ML20069C399

From kanterella
Jump to navigation Jump to search
Proposed Tech Specs Revising Heatup & Cooldown Curves & LTOP Controls for Unit 2 to Support Mods to LTOP Sys Scheduled for Spring 1995 Refueling Outage
ML20069C399
Person / Time
Site: Calvert Cliffs Constellation icon.png
Issue date: 05/27/1994
From:
BALTIMORE GAS & ELECTRIC CO.
To:
Shared Package
ML20069C394 List:
References
NUDOCS 9406010165
Download: ML20069C399 (25)


Text

-

! q I

)

3/4.1 REACTIVITY CONTROL SYSTEMS

3/4.1.2 BORATION SYSTEMS 1

j Flow Paths - Shutdown l

! LIMITING CCNDITION FOR OPERATI0lf I

j 3.1.2.1 As a minimum, one of the following boron injection flow paths and

) one associated heat tracing circuit shall be OPERABLF: -

i a. A flow path from the boric acid storage tank via either a boric- '

acid pump or a gravity feed connection and charging pump to the Reactor Coolant System if only the boric acid storage tank in -
Specification 3.1.2.7a is 0PERABLE, or i b. The flow path from the refueling water tank via either a charging *

] pump or a high pressure safety injection pump to the Reactor -

Coolant System if only the refueling water tank in Specification j 3.1.2.7b is 0PERA8LE.
j. APPLICABILITY: MODES 5 and 6.

1 ACTION: idith none of the above flow paths OPERA 8LE, suspend all operations 2

involving C0RE ALTERATIONS or positive reactivity changes until at least one injection path is restored to OPERABLE status.

2 i

i SURVEILLANCE REQUIREMENTS i i 4.1.2.1 At least one of the above required flow paths shall be j demonstrated OPERABLE:

l t

a. At least once per 7 days by verifying that the temperature of the '

heat traced portion of the flow path is above the temperature l

, limit line shown on Figure 3.1.2-1 when a flow path from the  ;

j concentrated boric acid tanks is used. l h b. At least once per 31 days by verifying that each valve (manual. I j power-operated or automatic) in the flow path that is not locked, i sealed, or otherwise secured in position, is in its correct

! position.

I 1

$ At F and less, the required OPERA 8LE HPSI 'shall be in pull-to 'I6ck and will not start automatically. At F and less, HPSI pump use will be conducted in accordance with hnical Specification 3.4.9.3. j i

i i CALVERT CLIFFS - UNIT 2. 3/4 1-10 l AmendmentNo.JAlf.

d 9406010165 940527 DR ADOCK0500g8 ,

. . a 3/4.1 REACTIVITY CONTROL SYSTEMS 3/4.1.2 BORATION SYSTEMS Charoino Pump - Shutdown LIMITING CONDITION FOR of 2 RATION -

3 1

3.1.J.3 At least one charging pump or one high pressure safety injection pump in the boron injection flow path required OPERABLE pursuant to Specification 3.1.2.1 shall be OPERABLE and capable of being powered from an OPERABLE emergency bus. _.

APPLICABILITY: N00ES 5 and 6.

ACTION: With no charging pump or high pressure safety injection pump '

OPERA 8LE, suspend all operations involving CORE ALTERATIONS or positive reactivity changes until at least one of the required pumps is restored to OPERABLE status. ,

SURVEILLANCE REQUIREMENTS 4.1.2.3 No additional Surveillance Requirements other than those required by Specification 4.0.5.

1

~ ,

At NF and less, the required OPERABLE HPSI . mp shall be in pull-to- ock and will not start automatically. At F and less, HPSI pump use will be conducted in accordance with i chnical Specification 3.4.9.3.

CALVERT CLIFFS - UNIT 2 3/4 1-13 l AmendmentNo.)p/

l

3/4.3 INSTRUMENTATION TABLE 3.3-3 (Continued)

TABLE NOTATION Containment isolation of non-essential penetrations is also initiated by SIAS (functional units 1.a and 1.c).

When the RCS tem ure is:

(a) Greater than F, the required OPERABLE HPSI pumps must be able to start utoma ica y upon receipt of a SIAS signal, (b) Between F and F, a transition region exists where the OPERABL SI pump w 11 be placed in pull-to-lock on a cooldown and tored to automatic status on a heatup.

(c) At F and less, the required OPERABLE HPSI pump shall be in pu o-lock and will not start automatically.

The provisions of Specification 3.0.4 are not applicable.

Hust be OPERABLE only in MODE 6 when the valves are required OPERABLE and they are open.

(a) Trip function may be bypassed in this MODE when pressurizer pressure is < 1800 psia; bypass shall be automatically removed when pressurizer pressure is > 1800 psia.

(c) Trip function may be bypassed in this MODE below 785 psia; bypass shall be automatically removed at or above 785 psia.

CALVERT CLIFFS - UNIT 2 3/4 3-14 AmendmentNo.IJJf l

i 3/4.4 REACTOR COOLANT SYSTEM 3/4.4.1 COOLANT LOOPS AND C00LANT CIRCULATION HOT STANDBY l LIMITING CONDITION FOR OPERATION 3.4.1.2 a. The reactor coolant loops listed below shall be OPERABLE:

1. Reactor Coolant Loop #21 and at least one associated l reactor coolant pump. I l
2. Reactor Coolant Loop #22 and at least one associated reactor coolant pump.  !

1

b. At least one of the above Reactor Coolant Loops shall be in operation .

APPLICABILITY: MODE 3".

ACTION:

a. With less than the above required reactor coolant loops OPEL'ABLE, restore the required loops to OPERABLE status within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> or be in HOT SHUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.
b. With no reactor coolant loop in operation, suspend all operations involving a reduction in boron concentration of the Reactor Coolant System and initiate corrective action to return the required loop to operation within one hour.

1 All reactor coolant pumps may be de-energized for up to I hour (up to l 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> for low flow test) provided (1) no operations are pennitted i that would cause dilution of the Reactor Coolant System boron  ;

concentration, and (2) core outlet temperature is maintained at least  !

10 F below saturation temperature.

A reactor coolant pum hall not be started with the RCS temperature less than or equal to F unless (1) the pressurizer water level is less than or equal to 170 inches, and (2) the secondary water temperature of each steam generator is less than or equal to 30 F above the RCS temperature, and (3) the pressurizer pressure is less than or equal to 320 psia.

CALVERT CLIFFS - UNIT 2 3/4 4-2 Amendment No. 149

l .. .

3/4.4 REACTOR COOLANT SYSTEM 3/4.4.1 COOLANT LOOPS AND COOLANT CIRCULATION Shutdown LIMITING CONDITION FOR OPERATION 3.4.1.3 a. At least two of the coolant loops listed below shall be OPERABLE:

1. Reactor Coolant Loop #21 and its associated steam generator and at least one associated reactor coolant pump,
2. Reactor Coolant Loop #22 and its associated steam generator and at least one associated reactor coolant pump,
3. Shutdown Cooling Loop #21",
4. Shutdown Cooling Loop #22*.
b. At least o,ne of the above coolant loops shall be in operation .

APPLICABILITY: MODES 4***' and 5***'.

ACTION:

a. With less than the above required coolant loops 0PERABLE, initiate corrective action to return the required coolant loops to OPERABLE status within one hour or be in COLD SHUTDOWN within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

The normal or emergency power source may be inoperable in MODE 5.

All reactor coolant pumps and shutdown cooling pumps may be de-energized for up to I hour provided (1) no operations are pennitted that would cause dilution of the Reactor Coolant System boron concentration, and (2) core outlet temperature is maintained at least 10 F below saturation erature.

A reactor coolant pum 11 not be started with the RCS temperature less than or equal to F unless (1) the pressurizer water level is less than or equal to inches, and (2) the secondary water temperature of each steam generator is less than or equal to 30 F above the RCS temperature, and (3) the pressurizer pressure is less than or equal to 320 psia.

See Special Test Exception 3.10.5.

CALVERT CLIFFS - UNIT 2 3/4 4-4 Amendment No. 149

I j

! 3/4.4 REACTOR C0OLANT SYSTEM j

i 3/4.4.3 RELIEF VALVES

[ i i LIMITING CONDITION FOR OPERATION a i 3.4.3 Two power-operated relief valves (PORVs) and their associated block '

valves shall be OPERABLE.

s j APPLICABILITY: MODES 1, 2, and'3*. 'l i

ACTION:

] ,

a.- If one or both PORV(s) has excessive' seat 1eakage, within'1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> i close the associated block valve (s) and maintain power to the

block valve (s).

! b. With one PORV inoperable.due to causes other than excessive PORY -

i seat leakage, within I hour either restore the.PORV to 0PERABLE

status or close the associated block valve and remove power from j the block valve; restore.-the PORV to 0PERABLE status within the following 5 days- be in H0T STAN08Y within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.
and at or below b F within-the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. .
Jo/ '

l c. With both PORVs noperable due to causes other than excessive

! PORY seat leakage,.within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> either restore the PORVs to i OPERABLE status or. close its associated block valve and remove

  • s' power from the block valve'; restore one-PORV to 0PERABLE status within the following 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> e in H0T STANDBY within the i

! next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and'at or belo F within the following 24 ,

1 hours1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />.

d. With one or both block valve (s) inoperable, within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />. restore j.

the block valve (s) to OPERABLE status 'or place its associated -  :

PORV(s) in override closed. Restore at least one block valve to '

OPERABLE status within the next 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> if both block ~ valves are inoperable; restore any remaining inoperable block valve'to 3 OPERABLE status within the following 5' days;'otherwise, be t

least NOT STAND 8Y within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and at or below F within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

e. The provisions of Specification 3.0.4 are not applicable. l 1

i 1

. 1 J

Above F. At or below F, Specification 3/4.4.9.3 applies. l  ;

CALVERT CLIFFS - UNIT 2 3/4 4-7 AmendmentNo.Jgf

3/4.4 REACTOR COOLANT SYSTEM 3/4.4.9 PRESSURE / TEMPERATURE LIMITS Reactor Coolant System l

LIMITING CONDITION FOR OPERATION 3.4.9.1 The Reactor Coolant System (except the pressurizer) temperature and pressure shall be limited in accordance with the limit lines shown on l Figures 3.4.9-1 and 3.4.9-2 during heatup, cooldown, criticality, and i inservice leak and hydrostatic testing with: l

a. A maximum heatup o, c

[ b.' A maximum cooldown of:

Maximum Allowable Cooldown Rate RCS Temoerature 100 F in any one hour period > 100 F- A a#0*F 40 F in any one hour period e0 i ta 140^F do#f h O #

15 F in any one hour period 4 140 7 < /74 'F

c. A maximum temperature change of 5*F in any one hour period, during hydrostatic testing operations above system design pressure.

