ML18152A053
| ML18152A053 | |
| Person / Time | |
|---|---|
| Site: | Surry |
| Issue date: | 05/17/1995 |
| From: | Bowling M VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
| To: | NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM) |
| Shared Package | |
| ML18152A054 | List: |
| References | |
| 95-254, NUDOCS 9505230201 | |
| Download: ML18152A053 (57) | |
Text
r l
PRIORITY 1
-(ACCELERATED RIDS PROCESSE\\G.
- (,Jt..
(
REGULATORY INFORMATION DISTRIBUTION SYSTEM (RIDS)
ACCESSION NBR:9505230201 DOC.DATE: 95/05/17 NOTARIZED: NO DOCKET#
FACIL::50-281 Surry Power station, Unit 2, Virginia Electric & Powe 05000281 AUTH.. NAME AUTHOR AFFILIATION BOWLING,M.L.
Virginia Power (Virginia Electric & Power Co.)
p RECIP.NAME RECIPIENT AFFILIATION Document Control Branch (Document Control Desk)
SUBJECT:
Forwards util technical rept NE-1011,Rev o,entitled, "Surry Unit 2,Cycle 12 Core Performance Rept. 11 DISTRIBUTION CODE: AOOlD COPIES RECEIVED:LTR _1_ ENCL 5 SI'ZE: Ir ss TITLE: OR Submittal: General Distribution NOTES:
RECIPIENT ID CODE/NAME PD2-1 LA BUCKLEY,B INTERNAL: ACRS NRR/DE/EMCB NRR/DSSA/SPLB NUDOCS-ABSTRACT EXTERNAL: NOAC NOTES:
NOTE TO ALL "RIDS" RECIPIENTS:
COPIES LTTR ENCL 1
1 1
1 6
1 1
1 1
1 6
1 1
1 1
1 RECIPIENT ID CODE/NAME PD2-1 PD
-FILE CENTE:R_J~
- * * *8ReH7':H'rcB NRR/DSSA/SRXB OGC/HDS2 NRC PDR PLEASE HELP US TO REDUCE WASTE! CONTACT THE DOCnv1ENT CO!\\TROL DESK, ROotv1 Pl-37 (EXT 504-2083) TO ELI1\\ff\\JATE YOUR '.'JA\\1E FROM DISTRIBUTION LISTS FOR DOCU\\1E'.\\JTS YO!_; DON'T NEED' 19 ENCL ~
TOTAL IDJMBER OF COPIES REQUIRED: LTTR COPIES LTTR ENCL 1
1 1
1 1
1 1
1 1
1 0
1 05000281 R
0 R
r1 y
1 D
0 C
u M
E N
T
\\
~-------;----;;
\\
- e VIRGINIA ELECTRIC AND POWER COMPANY RICHMOND, VIRGINIA 23261 May 17, 1995 United States Nuclear Regulatory Commission AUention: Document Control Desk VVashington, D. C. 20555 G13ntlemen:
VIRGINIA ELECTRIC AND POWER COMPANY SURRY POWER STATION UNIT 2 CYCLE 12 CORE PERFORMANCE REPORT Serial No.
NA&F/DAT-CGL Docket Nos.
License Nos.95-254 RO 50-281 DPR-37 For your information, enclosed are five copies of the Virginia Electric and Power Company Technical Report NE-1011, Revision 0, entitled "Surry Unit 2, Cycle 12 Core Performance Report."
Very truly yours,
~tJ~
M L. Bowling, Manager Nuclear Licensing & Programs Enclosures - Surry Unit 2, Cycle 12 Core Performance Report (5 copies) cc:
U. S. Nuclear Regulatory Commission Region II 101 Marietta Street, N. W.
Suite 2900 Atlanta, Georgia 30323 Mr. M. W. Branch NRC Senior Resident Inspector Surry Power Station
. 9505230201 950517 PDR ADOCK 05000281 p
)
- 1 :
I
- I
~,
I L
I
'.1*
fl I"
I I
- 1:
- I'
- 1 1
I' I
~ -
ii
'"'\\
II
\\
~l,. \\~.
l,l,
\\
\\
\\
\\
\\
'\\
\\
\\
\\
\\
\\
\\.
\\
\\
\\
\\
\\
\\
\\
' \\
"\\....
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
. '\\
\\
\\
\\.
\\'
9505230204 950517
- PDR-. ADOCK. 05000281.
- p PD~
\\
\\ '
\\
\\
\\.
\\
\\
~ \\ \\
'.,\\
\\ \\
\\, \\
\\.
, \\
'\\.
~ \\
\\_\\
Surry Unit 2 Cycle 12 Core Performance Report Nuclear Analysis and Fuel Nuclear Engineering Services March 1995 Virginia Power
I I
I I
I I
I I
I I
I I
I I
I I
I I
TECHNICAL REPORT NE-1011 - Rev. 0 SURRY UNIT 2, CYCLE 12 CORE PERFORMANCE REPORT NUCLEAR ANALYSIS AND FUEL NUCLEAR ENGINEERING SERVICES VIRGINIA POWER MARCH, 1995 PREPARED BY: f>.[1/,,& * ~
W. S. Miller REVIEWED BY: £ F, f/t.M~ 3*Z7-'tf R. F. Villa~ Date D. C. Lawrence 3-'2-7-f.J Date
~s-Date APPROVED BY:)> ~c,/ (1°/?J' D. Dz1 osz ate QA Category: Nuclear Safety Related Keywords: S2C12, Core Performance
I
- 1.
\\
I TABLE OF CONTENTS I
PAGE I
Table of Contents 1
I List of Tables.
2 I
List of Figures.
3 Section 1 Introduction and Summary.
5 I
Section 2 Burnup.
13 Section 3 Reactivity Depletion.
23 I
Section 4 Power Distribution.
25 I
Section 5 Primary Coolant Activity.
45 Section 6 Conclusions 51 I
Section 7 References.
53 I
I I
I I
I I
I I
NE-1011 S2C12 Core Performance Report Page 1 of 54
y
'( I I
LIST OF TABLES I
TABLE TITLE PAGE 11 I
4.1 Summary of Flux Maps for Routine Operation......... 29 I
I I
I I
I I
I I
I I
I I
NE-1011 S2C12 Core Performance Report Page 2
of 54 I
I I
I I
I I
I I
I I
I I
I I
I I
I I
l LIST OF FIGURES FIGURE TITLE 1.1 Core Loading Map.....
1.2 Burnable Poison and Source Assembly Locations.
1.3 Movable Detector Locations 1.4 Control Rod Locations.
2.1 Cycle Burnup History 2.2 Monthly Average Load Factors.
PAGE 9
10
. 11 12 15 16 2.3 Assemblywise Accumulated Burnup:
Measured and Predicted 17 2.4 Assemblywise Accumulated Burnup:
Comparison of Measured and Predicted.
2.5A Sub-Batch Burnup Sharing 2.5B Sub-Batch Burnup Sharing 2.5C Sub-Batch Burnµp Sharing 3.1 Critical Boron Concentration versus Burnup (HFP,ARO) 4.1 Assemblywise Power Distribution - S2-12-04 4.2 Assemblywise Power Distribution - S2-12-16 4.3 Assemblywise Power Distribution - S2-12-28 4.4 Hot Channel Factor Normalized Operating Envelope 4.5 Heat Flux Hot Channel Factor, FQ(Z) - S2-12-04 4.6 Heat Flux Hot Channel Factor, FQ(Z) - S2-12-16 4.7 Heat Flux Hot Channel Factor, FQ(Z) - S2-12-28 NE-1011 S2Cl2 Core Performance Report Page 18 19 20 21 24 30 31 32 33 34 35 36 3 of 54
LIST OF FIGURES (CONT'D)
FIGURE TITLE 4.8 Ma~imum H~a~ Flux Hot Channel Factor, FQ(Z)*P, vs.
Axial Position................
4.9 Maximum Heat Flux Hot Channel Factor, FQ(Z), vs. Burnup 4.10 Maximum Enthalpy Rise Hot Channel Factor, F-delta-H vs.
Burnup 4.11 Target Delta Flux versus Burnup 4.12 Core Average Axial Power Distribution - S2-12-04 4.13 Core Average Axial Power Distribution - S2~12-16 4.14 Core Average Axial Power Distribution - S2-12-28 4.15 Core Average Axial Peaking Factor vs. Burnup 5.1 Dose Equivalent I-131 vs. Time 5.2 I-131/I-133 Activity Ratio vs. Time NE-1011 S2C12 Core Performance Report Page PAGE 37 38 39 40 41 42 43 44 48 49 4
of 54 y
I I
I I
I I
I I
I I-I I
I I
I I
I
I\\
I I
I I
I I
I I
I I
I I
I I
I I
I
, I Section 1 INTRODUCTION AND
SUMMARY
On February 3, 1995, Surry Unit 2 completed Cycle 12.
Since the initial criticality of Cycle 12 on May 4, 1993, the reactor core produced approximately 1.0994 x 108 MBTU (18,551 Megawatt days per metric ton of contained uranium).
The purpose of this *report is to present an analysis of the core performance for routine operation during Cycle 12.
The physics tests that were performed during the startup of this cycle were covered in the Surry Unit 2 Cycle 12 Startup Physics Test Report 1
- and, therefore, will not be included here.
Prior to the beginning of Cycle 12, pressurizer safety valve problems forced Unit 2 to operate at a reactor coolant system pressure of 2150 psia instead of the normal 2250 psia.
In addition, Unit 2 was unable to maintain 100% power due to material buildup on the steam generator upper tube support plates.
Between May and August of 1993, Unit 2 experienced several short outages due to equipment failure and the associated repairs.
There were also three longer outages.
First, on August 6, 1993, Unit 2 experienced a 13 day outage due to problems with three pressurizer safety values.
It was necessary to send the valves offsite for repairs.
The second outage occurred when Unit 2 was shutdown for 15 days, beginning November NE-1011 S2Cl2 Core Performance Report Page 5
of 54
15, 1993, for steam generator pressure pulse cleaning.
The final outage occurred on June 4, 1994 and lasted for 21 days. During this outage, Unit 2 underwent steam generator chemical cleaning, which allowed Unit 2 to operate at 100% power.
Additionally, the pressurizer safety valves were replaced, allowing the reactor coolant system pressure to be returned to 2250 psia.
Surry Unit 2 began a power only coastdown on January 11, 1995, at which time the burnup was approximately 17,845 MWD/MTU.
The coastdown accounted for an additional core burnup of 706 MWD/HTU from the end of full power reactivity.
The Cycle 12 core consisted of 8 sub-batches of fuel: two fresh batches (batches 14A and 14B); three once-burned batches, two from Cycle 11 (batches *13A, and 13B) and on~ from Surry 1 Cycle 6 (batch Sl/8B); and three twice-burned batches, all from Cycles 10 and 11, (batches 12A, 12B, and.12C).
The Surry 2 Cycle 12 core loading map specifying the fuel batch identification and fuel assembly locations is shown in Figure 1.1.
The burnable poison locations and source assembly locations are shown in Figure 1.2.
Movable detector locations that were available during Cycle 12 are shown in Figure 1.3.
Three movable detector locations (N5, J3, and Hl3) were out of service throughout Cycle 12.
Control rod locations are shown in Figure 1.4.
Routine core follow involves the analysis of four principal performance indicators.
These are burnup distribution, reactivity depletion, power distribution, and primary coolant activity.
The core NE-1011 S2Cl2 Core Performance Report Page 6 *. of 54 l
I I
I I
I I
I I
I I
I I
I I
I I
I
I
~
I I
I I
I I
I I
I I
I I
I I
I I
I I
~---
burnup distribution is followed to verify both burnup symmetry and proper batch burnup sharing, thereby ensuring that the fuel held over for the next cycle* will be compatible with the new fuel that is inserted.
Reactivity depletion is monitored to detect the existence of any abnormal reactivity behavior, to determine if the core is depleting as designed, and to indicate the cycle burnup where coastdown operation will begin.
Core power distribution follow includes the monitoring of nuclear hot channel factors to* verify that they are within the Technical Specification 2 limits, thereby ensuring that *adequate margins for linear power density and critical heat flux thermal limits are maintained.
