fn e *.p.*; s ~ t;,..<

t. y1,*y fr.o red s ** d io.

I (,. y

  • s.. -.......t

'*i( co. u. (Jefer Co.edute l 4, n r da.oro..** r g ...l(, a s.,.I } s' r- -i. ~r .m / /c. c.ap.,f g o i cs .. (s e*

  • f 4 y,i c >,

.....g,.,...,~ ..,..... r..)...... t s ..... _._. '.g p.,... t *<- \\ t. ,:. i. A-

1 f Item 2. 4 ( CLEVELAND ELECTRIC ILLUMINATING COMPANY PERRY NUCLEAR. POWER PLANT t GEOLOGIC PROGRESS REPORT - WEEKLY

SUMMARY

TUNNEL: .%. ** 4 4 C HEADING: 6'e z.' e Week Ending Arest 2 e.19'18 Reported by. V M WI.2ta./M ~ GAI Geologist (') s .1. . Mapping progress:. .Sta. /O/20..to - / o 16 4 ' - Approx._ d'4 'f t.. i

2... Excavation. progress:

%Sta.; /o4 8 8 :to.: / 2 + 3 o Approx.: /$ ~' ft. '3. * ' Avg. Tib. spacing Y 3.'S /1. c.c. Rib size lj ff. drm. - //1. wielfft 4. ' Struts used? r/o e, e Size Spiling used? / Van e, Size 5. Rock bolt usedif ft.:grpg ta. /J+30 Spacing S 6.. Water inflows, gpm and locations (d fec cle, oorn, from cA,elden, fr,s /.o+ 96 A /ff 05 w/c[>,eentrefed to,Rews fro, /09~ 95 L / /+ OS. 7. Rock types excavated PM..,f.r!. 4 enferle,. :>//T o./. er/ftbt. Gel. here/.i./fr. ekartv. Ye'%.l. 4*xcesf fer eno%nr. 5% h. elf., brehre sMt skole to ef.., </ ' e Ze.t+ el'one ~

8... Rock conditions (blockiness, decomp'osed, " stands well." et'c.) /4/. m.,.rlend g

swed t eII, ca.petes,1 r!, ole . Terzaghi No. S-s - 'I 9. Rock def& cts '(lar e faults, joints, squeeze, etc.) A low',,re,/a. um/4Whr.s.rf" fault encounfet,. nen.,el'fe ~ hen **f h oorree.ciseme souHe. e- %,2 eres.m (9 (C f6 0 10. Additional remarks (overbreak, feeler hofes,'act{dep! ^ th, etc.)P-a nol h>avree hi - te /O+4 8. /'See Suezcle,,eut)- q_ ~ 9/2*l16-C" 'te 2' af ov r.'~r** k booen Q riv //+ 90 aed em rim..ed to %* 19 - 121M. e Ove lem k bo, e:,- enarh a.S'el,ev= r pe, -- J o m e er ei-1 v./ e %n r l cIe us seo s%,1e?s n-f of over"br, A. /v2 .usture mve(ved. v (Use back of sheet for sketch of unusual condition.) l i' Distribution ~ Site Organization GAI -~Home Office CEIC j Resident Tunnel Engineer W. J. Santamour. l Resident Geotechnical Engineer R. D. Boyer Resident Geologists g, 7- (,de r drop

d. G D etaiart:

t -. -e-- ,w ->~>s. .w-->m.w-w- tw --rwmv.-* - ev ya -- .,e- -.,p v--~., +--.emse e n-y ey -+.w y -sat-3