APPLICABILITY: At all times.

ACTION: With any of the above limits exceeded, restore the temperature and/or pressure to within the limit within 30 minutes; perform an engineering evaluation to detennine the effects of the out-of-limit condition on the fracture toughness properties of the Reactor Coolant -

System; determine that the Reactor Coolant System remains acceptable for continued operations or be in at least HOT STANDBY within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and pressure to less than 200 F and 300 psia, and reduce the respectively, RCS T,,lhe following 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />.

within N

Ras M a " "e in u ; m a a 4 h is

,30*F M any oNe bour FelM WF h /9 'F l

//b'F ia aay me doue PetM > /5 'F A e +'b'F l

/ro* Fin any one foue pesd y je of l

CALVERT CLIFFS - UNIT 2 3/4 4-28 Amencment No. y  !

ih i

. 3/4.4 REACTOR C0OLANT SYSTEM ,

6 4

t  : 2soo .

W 1-i

~

i _

~

2 j HEATUP i - i -

s.

1' _

i- .

5 5 '

l "EilNSERW(CE HYOROSTATIC TEST _5 5 5 l _ _

200o -

i -

l  :

l -

n  :  :

f <

  • ~*
: ~

J'

.- i  :

a.

$ = . i  :  : : c

[ gison 1

/  !  ; __

b

~

E LOWEST '1 5 _  : ' CORE CRITICAL -

! E ESERVICE ' _ 5'

_ --~~ f ~

$ e 5 TEMPERATURE 'r~ f -

! d.

514o *F =

I '-

1 _-

-~

2 j- f _ 5 3 g 1000 .- _

~

i $$ - -~ f ' . RCS TEMP. : H/U RATE _

o-l _.- _

l =_

l 0 -

~

/ 1 ALL TEMPS 575T/1HR'  ;

a  !;E  : ~

I -

l S -

i

@ Soo "

m

_- f

! , _ MIN /SQLTUP TEMP. To "F- '1 p - 1 t

$ JAAXIMUM PRESSSURE -

' FOR SDC OPERATION'

l. -

'1_

y . .

. o. oo 20o. soo 400 soo soo h INDICATED REACTOR COOLANT TEMPERATURE Te, i

i i

F i . FIGURE 3.4.9-1 i

CALVERT CLIFFS UNIT 2 NEATUP CURVE, for FLUENCE s 1.92x10" n/cu'.

REACTOR C0OLANT SYSTEM PRESSURE TEMPERATURE LIMITS l

l CALVERT CLIFFS - UNIT 2 3/4 4-30 Amendment No. l#e I i

l. . . . , . - _ . - - _ - - . . - . - - - . - - . - - . - - . _ . - . - . - .. - - - - - . - - -

o 4

  • l i

l l

l l

i 2500 _ . .. ... r. .p.. .... +o....

. ... .., ..g......... . . . . . + . ..; ., +., .. ..:......,.....v...,

r..... . . ... . . . , j l

_,..p

, .. . ;....+..j..

3.... ..+... . . . . . ..g ....+..;., .+ . . ; .

..w.. l

.; ....g + . . . . ., ... .... .. ..n.+... ;.

. . + . . . . . . . . .e. _ ._.. , .. .., ++

g

. ,. , ; . --.s--...,.o . c .

g

. .....4u.9..,

+....J..+.d..... .)

.+.....n+......s.y p

,. . + u4 ..d e. 6. n . .

6.wi..+.. .

,+.....4..+.........+.. i. .! .

  1. ..u.n..+.o.. .u..++o...,. L..au.sq.+. o.I..

^

_+...

. ..j+.......t............

4 g -. ...u+. . .

. - .. . . . ' . . . - .4...q.4 9.. . + . . . . < ....+..e.. ..

......;.i.+......j....9.,.s...

.+....4,.+... I

_ . . ....... .. ...i..... ._-

4

. . .. s......

4..

. .. . ..-3

. . . .+.

,,i.,

.4...i..+..

a. ., . .g

.. - .,+ . . .

4

...;... g l

+ + { ....

..+..: . . . ..... j..y -

..4...,...i.....,,.... . ..+.+. ,

. .6 . . , .. . . .

.... . . + . +. ,u.

.....s....

_ . ...........+...1..+..

. . . . ... ...... . . ,... . ... . . . . . . . ..1 R.. C

... . ..+..

. ....i.. .....i,-..

......+

.. . ....o....... . . . -

_; , 1 r;-- ,.H...Y.D. ..F..

O STA....T...i.C.h...... t"! ;10;

. . . . . .r....".+.. "t.... .r..i,.r_...i."..t. n.ct...

." t " " t"...1."T. "t.."..r.

._...4.....:.........+...e.. . _ . . . - .

j ._. . . . . . . . ..........:..... ....

I -

  • +- "l'"- - + ' . - +

..+*I..-.-"+;-.-+;

- - - - - ' " - +-

.I.4 . ' + . ' . . . > . . . ...+o'... ..,......u-+-'..'?

...l-

+  ;

. + . . . . . . . . . "+ " + - ..+.*.-:E.'.,..4.4*-

t-.- a - 4 6

. + . p.,'

+ . ".. +... 4

+. o..s*

1

.+..j....

't

...e.

..+ . . . . + . . . . . +

. + .....L..4..

r.56...'..

_.+..,n.4..+.......#........s.u.g--;..

4 .. l- .

.... ,..g

+...--

.u+.... ...l +.,u.

.l

l. ens.

. . . + . . .+

4'.4 4

.'.w4+..+...g.,..} . p...

. + . . . . ..4..e.o..

l 4.

.u+o.

6 .'...c.o..'...~

. ~o...+..,

3

.+

;..p.+..p. ...3

....n...+......

..3.......,..+..

..+...o..+...

.+o......

. + . . ...g....u.+...

-.....o.

...+..

..9...

.o+o.4....-..

+ . . . .

.p.

.+....u,p...

......p.6 p

.+ =.=.+.a... .... 4... n.+..e.u...,..

4

. .+,..,...n.4..

. + + . .. +. .y..+........+..,..-.4=.

. . , .4 i..

...v.4....$.

,; e

. . . . . . ..+....g.4...

.[.

. . . . .. .... . + . . - . + . . . . . .. +.. .. . .-

p > .

. . . . . . . . + . . . ..3..+..g...

3 g

.... ...... . . . . . . . .m .......

t -- ; d .T"

_ ... ... ....m z.. :......... . 7...; -.7... g..+..,

. rHIiATUP1...  % "i" 7+.. N" '"r" 1 2000

"..i"..? . i. . . . ." . . ' ., . .o , . ", .. . ... . ..,._.. ,.. . . . ...,...

r

. ..... ..,.......... .......... 1

, . v. .+ .g.

.~..- 4

. . + . ~~. + . ........~p.+.

+n.._. +. ...+.o  ;

. + -.. -

. . . + . . .{u. . + . . .

..+..+.u .ae e .+

..+n..u += .n.o j + ,. . 9 e. e r..p.9.... ..+... ...+...e...+n..e,.....

.. g +...; . . ,

3

.+...

y...+......,..+.7,..g+...

+.. +... 4,.+

o...+. } .y. ..+... . - ...+

. > . . . . .p .+.+....g.4....

.+. u.+.'. ...;.. + 4...:....++...........i.;..... i......'.,f,.

. . .3 g.. 6 ..  ; p  ; . 4 . 4 $

......+.........u,n.

4 . I

, . . ......+..;...

-  : >  ;.. . . . . . . .;..+-.. + . . -.i ... . + .

g .;. ..,..p......+... . . . ..+

.. .. . +.

.. . . + . . . ..g. ... .;-. .. e

l. ..-.+. .. . > . a....

..+...; . . .w. 3. . . . + . . . . . . . + . . . .,. . + .

4 i

. . + . , , . . . . . . . . . + . . . . . . . . .

=

. . . . . + ...+..e...... .. +. . . - ..+e ...4..- .....4 a . .

. . g 1  : . 3 g

. .. . .+.... . + . . .I. ++" t++

. , . > + . . . .e..,..>

. .p.. ep.  :. +, p.4.w.-hu+"+.m. ..$.

_4....4.4

.......q......h.9.. ..+.e.

..e4 .......: + a. +e. a.n. L

..+., ..t... 4 .t -. t = d4-. t .o.+t........-.,u4.nn

.. t . . 3y . , 4. 9. . ..i ...;. . .

...+.i..

......+

.. .. 4... 1 .t

4. . . . + . ...o.-+ e n.eus + ..n...+..

.v.4 .. . . . I ... ;

...+u(.u....

4

. yo, . - + .

W g . . . .

s... .-4. . ...o.+...

.; , ...+..+n..:..+..:....... .~

7. . :

. . . . . .:......+....-..

- - + . :..+..

9,. ..2. .+ . .... ; #

m.. i.+.- , . . . . . .

. . . . . , ..+...m...#..+,..

4 .  : . . . .+~ . .a + .

- > . . ~ , 2 .

. .+.  ; .

4.J.r. .~

4.+.. ..m. ,4

.... .. . . + . . . . .

m .+... +.

_4... . . .k. .. ... . . + . . . . + . . . . . + < . . . . . . ...+......g+n.o+..... l. ....+... ....

.-e u.+...., .J

..g...o...

. }

4......

.+o....

8 4 . . . , . +

t......j . . + . . . . .

