ML20065Q368
ML20065Q368 | |
Person / Time | |
---|---|
Site: | Clinch River |
Issue date: | 01/31/1975 |
From: | Moore R OAK RIDGE NATIONAL LABORATORY |
To: | |
Shared Package | |
ML20065Q355 | List: |
References | |
ORNL-TM-4687, NUDOCS 8210270035 | |
Download: ML20065Q368 (80) | |
Text
{{#Wiki_filter:b-2,= gev.c,a.s ?. a...,.. w , 4. ;. %V -MC. ORNL-TM-4687 q:f.vv.pr Y.. n h (i,'}"[ k'. f. s
- ' :e Q
- e.. c.,,' # *1, '
t; (.., wn.. h'.ett? '*[j% ('
- r*-'
b' *Pv
- 6*.y F.'
h.<.n%.,+, 4- ..] R.h..i. %, M 1,,,J ?% ,1 W A.h T..
- r..
Y.M.riWMf.y..h d%wa m4;w[; dat..W7:y OY2.I.,%:,.,. d r r y v r. :. .qi AIRDOS-A Computer Code for Estimating W;~U.q,:.:s :w%n'i.A Population and Individual Doses a 4 .P,e-2.J..% Resulting from Atmospheric Releases of d, ~,UM...>y? '.,GJW.. n..s t,f11;}f,y.r.s;.,qw"d Radionuclides from Nuclear Facilities t.
- ,n n.
- ,,;c.. 49u.r l 'k'.IA$.'.h@f.$s R. E. Moore 7 ;:.'%e 9.~ c' 3 %g I. w,$<
N'.T.95$i;;{$.L.Q.f.'g! .... \\ s 1. ,:$f r@$$ @Ek! + .{5 d~' M$..%:.s.t. i '{ M?[,i.ir.~,h...n.. 3[t.'M l, ,t
- I.',c
.v w~ s E' .E X '; A (.Vt -
- i e
n:c,, 4,. J
- y q u...
- y,tj j y:i b;M h.,.h Q. g ra,
M. .;,;m.,'t}m:.W-fy[1f.4 - W:,.q!::
- . v.M.c7 f.
Environrnental Sciences Division Publication No. 654 ~ -t,.:.a e.,.,.;A;. f. " _' a ,. f..Qu,W<. W.y.. If+ W.p:,.S. v. 3.$'Q.0.,*.yl.%1:,2 ~.W,$, sN,.W. p MMNW J. W: Q i'L %..... u x r V.C5,% e' ;ff,M 3 a~4.. o;. v.j -aQ.'f.;" t's;r '.; O.f A'. ,s :r. m&.J ram 4.%m
- .C., g,q,*i;Q.,.,$1'.w.v.,
- .-m.4.qQ *.:,Ry?.,,+,5%p> q
. : - e. -r.t.*i t h;v q ~..a $. '..:'; *! c. :;f.:g '?."9. y. *y? *sO..... s1 %. ~ t hf; )a ?.l*-Q',... 'Q,y n ..y< bW;jw[.<s,hp.::.)y. ...y,l4, 4.},at'L.Q, : .Q A Qf';&..;q .g.f. %y)
- 5..
i,..l'..&; ? t-l s .h' 9 M .,, e. y, w e,,,.4.,geg.,.% . p., .x(.%..M.,.'$ > %.;.y;r..- l i par h;,1 g &., 2 h, ;. s. p, ,4,.,.),n ? - 7,..,..e..ri..,. 2. p: e' .u.;p;'.;.!-.' S- ,r - ,( ~.tw. g .w %u. .s L:' $ hi > ': h 5 $ y f.. s 1 . a- . : - v. .b , W G M E @ p h @& $ h.h f$. & { h & $$$h h. k#WM%# % 1 r.:.t. <f. '[;Q,.: 'W:.y&kWlYN$$qY$5$o:N ?.;;Y$.a. k y;g;&,d.Q'fg.9 '.%.;.At1ll/TSsi.'.&o !?. h R t .,m.-.r9.Mgu $.5Y)p$SE4...g5... y.. d li
- ':it?'Qk...... g3*,J*
v.c.a. v.t.....,r..,, ,. m,k4%h.,4,,.C.'h 4 f . n Q 5.f%,;$ y &.r n.x,*s r ib. , l..% 3 4,.. ~.2. Q &.'NRV g.u....fk . e... ..... s.
- c.. '!",'N.&,t.y?; l9lt..y.,pc.c..,;3...d.'Q..
W,io,.m.'m ...w. w ..w . e - ..e W s ) :,: M i. P Q. d *s.; Ni.h.% A i).WSWl...s :".-USW: dP.s,%. % .W. a '~. i .2 ,k--l2TKb lQh*NN$;.t%u
- l. N *k-
~ }d.fi'?f.m: *'h%2M n?il? N +$ Q.9-N'gi5 WS&hA*b ~ ~ .. 4'h L<.. n nen. g amp.ou g a p - Y.i. f'~/f.,f a. Q..y?ifif, yethP'f, / ).,4QL f.Alr*,*?.,it An'n.- ^ - A.1' gC 5y .M e '&) C T;g t~ m. b bx t. vk (W ?-
- . n.. qfWg;,..1 v.$ M,k~ 4:s:'/,, Ya,e..5..~."Q j g.n. sm..
1 ,. '. '.:.,, >e, 2 *:.
- .'dt;hW Q.:
cp- .n..w w 4.. 3 ., -, y .i (N. I'$ @h.fi' g,.W.. r C./$. i.'.'h,c,,:.q.r..,,' $.,.Q,.J.f.,hT d...,,*,.d.,: t.L s 4 ..y.,, 1 ; :., 4:. ~w,..y; y.,t C,.,, .. 9~* : w.; > q g ; Je, ) p u -.m y ( 4..-.3.... s.n, I,\\ Lt.ay,' :.wh.m; nd.. $c (3,.q.n,:..,g2;>,9.y 9... v.; wes'n b s :,,. . ec sv ... t. -. ej...' N':--y_. r ;' j >g: dene m 210M:t mgi;p,- l R.., w,4;,y2 ,s pa,4, I 8210270035 821022 PDR ADOCK 05000537 G PDR
I THIS DOCUAENT HAS BEEN REPRODUCED FROM NRC MICROFICHE HOLDINGS BY THE DOCUMENT MANAGEMENT BRANCH, DIVISION OF TECHNICAL INFORMATION AND DOCUMENT CONTROL FOR INF0FNATION ABOUT MICR0 GRAPHIC SERVICES INCLUDING EQUIPMENT CALL: 28137 l FOR DETAILS ON: MICROFICHE BLOWBACK SERVICES CALL: 28076 APERTURE CARD BLOWBACK SERVICES CALL: 28075 MICROFICHE OR APERTURE CARD DUPLICATION CALL: 28076 ( FOR EQUIPMENT REPAIRS CALL: 28397
ORNL-TM-4687 Contract No. W-7405-eng-26 ENVIRO'iMENTAL SCIEtiCES DIVISION A!RDOS--A C0f1PUTER CODE FOR ESTISTIhG POPULATION AND IflDIVIDUAL DOSES RESULT!fM FROM ATMOSPHERIC RELEASES OF RADIO.'iUCLIDES FROM fiUCLEAR FACILITIES R. E. Moore toCitCE I s' 7.*M,L.." 00'. ".t..";!.0' t, w'd'.,
- c.
n.. .,,.. s.... ..~.m..... r. ..'L., w':".i ..V,,.'. 7'.'.*" *A.," E.**.**.'."".",'. 7 ...r ~ JANUARY 1975 '.'.".a.'.~..r,',.i.--..c."".~~a== Environ ental Sciences Division Publication No. 354 wot act n m.,~ .ae.,~ .e.. .a., a .a. ..a...- .,e.,.ai i . o a t.....in,......,.....w.,. a.......s OAK RIDGE fiATIONAL LABORATORY Oak Ridge, Tennessee 37830 cperated by 7FM*yr/;;. UNION CARBIDE CORPORATIOr4 f 4. < for the p j d I' # * ',a U.S. AT0ftIC ENERGY C0tNISSION ...... :. j w k
y 111 CONTENTS Page ABSTRACT............................ 1 INTRODUCTION.......................... 2 THE ATMOSPHERIC DISPERSION MODEL................ 4 DO S E E S T I MAT E S......................... 11 VALID; TION OF ENVIRONMENTAL MODELS............... 12 Validation f the Atmospheric Transport Model........ 13 Haddam Neck Pressurized Water Reactor 13 Noble Gas Releases from a Boiling Water Reactor 13 Tritium Releases from the Argonr.e National La b o ra to ry CP-S Re a cto r................ 15 Validation of the Terrestrial Modet............. 18 INSTRUCTIONS FOR USING AIRD05 18 ACKNOWLEDGMENTS 37 REFERENCES........................... 38 APPENDIX............................ 41 i 's e
y LIST OF TABLES Pace Table 1. Comparison of !*easured and Estimated y/Q Values for Releases of floble Gas Radionuclides from the Haddam fleck Reactora,,,,,,,,,,,,,,,,, j4 Table 2. Measured Release Rates of floble Gases from a Boiling Water Reactor 16....... 16 Table 3. Measured and Estimated Doses Resulting fro Exposure to floble Gas P1mes Released from a Boiling Water Reactor................. 17 Table 4. Comparison of Literature Values of Actual a Monitoring Data to Terrestrial Model Predictions,,, 39 Table 5. Data Deck for Atmospheric Dispersion and Ground Deposition...................... 20 Table 6. Data Deck for Statistical Description of Area 27 Table 7. Data Deck for Parameters Used to Estimate Inhalation Doses and Doses Resulting from Submersion in Water.. 28 Table 8. Data Deck for the Radionuclide-Independent Parameters Used for the Terrestrial Model....... 29 l Table 9. Data Deck for Each Radionuclide............ 33 Table 10. Data Deck for Each Organ for Each Radionuclide.... 35 S i i
AIRD05--A C0urtJTER CODE FOR ESTIMATING POPULATION AND ThDIVILU/L 005ES GESULTlhG FPO!4 ATMOSFHERIC RTLTATET dNDTdhuElfEDR;M heCLEAR FACILITlI5, R. E. Moore ABSTRACT AIRD05, a Fortran IV cor puter code, was written to estimate popu-lation and individual doses resulting from the cortinuous simultaneous atrespheric release of as runy as 36 radionuclides from a nuclear facility. This report presents details of the code and complete instruc-tions for its use. Five pathways to man are considered: (1) inhalation of air containing radionuclide gases or particulates, (2) imersion in conta9tnated air, (3) exposure to surfaces contaminated by radioactive fallout, (4) ingestion of food produced on contaminated ground surfaces, and (5) imersion in contaminated water, as by swiming. Dose and dose comitments are estimated for each pathvay and the following eleven reference organs: whole body, GI tract, bone, thyroid, lungs, snuscle, kidneys, liver, spleen, testes, and ovaries. The environmental rodel.in AIPDOS consists of a 20 x 20 square grid with the nuclear facility located at the center. The size of each grid is specified in the input data. Human populat%n, nurters of beef and dairy cattle, and identification as to whether an area is prv 5I-nately used for production of vegetable crops or is a water area are spect fled for each of the 400 grids. Population doses are surrnarized in output tab,les in every possible runner--by nuclides, pathways, and organs. The highest individual dose received in the area and its location are printed in the output, i
ff.~$ ".?y a.~**M**v.~~? w.umr:*...: y~e a m-me nwvfr' TM##UO_' _u =g O i u 6 1 i 1 J i 4 I e PLANK PAGE 1 g l 5 l l e s 1 t r l 1 ,....m ; m zm w.m.,,..- -.. -. -,--~ ca w = e . a.: l
"i Data found in the literature or provided by various investigators were used to validate the atmospheric dispersion model and the terres-4 trial model used in AIRD05. Measured values were generally within the range from + 100t to - 505 of predicted values. Coglete validation,
- t. wever, will recuire comparisons for more nuclides and a wider range cf conditions. Efforts are continuing to locate additional environmen-tal data for validation.
INTRODUCTION AIRDOS is a Fortran IV cor puter code used to estimate annual population doses (man-rems) and the annual maximum individual doses resulting from exposures to radionuclides released to the atmosphere ~ fron nuclear facilities. It is useful primarily for continuous releases of radionuclides rather than accidental or pulse releases. This code. fecluding several previous versiens and modifications, has been used at OP'il in the United States Plowshare Gas Program,I'2 in the ORNL Cunula-tive Exposure Index (CUEX) Project.3 and for several aoplications related to the preparation of envietnrNntal impact statements. Recent applications have included para etric analyses to evaluate uncertainties in dose esti- - mates which result from uncertainties in our knowledge of parameters, such as depositian velocities of particulates, plume rite of released radio-I nuclides, and the vertical and horizontal dispersion coefficients which describe the dispersion of a wind-blown plure of radionuclides. AIRD05 esti, rates doses resulting from continuous siruitaneous releases of as many as 36 radionuclides from as many as 6 plant stacks or roof vents. Pathways to men include (1) inhalation of radionuclides in air (2) imer-sion in air containing radionuclides, (3) exposure to ground surfaces i
yysnccurserazmeomscrgre.mwanspe- -_-m - q 3 i contaminated by deposited radionuclides, (4) ircestion of food produced in the area, and (5) imersion in contar.inated water. Doses are esti-mated for these organs: whole-body, GI tra:t, b'one. thyrold, lungs, I muscle, kidneys, liver, spleen, testes, and ovaries. The area surrounding the nuclear facility is arranged as a 20 x 20 souare grid with the facility at the center. The grid size is spe:ified 1 ( as input data. Human population, numbers of b'eef cattle and dairy cat-i tie, and specification as to whether each of the 400 grids is used for producing vegetable crops or is a water area are required as input data. l l The first part of AIRD05 is an atmospheric dispersion.model (AIRMOD) which estimates concentrations of radionuclides in air at ground level and their rates of deposition on ground surfaces as a function of distance and direction from the point of release. Annual average meteorological data for the area are supplied as input for A!WOD. AIRMOD is interfaced with enviro cental models within AIRD05 to esticate doses to man through the five pathways. The most corpipx environ. 1 mental model is a terrest-ial model (TEPy0D) developed by Booth, Kaye, and Dohwer.4 This nodel estimates radionuclide intakes via ingestion of radio-nuclides depcsited on crops, soil, and pastures. The intakes result from eateng beef and vegetable crops and drinking milk. The terrestrial model (TERM 03) is net applicable for tritium, which, in the fom of tritiated water, follows ordinary water alrost exactly through the terrestrial environment. The model used in AIRD05 l for ingestion cf. tritium is one in which it is assumed that man's body water contains *.he same concentration of tritium as is contained in rain falling in the area. This assumption is conservative because it 1 t
pr:7/cv mw..m.mWas;'sRFNFWarcSNs. m e-r--mw o----- -~a n 4 does not consider any dilution of tritium in r'an's body water as a result of drinking water or other beverages from sources outside the area. l The prt:sent version of AIRD05 does not estimate external doses from 1 ga ra radiation from overhead pltres. This additional external exposure may be imoortant *n the imediate vicinity of a nuclear facility, especially under stable atmspheric conditions. It should be estinated separately l where conditions warrant and added to' the external doses estimated by AIRD05. l l A separate finite cloud calculation usually would not be necessary for distances greater than 10 stack heights from the point of release under average meteorological conditions. Ingestion of fish or other foods produced in water areas is also not included in the present version of AIRD05. l Population doses are sparized in the outpu't tables of AIRD05 in all possible ways--by nuclides, pathways, and organs. If more than 36 l radionuclices must be considered in a source term, two or core computer runs can be made and the data in the sumary tables from each computer i run simply added together. The highest individual doses in the area for each organ are tabulated for each radionuclide and the highest organ I doses from all radionuclides in the source term are listed. The location of the highest individual dosa is specified. THE ATMOSPHERIC DISPERSION MODEL The basic equa' tion used to estimate atn. spheric dispersion in AIRD05 is Pasquill's Equation as modified by Gifford:6 5 I a
py:..t,n@CE"3Yn i-WMARc~Wm.nm rM~.wism.'a.em,a4Ekaceaws&- - ~ --- 5 X
- 2nc o y W O) yg
.h* -h** + exp cxp where y, = concentration in air at the center line of a plume x meters i 3 downwind from the point of release (curies /m ), Q = unifom emission rate from the stack (curies /sec), f
- = rean wind speed (m/sec ),
o = horizontal dispersion coefficient (m), j y o, = vertical dispersion coefficient (m). 11 = effective stack height (physical stack height, h, plus the plume rise, th) (m), l y = crosswind distance (m), and J z = vertical distance (m). j 1 The downwind distance, x, comes into Eq. (1) througn o, and o, l g which are functions of x as well as the atmospheric stability category i k 5 applicable during emission from the stack. Pasquil1 described six ] atmospheric stability categories ranging from A (very unstable) to F j i (verystable). A seventh category, G (extremely stable), has been l included in AIRD05. Values for o and o as functions of x for each of y g l the six original Pasquill categories are the most recent values recom- ) i ,j I mended by the Air,Pesources Atmospheric Turbulence and Diffusion taboratory.7 The vaiues used for o, and o, for category a were l a eb-
- +l p a wg:mru.SG:s6n=#6R:km M M M 6
i extrapolated by subtracting half of the difference between corresponding values for the E and F categories from the values for the F category. Three options are available in GDOS to estimate pitsne rise, l.h, for Eq. (1). These are 1. Briggs'8 equations can be used to estimate plume rise resulting a from buoyancy for cases in which hot plumes are emicted from.a stack. The rate of heat release from the stack and the average a air temperature are required input data for this option. In additics, the vertical ternperature gradient of the' air for atmos-pheric stability categories E F, and G are required. 2. The equation of Pupp et al.9 can be use; to estimate pitsne rise caused by momentisa of emitted stack gases. This equa-tion is lI t.h = 1.5 vd/u (2) in which th = pitsne rise (m), y = effluent gas velocity (m/sec), i d = stack diameter (m), and j u = wind velocity (n/sec). 3. Plume rise is designated by the user for each of the seven 'l Pasquill atrospheric stability categories. I l Option (2) would usually be used for nuclear plants for which 1 gaseous effluents are near a-bient temperatures. Option (3) may be j used if the user desires to compute plume rise by another 'ormula. l 1 '5 i 1
R8.NMEMb GiM4v4%"Mhm mms.,mwm _ ( i l il 7 l i for part of each year a stable layer of air will exist above a h I less stable layer. This effECt. referred to as a lid, restricts c C 3 vertical dispersion, and it results in a higher ground-level 4!r con- [ l centration than would ex'st in the absence of a lid. It is assumed in the AIPCOS ode that a piir e is not affected by the lid until the is the value of downwind distance, x, becomes equal to 2x(, where xg x for which c, = 0.47 *.. (L is the height of the lid.)l0 For greater j values of x, vertical dispersion if restricted and the air concentration e 4, of the radionuclide is assumed to be uniforri from ground level to the i, lid. 2 Radionuclides released as particulates may be substantially N affected by gravity during pltrie travel. A value for the gravita- ] tional fall ve'.ocity. V, for each radionucli& is required input g data. Tnis value is zero for gases and usually zero for nost particu-lates. For dense or large particulates, however, a positisc value is 3 used for V, and this results in computing the pltre to nave a dowriward g J tilt. This is accorplished in AIPDOS by decreasino the effective stack A height, H, in Eq. (1) by the expression V x/ :. A built-in protection f g l orevents the pltre from going below ground level. L. Particulates will deposit on ground or water surfaces at a rate p that is the product of their concentration in air at ground level and il the deposition velocity (m/sec) as expressed by the equation, g h (} w(x,y) = V
- 'Y 'O d
P ik 1 %n d