Lastly, as part of normal core follow, the primary coolant activity is monitored to assess the status of the fuel cladding integrity and to compare the concentration of dose equivalent iodine-131 in the reactor coolant with the limits specified by the Surry Technical Specifications 2
- Each of the four performance indicators is discussed in detail for the Surry Unit 2 Cycle 12 core in the body of this report. The results are summarized below:
- 1. Burnup - The burnup tilt (deviation from quadrant symmetry) on the core was no greater than +/-0.30% with the burnup accumulation in each batch deviating from design prediction by no more than +/-2.53%.
- 2. Reactivity Depletion -
The critical boron concentration, used to monitor reactivity depletion, was consistently within +/-0.26% AK/K of the design prediction which is within the +/-1% AK/K margin allowed by Section 4.10 of the Technical Specifications.
NE-1011 S2C12 Core Performance Report Page 7 of 54
- 3. Power Distribution -
Incore flux maps taken each month indicated that the assemblywise radial power distributions deviated-from the design predictions by a maximum average difference of 1.9%.
All hot channel factors met their respective Technical Specification limits.
- 4. Primary Coolant Activity -
The average dose equivalent iodine-131 activity level in *the primary coolant during Cycle 12 was approximately 0.000763 µCi/gm.
This corresponds to less than 1% of the operating limit for the concentration of radioiodine in the primary coolant.
Radioiodine analysis indicated that there were no fuel rod defects.
NE-1011 S2C12 Core Performance Report Page
- 8.
- of -54
(,I I
I I
I I
I I
I I
I I
I I
I I
I I
I
I I
I I
I I
I I
I I
I I
I I
I I
I I
R p
N M
Figure 1.1 SURRY UNIT 2 - CYCLE 12 CORE LOADING.HAP L
K J
ff C
12A 15A 12A I
I lU4 I 0113 I lUO I
- F E
--~--'--'--'--'--~--
' 128 I 13A I 14A I 15A I 14A I 13A I 128 I
I 3U9 I 1V3 I OWl I 'ZV7 I 1W9 I 1V7 I SUD I
D
' 128 I 14A I 148 I 138 I 1411 I 138 I 148 I 14A
- I 128 I
,~,-,~1~,~,~,~,~,~,
C
' 128 I 138 I 148 I 138 I 148 I 15A I 148 I 138 I 148 I 138 I 128 I.
I 3UO I 5V7 I 3W9 I 3V3 I 6W7 I lVl I 5W7 I 4V8 I 4W6 I 3V4 I 4U9 I
B
' 128 I 14A I 148 I 138 I 148 I 138 I 14A I 138 I 148 I 138 I 148 I 14A I 128 I
I 4U8.I OW6 I 3W5 I 5V9 I 6W3 I 6V3
- 1 OW7 I 5V4 I 6Wl I 4V4 I 3W3 I OW2 I 3U6. I
'--'--'~-'--'--'--'--'--'--'--'--'--'--'
I 13A I 148 I 138 I 148 I 13A I 14A I 15A I 14A I 13A I 148 I 138 I 148 I 13A I
I 2V4 I 5Wl I 6VO I 4W7 I lV9 I lW4 I 'ZVl I ZWB I 2V5 I 5W6 I 6Vl I 6WO I 2V3 I
A
--'--'--'~-'--'~-'--'--'--'--'--'--'--'--'--
' l2C I 14A I 138 I 148 I 138 I 14A I 13A I 14A I 13A I 14A I 138 I 148 I 138 I 14A I 12A I
I 5U3 I 1w2* I 5V5 I 4W9 I 4V2 I 2W5 I OV4 I 3W2 I OV7 I 3WO I 4V3 I 4Wl I 4V5 I 1W6 I DUB I
I 13A I 13A I 148 I 13A I 14A I 13A I 14A ISl/118 I 14A I 13A I 14A I 13A I 148 I 13A I 13A I
I 2VO I 1V5 I 3W4 I OV6 I 1W7 I OV5 I ZW9 I 4Cl I 1ws' I OV2 I 2W4 I OVl I 4W2 I lVO I 1V2 I
I lZA I 14A I 138 I 148 I 138 I 14A I 13A I 14A I 13A I 14A I 138 I 148 I 138 I 14A I 12A I
I OU9 I ZWO I 4V9 I 4W3 I 3V8 I OW4 I ZV9 I ZW2 I 2V2 I 2W6 I 5Vl I 3W6 I 3V5 I 2W3 I lUB I
I 13A I 148 I 138 I 148 I 13A I 14A I 13A I 14A I 13A I 148 I 138 I 148 I 13A I
I 3Vl I 6W2 I 5VO I 6W6 I 3VO I lWB I 'ZVB I 3Wl I OV9 I 4WO I 4Vl I 6W8 I 3V2 I
I 128 I 14A I 148 I 138 I 148 I 138 I 14A I 138 I 148 I 138 I 148 I 14A I 128 I
I 4U7 I OW5 I 5W4 I 3V6 I 4W8 I 6V4 I OW3 I 3V7 I 5WO I 5V3 I 3W8 I lWO I 4U3 I
I 128 I *13s I 148 I 138 I 148 I 15A I 148 I 138 I 148 I 138 I 128 I
,~,~,~,~,~,~,~,~,~,~,~,
I 128 I 14A I 148 I 138 I 148 I 138 I 148 I 14A I 128 I
I 2U9 I OW9 I 6W4 I 6V2 I 3W7 I 5V8 I 5W8 I 2Wl I 4Ul I
I 128 I 13A I 14A I 15A I 14A I 13A I 128 I
I 3U2 I ova I ZW7 I 'ZV6 I lWl I 1V6 I 4U4 I
I 12A I 13A I 12A I
1--> BATCH I lUl I 1V8 I 1U9 I
I 1--> ASSEMBLY ID FUEL ASSEMBLY DESIGN PARAMETERS SUB-BATCH Sl/88 12A 128 12C 13A 138 14A 148 INITIAL ENRICHMENT 3;40 3.79 4.00 3.80 3.81 4.00 3.81 4.00 (W/0 U-235)
BURNUP AT BOC 12 11348 32950 39661 33819 24142 21067 0
0
<MWD/MTU)
ASSEMBLY TYPE 15x1s*
15Xl5 15Xl5 15Xl5 15Xl5 15Xl5 15Xl5 15Xl5 NUMBER OF ASSEMBLIES l
7 16 l
32 32 32 36 FUEL RODS PER ASSEHBLY 204 204 204 204 204 204 204 204 NE-1011 S2Cll Core Performance Report Page 9 of 54 2
3 4
5 6
7 8
9 10 11 12 13 14 15
R p
N Figure 1.2 SURRY UNIT 2 - CYCLE 12 BURNABLE POISON AND SOURCE ASSEMBLY LOCATIONS L
K J
H G
I I
I I
I I
I F
E
--~--1 __ 1 __ 1 __ 1 __ ~--
I I
I I
I I
I I
I I
I I
D
__ 1 __ 1 __, __ 1 __ 1 __ 1 __ 1 __ 1 __
I I 4P I ZOP I
I ZOP I
I ZOP I 4P I
I I
IBPZ54 IBPZ38 I IBPZIO I 1BPZ59 1BPZ56 I I
C
__ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __
I I
I ZDP I
I ZDP I
I ZDP I
I ZDP I
I I
I I
IBPZ40 I IBPZZZ I 1BPZZ5 I 1BPZ41 I I
I B*
__ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __
I I 4P I ZOP I
I ZDP I
I ZIP I
I ZOP I
I ZDP I 4P I
I I SS4 IBPZ55 IBPZ4Z I IBPZ50 I 1BPZ06 I IBPZ51 I IBPZ45 IBPZ57 I I
1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __, __ 1 __ 1 __ 1 __ 1_._1 __ 1 I
I ZOP I
I ZDP I
I ZDP I
I ZOP I
I ZDP I
I ZOP I
I I
IBPZ44 I IBPZ5Z I IBPZ14 I IBPZ15 I
- 1BPZ55 I IBPZ45 I I
A
__ 1 __ 1 __ 1 __ 1 __ 1 __, __ 1 __ 1 __ 1 __, __ 1 __ 1 __ 1 __ 1_._
I I
I I ZDP I
I ZDP I
I 16P I
I ZOP I
I ZDP I
I I
I I
I I
IBPZZ4 I IBPZ16 I IBPZOZ I IBPZ17 I IBPZZ5 I I
I I
1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __, __ 1 __ 1 __ 1 __ 1 __ 1 I
I I ZDP I
I ZDP I
I 16P I
I 16P I
I ZOP I
I ZOP I
I I
I I
I BPZll I I BPZ07 I I BPZ05 I I BPZ04 I I BPZ08 I I BPZIZ I I
I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I
I I
I ZDP I
I ZDP I
I 16P I
I ZOP I
I ZOP I
I I
I I SS3 I
I IBPZZ6 I IBPZ18 I IBPZD5 I IBPZ19 I IBPZZ7 I I
I SS5 I
1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I
I ZOP I
I ZOP I
I ZOP I
I ZOP I
I ZOP I
I ZOP I
I I
I BPZ46 I I BPZ54 I I IIPZZO I I BPZZl I I BPZ55 I I BPZ47 I I
1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I
I 4P I ZDP I
I ZDP I
I ZDP I
I ZDP I
I ZDP I 4P I
I I
I BPZ60 I BPZ48 I I BPZ56 I I BPZ09 I I BPZ57 I I BPZ49 I BPZ58 I I
1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I
I I ZOP I
I ZOP I
I ZOP I
I ZOP I
I I
I I
IBPZ50 I IBPZZ8 I IBPZZ9 I IBPZ51 I I
I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __, __ 1 __, __ 1 __ 1 I
I 4P I ZOP I
I ZOP I
I ZOP I 4P I
I I
IBPZ61 IBPZ5Z I IBPZ15 I IBPZ55 IBPZ59 I I
1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I
I I
I I
I I
I I
I I
I I
I I
I 1 __ 1 __
-, __, __ 1 __ 1 __, __,
I I
I I
4P -
4 BURNABLE POISON ROD CLUSTER 16P - 16 BURNABLE POISON ROD CLUSTER ZOP -
ZO BURNABLE POISON ROD CLUSTER SSx - SECONDARY SOURCE I
I I
I 1 __ 1 __ 1 __ 1 xxP or SSx BP+/-+/-+/-
~ OF BP RODS or SECONDARY SOURCE ID
- BP ASSEHBLY ID NE-1011 S2Cll Core Performance Report Page 10 of 54
(
- I I
I I
1 I z I 5
4 I 5
6 I 7
8 I 9
10 I 11 12 I 15 14 I 15 I I
I I
I I
I
I I
I I
I*
I I
I I
I I
I I
I I
I I
I I
R p
N Figure 1.3 SURRY UNIT 2 - CYCLE 12 MOVABLE DETECTOR LOCATIONS L
K J
H G
I F
E D
C B
A I
I ND I
I l
~~~~-'~-l __ l __ l~----
1 I
I I
I I
I I
I I
I I
I ND I
I z
__ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __
I I
I I
- I I
I I
I I
I HD I
I I
HD I
ND I
I.
I I
ND I
- 3.
__ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1_-_1 __ 1 __ 1_*_
I I
I I
I I
I I
I I
I I
I I
INDI I
I.NOi I.NOi I
I
'I 4
-~1 __ 1 __ 1_~1~_1 __._1 __ 1 __ 1 __ 1_~1~_1 __ 1 __
I I
- I I
I I
I I
I I
I I
I I
I I
ND I
I ND I
I ND I
I I
I ND I
ND
.1 I
ND I
5 1_~1 __ 1 __ 1_~1 __ 1 __ 1 __ 1_~1 __ 1_~1 __ 1 __ 1 __ 1 I
I I
I I
I I
I I
I I
I I
I I
I I
I ND. I I
I ND I
I ND I
I I
I I
6
-~1-~1-~1 __ 1 __ 1~_1 __ 1 __ 1_~1 __ 1_~1 __ 1 __ 1 __ 1 __
I I
I.