.l . . e p .c.....-4. ..+~.e..

r..J 4...+m. .- . . . . .w+o..+p

g. a

. . . + . .=n.e..++..yo.$-

. . .g g s 4 i

.- . + -

ano.+ +

. -. ...u . . .

.;,..p. u+... .+.. .

+o.....

..-.*+.4....o..+.+

...+.. . . 4.=% = e. la o..+w. m+o .g..*.9...In.."e...oorv

..+..

.u...o..++..o.w+..pem.u+

,. M ... d . gGQO E

.hu.. +.4.*

. . . + q.. o

a . + .=...-.;o.+..

m ..+...u,..;  :. . . . + .v... q. .5+.. .+

4 4 p &. .

S . . .!-. -

g

.+.*n... . . + .u...+.. ( A8- ~+*- o.*-+o,"

%d #

.........P.g..,.......N.,.hg

........ ........v.....

.. . + . . . ... +. . .. .-... +u....+n.

. 4..

.+ O . . w fD m .i. .+... +.+..n.in.. ..( -+ u.. . . . +.. w H. . ,

+g... ..c......

..+..a ..+

.3+........o..

... .. ... .+.. .. . + .  ;.... . . , . .  : . .;.

...+..

p

)..

...+..

t .g

....3.n.. . . .......e..-.....t  : .. < ...... ,%M.be-a'o++.a...n..o..n..'.!

- .-...&. 5 ..+5.

g 1500 ..

. . . . . . .:...... . . . . . . . . . . ...+.. ......~....+......

t.

CC _+ . . . +... .. +. ..+.. .....+.............

. . -n. . . ....T..- . .-t4...

++. . . .-p.......++...,

+ . .- .a . .. .

...+.....r.+..+.y 1 Q, ..- ....+-: . ... .., ., . . . . + -. . .

-. ,u

. .. +. .. ... .:. .... . ... . . ......t...

. + . . . . .. . + . . . . . . , +. . . . ;..+..+.-...

. +- ...-+ >

+*i-- ****i....e->

4

;+* ..3..+.

.., .i....i... *+....

+ - ..+.. . .

. +- 4 w...y..,

.....:....,-........t+*-

+ . . . i..+. - g n.+..-

..+.;+

. + . . . . . ., ..+o..

..a..;.*.+..;

a... ...3 . . .g -.!. .+...g.

. . + , . . . * + ,).

.. .+., . . .
.*".+...'
  • +***i-+-

,-*..+.,.3~e..+

...,.,+..$.... -4 . . + . . . . . . + .. .. .++.:

. .4s.,, . . + . .. , . . 1 +.. l.

e ....*~*4*"+".:++e- .. t *" . *6 - .

.4............ ..;-..,...

J. g

....+...

+ ...,...-,...+~to.+...+..=.~. ,

w $..+. . . . . . . . .t....,...

+. . .

+ ;... -.+..,...;..+... ... +. .a u.........+....:...n+....,...+...-.....,4....- ...+..<.....

& . .  ; . . . . . . .,...&. . .. ..3.........+

.+..... 3._... .-. . . , . . . g.. ; .3 4.. ...-, t.4.... .a

. . .. j N .;. .*..+.;...

.t- *+".-"o+- .+- * - o. ,a..i...++..b..a+2

..+. ,; . . +v.;..n F.+*- ..:.+.'.++- ...+. ...-n* ..-+."o,s.++=-. + + - --

+.

1

g. -+ g ,. . . .4. ~u-.+..r..+.t
  • ;. .m. .+. . . . ..+.....i...+- n .
a. . . + +

.j...~

+ t u... .. + . *.. ) .

n. .+ - .+.

! o...;.4- .e l

....+...:. . . + .. ..+.. ... . . +.+... .e. . . .i , ..u+..+=. o.++e.a +4... p. L. .. . .

1

. $ == 4 .t..<*.4=...P.=.-

f

+ ,

l......+...+ .4..n,..4 .b.+ n

e. + +.s.. '

..+.n ...+=....4..+.....-- + . . . + . " *" i

.+... . . ,L. + . . . . . .,.....g u.g..+-

..+ . s..... g . +. 6

..+.. -,+o.y.  !**-*"--4

. .......g

. . . ..3. ]~ +.i..!+..

+;

..+... 1..+.

, .. p .

+.u.j....4.....

.....+... . . .. ~

y

... + .. .&.4..+.J...

. +. .+;. ... .. + . .

g l n.+.. . . . + ' . ..+...

=-

.., g'o . .o..$. .o.3'....+... . ...4 .- 1 b...+.-

. .. ;. ' . .o+. . + .; .... . .b......i..+..  ;..+.

.....+...
.... +

p +....

..;..+

.......c.......+

..L..

,. ..u+... 3 3 $. .

. 4o ....+.......4.o.,..- . .. +, . ... ..

..+..+...,..+.

...p.+.qo 3

  1. O  ; . > .+ . . . ..+.u....... .. g ...+c.7..,..

...+.u,..g.+.

. + . . ..+n. . +.

.. +o ....+..,.ne.n. o

. . .$ g u.a.

.........+..q.....4.+..

...-:.+.u.

. . + . . */ .. ..u.u..+-.++.l.. ..+. ..+..r

, .;..+.. +4 . . . . . + . . ..$.. ..+..:.

....+..

y . . . . + . . .. .++.9 . ,.$.........4.u.. 4$. *..+..g.....+.4....

--..4-w

p. . .. -. . . ,
.. ..+..
..
y. ..<...a....+ ...+.. ..,3......+.....3 .3 -.3..

.a .. .4..; ..L...

a:

g 1000

+.

... ...+ . . . . . .

...u. .... ., .. ... . .

. . + . . . .+. . . . . .: . . ..u... ._.. .. ... .. ... .+ .. ... .. ... . . . , . . . . . . . . I j....+......,.+.......

)

> . . . +....4 - + .3.+...... .. +.

...m,.+ . . . . .

t .

g 4.. 9 . y H *]'- D,

.o

-, [

+ . .. . ++...uo.+.

+... . .+ ..O 1

, ... p.... E. ..

.. ... + . + . . +..+. , M

+... u...+... y s e L

...n...+.......  :..4.

....q+.......< .,

{

W .>.. . . . .. + -

.+.u 4..

+.

y . .h.

. . + . . - .;. ; ..

. . < . . .. .. . . ,++.

..+

+...

......44

..+..i...L..$..e.

..+....u+..

m..e...I

....i.p.....+..,u..&+..e,

. +. ..i . + . . *Cn0 2, OAO 4l LJ D i

+.+ . .:, . . .

y..

,. Ay'O. . g I

'f*

, ;....... p. .. .. .

. ....g. , j g Q , 1, .. 3y3

.<... ,.p.. e.Egy

.. I

+. .o.4.. . . . . . ,. ., +. p +.un . + ..&.a...,...

+a .++.. I

..+..u.u..+ ..m.. u.., .+...u.+.. .+u _. .

.i..n. i. .u+.. T...,..+... ..;.S + .+ ..+.a.+...l.. a . i a -

.; .. u  ;

. . . .. +=.j  ; . ,.......,. .; . . ..4

$....+... * . . - .....+

y.  ; ...u.+.qu.;

. p g .y.

.u..u6e+ -

v . O . . O g, g 1

..4...+.u .

.+u..

  • ..+u.

eo.+..

4... . . , ..

... . ... . .n.o..4+...,..4.

+. ....u.y... u; Q .+.o.

+.

.s.,.++ . . . . . , . ., + . . . ...

3 ..  ; .

..+ .

.3..

...+

.+. . . ,a

...,1+..$...!..,  :. . , -- E aaOE- -

MAO QV 1g Ml1un eu.+......+g.. u...p.+.$... QQ. f" .

+ +....m+.u..

.4.c.......,.>.. ..+ .

...+.u.n....+.u

+.+ . . . ...u.+9....

p .p.,

..+.. ..p..

Q

..pu

.o+

4....

<.u.... ..... . 4 n.

p.

. . . . . . + . .....+es.....3 ....u.,$...+;.+....

. . . . .u.. . ++

u.u a.

.+.

. ... :. .e .o u

-..+..;

~

b.+uo....e..+...u. .+ . ..+u. i.+u+

....,..,s.+o...;.4....u+.u ... ...+ .

...u.2 ' * .+

..'...-...'.'..','!...a*.+4.'.

< 3

...+...!...+<.*.'.'.'.'..++.'.

. . . + . . ..g..-..

...p=4...<...;.....e...,

'.'+a. .. . + . . . .

t- . *

. . . . .'...+..

u.+s..:........ . + .

.......+ .....

+ ...+.+ . .

...$+u. u+... 7..u+..

t . .p . t ... u+.....u.4....

..t .<u+.... g. ...qu' . r . . .

......p...

' .. . . ...+.

500

...{.o.., 4 +3.........,.... . . > ..+

...,..,...[...,..,..J."

+ {...j.. ..+... ...,.m..... .u9 4 ..p..,. s ..f......o.......t.

...+ . + . .q..,u...

.y g.

...a.o.,..u.e..e.,....... +.9... 3 , ;.

..9..u,+....  ; . . 4

..... .. . . + ...p..+

....+q......+.4...I....q.... .. . + .

.. .. ,. .. .. ., +. .. +. ,.,.. . ..+...e..e.....,...:.....u.ua.......u+..

. + .

,uo... ..

9 4...+o.4n.+..p..u...+...+9,.,$..

... ...no -

+..a .u+..

u$.. u.4... ..+.

.o .. . . ;u.+.u . ..

..+... .. . ...+u... .t+..

. t. 3 u .....n..+e....,..u..o..eu.t...

.go .

g.

..+3...' *.+I ..

-t' L 0 '

,"+.'.i.'. ..'+i..+.,. 'i...'++.'+'..

S " " * *

.+.u.., Lu+ ee u +...;

....++.u.u.i.p.4.u..

.......g.....p.+.u.s...

,. 4.; +u.,

+. . , s ..+i..,. '..+ ...+..+.1... g. g,...J

.G.+..'- w;...pt.