Geologic Progress Rtport - Supple.=ent for Watks Ending April 14 l April 21 April 28, 1978 ~ ~ i a. Moisture along bedding plane partings has been traced back to station 6+50. Partings occur every 4 to 10 inches and moisture is recogtized in apprmrimately 50 percent of the partings. b. Seepage from rock bolt bores has been recognized from station 9+20 to station 9+55 Seepage is =4n4==1 and accompanied with iron staining from the steel rock bolts. April 14, 1978 a 80 foot long test probe was driven'from On Friday,64 to station 10+44. The probe was driven with a slight c. station 9+ dip to the north. Water was encountered at the end of the run, flowing full bore (2" diameter) upon bit extraction. This occurred .at 3:45.A.M. oat 4:45 A.M.'the flow decreased to constant' half bore volume. At 7:30 A.M.'the site geologists entered the excavation for mapping.1 The mouth of the test bore was not accessible at that time; 4 chowever; a pulsating flow, surging once every three seconds could be heard behind the Jarva dust shield. f i d. Monday, April 17, 1978 - Excavation continued with test probes yieleling water and " mud" from the 10+40 - 10+45 zone. One test probe,ianned - in the questionable area. l A groundwater sample was taken from t' e April 14, lW8 test probe. h 'Atsampletimewaterwasflowing1/8boreatarateof.08 gallons / minute. Sample water had a salty taste. Sample was sent to NUS for analysis. e. Tuesday, April 18, 1978 - Test probes encountering " mud", water and methane gas, have also blocked up the vicinity of the questionable zone (statien 10&38 - 10*40). Probe operator notes a 6 inch to 1 foot surge.of no resistance before blockage occurs. Gas readings. of 40-50%L.E.L.haveprohibitedexcavationtoday. f. Wednesday, April 19,1978 M=4nished methane levels have allowed -l .l excavation to continue into questionable zone. Moist seams of soft-shale to clay were encountered at sta. 10+35 These represent-less j than 10% of the rock which is otherwise sound, med. hard, shale l interlaminated with siltstone. -1 g. Thursday, April 20, 1978 - Excavation continues to sta. 10+77 -Decomposed shale seams continue. Some seams are of grey clay only.

h. _ Friday, April 21, lW8 - Excavation continuea to sta.'10&B8. Gas level remains safe. Water is entering through rock bolt bores.

Solid shielding of overburden has been initiated at sta.10+85

i. Monday, April 24, 1978 - Excavation continues to sta. 10+ W.

Seams ( 'of soft shale to clay have dissipated.

.. Geologic Progress Report Paga 2 i .i. Tuesday, April 25, 1978 - Site geologists entered tunnel to map the 10+20 -10+90 section of recently excavated rock. During cleaning procedures a small fold was noted at station 1041. At station 10&65 a low angle fault, dipping south, was first recognized. W.J. Santamour j was advised in Reading. Excavation continued to station 11+10 where water inflows discontinue and shielding was stopped. k. Wednesday, April 26, 1978 - W. J. Santamour and L.D. Schultz arrive from Reading to a m ine fault. The Chicago office of the NRC was notified. 1. Thursday, April 27, 1978 - Site geologists completed detailed mapping of fault. Larry Beck (CEI, Head of Licensing) and Forest Bradfield. (Kaiser, Tunnel Engineer) also examined fault.- l Fault

Description:

lype: Low angle, underthrust Apparent 221sn1-nt:. 22 inches Actual Vertical Displacement: 12 inches + Strike: Normal to Intake Tunnel Eearing - N 470E 0 Dip: 17 SE t Width of Faul't Zone Gauge Material: yinch i Width of Broken Rock Along Fault Plan: Varies {" to 18". 2 m. Friday, April 28, 1778 - Excavation continues to sta.12+30. n. Saturday, April 29, 1978 - No excavation. Overbreak, varying from 6 inches to 2 feet thick, has occurred Dom station 11+90 to the face at 12+30. Shale begins to break approximate 4 4.5' above springline. A thin, clay. 4 seam carrying very little moisture, can be seen along the roof of the 3 overbreak. w Richard.T. Wardrop RTW/kr q l l. I ( i I l =[ .~

Item 3. Gilbert Menoranclum , Gilbert / Commonwealth engineers and emu:ma GILBERT ASS 00ATES. INC P. O. Box 14S8 Reading. PA 13503/Tel. 215 775-2S00/Cabia Gdasoc/Te!st 938-431 To: Larry Beck, C.E.I., NED From: John Darabaris, P.E., Resident Geotechnical Engineer

Subject:

Fault - Intake Tunnel . 03. April 27, 2.9'78 +h=2eh the,g-a'agi c. mapping program 4a very minor: fault, witu less than 22 inches of apparent . displacement and approximate 2y 12 inches of throw was mapped. RThe. fault plane.which: consists of.brokenmck, drag famng and clay seams ranges in width'from tinch to oyym tmately 18 inches striking in a northeasterly direction near],y normal to the tunnel bearing and dipping Southeast at approximately 16.7 degrees. This fa"'t is a low-angle underthrust as detemined from effects of -dreg along the fault plane and in all descriptive aspects, closely resembles the glacial - induced deformation previously observed in other site bedrock formations. If you, have er/ questions, please contact me. Cordially yours, 4 O V,, be-< ej'1& v-J. G. Darabaris JGD/kr ( $25 tr gr A.e a. Seita; PA / Vamma R.af. C m 03 Perf.31 h 215 775 2ir { 2** y,..*. - ; y W  ?:W*" " *** 1DM ! C b's %~.t* ?*1* LY'_ h! 20 2.'2 i' i

I Item 4. RE FORM 30-2(9-75) R EPORT No......Y l.8./......... ./ t WEEKLY REPORT

SUMMARY

WEEK ENDING. ////.'d?,/97.? RESIDENT GE0 TECHNICAL ENGINEER I PERRY NUCLEAR POWER PLANT - UNITS I&2 PAGE... 1.. of....'2 ", R s3,,.bc-va z.o-r.3 Foundation Areas Worked / Prepared: Mrs.1 J rc.'>. /t -.; i.' ..c y Fill Placed: Cc w C'- Tests Performed: r' skn - 15 0 9. Oc n IV Su P:r> %, s u s rfm.L N%d>.0 ivre r'.. A Correspondence issued: Other items: (Summary) 70

nd
6. LUd uA

,o..:<l' cs. w,n 2-G,: D-s', i-i z / c.., A A J ,,,.J l-. .dr d l.,-., OLLL.. m () N va a cm.; L -.,- u 'i 6:, L L.!.e n -, p.J.,-h. da AJ .~,3 %.JJ-'. J l 1 \\) cl K 9.. t & '.( J k.L~. n..~n 2,. + &M, Q \\J ', \\ Y \\1 hla d ! l'u _- .rA e_ev w~t % e ,0. a. d.s: e L U.kt.e. ':~ M I? C1 ** ;' . r u W zku

o. ndwL wk,c,.

,c..mu -, th u % .c,. %%L It . l i -- c ', e.,4 b,di:)J n4% s Teaz. ed A, N U L % *z Urs J.J a.t. Q. [L.% Uh.C .izn.~.f. do 0,kk&. *

e. J
  • L.

AD o. a::L-u&) Ve4,A /u go.n e V t 6 -a c a,a .:, E ea '. ..I -/., L. . 2. c -l. J., m w.r 2

m. A !

.,5.Ja o. : n.D.. u.a.... .~ n..A f _, ,. d a k 3..LC, L,.,' A a ,..P % cbJ:W l < 4 a u '.,A col., n. 4 ~l .v. a ULD,<e.<.us/ 4.;B A (L, % w&. :.1 :- vi).. .v.e. % I.,.. ~, C, 1 L ',.. c c., w n J b,../1 m)ee. ) 6g _: a. . - h :, s..:L

n. -U, L- <.. l

.w

L.4, +,._ '.

s.t :. ' ~. :,,,_ _.J

?,'.l., J s e.c./. :

i..J.., .. l ~J-m ~' :L n,. b.., t -f GL> .~M.' J dh n.x <d +.-G c.. : F e://

  • s 9

~Cl . s/ 31,J-A%,' V - S Y. /... s c-!. kl., _,._u.', f n (i] ; w J, s.. es f, ~...+ ) .- n.n.' M m i ~~ 1._ .<. s e. :.EJ. '.t 4 ~. .. J W e^, () . J <..J! e4 n. k) -% .w. r L.,. 1 ( Q.d f /' E1 -rJt. d. 1. G,,,!. 6 d (?- n ) I.y. U { :. )

e3; '.di.
.-

c.o, %b,+... l . 11 3;). i n

c..