I I
I I
I I
I I
I I
I I
I I
I I
ND I
I I
I ND. I I
ND I
I I
ND I
I ND I
I 7
1_~1-~1-~1 __ 1_~1 __ 1 __ 1 __ 1 __ 1_~1-~1 __ 1_~1 __ 1 __ 1 I
I I
I I
I I
I I
I I
I I
I I
I IHDI IHDI IHDI I
I I
INDI I
INDIHDI I
8 1_~1-~1-~1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1_~1 __ 1_~1 __ 1 __ 1 I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
ND I
I I
I HD I
HD I
I I
I I
HD I
9 1_~1-~1 __ 1 __ 1 __ 1 __ 1~_1 __ 1 __ 1 __ 1_~1 __ 1 __ 1 __ 1 __ 1 I
I I
I I
I I
I I
I I
I I
I I
I HD I
I I
I.HD. I I
I I
I HD I
I HD I
10 1_~1 __ *_1_~1 __ 1~_1~-* 1 __ 1 __ 1 __ 1_~1 __ 1_~1 __ 1 I
I I
I I
I I
I I
I I
I I
I I
I I
IHDI I
INDI IHDINDI I
I I
ll 1_~1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __
- 1 __ 1_~1 __ 1 __ 1 __ 1 I
I I
I I
I I
I I
I I
I I
ND I
I I
I ND I
I I
I I
ND I
HD I
lZ 1 __ 1 __ 1_~1 __ 1 __ 1 __ 1_~1 __ 1_~1 __ 1 __ 1 I
I I
I I
- I I
I I
I I
I I
I I
HD I
I HD I
I I
13 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I
I I
I I
I I
I I
HD I
I I
I ND I
I I
14 1 __ 1 __ 1 __ 1 __ 1 __ 1_~1-~1 I
I I
I HD - Novable Detector I
HD I
I I
15 1 __ 1 __ 1 __ 1
- - Unavailable Location NE-1011 S2Cll Core Performance Report Page 11* of 54
I l R
p N
Figure 1.4 SURRY UNIT 2 - CYCLE 12 CONTROL ROD LOCATIONS L
K J
H 180° I
G F
E D
C Loop A I
I I
I Loop C
- Outlet I __ I __ I __ I Inlet
'I IAI IDI IAI I/
__ 1 __ 1 __ 1 __
- 1 __ 1 __ 1 __ 1 __ 1 __
N-41 I
I
- I I SP I I
N-43
__ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __
I I c I
I B I
I I
I B I
I c I
I B
__ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __
I ISPI ISBI ISPI I
I ISBI I
I I
1_*_1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 IAI IBI IDI ICI IDI IBI IAI A
Loop A __ I __ I __
- I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I__
Loop C Inlet I
I I SA I I
I I SB I I SB I I SP I I SA I I
.1 Outlet
~
1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1..,..
90°-
I ID I I
I I c I
I I
I c I
I I
ID I I - 210° 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I
I ISAI ISPI ISBI ISBI I
I ISAI I
I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 Absorber Haterial Ag-In-Cd Function IAI IBI IDI ICI IDI IBI IAI 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1_1_1 __ 1 __ 1 I
I I
ISBI I
I ISPI ISBI ISPI I
1_1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I
I C I I B I*
I I
I B I
I c I
I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1_1 __ 1 I
I SP I I
I I
N-44 I __ I __ I __ I __ I __ I __ I __ I __ I __ I N-42
/
I I A I
ID I I A I
I 1 __ 1 __ 1 __ 1 __ 1_1 __ 1_~
I I
I I
. '\\
Loop B I
I I
I Loop B Outlet Inlet I
00 Number of Clusters Control Bank D Control Bank C Control Bank B Control Bank A Shutdown Bank SB Shutdown Bank SA 8
8
-8 8
8 8
8 SP (Spare Rod Locations)
NE-1011 S2Cll Core Performance Report Page 12 of 54 J
.. I 11 I
I 1
I 2
3 I
4 5
I 6
7 I
8 9
10 I
11 12 I
13 14 I
15 I
I I
I I
I I
I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I Section 2 BURNUP The Surry Unit 2 Cycle 12 burnup history is graphically depicted in Figure 2.1.
Surry 2 Cycle 12 achieved a cycle burnup of 18,551 MWD/MTU.
As shown in Figure 2.2, the average load factor for Cycle 12 was 86.0%
when referenced to rated thermal power (2441 MW(t)).
Unit 2 performed a power coastdown starting on January 11, 1995 until shutdown for refueling on February 3, 1995.
Radial (X-Y) burnup distribution maps show how the core burnup is shared among the various fuel assemblies, and thereby allow a detailed burnup distribution analysis.
The TOTE 3 computer code is used to calculate these assemblywise burnups.
Figure 2. 3 is a radial burnup distribution map in which the assemblywise burnup accumulation of the core at the end of Cycle 12 operation is given. For comparison purposes, the design values are also given.
Figure 2.4 is a radial burnup distribution map in which the percentage difference comparison of measured and predicted assemblywise burnup accumulation at the end of Cycle 12 operation is given.
As can be seen from this figure, the accumulated assembly burnups were generally within +/-4.24% of the predicted values.
In addition, deviation from quadrant symmetry in the core throughout the cycle was no greater than +/-0.30%.
The burnup sharing on a batch basis is monitored to verify that the c.ore is operating as designed and to enable accurate end-of-cycle batch NE-1011 S2C12 Core Performance Report Page 13 of 54
burnup predictions to be made for use in reload fuel design studies.
Batch definitions are given in Figure 1.1. As seen in Figures 2.5A, 2.5B, and 2.5C, the batch burnup sharing for Surry 2 Cycle 12-followed design predictions closely.
Batch S1/8B had a batch burnup that deviated from predicted by as much as +/-2.53%.
S1/8B is a single assembly batch located in the center of the core.
The batch burnup sharing deviations in conjunction with reasonable agreement between-actual and predicted assemblywise burnups, and symmetric core burnups indicate that the Cycle 12 core did deplete as designed.
NE-1011 S2Cll Core Performance Report Page 14 of 54
, I I
I I
I I
I 11 I
I I
I I
I I
I I
I I
I
21DD0 2DDDD 19DDO 18DDD 17DDD 16DDD 2" 15DDO
! 14DDD g moo
!., 12DDD D. IIDDD Z
IDDDD a: i 9DDD
~ BUDD
~ 7DD0 U
&ODD 5DDO 4000 JUDD 2DDD IODD D
/
C: -
C,
/
~
,I
/v
- z:
OU a..
,c ""
c,,
~ C>
C>
MAXIMUM Figure 2.1 SURRY UNIT 2 - CYCLE 12 CYCLE BURNUP HISTORY L......
V V
V
[7 V
V -
/
C, z:
ID ""'
m:: -
z:
c.,
0 C:....
C:
a..
C:
0
- z:
c:,........
~ ~ ~....
~
~
C>
0 C>
0 C,
C>
C>
V 0
TIME (MONTHS)
DESIGN BURNUP -
NE-1011 S2C12 Core Performance Report
~
~
l/
,J
)/
~v V
~
~v u,
a.. - -
u z:...
m::
C, 0
C:....
,c
~ ~ ~ ~ ~.......,..
~
C>
C>
C>
0 C,
0 C>
20700 MWD/MTU Page 15 of 54
z trJ I....
0....
C/l N
C'1....
N 0
-lo.
0 C'1 0
MAY-93 11 CD I
I
"'O JUN-93 CD JUL-93 11 1-t, AUG-93 0
11 SEPT-93 a
P>
=s OCT-93 0
CD NOV-93
- ti DEC-93 CD
'O JAN-94 0
11 FEB-94 rt s::
MAR-94 0
APR-94 z
MAY-94
-I JUN-94
- c JUL-94 AUG-94 SEP-94 OCT-94 "C
NOV-94 P>
()Q CD DEC-94 JAN-95 FEB-95
°'
0 CYCLE AVG.
1-t, VI
+'
u.)
0 I
I I
PERCENT I
CJ'1 0
I
- 0) 0 I
I I
co 0
I
' co 0
1 I
-lo.
0 0
I
- x 0 z C/l
,-; c:::
- i:: :::ti t"" :::ti i-< i-<
< c::: 'tj trJ ~ I-'*
~,-;~
c.l N 11 trJ CD t"" 'N 0
C'1 *
> >< N t:, C'1
'tj t""
> trJ C'1....
,-; N 0
- ti C/l
I, u I
I I
I l
I, 2
3 I
4 5
I 6
7 I
8 9
I io 11 I
12 I
13 14 I
15 I
1*
I I
I I
R p
N Figure 2.3 SURRY UNIT 2 - CYCLE 12 ASSEMBLYWISE ACCUMULATED BURNUP MEASURED AND PREDICTED (GWD/MTU)
L K
J H
G F
E D
C B
- A I 38,451 31.701 38.461 I 38.301 32.091 38.301 I
HEASURED I I PREDICTED I 1 47.751 35.611 18.041 39.641 18.181 36.361 47.611 I 48.091 36.021 18.441 39.801 18.441 36.021 48.o91 1 45.851 19.141 21.751 40.241 22.821 39.681 22.481 19.881 45.331 I 45.561 19.201 22.451 40.23.I 23.501 40.231 22.451 19.201 45.561 1 45.351 37.541 22.761 41.541 24.771 44.431 24.891 42.531 23.741 38.231 44.571 I 45.571 38.171 23.611 42.461 24.961 45.141 24,961 42.461 23.611 38.171 45.571 I 48.ool 19.141 23.181 44.771 24.701 45.461 24.531 45.921 25.121 43.961 22.981 l9.o81 47.411 I 48.101 19.221 23.621 44.851 24.961 46.lOI 24.361 46.101 24.961 44,851 23.621 19.221 48.101 1 35.671 22.371 41.921 24.451 45.311 24,561 45.521 24.431 45.701 24.871 41.561 22.081 35,861 I 36.021 22.451 42.391 24.931 45,881 23.991 45,801 23.991 45.881 24.931 42.391 22.451 36.021 l
- 2 3
4 5
6 I 39,461 18.311 39.681 24.721 45.261 24.151 46.041 25.00I 46.161 24.481 45.161 24.291 39.801 17.971 38.541 7
I 38.891 18.381 40.211 24,961 46.071 23.991 45.691 24.471 45.691 23.991 46.071 24,961 40.211 18.381 38,891 I 31,981 39.691 23.291 44.261 23,701 45.201 24.951 34.951 24.901 46.151 24,401 43.741 23.031 40.081 31.411 8
I 31,981 39.741 23.471 45.131 24.361 45.811 24.471 34,301 24.471 45.811 24,361 45.131 23.471 39.741 31.981 1 38.641 17.971 39.301 24.581 45.571 23.851 45.031 24.571 45.651 23.721 45.941 24.401 39.691 18.531 39.021 9
I 38.891 18.381 40.211 24.961 46,071 23.991 45.691 24.471 45,691 23.991 46.071 24,961 40.211 l8.38l'38.B9I R
I 35.801 21,491 41.841 24.841 45,141 23,611 45.991 23.871 45,091 24.801 42,601 22.551 36.101 I 36,021 22.451 42.391 24.931 45.B81 23,991 45.BOI 23,991 45.881 24,931 42.391 22,451 36,021 1 47.511 18.831 23.341 44,221 24.681 45.291 24.081 4S.30I 24.321 44.961 23.881 19.611 47.481 I 48.lol 19.221 23.621 44,851 24.961 46.101 24.~361 46.101 24.961 44.851 23.621 19.221 48.lol 1 4S.35I 38.00I 23.471 42.561 24.331 44.091 24.411 41.751 23.421 37.951 45.561 I 45.571 38.171 23.611 42,461 24.961 45,141 24.961 42.461 23,611 38.171 45.S71 1 44.811 19.641 22.431 39.471 22,911 39.191 21,671 18.881 45.061 I 45.561 19.201 22.~51 40.231 23.501 40.231 22.451 19,201 45,561 1 48.101 35,961 18,591 39.361 17.921 35.lSI 47,131 I 48.091 36.021 18,441 39,801 18.441 36.021 48.091 1 38.991 32,141 38.161 I 38.301 32.091 38.301 p
N L
K J
H G
F E
D C
B A
NE-1011 S2Cl2 Core Performance Report Page 17 of 54.
10 11 12 13 14 15
R l
2 3
4 s
6 p
N Figure 2.4 SURRY UNIT 2 - CYCLE 12 ASSEMBLYWISE ACCUMULATED BURNUP COMPARISON OF MEASURED AND PREDICTED (GWD/MTU)
L K
J H
G F
E D.