8 where 2 w(x,y) = deposition rate (Ci/m sec), Vd = deposition velocity (m/sec), and X(x..v,o) = air concentration of radionuclide et ground 3 level (Ct/m ), Deposition velocities are dependent on surface characteristics. Measured values'show wide scatter, averaging about 0.01 m/sec, a value often used for particulates' for which reliable reasured values are not available. It seems likely that particles which are falling as a result of gravity will deposit on surfaces at a rate at least as great as their rate of fall. It is recomended, accordingly, that any value used for the deposition velocity of a_ radionuclide be at least as great as its gravitational fall velocity. Scavenging of radionuclides in a plume is the pracess through which rain or snow 4hes out particles or dissolves gases and deposits them on ground or water surfaces. The fraction of particles or soluble gases removed by scavenging fiom a vertical column of air per unit time during rain or snow is e, the scavenging c'oefficient. If C has the units I of sec"I, the rate of depositior, on the ground or water surface is 2 R = CCh C1/m sec (4) where 3 C = the average concentration in the vertical column (Ci/m ), and h = the height of the vertical coltrin (m). l Th,e scavenging coefficient used in AIRD05 for each radionuclide is l the sum of the washout, rainout, and snowout coefficients for particles l l l
9 or the coe.'ficient for dissolving of gases in rain drops. The average concentration in the vertical colunn used in Eq. (4) is conputed through the use of Eq. (1). The value of h is the distance from the ground to the botton of the inversion layer (lid). A discussion of methods used to estimate scavenging coefficients during the periods of rainfall (or snowfall) at the plant site can be found in Meteorolony and Atomic Enerny--1968.II These scavenging coefficients rust be averaged over a period of one year to be used in AIRDOS. The units of scavenging coeffi-cients (sec~I) as used in' AIRD05, therefore, described a continuous removal of a fractinn of the plume per second over an entire year. The rate of deposition is the sum of the rate from dry deposition and the rate from scavenging processes; it is used as it:put for the terrestrial model to estimate internal 50; year dose comitments through ingestion of food produced in the area. Concentrations on ground surfaces calculated for a 50-year peried of deposition are computed from radioactive decay constants and environmental decay constants to esticate gamma doses from surfaces. Measured values of environmental decay constants for most radionuclides are not available; the use of a value of zero for these cases results in conservative dose estimates. Depletion of the pltre resulting from depcsition processes is taken into account by substituting Q, the release rate in Eq. (1), by Q', a reduced release rate which is Q-D where D is the correction for the amount 1 of radie uclide deposited by the plu e from the point of release to the pc'nt of sansideration. An expression for the depletion fraction, Q'/Q, es a fuhction of X, the dwnwind distance, can be derived from the general expression,
10 h = - w(x,y) dy., (5) a for depletion of a plune per unit distance from the point of release. The depnsition rate, w(x,y), is equal to v x(x,y.o) (see Eq. (3)), d where X(x,y.o) is equal to the expression of Eq. (1) with Q' substituted for Q with the expression v x/u subtracted from H, the effective stack g A height, to account for gravitational fall, and wit!: functions of x, x /C D and x /F, substituted for o and o, respectively. After substitutions f z are made, the resulting expression is (Hw,x/u)b (" v Q' 2 N.. d Y 3* =-2)O ^ D exp - + 1 dy (6)~ w(x/C)(x/F)u (2(x^/C)2 D 2(Xjp)2 Integration of Eq. (5) leads to the c..pletion fraction: 1/2 v n. d dx p=exp' D (x/F)exp(-(H-vx/u)2 D /2(x jp)2) (7) o g Computer subroutines based on Simpson's Rule were written by 12 D. E. Dunning to estimate Q'/Q in Eq. (7) for dry deposition as -et a function of X. The exponential factor e is used to correct for plume depletion by scavenging prccesses. AIRD05 makes use of Eq. (1) to compute annual average concen-trations in air and rates of deposition on ground and water surfaces for each of 16 compass directions emanating from the stacks of the facility.'. The annual frequencies for the 16 wind directions, true f l
11 average and reciprocal-averaged wind speeds for each wind direction, and annual frequer.cies of the seven atmospheric stability categories for each wind direction are required as input data. The resulting concentrations from Eq. (1) art averaged over each of the 16 sec. tors and then converted to a squart grid specification. Radioactive decay during plume travel is taken into account in AIRD05, but doses from daughter buildup withi.1 the plume are not esti-mated. The user should exanine the decay schenes of ary short-lived radionuclides in the source tem to ensure the absence of significant quantities of daughte:* products in the airborne plume which may contri-l bute to dose. DOSE ESTIMATES Dose conversion factors for external doses from imersion in con-taminated air, immersion in contaminated water as by swiming in a home pool subjected to surface deposition from plumes, and exposure to con-taminated ground surfaces are supplied as input data. Only gama radiation is censidered for external doses. External dose conversion factors for each radionuclide can be obtained by use of the EXREM III cornputer code.13 The contribution to the dose conversion factors for ir:rnersion in water and surface exposures from daughter products at equilibrium should be included in the dose conversion factors supplied 1 as input data for each radionuclide. In AIRDCS, the external dose to each organ is estirnated as equivalent to the whole-body dose, and it is added to,the 50-year internal dose cceriitment for each organ resulting from inhalation and ingestion. l l l
12 Dose conversion factors for intertial doses from Inhalation and in-gestion are supplied as input data for each radfor.uclide for whole body and for each reference organ for that radionuclide. The internal dose i conversion factors can be obtained through use of the INREN computer code.I4 for those organs not in the reference organ list, internal doses are estirrated through the use of the dose conversion factors for whole body. Each person living in the area is assumed to eat beef, milk, and vegetable crops produced within' the entire 400 square grid surrounding the twelear f acility. If the 400 grid area does not produce enough of each of these three foods to supply the population within the area, the deficit for each of the three foods is assumed to be supplied by ir: ported uncontaminated food. Dose reduction factors are applied in AIRDOS to the ing2stion doses estimated in TERIOD for the short-lived (T1/2 = 8 days) radio-1311 to account for cattle pasturing practices in the area nuclide and elapsed tires between production of vegetable crops, milk, and 1 beef and their human consumption. Ingestion deses for I as esti-mated by TERT 0D are reduced by 30 to 507, by application of these factors calculated on the basis of realistic local agricultural and food processing and distribution practices. VALIDATION OF EtiVIPONt'EtiTAL MODELS The environnental transport redels AIPWD and TERM 00, in AIRDOS were validathd partially by the use of data found in the literature or
13 provided by various investigators. Pesults of these validation studies, given in this section, show that most of the measured values generally fall within the rance + 100", to - 50% of the predicted values. These results lend sor.e credence to AIPDos, but complete validation will require cortparisons for a larger number of nuclides under a wider variety of r.eteorological ar.d terrestrial conditions. Efforts are continuing to locate additional environmental data which are closely re sted to known releases for which netcorological conditions are well defined. Validation of the Atmospheric Transport Model Radionuclide concentrations in air at ground level estimated by the A!RDOS code were corpared with values measured in the vicinity ci three nuciear reactors as described below. 1. Haddan rieck Pressurized Water Peactor-85 I33 Concentrations of Kr and Je in air were reasured by the U. S. D Environ ental Protection Agency near the Haddam Neck Reactor en April 16, 1971. The reasurerents were made at a distance of 600 reters from the l plant stack in the direction toward which the wind was blowing. Slightly unstable atrospher!c conditions prevailed durino the day. Table 1 lists y/0 values (concentration in air at g-ound level / release rate) for the four test periods. Estirated values from AIRDOS range from approximately l 56'. less than reasured values to approximately 70t greater than reasured 1 l values. 2. floble Gas Peleases from a Bollinn Water Feactor l Doses resulting from icrersion in air containing noble gases ( released from a boiling water reactor were estimated by AIRD05, and l l h 1
z / i Table 1. Comparison of Measured and Estimated X/Q Values for Releases of Noble Gas Radionuclides from the Haddam Neck. Reactora l f Test Period I II III. IV Average Wind Speej (m/sec) 3.2 S.0 5.T 5.4 Me$sured X/Q for Kr (sec/m ) 1.9 x 10'0 G.7 x 10-6 85 3 I33 l Measured x/Q for Xe (sec/ 3) 8.8 x 10-6 2.2 x 10-5 6.8 x 10-6 6.2 x 10-6 3 Estimated X/Qb (sec/m ) 1.5 x 10-51 9.6 x 13-6 9.4 x 10-6 8.9 x 10-6 [ i Slightly unstable atraspheric condi.tions prevaileI during releases ~'en April 16. 1971. a Measurements were made at a distante of 600 meters from the plant stack in the direction l-toward which the wind was blowing. { b The X/Q values estinated by AIRDOS are the sap 2 for both 85 I33 Kr and Xe. O g g
- h-tm 4..
.p, A
....q 15 the results were compared with doses measured by the New York Health and Safety Laboratory (HASL) 0 resulting from direct exposure to the plu es. The measured release rates are listed in Table 2. Comparisons of results are listed in Tabic 3. These comparisens are for distances relatively far from the stack where external doses are computed in AIRD05 for infinite c1 cud irrersion at ground level. These should be comparable to doses calcu*ated by HASL for direct exposure to airborne plumes. Doses resulting from direct exposure to. overhead plumes near the stack are auch greater than imersion doses, which AIRD05 estimates, because air concen-trations at ground level near the stack are very low. Good comparisons between results from the two calculational techniques are expected, there-( fore, only at downwind distances great enough that the plume has reached ground level. 3. Tritiun Peleases from the Argonne National Laboratory CP-5 Reactor Tritium released from the ANL CP-5 Reactor (1 C1/ day) was measured II by Sedlet, Golchert, and Duffy during 1973 at a pemanent monitoring station 50 meters east of the reactor. The average measured conc 2entra-3 tion durine the year was 2.65 x 10-3 2 2.0 x 10-3 pCi/cm. The average tritium concentration estinated by AIRD05 using annual average meterolt.gi-18 3 cal data was 4.69 x 10-3 pCi/cn. 1 The stack height of the CP-5 reactor is 15 meters. A small plune rise of 5 meters was assumed for the AIFDOS computer run to accomnt for momentum and buoyancy of the stack emissions. The agreement between esti-mated and meas'ured tritium concentrations is good in view of the difficulties in estimating cancentrations close to a reactor where building wakes and ll
16 ~ l' l;1 1tl Table 2. Measured Release Rates of Water Reactor {p a 8 oiling Noble Gases f 1-Release Rate Nuclide (pCi/sec) j r 133 10 xe 1.37 x 10 8 133m.e 5.47 x 10 lo 1;5, j,77 x jo j 7 135m 9 xe 5.17 x 10 138 9 xe 3.22 x 10 85m 9 Kr 4.20 x 10 87 9 Kr 9.30 x 10 88 9 Kr 6.99 x 10 1 4 e i e
I I Table 3. Measured and Estimated Doses Resulting from Exposure l to Noble Gas Plumes Released from a Boiling Water Reactor l l* a Measured AIRDOS l Distance from Stack Direction Atmospheric Dose Estimate Difference I (meters) from Stack Stability (mrems) (mroms) (%) I 6275 N Predom. Stable 0.38 0.28 - 26 6758 NNE Predom. Stable 0.15 0.25 + 67 2896 SSE Mixed 0.30 0.17 - 43 l carl V. Gogolak. HASL-277 (1973), and personally communicated meteorologi-a cal data for use in AIRD05. The results are for a 740-hour monitoring period. The cama-ray doses were reasured with high-pressure Ionization chanbers and thermoluminescence dosimeters. I i W -- -
18 small uncertainties in plume rise can have a significant effect on ground-level air concentrations. Valitation cf the Terrestrial Model The terrestrial model (TERM 0D) was validated partially by Soatt., Kaye, and Rohwer for three important radionuclides,137Cs, 90Sr and 1, by 131 comparing model predictions fron computer runs of their TERMOD computer code with literature values from actual monitorino data. Table 4 is a summary of their results, which constitute only.'a v'ery small portion of those required for a complete validation. A continuing effort is in progress to find addi-tional data suitable for validating the terrestrial model. 1 INSTRUCTIONS FOR USING AIPDOS The code is listed in the Appendix. Data decks required for use of the code are presented in Table 5 through 10. Decks of Tables 5, 6. 7, and 8 should be consecutively stacked. Followino the deck of Table 8, there must be a nuclide data deck (Table 9) for each radionuclide listed in the deck of Table 5 under NAMNUC. Associated organ decks (Table 10) for each radionuclide should immediately follow its nuclide deck. The number of associated organ decks following each nuclide deck must correspond tm the number in Table 9 under HUMORG. i Tables listing individual doses to each organ through each of the five pathways for each of the 400 grid squares are printed for only the first three radionuclides in the input data deck. This restriction was imposed because the,se detailed tables are so long that the bulk of the corcuter output would be unnanageably large if all tables were printted s l t
i 19 1 1 i Table 4. Cocparison of Literature Values of Actual a Monitoring Data to Terrestrial Model Predictions i Ratio of Fonitoring Data - to Model Predictions Environmental Ratio t 137 90 I3I 2 Cs Sr I I Input / conc. in grass 1.72 0.73[ j Input / conc. in milk 1.65 0.43 C Cnne. in milk / conc. in grass 1.00 0.78-1.96 j Conc. in milk / conc. in beef 0.62 Conc. in milk / conc. in grain 0.55 { Conc. in beef / conc. in grain 0.91 The values in this table were taken from Reference 4 ) a this report. f bThese two ratios are from different scurces. CA range of published data. .] 1 \\ )
- 1
~ o l 1 m 1y h \\.
l l Table S. Data Deck for Atmospheric Dispersion and Ground Depostion i Card Parameter Parameter Numbers Name Identification Units Type Format ] 3 1 LOPT Option 1 None Integer ([0 or 1 Integer 6Il0 LORT Option 2 None 0 or 1 c LOST Option 3 None Integer f0 or 1 d LOFT Option 4 None Integer (0 or 1 LON1' Option 5 None Integer [0 or 1 LOOT Option 6 .None Integer (0 or 1 2 PRA Designated plume rise Meters Fixed Point 7F10.1 for Pasquill category A PRB Designated plume rise Meters Fixed Point m for Pasquill category B { a 0ption for stopping the program after printing a table of ccncentrations in air at ground level and the rates of deposition on ground surfaces for each radionuclide for each of the 400 grid squares, b0ption for stopping the program after printing a table as above except that the listed values are for each of 16 compass directions from the nuclear facility for each of 20 specified distances (1DIST values) from the facility. C 0ption to list plume center.line values instead of sector-averaged values for either option 1 or 2. d Option for estimating pitane rise by Briggs' equation for buoyant plumes. ' Option for estimating plume rise by the equation,f Rupp et al. fcr momentum-type emissions.
- ption to designate a spacific plume rise for each of the seven Pasquill atmospheric 0
stability categories (A-G). a j Ei
) l Table 5. Data Deck for Atmospheric Dispersion and Ground Deposition (contd) I Card Parameter Parameter i ? Nisnbers flame Identificction Units Type Forma t l 1 l i PRC Designated plume rise Meters Fixed Point for Pasquill Category C PRD Designatad plume rise Meters Fixed Point for Pasquil; :=tegory D l PRE Designated plume rise Meters Fixed Point for Pasquill category E 1 PRF Designated plume rise Meters Fixed Point for Pasquill category F 4 i S i PRG Designated plume rise Meters Fixed Point for Pasquill category G 3 PLBN North Plant Boundary Meters Fixed Point 4F10.1 PLBW West Plant Boundary Meters Fixed Point PLBS South Plant Doundary Meters Fixed Point PLBE East Plant Doundary Meters Fixed Point 4 NADEC19 Internal test for trititan None Alphameric 2A8 in nuclide list h NADEC2 Internal test for 131 I in nuclide list SNADEC1 = H-3 hNADEC2 = l-131 M,e 1ma _ = wme-n"mv6xv3<***:mbee** N
l I Table 5. Data Deck for Atmospheric Dispersion and Ground Depo:.ition (contd) o g Card Parameter Parameter Numb,ers Name Identification Units Type Format i 5-7 IDIST 20 distances from the Meters Integer 8110 l facility for use with l option 2 l 8-12 NaMNUC Nuclide name (up to 36) None Alphameric 8A8 ~ 13-39 REL Up to 36 release rates pCf/sec Floating Point 8E10.3 of the above nuclides for 1 to 6 stacks l 40 NUMST. Number of stacks (up to 6) None Integer 110 41 PERD 16 frequencies of wind None Fixed Point 16FS.3 i direction (counterclockwise, starting with wind toward north) I 42-48 UDCAT Reciprocal-averaged wind Meters /sec Fixed Point 16F5.2 speeds. One card for each I Pasquill atmospheric sta- } bility category fmm A 1, through G k IThe reciprocal wind speeds for each of 16 wind directions (numbered counterclockwise starting at 1 for the wind blewing toward due north) are averaged. The reciprocal of this average value for each wind direction is the reciprocal-averaged wind spe?d for that direction. Reciprocal-averaged wind speeds are less than true average values.