...3.. . .+..o.,

g.. +......  ;

y....+.4......

q .

. . .. ..n

. ...4 g.

3. .+.

.+

,4.;

...,..+..uw t-

...o.,.u. . 4...,+u. . . . . . . . . + . . . . . ....+.. ..;.. .9 + .

. .u+... .. ...+.

..u..e.....u....+. .+. .u.p........+.....,.+..

uL.i.u+......+.. .....+..+...........,

..,..#...; ...+.n

. 3 (

..a..a..;. . . ..+..

g 5 o  ;

.+.u ...+ ..u.3.

..,,......+.., ..... .u....>. .p......e..... ..+.. . . . . + . ......~,u..s...

.m.u...

4....

e..u p

+ . n +u4

..+u.., 4 e.

...+......

,4....o. + ...u...+...

u..p 9,..a 1.. . .4..

+.. +

.,suo'.iu+.. .uy.+.;

.. f .

... .- - . n ,a p'@

. c. .  ;

.4...,4 ..; .... ,,. . , ., . . ' , . 4

.. . v t'.'...'$.'.1.....+4.4 " ..+ '

+ 4 ' '

. ' ' ** *-* +-' ' *' - +..

...p.

a.+. . .

3

.+. . > . . .

y z

gQ r

.l lhM kh q+t.."..***.*.?.*".+..'. -'>**T**"r..'*"+.**.'***.**$.*

." . *t. .**f." *****'4;
  • '*t'

...+.. .u. .. - ..

v. .y..,.n.. .,

u.,.....,. ..,.. .+. , .4., ..pu..y..j..q.,<..q ..+... en.

..+. . 4..p... .+.... g. .....p.g..4 ..+.. .. p.. < o..+..,. u.. ..>..+...

..;..e.

.... . . . . .) .

).

..+ u.. . . .. . . . . .; . + . . . ,

. .; ,- . . .g... c . ,, . 3.. 4 . . . , , .

+ . . . ,u .. 4e.

. p+.,1,.........,..,,..

...+.,

.. . . . . ...a...

...+. . + .

.. ...+.. .u.4..,..'

...u... . . , .. .. .. . .. + .

, . .. ...s....a .

,... . . .-..' . , 3.....

.. s.+..$...

..u...,..,..;..+.

. . .s... r...

...o+u1..u...+g....,

o

. ...6v.

0 0 100 200 300 400 500 600 INDICATED REACTOR COOLANT TEMPERATURE, Tc, F FIGURE 3.4.9-1 CALVERT CLIFFS UNIT 2 HEATUP CURVE, FOR FLUENCE ( 4.0 x 10 U n/cm 2 REACTOR COOLANT SYSTEM PRESSURE TEMPERATURE LIMITS

l l 3/4.4 REACTOR C0OLANT SYSTEM l

l l

l 2500 . .- -.m ._ . - , ,--

=  :

l

~ ~

.- )

ji!!!iilNSERVICQYDROSTATIC TESTL ,-

'y-

?&

2000 5

l

= LOWEST '

- I 5 SERVICE  ! i  :

5 5 TEMPER ATURE -

J' 5 -

E E 160 Y w -

f

  1. ~

1500 _ ___ .-

0

= .