C B
A I 38.451 31.701 38.461 I o.4ol -1.201 o.431 I
NEASURED I
I N/P % DIFF I I 47.751 35.611 18.041 39.641 18.181 36.361 47.611 I -0.101 -1.1sl -2.181 -o.411 -1.391 o.931 -o.991 I 45.851 19.141 21.1sl 40.241 22.821 39.681 22.481 19.881 45.331 I
o.641 -0.321 *3.091 0.021 -2.891 -l.381 0.161 3.521 -o.SOI 1 45.351 37.541 22.761 41.541 24.771 44.431 24.891 42.531 23.741 38.231 44.571 I -0.491 -1.651 -3.611 -2.171 -0.791 -1.SSI -0.301
- 0.161 0.541 0.171 -2.211 1 48.ool 19.141 23.181 44.771 24.701 45.461 24.531 45.921 2s.121 43.961 22.981 19.081 47.411 1 -0.211 -o.421 -1.841 -0.201 -1.osl -1.401 0.121 -0.391 0.621 -2.001 -2.691 -o.731 -1.431 I 35.671 22.371 41.921 24.451 45.311 24.561 45.521 24.431 45.7ol 24.871 41.561 22.081 35.861 I -o.971 -o.3sl -1.111 -1.931 -1.231 2.351 -o.6ol 1.811 -o.371 -0.211 -1.941 -1.651 -o.461 7
I 39.461 18.311 39.681 24.721 45.261 24.lSI 46.041 2s.ool 46.161 24.481 45.161 24.291 39.801 17.971 38.541 I
1.481 -o.371 -1.311.-o.951 -1.761 o.651 o.771 2.191 1.021 2.011 -1.971 -2.101 -1.021 -2.231 -o.891 8
I 31.981 39,691 23.291 44.261 23.701 45.201 24.951 34.951 24.tol 46.151 24.401 43.741 23.031 40.0BI 31.411 I
0.021 -0.121 -o.771 -1.921 -2.681 -1.341 1.971 1.901 1.741 0.121 0.201 -s.011 -1.871 o.e61 -1.781 9
I 38.641 17.971 39.301 24.581 45.571 23.BSI 45.031 24.571 45.651 23.721 45.941 24.401 39.691 18.531 39.021 I -o.641 -2.241 -2.261 -1.531 -1.091 -o.591 -1.441 o.431 -0.091 -1.161 -o.291 -2.241 -1.291 o.e41 o.351 10 11 12 13 14 15 I 35.BOI 21.491 41.841 24.841 45.141 23.611 45.991 23.871 45.091 24.BOI 42.601 22.551 36.101 I -0.621 -4.241 -1.291 -o.361 -1.611 -1.611 o.441 -a.sol -1.111 -o.531 a.sol o.471 0.211 I 47.511 18.831 23.341 44.221 24.681 45.291 24.0BI 45.301 24.321 44.961 23.881 19.611 47.481 I -1.241 -2.001 -1.171 -1.401 -1.101 -1.761 -1.141 -1.741 -2.561 o.241 1.141 2.031 -1.201 I 45.351 30.001 23.471 42.561 24.331 44.091 24.411 41.751 23.421 37.951 45.561 I -o.481 -o.451 -o.5el 0.231 -2.541 -2.331 -2.231 -1.671 -o.781 -o.s11 -0.041 I 44.811 19.641 22.431 39.471 22.911 39.191 21.671 18.BBI 45.061 I -1.651 2.261 -o.091 -l.901 -2.521 -2.581 -3.471 -1.691 -l.lll I 40.101 35.961 18.591 39.361 17.921 35.151 47.131 I
0.021 -0.171 o.821 -1.111 -2.021 -2.411 -l.991 I ARITHNETIC AVG I IPCT DIFF = -0.751 I STANDARD DEV I I
= o.88 I
I 38.991 32.141 38.161 I
1.821 0.111 -o.3sl I AVG ABS PCT I I DIFF = l.26 I R
p N
SUB NO. OF BATCH ASSEHBLIES Sl/8B l
12A 7
128 16 12C l
13A 32 138 32 14A 32 148 36 L
K J
SUB-BATCH SHARING (HWD/HTU)
BOC BATCH BURNUP 11,348 32,950 39,661 33,819 24,142 21,067 0
0 H
G EOC BATCH BURNUP 34,955 38,609 46,429 39,463 40,501 42,090 21,515 23,606 CYCLE AVERAGE ACCUHULATED BURNUP NE-1011 S2C12 Core Performance Report F
E D
C B
A CYCLE BURNUP 23,607 BURNUP TILT 5,659 6,768 5,644 NW=
0.06 I NE= 0.19
-* -------1------------
16,359 sw = -0.16 I SE= -0.10 21,023 21,515 23,606
= 33,562 Page 18 of 54 I
I I
I l
I 2
3 I
4 I
s 6
I 7
8 I
9 10 I
11 12 I
13 14 I
15 I
I I
I I
I I
I I
I I
I I
I I
I I
,I I
I I
I I
I I
I 48 44 40 36 -
- > !i 32 -
~
~28
- a.
~ 24 IIl 5 20
~
IIl m 16 rn 12 8
4 0
y
,<X~
h h,v
/v
/
~
c)/
r.V
/
~
~ v*
71,
/i' Figure 2.SA SURRY UNIT 2 - CYCLE 12 SUB-BATCH BURNUP SHARING
/
,./ V
./ *v
,,".j
')
")
~v I/' y
- u.
,/ /
n /
/,/
"',/
,) }
7 IU/
j~
n,v
~
Ir-- V
,x_,
7
(~/
I"\\/
17 b"
_y y
l:::,,V-
~/
l'I/
I",
r.,,;,
PK
/
~
'1/
',I
.1"Z'
~
~
1£
,JL
-ii/
,/ "
~ 1, V
I/
A V
,/
-,/
'"'j
/
/
.¥
~
~
SUB-BATCH 138 0
SUB-BATCH
. S1/8B 0
SUB-BATCH 14A 0
2 4
6 8
10 12 14 16 18 20 CYCLE BURNUP (GWd/MTU)
LINES ARE PREDICTED VALUES, SYMBOLS ARE MEASURED VALUES.
NE-1011 S2C12 Core Performance Report Page
,19 of 54
44 40 36 32 -
1-
- E
=5 28 3:
(!) -
c.. 24
- > z 0::
cc 20
- c:
t) 1-::
~ 16 I cc en 12 8
4 0
/' /:
/' (' ('(~
/
/
IA K)
V\\--
'Jo
/'
7i'
!~
' V' 1/1
- "\\ (
/
lJ
/
~
Figure 2.SB.
SURRY UNIT 2 - CYCLE 12 SUB-BATCH BURNUP SHARING K)
~I(
A /), u -
"' )~ /
u A
'\\< )_\\ ~....
/ *v,,......-
/
V
,,;( -
k' K,..
.... r')
/ p IJ
~
~
~
/
~
....;/
./ '
~
'~
,/'
,) 1"'
,. K
~
Jf_
,/ '
1,
/
/
~
/
/
II' SUB-BATCH 12C 0
SUB-BATCH 13A 0
SUB-BATCH
.14B 0
2 4
6 8
10 12 14 16 18 20 CYCLE BURNUP (GWd/MTU)
LINES ARE PREDICTED VALUES, SYMBOLS ARE MEASURED VALUES.
NE-1011 S2Cl2 Core Performance Report Page 20 of 54 I
I I
I I
I I
I I
I
- .I I
I I
II I
I I
- 1.
I I
I I
I I
I I
I I
I I
I I
I I
I I
I 1-
- E 50 48 46 44
=a 42
~
C!) -
ii. 40
- , z 0::
ril 38 J:
(.)
1-::
~ 36 I
ril en 34 32 30 28 V
/
0
\\....
C. ~
V
/ p
/ V C
<§
~
/: x e<
/8
~ V Figure 2.SC SURRY UNIT 2 - CYCLE 12 SUB-BATCH BURNUP SHARING
/
V 0
/ /
0 V 0 u V In V D( ~
V '"'
V
.... D,_,
'.)
f..l
~
iv
-~
,I es> ~
rv er es-- V
,y
~v V
r--
,?5
.,,,,.~
/
/
0 V
l0_..
SUB-BATCH 12A 0
SUB-BATCH 12B 0
0 2
4 6
8 10 12 14 16 18 20 CYCLE BURNUP {GWd/MTU)
LINES ARE PREDICTED VALUES, SYMBOLS ARE MEASURED VALUES.
NE-1011 S2C12 Core Performance Report Page 21 of*S4
- I I
I I
I I
I I
I I
I I
I I
I I
I I
I Section 3 REACTIVITY DEPLETION The primary coolant critical boron concentration is monitored for the purposes of following core reactivity and to identify any anomalous reactivity behavior. The FOLLOW 4 computer code was used to normalize
"'actual" critical boron concentration measurements to design conditions taking into consideration control rod position, xenon concentration, moderator temperature, and power level.
The normalized critical boron concentration versus burnup curve for the Surry 2 Cycle 12 core is shown in Figure 3.1.
It can be seen that the measured data typically compared to within 36 ppm of the design predictio_n. The largest reactivity anomaly was +/-0. 26% AK/K which is within the +/-1% AK/K criterion for reactivity anomalies set forth in Section 4.10 of the Technical Specifications.
In conclusion, the trend indicated by the critical boron concentration verifies that the Cycle 12 core depleted as expected without any reactivity abnormalities.
NE-1011 S_2Cl2 Core Performance Report Page 23 of 54
1500
........ 1400
- ii D. 1300 E!:-z 1200 Q 1100
~
I 1000
~ 900 w
u 800 z 8 700 z
600
~
0 500 m 400 g 3)0
!:: 200 a:
U 100 0
~
I Figure 3.1 SURRY UNIT 2 - CYCLE 12 CRITICAL BORON CONCENTRATION vs. BURNUP (HFP,ARO)
'111111 "t '
~ ' '~ " ' '\\.
~
~
-~
~
~
I I
I I
I T
I I
~
~~
'I
~
~~
I I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 CYCLE BURNUP (GWD/MTU) 11 I I MEASURED PREDICTED l NE-1011 S2Cl2 Core Performance Report Page 24 of 54
(.1 I
I I
I I
I I
I I
I I
I I
I I
I I
I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I Section 4 POWER DISTRIBUTION Analysis of core power distribution data on a routine basis is necessary to verify that the hot channel factors are within the Technical Specification limits and to ensure that the reactor is operating without any abnorma 1 uneven burnup conditions which could cause an distribution. Three-dimensional core power distributions are determined from movable detector flux map measurements using both the INCORE 5 and C:ECOR 6 computer programs.
The INCORE program was used from the beginning of the cycle through flux map 18.
The CECOR program was used from flux map 19 to the end of the cycle. A summary of all 'full core flux maps taken for Surry 2 Cycle 12 is provided in Table 4.1, excluding the initial power ascension flux maps which were included in the S2C13 Startup Physics Tests Report. Power distribution maps were generally taken at monthly intervals with additional maps taken as needed.
Radial (X-Y) core power distributions for a representative series of incore flux maps are given in Figures 4.1, 4.2, and 4.3. Figure 4.1 shows a power distribution map that was taken early in cycle life.
Figure 4.2 shows a power distribution map that was taken near the mid-cycle burnup.
Figure 4.3 shows a map that was taken near the end of Cycle 12.
The maximum relative assembly power difference between measured and predicted was 10.6% and the maximum average percent difference was equal to 1.9%-.
In addition, as indicated by the INCORE tilt factors, the power distributions were essentially symmetric for each case.
NE-1011 S2Cl2 Core Performance Report Page 25 of 54
An important aspect of core power distribution follow is the monitoring of nuclear hot channel factors.
Verification that these factors are within Technical Specification limits ensures that linear power density and critical heat flux limits will not be violated, thereby providing adequate thermal margin and maintaining fuel cladding integrity.
Surry Technical Specification 3.12 limited the axially dependent heat flux hot channel factor, FQ(Z), to 2. 32 x K(Z), where K(Z) is the hot channel factor normalized operating envelope.
Figure 4.4 is a plot of the K(Z) curve associated with the 2.32 FQ(Z) limit.
The axially dependent heat flux hot channel factors, FQ(Z), for a representative set of flux maps are given in Figures 4.5, 4.6, and 4.7.
Throughout Cycle 12, the measured values of FQ(Z) were within the Technical Specification limit.
A summary of the maximum values of axially-dependent heat flux hot channel factors measured during Cycle 12 is given in Figure 4.8. The minimum margin to the FQ(Z) limit was 17.89%.
Figure 4.9 shows the maximum values for the heat flux hot channel factor measured during Cycle 12.
The value of the enthalpy rise hot channel factor, F-delta-H, which is the ratio of the integral of the power along the rod with the highest integrated power*to that of the average rod, is routinely followed.