Table 5. Data Deck for Atmospheric Dispersion and Ground Deposition (contd) Card Parameter Parameter Numbers Name Identification Units Type Format 49-55 UDAV True average wind speeds Meters /sec Fixed Point 16F5.2 (as above for UDCAT) O 56 TA Average air temperature K Fixed Point F10.1 in area S U 57 TGE Vertical temperature K/ meter Fixed Point F10.4 gradient of air for Pasquill category E k 58 TGF Same as above, but for 'K/ meter Fixed Point F10.4 category F 3 I 59 TGG Same as above, but for 'K/ meter Fixed Point F10.4 category G 60 PH Physical height of each* Meters Fixed Point 6F10.1 stack (up to 6) 51 DIA Inside diameter of each Meters Fixed Point 6F10.1 stack (up to 6) JA conservative value (f.e., one producing a small pltne rise) of 0.0728 has been used in j AIR 30S computer runs. A less conservative value may be used if desired. kA conservative value or 0.1090 has been used in AIRDOS RUNS. See footnote j. IA conservative value of 0.1455 has been used in AIR 005 runs. See footnote h. l
Table 5. Data Deck for Atmospheric Dispersion and Ground Deposition (contd) Card Parameter Pa rameter Numbers Name Identifica tion Units Type Format 6h VEL Velocity of stack gases for Meters /sec Fixed Point 6F10.1 each stack (up to 6) 63 QH Heat release rate for Cal /sec Floating Point 6E10.2 each stack (up to 6) 64-79 FRAW Friction of time that each None Fixed Point 7F10.4 of the 7 Pasquill atmospheric stability categories (A-G) exists for each of the 16 wind directions (one card for each wind direction). The sum of g! values for each card is 1. 80 LIDA1 Average lid for area Meters Integer 'llo 81 SQSD Side of each grid of the Meters Fixed Point F10.1 400 square grid area 82 SQSD2 Side of each grid of a Meters Fixed Point F10.1 smaller 100 square grid area e i 9 g O O -e o I .... % a
i Table 5. Data Deck for Atmospheric Dispersion and Ground Deposition (contd) Card Parameter Parameter Numbers Name Identification Units Type Format 83-S'2 NSPTM0" Integers from 1 to 16 to None ' Integer 4012 l convert the 400 square grid centers to directions from the plant at the center' of the area 93 ALPH Blank card 94 NNUCS Number of nuclides None Integer IS 95-99 VG Gravitation fall velocity ) Meters /sec Fixed Point 8F10.3 for each nuclide (up to 36 D( "The following values listed as data card images must be used for NSPTMO: Card No. I 7777666655554444333377776666555544443333 2 7777766665544443333377777766655444333333 3 8877776665544433332288877776655443333222 4 8888877765543332222288888877655433222222 5 9988888876432222221199999999873211111111 6 999999991011151611: 1 1 1 1 1 9 910101010101011121415161616161616 1 1 l 7 10101010101011111213131415151616161616161010101010111111121313141515151616161616 l 8 10101011111111121213131414151515151616161010111111111212121313141414151515151616 l 9 11111111111112121213131414141515151515151111111111121212121313141414141515151515 10 11111111121212121313131314141414151515151111111112121212131313131414141415151515 h
Table 5. Data Deck for Atnospheric Dispersion and Ground Deposition (contd) Card Parameter Parameter Numbers Name Identification Units Type Format Deposition velocit Meters /sec Fixed Point 8F10.5 100-104 VD nuclide (up to 36)y for each 105-109 SC Scavenging coefficient for Sec"I Floating Point 8E10.3 each nuclide (up to 36) Day-I Floating Point 8E10.3 Radioactive decay (constantup to 36) 110-114 ANLAM for each nuclide 115 RR Rainfall rate Inches / year Fixed Point F10.2 M j e l l M
Table 6. Data Deck for Statistical Description of Area Parameter Parameter Card Identification Units Type Format Numbers Name l Number of beef cattle in each None Integer 1615 1-25 N0BCT of 400 grids 26-50 NOMCT Number of dairy cattle in each None Integer 1615 of 400 grids E$ 51-55 INTFC Flag to denote whether each Hone Intege' 8011 grid is primarily used for producing vegetable crops (1 for yes. O for no) 56-105 INTPA Human population in each of Hone Fixed point 8F10.1 400 grids None Integer 4012 106-115 INTWA Flag to denote whether each grid is a water area (1 for~ yes,Oforno) e e G Onee weeseewe-
i Table 7. Data Deck for Parameters Used to Estimate Inhalation Doses and Doses Resulting from Submersion in Water ) Card Parameter Parameter Numbers Name Identification Units Type Format a 3 1 8RTHRT Breathing rate of man em /hr Fixed point 3FIO.3 b DILFAC Dilution factor for swimming om C USEFAC Fraction of time spent None swinning aA value of 0.833E6 is the accepted value. bA value of 152.4 cm (5 ft) is used for the water depth of a home swimming pool for dilution of radionuclides depositing on the pool surface. The deeper water of a lake or municipal pool would result in greater dilution and smaller submersion doses. CA value of 0.01 has been used in AIRD05 computer runs. e t i G
- 4 % 4e w e nom m og,_
y e m e.. e.,. e.e ..e.. e. a
j Table 8. Data Deck for the Radionuclide-Independent Parameters Used for the Terrestrial Model I Parameter Parameter Recomended Card j Numbers' Name Identification Units Type "ormat Valuesa I i 1 A Soil surface required to Meters Fixed point 10F8.4 0.1E4 furnish food crops for one man 2 l ASUCG Pasture area per cow Meters 0.1ES 2 DSUBF Dry weight areal density of Kg/ meter 0.1E0 man's above-surface food W 2 DSUBG Dry weight areal grass Kg/m.er 0.15E0 density 1 SMALLD Depth of plow layer Cm 0.2E2 D1 Dietary correction factor hone 0.25E0 for above-surface food D2 Dietary correction factor None 0.1El for uptake from soil D3 Dietary correction factor None 0.1El for beef D4 Dietary correction factor None 0.1El for milk m __ J
1 Table 8. Data Deck for the Radionuclide-Independent Parameters Used for the Terrestrial Model (contd) Card Parameter Parameter Recommended Numbers Name Identification Units Type Fonmat Valuesa 2 KSUBB Rate of increase of steer kg/ day Fixed point '10F8.4 0.4E0 muscle mass MSUBB Muscle mass of steer at kg 0.2E3 slaughter 3 RHO Soil density 9/cm 0.14E1 S1 Fallout correction factor None 0.1ED gg for above-surface food 52 Fallout correction factor None 0.9E0 for soil surface below food $3 Fallout correction factor None 0.1El for pasture TAUBEF Fraction of beef herd None 0.381E-2 slaughtered per day TAUMLK Transfer rate of milk day'I 0.2El from udder TAUBM Beef consumption of man kg/ day 0.3E0 er k
Table 8. Data Deck for the Radionuclide-Independent Parameters Used for the Terrestrial Model (contd) Card Parameter Parameter Recoernended Numbers' Name Identification Units Type Fonnat Valuesa TAUCM Milk consumption of man liters / day 0.1El 3 TAUES Transfer rate--above-day *I Fixed point 10F8.4 0.495E-1 surface food to soil surface TAUGR Transfer rate--pasture day *I 0.495E-1 grass to pasture soll u TAUPD Transfer rate--soll pool day *I 0.1096E-3 ~ to soil sink TAURD Transfer rate--pasture day *I 0.1096E-3 soil to soil sink TAURG Transfer rate--pasture day *I 0.274E-4 soll to pasture grass TAUSP Transfer rate--soil day *I 0.6931E-3 surface to soil pool 0 Milk capacity of udder liters 0.55El V Vegetable food consump-kg/ day 0.25E0 tion of man w.. _. m. -. _ A A
Table 8. Data Deck for the Radionuclide-Independent Parameters Used for the Terrestrial Model (contd) Ca rd Parameter Parameter Reconnended Nunbers Name Identi fication Units Type Format values 8 VSUBC Grass consumption of cow kg/ day 0.1E2 VSUBH Hilk production of cow liters / day 0.11E2 4 PFIV Dose reduction factor for fixed ki I (vegetable food) none point F10.2 5 PFIC Dose reduction factor for fixed '"! (milk) none point F10.'e 6 PFIB Dose reduction factor for fixed I (beef) none. point F10.2 a Most of the recommended values are from reference 4 of this report, but some values have been l changed to reflect more recent data found in the literature. i I 5 { k ? i i m. m_ _,J t
l Table 9. Data Deck for Each Radionuclide Card Parameter Parameter Numbers Name Identif. cation Units ' Type Format l NUMORG Number of organs None Integer Il0,4E10.3 i LAMRR Radioactive decay constant day'I Floating point 3 CFSBA Dose conversion factor for rems-cm Floating point submer:, ton in air pC1-hr 3 CFSBW Dose conversion factor for rems-cm Floating point submersion in Water DCi-hr CFSUR Dose conversion factor for rems-cm_g Floating point u" surface exposure DC1 -h r. I 2 CSUBB" Concentration of element in ppm Floating point 8E10.3 ceat a CSUBP Concentration of element in ppm forage a CSUBS Concentration of element in ppm soil l FSUBM" Fraction of isotope ingested days / liter l by a cow and secreted i LAME' Turnover rate of stable iso-day'I I tope in man 3, 9 I a w,-. a s ..,.,. mme. ~.. -- " ~ ' - " " " " " " " ' ' ~ ~ ' " " " ' ' ~ ' ~
? Table 9. DataDeckforEachRadionuclide(contd) Card Parameter Paran.eter Numbers Name Identification Units Ty,ne Format I a CSUBBB Concentration of the element ppm in man a MSUBEQ Equilibrium mass of stable grams element in soil from surface to depth of pic4 layer a TAUEXC Excretion rate of stable day-I isotope from muscle of steer g a 3 LAMSUR Envirorrnental decay constant-- day-I Floating point 2E10.3 l surface m* i LAMH20 Environmental decay constant-- day-I # 8 water aReconenended values for these parameters for specific radionuclides have been complied from l literature sources oy John P. Witherspoon. ORNL Environmental Sciences Division. l. I c I i 9 O g e .m. a_m._mm hJ- - " " ^ ^-
- ' ^
^ - -
Table 10. Data Deck for Each Organ for Each Radionuclide Card Parameter Parameter Numbers Name Identification Units Type Format I NAMORG Name of organ None Alphameric A8,E12.3,E10.3 a b CFINHA Dose conversion factor rems /pci Floating point for inhalation b CFINGA Dose conversion factor rems /pci Floating point for ingestion ihe names of the organs must be left justified, i.e., started in column 1, and must be a i punched exactly as follows: TOT. BODY, for whole body, GI~ TRACT, BONE THYROID, LUNGS, MUSCLE, XIDNEYS, LIVER, SPLEEN. TESTES, OVARIES. Whole body'(TOT. BODY) must be included for each radio-nuclide, and it must always be the first organ deck. Any other organ decks can be randomly sequenced. binternal dose conversion factors for each reference organ for each radionuclide can be ob-tained by use of the INREM conputer code (reference 14 this report). I l l h, MNMdI#.h NMdl M UUf = UU
36 i for a large source tern. Any radionuclides for Rich such a detailed output listing is desired should be placed among the first three in the nuclide data listing. The options available in AIRDOS are specified on the first data card (Table 5, card 1), and they are defined in footnotes 1-6 in Table 5. i The options are irpcsed by the use of the integer 1 in the appropriate card colu,n;. the option is not imposed if the column is left blank. Option 2 can be selected only if option 1 is selected. Opt'on 3 (for center line values) should be used only with options 1 or 2. Only one option should be chosen from among options 4, 5, and 6 for plume rise estimates. If option 6 is selected, plume rise values for each of the Pasquill atmospheric stability categorias are specified by tne user on the second data card (Table 5, card 2). Plant boundary distances specified in Table E, card 3 are used only for estimating the highest individual doses in the area. Doses which may be received inside the plant area are not computed for this purpose. The paraneter 50SD2 (Table 5, card 82) is the length of the side of each grio of a scall 10 by 10 grid area surrounding the plant to cbtain high reso!ution for estirating the highest individual doses in the area, which are likely to be received near the plant. Whereas the side of each grid of tne large 20 by 20 square grid area (5050) may be 8000 meters in length, fer exarple, a realistic grid size for Sf!SD2 might be 600 rvters or less. e s /
37 ACK!DWLEDGMENTS Many members of the ORitt Environmental Sciences Division contributed in various ways to the developcent of AIRDOS. Stephen V. Kaye, Charles J. f Barton, Paul S. Rohwer, and John P. Witherspoon were particularly h'elpful in defining the objectives of the code with respect to applications in the United States Plowshare Program, the ORNL Cumulative Exposure Index (CUEX) Project, and environmental inpact statements. 'A part of a computer program written for the terrestrial model of R. S. Booth, S. V. Kaye., and.P. S. Rohwer was incorporated into AIRDCS. Subroutines used in AIRDOS for ccnputing plume depletion resulting from dry deposition of radionuclide particulates were written by D. E. Dunning, a University of Tennessee student participant during the swrner of 1973. His contributions are gratefully acknowledged. Parts of a general CUEX computer code written by J. Charles Garvin, an undergraduate student at Ohio Wesleyan University participating in the Great Lakes Colleges Association (GLCA) science semester (September-December 1972) at ORNL were incorporated into AIRDOS. Mr. Garvin's logical approach to computer programming of dose and dose commitment calculations proved invaluaole during developr:ent of AIRD05. Practical application of AIRDOS would not have been possible withovt the availability of realistic parameters for the radionuclides released from nuclear facilities. John P. Witherspoo1 compiled most of these para.neters through comprehensive literature tearches and data analysis. Larry R. McKay constructed data lists of internal int external dose conversion factors for radionuclides used in AIRD15 applications, and anal zed their parent-daughter relationships to ersure the validity of dose estimates. em ,.m,.w +
38 REFERENCES 1. R. E. Moore and C. J. Barton, Progress Report on Radiological Safety of Peaceful Uses of Nuclear Explosives: Prelininary Equations and Cocputer Techniques for Estimating and Controlling Tritium Doses from Nuclearly Stimulated Natural Gas, ORNL-TM-3755 (June 1972). 2. R. E. Moore and C. J. Barton, Dose Estimations for the Hypothetical Use of Nuclearly Stimulated Natu'ral Gas in the Cherokee Steam Electric Station. Denver, Colorado, ORNL-TM-4026 (October 1973). ~. S. V. Kaye et al., " Environmental Hazards Studies," Environ-ental Sciences Div. Annu. Progr. Rep. Sept. 30, 1973, OPAL-4935, p. 1. 4. R. S. Booth, S. V. Kaye, and P. S. Rohwer, "A Systems Analysis Methodology for Predicting' Dose to Man from a Radioactively Ct,ntami-nated Terrestrial Environment," Proceedings of the Third National Sympositn on Radioecology, May 10-12, 1971, Oak Ridge, Tennessee, D. J. Nelson, Ed., CONF-710501, pp. 877-893. 5. F. Pasquill, Meteorol. Mag. g. 1063(1961). 6. F. A. Gifford, Jr., "Use of Ro' tine Meteorological Ot;ervations for u Estimating Atmospheric Dispersion," Nuclear Safety 2(4),47(1961). 7. Air Resoui:es Atmospheric Turbulence and Diffusion Laboratory, National Oceanic and Atmospheric Administration, Oak Ridge. Tennessee. I 8. G. A. Briggs, P1tre Rise, AEC Critical Review Series, TID-2S075 (Noverter 1968). 9. A. F. Rupp, S. E. Beall, L. P. Bornwasser, and D. H. Johnson, Dilu-tion of Stack Gases in Cross Winds, USAEC Report AECD-1811(CE-1620), Clinton' Laboratories (1948). i O e e s.4 ee
,c,-
39 10. D. Bruce Turner, Workbook of Atmosoheric Dispersion Estimates, National Air Pollution Control Adninistration. Cincinnati, Ohio (Revised 1969). 11. D. H. Slade (ed.), l'eteorolooy and Atomic Energy--1968 U. S. Atomic Energy Cox,ission/ Division of Technical Infonnation (July 1968). 12. D. E. Dunning, Jr., flSF-ORNL Undergraduate Research Participant from the University of Tennessee, Sumer 1973. 13. D. K. Trubey and S. V. Kaye, The ETREM III Computer Code for Estimatinn External Radiation Doses to Populations from Environrental Releases. ORNL-Tft-4322 (December 1973). 14. W. D. Turner S. V. Kaye, and P. S. Rohwer, EXREM an'd INREM computer Codes for Estimating Radiation Doses to Populations from Construction of a Sea-Level Canal with fluclear Explosives, Union Carbide Corporation Report K-1752 (September 1968).
- 15. Bernd Kahn ei. al., U. S. Environmental Protection Agency, Office of Radiation Programs, National Environmental Research Center, Cincinnati, Ohio, supplied the measured concentrations.
- 16. Carl V. Gogolak', Comparison of Measured and Calculated Radiation Exposures from a Boiling Water Reactor Plume USAEC Report HASL-277 (Septe-ber 1973) and personally comunicated meteorological data for use in AIRD05.
17. J. Sedlet N. W. Golchert, and T. L. Duffy, Environmental Monitoring at Arconne fiational Laboratory: Annual Report for 1973, AHL-8078 (March 1974). 18. H. Moses and M. A. Bogner, Fifteen-Year Climatolooical Sumary, January'1,1950 - December 31, 1964 USAEC Report A'll-7084 (September 1967). O
APPENDIX Listing of the AIP,005 computer code i 1
l a g,g ga,,3gp-.-y y,x ..,;.._ _x g..,,,. _ m. a.._ a s,, _ _ \\ .z.: .--s e 4 5 m o PLANK PAGE e 4 f I f 4 i 9 1 0 I J . m. m m e.,,,,,,,,,
- r... o.: m.u. m w.....~
x---.-. i
42 C ( Alpaa5 CODI r f ***M're AC'IN I h,,2 0,2 0 ), P.CO N( 36,20,2 6 3, T A l ( JS,3, TG:){ b ), ta'e* " t. ll DI $ il 201 t, l'ITF 6F W 1 hdF.C T, T *.C FC Y DI'*F':Stts, A.NLAw( ut 'IMi % ION 'h)S tre l l t, ' t.3, F % T 4( 3 6,11,141,e,T o r,( 16.11,13 ),5"* 1'.4 n ' t. I'3*A13ct,Usavt 7.16 8,40C AT I T.16). A M J L Y (12 8, T 4W)$ 4 31 ),lo".. ( t.t. 2.t o$ P A( 3, l I, j ol, Pr. f t h ),504 T i d i,70% p ( s,l l,3 c t, $43( 3 ), $'4 J t 1
- l.'."' t e S. D"51*. 811, s c l e t t'S t J i 111,N SP T Md (7 0,.ll,h t h l PHl 6 ),3H(te l, ? ' t e.1,
- A i!Ht 6 8,93Ht 6 8,P t D D t 16),o F L( 6 3 $1, F 4 Ad ( T o t t.l VGI Us ), Val 3' l, Nr i t t.
a 2 d
- L t il n t it e l,': VI T ( Je,2n ), r. Cur.f t ? 8,2 J), l e4T rc l 71, ?o l, le 's i t ).'. * :1, ol 'I' a *.120,2al,t r t vo t 118,Ci l ' G A (111, Nog 6'/ t ie l, Naww2 ( 3hl,*r w it '
t, l'a d d l 3 bl, It.s !3t 3 5 ) a ir L a s NA = s.6 (113 Niur s t i 11,* A.wat t k,3,9 terne (5),NAque I s.3, 1*. A4L C1,N A nt L/,N A f:f C 3 ~ 6 At I NTv A,"SUR19,L A vo o,L Aw t, K iba4,15tJP i,l A4$tp el A vit?P .AIA NA9 5/'TCT.*C0Y','GI TCACT','4. INT 8, ' T HY* a l D ', ' t.s *I.N l ' 'tud LL t ',
- s t r.hk v % ','Livto
' ' S D L 5 t '. ',' TE%f r %
- ,**veatr% */
.eATA M ont / ' I s.uA L. ','$UBM AIW',89JJFAr,r 8,,gggstg,,,, e,g g u g *f e f w r An t S J, i T9 7 3 Lf'P T,Lde 7,tilST,10F T, t.3rdi,1 Out 17'/7 r l<w AT t ol lc t 4 5 Aa t S te l 4.11 Pd A,0<%, PRC, pRP.PRF, PMF, PNG 76e & *!wm al ( Fr 10.11 ELADISU,'Jb4)PLMN,PLkdePL61,Pl0E 554 *aM4AT(SF10.11 4 F Au t S C,9 JT 11NA ntC 1,NADFC 2 40T1 F ORM AT (lael D E AD(5 C,7199)(I r f 5T ( J1.J31,208 7 t 9.1 romMAT(s!IJB o c40 ( $J,1 CT I ( NA"f. tlc ( I l e l = 1,36 3 107 (JPM Af lat il 9 5 %U t 5J,136 8 t te r t t J e f t,Is t,361,Ja t, el 106 rOR*A1(stl'.JI J M A0(5C,1CSI'.tP'57 115 P'IRM AT (I A CI C Aat 53.103 8 t of E0ll t,1 = 1,161 103 e' OHM AT (loF). s i k C 40(>'Je t 011 t (tf uC Af t t C Af e rCle*181,168 elCAT*leIl loi F Gd* AT ilwF).21 d t Ap(20,1 Cli t tut'Avt IC AT.MCl eM0=1,1wl lCA'=1,FI 80A0850.11517A 11S F CM* AI (F 10 18 eEAJt50,J9)TGF J5ADISO,d9tTGF g D E ACt5 0,s9) TGG ' by 80RwAT(F10.4) S F A'J I S C 116 ) ( PH I t i e t = 1,61 3 C A D ( 5 0,1 16 8 tutAIII,I=t,61
- CAJt>C 116)(vrtfilef=1,63 11b r.lW" AT (6F 1tl.4 )
StActLO,1t3it)HIII,I*1,63
- 1 5 cR= AT (6s 10.2 8 u k AD IS C.10p l i t F R A'al l,"it'l I= 1,7 8,'9= l e lf i low t"kw AT ( F6 10.48
- (
I I i 1 i l
i i 43 R E Ao t S C,1150lL IDA L 1150 F ORM AT (I t al a C AG( 5C,5518 505D R F AD( 50,5 5115Q502 551 F OR M AT (F 1 C.11 D E AD(5 0,5 50)( th 5PTM0(1,J),Jul 20),1=1,203 550 F ORM AT ( 4012 8 N E A D(b O,11511 A L PH 1151 FORM AT( A41 R F A9 85 C,1 1T INNUC 5 117 F UNM AT (I sl R E A0( S C,116 ) ( VG ( I I,I = 1,36 ) 118 F O A M AT ( 8F 10. 31 R E AD(5 0,119 )( v0( ! ),1= 1,36 8 119 ' FORM AT (8 F 10.5) R E AD (5 C,120l ( SC I I I,I = l e 361 120 F ORM AT IBE 10.3 5 R E A0 ( 50. 3 45 7) ( A NL AM i l l e ls 1,36 3 3457 FORM Af idE 10.3) R E AD (5 0,1 b7 )RR 157 FORMAT (F10.21 Of! 2030 !=1,37 20 30 T D305( 13 = 0 0 0 9 301 J=1,11 00 9302 I =1,36 DOSON(J,Il=0 9302 nOSIN( Je t i=0 9301 CnNTINUE on 20J1 I=1,36 NOM A f f l=0 2031 IRANK(Il=1 01 8030 40=1,5 DO 8031 J =1,11 no dO3 2 ! =1,NNUC5 8032 00$P (M O,J,Il=0 8031 CONTINUE 8030 C ONTINUE no 8033 M0=1,5 6033 SMD(MDi=0 no 8034 Jal,11 8034 SMJtJi=0 DO u035 I =1,NNUC 5 8035 Smit tl =0 u t STG= 50R T( 2. *((10.* 50$Di a*2 3 3 L41=L10A1 I F(L ID A 1.EO.10000lL A l= ALPH WRITE (51,1152) 1152 F ORM AT (* 18, Tb6,8 0UT7UT OF AIRD05 8 3 i l Wo(TF(51,301) 301 FORMAT ('O'l WRITE (51,80508 8050 F ORM AT (' 'eT20,' OPTIONS $FLFCTeo- 'l I FILOP T.e d.C. AAn.LORT.FO. ClGO TO 8J54 WRITE (51 dO51) 8051 F ORM AT (
- O ',T30, ' PdrGR A F TEEPINATED AFTER Pk INTING D A910NJCLIDE FPN 1CEt4TdATIoN5'),
I FI LOR T.i o.OlGO TO 8055 WRITE (51,80523 l l k
44 M39/ F 0 0.u A T l ' ',T 30,'r Af 17NuCL IOf CONCCt4T a AT I* ' 5 AuS t 3 %T rn *14 utrrr't I t 'd AND 91 %T AraCf l ef.M FACILITV'l .I ts ', l e t t u% T.r a.O l Gr TO 8J54 r 81 Ti t sle dd)$3
- Ind s r. du At t o ', T gn,' uatil0NUCL !alF r.VJr.CNT9 Af l0NW L i ggs a amp ot.gwr fr.ts 11 LIAR VALuf5'l
'i 0 TO MJ)T nJs. 4PITf t ste n0908 nOS.. F f k tai t' l' e f s J '. An t r ygtg g $F C'1NC C'JT u si liers L l e.f, n A a r (t r trt. Ay I bif J V al JtT ' l FCST IFILuf1.iJ. JIGS TO 4061 .*
- I l f t bl e 80's d l 115.' 8 %* A f t ' *,T4J,'PitiMt al5F 1 % CfwPJf' al bsw n4 W A*e? Pt ll-s r c s:V M g r.,
1%
- w JA ' I..*4 5 ' I' 1,
'eas t mhI t r t L C v1.r 9.;11 J' T1 ::a r,' a J I f ! ( $ 1. 4'12'il co v. r J.e e a r t ' ', t sa,'rtowr u t %r i s r.ssgp.s t r s, r ien eso 4, %3 ;.w _T ypr r e t <.s g :.. I' l "1 TC 1733 110L2 s.8 t il l s t,10 cJ) 40s.1 - 84* A T l ' ',T33,85PFCirIC FL u w' 415r usan r,a r A e Age %TemILITV re 1555 (" L T !- R S I ' I 44175851,1478 vka,PvH,PEC,P60,#4i,PRF, Par. T4/ racwAll' ',T63,'A',F10.1,' 4',F 1. l e ' C','11.1,e n', 1-),1, J l' C'er10.1,* 5 8, t 11.1,' .;,, F l i.11 30 t.1 *JNTINI,C ed l T C t *>l, 3951 Pl
- N,P LH W, PL 8 %, Pt di e.5 5 F 1o AT l's ',T zJ,8 0L ANT ficu Aca pi r 5 (*4 LT 86 %l- *c.1 t f H',8-10. l,'
Wi%f', g r g o. g, ' SGUTH',F10.1,' 1AST',F13.13 delfCIS1,301) d a t f Fl 51, su21 Ja? F '. <
- 2. T l ' ', f 4'J,' uF TF CR CLOGIC AL A' D J L A'J T It r n war t ';* %qoSilf5 T'o ide.14A*---
- l d81Tft51.301) edITCt51,30ll a
- l T C t 51,14 $ 1Nuq%T 14'4 F7d4 Aft' ', T40, ' hum 6 f k. CF '.T20K5 14 THf PLANT 8,Y115,11ni dtTCiti,30ulTA a
30r 4 <M AT l'J ', T 40,' AVF6 AGr 4 tw TF 4PF
- tfijk8 ( O' G <l',7115,r tr.13 dd! T L I)1, $40) 440 d ORM AT l'., T40, ' Ay t r AGE V Fh T ! r. AL T E MarPA f uw r GJ aul Ft'T "r resF Al4'l d = I T C I S 1,1411 TG C 441 F ri<w Af t e e T4J,*1:a Sti4tLITY CLA%5 5 (PES */%ctr 51e Tits. cts.48
- EITFt51,$4/l 14 )
614M A T l' J ', T 40, ' f V LF A GF VrC TICAl. TC4PCP ATUdr Gwa it H.T as T48 stool , i 44 I T il 51,34 3 3 TGf 343 8.lP 4 AT l ' ', T 40,
- I'i ST ARIL IT Y CL AS$ F InFG w/Mrtrogg.,T11$,Eli.4%
W9tTF($1,J441 3,4 8.'d 4 AT l' J ',140, 8 4 VF E AGr ytu TIC AL TS wv5.pATudE Gaa,g r.aT mr Tur Alse l d e li t t 51, 34 3 l TGG 14L P**ATl'
- , T 4 0, ' t *4 S T AP lL I TY CL A%% 1 (D5G w /MFTEdS l',T 118. c 10.48 dd!T(851,3J18 1
edlTCtble1018 < 1 t it ( 51, J1 H1 314 e 36
- A f t ' I ',4 40, ' $ f AL k INFC44Afl0N- 'I JolTFt 51,4019 d41TCIS1,J198 9
e
- == =. em a n am e...