-i _-

-COOLDOWN

  • -  ! i - --

~

-~

f_ -~ -

I M

e

_-~

l

-~

_- _~~ \RCS TEMP. 'C/D RATE

~~~

~~

180'F $100T/1 HR h --

180Y 0 140*F ' $404/1 HR l

$ ~~ f <1 F' 515T/1 HR

~

f .

S

~

f -

500 ,f.._J

.- MIN. BOLTUP TEMP. 70 'F KAxlMUM PRESS' SORE: '. .

fFOR SOC' OPERATION i '_

0 100 200 300 400 5 400:

INDICATED REACTOR COOLANT TEMPERATURE Te, F

. FIGURE 3.4.9-2 CALVERT CLIFFS UNIT 2 C00LDOWN CURVE, for FLUENCE s 1.92x10" n/ca' REACTOR COOLANT SYSTEM PRESSURE TEMPERATURE LIMITS l

j CALVERT CLIFFS - UNIT 2 3/4 4-31 Amendment No. 155 l i

I

. . . . - , , . . - . . . . - . . , _ . . . . , ~ . . - . _ . . - . _ _ . _ . . . _ . _ . . _ . . . . . . . . . . . , . . , _ . . . , . . . . . . . , - . . _ _ . . .

a

  1. e 2500 .. . , 3

..,y....g..+..

..r ..., . . . .

..,m#

, . . .a.. ...o.4.......,+..

.s

. . s. . , + ..[ .41..

r,.

, . . , , . , , ....,p

l. - 4 ; < g

,..,,. y ,

t

,.,,.,,p... ,,q.,

.g

. ,,,;.., , ,..p

.+ .* - ; . 4 . g. .

3

..: +

+m

.6.....y..e.z . + . . + 4.,....4..,..

g.... 4, ..e... ..,...

.. . . ,p.. , . , . .4,..9.. .,.4.w......,

..+. ..,...

p .....g.. ..g

+.-.3, +

........c.. ,4

.e.. .....

.9,..< +..,....o.......5

.....;.4...

. .. . . .... . . ... -. --. . . . . .......;.........}

3 , , ,

. . . . . . a....+.. . . . .

. +... 4.. . . . . . . . ....
r. . . ; , n..:. r;,:.:. .+.t .:m..., .....1.. .NSERV. !G"..t. . . .... .!".- .**

.+..

.c

.. ... ... . ..s

.. . . . ....p. .. . . . .. -. .. :. . , .

....+.-

. . . r...i..t..

.,.4 . r . .p . .- e ......

. . "+ .t.... + . . . ..4......... ....... . , . . ....

.a..,..

. "^...i. . . ~ & t ' ~+r......:. .. .i ..."..:.?

+..n.... ...o.+....

, p. . .. .. ..7.. 1.... .,

+.

. 2..

m+.......;...o,..m+... . . . .. . + . . 1. .

...p... , .......,.v..

...+.4 . .:... . . .,..m..... ...o. . . . . m...+... s..,.. . .....; . . .... o . . . . . . , . . . .........o.. . . _ . . . . .. : . . . .

..+ia..+... ..4 + ; i.,..... ..+;: ._.. . . . , . . . , . i

. . .....+. .

ie

.. 1

+......i..e...

...+ ....u..+ .6.

. , .o.. . . . , + .,

.+ .. 44.....p.+...;...e

..+.........w.. .9.......+..,.o..3,. p 9. . 4 9, .

p+.a..p%.+..e..

. ..., ...-..+..... ..+..... .. . . + . . + p ..,..+..o .. . . - . ;... . > 9... ' .- .g .;- . ++ . .. ,. . 9.......4.e... ..

3

, ......+.i . . . + . . .................t.......

.  :  ; .. .. q. .

....,4.. 3 . .

y y

....+.

..,..p.4.........++......l..+... . . . . . . . . + . ,..+.,  ?. ... . .g....9....,g

...+..

4,......

y

.+. ; ,. . p . . c, +. . . , . . . . . .

+..,....+.....4.+.. '. ..j....4

,.4......,.,..e........+..

.e.;..+.. .. ;.. ..

..;.. +.. **D-

.....m. 3 .. c.....,.u.9.....

]
g. ..&..t.*'.*-

. . . . > ......,..<.7..

4. g

....e...a....a..5....,..

J .

S .

g

% .+.. ..+...+..-i... ..+;  ;..+...

- #<.. ..+ . . . . . . > . . . ..4.4..... ..

..v....

. . . ..4..; .

+.. .....9... ..>4...

....+ i. -

..+...

. . .1..+.. . ..

..p.

..+. g ,2 eeu6 ggg .....-Q G eek

%.... s

9. .. '

2000 ....

p...+,  ; ... .

.4..,....

...... . . . . . . , . . . . . 4.. ...,......,,......., . . . . . . . . . . . . + . . . , . #

,.3

.......p.. ...;_

. . . + +. . . +..

. . . _ . ..5 .g g .g , c

-4... . ;. + .....; p. 4

..4. .

4. . . + . . . . ....y

.4...

......,......+.......o

. .+.. .. . j. + . . ......).. .a......+....

p

+ 4..... +

p.+..

,.4 ..+ .

.+...

...4.. .> ...

4,..  ;..<..o......4......%.p..e

. . ) .. . . . .. -> .

4.,g

+.;.++.1,...,..a

.. . . . . .; ....+....q 5

4...

$. 4..o...

. 3 .+. . .a. .

. p.m o . .

. . .. ' , . + . ...

.+. . + .. .. .+4..

j.

....4 3...

..p.v......p.

...+...m .. +.

,.L..o.u.;. . t; ..&~...ta u+t.........,...+....p...+...

3  ; 6 ,.3t . . . t. . m t . d .4....

..+.. p 4

p.+...

4. 4

. . + . . ..q.

.. 4

.j.4,+j..,......;..

.+g.

..+..p....+..;

. .. . . . . .p.+,...p.+. . ;

4

.e .4 o. ...9......64.+..

ump.+... 3 [..

....,..w...

5.....

. i . .e.3 p

.t,..

+

.J.....+.....

...+p..p.<,..+.o....

.; .4..- ,..

..+..; . . . + . . . -

,.i-w.

..o..e...p.

g

..+-- .. 9...

+p

..< 2 4.........n+; *

..+...

. -' c-...p...

.. .u'; +4 .. ;.....+...g.4... 4 g...w. 4 ...v ..*, .....4...a. -

4

...+...+.,.

, . . + .g..1.~.

c. ..I 4.--

....bu.-

..t... ..> .. e

.. +...+..

f. 4-en ..... ... +. ...o.. ..qu4 +.. ., l... = ...4...-.

. .j.. 6. . . ..4... . + .. . . . , . , + . . . .t . . . . . . . . . . e

. . . . .. .+ .. ..+. . +- . . .

...+.. 9.:-

.. .:*........t...

...g. t.+..+..p. ..t

..... i+.. .. . ......: , .a .i +.;r..+... 4 ..! .

. 4.....c..+o..p.+..+3...

. + . . . ...s r -..t. r

+........4.-~+..'

.t....

.q

.. .g m 1.

.a.4.+.

+..

.. .4 .,...4........u..+...

..+.....4.,.1..> 9 4..

+. .4. . .

3 9.......,..+...+.6.....

2 .. $ . ; .. ..4..+..p. .u .+ . .

,.t.. .4.+..

; .. 3 4

-t ... .. -..b.3

- 3. - s*

. . . . . . .+4...

.d..+..o.3...-.

9

. E M . ,.,.... -

O t .u +.  ;.

o.

>..+.......+. 4+ . . . . . .

- 9.. .

...e..+. .

...+

1-..+.a-.....+...4,.+.-, . .

...+

+

..a.. . . . .L

.- ..+.

. . + . ..4.

m+

..-...w..l.....-+.e.

m..~ b-..+-

~. 4 +.

. .3.....f,......

+...

g.. .

...h.+-

4 ,.

a-..o #

c

.4u.....+...m...o..+...

L .

. . + . . .~...;. g.. -  ;

w.m....u+

s

..4 .g p

.........4.........(...y..p. ,

.....n..g.........o. ..+.o......4..e

. . . . . . . . . + . ,..,.e...  ;

. +.u . o;.w 9

=.+o.

. . . ..+m..,.m..+.....

o..m."...4"..

............+o...

..j. +. .. . , ... .. ~ ,. ., .. .+. ..4...

4 +

..>......,+.....m..

4... ..g

.+......

....>  ;...+. . . . . ... p ...; ...> 6

..... ..+. . 4 . 4 4. . ..m.m,p.

..g......

..+. .

.. , . . . .. .+..

. . + . b y

+a ..

. . . .. .... . _ . . . . . + . . . +

g _ 4 4 ..

I

,.. . . s

+g 4 . . . , 4 . . 1 . . .

me.-

,....$..g..oo,.4... .4........4m. w.+... ..4..L......+ g..o. 4

+..'o..d.4...ng.44.... o.4......-

4p+

. . m. - . .+m .; . . +<"+

s

.. .n..m

. v .... fpo

.+.... ( ..g+ . . - * ..+..; .4.......j.4 .n+... g..+... .4... d..+...q..+

.......o.+fo.u.n. "+M

..+..p.q...p.. ..  ; . q..

. + . ...+ .-

i + . - +..

g . . , 3 v .

... . . -w,. . +. +. ... .. .,.4..

. . , .. ..+..+,. ...b..e. 4.n.j.. ..e. c.L...,..+.. 5...

.q. ..a...,..........o. . + . .

.... o.+..+....... .

....4....o.....4.- . . . . .. i. .i ... . + ...4.+.. .2.+. . .

i... ..J.g.,.a.,,u... .. + . . , . .1.. ,. ..+..;. i. .4+....+..J. ....p....6... ..>.o c+

g ..: . . :

..+..

> r. . . . > . .-

4.j.4 4: , . . . +. . . .

6.....g...

,4... , . .

..,.a...o....

..+..o.... + ..

....o..6...;. . *. ...+..... . . .

e4....

w . . + . . ...:. .; .+ 4,.-.a..

..3,o........a,..++.....6........ 4..-. ..c...+1..+ .43 .u. _ . ... .., .. ... + ... ..+ .. .

, . . .
, 4...... ., ...,..

... 4. . .t.p..

, , > . . 4.. ..#.. .

..5..p.+. 4.

.. + . . .. . . . . , . . . . . . . .

. ..+ . . ..

..a

........,+.........4,..5e, ...+.. . ..y..

m...++. . . .

,..4. . . > . ..$..e

. . . . + .. . . . + . .

...+w. n.+i ..*+.

1 go..c......+4 ,y a ...; . L g . .. . . ' . 4...

L..p.+ ......+.. .,4,

- ..; .. .., .. ... ..s....4 g

..........+... g ...nyp . ., ... ;+ , . ..-

...p..

3 -.

,p. ..+.i . . .p. .u...... . . . , a........p..i.....4... .+.. .....t, g

+ . . . . .

. . . o...+...........

4......... ... . . + . . . .e . 4....g .m..... . . , ...+

. ; 3.. ..; . . . .

...+.u..4..4r. .I...,..e..... . . . jdo ...!.,

i

...o...

. . + . . .. ..+ .

...o..

.; <+u. . ....;+,. . . . o 4 .4. .p.

4m......p..

. +

-..j..+......,,m....m.e.o.

3. . ...+

, 5

.on.. ...m;

+a.9......4 . . .o.. .,

,..4. ...g., e,....

j.. m 4. ..i , . .. . .

.. .s , o 4..t.q +. ;.. i..... !. . 3 p . ,' a3 . ;.... . . +~. W .a,..$...t..e.4..4..'.p. +.. . . . + .,"+g.

.3. . .; ..vn.4.. +...+ . . .....4.a. . ,

..4.. . .;... .4..+.

p

.q

.,+.n ;o. e... 5 n4 ... L.+.9+.. .4....,4. '....4...'

e

44..q..

....$.q... .

.4 y) ..s. .. . . . ;. . . . . . ..4.....

,...+ . .. p. ....,.:....  %....... . . .+ . '. ...;. . . ... .. 4.... ... . . . . . ... t. .,. . ,

- ; ...+..,,  ; .....l.

g 3 w

.. ...m.

.. , ...4...- s...

, . . . , . . . . . .. . . . .....a.....

.. . . . . ....+..

C ..... ......,.,......... p......

. . + . . g.,,, . .4.

y.... ..+...p+..... . . . .

,.4..<

.4...o.

.p.,.. ..+.u .q... ..$'......,..a  ; . .

,5. 4.. s .. y >..; .

g. . ... ; g

_m.+.....+$. , .. 4+ . .n...

m+m ..m. . . . .a...oo.4 ..+.....

e..... ,-

_.m.+..._..a,...........

e m.... , . . . , . .. . , . . . .. .._ . . , . .

w .. . . ...

....7.,,..,...

. ... . . . . ..y.....7.. .. ...

.;.3..s.,._.......r....  ;. . 3. 7.....p. ..;..; ; ..r > .

L > 200

  • F . K100"F/i HR 4 .. . . . . . . ......._.....m.,..

a......4,.......,... ,

. . a.......,.. , . ,

< .+ . ,. . . . . . . . . ,. . . . . . . . ....t... , . ;. . . ,

g g ... , ,

_9...

+... ..+.......9..

9- .

.., 4. ,,

g' . -4..... ..e.m.4. . 3 ; .,.o.o. 4. 4+,

..d+..m...,

...+..... 1. ..s ..,p. . ...d,p.4

..q .

.- +m.. p .

g .,4.....s O ..

O o..

e..9

.oe.......4., & .e m as. ....-pe.e..

..4 > 4

.,.qp..4.,..

, 4 4..m e..

..q.. ....>3.. .p.

e y

.; ..eem...a.

4 ....q..,......q.. ... . . . + . . .9 .. ,, s. .. .

...v......

p.s$... .. +. ...p.4.......go.

O .;.

..> ....o:

..g..4p

.+. n+....p 4.4

....$..... 4 4.,...9..q.t...

4.... .

g.

... 9

.6'.....  : 9. . .

+. . . ,

. . v..+.c..,...

. , . p. . . +

. o..+.. . . .

..1. >

...q

.., a .4.....4.y_._,44...,.;

.4. .. g ., . , ...4.y .. +....g., ..

4

+.,. ..+.

.-,.v. .q...

..v

. .g .>

e4+..i.4..'.,.. 4 ....,.

....e.q. m.

9.....

, . + ...t..

1 - . .

s

.>4...9.. ,,p.. ...g..,44....' ...+u

.....4 . . .

....g...

.. 9..,, ....

. .. . . . . . .+ .. ...+

500 t

=$.... . ,

p g,

.9.......g..e,m.

..,....p 9. . .g, .,..p.. ..9....

....y g

,,.e.. .ap

.-)

.a.......

..9....3.;

,, g

,,;.......a.

. . . .......-4..-...........3.. p.....[...

.; . ,,, . 4. - ..;q.. ..o.6. ., . . . . . . ,

,.2..

. .4 .

..........a.m.44..9....as.... . .

..a.. > .g.

. .... .9

...,..pa....

g,.<,.4...... ..9 a9.. . . . . . .,.

g . p4..m . p.  ; . . ; . . .g

.. ... .. ... .. . .. .. . .. .. . . .. . .. . ... ... .. . -, . .o.

op...,.. ..3... .. .. .-. , . . . ,

g a.....

4

........a,..+...., ,.4...,7..-

y

_ . ..,. . . . > ....,.4 .,....,4_4......,.............

...p...... .....y... 4. e... .g

....4.<...... .. . 3 .q......4.. . ., ..4,_....,4....q., . . . . . . ...)

