ML20046A566

From kanterella
Jump to navigation Jump to search
Forwards Ssar Markups for Listed Changes Made as Result of Consistency Check Between PRA & EPGs (Issue 9)
ML20046A566
Person / Time
Site: 05200001
Issue date: 07/20/1993
From: Fox J
GENERAL ELECTRIC CO.
To: Poslusny C
Office of Nuclear Reactor Regulation
References
NUDOCS 9307290049
Download: ML20046A566 (26)


Text

.

l l-

~

)

GENuclearEnergy L

GenetalDearit Comany 175 Cunner Avenue, San Jose. CA 95125 July 20,1993 Docket No. STN 52-001 Chet Poslusny, Senior Project Manager Standardization Project Directorate Associate Directorate for Advanced Reactors and License Renewal Office of the Nuclear Reactor Regulation

Subject:

Submittal Supporting Accelerated ABWR Schedule - Consistency Check Hetween PRA and EPGs (Issue #09)

Dear Chet:

Enclosed are SSAR markups for the following changes made as a result of a consistency check between the PRA and the EPGs (Issue #09):

1. Appendices 18A and 18D, and the basis and justification for changing the Heat Capacity Temperature Limit used in the EPGs. The new Heat Capacity Temperature Limit will allow RCIC operation for at least 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> without .

requiring an emergency RPV depressurization after a postulated station blackout event. The chance in calculation methods for this Limit was discussed with the NRC staff during our June 10,1993 meeting in San Jose, CA.

2. Rupture disk burst pressure increase from 80 to 90 psig. This change affected the primary Containment Pressure Limit and the Maximum Primary Containment Water Level Limit in the EPGs.
3. Suppression pool temperature LCO (Limiting Condition for Operation) increase from 95 F to the current value in the ABWR proposed technical specification of 110 F. This change affected the Pressure Suppression Pressure used in the EPGs.

Please provide copies of this transmittal to George Thomas, Jack Kudrick, John Monninger, and Glenn Kelly.

Sincerely, b%

Jack Fox Advanced Reactor Programs cc: Alan Beard (GE) -

Norman Fletcher (DOE)

CalTang (GE)

I

-> 270026  !

l l 9307290049 930720 PDR ADOCK 05200001' 7 D

.A PDR kg

W .

ABWR HCTL CHANGE, BASIS & JUSTIFICATION ,

Introduction Review of the Station Blackout (SBO) evaluations has shown that suppression pool heatup has the potential to exceed the EPG Heat' Capacity. Temperature Limit (HCTL). For a SBO, the only injection system available to the RPV:is the turbine driven Reactor Core Isolation Cooling (RCIC) system.- -If the HCTL is exceeded and the operator is forced to depressurize the RPV, it may make.

the RCIC unavailable for. injection and lead to a core heatup. The bases'for the HCTL been re-evaluated, and the HCTL is being revised to remove previously unrealized conservatism in the HCTL to avoid this premature loss of RCIC during a postulated SB0.

The SB0 evaluations have calculated that pool temperature at 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> into the event is about 102 C (215 F). At a pool temperature of 102 C, the maximum RPV pressure allowed by the HCTL is about 4.1 kg/cm2, (58.3 psig). Although the.

RPV pressure isolation setpoint for RCIC is 3.5 kg/cm2 (50 psig), the RPV could easily be depressurized below the isolation setpoint and cause the loss of RCIC before the end of the required 8 hour9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> period.

Description of Chance and Basis The HCTL bases are provided in Appendix A to Rev. 4 of the EPG and details of.

the HCTL calculation are described in Appendix C to Rev. 4 of the EPG. .The-HCTL low-pressure endpoint must be established in order to define the HCTL curve. The HCTL low-pressure endpoint is determined such that the' conditions immediately following a RPV blowdown to the Minimum RPV Flooding Pressure (MRFP) will not exceed the wetwell design temperature on that temperature which would pressurize containment to above the Primary Containment Pressure Limit (PCPL). The endpoint temperature and MRFP are consistently defined to The endpoint assure decay heat removal from the reactor by SRV flow. i temperature at the MRFP is defined to be .the maximum pool temperature which will not result in either a suppression chamber design temperature or a ,

i containment pressure which exceeds the PCPL with pool water level at the minimum LCO. The PCPL, in turn, is based on the limiting maxinium containment pressure capability. Thus the EPG, Rev. 4 HCTL basis mixes a' design value with a maximum capability. Typically, the EPGs define limits based on maximum .

capability rather than on design values. This inconsistency has been noted .l previously and is currently an open item for resolution by the Emergency  :

Procedure Committee of the BWR.0wners Group which developed Rev. 4 of the EPG.