d
9 45 319 F.19.M A f t 'O ', T 39, 8 5 7 A C K hU M BE P ' l WolTEt51,301) W 81 T E t 51, 32 0) 320 F e.4 4 A f t ' ', T 7 0, 81 ',T 8 0, '2 ', T9 0, '1',7100, ' 4',T 110, 8 5 *,7123, ' 6' l WRITE (51,301) wRITEt 51. 3 211 t P H i l l, I = 1, N LM 3f l 321 F 0EM Af te ',T20,'NEIGHT (METER 538,T62,6F10.43 walTEt51,4608 tolaiII,1=1,huMST) 460 F 00M Af t'O' e T20,'DI AME TE R (MFTE*51',762.6F10 41 W R I T E ( 51,4618 t VF L i l l,1 = 1, Ntl45T ) 461 FORM AT ('0 ', T 20,'EFF LUFNT VE LnCITY ( N EtfR S / 5 F C I ', T S 2,6 F 10. 4 3 WulTEt51,3278t0 Hill,1=1,NUMST) 327 r CRM AT l'u ', T20,'k AT E OF HEA T FMI5510?e (CAL /5rg)qq),,T62,5E10.21 WRITEt 51,1153) 1153 FOR"nf t'18,T26,'Fo[00f t CY Or ATMOSPHEMIC ST AHILITY CL A55rs Fne rtC IN DIkECTION'l WRITEt51,301) WoITE(51,2050) 2 05 0 F.1R* Af t ' 0 ', T 7,' 5 E tt ok ', T4 0, 'F R ACT I.1N OF TIMF IN FaCH STA3tLITY CL A 155') W91TEtS1,2051) 2 051 F ORM AT ( 8 0 ', T 2 5,8 A ',T 3 7,' P ', T4 9, ' C ', T61,8 0 8, T 73,' C ',T 9 5,' r ', T 9 7,
- r.'
il W RI T E t 51, 301 ) D O 2 05 4 M 0= 1,16 WRITEt 51,205 31MO, (F R AWil Mu l.1 =1,7) 2053 FOP.M AT (' 8, T 7,14, T 2 3, F 6.4, T 35,8 6. 4,T 4 7, F6 4,T59,8 6.4,T 71.F 6.4, IT 93, F6.4, T95,F6.4 8 2054 CasTINUE nalTEt51,350lLA1 350 F OoM ai t ' 18, T 2J, ' HEIGHT 08 L10 ',16.1x,'METFR5'l i w e l T E t 51,15 81R P 158 F CAM AT (8 0', T20,'R AINF ALL R ATF (INCHF5/YE ARI ',F13.21 1 WR IT E t 51,1400 3 1400 FORF AT [
- 1',120,'P E L E ASE R ATF S FOR R ADIONUCLI9F5'l WolTE(51,1401) 1401 F ORM AT (' O *,T45,' 5 TAC K',T61,'NUCL10E ',T80,8 RELE ASF RATE *)
WP I T Et $1,14021 1402 FORMait' ', T 8 2, ' I PC I / SE C I ' l welTEt51,3018 9 0 140 4 J = 1, NUM ST 00 140 5 ! = 1, N NUC S WolTEl 51,1406)J,NAMNUCill,REL(J,Il j 140a F ORM AT (
- 8, T 45, I 2, T 6 3, A 8, T80, F 10.31 14C5 CONTINLE 1404 C ONT INUE W a l T E( *1. JS1) 351 FCaM AT I'1',755,'OEPO51 TION P AR AME TE R5'I WRITE (51,352)
I 352 F ORM AT ('0 ', T 20, 'NUC LinE ', T40,'ORAVI T ATION AL', T60, ' 0F Pns ti le'4 VFLCC 11 TV',T 85, '5C AVE NGING' l W RI T E t 51. 3 53 9 I 353 F OR" AT (' ', T40,' F AL L VFLOCITV 8,T85,' CCFF FIC IENT'l W81TEl51,3548 354 F ORM AT ( * ',T41, ' t ME T F n 5 /5 EC I ', T 63, ' ( M ET ER 5/ SE C l', T 8 7, ' t 115 Ecl ' 1 J WRITEt51,301) DO 357 la 1,NNUC5 i W R I T E t $1, 356 t NA MNUC il l, VG (l l, VD( ! ),5C ( l l i I s j J
7 46 35d Sup*ATl' ' e T2 t e A &, T 3 7, F 10.3, T61, F 1J.5,T AS,F 10.1) 351 f 9*,T iteUE .v e I T F t >1, Juu l 36c r.to.t AT i e g e,7 36. ' te F OUF %C I F5 OF WI's0 ntFICTICNS Ayn 6rr quenras.evre 11.F.E D a lN1 SPfEH5'l d2ITEt St 30tl adITEE51,351) p. F r..<1 A T l 'O ', T 21. 8 h l bo rew t P0', 7 5 0, ' F R:.Ju r N Cv ', T.4 7, ' > t
- 0 % r e s e, s
- r-t r ACH S T A A IL I TY CLA55'l as t T F l 51,16tel too rougATl'
',T94 't"ITE85/5ECI'l aLITEt 51,3678 107 r ouw AT (' 3 8, T 7 3, s a.. T 81, ' 3 ', T 9 0,
- r ', T 9 5, e pe, T l 3 4,* r e, t g g s,, e..,, g e g,
l'G'l molTFt51 JJ11 10 308 I= le t o .R I T F t 51. 3o 3ll P8 8 0 t I I,8Jaraf t t, I I,u1C Af t 2,I I,'84r A f t ) II. Lunr Af t 4.l letl3C Af t Se l l,UpC Af tnell,H7CATl7,tl 303 FCmMAft' *, T 2),12 T S 7,F 5. 3,7 7.t e r b.2, T T4,F S. 7,Tdd r 's.2,Tc 7,8 s. ?, IT106.F5.2.T11,,FS.2,7122,F5.23 3ud C
- tte T IN UE du!TFt51,365) 305 F OPM Af t 'J ', T 2J.
- isi tm OI RF C TI ON'. Ap t NUMhf Rr:: L.pp4T F F rt tr< a g st.r iflNG AT 1 FCR uur Nf.GTH'l malTEt51,202)
I 2J2 F okM ai t ' l ', T io. ' FdF C9F ACi rs tir w t N1 r ta rt.fl 7'.S AN'> Tiur r.vresr.',e e LNC SPF(Oge3 dEITFt 51.3011 do(TEIble3013 detTEt 51,3661 wolTEt51,1678 wo!TEt31,1Cll "? 200 laleib wwlTFt 51,20 7 31. PE 8D t i l Un Avi t e t t,9 t Avt 2,I l ots) Avile i l.ut' Av t 4, t t, tonavis.Is,00Avto,11,UJAV(7,Il 267 r::wM a t t ' *, T 23,12 T 5 2. F 5. 3, T 71,r t./,' T9,6 5. 2,7* 9. F 5.2,79 7, r s. 2, I f t 'Jb e F 's.2 e f t 14, F 5. 2e T 122, r5.2 8 i !OL i n'.T I',uE 4dITEtti,3651 .e1I T e t S t,11541 I I b4 F.Ww Af t ' t ', T,6, ' E 5 f l 44 TFH # AOI ONt CL tot C*i'.r c N T 4 AT I oH5 ' l ( wd!TEt51,6513 j .51 r lw3 4 T l' ', T 23 ' A ?F A', T43,"aur.L irr',' 70,' Al v C l':*. 8 T o at t 1* *,' t +1, l'5dauS4 A F P.J 51 f l o's R & T E e 3 maltrt51 e52) .57 619MATl' *, T 75, ' t er t /CC l *,T t 01,' t PC I / 500A ar rw.sF C I' s I f i L CR T.F C.ulGU fr. 131C da l T E t S t. till t 1311 i'IN Y. AT l' ',713, ' w t Nn T cwa sn', T 2 5, 'q t % T A*aC F ' l witTEtSt 131tl 1312 5.q qM at t'
- , T25 ' IME TF R%)' l 5
delTEt51,joll
- f. ' l Td 1149 IJto mulTEtSt.643) 651 rnd* Aft * ',Tt6,'CULUMN',T26,'40W'l welTFt 51,3011 1140 C.itaitt,UE NtN.)=29 I
s 8 i J
] c_ 47 i F( LtR T.E J.18 ht f4D=16 LRUN=0 0 9 5 52 NU = 1. f 4 F.*4 0 00 523 42=1.20 IFILORT.FQ.11GO Til 1313 GO TC 10JO 30 53 9 0 30 7 0 t,C= 1,10 T1 3071 Nk=1,10 L RUN=1 I F I N O. GT. 5. AN U. t.R.GT. 51 X0= NO-5 IFth0.GT.S.ANJ.NR.GT.51Yu=NR-5 I F I NC.L E. 5. ANO.
- 4.GT. 51 XO =NO-6 I F i t40.L E. 5. AND. hR.GT.51 Yu= AR-5 I F I NO. LE. S. A tad. f.k.t E. 5 3 X0=NO-6 I F l'4 0. L E. 5. A*40.t.R.t F. 5 ) YO=t4R-6 I F i P.O. GT. 5. AN D. few. L F. 5 3 XQ= Nfr-5 I F I N U.GT. 5. AN D. NE.L F. 51 YastiP-0 X = S adT ( t A B5 t X1* 5053 21
.5
- S05021*
- 2 + t A H5( Yr* %1%971
.5* 51577 f **? l 90K=N0*5 '4 4 % = Np + 5 4 0=N SP TM1( AOK,hkKl GO TO 3001 3000 I F t f4'J.GT.10. ANO.No.G T.10 0 Kit =hu-10 I F ( N O.GT.10. AND.*.R. GT.10 l Yn=NR-10 I F 4 NC.LE. IJ. ArdD.h.GT.101 Xn= tnt-11 I F t t40.LE.1J. Afs3.NR.GT.10l YO= NR-10 1 F i *l.J. Lt.19. AND. NR. Lt.10) ED= NO-11 i r t Nil.L E.13. A fJ0.P:w.t E.101 YO= N R-11 I FINU. GT.10. AreD.NR.LF.10l zG= NO-10 I F I NC. GT.10. ANO.tio.L E.10l yn=N R-11 t= 5 JRT I( A B5 t x0* 5G5DI .5*5 05Dl * *7+ t A85 t V0*5C571.5* 5050l *
- 71 4C=45P T MS thC.NR )
3001 P ra w=P E90 t *G) 1313 totL94T.EU.0lGO TP 1156 P ERw=P EA Dif49) 40=NO x=IDISTit4pl 1156 F'A=FdAWI1,101 F R8= FR Awt 2,MO) 1 FQC=FDAwt3,998 l F R0= FW awl 4 M9 8 FRE=FWAwtS,*J) PRF=FRAw(c,Wdi F R G= F R A d t 7, *.ill 00 7050 I=1,NNUCS T G9t t l =0 7050 TAllIl=0 M3 1159 J=1,NdMST U3=U0C AT( 1,MO) l U=UDAV(1,F3) F F2= t t.16 7-U/ 6.-l. /UOl /11.167-II/e.-1. /lf) r F3 = U/ 5. .2 *F F 2/ 3.-( F F2*U l/s. F F l = 1.-FF 2-F F 3 IFIFDA.E;.Olu=1.C 4.1HI J i = ( 1.6
- t t 1. Te( 1.F-51 *1d t J I I * *.). 3 J31
- t t 10.
- PH t J l l *
- 1. 6 vel l / l n 0H t J l s t 1.6* ( ( 3. 7* ( 1. F-51 *GHI J i l * *1. 3 J3 8 8 t X*
- 0.656 ) l /U I F t X.G T.t 10.* PHI Jil lHHIJi = A DHI J i I F t X.L 1.810.* pH I J i l 10H t Ji = ROH I J i e
~ i
7 l 1 48 1 F t L CN T.F C.110H t J im i t.5*V EL (J i *DI A( J i l/ U I rgL or T.C u.ilant Ji=Po A ~ u (J i =PH tJ i *uM(J I L l!)l= L 10 A 1 I4F=tLIDl/loJi*1
- (ApalAF A =.6 29 4 C=.2003 IFtK.LE. 100003A=.266 I F ( x.L F. l O0 001C = 1. d41 I F ( X.L E.1000 l A=. 575 7 IF(x.Lt.1000lC=J.924 0=1.00 r=S.02 l*J T Ju t,
! = 1, N AUC S I r t l.E O. L.:lR.J.GT.llG0 in 22 3 15N=l-1 91 221 M=1,IEN '4DT1=0 j Nuf2=0 t r( VGi l l. F J.VGI MI. AND.VDi ll.EO.V914 8 3 Ni1T 1=1 l IF(SCIII.FO.5C(MilNOT2=1 I r g g xp g.g ( Apat AHi ll* qisTGl /( 9 64E4*?. l li.L1.9.9 41N0'2=.0 I r (N.li 1.E *J. l. t.N o.NOT 2.6 Q. Il M14 A t i l = M t r (N911.t 1.1. AhC. NUT 2.r o.18Gn TG 730J /71 C 9N i t'.UF 12." C ONT l:40E ( FI FR A.F.J.0lGJ TF 700C C ALL A L F ) tit D eF VGill,U ell Dt e xLIOnl I Fi x.L F.xLIDolGn TO 5030 1 1RE OL A= EX P(-( (x-Et t 00l *(V Di l l /(L lu t*Ulll i l CALL cxat xL t H'Je t4 t J),VUt il,Ueun VGil l,GFDril 5 0D=,CR EDL d* 0F DD 40 TC SJ31 5030 C ALL QXAtx,HfJI.VD(II,U,uD,VG(II,F001 5 031 w F.1=RIL t Je l l *F 09*E XP (-( SCtl le x/Ull a t * (F F l* E xP (-( t ANL Au t t l *x l/ (8.64F 4* 1. I l l
- F F 2* E XP I-I t a bl A4 ( I I *x t / t d.6 2f 4*yll )*F F)*t XP(-II ANL AWt Ilexl/(8.64E 4*o.Illi C pan =1RE )/ t 6.28 32* t ( x** Al /Cl*t t X**Dl/rl euql T V AL si) 40 6CJO (A=1,lAF 2A=(IA-18*100 l
l 16( t.5
- t t t ( t v6( l l* xl /Ul *Z a*H t Jll / t t K* *Dl / r t l *
- 2 t l.57.531t Al =0 T9 Foi l
t r i t.5* ( t li t Vbt ll
- xl /Ul *l A *H(J il/ (( x* *D l/Fi l** 2 31.GT.50137 I F ( ( ( VGl l l e x l /U ).Gr.H( J l l e( J i = ( VG( l l
- xl /is V AL = CH An* (E x P (.5* (I I I IVG (I I* x l/Ul + 2 4-HI J il / l i x** 01/F il*
- 7 31*
l' Ap f .5*( t t t ( VGt f l* xl /tfl* 2 A*HI Jll /(( x**Dl/F ll*
- 2111 1
701 I F( I A.t J.19 9x =v A L i fvAL= VAL *TVAL j 6003 C ON T !'4 0E a Vf u T=TVAL /k! AF l l Irgg.tr.gtlpal l tat =3x IF(K.LL.KLlunt 19U=0 I F ( K.G T.X L i ntil 1Af=JwEu/t2.5066*(ix**Al/C1*llD1*0nl Irix.bf.KLIDOI 4 3
m 49 140s\\T I F t A.GT.X LIDul g IVFwT=0 i'O 260 IF u = 1,12 i A la I ER i t i t T A= EI
- C.02454 Y-A* T ANiiHE Y Al 260 A MUL il led is t XP(
.5* ( (Y/ t t X*
- Al /Cl l * *21)
Tota =1.0 i ")n 261 Jt 6t = 1,12 i tol T CT A =4 WUL f t JE 0l + tnt A r a4 Cal 01 A f 9. I F I L CS T.E U.11 F P AC= 1. 0 s $AF=FuAC*PEkn*4 Vr,p y g ggp eyt:(f l/ 4. q ue t S A F *D ul / 4. A T= I S A F
- A l' I / 4.