The*
Technical Specification limit for this parameter is set such that the departure from nucleate boiling ratio (DNBR) limit will not be violated.
Additionally, the F-delta-H limit ensures that the value of this parameter used in the LOCA-ECCS analysis is not exceeded during normal operation.
Surry Technical Specification 3.12 limited the enthalpy rise hot channel NE-1011 S2Cll Core Performance Report Page 26 of 54 I
I I
I I
11 I
I' I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I*
I I
I I
factor to 1.56(1+0.3(1-P)) for Cycle 12, where 1.56 is the F-delta-H at rated thermal power and 0.3 is the power factor multiplier, both as specified in the COLR.
A summary of the maximum values for the enthalpy rise hot channel factor measured during Cycle 12 is given in Figure 4.10.
As can be seen from this figure, the minimum margin to the limit was 5.77%
for Cycle 12.
The target delta flux* is the delta flux which would occur at conditions of full power, all rods out, and equilibrium xenon.
The delta flux is measured with the core at or near these conditions and the target delta flux is established at this measured point. Since the target delta flux varies as a function of burnup, the target value is updated monthly.
By maintaining the value of delta flux relatively constant, adverse axial power shapes due to xenon redistribution are avoided.
This target delta-flux was also used to establish the operational axial flux difference bands while under CAOC.
The plot of the target delta flux versus burnup, given in Figure 4.11, shows the value of this parameter to have been approximately 2.5% at the beginning of Cycle 12 and decreasing to -1.5% where it leveled off until the middle of the cycle.
After an outage near *the middle of Cycle 12, the delta flux was approximately -4.5 where it increased until the end of the cycle.
This axial power shift can also be observed in the corresponding core aver~ge axial power distribution for a representative series of maps given in Figures 4.12 through 4. 14.
In Map S2-12-04 Pt-Pb
- Delta Flux=
X 100 2441 where Pt= power in top of core (MW(t))
Pb= power in bottom of core (MW(t))
NE~lOll S2C12 Core Performance Rep6rt Page
.27 of 54
(Figure 4.12), taken at 646 MWD/MTU, the axial power distribution had a shape peaked towards core midplane with an axial peaking factor (F-Z) of
- 1. 228.
In Map S2-12-16 (Figure 4.13), taken at approximately 9,368 MWD/MTU, the axial power distribution peaked toward the bottom of the core with an axial peaking factor of 1.143.
Finally, in Map S2-12-28 (Figure 4.14), taken at 17,575 MWD/MTU, the axial peaking factor was 1.144, with an axial power distribution similar to Map S2-12-16.
The history of F-Z during the cycle can be seen more clearly in a plot of F-Z versus burnup given in Figure 4.15.
In conclusion, the Surry 2 Cycle 12 core performed satisfactorily with power distribution analyses verifying that design predictions were accurate and that the values of the FQ(Z) and F-delta-H hot channel factors were within the limits of the Technical Specifications.
NE-1011 S2C12 Core Performance Report Page 28 of 54 I
I I
I I
I:
I I
I I
I I
I I
I I\\
I I
I
(I I
I I
I I
I I
I I
I I
I I
I I
I I
11 Table 4.1 SURRY UNIT 2 - CYCLE 12
SUMMARY
OF FLUX MAPS FOR ROUTINE OPERATION
. I I
1 z
I 3
I I
I I
BURN BANK F-Q(Zl HOT F-DHCN) HOT CORE FCZl I
CORE AXIAL ND.I IHAPI I
UP D
CHANNEL FACTOR CIOIL. FACTOR HAX I
TILT OFF I OF I IND.I DATE I HWD/
PWR STEPS I
I SET ITHIHI I
I I
HTU
.C:i!l ASSYJPINIAXIALI IAXIAL I FCZll MAX ILOC C:i!l IBLESI I
I I
I I
I I
IPOINTIF-QCZl IASSYIPIN IF-DHCNllPOINT I I
I I
I I
1_1 ___ 1_.,...,...,._, __ 1 ___, __ 1_, __ 1 __ 1_1_, __
1 __ 1 __ 1 __ 1 __ 1 __ 1_1 I 4 I 5-29-931 646 I
99.91 ZZ4 Dll HII 3Z 1.890 F04J 00 l.4Z4 31 ll.2Z8ll.007J NE O.Z7ll 46 I I 5 I 6-Z5-93I 1464 I
66.21 186 Dll HII 30 Z.005 E041 CH 1.457 30 ll.Z85ll.0091 NE
-0.0571 43 I I 6 I 7-26-931 Z368 I
98.ZI ZZ3 Dll HII 30 1.901 Olli HI 1.443 30 ll.Z09Jl.OlZI NE 0.3351 43.I I 7 I 9-14-931 3169 "I 99.81 ZZ4 Dll HII 31 1.879 Olli HI 1.445 35 ll.19611.0IZI NE
-1.2361 43 I 8 II0-15-931 4238 98.0I ZZ4 Dll HII 3Z 1.834 Olli HI 1.436 36 ll.17811.0111 NE
-l.3Z91 43 I 9 111-15-931 5221 95.ll 217 Dll CLI 31 l.800 Olli CL 1.430 36 ll.16411.0lOI NE
-1.4541 42 110 112-16-931 5727 100.11 219 F05.
HII 41 1.797 Olli CL 1.428 41 ll.166ll.0091 NE
-2.6091 43 Ill 12-22-931 5895 60.71 178 LlO CHI 32 1.914 Olli FL 1.438 31 ll.240Jl.DD81 NW
-4.5031 41 112 l-ZD-941 6863 100.DI 223 FD5 HII 43 1.7114 F051 HI 1.425 44 Jl.156Jl.0071 NE
-Z.5681 43 113 2-17-941 7805 98.0J Z2Z JOB NHI. 42 1.791 JOBI NH 1.432 45 11.148Jl.0051 NE
-Z.3171 43 114 3-14-941 86Z9 96.71 ZZ2 JOB NHI 42 1.792 JOBI NH 1.445 47 ll.13911.0041 NE
-1.9561 43 115 4-03-941 9276 65.81 187 JOB NHI 30 1.861 JOBI NH 1.454 30 Jl.17511.0071 SW
-Z.8181 43 116 4-06-941 9368 94.DJ 217 HD7 HBI 46 1.806 JOBI NH 1.454 47 ll.143Jl.OD2INE/SW
-Z.Z3ZI 4Z 117 4-lZ-941 9548 60.61 181 JOB NHI 42 1.878 JOBI NH 1.461 4Z Jl.17DJ1.007J SW
-5.3151 43 118 4-18-941 9722 94.0I 218 HD7 H81 46 1.808 JOBI Nit 1.460 47 ll.138Jl.DD21 NE
-2.0021 41 119 5-09-941 10375 90.0I 22Z H07
--1 47 1.791 JOBI 1.460 48 ll.1Z9Jl.003J NW
-1.9441 43 120 6-Z6-94J 11164 67.81 184 H07
--1 20 1.781 HD71 1.461 ZO Jl.1Z5Jl.0061 SW
-Z.3761 46 IZl 6-30-941 11291 lDD.11 ZZ3 COB
--1 48 1.856 GOBI 1.466 48 ll.16111.0031 NE
-4.5551 46 IZ2 7-26-941 12134 100.DI 223 COB
--1 48 1.841 H07J 1.465 52 11.15211.DDZI NE
-3.7881 46 123 8-15-941 1Z8Z8 99.91 ZZZ COB
--1 48 1.841 H07J 1.465 52 ll.153Jl.DDZI NW
-3.5601 43 124 9-13-941 13800 99.91 224 COB
--1 5Z 1.844 HD7J 1.469 5Z,Jl.153Jl.D041 NE
-3.6181 44 125 10-13-941 14809 100.0J ZZ3 COB
--1 53 1.850 HD71 1.470 52 Jl.15311.0041 NE
-3.5931 44 126 10-31-941 15416 100.0I 223 COB
--1 52 1.841 GOBI 1.464 52 Jl.14911.0071 NE
-3.0751 41 127 11-28-941 16362 100.0J 224 COB
--1 52 1.827 H071 1.455 5Z ll.15111.0081 NE
-Z.8861 43 128 1-03-951 17575 100.DJ ZZ4 COB
--1 52 1.805 GOBI 1.443 5Z Jl.14411.0031 NE
-Z.5091 43 129 l-Z4-95I 18Z59 89.31 Zl6 H07
--1 11 1.759 H071 l.45Z 11 Jl.11411.0041 SW 0.1501 44 I_
I
__ I ______ I _______ I _____
I __ I __ I _____ I_
NOTES: HOT SPOT LOCATIONS ARE SPECIFIED BY GIVING ASSEMBLY LOCATIONS CE.C. HOB IS THE CENTER-OF-CORE ASSEMBLY),
FOLLOWED BY THE PIN LOCATION !DENOTED BY THE "Y" COORDINATE WITH THE FIFTEEN ROWS OF FUEL RODS LETTERED A THROUGH RAND THE "X" COORDINATE DESIGNATED IN A SIMILAR HANNER).
AFTER IMPLEMENTATION OF THE CECOR CODE, PIN LOCATIONS WERE NO LONGER AVAILA.BLE AND ARE NOT INDICATED.
IN THE "Z" DIRECTION THE CORE IS DIVIDED INTO 61 AXIAL POINTS STARTING FROM THE TOP OF THE CORE.
- 1. F-QCZl INCLUDES A TOTAL UNCERTAINTY OF 1.08.
Z. F-DH!Nl INCLUDES NO UNCERTAINTY.
- 3. CORE TILT - QUADRANT POWER TILT AS DEFINED BY THE INCORE/CECOR CODE.
- 4. FLUX HAPS 4 THROUGH 18 WERE ANALYZED USING THE INCORE CODE, lltlILE FLUX HAPS 19 THROUGH Z9 WERE ANALYZED USING THE CECOR CODE.
NE-1011 S2C12 Core Performance Report Page 29 of 54
R p
N Figure 4.1 SURRY UNIT 2 - CYCLE 12 ASSEMBLYWISE POWER DISTRIBUTION S2-12-04 L
K J
H G
F E
D C
B PREDICTED MEASURED
.PCT DIFFERENCE.
0.32 0.40 0.32.
. 0.31. 0.40. 0.32.
. -1.2. -1.2. 0.4.
PREDICTED MEASURED
.PCT DIFFERENCE.
0.32 0.65. 1.11 0.92 1.11. 0.65 0.32
- 0.34. 0.64. 1.09. 0.90. 1.11. 0.67. 0.34.
- 6,6. -1.5. -1.4. -1.4. o.4. 2.1. 5.5.
0.38 1.09 1.24 1.25 1.28 1.25 1.23 1.09 0.38
- 0.40. 1.12. 1.21. 1.25. 1.26. 1.26. 1.26. 1.15. 0.42.
5.7. 2.2. -2.1. -0.4. -1.1. 0.6. 1.9. 5.4. 9.9.
0.38 0.86 1.28 1.31 1.28 1.20 1.28 1.31 1.28 0.86 0.38" *
. 0.41. 0.87. 1.26. 1.30. 1.29. 1.21. 1.28. 1.32. 1.31
- 0.89. 0.40.
6.6. 1.7. -1.1. -0.5. 0.8. 1.0. 0.5. 1.0. 2.4. 3.7. 4.0.
0.32 1.09 1.28 1.23 1.24 1.18 1.17 1.18 1.24 1.23 1.28 1.09 0.32
. 0.32. 1.09. 1.26. 1.23. 1.23. 1.20. 1.18. 1.20. 1.25. 1.25. 1.27. 1.10. 0.33.
- -2.2. -0.l. -1.0. -0.5. -0.2. 1.6. 1.4. 1.4. *1.4. 1.0 ~ -0.6. 1.0. 2.9.
0.65 1.24 1.31 1.23 1.11 1.11 1.09 1.11. 1.11. 1.23. 1.31
- 1.23. 0.65.
. 0.63. 1.21. 1.29. 1.22. 1.12. 1.14. 1.11. 1.13. 1.13. 1.24. 1.30. 1.22. 0.64.
. -2.2. -2.2. -1.3. -1.3. 0.7.
- 2.2. 1.3.
- 1.5. 1.9. 0.4. -0.9. -1.l. -0.6.
A 0.31 1.10 1.25 1.28 1.18. 1.11. 1.07. 1.15 1.08 1.12 1.18 1.28 1.25 1.10 0.31
. 0.30. 1.08. 1.23. 1.25. 1.16. 1.12. 1.11. 1.18. 1.09. 1.13. 1.18. 1.24. 1.21. 1.06. 0.30.