t.,.4.,g........

.... . . . . +

. . g .

...+ .m.4 .o,  ; ....#. . ... .. . . . .

...,a_ . .. ....., ...... .. .......
: .. ...........4..s....4....

.::.,.,... m......

4...., .4...

..4.4...

.9.. ..4... , . .q.!.

+= ..,

,..4,. ...,)..

w O..-

.......m..

& i

+ .. + . . ..

..+.m9...e, ..

.4,...

. j e.g .

,. , ,. . .f 4 ..... ...,.,

, . .. +

..w. .

y

.+ - .

.e 4.,

.. m..... p.4..,,.....#......,,

. w.;

....,...p......,...

p.....p....,

...z....,..

...y.

u .

... 3,.e . .

.-.. ..y........%.

4...

.y...

4.a,.. p ....g.,...,..,...p. ..,

+ '-.. .. .. .

.i. 9 2.a.. .

.9...y..p.

.. . , 4...,. .. p r g ..4m o

) . 5

,9 6  ;

. , . . . ....... ; f

.._.v.

.. .. . - ,.4.............

.....u............. m.......

c...

4... ..a..,.._.7........;...

. . . . . . .... .. ... .. _.o....

O 0 100 200 300 400 500 600 INDICATED REACTOR COOLANT TEMPERATURE, Tc, F FIGURE 3.4.9-2 CALVERT CLIFFS UNIT 2 COOLDOWN CURVE, FOR FLUENCE < 4.0x10"n/cm 2 REACTOR COOLANT SYSTEM PRESSURE TEMPERATURE LIMITS

3/4.4 REACTOR COOLANT SYSTEM

, 3/4.4.9 PRESSURE / TEMPERATURE LIMITS Overpressure Protection Systems i

LIMITING CONDITION FOR OPERATION 3.4.9.3 The following overpressure protection requirements shall be met:

a. One of the following three overpress ems-be in place: g/d eemc;gEyeJh-f
1. Two owe -ope ed relief valves (PORVs) ith a !..t s-tt.-

Of 5 120 psi- ith their astociated bloc valves open, or gip $c/F' 6pseW

2. A single PORY with a 'ift setth f ' (36 JM with its 5 associated block valve o e a Reaclio[Mnt System / -

vent of t 1.3 square inches, or

3. A Reactor Coolant System (RCS) vent t 2.6 square inches.
b. Two high pressure safety injection (HPSI) pumps' shall be disabled by either removing (racking out) their motor circuit breakers from the electrical power supply circuit, or by locking shut their discharge valves.
c. The HPSI loop motor operated valves (MOVs)' shall be prevented from automatically aligning HPSI pump flow to the RCS by placing their handswitches in pull-to-override.
d. No more than one OPERABLE high pressure safety injection pump with suction aligned to the Refueling Water Tank may be used to inject flow into the RCS and when used, it must be under manual control ar,o one of the following restrictions shall apply:
1. The total high pressure safety injection flow shall be limited to 5 210 gpm OR
2. A Reactor Coolant System vent of 3 2.6 square inches shall exist.
e. When not in use, the above OPERABLE HPSI pump shall have its handswitch in pull-to-lock.

APPLICABILITY: When the RCS temperature is 5 'F and the RCS is vented to < 8 square inches.

  1. u)hed od Sb N Ht)d 00N^f9i Y N N R\/ th P 4fN ohl5 dbAll bc 4 4W 3P S .

Except when required for testing.

CALVERT CLIFFS "TT 2 3/4 4-33 AmendmentNo.Jgf

3/4.4 REACTOR COOLANT SYSTEM LIMITING CONDITION FOR OPERATION (Continuco)

ACTION:

a. With one PORV inoperable in MODE 3 with ,RCS temperature 5 F o: in MODE 4, either restore the inoperable PORV to OPERA status within 5 days or depressurize and vent the RCS through a 2 1.3 square inch vent (s) within the next 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br />; maintain the RCS in a vented condition until both PORVs have been restored to OPERABLE status.
b. With one PORV inoperable in MODES 5 or 6, either restore the inoperable PORY to OPERABLE status within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, or depressurize and vent the RCS through a 21.3 square inch vent (s) within the next 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br />; and maintain the RCS in this vented condition until both PORVs have been restored to OPERABLE status.
c. With both PORVs inoperable, depressurize and vent the RCS through I a 12.6 square inch vent (s) within 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br />; maintain the RCS in a vented condition until either one OPERABLE PORY and a vent of t 1.3 square inches has been established or both PORVs have been restored to OPERABLE status,
d. In the event either the PORVs or the RCS vent (s) are used to l mitigate an RCS pressure transient, a Special Report shall be prepared and submitted to the Commission pursuant to Specification 6.9.2 within 30 days. The report shall describe the circumstances initiating the transient, the effect of the PORVs or vent (s) on the transient and any corrective action necessary to prevent recurrence.
e. With less than two HPSI pumps' disabled, place at least two HPSI l pump handswitches in pull-to-lock within fifteen minutes and disable two HPSI pumps within the next four hours.
f. With one or more HPSI loop MOVs' not pravented from automatically l aligning a HPSI pump to the RCS, immediately place the MOV handswitch in pull-to-override, or shut and disable the affected MOV or isolate the affected HPSI header flowpath within four hours, and implement the action requirements of Specifications 3.1.2.1, 3.1.2.3, and 3.5.3, as applicable.
g. With HPSI flow exceeding 210 gpm while suction is aligned to the l RWT and an RCS vent of < 2.6 square inches exists,
1. Immediately take action to reduce flow to less than or equal to 210 gpm.

Except when required for testing.

CALVERT CLIFFS - UNIT 2 3/4 4-34 Amendment No. IfV

t l

1 l

2500 , , , , ,

l 1

~

l

! 2000 l 5

m

a. ,

d e

o i m 1500 -

m m

a:

Q-I e I w

N 8 /- 5 RCS TEMP. PZR PRESS. 5 y 1000 / 5

n. / 640 F 443 PSIA E J , ; =

l < 1 900F 443 PSIA =

E I l i l c /; 1700F 515 PSIA E

=

1940F j 583 PSIA E ]

1

,' 240PF 740 PSIA 5 1 2609F 835 PS!A *

^ =~ ~ ~'--

304PF 1250 PSIA _

l

=

l

! I 0

^ ' ' '

l l 0 100 200 300 400 500 600 l

[ l ACTUAL REACTOR COOLANT TEMPERATURE Te, F FIGURE 3.4.9 3 CALVERT CLIFFS UNIT 2, FOR FLUENCE $4,0 x 1019 n/cm 2 MAXIMUM PORY OPENING PRESSURE vs TEMPERATURE l

i l

i j I

1

..J .

3/4.5 EMERGENCY CORE C00 LING SYSTEMS (ECCS)

SURVEILLANCE REQUIREMENTS i 4.5.2 Each ECCS subsystem shall be demonstrated OPERA 8LE*:

l i a. At least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> by verifying that the following valves i are in the indicated positions with power to the valve operators '

! removed:. i l Valve Number Valve Function Valve Position l 1. MOV-659 Mini-flow . Isolation Open f 2. MOV-660 Mini-f1ow 1 solation - Open

! 3. CV-306' Low Pressure SI Open l- Flow Control

b. At least once per 31 days by:
1. Verifying that upon a Recirculation Actuation Test Signal, the containment sump. isolation valves open.
2. Verifying that each valve (manual, power-operated or
automatic) in the flow path that is not locked, sealed, or otherwise secured in position, is in its correct. position.
c. By a visual ins)ection which verifies that no-loose debris (rags, trash, clothing. etc.) is present in the containment which could  :

be transported to the containment sump and cause restriction of

, the pump suctions' during LOCA conditions. This visual inspection -

shall be perfomed:

1. For all accessible areas of the containment prior to establishing CONTAINMENT INTEGRITY, and
2. Of the areas affected within containment at the completion i of containment entry when CONTAINMENT INTEGRITY is  !

established. I

d. Within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> prior to increasing the RCS pressure above 1750 psia by verifying, via local indication at the valve, that CV-306 is open.

. W enever flow testing into the RCS is required at RCS temperatures of Jo/ F and less, the high pressure safety injection pump shall circulate RCS water (suction from RWT isolated) or the controls of Technical Specification 3.4.9.3 shall apply.

l CALVERT CLIFFS - UNIT 2- 3/4 5-4 Amendment No. 4 6 l

"' F g. tme W y *w- -agT-v+ m- "+w*HW1-- r- & -+wir-- ,e.-.r wW9 .im.- g.q  %%ew w- 3+mm

..) .

3/4.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) r j 3/4.5.3 ECCS SUBSYSTEMS - MODES 3 (< 1750 PSIA) AND 4 l-i LIMITING CONDITION FOR OPERATION l 1 3.5.3 As a minimum, one ECCS subsystem comprised of the following shall be -

OPERABLE:

, a. One' OPERABLE high-pressure safety injection pump, and  :

. b. . An 0PERA8LE flow path capable of taking suction from the l refueling. water tank on a Safety Injection Actuation Signal' and

automatically transferring suction to the containment sump on a

. Recirculation Actuation Signal. .

3 1

APPLICABILITY: MODES 3* 'and 4.

ACTION:-

! a. With no ECCS subsystem 0PERABLE, restore at least one ECCS e

subsystem to 0PERABLE status within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> or be in COLD SHUTDOWN within the next 20 hours2.314815e-4 days <br />0.00556 hours <br />3.306878e-5 weeks <br />7.61e-6 months <br />..

, b. In the event the ECCS is' actuated and injects water into the l Reactor Coolant System, a Special Report shall be prepared and '

t submitted to the Comission pursuant to Specification 6.9.2 within 90 days describing the circumstances of the actuation and the total accumulated actuation cycles to.date.

SURVEILLANCE REQUIREMENTS 4.5.3.1 The ECCS subsystem shall be demonstrated OPERABLE per the l applicable Surveillance Requirements of Specification 4.5.2. '

n .

3 01 I Between F and F, a transition region ex sts where the )

OPERABLE SI pum 11 be placed in pull-to-1 k on_a cooldown and restored to automatic status on a heatup. At F and less, the required OPERABLE HPSI p shall be in pull-t ock and will not start automatically. At F and less. HPSI pump use will be conducted in accordance Technical Specification 3.4.9.3.

With pressurizer pressure < 1750 psia.  ;

CALVERT CLIFFS - UNIT 2 3/4 5-7 Amendment No. <d9'

I s .'  :

I 3/4.4 REACTOR C0OLANT SYSTEM BASES l

3/4.4.1 COOLANT LOOPS AND COOLANT CIRCULATION The plant is designed to operate with both reactor coolant loops and  !

associated reactor coolant pumps in operation, and maintain DNBR above 1.195 during all normal operations and anticipated transients.

A single reactor coolant loop with its steam generator. filled above the low  ;

level trip setpoint provides sufficient heat removal capability for core cooling while in MODES 2 and 3; however, single failure considerations require plant shutdown if component repairs and/or corrective actions i cannot be made within the allowable out-of-service time. l In MODES 4 and 5, a single reactor coolant loop or shutdown cooling loop provides sufficient heat removal capability for removing decay heat; but single failure considerations require that at least two loops be OPERABLE.