1 T G')( Il =Vn t t 1
- AT *FR A * $Cl ll
- LID 1*Vr RT *F O A+$C( II*L l'11* RU*S R A *Tr# ( I l T Al t ll =AT *F R A+T Al t l l 907/ r.ONT INUF -
l 7000 CONT lh0E 1157 IF(Fka.FO.OlGD T7 71 U Da dCC ATI 2.M01 o=U3AV(?,*Ql 1 F F 2= t 1.16 7-U /6. -l. /Un l / ( 1.167-d/ 6.- l. /0 9 I l F F 3 =U/ 5. .2* F F2 / 5.-t FF 2 *u l /5. F F la 1.-FF 2-F F 3 A CHI Ji = t 1.6
- t ( 3. 7 s t 1.r.51
- 4H t J ll * *1. 3 331 * (( 10. *DH( J l l ** ft.M 611/'t
- CHIJimt1.uo t t 3. 7
- t 1.F-SI *QH t J il * *'). 333 8 *( X* *fl.655 t i/tl iFtx.GT.t10.WHiJllIDH(Ji=ADM(J)
I F t X.L F.E 19.*PH I Ji l l DHI Ji =Bal'( J I I F IL U4 T.E U. ll nes t J i = ( 1.5* Vf t t J i
- n t 48 J i l /0 1FtLCuT.EC.130N(Ji=P M f
- 4 ( J i =P HI J l
- 991 J I
/ L ID1=L IDA 1 7 I At = (L 101/1J0l+ 1 p I AF al AF r J a =.4303 [ I C=.2946 I F( X.L E.10000 3 A=. d4 9 5 I F t X.L F.100001C = 2.213 L I F( A.L E.1J001 A=.r 906 i s I F t X.L C.10001 C= 6. 205 }- l n=1.CO I l F = 9. 35 l DC 1001 I =1,WIC 5 I FINOM 4t i l.GT.O lGO T G 7301 C ALL AL F O Ci d e F,'. Gt I l eII, LI Ole X L I O"3 I F t X.L t.4L l 30 lGU TO 5040 Q REDLR=F x P(-( (X-XLI D0l *(Vnt I I/( L int *U ll l l { i l C ALL Q X8( X1 IDU.H t Ji,V9 t f i ell,UO,VGil 1,GF005 ,g l I r 99 04 EOL R* QFDD in TO 5041 h 5041) C ALL OX4( X,t;I(J),V0t I I,U,UU,VGill,F006 3 5041 ~4 PE0 =RE Lt J,I l *F CD*F XP t-I SC(l l* X/Ull j le (F F l* EXe t-( { ANL A8( ll*X l/ IS.64F 4* 1. Il l+FF 2,r gp g.( ( ANL A 4( g l ey l/ g 3.6 f 16 4*U ll l*F F 3* E XP (-t ( ANL Ah! Il
- Xl / l S.64F 4* 6.l f li g
C fad =Jkko / t 6. 2832
- t i K** Al /Cl *(( X**Dl/ Fl *UDI i:
?! l l
l 50 TVALs0 34 6C01 lastelAF 14=tlA-11alud I F( t.5 e ( t (( (ve,t i l
- XI /Ul *Z A *H( J l l /(( t* so l/ Fll **2 3 8.f.T.50l # %1 s1 I F ( t.5 *( t ((( VG( I I* A l /Ul
- Z A*H( J ll /(( X* *D l/F i n *
- 2 tl.bt.5ct"0 7" F" I Fi l l yCt l l* L l/01.C.F.HI J s l Hl Ji s (V
- t t l* Kl /lj V AL e CH AD* (f KPI
.5* ( ( ( ( ( vr. t l l* Xi tall
- Z4- { J il/( t u'* p l/F l ie* p t l
- IF *D(.5*( II(IvGi ll*K l/Ul* 2 A*Ht Jil /t t A**ul/F il**2lli 70? IFila.F).1)PasvAL Tvalsv4L+tv4L 6 301 r UNIINUE -
vr'T=Tv3L/wl** l ' t X.L (.X L 10 *') l' f adX I F ( X.L t.s t!" il tause IF(A.*.T.Att'"Ji 181=wur a/ (,.. 5 3oue t t se = Al /C lella1*isn t t il A.F.T.a L l918 lsus01 IFIA.GT.AllOli tytpT=0 ile 262 lid =1,12 Stelio T FF T As A l
- J.024';4 vsXe TAN ( T wr f A l
.o? A wot ti l Ea l=F RP( .S* t t Y/( t *** Al /Cl l* *211 TOTA =1.0 nr 263 J68=1.12 lb) I'If a sA PUL f (JERl
- TOT A F eaC = T r13 /9 16 ( L ?)S t.t J.11Fc AC= 1.0
- gF s F& AC * >F = 6
- *4.
v6k Tet sar avrdia/4 Js t SA F *, Ji /4. 4T=($4Fe't3/4. T.b t il uv t t I I *3T *r a9 9 %Ci ll et.101*vF sT *F Re*SCt l l*L illemper ce *?r,qtl i f a t t il adi'FRd *f Al t l i
- 0 7.
.~.*ih T IN UC 7041 ".1NitNUE 11 I F t F RC.E J.O lGr) in 22 ilDsOSC Af( ),M33 9 suJ AV t 3. "Ol F>tell.lLT-U/6.-l./U91/tt.167-U/6.-l./UI s S j ou/ 5 .2,F F 2/ 5.-(F F 2*tal/5. retst.-FF2-FF3 A DH( J i m f l.o' t ( 3. F
- t 1.F.-S l
- 4H I J i l *
- J. 3 331 * ( ( 10.
- PH( J l l *
- 0. 6',ol l / e 14 'eH t J l s t 1.6* t t 3. 7*I I. F-51 *QH t Jl l * *0.133 8 * ( X*
- 1.%s6 8 8 / LI I F t X.G T.t 10.*PH t Jil LDH t Jl s A r.s( J i I F t X.L t.t 10.* PH t J il l CH t J t e ADH( J I I F (L os T.F O.13 0HI J ie( 1.5* VEL (J i +DI A( Ji t / U f r t L C37.e J.180HI Jle PRC te (J l sP P( J l *DHt J I t lut=L IO11 I AF = (L IJ1/1031+ 1
~
- IAFelAF
.. s. t. n
- re.39th 1
l l [ I I L
51 I F ( x.L E.100 001 A =,454 I F( X.L E.10000lC = 3.266 ) IFix.LE.!C003A=.9767 I F ( x.L E.1000lC= 7.62 3 n s. 5 52 4 F =. 3 32 I F ( X.L E.1000010 =. 43 3 I F t x.L E.100001F = 4.4 I F I X.L E.1000 lD=.9 54 IF(X.LE.LOOOlF=10.015 00 7002 Is!.NNUCS I F(HUM A( I I.bT.OlGO TO 7902 CALL A L F D DI D, F, V G I I I,U, LI D 1, N LI D01 IF(A.Lt.ALIDolGu TO 5050 -) D60LH= E K P (-( ( X-xlI DO l * (V C t l l / (I IDi*U l l l l r ALL c xl( xt IL.3 H( J),V Di l l eU,Un. Vr.(I ),4r D01 F OD = e)R FOL R *.JF 90 GO TO 50s1 5050 C AL L Q XC( X,H(J),'/D( II.U.UO VGII I.FD38 5051 ONEu=R EL( J. Il *F DDepxp(.($cg ile x/gil 1 * (F F l' E XP (-( ( ANL A4( II *x t / (8.6*c481. l l l+ FF 2* F x P(-t ( ANL A*(l l *X 1/ (3.$ 28 **U ll l* F F )* F XP t-( ( A'4L AM( ll ex l / ( 3.64F 4*6. ll l i C FAJ=0 REs / ( 6. 28 32
- l i x*
- A l /C l * ( ( x e *01/ F l *UU l TVAL30 n<e 6002 last,IAF l as ( I A-L l *100 I r t t.5 *(( (( ( VC( I I
- xl /Ul +2 A+w (Jl l / (( xe *D l/Fi l**2il.GT.50lV AL=0 I c i t.5* E t (I t Vat t l ex t /ut *Z AeHt J il/(( X* *D l/Fi l*
- 218.GT.50139 TD F03 I F ( ( (VGI I I* x l/U I.Gr.H t J ll H t J a = ( VG( I I *XI /O V AL =CH AO* (e xP(
.5* (( ( ((VG (I le xt /ul* 2A-H(J ll/((X**Dl/F i l** Sil+ 16 xP (. L* ( (( ( ( VGi l l* x l /U l* ZA*H( J l l /l ( Ke* Ql /F i l * *2118 703 I Fi l A.EO.13 6x=V AL T VAL =V AL* TV AL 60C7 C ONT INLE - VF%f =TVAL /kI AF I F( A.L E.x LI U9) ICT=PX IF(X.Lt.xtlpOI LRusu IF(x.GT.KLinUI 1 T= U RE D/ ( 4. 5166 * ( ( x*
- A l /C l *L ID 1*44 3 IF(X.GT.xLIn01 194= C T I Fl x.G T.x LIPUI IV rg r =0 0l8 264 IER=1,12 Al=IED T FE T A= Al* 0.02454 y =x
- I AN( THE T A) 2c4 A MUL T( IER l =EXP(
.5* ((Y/(( X** Al /Cl l* *2 3 3 TOTA =1.0 J.) 265 JF#=1,12 l 265 T OT A = AMUL f t JERl +tCT A l FRAC =TCTA/9 I FI L CS T.C O.11FR AC=1. 0 $ 4F = FR AC
- PE Rws4.
VFPT=($AFeVERTl/4. JustSAF*qul/4. r I i i
52 ClatSAF*CTl/4. 7 0)( 1 t = Va (I I
- CT *FR C + 5C( Il
- L ID 1* VF RT *F RC+ % Ci ll* LIJ1* PU*Fe* *TGi(I l TAl(ta=CT*FRC*TAltll 9076 C ONT INUE 7002 rqNT INUE 22 IFIFRD.EO.0lGH TO 23 U O= 0 DC A f t 4 e MO )
UnunAVt4,Mul F F 2 = ( 1.16 7 *J / 6. -l. /UD l / ( 1.16 7-U/6.-l. /U I c F 3= U/ 5..2*F F2/ 5.-t F F 2*U l/5. F F l= 1.-F F P-F F 3 4 0Ht J a = ( 1.6* ( ( 3. 7* t 1.E-S l
- 0H ( J ll * *1.3 331 * (( 10.* PHI J i l**0. 66611/d 8 3H t J i = t 1.6 * ( ( 3. 7*( 1.E-S l
- cH IJ i l * *3.3 331 *( X*
- 0.es s i l/u I F ( X.b i. ( 10.
- PH ( J l l l DH t Jl = ADH( J )
I r( x.L t. ( 10.
- PH I J l l l DHl J i u llDH t J )
( F t L ON T.t Q.'ll D'i t J i = ( 1. 5*Vf t (J i*DI AI Ji l/ U I F I L DO T.t o.1)DH t Ji = PRD H(Ji=PF(Ja+DH(J) L ID1=L IDA1 14F=(L101/100l*1 4(AF=IAF a =.6 342 C =.6 th e IFIX.LE.10003lA=.807 18( x.L E.10000 lC = S.261 I F I X.L E.1000 l A=.96 I F ( X.L E.100 0l C= 10. 0 0=.5251 F=.9) I FI X.L E.100001D=. 5099 I F t X.L E.1000J IF =.81 I F t X.L E.3 00010=.6Ti5 I F ( X.L F.3 000l F= 2.SS IrtX.LF.10001D=.8C61 I F t K.L t.1030 lF = T.4d DO 100 3 l
- 1 e N NUC S I F(NOM At t ).GT.0 lGO in 7003 C ALL ALFOCI D.F VG( l l eu,LI DI, XL I DOI IFix.LF.ALIDolGO Tr. 5060 2 NE OLA=E X P(-( t X-xt i nu t
- tV Ci ll /( L int *Ullli C aLL 0xJt xLlud,Ht J),Vul t i,U.UD.VGIII.QFDDI r03=J4EDLR*QFG3
~.D TO $021 506.J C ALL J Xoi x.H I J I,VD( I I.U.Une vt.(I I. F19) 5 301 SME'J=4tti Je l l *F DD*F Xp(-(S C t l l*K/Hil 1
- t r e te r gp t.( ( Avt AM( I I
- X II (8. 64F4* 1. I l l *FF 2* F XP(-( I A'4L A4 ( [ l
- X ? /( 5 6
/r 4=O ll l*8 F)*l 40t-(( ANL aMt fl exl/( A.$4E4=6.lll) C F A.)=0 dr.'/( 6. 23 32* ( t X*
- Al /C l * ( ( X* *01/Fl *001 TVALs0 1
11 0003 IA=1,1&F ZAslla-ll*100 15 ( i.L *( t f ((VGI II *X I /Ul *Z A*Ht Jil /( f x**D l/F il** 2il.GT.50lV AL=0 l I r g t.s *(( (( t VG( g l ox t /Ul *Z A+Ht J il / (( X* *D l/F i l ** 219.GT.50139 in F14 I F ( ( ( VGl i l
- x t /u l.r.F.H t J i l H t J l = t VG( t l
- X) /U V al = CHaus t F X P(
.5* (( ( ( (VG ( f l* x l /Ul+ Z A-HIJ il / (( X**n l /F il*
- 211 +
1r xp g.,Se g g g g (yng I I* Xl/Ul* ZA*Ht Jil /((X**Dl/F il**2ll) 704 IF(IA.f0,tlRX= VAL' T V AL =V aL *siv 4L l s l l e G. n
53 60C3 CONT INUC VERT =TVAL/maa. I FI X.L E.XLIDO ) 1DT=BX I F(X.L E.X LI DDI 18 U= 0 I F ( X.G T.X L I DO S 1D T= 0 R6 0/ ( 2. 5 066 * ( ( X*
- A l /C l*L I D1 *UD I I F( X.GT.X LIDOI 19U=0T IF(X.GT.rLIDDI I V ER T=0 00 266 IEN=1,12 AI=IER THETA =Al*0.02454 Y=X* TAN (THETA) 206 AMUL Yt IE4 8=E XP(
.5* ((Y/(( X** Al /Ci l**2il TOTA =1.0 00 267 JER=1,12 267 T OTA =A MUL T(JFRl + TOT A F R AC = T OT A /9. I FI LOS T.t u.11FR AC=1. 0 S AF= FR AC
- PE R w *4.
V ERTa( SAF
- VERT l/ 4.
R U= ( S A F *8 Ul / 4. DT=(SAF*DTl/4. T GD( I t av3( I I *DT *F RD + 5C ( tl *L 101*V FR T *FRD+5C( I I*L f 31* PU*Fa D+TGD( I l T A t t il =DT *FRD*T A t(Il 9078 CONT INUE 7003 C1NT INUE 23 I F(FRE.EO.0lGO TO 24 UO=UDC AT( 5 M01 U=UDAVt5.N31 F F 2 = l l.16 7-U/ 6. - 1. /UD l / ( 1.167-U/6.-l. /J i F F 3 = U/ 5..2+F F2 / 5.-(FF2*Ul /5. F r }, g..F F 3.p F 3 S=(9.80665/TAl*(TGE*0.00981 D Ht J a= 2.9 *( ( ( J. 7*( 1. E-S l
- CHt J il /( U* Si l * *0.3 33 5 I F(X.G T.( (2.4*U t /SQR TI Sil lGO TO 805 O HI J l= ( 1. &* ( ( 3. 7e ( 1. E-S l
- QHIJ i l * *0.33 31 *( X*
- 0.66611/U 605 I F ( L OO T.E O.13 0HI J i m P 8 E I FI LON T.r g.g los t Ji= (1. 58 VEL (Jl*DI A!Jil/ U H (J i =P Ht J i+DHt J I L I U1=L 1041 IAF=(LID 1/100l*1 Rf4FalAF A=.626 C =.d O42 IFIX.LE.100003A=.867 I F( X.L E.10000lC = 7.35 7 l
I F( X.L E.10 Jot A=.9615 15(X.tE.10001C=14.13 nm.141 r =.0 349 I F ( X.L E.100 00 lD=.4 05 4 T F ( X.L E.10Q OO lF =. 52 4 I F( X.L E.3000 lD=.629 I FI A.L E.3000lF= 3.15 l
54 I F( X.L E.100010=. 86 IF(X.LE.1000lF=15.5 40 7C04 !=1,NNUCS I F(NCM At I I.GT.JIGO TD 7004 C aLL ALFDD(U F, VGI II,U,LI C1,XLIDO) IFIX.LE.XLIDnlGO in 5070 'J RLOLR=EX P(-( t X-XLIDele tV C (I I / lL I C1*Ull l i C ALL QXEt XL IDOeHl J),VD( II,U UD,VGill,QFDDI E D' = ;R FUL R* QF DD )
- O TO 5071 50 70 C AL L OXEt X,Ht J), VD(I),U,UD,VGt lI FDDI 50 T 1 :lRE 0 =4 f Lt J, !) *FDi1*F XP t-I SCll l *X/Ull l e (F F l* (XP t-t ( ANL AN( l l* X I/ IS.64E4*1. ll l *F F 2* EXPI-( I ANL A"(I I
- E l/la.6 2' 4*U ll l+F F 3*hKP(-(I ANL AM( ll *XI /(8.64E4*6. ll l i C FAD =0Rtu/ t h.29 32* t t X** Al /C)
- t t X**D l /Fl *UDI TVALv0 40 0004 IA=1,IAF ZA=(IA-1)*103 i ci t.5
- E t t i l V Gt I I* X 1/Ul+ Z A+H t Jll /(( X* *D B/Fl l **211.GT. 50l/ Aten I F i l.5
- t i t t t VGt I I*X I/Ul +I A+HIJ il /(( X* *D l/Fi l** 213.GT.53 379 To TO'-
I Fi t tVGli l*XI/UI.GE.Ht J ilHI Ji=(VG(II*XI /u V AL = CH AD* IF X9( .5* t t t t t VG i l l
- X I /Ul+ Z A-H t Jil / ( ( X** 0 8 /F il*
- 211 +
IC XPt.5* t li t(VG t t l*XI/Ul*ZA +Ht Jll /((X**Dl/Fil**2ill 105 I F t I A.tQ.18 HX=V AL TvAL= VAL *TVAL 60 0* T OP.T INUE V EK T =T V AL /R I AF I F l X.L E.X L I Du l 1F TodX I F(K.L F.X LIDOI 190=0 15 ( X.G T.X L i r O ) LF T= 0RE C/ 4 2.5066 *(( X** A l/C l*L ID1*UDI IFIX.GT.XLinul 140=ET I F t X.G T. X L I U;18 IVEkT=0 a0 2cc IER=1,12 A l= IEP THtTA=Al*0.02454 YeX* TANI THE TAI 16:1 A SUL TI IER l =E XP(.5* ((Y/( ( X** A S/Cl is *2)l f t)T A = 1.0 'll 209 JEo=1,12 709 i n T A = A MUL T ( a f d l + T OT A l F R AC =1t'T A /9 I FIL C$ T.E J.11FR AC=1.0 4 %AF= FRAC *rERd*4. l V FR T =( SAF *VER Tl /4. "Ust$AF*dul/4. ETatSAF*ETl/4. T GDI I l = V0 t t l e tT
- FR F + 5C ( I I *L I D L *VF RT *F Rt + %C( II
- L l"ll
- RH*F R E +TG0 t t i l
TAltll=ff*Fhf*TA!(la 90ea CnNT it:OE 70C4 CliNTINUE J' IFIFWF.EO.0lGd TP 1158 00=UDC Af t cgm'll Ll=UJAV(6,"Ol { l i I l
55 F F2= ( 1.10 T-U/ 6.-l. /UD l /(1 167-U/6.-1./U) F F3 = u/ S..2*FF2/ 5.-( rF 2*U l/5. F F l= 1.-FF 2-F F 3 3=(v.o066/Tal*(TGF+0.00981 9 HI J im 2.9 * ( ( ( 3. 7* ( 1. F-51
- QHI J i l /( U* S i l * *0.3 3 3 3 3
I F( X.GT.( (2.4*01/SCe T( Sil lGn TO 806 7 H t J i = ( 1. 6* l t 3. T* ( 1.E-S l* 0HI J i l *
- 0. 3131 *( X*
- 0.66611/U 806 I F(LtrlT.F 0.1lnH( Ji= PRF I FI L ON T.L O.18 JH I J i =( 1. 5* VEL (J l *0l A t J i l/ U H(Ji=PHIJI+0HIJi L IDi=L IDA 1 IAF=(LIU1/10Ji+1
- IAF=lAF A=.6J42 r=1./33 I F( X.t E.100001 A=. 854 I F ( X.L E.10000 3 C= 9. 3 3 3 IF(X.LF.10001A=.9733 I F ( X.L F.1000 3 C = 21.2 8 D =.1 10 6
~ F=.0694 I F I X.L E.100 00 lo =. 371 I F( X.L E.100 00 lF =. 764 15 ( X.L E.3 000 lns. 6 321 IFIX.LF.3000lF=6.132 I F( X.L E.1000los.8823 I F t X.L E.1000l F= 34.7 00 7C05 I =letlNUCS I FINOM A(I I.GT.0lGO TO 7035 C ALL ALFDD(0,F.VGt II,U, LID 1,RLIDOI I F( X.L E.X LIOUlGO TO SCCO 9 R EDL R= E X P(-( (X-X L IDD I* (V CI I I / (L I DL *U ll l ) CALL QXFIXL IDU,H f J),VD( II,U,UO VGil l,QFUOL FDu=kpEDLR*QFD0 GO TG 5081 50HO C ALL QXF(X,HIJ) VD(II,U UD VGIII,FDDI 5081 JRE3*F ELI J. I I *F00*E XP I-(SC(II* X/Ull 1* ( F F l* F XP (-( ( A*ll 44( I I
- X I/ (d.64F 4* l. Il l*FF 2* E Xp (-( ( A NL AHil l *Rl/ li.6 2r 4*Ull l*> F3*EXp t -{ { ANL A4( II *X1/ lb.64E4*L. ll i t C Faun 0 REa/ t 6 26 32* t t X** Al /Cl *((X* *01/Fl
- Uni TVAL*O D1 600 5 I A= 1, I /.F Z A=( IA-11 *100 I F( f.5 *(( (( ( VG( I I*X1/Ul*Z A+HIJi l / (( X**D1/Fi l** 21).GT.531d AL=0 i
l I F i t.5 *(i (((VGi l l *XI/Ul *Z A+h t Jil / (( X* *Cl/Fi l**2 3).GT.53 3 3D TO 706 I F t ( (VGI I I*X p /u l.GF.Ht JllHt Jls (VGI I I* XI /U V AL = CH &De t E XP (. S* (( I t t vG( I I* X I/Ul + 2 A-H (J18 / ( ( X** D l /F il*
- 2 3 3 +
ic XP(. 5* ( t i t ( VG( II*X4fw4*f A*Ht Jil /( (X**Dl/F il**2313 706 f r( I A.f 0. llHX= VAL TVAL= VAL +TVAL 6005 L 0NT INUE VFd T=TVAL /R I AF I F ( X.L E.X L I DO I 1FT=6X l IF(X.LF.ALIUDI 1%u=J I F( X.G T.X LID hj IF T=wat u/ t 2.5066* t t X*
- Al/C l*L IDieunt J
56 I F ( x.G T.X L 1001 19U=FT IF(A.GT.xLIDO) 1/FDT=0 90 270 ICustel2 AI=IER TF8TA=Al*U.02454 Y=A* TAN (THFTal 270 A q uL T( I rv l =F xPI .5* ( ( Y /(( X*
- A I /C i l * *218 inTA=1.0 O C 2 71 Jf A= 1,12 271 f ilT A =A NUL T ( Jf k l + TOT A FMAC= TOTA /9.