( '..,,, I-Le - L_.. _ _o, o. s - Al _.n... i. 2,a -,J s., -M..zt y I d ~! ' ,..w) 4 J _. ;-h), J.... I

i.
,
i. t. e s l (.

l /, t-m 4 ..j. g ' s. t. Le.., e

  • t RE FORM 30-2(9-75) l seemi.w....Fl.f.I........

l ( WEEKLY REPORT

SUMMARY

...f. 2 ?',(y,7; WEEK ENDING RESIDENT GEOTECHNICAL ENGINEER m PERRY NUCLEAR POWER PLANT - UNITS 182 PAGE....V.....of.... e...... Foundation Areas Worked / Prepared: Fill Placed: Tests Performed: Correspondence issued: Other items: (Summary) M~ uh J M.&W TaeMax O A%M ho O. do

  • W /bck ei ke c.k a e d iL, (G J e a (eios

&G e.t:di \\ U -'O ~ o 4%

c. 4 Ae-t A4 cheo J W

.d&m dW %~ 1, a.. o c-,* A b Lo . m >Rw -N (JuNh N b ( l O ( _...-= iep e =w W O '[ ' ~ 3*

  • 'I

^ *

  • i APPENDIX B MINERAL IDENTIFICATION OF FAULT PLANE GOUGE i

i i l Prepared by: Dr.-B. Carson Department of Geological' Sciences-Lehigh University . May 17 1978 ( ~, -m

t ANALYTICAL REPORT FROM: Mr. Joel B. Levy and Dr. Bobb Carson, Department of Geological Sciences, Lehigh University, Bethlehem, PA 18015 TO: Dr. Lane Schultz, Gilbert Associates, Inc., P. O. Box 1498, Reading, PA 19603 PURPOSE: Semiquantitative clay mineral X-ray diffraction analysis of 2 samples marked S-I 1 and S-I 2 RESULTS:* Montmorillonite Illite Chlorite Kaolinite S-I 1 1% 81% 10% 8% i . S-~I 2 1% 80% 11%

8%
  • Data represent averages of two slides prepared from each sample.

I SAMPLE PREPARATION: A 109 subsample was taken from the original sample and dispersed in distilled water by shaking on a Bure11 wrist action shaker for 30 mins.. Each sample was centrifuged and the water (containing any soluble salts) was decanted. The samples were resuspended in distilled water and 10 ml of dispersant (0.08 M sodium hexametaphosphate) was added. After shaking for 20 mins. on the Bure11 shaker, the coarser than 62.5 u material was removed by wet sieving. Each 1 sample was then treated to remove organic matter, calcium carbonate, and free

o iron.

Organic removal (Anderson,1963): 30 ml of 4-6% sodium hypochlorite (Na0C1) I were added to each sample. The samples were then placed in _a water bath at 900 C for 25-30 mins., stirring periodically. The samples were centrifuged and ( decanted and the procedure was repeated a second time. l

4 2. t Carbonate removal (Jackson,1969): 100 ml of sodium acetate (Na0Ac) buffered with acetic acid to pH 5 was added to each sample. The samples were placed in a 0 water bath at 85 C for 30 mins. The samples were then centrifuged and decanted. Free Iron removal (Jackson, 15C9): A sodium citrate, bicarbonate-dithionite, (CBD) treatment was used to remove free iron from each of the samples. 20 ml of 0.3 M sodium citrate and 2.5 ml of 1 M sodium bicarbonate were added to each 0 C 1 gm of sodium dithionite sample. After being placed in a water bath at 75 was:added to each;sampletwhilercenstantly stirring'for?.1 minute. 'After 51ninutes, a.second gram ofsodium dithionite was added and.the mixture was. stirred;for 1 - minute. "A third gram of sodium dithionite was added after 5 minutes; again, with constant stirring for 1 minute. The samples were then washed'with distilled i water, centrifuged, and decanted three times to clean the sediment particles. ( ) Each sample was then fractionated by centrifugation in order to separate out the < 2 u fraction. A subsample of the resultant < 2 u fraction was used in preparing oriented slides for X-ray diffraction. Samples were mounted by the filter-membrane peel technique as described by Dreyer (1973). Two slides were made for each sample. After the slides were prepared, they were air dried and then placed in an eythelene glycol atmosphere for at least 24 hrs (Brunton,1955). Inunediately after eythelene glycol treatment, they were X-rayed. X-Radiation Procedure: The samples were X-rayed on a Norelco wide angle X-ray diffractometer with a scintillation counter, using nickel filtered copper K, radiation at 40 KV and 20 mA. The following setting of the rate meter L were used: scale factor - 5 K, multiplier =.5, time constant - 1 sec. j Each slide was scanned from 20-150 2e at @/ min and from 24 -260 2e at 0 0 / min. (