. -2.5. -2.3. -2.2. -1.8. -1.5. 0.8. 3.5. 2.1. 1.4. 1.3. -0.3. -2.5. -3.0. -3.7. -2.8.
0.40 0.91 1.27 1.20 1.16 1.09 1.14 1.19 1.17 1.09 1.17 1.20 1.27 0.91 0.40
. 0.39. 0.89. 1.24
- 1.18. 1.15. 1.09. 1.19. 1.21. 1.17. 1.10. 1.16. 1.16. 1.23. 0.90. 0.39.
- -2.5. -2.4. -2.2. ~1.2. -1.3. 0.4. 3.7. 2.1. 0.6. 0.3. -0.9. -3.2. -3.4. -1.6. *-1.6.
0.30 1.10 1.25 1.27 1.18. 1.11 1.07 1.15 lc08 1.12 1.18 1.28 1.26 1.10 0.31.
. 0.30. 1.06. 1.19
- 1.25. 1.18. 1.10. 1.07. 1.16. 1.09. 1.11. 1.18. 1.26. 1.2'*. 1.09. 0.31.
.. -2.5. -3.5. -4.5. -1.6. -0.1. -0.3. 0.1.
0.7. 0.7. -0.8. -0.4. -1.3. -1.4. -1.2. -0.8.
0.64 1.23 1.30 1.23 1.11 1.11 1.09 1.11 1.11 1.23 1.31 1.24 0.65
. 0.61. 1.18. 1.28. 1.23. 1.11. I.11. 1.10. 1.12. 1.11. 1.24. 1.32. 1.24. 0.65.
. -4.5. -4.5. -1.8. 0.2. 0.1
- 0.2. 0.8. 0.1. -o.3.
O.l.
0.5.
0.1. -0.l.
0.32 1.09 1.27 1.23 1.23 1.18 1.17 1.18 1.24 1.23 1.28 1.09 0.32
. 0.32. 1.07
- 1.26
- 1.23.* 1.23. 1.18. 1.18. 1.18. 1.23. 1.25. 1.31. 1.12. 0.33.
. -1.1. -1.1. -o.9. 0.2. -0.2. 0.1. 1.0. o.o. -0;8. 1.2. 2.2. 2.5. 2.2.
0.38 0.86 1.28 1.31 1.28 1.20 1.28 1.31 1.28 0.86 0.38
- 0.39
- 0.86
- 1.28. 1.30
- 1.27. 1.20. 1.27. 1.30. 1.29. 0.89. 0.40.
1.0.
0.7.
0.2 * -0.6 * -0.8.
0.1. -0.7. -0.9.
0.6.
3.0.
5.1.
0.38 1.09 1.23 1.26 1.28 1.25 1.23 1.09 0.38
- 0.39. 1.14. 1.26. 1.24. 1.25. 1.22. 1.21. 1.09. 0.40.
2.9. 4.7. 1.8. -1.1. -1.8. -2.3. -2.2. -0.3. 3.8.
0.32 0.65 1.11 0.92 1.11 0.65 0.32
- 0.34. 0.67. 1.12. 0.91. 1.08. 0.63. 0.32.
- 4.7. 3.5. 1.6. -0.9. -2.5. -2.3. -2.1.
STANDARD DEVIATION
=l.529 0.32 0.40 0.32
. 0.32. 0.40. 0.31.
- 1.6. -o.o. -2.5.
AVERAGE
.PCT DIFFERENCE.
=
1.7 SUHHARY HAP NO: S2-12-04 DATE:
S/29/93 POWER:
99
- 97.
CONTROL ROD POSITION:
F-Q(ZJ
= 1.890 QPTR:
D BANK AT 224 STEPS F-DHINJ = 1.424 NW 0. 9989 INE 1.0069 I
FIZJ
= 1.228 SW 0.9947 ISE 0. 9994 BURNUP
= 646 ttwD/HTU A.O.
= 0.2717.
NE-1011 S2Cll Core Performance Report Page 30 of 54.
l I
I I
l I
2 I
3 I
4 5
I 6
I 7
8 I
9 I
10 I
11 12 I
13 I
14 15 I
I I
I I
I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I R
p N
Figure 4.2 SURRY UNIT 2 - CYCLE 12 ASSEMBLYWISE POWER DISTRIBUTION S2-12-16 M
l K
J H
G F
E D
C 8
PREDICTED MEASURED
.PCT DIFFERENCE.
0.29 0.37 0.29
. 0.29. 0.37. 0.29.
. -0.3. -0.3. -0.3.
PREDICTED MEASURED
.PCT DIFFERENCE.
0.31 0.59 0.94 0.79 0.94 0.59 0.31
. 0.33. 0.57. 0.93. 0.77. 0.93. 0.59. 0.34.
5.4. -3.0. -1.6. -1.7. -1.6. 0.1.
7.0.
0.38 1.01 1.19 I.II 1.25 1.11 1.19 l.Ol 0.38
- 0.39. l.02. 1.15. 1.09. 1.22. 1.10. 1.19. 1.05. 0.40.
4.4. 0.7. -4.0. -1.5. -2.5. -1.l. 0.1. 4.3. 7.0.
0.38 0.81 1.27 1.22 1.36 1.16 1.36 1.21 1.27 0.81 0.38
. 0.40. 0.82. 1.23. 1.19. 1.35. 1.16. 1.36. 1.21. 1.28. 0.82. 0.38.
5.4. 0.7. -2.6. -2.2. -0.7. 0.2. -0.4. 0.1. 0.9. 1.4. 1.9.
0.31 1.01 1.27 1.18 1.37 1.21 1.36 1.21 1.37 1.18 1.27 1.01 0.31
. 0.32. 1.02. 1.25. 1.17. 1.35. 1.22. 1.37. 1.22. 1.39. 1.18. 1.23. 1.00. 0.32.
1.8. 0.1. -1.4. -0.2. -1.3. 1.0. 1.0. 1.2. 1.1. o.3. -3.l. -o.6. 2.6.
0.59 1.20 1.22 1.37 1.16 1.34 1.18 1.34 1.16 1.37 1.21 1.19 0.59
. 0.60. 1.22. 1.21. 1.35. 1.17. 1.37. 1.20. 1.37. 1.19. 1.36. 1.18. 1.17. 0.59.
l.8. l.8. -0.l. -1.5. 0.5. 2.6. 1.6. 2.0. Z.l. -0.4. -Z.5. -1.7. 0.2.
A 0.28 0.94 1.11. 1.36 1.21 1.34 1.16 1.36 1.17 1.34 1.21 1.36 l.ll 0.94 0.28
. 0.29. 0.96. 1.13. 1.36. 1.18. 1.34. 1.21. 1.39. 1.20. 1.37. 1.21. 1.32. 1.09. 0.92. 0.28.
2.2. 2.0. 1.7 ~ -0.5. -z.z. 0.5. 3.7. 2.5. 2.2. 2.1. -0.2. -3.2. -2.0. -1.7. -0.4.
0.37 0.78 I.ZS 1.16 1.36 1.17 1.35 1.26 1.36 1.18 1.36 1.16 1.25 0.78 0.37
. 0.37. 0.80. 1.27. 1.16. 1.33. 1.18. 1.40. 1.30. 1.38. 1.19. 1.35. 1.12. 1.22. 0.79. 0.37.
2.2. 1.9. 1.7. -0.2. -I.9. 0.4. 3.9. 2.7. 1.3. l.3. -0.7. -3.4. -2.6. 1.0. 0.9.
0.28 0.94 1.11 1.36 1.21 1.34 1.16 1.35 1.17 1.34 1.21 1.36 1.11 0.94 0.28
. 0.29. 0.93. 1.07. 1.35. 1.22. 1.33. 1.21
- 1.38. 1.19. 1.33. 1.20. 1.31. l.ll. 0.95. 0.29.
2.2. -0.6. -3.5. -1.2. 0.6. -0.3. 3.9. 1.9. 1.4. -0.9. -0.4. -3.5. -0.4. 0.9. 1.6.
0.59 1.19 1.21 1.37 1.16 1.34 1.18 1.34 1.16 1.37 1.21 1.20 0.59
. 0.57. 1.15. 1.20. 1.38. 1.18. 1.32. 1.17. 1.33. 1.15. 1.36. 1.23. 1.21. 0.60.
. -3.5. -3.5. -0.9. l.l. l.l. -1.3. -0.l. -0.6. -0.7. -0.8. 1.0. 1.3. 1.4.
. 0.31. 1.01. 1.27. 1.18. 1.37. 1.21. 1.36. 1.21-. 1.37 1.18 1.27 1.01 0.31
. 0.31. 1.00. 1.27. 1.19. 1.36. 1.18. 1.34. 1.19. 1.34. 1.18. 1.29. 1.04. 0.32.
. -0.5. -0.5.
0.1.
1.0. -0.4. -1.9. -1.4. -1.9. -z.o. 0.5. 2.0
- 2.8. 2.7.
0.38 0.81 1.27 1.21 1.36 1.16 1.36 1.21 1.27 0.81 0.38
. 0.39. 0.83. 1.28. 1.20. 1.33. 1.14. 1.33. 1.19. 1.26. 0.83. 0.39.
2.4. 1.8. l.O. -1.l. -2.3. -1.9. -2.5. -2.0. -0.5. 1.7. 4.3.
0.37 1.01 1.20 1.11 1.25 l.ll 1.19 1.01 0.38
. 0.39. 1.06. 1.21. 1.09. 1.22. 1.08. 1.15. 0.99. 0.39.
3.8. 5.3. 1.4. -2.5. -2.3. -2.8. -3.4. -1.7. 2.7.
0.31 0.59 0.94 0.79 0.94 0.59 0.31
. 0.33. 0.62. 0.98. 0.79. 0.92. 0.57. 0.30.
5.3. 4.7. 3.7. 0.0. -Z.2. -2.8. -3.6.
STANDARD DEVIATION
=l.381 0.29 0.37 0.29
. 0.30. 0.37. 0.28.
3.6. 1.3. -Z.l.
AVERAGE
.PCT DIFFERENCE.
=
1.8 SUNHARY NAP NO: S2-12-16 DATE:
4/06/94 POWER:
94.0%
CONTROL ROD POSITION:
F-Q!Zl
= 1.806 QPTR:
D BANK AT 217 STEPS F-DHCN) = 1.454 NW 1.0015 NE 1.0017 FCZ)
= 1.143 SW 1.0017 SE 0.9951 BURNUP
= 9368 HWD/HTU A.O. = -2.232%
NE-1011 S2Cl2 Core Performance Report Page 31 of 54 2
3 4
5 6
7 8
9 10 ll 12 13 14 15
R p
Figure 4.3 SURRY UNIT 2 - CYCLE 12 ASSEMBLYWISE POWER DISTRIBUTION S2-12-28 N
PREDICTED MEASURED
- PCT DIFFERENCE.
L I(
.J H
C 0.341 0.440 0.343
- 0.344. 0.4§8. 0.350.*
0.9.
4.1.
2.0.
F E
0.346 0.624 0.975 0.836 0.975 0.624 0.347
- 0.345. 0.620. 0.968. 0.&33. 0.985. 0.653. 0.359.
-0.4. -0.7. -0.6. -0.4.
1.0.
4.6.
3.3.
D C
PREDICTED MEASURED
.PCT DIFFERENCE.
0.407 0.992 1.168 1.087 l.Z50 1.088 1.168 0.992 0.406
. 0.442. 0.990. 1.159. 1.074. 1.214. 1.086. 1.184. 1.017. 0.447.
8.7. -0.2. -0.8. -1.2. -2.9. -0.2.
1.3.
2.5. 10.l.
0.407 0.815 1.214. 1.156 1.344 1.127 1.344 1.155 1.214 0.815 0.407
- 0.409. 0.817. 1.183. 1.144. 1.337. 1.128. 1.343. 1.155. 1.224. 0.830. 0.412.
0.4.
0.3. -2.5. -1.0. -0.5.
0.1. -0.l.
0.0.
0.8.
1.8.
1.3.
B 0.346 0.993 1.214 1.127 1.364 1.176 1.350 1.175 1.364 1.126 1.214 0.993 0.347
. 0.349. 0.999
- l.216
- 1.125
- 1.359
- 1.176
- l.346.' l.174
- l.365
- 1.121. 1.216
- 1.001
- 0.369
- 0.9.