I FIL OS T.E O. llrp AC= 1. 0 S AF = FW AC* piR We4. VER T=( S AF *VEDT l/4. nu=(SAF*MO!/4. FT=($AteFTl/4. T GU( Il = Vu l l l
- F T *FkF
- SC (I I *L IDI *VE R T *F RF *SC( I I* L I11*PU** pF *TG0(I l TAl(Il=Fl*F4F*TAltla 9067 CONTINUE 7005 C UNT (t.UE 115s, tr(FWG.[G.93GO TO 9683 00= UDC AT ( 7.49)
U=UUAV(7,P03 F F2 = ( 1.16 7-U/ w.- l. /UO l / t t.167-U/6.-1. /UI 8 F3 = U/ 5. .2 +F F 2/ 5.-( F F 2*U l/5. F F l = 1.-F F 2-F F 3 5=(V.UO6o/TAl*(TGG+0.00981 9 H t J a= 2.9 * ( ( ( 3. 7* ( 1. E-S l
- CH t J i l / (U* S i l* *0.3318 I F(x.G T.( (2.4*U l / 50RT ( Sil lGO TO A07 O H t J i = ( 1. 6* ( ( 3. 7 * ( 1.F -51
- 0H I J l l *
- 0. 3 3 31 *( X * *0.66611/ tf e07 I F I L OO T.E J.11 DHI J i= kPG l F IL ON T.E O.11 Di( J a =( 1.5*VE L( JI *DI A( Ji l / tl H t J l =PHIJ l*DH( J )
IIn1=LIDA! IAF=(Llut/100l*1
- lAFelAF A =.8 J6 r.=[0.093 I F ( X.L E.1000l A=.9986 I F I A.L E.1000lC= 31.03 0=.1106 F=.1739 1
I F I X.L F.100 0010 =. 3 818 I F ( X.L E.10000 lF = 2.115 i I F I A.L F. 3OUD ID=.654 7 I F ( x.L E.3 000l F= 1d.8 IF(X.LI.1000lD=.8257 ( I F I A.L E.1000 lF = 61.2 5 V R H d 'J O 700 6 I = 1 NNUC5 I Fir 4UM At t i.GT.CIGO T O 9899 i FALL ALFUC(DeF VGllleU,LIOleXLIDU) I F( x.L C.XL100lGn TO 3090 O RI.ULR= E X Pla t t X-xL IDPl* (VO(l l/( L IOl*U lll ) i C ALL UAGtxtlDJ.HIJieVO(II,U.Un,VGtII,QFnpl l r n3= Ja [ pL d *4F03 i del TU $091 p
i l 57 5099 ( ALL QXGt X,Ht Ji,V0t t i,U,UDe vG(I),F0DI 5041 J Ef 9 p FLt J,I l*FDD*E XPt-tSCtl l* X/Ull l a ( F F le rXD (-( ( AHL A41 II *Xl / t 4.64F 4* 1. Il l*FF 2* F XPI-I I ANL Au t t l*K l/( 4.f. /t 4*u li l** F 3*E XP(-(I ANL AMi lle r t / t8.64E4*6.lll) C eAn =0 RE s/(6.28 32* t t X** Al /C lo t t X* *01/Fl euDI T V A L s') 9" 6006 I A= 1,I A F Z A= t ( A-1 t *100 I Fil.5* t t E t t VGi ll*)l/Ul+2 A*Ht Jil / t t X* *Dl/F 31** 2)l.GT.SclVaL=n 15 f t.5* t t ( t (V Gt t l* XI /Ul *I A+HI Jil / t t X* *D l/ Fi l** 218.GT.511*,9 T" F07 15 t i t V 61 I I
- X I /01.GF.H I J i l Ht JI = ( VG( I I* XI /U V AL = CH A9* (E XP t. 5* (( ( ( ( VG (I I* F I/ U l &l A-H t Jll / t t Xe* 31/F ll*
- 211 +
- 1. XP t
.58 ( (I t t VGt ll* XI/Ul* ZA+Ht Jil /t t X**Dl/F il**28 3 8 107 I F E I A. tG.110X sV A L T VAL =V AL* TVAL 6006 C N.T INUF VE A T =T VAL /W I AF I F t X.L t.X LIDul 1GT=9X I F ( X.L E.X L IHill 14 0= 0 IFtX.GT.XLl901 1GT=J dt D/ t 2. 5060* ( t **
- A l /C l *L int *UDI I F t X.b f.X LI D O)
- 190=GT I F t X.GT.X LIDol IVERT=0
>r 2 72 IF k= 1,12 AlstER TeETA=Al=0.02454 Y=X* TA NI T Hh T A) 372 A MUL Ti lFP l=EXPI .5* t t Y/ t ( *** Al /Cll* *281 TOTA =1.0 D u 2 73 J 6 8 = 1,12 273 TOTA =AMULT(JEkl*TUTA FQAC=TCTA/9 I F( LOS T.E C.11F A AC =1. 0 % AF = FP AC
- Pt Rw *4.
V ER T=( SAF *VFF T l/ 4. M L> t %A F*e Ul /4. GT=(SAF*GTl/4. f T GL I I t av.1( I I *GT
- F dG + %C ( II *L I D1*V ENT *F Ru
- SCI t l *L IDI
- RO*re.,tr,n t g l a
T Al t i t =uT *FRG*T A t t li l v0c4 C ON T IN UF 9189 1= NOMA (Il I F IN0* A t l i.GT.0 I T GDi l ls TGut M i
- IRF L( J,II /R FL t J, Mil I r t *:0* At l a.GT.3 3 T Al t ll= TA l( Mi s t Rt LI Je ll /oFL IJ,111 7006 C0NTINUE 1159 CC4TINUE I TI L OR T.E Q.11G'l TG 7 799 I FI L 4UN.[ 0.1)G'J TC 30C5 l
90 79V9 I = 1, N NUC 5 l C ALL AM At i,NU,NR ) 7999 CONT!HUF GO TG 553 77sv 00 7990 I =1,4NOC S 7998 F ALL AKKAtt,NC,Nul G1 TC 55J 0 l l l 1 j l 1 1
t 58 l l 3005 00 3 Jo e ! = 1, N NUC 5 l tST4tl.NO,Kdl=TAltil*1.E-6 F 5f a Gi l e.C,hR l =T Go t t l* 1.E-4 . 006 r 3071 C O'JT INUF 3070 C'IN T IN UE IFILWuh.CO.1)G'l TO 1072 $53 C CN T INur $52 C ON T INUF 30 72 C W4 T IN UL f r(LkUN.f y.01",0 TO 305C I F (L O4 T.L U. t l.0 TC 7997 45350*(15050**21*400.8/1.F6 delfrt$g,3ag) aplirtS1,3011 a81TE(51,$J003 SOUJ F CWF if ('J ',T 35,' NOTF-THF AwF A SuaacuNnINe, THF PL ANT 1 % A t Ju gw r 14ITH AN ANCA'l d81 t f( St,50011 A SQ50 5001 &IRMAT(' ', T 3 5, ' 0F ', F 7.1,11, ' 54U Ap r n!L LHET F RS WI T't THr SLANr Lqrs 1TED AT THE CENTFR.8) ea g T C ( 51, 5002 3 ',0P2 F.7mM Al l ' ',T33 'THF SQUADF Aart 15 ALIGfik7 Duc N1kTH-50JT*I Af;O rJ5 IT-wiST. TFE*) 40lTEISt, 500115050 5003 r qo 1 AT ( * ',T 35,' 400 SPALLER SgqApps,,wulCH AuF 5 Aree ',87.1.1X,eurt Ites h A SIDE 'l aagTE(51,50048 5004 FORMAT (* 8,T15,*Arr IDF NT if l((s BY rqL J"*a ANO O 14. r SLUS?'t tr8 Nuwa lE8F.0 Feum'l walTF(St,50051 $ 0.'s F OMM A T ( * *,T 35e'l Tn FC F POM W ST T3 EAST. p345 Apr aceprern rois il Tu 70 F ot:1' l d91ThtSt 50065 50Jr. r qoM AT ( * ',715,'5CUTH TC NOPfot.'l I F IL OP T.t a.13 41 TG 7997 s e Au t po,,56) ( (NORCTi ! Ji, J 1. 2al.I =1,20 3 550 t r,ga A T ( g o l 31 4 t A9( $3,5 5 7)( (NUNCT( I,Ji, Js t,?J) I= 1,201 Shi 69R* AT ( tu l5 8 d F ADi > C.1 C11118 t *4TF C i l, Jl J= 1,201,1 = 1,701 1001 5 0KM Af t80118 W F AUl5 C,1002 8 (IINYP Al l,Ji,Ja l.20l el a!,203 1002 F Oo4 AT (MF 10.1) 8 F 4 7 t S O,5 581 ( ( IN T w A t t, J), Jit,2 01,1 = 1,70 3 53r r )RM Af t 40121
- FAD 10,*PTHAT.DILFAC.USEFAC 10 F.1k" AT ( S F 10.11 wrAD 150, A.ASURG,050er n5uPG,guALLO,01,n/,D),74 I
I 8 C AD I SJ, K 50Bi e F SUP P,8H7.51, %2,5 ). T A08 F F,T Au wLM T AUA", T A'Iru WS Ao 153 TAUts,TtuGN TAUDD,TAud0,fAudG.TauSP,0,v,v5Hprev50== ISJ F CAS AT I10F8.41 eFACl50e1621PFIV 167 FnaM Af t F 10.21 ' F A0(SC 1621PE IC 7 54 0,5C 1521PFIB 110 = $1 % ? 'J = %2 g' %10 = Ss e
9 59 apITh(51,863) o6J F '.k M AT (
- 1 ' )
I a 4 t T F ( 51. 3013 .alTE(51,301) d.tlTI(51.12J01 1200 FCE*AT('J',T46,85uMut.ov OF APEA SURROUNDING PLANT'l aplTE(51,12011 1201 F it&M AT (' 9 ', T 20, ' Aa F A ', T40,'NO. Or r e r.4T T L r', T63 ' NO. MIL E CAft:re 4
- 1. T oa,
- FUJD C DUP 5', T 9 5,' W A TF R A4 E A', T 115,' p0 POL AT 10N' l mo1TE(51.1202) 12 0 2 r 4 4* AT (' O ', T la, ' Cr1LUMN',T 20,' R.h
- l 43ITE(51,3C15 9t: 120 4 41= 1,70 94 1205 Nw=1,20 ulTE(51,1206)N3, ten.N00CT INC,N41,N04C TINO,NRi e I%T FC( NU,Na l, a
11 NT d A( NG, NR ),IN T PAI NO.NR ) 12cn r nRw AT (' 8, T i s.12, T 2 7,12. T 4 5,15, T 64.15,78 b e l 2, T 13 0.12, T 110. F l o. I l 1205 CusT INUE 12d4 C ONT INUE WRITF(51.12073 12 C7 F 34* AT ('J ', T20,
- FOR Fr00 CRDPS--0= NJNF Up MINIMAL ann to 5000 Con 19 5 P40CUCED's apITE(St,12061 1203 EqRMAT(' 8,T20,'FOR WATFR APF AS--0= N )NF 00 MINI 4 A1 AND 1= #AJ30 4 1 ATE 4 AREA PRE SEN T'l PHIN T d71 A71 & G Aw AT (* 1', T 36,' Ll5T OF IAPUT VALUES FOR P ADl 0NU;L I DF-INOF P P49FNT tv ARI ABLE5'l P41N T add,hNUCS odd F ORM AT (' O ', T13,'.4UM9 F4 0F HUCLI DES CnN5 tnEP Fn',T110, T 128 PRINT 8 81,BR THR T 631 84RN AT ('0 8,T 13,' thMALATION RATE OF M AN (CUMIC CFNT IM*TERS/Hel',
1711U.E ll. 41 ?RINT 883,DILF AC 883 F 0dM Af t'O',T13,' DILUT l0N F ACT OR FOR W AT FR FOR SWIwmING (CNI',T110, 1512.41 PRINT d8,,U5EFAC 884 F ORM AT ('3 ',713, ' FW AC T I FN OF TI ME 5p ENT Sd lWM ING', T 110,F 12.41 PRIN T 903 A 900 8 0nM AT ('O',T13,' 50ll SUkF ACF ARF A D EJulNFO in. FURNISH ramp Canas F I tbR b h[ MA N ( 50U ANE ME TE R518,T110,E 12.41 pRIN T 901 e A5UBG , T 13,, P 457 UP F. A RF A PE R C9W (50U Apr METF8 5 3',7110,f12 41 I ORw AT (' u',05UHF 901 i PRIN T 502 902 6 nRw AT ( *u ', T 13,8 0RY WF IGHT ARE AL. 0E NSITY OF M ANS A00VE-5Ja F APE ren tr (x Gb PE R SQUARE METERl',T110,F12.41
- R IN T 903,DSUSG I
901 F ORM AT ('J ', T 11,' DRY-WF IGH T AP F AL G0 455 nFN5 f f V (%G5 PF0 50UsoF wST 1Ept',T110,I12.41 point 904,5MALLD 904 F OR M Af t 'd ',T 13,'nE PTH OF FLOW LAyrd ( CM I ',T 110, F 12.4 5 PolN T 904,K5URS 909 F ORM AT ('d e, y g 3, en ATF 05 I NCRF A5F OF STFF4 MUSCLE MASS (K; P ER DAYS l',T i to E 12.41 P RIN T 910,M SUR9 910 & CRw AT (8 J', T1),' MUSC LE MA SS Or 5T EE R AT S LAU GH T F R (KGl', T 115, Fl 2 4 it i P o tN T Slt,R'la a l
1 i 60 ~ 911 r ukP AT ('J ', T13,8 5UIL OF NS ITY (GR AMS PER CUBIC CCNTIMFirRl',T 119,I 1 12.48 oplNT 912.51 912 F0d'4 AT('J'e T13,' F Al. LOUT C rdRFC TION f tCTOR FOR 461VC-SueFACf roari,, 1 T 110,[12 4 8 p ol4 T 413,52 913 '.1RF AT ( 8 J',713, ' F ALL Cut CORRFCTION FACTOR F04 iqll SueF Af s a rt %, r ' t -J t to ', T 11J, F 12. 4 8 p u!N T 414,5J 914 F ORu AT ('O', T13, s r ALLnUT COMRFCTION FACT 08 F O u PASTueF',T11 0,t l?.43 i PRINT 915,T AUBE F 'st b FI'RM AT ('J ',T 13,8 F W ACT ICN CF BEEF HE RD SL AUGHT FR F1 PF o n Aye,v g gq,r g 12.48 P RIN T 916, T 4UMLK 41u r Mw AT (8 0',T 13,' TR ANSF E R kATE OF MILK FkCW U30FR (P'N O AY l e, T i t o, r s 112.48 PE1NT 411,T AURM 417 F O AM AT (
- J ', T 13,' d FF F C rNS U'iPfl 0N OF P AN ( MG/ n av i', T 110,C l ?. 41 p PIN T 918, T AUCH 91r F Cp* AT ('J',T13,' MILK r CNSUMPTION OF M AN ( LI T F RS /14Y l',T 110, F12.41 P u !N T 919,T AUh5 919 couM Af t '0 ',T 13, e TR ANSF F R RATE--AR9VE-SURFACF Fqn) To SOlt %tler4Lr 1(DE9 O AY l ', T 110, E 12.41 l
P R i f, T G2),TAUGR 93 c F Ir M AT ('J ',113,' TD ANSF E R R ATF--P ASTUR E Go 455 T 0 845TURT (PIL (OFD 11 AY l ', T 11 's. r 12.41 PRIN T 42),T AUPO 921 r1NM AT ('J ', T 13,810 ANST E R RATF--50lt PonL TP 5,0ll SINE ( P8 0 Q AYl',7 11 LU, rt2 4 8 PPINT $22, T AU8.1 98/ C OM4 AT (' u',713,' T R ANC F FR R ATE--PAST uaE Sn!L TO ELIL 514% 4 age aang l',T 110,F 12 41 P3thi 9/J,T AUE G 923 f new AT (' J ', Tl ), ' TR AN SF F R e ATF--P AST UR
- 571L in PASTuor r.c4%% (sfr 1H A Y l ', T 11 Ce t 12. 41 pdINT 9/+, TAU 5p 924 t nkM AT (
- J ', T 13,' T D AN SF(# RAT *--50ll SuofACE fu SOIL 000L (pep 9 Avl t' e f t 1G E 12.41 PRIN T 92),0 925 6 apM AT ('J', T13,' MILK CAPACITY OF THF 000FR ( L i f f o % I',7113, F 12.4 9 P a t r4T 929,v 976 FORM AT ( 80 ',T 13,'VFGE T AnLE F OOD CONSUM Pfl04 0F MAM (u0/n AYl',T 119, 1F12.41 I
- RINT C2Te v5USC 977 F f'R M A T ( ' :D,71),ebp%55 CCNSUMPTION OF COW (KG/ U AYl e, T i t o, r 17.41 P olN T 424, /5U94 92n r0EM AT ('0 8, T 13,' MILK ## DD UC TION OF COM (L I T ER $ / 0AY l',T 113, r t 2.41 l
TPJP=0 TNOSCT=0 T N':MCT =0 T59VG=0 00 400 2 NUs!,20 nn go3 3 yp 1.20 " PJPa l N TP AI NO aNR l
- T PC#
T N9d CT =N3 eC T ( %J,NR l + TN09C T j T NuwCT
- NJ pC T (N9,NR i o TNOMC T
.? 4001 I F ( I NT FC ( NO.Nu l.E C. t l T SCVG= T 51vG
- t.
l J 0002 Cs AT INW l
61
- 7. t.Ut4= ( T h WVG * ( 50 5 D *
- 211/A IFtIPnP.JT.ANUMMID1=(ANUMN/TPOP)*D1 I F ( T POP.t, T. ANU 4M l D2 = ( ANU" W/ T P'18 3 *'12-TKGDCA=TAunM*365.*TPrP A N.DCT =TNURC T T K Gn PA = Ar:0BCT*TauhFFe365.*MSURd
( F ( TKb HC A.GT. TKGP PA ID3 = ( T FCRP4/ TEGHCal
- 03 C O*4M Ks T AU CH
- T P1P A NUMCT =TNCMC T O RfM Ks V509M* A N3MC T I F i C01MK. GT.P 41*K 104= t PMNPK /ColaK 3
- D4 T Aw & C= 75s VG*( 5150 *
- 21 PA%'C=(TSCVG/400.l*1GO.