3. t ( Mineral Identification Montmorillonite is identified as the 17A diffraction peak upon treatment l with ethylene glycol (MacEwan,1944). Illite is recognized by a strong first order basal reflection at 10A. Chlorite is identified by a strong second order reflection at 7A although this reflection can also indicate kaolinite. The relative abundance of each J 0 mineral may be detemined by the relative peak heights at 24.9 20(kaolinite) and 25.2 20-(chlorite), (Biscaye,1965;9Elverhoi and Ronningsland,.1978). Quantitative Determination of Relative Clay Mineral -Concentrations A polar planimeter was used to measure the peak areas. Each peak was measured twice and the average value was used for detemining the relative clay mineral concentrations. The semi-quantitative technique of Biscaye (1965) g was used to convert the peak areas to clay mineral percentages. Discussion From physical appearance and from the X-ray data, the sample S-I 1 and S-I 2 seem to be identical. It also appears that the illite mineral may approach 0 the composition muscovite due to a relatively strong peak at 17.78 20, which corresponds to muscovite. One of the ' slides (S-I 1-B) was scanned from 0 0 2 -40 20 in order to identify any other minerals present in the <,5 fraction. 1 It was observed that the samples are composed entirely of the clay minerals reported although a small amount of quartz may be present. ( w --s. -, - ,,...w-r, ,...ey-ir-e e,a w.r --ep- ~ e -e-- v-* s+-*r4 erw e

  • r'

a a 2 a B 4. I REFERENCES Anderson, J. V.,1963, An improved pretreatment for mineralogical analysis of samples containing organic matter,10th Conference on Clays and Clay Mineralogy, p. 380-388. Biscaye, P. E.,1965, Mineralogy and sedimentation of Recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. America Bull.,

v. 76, p. 803-832.

'Brunton, G.,1965, Vapor pressure glycolation of. oriented clay minerals. AWL Mineralogist, v. 40, p.124-126. Dreyer, J. I.,1973, The preparation of oriented clay mineral specimens for X-ray diffraction analysis by a filter-membrane peel technique. Am. Mineralogist, v. 58, p. 553-554. ( Elverhdi, A., and Rinningsland, T. M.,1978, Semiquantitative calculation of the relative amounts of kaolinite and chlorite by X-ray diffraction. Marine Geology, v. 27, p. M19-M23. Jackson, M. L.,1969, Soil Chemical Analysis - Advanced Course, 2nd edition, 8th printing,1973. Published by author, Dept. of Soil Sciences, U. of Wisconsin, Madison, Wis. 53706. MacEwan, D. M. C.,1944, Identification of the montmorillonite group of minerals by X-rays: Nature 154, p. 577.

, z

/e 3 n

n p

1. r a 4 6 %f f {[Q w h \\ ) l-F"" ' J l de In h-s $ '/'V8 $ 2-l p a_ 55I4urg,>,7 a4 A&. NO. OF PAGES. \\ REASON: ~ O'PAGE ILLEGIBLE: ^ C HARD COPY FILED AT. PDR-CF. -j s 01HER _ O SITTER CCP/ REQUESTED ON' ._/ / iO'PAGE 1 i.ARGE TO RLM:, . MARD COW FILEC5 AT:'1-PDR@) OTHER' O RLMED ON APERTL)RE CARD NO..___. s s c nJ i Y.. $4 es ; p.;n _ Omna ~ a f %,g a g .}}