0.6.
0.2. -0.2. -0.4.
O.O. -0.3. -0.l.
0.1 *
-0.5.
0.1.
0.8.
6.2.
0.624 1.169 1.156 1.364 1.153 1.365 1.165. 1.364. 1.153. 1.363. 1.156. 1.168. 0.623.
- 0.633. 1.180. 1.158. 1.358. 1.150. 1.366. 1.150. l.36Z. 1.163. 1.356. 1.144. 1.166. 0.629.
1.3.
1.0.
0.1. -0.4. -0.3.
0.0. -1.2. -0.l.
0.9. -0.5. -I.I. -0.2.
0.9.
A 0.335 0.973 1.089 1.345. 1.177 1.365 1.167 1.397. 1.169 1.364 1.175 1.344 1.087. 0.972 0.335
. 0.347. 0.992. 1.111. 1.344. 1.162. 1.360. 1.186. 1.396. 1.168. 1.363. 1.160. 1.295. 1.079. 0.975. 0.340.
3.5.
1.9.
2.0. -0.l. -1.3. -0.4.
1.6.
0.0. -0.l. -0.l. -1.2. -3.7. -0.7.
0.4.
1.5.
0.436 0.834 1.250 1.128 1.351 1.165 1.394 1.249 1.399 1.165 1.350 l.1Z7 1.249 0.833 0.436
. 0.466. 0.847. 1.256. 1.115. 1.294. 1.147. 1.387. 1.243. 1.396. 1.165. 1.340. 1.118. 1.262. 0.873. 0.454.
7.0.
1.6.
0.4 *. -1.2. -4.2. -1.6. -0.5. -0.4. -0.2.
0.1 * -0.8. -0.8.
1.0.
4.8.
4.1.
0.333 0.972 1.087 1.345 1.176 1.365 1.167 1.397 1.168 1.364 1.175 1.344 1.089 0.973 0.335 *
. 0.341. 0.976. 1.083. 1.336. 1.169. 1.347. 1.148. 1.382. 1.166. 1.314. 1.162. 1.348. 1.108. 1.009. 0.352.
2.5
- 0.5.
-0.4.
-0.7 *
-0.6.
-1.3 *
-1.6.
-I.I.
-0.2 *
-3.7 *
-1.1
- 0.3
- 1.8.
3.7.
5.1
- 0.623 1.169 1.157 1.364 1.153 1.365 1.165 1.364 1.152 1.363 1.156 1.168 0.624
. 0.619. 1.149. 1.151. 1.360. 1.136. 1.317. 1.140. 1.340. 1.124. 1.359. 1.173. 1.199. 0.655.
-0.6. -1.7. -0.5. -0.3. -1.5. -3.6. -2.l. -1.8. -2.4. -o.3*.
1.5.
2.6.
5.0.
0.346 0.993 1.215 1.127 1.365 1.175 1.350 1.175 1.364 1.126 1.214 0.993 0.346
. 0.346. 0.996. 1.222. 1.142. 1.354. 1.147. 1.321. 1.147. 1.313. 1.134. 1.239. 1.025. 0.360.
-0.l.
0.3.
0.6.
1.3. -0.8. -2.4. -2.2. -2.4. -3.8.
0.7.
2.1.
3.2.
3.9.
0.407 0.816 1.214 1.155 1.344 1.127 1.344 1.155 1.214 0.816 0.407
- 0.429. 0.827. 1.225. 1.147. 1.304. 1.105. 1.320. 1.136. 1.218. 0.843. 0.440.
5.4.
1.4.
0.9. -0.7. -3.0. -1.9. -1.8. -1.7.
0.3.
3.3.
8.0.
0.406 0.992 1.169 1.089 1.250 1.087 1.168 0.992 0.406
. 0.413. 1.010. 1.173. 1.082. 1.240. 1.077. 1.152. 0.990. 0.412.
1.6.
1.8.
0.4. -0.7. -0.8. -0.9. -1.4. -0.2.
1.4.
STANDARD DEVIATION
=l.927 0.346 0.624 0.975 0.836 0.974 0.624 0.346
. 0.379. 0.637. 0.989. 0.1141.*0.979. 0.621
- 0.345.
9.6.
2.1.
1.4.
0.6.
0.5. -o.s. -0.3.
0.341 0.440 0.341
- 0.372. 0.451
- 0.345.
9.1
- 2.6
- 1.2
- SUHHARY HAP NO:
S2-12-28 CONTROL ROD POSITION:
DATE:
F-Q(ZJ 01/03/95
= 1.805 POWER: 100.07.
QPTR:
AVERAGE
.PCT DIFFERENCE.
= 1.6 D BANK AT 224 STEPS F-DH(N) = 1.443
.NW 0.9996 NE 1.0831 f(ZJ
= 1.144
- SW 0.9971 SE 1.0003 BURNUP: = 17575 tfWD/HTU A.O.= -2.5097.
NE-1011 S2Cll Core Performance Report Page 32 of 54 I
I 4
7 121 14 I
I I
!I I
I I
I I
I I
I I
11 E
C"
- u.
0.w N
- i 1.2 1
0.8 i-t-
- ~ 0.6 -
ti:::
0
~?
I 0.4 ~
t-0.2 -
0 0
I 2
Figure 4.4 SURRY UNIT 2 - CYCLE 12 HOT CHANNEL FACTOR NORMALIZED OPERATING ENVELOPE (6, 1.0)
.--.......... _I (12,0.925)
I I
I I
4 6
8 10 12 CORE HEIGHT (FT)
NE-1011 S2C12 Core Performance Report Page 33 of 54
ti
~
C" LL -
2.5 2
0:::
0 1-(.) 1.5 if '
...J UJ z z
<(
- I: '
(.)
b 1
- I:
...J LL
~
UJ
- I:
0.5 0
I I
II 1*
I Figure 4.5 SURRY UNIT 2 - CYCLE 12 HEAT FLUX HOT CHANNEL FACTOR, FQ(Z)
S2-12-04 111 1111 **** ' '
- 111 I
'1,l,1
,l'I J
- I I
I II I
I I
I 60 50 40 30 20 I
I,.
I I
I I
1, 10 1
BOlTOM OF CORE AXIAL POSITION (NODES)
TOP OF CORE NE~lOll S2C12 Core Performance Report Page 34 of 54 I
I I
I I
I I
I
- c.
I I
I I
I I
'I I
I I
I
I I
I,,
I I
I I
I I
I I
I I
I 11 I
I I
,N -
I er LL. -
2.5 2
0:::
0.,_
U 1.5
~
...J w
z z
<C :c
(.)
6 1
- c X
...J LL.
~
w
- c 0.5 0
Figure 4.6 SURRY UNIT 2 ~ CYCLE 12 HEAT FLUX HOT CHANNEL FACTOR, FQ(Z)
S2-12-16
-1 11
- I **
I Ii IJil ***
,1:1 I JI ***
II II II II n
I I
60 50 40 30 20 BOTIOM OF CORE AXIAL POSITION, (NODES)
NE-1011 S2C12 Core Performance Report
- ' I '
11 II II
,,11 II I
I 10 1
TOP OF CORE Page 35 of 5~
2.5 2
N -
t-I C"
- u. -
a::
0 t-1;5 t)
~
...J w z z
<(
- c t) t-1 0
- c
...J
- u.
~
w
- c 0.5 0
~
Figure 4.7 SURRY UNIT 2 CYCLE 12 HEAT FLUX HOT CHANNEL FACTOR, FQ(Z)
S2-12-28 1*
'11, I
~
11 11 II II I
- ,~
60 50 40 30 20 I
I BOTIOM OF CORE AXIAL POSITION (NODES)
.1*'
-~
10 1
TOP OF CORE NE-1011 S2C12 Core Performance Report Page 36 of 54 I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I,,
1*
I i 1*
I 11 I,,
I:
I I
I I
1*,
I Figure 4.8 SURRY UNIT 2 - CYCLE 12 MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, FQ(Z)*P, vs. AXIAL POSITION
- a...
fl 2.4 2.2
~~
2.0 1.8
- .,t ***, ****, **
~....
1.6
...... *' ~....
~
~
i 1.4
~
1.2
- 1.0 0.8 0.6 0.4 0.2 0.0 61 I
I
' TTTT TTTT I I I I I
I I I I
I 11 I
I I I I
I I* .'
55 50 45 40 35 30
- 25 20 15 AXIAL POSITION (NODE) 10 I-FQ*PUMIT I
I
- r MAXIMUM FQ*P I 5
1 BOTTOM OF CORE TOP OF CORE NE-1011 S2C12 Core Performance Report Page 37 of 54
Figure 4.9 SURRY UNIT 2 - CYCLE 12 MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, FQ(Z), vs. BURNUP 2.40 2.36 I
I fl: 2.32 I
0 b 2.28 i
- ~ 2.24
- ...J W 2. 20 1-t--+---r+-+---1-+--+---1-+---!-t-t--+-t-t--+--t-t--+-H z
~ 2. 16 1-+--+-+-........-.-....-+--+--+-+--+-t---+--11-+--+--1--+--t---.+1 5 2. 12 1-+--+-+-........-.-....-+--+--+-+--+-t---+--11-+--+--1--+--t---.+1 5 ' 2. 08 l-+---+--r-1........-.-....-+--+--+-+--+-t---+--1,-+-+-t--+--t---.+1
- c I
X 2. 04,---',
+-+-+--+--+--+-1-----+--+--1--+--+--+--+-+--t--+--+i
- 3 2. 00 t--1--+--t--t-+-+--+-----,f--t--+--t---t-f--t--+-+-+--r--+---t--H
- u.
!;;: 1. 96 l...
- +--+-~--+-1-----l-+--+--+--t-----+--+--+-+--+--+-+--+--+---t-1 w
- C 1. 92 1-+--+-=..-..-+--+--+-+--+-~----+--t--+-f--t--1-+1
. 1. 7 6 ~-+-+--+-+--t-t--+--t-t--+--t-t--+---,i---t---t--,j-~ +-t---tt I
I 0
2
.* 4 6
8 10 12 14 16 18 20 CYCLE BURNUP (GWd/MTU)
.NE-1011 S2Cl2 Core Performance Report FULL POWER TECH SPEC LIMIT MEASURED VALUE
- Page 3'8 of 54 I
I I
I I
- 1 I
I I
I I
I I
I I
I I
I I
~
I I
I I
I I
1*
I I
I I
I.
I I
11 I
I
,I:
I Figure 4.10 SURRY UNIT 2 - CYCLE 12 MAXIMUM ENTHALPY RISE HOT CHANNEL FACTOR, F-delta-H, vs. BURNUP 1.58 I
1.57 I
1.56 I
c:: 1.55 0
I I-1.54
(.)
~ 1.53
...J w 1.52 z z 1.51
<(
J: 1.50
(.)
I-1.49 0 J: 1.48 w
en 1.47
-c::
>- 1.46 Cl..
...J 1.45
<(
- r: 1.44 I-I i...
~
i **
I i
I
~
~
z 1.43 w
~~
~
'11111 I"'
1.42 1.41 I
1.40 i
I I
0 2
4 6
8 10 12 14 16 18 20 CYCLE BURNUP (GWd/MTU}
NE-1011 S2C12 Core Performance Report FULL POWER TECH SPEC LIMIT MEASURED VALUE
- Page 39 of 54
5.0 4.5 4.0 3.5 3.0
,,_ 2.5 C:
Q) 2.0
(.)
L..
Q) 1.5
- 0.
>< 1.0
- , 0.5
..J u..
~
0.0 m
-0.5 Cl -1.0 I-W -1.5 C!)
0:: -2.0
~ -2.5
-3.0
-3.5
-4.0
-4.5
-5.0 r
0 Figure 4.11 SURRY UNIT 2 - CYCLE 12 TARGET DELTA FLUX vs. BURNUP 2
4 6
8 10 12 14 16 18 20 CYCLE BURNUP (GWd/MTU)
NE-1011 S2C12 Core Performance Report Page 40 of 54 I
~
I 1*
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I*
I 1*
~
I
~
N
~ i I*
0 z -
N' -
I N
~
I I
I I
I I
I 1.s +
1.2 +
o., +
o.6
- X
.x
-x X
t.5 +
Figure 4.12 SURRY UNIT 2 - CYCLE 12 CORE AVERAGE'AXIAL POWER DISTRIBUTION S2-12-04 Fz = 1. 228 AXIAL OFFSET= 0.271 X
X X
X X
X X
X X
X X X X X xxxxxx X
X X X
X X X X X X XX X
X XXX X
X X
X X X
X X
X X
X X
X X
X X
X X
X X
o.o
- I.***. I
- I *
- I *
- I *
- I *
. I *
- I *
- I.