YCa dwK3CU AwK* Jos. Y Pd NwK= PP AMK* 365. pFCYan5U4F*TARFC C FC Ya s PCP *V
- J65.
a C l TE( 5. 4004) 40C4 F 02F AT (, g e, ygg,,(pppVTF D VALUIS F04 THE APFA'l mRITFl>1,40053TPOP 9 06b r CRw AT ( 8 J ', T 13, ' TOT A L PCOHL A T!9N',T 110, F12 11 WRITE (51,4006)TNL9CT ,JJo T Caw AT ('O', T13,8 TOTAL NUM PT4 3F BEE F CATTLE ', T113,I12) wn!TE(51,400TITNrwCT 40C7 rok% AT(so ', T 13, ' tdt A L t.uMRE k CF MILE CA T TLF ',7111,112 ) wwifr(51,40solTARFC
- 0 L.4 F I,kM AT (' O '. T 13, ' tnt A L Ap f A l'F VEGrT ABLE FOOG Canos ($00488 4F'rgy,3 l',T tto,F1 2.4l w p ! TE ( 51,4s0's)* AE FC 40Cv F 94 M AT (' J ', T 13e ' P ERC Et,T nF ARF A H5CD Tf. PPC7UCF VrCFT ASLT F0ne (Pa
&Ple,ggggett,gi wHITF(51,401dlTKGACA 4010 r oA*. AT ('O', T13, ' TOT A L nEF F CONSUMpT ION (KG PFW V54PI',T11",r12.41 W R I T E ( 51,4011 ) T NG 8P A
- 011 F :loM AT ( 80 8, T 13,' TOT A L 4EF F DP '170C Ti ny (KG PF0 YF421',T111.F17.49 w W I T L ( 51, 4 4012 F fhM AT ('J,012 3 YC,ONM K
,,g3, TOTAL Wilt CONSUMPT I ON (LITFRS/YF API'efitD,812.41 d'ITEf51,40131ypasuK 4015 F'IA.4 AT ('C ', T 13,' TOT A L w!L K PPCnUCTION (LITFRS/YFAtle,ygg3,cg2.43 upITF(51,401*lCrcy 4014 F s)PM AT (' 3', T13,' tnt AL VCGF T AHLF F070 C9N50*PT f 0N (MG prp ycAo3, !T i to t 12.41 WP I T E l b!,4U 13 t PF C Y 4 015 F 0r>1 AT I'0 ', T 13,' TCT A L VEGE T ADLE F nn3 PR0 nUC ro (KG PCc yF ae l e,' t s o, IF 12.41 P R IN T 90>,01 905 FORM AT (' O', T13,' OtET ARY CnRP FCTION F ACT C4 f nR A p1v F-SU* Fr.C r rn tie, 1T110,112.43 PPI4T 900,02 %00 he4
- AT ( *J ',T 13
'G if f A PY C rapF CTION F ACTS 1R F90 tlPTAKr Fopw $0ll',Tl 110.F14 45 PRill 407.03 107 F dRW AT (' 3',Y13,' 0IE T ARY C CWkFC T ION F ACT PW F OR AFS F 8, T!!O, c t 2.4 3 aof97 ',U ), t14 90s F tigw Af f 'u ',TJ 3,'D ir T AD Y C rrPFC TI JN F ACTHN 60d MIt K',Y 110er gy,43 C Cl?.To IOUTICN OF 5'O YE ARS EXP05Ukr T= 142bJ. 1, NNUCS no 100 I = r t e ( l l
62 AMAN =J 2 F AO 20,NuMOWG,L AMR2,C E SS A, CF SM W,CF 5'JR 2a r 0R* AT t i t J,4F 10.31 READ $O, C SUd3,C50d P.C 5JBS, F SUPP.L A't E,r5033 A.H5Jnr o, T Au s c 30 rOgMAftst10.3)
- E AD 175, L A M5ua,L AMH?r 175 F ORM all2L 10 5)
- 1. NUMnkG nn 2C3 J
= eFAD 4de '14MORG t J ),Cr ieH At J ),CF ING A t J 3 40 F 0WM Af t A3,t t2.3,F 10. il 700 C ONT IN UE l TDCTCC=0 i T wC T GC s0 TVCA=0 A W A K =!l TT44=3 T AVG CN = 0 P olN T 92)S,N AMf4UC t li 425) F ORM AT l'I ', T 42,'P F 50L T S OF 005 E COM PUTrilotas Fop NUCLInE ',4.41 ddITFI51,301) PdlNT 9256 .,7 5c r ogw AT l'J e, T 15, ' Apr a ',T 26,'Oo r. AN.T 60, e ngg$p yggnjgp pacg pregwgy g luf*S/YEAwI'l PklNT s?st 9 ? 57 f JPw Al t ' J ', T i t,' COLUMN', T 20,' enw l e d p I TF t 51, 3011 PRINT S259 92 39 r q g af (
- 0', T 4c... g ranat gr g os,T 55, ' Sun 4Cksilva', T 70, ' % so F Ar t e,7 45, l ' INGF 5 T lit.48, T 100, ' SUP MF 0 510N ',7117,, T OT AL * )
PQiN1 926u 12 t.0 * *1E M AT l ' ', 7 5 7, ' IN A I R ',T 69, ' 8. x 00 50 RF ', T102,
- lN d A T F R
- l
.u l f f ( 51, 3 011 50 21 N4"= 1 NWe=1 D" 403u Nu=1,70 0C 40J1 *4H=1,20 / ACN=ACCNil Na,Nwl GCN = GC PN t 1, N3,.=k i T 9C T CC =N'.GC i t NC.N# 1
- GC Ne T PC TCC T WL T CC =N'1"C T I N 1,NR I *Gr A+ T MC TCC I F i l NT IC I N0,1G l.F C. ll ivc A -GrN +TvC A T6VCCN=GCN,TavGCN I Fi l NT PA l qJ Nw l.GT. 0. At.n. ACN.G T. AM AXI ANAx=ACN j
I F i lNT P AI NG Ne l.GT.U. ANO. ACN.F '). A MA K I NOMsNO I F i l r.T D A t N2,N21.GT. O. AND. ACN.F Q. A" AXI Nr 4=NG CCN4=GCONtt, NOM,hpMI 0001 09NilHUE 4JCd CON TINLE a vGC RC = T e LT GC / T:.0PC T AvGCMC=TMCTGC/TNn*CT A vsivG =T v C A / T 5 JVG A C ;NCu = 4M Ax
- 1.r -6* R76C.
i 6 CCNCH = t CCNh/ t L AMR 8* 1 157 4C-5 +L AM SUR* t.15 74 C-S i l* ll.t-6*8Fo0. G CJN Cw = GC ONC't G CONLr.t a v50vtJ t L awn pe t.t S74F-5 +L AMSUR* l.157 4F-Si t
- 1.F-6. p yg,n.
C 4Ce1NCp = t t lavbCMC+ AVGCMC l/ 2.1/ tL AMRR *l.15 74F-5 +L A4 5tto* 1.15 7% -Sil
- l 11.C-A* d760.
i
v F 63 7 l I F ( N Aw.'.UC il l-N A Dt C 114 30,4 40,4 39 430 '4Thli = 0 G.I TO 450 { 4,0 N TH IT 1 = 4,0 C ON T IN LE 8 L L R U43 0 D 9 4 05 C NU= 1,20 f D C 4051 NR=1,20 GO Tu 3332 300* 10 2000 %U=1,10 00 3061*JR=1,10 LLRUN=1 ACNsF5fktl No NPI i r,0N= F 51kG t !, N J, NR I { G7 TO 30J3 5 3001 AC4=ACONil NO.NN) ( GC1=6CONtI,NN,Nul 3001 90 9 23 0 J = 1,11 [ X=L AM4 D +L AM SUR 40 9/9C N=1,NU40RG 16 (NA=F5tJI - Na=Gr thil 9290.9291,9290 o l 4290 ClavTiteuF L=l GO Til 9292 9291 L=N i 9292 rFINH= Crit:HA(L) C F ING= CF I P.G A IL I IF(ACN.EO.01DG51=0 tr(ACN.f0.019052=0 7 ! C ( A Lu.F w.O l9'.'5 3 = 0 ( IF( ACN.EO.ulGO 70 40ic i 11051 s ACN
- 1 0-6* 98 T HR T
- 476 0.*r F I NH e
f 05 2= ACt* 1.F-b* 8 760.* F F 59 4 >C5 3 = ACN' t.C-6* 8 760.* C F 500* t GCN / aCNI
- t t-F API -X* T i l /X* 3601.* )4
[ I F( N TR IT.t o.18 dC SI NG t Ji = ( I T AVGCN /400. 9 /PR l* C.34.14F 2 15 t u tR IT.f u.1110 TO 5012 4 0P 3 I F IN'J.GT. I.08.NR.GT. t lGC TO 5012 f ,F If R u= A*t. x* 1. F-6* 076 C.* t GCNM/ a M Ax l *3 600.* 10000. 4 I r t GCONC f.F U. 0. aND.GCO*4CP.E O.01005t NG l Ji = 0 s I F t GCONCF.c0.0. ANC.CCONCP.EO.0lGO TO 5012 51 = 510* GCGNC F / GCqNCH l % 2 = 5 20
- GCONC F / GCCNCM k
53 = 510' GCONCP / GCCNCH C C ALCut ATCS "509EC I F IT 15 NOT GIVrN IF (H50R301 403, 17, 403 17 M 503rJ = C5069H
- 70.
- 10.**(-3.1 403 C ON T INUE 15 V 5 uB S = A
- 10.**4.
- SuaLLO
- RHO
} to P50s!0 stCSUMS / 10.* *6.1
- V 509 5 3;
14 TAUDM = ( 150* E'J / PSURF01
- LAuf 1:1 T AU0C = F SUd1
- v5UOM
- v5uRC / 10
- DSURG)
L C CAtrutATES FSUS9 WITH FO. 25 Cu 21 HEPENDI G IF TAUFEC GtVFN nR 99T f IFtTAutACil50Ce1500,25 { 15 CG F Su3e= K50B0 *45ue k/t 4.* v509C*C SU9P 3 GO TO 404 y 25 F 5ud B = M SU BB
- TAUF AC
- CSUB9 / ( 4. '
- C5UPP
- V5USC) q 4G4 r.ON T it:UE
{ / 19 TAUG6 = FSU84 * (V5U8C / CSUHGI / MSU6B w.a
l l 64 1 t. Taut *
- V / J5UBF r F Cult 1.ta t9'*
- ud Af idNS IT CONSTsNT INPUT C ASE (Ftfl = FZfeet g
r. $g
- pypwa f gtswan, TAus1/ A + T AHE51
/ 5= (TAJ65
- F + 52
- FIF#UI / (LA44R + TAUSPI 3
o = A
- TAUSP
- 5 / (L44<R + TAUPM + TAUPol C 8: Atr.ut AT E E s.s AT IONS 4 AP it 5 %Iput T ANFntiSLY
-5 3*6 2F e"*4504t.*G$UdG*t L A420+ T404G6 T AHd Cl / t Vau:G* Tau" U 6 A$ tid ie .a l'hudG-t aiu96* 050MG* t t A*4R +T atsr k l+V5ugCl o t ta war +T A:grr.+T Aqs ni l
- )
- =
TALON
- G/ ( L a w.4 8 + TAUEG + 14043)
( T A<.u d
- d
+ (TAUDD/4)
- Di / LA4PR o
1 = I C= T a u?.~.
- G/ (LAMPR + tau 4L(1 T4.r.'
/ (LAMoe + TAugrst 4 4 = 3 f.)I = e:t e TAuf wet e n2*T AU Fu* p + 03
- T A sap
- R + 94 *f 4uf = *C I r tN av% JC il l.NE.NAUFC 21GO TO 1.190 t Jl s 41
- T s ul M
- f
- P F I V e32* T A UPM* PePr iV+01*T &094*4* Pi l 4*n4* Tr.ur.wo r e t.: e 1*
CJ4J o';51% t JI st.9 f *C F ING 5312 K.L A*4h et awl 23 1250 18 t GCONC.ru.0lC055=0 leibt.'NC.EO.JIGC TO 17%1 I F I A CN. Es.O l b.15 % = 0 IFIACN.EJ.OlGC TS 1251 3 '5 >= ACN* 1.t-6* d 760.* CF S* We t GCN/ ACN i eO5LF AC /JI t F %C e t t-8 xo t-x* t t l # x t o GC lNC./GCaNC a* 3600.e 24 1251 f t:9 5=uc51 *DU5t+pn% 3.nnt!NGt Ji+0055 IftLLJuN.fa.1)GO TO 3085 IFil.GT.J869 T1 a020 J a l T E t 31. 9/ b t l *4o,*:R. *. AqF % t J ). n~51,')n5 2. D051,00$ LNG t J 1,'1'M %, T n's %27.1 ' W' Aft' *. T 13,12,T 70. ! 7. T2 5. As,7 41, F 10.3.T 5 5, r ti. 3,T70, s 11.1. T a, e 1r 13. 3. T 1J J k 19. 3, T115,[10 3 8 J a ?u f.".N T !*. L F 41)Pil.J.llsD951*lNTRAINUeN#1+305 Pit, Jell t hP t 2.J. l l a n s;* lN T p A t %0,Ne l. jpge t 2, J, Il a 115
- t s,J, I l = 9951* I N T 0 4 t NO.NR l +',10S P i l. J e l l "s 751' t 4. J. ! l a n C% I NG t J i
- l NT P A t ko Ne l +49 %P t 4,J,I l n'sW I $ e J. Il =Ud55
- l NT P A(N9.N8t l +00%pt 5.J. Il I r t T Gj s.5 T.tu)S t ra t J. I l 6 %C4 *t t l = NO I F I T Ct %.17.005 t N t J, I l l NRu wil l=N=
1
- i T Ca s.i,T. Juslut J, t i 160$ ltJi J. II = Tuus I r i L Lk %N. F 4. JIGO TC 9280 3 184 'ICT F Jo C 4tlT L 4s d I t it....GT. 8 5-INT t D L3m /5C 53 2 t l. ANO.t41.L T. t 6 61NTI PLar/ %;59 281 t **'Y e te t i s t '.4.i.T. t s-li t v L
- S / 5 653 2 i l. ANr.*.4.L T. t 6 +1 NT t PL 3 N # 5353 2i l l** 't * *
- I 18 t'l.T F 3. LQ.1. ANO.N9? E 4.F C.19
- 1 T1 92.ht I 51 T C'.5. ~ T.:'u5.sN I J. I I I NCw2 8 I I =Nd I F t f nh 5.1 T.Sq $6N ( J, I l l N4* w2 t i t = N4 I r i T v5..T.JJ51*J t Je ! IlG05 h tJ,1 l e TJ35 uls *] " nfl%uF I Fit LEU'. 8 J.ul4? f r 4051
- 1o1 *C'4TINL5 3 0t u C a.. T !'.LE l e tL Lc uN. Sc.117: To 3C67 4351 C"4TINuk 4J50 $Jr.TINUE s 'J o.* "..F I T
't L E 18 ( L LJ UN.r J.'ll* 0 TO 3CC, 157 valNTq,31.hAMNuttif 8
- b..
.m. m.--a m 2 -m a._ _-a . - ma =-- a- - - - - - - - - - =
65 %31 kORMAft'I',T47,'ll5T OF I hPUT.74T 4 FOR NUCL ID'F ', AP I I F IN TR I T. La.11Gu TO 155 PplNT %,3 CSUNSB 933 F ORM AT (J', T!),'CCNC E NT4 A fl0N 9F THE ELEWFNT IN MAS: tapul'efili,FI 12.41 I F(N AmtduC ll i.NE.N ADFr 2 8CO TO 160 Palmf 161,PFIV 161 F t&R'4 AT ('J ', T13,' D?$r R f JUC T i r*J F ACT lR F0k VEsiF T A' L E CON %J wof t fh', IT110.612.41 o p. I N T 16),PF IC 163 ri. A.e at g e y e,713, ' qcst. NF DOCTI CN F ACTOR FOR WILK r.n'45umPf l?*a', 17110,f12.48 P e l *J T 16e,P&lR 104
- 9P" A T (' d', T13,' an$r R F DUCTION F ACT OR F lid PCEF C9%50**Tl31',
If L IJ et l2.48 150 P W IN T 9 35,C SU3P 934 r qam ay g e n s,y j 3,e CONCF NT d A TION
- r THE EL FM cNT IN *F AT (opu l',f i l 'o r 112.43 P Ritif G)),C5UoP s'15 E 999 AT (' Ja,v g 3,,CCNCf NTRA f t 1N.3F THE FL FwENT IN FnR Ar.E (P8MI', t110 1.F12.43 P R I:4T v3s,CitaB5 93b F OMM AT ('n ',TIJ 'CONr t AT44 Tinta 1F THE F.L EMkNT IN 57tL.l***1',T110,F 112.43 155 C GN T if.LE 9 W i t!T S]T,LAMkM 937 F ORM AT ('0',T l 3, 'd AQl0 AC TI VE DEC&Y CONSTANT ( PF n 7 AYl ',T 110, F 12.41 p
- It. T 13.s.L Austs' 93b e igw Al l'a ',711,
- FNvict'N"E NT AL OEC4Y CONST ANT--SUar ACF s pr e n4Yle,
1T i lJ eF 12. 4 3 P R Ir.T 931.L AMH20 939 F 04W AT ( e,) e T 13,' F NV IRON"E AT AL Of t av CON ST A*.T--d4T Ce (Pf' "#Yle,vgg 10er12.41 I F (f.TR IT. EJ.13 Gn TO 156 84 TNT 94J, LAME 940 F ORM Af t 'J ',T13,' TuahcVt n R Aff .'F THE ST ARL t I%4T1PE IN M AN (PFJ DA !Yl',T110,E12.41
- dlNT 441,F5094 941 r qoM AT (
- J ', T 11,
- F b ACT l qN CF 1 $1TOPC I4GF5fFD AY A C"W AN1 %FCRrfl7 I (UAY 5 /L I TrR I',T 110,F 12.4 8 P e tN T 942.MSUME O 9*2 F.%N AT ( 'O ', T 13,' F QUl t l P RI U*
- A %S PC STARLE *LFM8NT I *! " A'l ( ". ' t. ' l '
1.1110,F12 43 PRINT 943,TAlifEC S43 F:1kM AT (' O', T 1 ), ' dMC RC T I ON R ATF 4 STADic 157700F ro;is vugCtp ce se It*P IPIR DAvl',T110er12.48 15L C flN T !'. LF l ORINT S44,GCr.NC M l 944 F OR M AT g o n e, y g 3, e E Cull l"RI Um GR.7t Nn r.0NC FNf 6' AT I ON AT ** A *
- t e t rF"' l
} IE -Ha /5 00A Rd Cdi ',1113,[12.*l S R IN T 945, ACUf.C p 945 5 0* M A T ( ' O ', T 13 ' *. QU l t l *
- I UM A I R CONr.r NT R A T l qN %T
- se (wl'a-r.n'---
Id /CUHIC C al', Y110,F 12.41 d d l N T 946,GCll?.C d v4d F lett AT (8 0', Tl ),' c.)Ull IP Rl u* T ONCF NT ASTI ON AT W ATF R SUG5 ATE I M M ' "* 10815-H1/sGUA8e C
- l', f 110, F 12. 41 a'21'.T.947 uCONCF 44 1 F '1* M A T ( 'J ', T 13. ' F.QU I L I M R I Uw G R *Jil';.) tilvCfNTPAfl34 AT En.? rapo.
.-n- --.---v
66 IC dilCU# IE-HA/SGUARF Cul',T 110,F 12.41 pSINT 940,G C O NC P 94c P14M Af t 'J ', T 13 'C CUIL l44IUM GROUND CONF F'JTu ATION AT P A%YJer ("Ir. i t r UM I E-HR / SO U AR E CMI',T110,F12.48 WRITFt51.301) P4 INT 95a 950 F ilAF AT l'O' e T bs,'OCSE C CNVFR$1'1N F ACTnR5'l aeIN T 951 951 F ORM AT l' -)', T S, e nRGAN ', T 20,' I NM A L A TI O18, T 34, e t Ne.F% T l 0%', T'.4, l'59PMEW$luN IN AlW e, yg3,, $gipp Agr ggpq$ygg e,y gny,, $tgMMra $ lay I" wAT lCo'l 041NT 9%2 952 &ukHAft' ',T I T, ' t e r ps /=IC p 9CURI F I ', T34. '(p s M%/ MI:s 7CUu t r s e, T so, l'tw1MS-COHit C4/',Td3,'IRFMS-SCUAdF C4/',T109,'teF.u%-CHAIC r"/'t
- 3 TNT %52 951 F '1k t A f t ' ', T LJ, ' MI C R CC U RI F-H e l ', Td4, ' M I CR OCUP i r-aR l', T i ti, ' g i rceru 14tF-H45's aplTEtS1,301)
- 19 201 Jel,NUMORG
- 41*J T 952.N AMOR Gt J1.CF I AHa tJ i,CF INi A t JI CFSB A.CF5t::,r rsP4 954 r URA Af t'
', T4 AO,T21.E tc. 3. T3d,F 10.3,761. F10.1 Ts 6,[10. r T 111,61a. 11) /01
- f. tif.T INHE
~ 100 C1:e T IN UT 9999 90 2012 ! =1 t!NOC S 2032 T H ),5 t t l = D0 5P i l e t e l l +0 CSP t 2,1, I I +D'15P t 3.1, II +005P t 4, l I I +D'SP lie ?, al l A 4'70=1.F6 0 ICNT=1
- 10 2J31 JRM=le J6
%"As 3 DH 2034 l=1,30 t rt T4005( II.GT. AMX. AP.D.TA D05t I I.LT. AMDPllR AN4 t t l= IrNT I FI T8hr St i l.GT. 4px. AND. T9 705 t II.L T. AM0"l A MX=TROOS t i l /J34 CweTINUS ( Adac=Awx-(AMX*l.[-41 ( C'J Ta l CNT + 1 2014 C ON T IN LF 34 4C55 I:1,36 0 9 205 t M0= 1,5 01 233 7 J ul,11 ~ J0stNAb4til N ANUCI J0l eNAMNUCIll /OST 15P at M3. J.Jf 31 =005Pl *n, J, Il 2054 C 3NTINLE /05> C'IN T INLE ddtTft=I,2421 242 FOd4 Aft'A',T21,'005F Trs F ACH 8.4G AN THRtsuGH E ACH.' ATHJ AY F 91 S Area s ( A dlJNUCt 19E I M A's-RF M S / T E A R I ' l 1 =stTEtSte3Jil 4RITEt31,2JbJ) 20(1 61RMtfI' *, ' k AN K', T 7, ' AUC L I3 t ', T 16, ' 9 AT HW AY.,;2 $,, T OT.n 11V',T 34, l'GI Tb AC T *, T4 5
- n0NE ',T 52,' TH v 4 0l o', T 62,
- LUNG %', T
- 1,' MH%T a r e,
2T 79, ' A lnN t y s ', T 89, e ll vF a ',790, ' 5PLF E N ', T 107, ' TF.5f C 5 ', T 115, ' CV A* I F % 3'l i delTCt 51,3.118 I On 2062 JO=1,NNUC% l SC /g1 4.) = f, 5 1 l ,mse em --***mb*M***M ~ 'ss 1
67 I r t MU.EQ. llGU TO 2063 d > I Ti( 51s 2441(MODE t >D),(D CSPA (MD,J JOI,Jat.113 8 244 F Gkw AT (* 8,716. A 8,T24.11F 9.28 fin TO 245 2003 4di f F ( 51,20u4)( J9,NANUC(JCl epo9F ( %) 3, (00$ P A (MO.J, J ol, J. I, l t l i 2 0 t.* F 04M AT (' ' e T1,I 4,77, A R, T16 AR, T24.11F 9.23 245 CuteTINuF 2002 CO.'4T int F On 2080 J ul.11 4 R I T L( 51,20811NA 4E S ( JI 2 001 t "A
- A T (' J', T.lo, 'P 6WC E NT OF
',A),' 075 F NY F ACH P4 TINAy'l WklTE(51,2C7Jl 2 010 r dC* A1 ( ' o ', T 20, ' NUC L IDE ', T 4 5, ' P A f std 4v ', Y50, ' Pa5r( M AN.er *tt l ', 1 T TJ, *PtRC LNT OF TCTAL'l dollt(S1,3011 09 2065 JJal,N4UC5 $ UM A s 3 - .id 2J65 *0=1,5 2006 $UMA=38 5P AltleJ J0l*SU"A DC1 ( 11 = ( )aS P t (1, J. Jn l / 5UM A l
- 103 O CT ( ?i =( JOSP A (/, J,J Ql /$U4 Al *100.