Thus, if the reactor coolant loops are not OPERABLE, this specification requires two shutdown cooling loops to be OPERABLE.  ;

The operation of one Reactor Coolant Pump or one shutdown cooling pump provides adequate flow to ensure mixing, prevents stratification and produces gradual reactivity changes during boron concentration reductions in the Reactor Coolant System. The reactivity change rate associated with boron reductions will, therefore, be within the capability of operator i recognition and control. y  :

The restrictions on startine Reactor Coolant Pump during MODES 3, 4 and 5 .

with the RCS temperature 5 - F are provided to prevent RCS pressure l transientr,, caused by energy additions from the Secondary System, which )

cou d exceed the limits of 10 CFR Part 50, Appendix G (see Bases 3/4.4.9). l h/et# ^

F er t.cn - the reactor coolant pumps, the following criteria apply:  ;

(1) res he water volume in the pressurizer (170 inches) and thereby providing a volume for the primary coolant to expand into, and (2) restrict starting of the RCPs to when the indicated secondary water temperature of each steam generator is less than or equal to 30 F above Reactor Coolant System temperature, and (3) limit the initial indicated pressure of the i pressurizer to less than or equal to 320 psia. '

3/4.4.2 . SAFETY VALVES The pressurizer code safety valves operate to prevent the RCS from being pressurized above its Safety Limit of 2750 psia. Each safety valve is designed to relieve approximately 3 x 105 lbs per hour of saturated steam at the valve setpoint. The relief capacity of a single safety valve is adequate to relieve any overpressure condition which could occur during shutdown. In the event that no safety valves are OPERABLE, an operat.;,'g CALVERT CLIFFS - UNIT 2 B 3/4 4-1 Amendment No. A#f

, .- l INSERT A  ;

The limit on initial pressurizer pressure will prevent the PORV from lifting during the pressure -

transient, f

,s .

3/4.4 REACTOR C0OLANT SYSTD(

BASES

~

3/4.4.9 PRESSURE / TEMPERATURE LIMITS .

i

~All components in the Reactor Coolant System are designed to withstand the effects of cyclic loads due to system temperature and pressure changes. i These cyclic-loads are introduced by normal load transients, reactor trips, and STARTUP and shutdown operation. The various categories of load cycles used for design purposes are provided in Section 4.1.1 of the UFSAR.

During STARTUP and shutdown, the rates of temperature and pressure changes are limited so that the maximum specified heatup and cooldown rates are consistent with the design assumptions and satisfy the stress. limits for cyclic operation.

Operation within the appropriate heatup and cooldown curves assures the integrity of the reactor vessel against fracture induced by combinative thermal and pressure stresses. As the vessel is subjected to increasing fluence, the toughness of the limiting material continues to decline, and even ive Pressure / Temperature limits must be observed. The flue n/ b wh (E >Md correspan approximateiy . fectivWuTi ower ear . v,ss./ -  :

Jo jpeAke The reactor vessel materials have been tested to determine-their initial i RTur; the results of these tests are-shown in'Section'4.1.5 of the UFSAR. l Reactor operation and resultant fast neutron (E >'1 Mev) irradiation will .

cause an increase in the RT -The actual shift in RT.7 of the vessel' material will be establisheI7 periodically during operation by removing and i evaluating reactor vessel material irradiation surveillance specimens  !

installed near the inside wall of the reactor vessel in the core area. The number of reactor vessel irradiation surveillance specimens and the frequencies.for removing and testing these specimens are provided.in UFSAR Table 4-13 and are approved by the NRC prior to implementation in compliance with the requirements of 10 CFR Part 50, Appendix H.

The shift in the material fracture toughness, as represented by RTor, is culated usingA R 1 tor Gu e 1.99, Revision 2. For a fluence of

//.D 10" n/cm . rat the 1 L Josition the adjusted reference temperature -

) valuei'is&& thr. ' "3 t. e 3/4 T position the ART value is j g7, [ F. These vaIu Y u d with procedures developed in the ASME Boiler an Pressure Vessel Code,Section III, Appendix G to calculate heatup and cooldown limits in accordance with the requirements of 10 CFR Part 50, Appendix G.

4 To develop composite pressure-temperature limits for the'heatup transient, the isothermal, 1/4 T heatup, and 3/4 T heatup-pressure-temperature limits are compared for a given thennal rate. Then the most restrictive. pressure-temperature limits are combined over the complete temperature interval resulting in a composite limit curve for the reactor vessel beltline for the heatup event.

CALVERT CLIFFS - UNIT 2-' B 3/4 4-7 AmendmentNo.2@fl I i

, . ~ , ~ , ., , - ,,. _ .

~_- .

. ,_.-,,_.__,.....m...~,_m , .-., i m. _. .._...% ..

3/4.4 REACTOR COOLANT SYSTEM BASES Je de lc composite pressure __ tem the cool Mn";- .Wrisure- t=pTrotsre liioit must c camlated. ..m 4sothe-31 pre::ur -tempeieluie limi; l5 ther, csiipered to the pressura-

-taier:tu,e liinit essceiated with : :;cWyr*~end-the more re:triet4ve *-

211erabic pie 55sre-tcap;r:ture li :it is che:Or, ressitius in a cumposii.e )

(limit-curve for the "eM+ar va"al N Both 10 CFR Part 50, Appendix G and ASME, Code Appendix G require the development of pressure-temperature limits which are applicable to inservice hydrostatic tests. The minimum temperature for the inservice hydrostatic test pressure can be detennined by entering the curve at the test pressure (1.1 times normal operating pressure) and locating the '

esponding temperature. This curve is shown for a fluence of x10" n/cm2 on Figures 3.4.9-1 and 3.4.9-2.

milarly,10 CFR Part 50 specifies that core critical limits be established based on material considerations. This limit is shown on the heatup curve, Figure 3.4.9-1. Note that this limit does not consider the core reactivity safety analyses that actually control the temperature at which the core can be brought critical.

The Lowest Service Temperature is the minimum allowable temperature at pressures above 20% of the pre-operational system hydrostatic test pressure (625 psia). This temperature is defined as equal to the most limiting RTur for the balance of the Reactor Coolant System components plus 100 F, per Article NB 2332 of Section III of the ASME Boiler and Pressure Vessel Code.

The horizontal line between the minimum boltup temperature and the Lowest Service Temperature is defined by the ASME Boiler and Pressure Vessel Code as 20% of the pre-o r i a hydrostatic test pressure. The change in the ,

line at 150 F o na ecoldown cury > is due to a cessation of RCP flow 1 induced pressure dev1a ion, since no)RCps are permitted to operate during a cooldown below 150 F.

The minimum boltup temperature is the minimum allowable temperature at l pressures below 20% of the pre-operational system hydrostatic test pressure. The minimum is defined as the initial RTor for the material of the higher stressed region of the reactor vessel plus any effects for irradiation per Article G-2222 of Section III of the ASME Boiler and Pressure Vessel Code. The initial reference temperature of the reactor vessel and closure head flanges was detennined using the certified material test reports and Branch Technical Position MTEB 5-2. The maximum initial RTor as ociated with thegion of the closure head flan e is 30 F 6en ve6uii~lfC m mins _

.he dtea%u-uncertainty tner b;ihg

+ e- ever, or conservatism, a minimum bo up temperature o 70 F is ut ized in the analysis to establish the low temperature PORV lift setpoint.

A M Ipse R CALVERT CLIFFS - UNIT 2 B 3/4 4-8 Amendment No. g l

s .'

INSERT 11 is developed similarly. The Appendix G limits in Figures 3.4.9-1 and 3.4.9-2 assume the following number of RCPs are running:

Heatup Indicated RCS Temperature Maximum Number of RCPs Operatinc 70*F to 308 aF 2

>308aF 4 Cooldown Lndicated RCS Temnerature Maximum Number of RCPs Oncratine l

>350 a F 4 350* F to 150a F 2

<150aF 0 INSERT C The Low-Temperature Overpressure Protection (LTOP) system consists of administrative controls coupled with low-pressure setpoint PORVs. The administrative controls provide the first line of defense against overpressurization events; the PORVs provide a backup to the administrative controls. The following section discusses the bases for-the PORV setpoint and administrative controls.

Low-Temperature Overpressure Protection uses a variable PORV setpoint to take advantage of the increased Appendix G limits at higher RCS temperatures. Reactor Coolant System temperature is measured at the cold leg RTDs. This provides an accurate temperature indication during forced circulation, and is also adequate for natural circulation. However, the Teoio RTDs are not accurate when on shutdown cooling (SDC) because they are not in the flow stream. For this reason, the lowest PORV setpoint is maintained whenever on SDC. This setpoint, which is independent of RCS temperature, is manually set when SDC is initiated and maintained until forced circulation is established after the RCPs are started.

The PORV setpoint is chosen to protect the most limiting of the heatup or cooldown Appendix G limits. Figure 3.4.9-3 shows the maximum PORV opening pressure. This includes corrections for static and dynamic head, and pressure overshoot to account for PORV response time and the maximum pressurization rate. The actual PORV setpoint and the MPT Enable setpoint are 1 controlled by procedure and account for all associated uncertainties.

4 i

l l

1 l

3/4.4 REACTOR COOLANT SYSTEM 1

BASES

! The si n basis events in the low temperature region d  :

01.d "st_. are:=

1 1 - An'RCP start with hot' steam generators; and,- ..  !

- An inadvertent HPSI actuation with concurrent charging. '

19) pra

~

--9 Any measures which will prevent or mitigate the design basis event's are sufficient for.any less severe incidents. Therefore, this.section will

- discuss the results of the RCP start and mass addition transient analyses.