. I *
- I
.. I **.. I 61 55 BOTTOII OF CORE 50 45 40 35 30 25 AXIAL POSmON (NODES)
NE-1011 S2C12 Core Performance Report 20 15 10 5
l TOP OF CORE Page 41 of 54
1.5 +
1.z +
0.9 +
N' o., +
X l
X
-x o.:s +
Figure 4,13 SURRY UNIT 2 - CYCLE 12 CORE AVERAGE AXIAL POWER DISTRIBUTION S2-12-16 Fz = 1.143 AXIAL OFFSET= -2.232 X
X X
X X
XX X
X X X X X X X X X
XX X X X X lC X
X X lC X X X X X lC X X X X
X X
XX X lC X
lC o.o +
I **..* I
. I **** I
.I **** 1 *.** 1.*.. 1 *..* I *
- I
- 15 61 55 IIOTTDH OF CORE 50 45 40 35
- so 25 20 AXIAL POSmON (NODES)
NE-1011 S2C12 Core Performance Report Page lC X X lC lC lC X lC X
lC X
lC
. I.... I.** I 10 5
l TOP OF CORE
- 42. of 54
,,. I*
I I
I I
I
- I I
I I
.I I
1*
I I
I I
I
I I
1:
I I
I I
I I
I,,
I' I
I I
I I
I CI Q
~ -
,-;j i
0
~
N' -
~
1.5 +
1.2 +
Figure 4.14 SURRY UNIT 2 - CYCLE 12 CORE AVERAGE AXIAL POWER DISTRIBUTION S2-12-28 Fz = 1.144 AXIAL OFFSET= -2.509 IC IC IC IC IC IC IC IC IC IC IC IC IC IC IC IC IC IC IC IC IC IC IC IC IC IC IC IC IC IC IC IC IC X IC XX IC IC IC IC IC IC IC IC IC
)(
)(
0.9 +
-IC 0.6 +
IC o.s.
ii). 0 +
IC IC I **.,. I 61 55 BOTTOII OF CORE IC IC
- I
- 50
.I ***. I *... I.*.. I *.*. I.
u
~
~
~
AXIAL POSITION (NODES)
NE-1011 S2Cl2 Core Performance Report IC
, I *
, I,
20 15 Page
)(
)(
)(
, I
,, I
,,
- I 10 5
l TOP OF CORE 43 of 54
1.275 C:: 1.250 0
I-t)
~ 1.225
(!) z -
~
<(
~ 1.200
...J
<( -s 1.175
(!)
~
w
~
w c::
0
(.)
1.150 1.125 1.100 Figure 4.15 SURRY UNIT 2 - CYCLE 12 CORE AVERAGE AXIAL PEAKING FACTOR vs. BURNUP I
I I 1
I
~
i I
I I
- I I !
- I I
I I
I I !
I
~
- p 1
.~ *** *...
! ~*
- i. ~
I I
'~ I I
I l
i I
i i
i I
i i
~
I I
0 2
4 6
8 10 12 14 16 18 20 CYCLE BURNUP (GWd/MTU)
MEASURED VALUE
- NE-1011 S2C12 Core Performance Report Page 44 of 54 I.
'I I
't.
I I
I I
I I
I I
I I
I I
I
- 1 I
.1 I
- 1
I 0
I I
I I
I I
I I
I I
,I I
I 1*
I I
Section 5 PRIMARY COOLANT ACTIVITY The specific activity levels of radioiodines in the primary coolant are important to core and fuel performance as indicators of failed fuel and are important with respect to offsite dose calculations associated with accident analyses.
Two mechanisms are primarily responsible for the presence of radioiodines in the primary coolant. Radioiodines are always present due to direct fission product recoil from trace fissile materials plated onto core components and fuel structured surfaces or trace fissile materials existing as impurities in core structural materials.
This fissile material is generally referred to as "tramp" material, and the resulting iodines are referred to as tramp iodine. Fission products will also diffuse into the primary coolant if a breach in the cladding (fuel defects) exists.
Fuel defects, when they exist, are generally the predominant source of radioiodines in the primary coolant.
Surry Technical Specification 3.1.D conditionally limits the primary coolant radioiodine dose equivalent I-131 to a value of 1.0 µCi/gram with provisions that ultimately limit the dose equivalent I-131 activity to a maximum of 10.0 µCi/gm 2
- Figure 5.1 shows the dose-equivalent I-131 activity history for Cycle 12.
These data show that the dose equivalent I-131 activity remained substantially below 1.0 µCi/gm throughout Cycle 12 operation.
The cycle average steady state power dose equivalent I-131 concentration was 7. 63 X 10-4 µCi/gm which is less than.1% of the Technical Specification limit.
NE-1011 S2C12 Core Performance Report Page 45 of 54
Correcting the I-131 concentration for tramp iodine involves calculating the I-131 activity from tramp fissile sources and subtracting this value from the measured I-131.
The resultant tramp-corrected I-131 activity is theoretically the I-131 activity from defective fuel.
The magnitude of the tramp-corrected I-_131 can then be used as an indication of the number of defective fuel rods:
The cycle average tramp corrected iodine-131 concentration was 2.90 X 10-5 µCi/gm.
A tramp-corrected I-131 activity of this low magnitude is a good indication of a defect free core.
The fact that there were no spikes in the iodine data during rapid power transients substantiates the conclusion that the Cycle 12 core contained no defective fuel rods and the reactor coolant system radioiodines resulted from tramp fissile sources. The demineralizer flow rate averaged approximately 100 gpm during power operation.
The ratio of the specific activities of I-131 to I-133 is used to characterize the type (size) of fuel failure which may have occurred in the reactor core. Use of the ratio for this determination is feasible because I-133 has a short half-life (approximately 21 hours2.430556e-4 days <br />0.00583 hours <br />3.472222e-5 weeks <br />7.9905e-6 months <br />) compared to that of I-131 (approximately eight days).
For pinhole defects, where the diffusion time through the defect is on the order of days, the I-133 decays leaving the I-131 dominant in activity, thereby causing the ratio to be roughly 0.5 or more. In the case of large leaks and tramp material, where the d~ffusion mechanism is negligible, the I-131/1-133 ratio will generally be less than 0.1.
The use of these ratios with regard to defect size is empirically determined. and generally used throughout the commercial nuclear power industry. Figure 5.2 shows the I-131/1-133 ratio data for the Surry 2 Cycle 12.
The "spikes" in the ratio data shown on NE-1011 S2Cl2 Core Performance Report Page 46 of 54
- I I
I I
'I
- I.
I I
I 1:
- I I
'* I.
- 1 l
1 I
- 1 I'
I
I I
I I
I I
I I
I
,1 I
I I,
I,,
I I
I 1-Figure 5.2 primarily occurred when the unit was down and is the result of I-133 decay thus increasing the ratio substantially.
While the unit was in full power operation, the I-131/I-133 ratio remained consistantly under.1, which is typical for a core with zero defective fuel rods.
NE-1011 S2Cl2 Core Performance Report Page 47 of 54
1.00E+Ol 1.00E+OO 1.00E-01 1.00E-03 1.00E-04 1.00E-05 11 11 Figure 5.1 SURRY UNIT 2 - CYCLE 12 DOSE EQUIVALENT I-131 vs. TIMt
~
- --
- ., 1.. ~*i:
I * *
':JI
- U'~u*
r-I
~
I 'r I
I I
"I""
I I
I I
.!L I I I r
I I I
II I 1111111111 11 100 110 "d 0
IIO~
"°~
'N 20....
0 16FEB93 27MAY93 MSEP93 13DEC93. 23MAR9-i OUUL9-i 090CT9-i 17JAN95 27APR95 DATE NE-1011 S2C12 Core Performance Report Page 48 of 54
~
I
"\\
~
I I
I I;
I I
I I
I I
I I
I I
I I
I I
I I.
I I
I
--.\\
I I
I I
I I
I 0
~
CZ:
t':I t':I Figure 5.2 SURRY UNIT 2 - CYCLE 12 I-131 / I-133 ACTIVITY RATIO vs. TIME 0.81---------'"'------------------------------1 0.7+----.--i----------'-------------------------1
,o.61--------------------------------------1 1 Cl.5+----.,-------------------------------------1 t':I...
I -0.4+---------------'L--------------------------1 0.3-t--------'-.---------------------------------1 0.0 0
16FEB93 27MAY93 04SEP93 13DEC93 23MAR94-01JUL94 090CT94-17JAN95 27APR95 DATE NE-1011 S2C12 Core Performance Report Page 49, of 54
l
'.I
.I.
I
'I' I
I I
I I
I THIS PAGE INTENTIONALLY BLANK I
I.,
I I
I I
I I
NE-1011 S2C12 Core Performance Report
.Page 50 of 54 I
I '.,
I,,
I I
t 11 I
11 I
1**1 1*
I
- 1 I,
I I
I I
.I
~.'
I
~
_)
Section 6
'CONCLUSIONS The Surry 2, Cycle 12 core has completed operation.
Throughout this cycle, all core performance indicators compared favorably with the design predictions and the core related Technical Specification limits were met with significant margin.
No significant abnormalities in reactivity or burnup accumulation were detected.
Radioiodine analysis indicated that there were no fuel rod defects.
NE-1011 S2C12 Core Performance Report Page 51 of 54
r
.a.
- 1
~
I:
I I
I I
I t
I THIS PAGE INTENTIONALLY BLANK I
I I
I I
I I
I
' I NE-1011 S2C12 Core Performance Report Page 52 of 54 I
I I
I I
I I
I I
I I
I I
I.
I I
I
.1
~
.)
- 1)
Section 7 REFERENCES D. A. Trace, "Surry Unit 2, Cycle 12 Startup Physics Test Report," Technical Report NE-943, Rev. O, Virginia Power, June, 1993.
- 2)
Surry Power Station Technical Specifications, Sections 3.1.D, 3.12.B and 4.10.
- 3)
T. W. Schleicher, "Virginia Power Fuel Assembly Burnup and Isotopics Calculation Code Manual," Technical Report NE-726, Rev. 0, Virginia Power, February, 1990.
- 4)
D. L. Gilliatt, "The Virginia Power FOLLOW Code Manual,"
Technical Report NE-679, Rev. 1, Virginia Power, April, 1991.
- 5)
W. D. Leggett, I II and L. D. Eisenhart~ "INCORE Code,"
WCAP-7149, Westinghouse, December, 1967.
- 6)
T. W. Schleicher, "The Virginia Power CECOR Code Package",
NE-831, Rev. 2, March, 1994.
- 7)
G. R. Pristas, "Reload Safety Evaluation Surry Unit 2 Cycle 12 Pattern AZ", Technical Report NE-922, Rev.
- 0, Virginia Power,.
June, 1993.
- 8)
Letter from B. C. Buckley (NRC) to W.L: Stewart., "Surry Units 1 and 2 - Issuance of Amendments Re: F-Delta-H Limit and St~tistical DNBR Methodology (TAC Nos. M81271 and M82168)",
Serial No.92-405, dated June 1, 1992.
NE-1011 S2Cl2 Core Performance Report Page 53 of 54
REFERENCES (cont.)
- 9)
D. A. Trace, "Surry Unit 2 Cycle 12 Design Report",
Technical Report NE-932, Rev. 0, Virginia Power, April, 1993.
- 10) "Surry Unit 2 Cycle 12 TOTE Calculations", Calculational Note PM-489, Rev. 0 and associated addenda, Virginia Power.
- 11) R. A. Hall, et al, "Surry Unit 2 Cycle 12 Flux Map Analysis",
PM-491, Rev. 0~ and Addenda, May 1993 - January 1995.
- 12) W. s; Miller, "Surry Unit 2, Cycle 12 FOLOW Calculations",
Calculational Note PM-495, Rev. O, Addendum B, Virginia Power, February, 1995.
- 13) Nuclear Standard, "Fuel Integrity Monitoring", ENNS-2904, Rev. 0, May 26, 1992.
NE-1011 S2C12 Core Performance Report Page 54 of 54
,, )
l
- I I
II
- 1 I
I I
I I
I
- I I
I I
I I
- 1 I
I*