D CT ( 3) = ( )"S P A ( 3, J, J0 3 /5uM 41
- 100.
P C T ( 41 = ( 045 P 4 (,, J, J D l / 5UM Al
- 100 8CT(Sl=(ud5PA(5,J.J03/5UMAl*100.
MD=1 ddI T C( 51,206 al 4ANUC ( JCI, MODF (MO),075P AI NO.J. J0 3, PC T (MDI on 2067
- U=2,5 2067 40 ! T E( 51,20t9 3 Mf'Oc ( Pal 00$PAIMO.J,JOS, PCT (F01 2069 r OPw AT ('
', T 3 5, A R. T 5 2, t 10.3, T 75, F6.13 206o rowx AT(' *, T2u, A s, T15, A 8, T52,F 10.1 T T5,F6.13 2065 C O'4T INUF 2060 CONT tstst WRITEl51,20943 20%4 F9RM AT (e g e, gge,,JO5T TG E ACH ORGAN FROM All P ATHW AYS ' l WRITE (51,20953 2 0's5 F ORM AT ( 'o ',140, ' NUC L10F ', To0, ' ORG AN ', Toa, e 00$ F( 44 N-R E MS I' l dRITE(51,3011 30 2 090 Jd=1,NNUC 5 no 2C91 J=1 11 SOMA =0 ul 2u9 2 *D=l e 5 2092 $ (W A=DPSP A(MO,J, JCl
- tUMA I F l J.E C.1 ) GO TO 241 dGITh(51,2401AAMF5(J),504A 240 &ORHAT(8 '
T59,A8,792,F10 31 10 70 2001 2*1 WR I TE( 51,20933 NANur( JCl,N AM 5(J),5U1 A 20%) F URA AT (* 7 3 J A 8,7 59, A 8, T92, E 10. 3 8 2091 CONT INLE 2000 ru:4TINUE 'J d I T F ( 51, 2044l 2044 rngw AT (
- 1 ',752 ' TCTAL DOSE FDR EACH P AT Hw AY
- 3 elTF(51,20451 n
2045 & Nn 4T (
- J', T20, 'nRGAN *,T5 0,'P ATHW AY ', Tao,'005F (M AN-RC"$ 1' e t r isJ 'PFMCE NT'l Wa(TF(51,301)
On 2C4C'4=1,11 eYJ 2041 Mdal,5 l
- T WM9OhG wM,geOdMw Gb e h
& @ g gmW WM M h& % $66 uM@ m-- ^ - - MO 6O M O S
68 S U 4 T ("Cl = 0
- Cit"Di=J
'n 2 342 J 0= 1 NNUC 5 4042 Su'TIMol=3050AIMD.JeJul+50MT(MG) 2041 Cn*4TINuF 1U42=0 n o 2 J4 3 = 0 = 1,5 2043 SU14 =5bM T IMel +5UMD .11 5110
- D= I,5 Dr.T(M0l=(SUMitMDB/50Mel*100.
I FIM C.GT.1)Gt' TO 246 4WITEt51.SC111NAwF%(J). MODE (M01.SUMTIMol. PCT (MDI 5011 F OR l AT (
- 8, T 19, A S,7 5 0, A e. T8 2 e E 10. 3, T 101.F 5.19 c.3 TC 5010 24c d 4 t T F ( 31. 24 3 3 MDJF("DI,5U* T( MDI, PC T( Mui 243 r 7e.w Ar t ' e, T 53. A d.T s 2, E 10.1, T 101. F 5.18 Su1J C ON T IN LF 2043 CHNTINUE ulTE(51,9J218 m
9 s21 8 0RM AT (
- 18.T42. 'HIGhEif I N0lvlDUAL DOSF S IN AREA 000 EAC4 NUCllOf' 11 MelfE(51.93203 43.'O 6 4Am AT (
- a ',120, ' NUC L i rg e, y47, e 7gc Ay e, T70, '!in5r (e F M 5 8 ',T 97, l ' L uC A T lu',: ' l W R I T C. 8 51 1J5 3 9 1050 r.i,w AT g e e, T9 0 e ' Go t D ', T 10 0, 'r 0LUMN'. T 110, 'G Dw' l s
. u 9311 I =le NMIC S I GD Int i la 1 3') v312 Jele!! i I Fl0C5 tr4( Je ll.G T.005UNt Je lli tr.RIDil l=2 I F i l G410 ( I I.t o.2 iD050N( J. I I =00 5 t N( J,I l 4 I F l ! Ga lD( I I. F.Q. 21 NOMM2 ( ! ! =ND4M l l l I F( IG1 I0t i l.EQ. 23 NoMM2( !! =NRMMill 86(J.5C.11bb TO 9113 d e l TE t > 1, 9310l t A mr5 ( JI,00 50N(Je ll,1GR ID(I I,N79M7( l l, NamM211 )
- 0 fu 9312 9313 w k I T E( 51. 931,8 N AMNOCI I I,N AMr %( JI.095UN( J,19,1GR ID( ! ),40Mu 2 t i l, 1*aMM2(ll 9 312 ' r.*4T l1UL 9311 CONTINuF 9314 s n,- A r g eJ e, T21. A 8, T46, A R, T70,F 10. 3,7 91,12, T102.12. T 111, t 21 931 g r 0R= Ar t'o ', T4=. A 8,7 7 C.E 10.3.T91.12, T102,8 2 T!!!,12 5 g o I T E l 51.1J5115 g 502 1051 r op
- A f t s u ', T 20, ' r40. I I S A 10 9Y 10 SJuARE WITH THF Sine or e a.e t a los,p lg. g, e gETFDS'l f
81TFtSt.105215054 10' 2 F wM Af t '
- ,T20.*40. 2 IS A 20 BY 20 SOUADE w!TH TMP %ID8 e15 F 1"'I s
tulJ',F10.1,* MFTFRS'l 4RITI(51.90991 90Gv F 04* AT I'I ' e T 50,'HIGHE ST I NDIVISUAL 415&$ !N 4AEAe I { wRitrt51,90973 9397 5 4e* A f t ' J ', T 55, e ne G AN e,76 7 '045E (d FM51
- l oO 9096 J=le!!
4'51JEJlso 4 4" 9015 ! = 1, N NOC S i 5045 *)e5IJ E J a = 0050NI J e l l+0G% IJ f J ) 9096 '7NTl40E i
- <ll!t$1,Vgv41(tr.AMES(JI C0$IJtJil,J=letti i
N094 ringAt(* *, T 55 e A f e T6 7 e F 10.J I 79 77 e ;*a T INUE 5 Tup ? r y,s 4
69 C S tJ4R ru f I vi A KN A ( I, k0, Ne l C 14 M f:*d FL t:t ( 3 6,2 0,2 01,0C ON ( 3 6, ?0,2J I, T A !( 36 3. TG7( 16 ),Nauv J r ( 16), 1tutSil2sl d5AL*3 ht*NUCl36) ' CU'J t i,N ), tA l= T A 1 ( I I
- 1. F-6
" C0ts ( f, N :,';p l = T G U ( ! )
- 1. [- 4 et l i t t s 1,11618 t.C, !J I S T ( NR I, N AMNUC ( I I, Af uN (1,'I1, N* l, GC o*.'(I, t'n,'u t i
1161 F 14
- A f t ' ', T 1 J I 11,19,T41,o H T 73,510.3, Tino, F13.3 8 l
I r elN T It.tE d T J C, F 4D S t,340VT IN E A < At (, Nfs, P.a l CO*'4LN AC4,( 3 6,7 0,2 0 ), GCO N( 36, 20,23 ). T.*.t ( 3e l, T GD( 3 6 ), f1&*vilC I 36 ), ll DI 5 f f ?31 DEAL *6 NAwsutt36) A CUN( 1,Nu,t4R i e f t.! (I l o t.F-e GC0 4 ( !.N.i.NR i s iG'11 I 1* 1.E-4 2 7 I T E ( 51,11611 A O NW N A *NU C( I I. ACON ( 1,'M,Ne l, GCON( 1,49,N*# 1 1161 sow.*ST(* ', T 10, I l 0, I M. T 41, A R. T 7 3, F 1 J. 3, Y106, F 1 J. 31 1 C fsN T IN UE JETups. E Nil '.Ub8 quT I NE ALFDC(n, F VG,U,Li nt,XLIDal pt3 1 I X 1= 1,10 Y=1J0JU'!K1 1 I F ( ( (Y o *:ll-(.4 7 *F 8 Ye t VG/Ull i.GT. (.4 7* F*L in131G3 in 2 2 Oft J IX2=1,10 Y = t i x t
- 1G C00-lbOCJI + t K2*1000 2
I F ( ( ( Y**i'l-(.47 *F = Y* ( VG /U ll ).GT.(.4 7* F
- L I 0ll lG' T O 4 4
'i f t 5 iX3=1,10 Y=(IAl*10000-10000l*(!X2*1000-1090l*IX3*100 5 t r ( ( (Y es.11= (.4 7
- F8 Yt ( VG /Ul t l.GT. t.4 7e F 8 L I nll )G 1 T P 6 l
6 X L I D'J= 2
- Y 2FTU4N i
E lla { l c 4 l d
I i 70 r C 519 0 %)N '5 du th SUBRCUTINE FON DFPLFit0N FaartleN CALCUL Af tt: I C \\ SumpduTI'el QXR(0,r.HS,hMe tNTt,VG,U.NP47,5tMPI F UNC (U F e NH, X I= F or XP( =(HHe*2
- F ** 2 3 / (2.*X* *( 200 lll /X ** n FJNCl*C.9 F UNC 2= 0.0 I P4 T a( NM-lNT L l/ HPp f Irtlpaf.Lt.tllPPT=1 J Puf =2*lvRT i
qN Nw-IPwT J NT L alhTL +2* 1 P* T 41 0 1 IsJNTL,NN JPRT i xtel-IPR' ell
- H 5-VG
- X 1/ U IF {Hl.LT.U.03 Hl=0.0 r UNC 1= F UN C l
- F UN C ( 0, F, H2, X 11 x 2el Hl e H 5-VG* X2/U IF (NZ.Lf.3.UI H2=0.0 I r uNC 2= FUNC7 +5UNC(0,F,Hl,X 2) i XMsNM e
H4aH5-VGeAd/U l IF ( HN.L T.0. 'J I HM= 0. 0 I F( I NT L.S u.U lGD TO 2 X NT L a t hT L H I = H 5-vG
- xNT L /U IF ( Hl.L T.U.U I Hl =0.0 S I M P er uNC (0, F H I,7 4T L l
- FU NC l
- 4.0* F UNC 2* 2. J*ruMC(3, F,HM, r* 1 I
SlHP=5fMP*IPMT/J.0 f,0 TC 3 I 4 S i m p = ( F UN C18,.J +F tWC 2
- 2.0 *F ut.C ( n, F, H M,x Mi l
- IpW T/ 3.0 I
3 J c TURN CNd i I C C lifvt EftnN FeACTIWe $UaROUTINE FOR STAellLITY CATEGney a C S U4 Ril'J Ti r.E d x 4( X,H, V7, U,U C,VG,4 AX ) edweX C ALL O Xk t 1. JJ e %. 02,H,ha,0,VG, ti,2 5,51NPal i 1 JAR =FXPISIMPA*(~.T978688VD/UUI <FTUwN cNO I. l l i l l l 4 - ~ - - - - - - --
r 71 C C OFut E T I CN F R AC T I UP. SURROUTINF FOR STABILITY CATEGDAY u C % LBRCd11N E OX0I X,H,VD,U UC,VG e QRXI Nw=x C ALL 3 xk t 1. 0 0,8.3 5, H N M,0,VG.U,2 5,51'1P9 8 1 UB A= EXP($IMPB*l. 797881*VD/UDI w c T u ='s . FND C C s;t PL t TI C. FM ACT ION SUmprUTINE FOR STA9IlliY CAfta8Rf f C S U4 W:u il:4 0 01CI X,H,V0 eueUC,VG e4CX i ??*= l JJG Irix.LT.1000lNM=X C AL L J hd t.9 54,10. C15.H. NM. 0, VG, ue 23, $ l* PC 10 t r i x.L r. 100u l51 HDC= 5 l *PCI trix.Lt.100J3Gil TO 1
- tM=1G000 i
I F t X.L T.1 C000lf.** x C ALL 0xR I.b 3 3,4.4,H, NMe 1000, vG Ue 15,5 IMPC23 I F t K.L E.1000u l5 I MPC = 5 t kPC l* 5t MPC? I F( X.L E.10003 8GO TO 1 aM=x C ALL ux41.5524 3 31,H,NP 10000,VG,H,15,5f MPCJ i S I19C= 5 f M PC 1 + 51 M PC 2* 514PC 3 1 JC A=E APIS IMPCet.797ddl*VD/UDI 4FrukN f *a9 C C C F P t F r i t'. FR ACT iteN SUER CUTINC FOR ST ABILITY C ATFGORY n C S U$ R:tu TI,E Q xt'l X.h, VO,U,UreVG,00XI '4 M s 100 0 I F I A.L T.1000l NV= X C A LL 0 xM t.8 0o l,7.4 9,H Nw, C,VG, u,20,5 t MPD18 l IFtX.LT.100015tWPO=5fMD01 I F I X.L 1.1000lGU Tri 1 N M. 3 0J J I F i t.L T.3 COCINM= 4 l C A' s V Ka t.6715. 2. 45,H, NMe 10.10, VG.U,5. 5I MP02 8 I r t x.L 1.J 300 l S I M PD= S t PPD 1 + 5 t u p02 I FI A.L f.3300lGD TO 1 N '4 = \\ C& a3 I F l a.t T.10000lNN= x C ALL w 3R t.5099,0.11 H fJu,3000, VG, u. 5,5 f M PD3 8 I F t K.L F.100J0 3 5 t MPO = 5 t WPD 1 + 5IM PD2 +5 t M PD3 a I Fi x.L t.1C000lGO TO 1 N4=X C at t qua l.S 251,.9 3. H,h u,10000, vG,U.15,5 t MPO4 3 % IMPD= 514Po1 + 5f MPO?+ 5 t >P0 3+5f MPO4 1 1 JDX = E X P t S IM P D's,t. 797883*VD/UDI 1 R E T UI8'J END 4
8 72 C C rFPL S T ILN F8 ACT10N SUAROUTINE Fnt ST ARIL IT Y C A TCGtI*T F C % LsgUu T IN F. Oxf i x,H,vo,U,0 0,vr. 0F X I ta w e 100 0 IFit.LT.1000lNW=n L AL L Q tk t.3 6,15. 5,H,N*e ce VG e u,20,51*PFi l t ri t.L t.100015t rPF a $ldPfl 161 x.L L. t dorJ IGO TO l
- 4= 30C 0 I F t X.L T. 3 CColNw= X C ALL Q Ae t.t 29,3.15,H e N 4,10lJ. V i,U,5,5 tMPT 2)
I r l a.L !.3 00 J 15I m pt = 51 mPF1 +s t p ar2 IFtX.LE.J010lGO TO L .w=10000 IFix.LT.10000lH9=A C AL L 0 xs t.405,,. 52., H. Nu, 370n, v0,u,5,5] MPFjl Ittx.L6.1000015I MPL = S t >P,F 1+ 51 rP( 2 +% I MPF ) I FI A.LE.10000lGU Tu 1 L *4 = 4 CALL JxR t.111. 0349,H, NMe l1001, VG,U,13,51:4Pf4) S l*Pha $10p( L egI Mot 2 *51=pr 3*5] upt4 1 )C4=[Xel51*vC*t.7978Sl*VC/UDI a r T U 4*e
- 'O i
C C s'f vL C T I C*: FR ALTlui Sutt*CUTINE FCR ST A4IL l1Y CAf rG wr & C S L JR-t T I'il G Af t X, H, vD,8J,U O VG,0F XI '44=1000 IFtX.LT.lOODIN4=X-C t.L L iJ Kk t.n o 2 5,14. 7,H NW, C. VG, U,2 0, 5 t **P F i l I r t w.L E.1000 l st PPF= 5I MPF1 I FI X.L t.1000lGG TO 1 NM=3C00 lit X.L T.J C00lNF= x C AL L uxk t.6 321. 6.112,H,$m,1000, VG,u,20,51 *PF 21 ~ I rl a.L C.J C00151 MPF = %I"PF1 +5 t H PF2 16 t K.L L.3000lGC Til 1
- 4"= 100 00 i
I F I X.L T. t cJ00 l*44 = X P. ALL Otd t. 3 71 e. 7(4,H, N*,3 0J0, VG ets,2 0,5t MpF.41 l a Iftz.LE. 10000 3 % I 4Pt = 5 t *Pb L +5 t *9PF 2+5 tu PF ) I F t E.L E.1000J1GO Tr. t l (W=( C %LL :J xR t.1 L J o e. C 6v 4, H, NM,103 31, V6, U,20,51
- P F41
% I 4pf = Sl *:PF l* %I MPF2*SIMPF 3+%IdPF 4 1 JFK=txPISIMProt.T978al*Vn/UDI art 0kN cs3 f i 1 3 l l
73 CC rFPL LT I c*: FW AC T IU4 Steef,UTINE Fnd ST ARIL IT Y C A T(r,qay n C $ LDR CullN F J AGt X,w,VD.U,UO VG. "GX I N"=1000 IF(X.LT.1000lN:4= x
- r. tLL C xM t.8 2> 7,61. 2 5,H. Nu,0,VG U,20,5 tMPGli I F i x.L C.1 C00 3 51 P PG= 5 I M Pr.1 1&(X.Lt.1J00lGU TO 1
'M=3000 I F ( X.L T.J C00lN*= X CALL 9xht.6547,19.8,H,Nue1000,VG,U,10,51"PG7) IF(A.LL.JC0035IMPG=5tweGl+%IMPG2 I F t X.L F.3000 lGt! TO 1 N W = 100 0J I F ( x.L T.1003JIP M = 4 CALL OXFt.3618,2.115,w,NM J000,VG,9,10,%IMPG)) I F I A.L E.10000 3 51"pG = 5I M PG l+ 51 ** G7 +% IM PG1 IFix.LL.10000lGC TC 1 NMax C ALL J X4 t.1106. 1719 H NM,10001, VG, U,20. 5l*PG41 S I *PG= hl.*PG l + 51 MP G2+ 51"PG 3+ 5t M PG4 1 OGX=FAP($1MPGe(.797683*VD/UDI 4FTURN F No I ~ s e ...,...............u,,,_.....,....__.
iy :
- . a d.,"
~ + n p M M a m 1 M j(;.i' 0!
- yQ j
n s1 a .j ,1, -a ? i l } i aX 3 'i 3
- n,
.1 g @: "B i 4 -) M c u s u $2 Nj Ih; &g k. i l h b}i 31 1 L r:4 m iJ r' u w 1 W b him l ?i a n
- f,
_w 5$ j ...}}