Also' discussed is the effectiveness of a pressurizer steam bubble and a i- ' single PORV' relative to mitigating the design bas

  1. r ase e The'RCP start transient is a. severe LTOP challengetfoF a water solid RCS.

Therefore u eratio aretancedgutof service. . . _ . , . . . . .. . .. . . . . . .. . . . . . . . . . . . . ..w . 6 = q u u n 6 i v i i - 7 .

,.Sti"; restrittjene nn + hema nay --tare . initial DressuriZer Drescura and Ajg sv 'ar ^ ^ ~ - " ' " ' ^-^ -"

~

WgF 10""1 ;od th' res ric ions in p ace, the tran ent s

+ """ '" """^- ^ 7 f1Et h't hes e equa e y con ro Ted without the  !

assistance of the PORVs.%<f.ZI/geef The ir. dv stent eviu Lion vi une ll?';I pes.p in ^;njunction with ^Ia= cher;ing pt 7 is thw iiivai. severe mass addition overprc==uiizati r. :" nt. Analysas-A//- er: perfeie,md fer & single ;iFSL y- , end une cherving 2p 7 issuria; one P0a" eveilabic with the eoisting orifice aree of 1.2a in . rar +ha.

ga/-# limiting :: e. ealy a siagle n0RY i: ;r, sider:d :":flable "dee +a si ng1_e ,

failur: criterie. . A figoce e5 develeped which she th. valuuleted "CS pre :ur;; veras; ti=0 th:t will ;;cgr essswijng llP';I and cherging pump ::::

4--"+'

Sufb. -ent tM - h pr;fh;^^ foiiso iou of d-eotection results

'. overpressure nea ^ i ce.ev-l'.

when the equilibr .

does not exceed the limiting Appendix G curve pressure. Because the-equilibrium pressure exceeds the minimum Appendix G limit for full HPSI a flow. HPSI flow is throttled to no more than 210 com indicated when the  :

HPSI pump is.used~for mass addition. The HPSI fik limit includes allowances for instrumentation uncertainty, charging pump flow addition and RCS expansion following loss of decay heat removal. The HPSI flow is injected through only one HPSI loop MOV to limit instrumentation uncertainty. No more than one charging pump (44 gpm) is allowed to operate during the HPSI mass addition.

C^ peri 5en ef th; a0RY di!!herge C"rva M i th the critical pr;,:urifer pru ssie ei 471.2 ,,si: 4-dicates that ede';" ate protecti:n i; previded by a 13JHJk 70Ev' 107 KC5 tempersiure; Of 70 I ei ebvvc wnen all mass inp t is 11mitad tn un gne. unSI di;;heiv la limited to zig v,,,,, te elle.e f;r e e charaing onmn and eyet- ;;;pe,iaion cue . to ioss of uwsey h;".t r;.. vel . The law tamnaratura pnDV neaeenen 1jft ,;tpgjgt j; ;gt t; pr;t ;t th-  ;*,t restrictiva Annandiv_ c 77;;;6sc limit (4/1.2 psia). A PUKV seIpoint of-m acia; which includes inster r.t:tien uncertainties and suiiicient-rgine fnr PORV-resper.:: tisie icqui ... nts necessary for i.iin giutecticr. -f '

47L ? psia, was-selected.

m.

i l- CALVERT CLIFFS - UNIT 2 B 3/4 4-9 AmendmentNo.10jr 1 1'

l _ _ . _ . , , _ . . _ _ . _ _ _ _

i

, O' O l INSERT D l

These transients are most severe when the RCS is initially water solid.

1 INSERT E that can quickly exceed the Appendix G limits INSERT F and their motor circuit breakers are disabled. However, the transient is adequately mitigated by restricting three parameters: 1) the initial water volume in the pressurizer to 170 inches (indicated),

thereby providing a volume for the primary coolant to expand into; 2) the indicated secondary water temperature for each steam generator to 30aF above the RCS temperature; and 3) the initial pressure of the pressurizer to 320 psia.

INSERT G Failure to maintain one of the initial conditions could cause the PORVs to open following an RCP start.

l i

INSERT II The mass addition transient from HPSI or multiple charging pumps is a severe LTOP challenge for a l water solid system due to PORV response time. To preclude this event from happening while water  !

solid, all HPSI pumps and two charging pumps are tagged out-of-service during water solid conditions. Analyses were performed for a mass addition transient with concurrent charging and the expansion of the RCS water volume following loss of decay heat removal, assuming one PORV available (due to single-failure criteria). This mass addition, determined at the point when the RCS reached water solid conditions, must be less than the capability of a single PORV to limit the LTOP event.

l

, s .

3/4.4 REACTOR COOLANT SYSTEM BASES

- _~- ~--- -

To provide single failure protection against a HPSI pump mass addition transient, the HPSI loop MOV handswitches must be placed in pull-to-override so the valves do not automatically actuate upon receipt of a SIAS signal. Alternative actions, described in the ACTION Statement, are to disable the affected MOV (by racking out its motor circuit breaker or l

/ equivalent), or to isolate the affected HPSI header. Examples of HPSI ,

, header isolation actions include; (1) de-energizing and tagging shut the '

HPSI header isolation valves; (2) locking shut and tagging all three HPSI )

~

ump discharge MOVs; and (3) disabling all three HPSI pumps.

Three 100% capacity HPSI pumps are installed at Calvert Cliffs. Procedures will require that two of the three HPSI pumps b isabled (breakers racked out) at RCS temperatures less than or equal to SF and that the remaining HPSI pump handswitch be placed in pull-to-lock. dditionally, the HPSI l pump nonnally in pull-to-lock shall be throttled to less than or equal to )

210 gpm when used to add mass to the RCS. Except' s are provided for ECCS '

l testing and for response to LOCAs. JO resurizer steam volume-anu a single onov woi 77ay,mg , _a,n, oug7y _. .

! I control of all = ass addition trensients with the exceptica of c -srpur48us utuation of full flow frem e ilPSI pump. Overpressuri:ctier dua tn this transient will be precluded for temper 5tures 305 F and less by disabl%g twe " PSI pumps, plac4ng the third in pull-to-lock, and by Inrottling the third pum: to less thcn or equal to 210 gpm #10e when it is used to add-mast to t e RC^. -- . _.

Ne_e tha.- enly the design base; cycnt3 57g dj3cg356d jg det,dij 3 j nw Lhe less severe transiente are bounded by the RCP 5 tert and inadve i.ent HP51 a'-+."_,"..-u-'*

n n -

RCS temperature, as used in the applicability statement, is detennined as follows: (1) with the RCPs running, the RCS cold leg temperature is the appropriate indication, (2) with the Shutdown Cooling System in operation, the shutdown cooling temperature indication is appropriate, (3) if neither the RCPs or shutdown cooling is in operation, the core exit thermocouples

are the appropriate indicators of RCS temperature.

The allowed out-of-service times for degraded low temperature overpressure ('

protection system in MODES 5 and 6 are based on the guidance provided in (

Generic Letter 90-06 and the time required to conduct a controlled, j deliberate cooldown, and to depressurize and vent the RCS under the ACTION l

statement entry conditions. (

3/4.4.10 STRUCTURAL INTEGRITY l The inspection programs for the ASME Code Class 1, 2, and 3 components ensure that the structural integrity of these components will be maintained at an acceptable level throughout the life of the plant. To the extent applicable, the inspection program for these components is in compliance l

with Section XI of the ASME Boiler and Pressure Vessel Code.

CALVERT CLIFFS - UNIT 2 B 3/4 4-10 Amendment No. 265 i

l l

3/4.5 EMERGENCY CORE COOLING SYSTEMS (ECCS)- 'l BASES l Portions of the Low Pressure Safety Injection (LPSI) System flowpath are common to both subsystems. This includes the low pressure safety injection flow control. valve, CV-306, the flow orifice downstream of CV-306, and the I four low pressure safety injection loop isolation valves. Although the portions of the flowpath are comon, the system design is adequate to ensure reliable ECCS operation due.to the short period of-LPSI System l operation following a design basis Loss of Coolant. Incident prior to recirculation. The LPSI System design is consistent with the assumptions in the safety analysis. .

The trisodium phosphate dodecahydrate (TSP) stored in dissolving baskets. I located in the containment basement is provided to minimize the possibility of corrosion cracking of certain metal components during operation of the ECCS following a LOCA. The TSP provides this protection by dissolving in the sump water and causing its final pH to be raised to > 7.0. _

The requirement to dissolve a representative sample of TSP in a sample of RWT water provides assurance that-the stored TSP will dissolve _in borated water at the postulated post LOCA temperatures.

The Surveillance Requirements provided to ensure OPERABILITY of each component ensure that at a minimum, the assumptions used in the safety analyses are met and the subsystem 0PERABILITY is maintained. The surveillance requirement for flow balance ' testing provides ' assurance that proper ECCS flows will be maintained in the event of.a LOCA. Maintenance of proper flow resistance and ' pressure drop in the piping . system to each -

injection point is necessary to: (1) prevent total pump flow from-exceeding runout conditions when the system is in its minimum resistance configuration, (2) provide the proper flow split between injection points  :

1 i accordance with the assumptions used in the'ECCS-LOCA analyses, and j h b > provide an acceptable level of total'ECCS flow to all injection points  ;

equal tior above that assumed'in the ECCL-LOCA analyses.- Minimum HPSI flow requirements-for temperatures aboveg =re based upon small break  :

LOCA calculations which credit charging pump flow following a SIA5.

Surveillance testing includes allowances for instrumentation and system h '

leakage uncertainties. The 470 gpm requirement for minimum HPSI flow from tha %ree lowest flow legs includes instrument uncertainties but not syst ,a eneck valve leakage. The.0PERABILITY of the charging pumps and the

associated flow paths is assured by the Boration-System Specifications 3/4.1.2. Specification of safety injection pump total l developed head ensures' pump perfonnance is consistent with safety analysis i ind A einperatures of F and less, HPSI injection flow is limited to less than or equal to 21 gpm except in response to excessive reactor coolant leakage.' With excessive RCS leakage (LOCA), make-up requirements could-exceed a HPSI flow of 210 gpm. Overpressurization is prevented by CALVERT CLIFFS - UNIT 2 B 3/4 5-2 Amendment No. 149.

l

- . - , . _ . - - . . - _ _ _ _ . _ . ~ _ . . _ . . , _ . _ _ _ _ _ - - . _ _ _ __ _ . ,