The most recent proposal before the EPC (June 1993) is to use temperature capability instead of design temperature as part of the HCTL bases.

i

- , b

0 t

'i , ..

-h ABWR Service Level C containment strength calculations show' a; temperature capability of 260 C (500 F) at 6.8.kg/cm2J(97 psig). However, since the-rupture disk burst- pressure is about' 6.3 kg/cm2 (90 psig), a' suppression pool' temperature capability .of 167 C (332 F) .[ corresponding to the saturation temperature at the rupture disk burst pressure] was.specified'for the. revised' '

HCTL. Specifically, the-basis for the ABWR revised low-pressure endpointi temperature is the lower 'of the suppression pool temperature capability -

(167 C).;o_r that temperature which would pressurize containment: to above the '

Primary Containment Pressure Limit (PCPL)..

Justification Clearly,- under the circumstances postulated in the Station Blackout scenario with no low pressure coolant-injection capability available, it isL betterLto-' t' continue with RCIC as long as containment integrity. is' not threatened.:The alternative is to depressurize as required by the old HCTL curve until RCICLis; isolated on low RPV pressure at which point .under-Station Blackout conditions l 1 there would be-no'available core cooling system. ,

Revising the basis for. the low-pressure' endpoint temperature eliminates .the' ~

EPG inconsistency'which mixes a design value with an ultimate capability and_

closes this EPG open item-for the ABWR. The higher endpoint-temperature :and V correspondingly higher HCTL carve allows continued core cooling' with RCIC and more time for recovery of alternate coolant injection systems and/or ,

establishing suppression pool cooling.

This also improves the plant capability t'o withstand a scram failure. by.

allowing more time for the operator to shut down the reactor with liquid boron a l

injection before being required to' emergency depressurize the RPV.

The suppression . pool tem'perature capability value selected is less than l calculated service level C capability, but was- chosen for consistency with '

l

.J containment capability as limited by the rupture' disk' burst pressure.

The HCTL is based on containment consider:.. ions and is completely independent of equipment operability. However,=it is noteworthy that the revised HCTL low-pressure endpoint (high temperature) temperature value of.138. C, (280 F) is within the suction temperature capability of the HPCF and RHR pumps.- The -

NPSH' limits have been (will be) reviewed to assure applicability over. the:

extended pool temperature range.

1 a

1 j

l Results The new HCTL low-pressure endpoint temperature is about 138 C (280 F). The  !

revised HCTL including the new endpoint is limited by the PCPL rather than the  :

pool temperature capability.

Other Appendix C curves and limits' are affected by a change in the HCTL low-pressure endpoint value. The MRFP increased slightly (3.3 to 3.5 kg/cm2), '

(46.5 to 50.4 psig). The Heat Capacity Level Limit l changed .only slightly .

becaese it is a function of the difference between HCTL high- and low-pressure.  !

endpo.nt values which remains fairly constant. The Boron Injection Initiation- :l Temperature (BIIT)-increased from 46.4 to 84.6 C,- (115.5 to 184.2 F), because BIIT value at low power is proportional to the HCTL- high-pressure endpoint temperature. There was a corresponding increase in the reactor' power at.which the BIIT equals the Technical Specification pool temperature for scram from j 2.56 to 5.46%.  ;

The Pressure Suppression Pressure curve also changed as a result of the HCTL~

modification. For the ABWR, two pressures establish the non-vertical segments of this curve. .The segment sloping downward from the maximum value for higher -

pool water levels is established by the SRV discharge loads on the pool ,

boundary. This portion of the curve is unchanged. The segment sloping upward '

r to the maximum value from lower pool water levels is established by the maximum pre-blowdown containment pressure in the suppression chamber following a purge of the drywell atmosphere to the suppression' chamber. Raising the l HCTL results in a higher allowable pool temperature before blowdown-which i raises the allowable pressure at the pre-blowdown condition.  ;

)

I I

maic=

ABWR-Standard Plant utv. A TABLE 18D.1-1 -

BWROG EPG REV.'4 APPENDIX C INPUT DATA FOR ABWR i PA R A M ETER VALUE PARAMETER DEFINITION IDsuct_1 RHR (LPCF) Suction identification Dsuct_1 42.86 cm Internal diameter of suction inlet to suppression pool Hsuct_1 1.115 m Elevation (inside bottom of suppression pool = El. 0) of center of suction inlet to suppression pool Wsuct_ max _1 1130 m3/hr Flow (maximum) through suction IDsuct_2 HPCF Suction identification Dsuct_2 38.74 cm Internal diameter of suction inlet to suppression pool

~

Hsuct_2 1.115 m Elevation (inside bottom of suppression pool = El. 0) of center of suction inlet to suppression pool Wsuct_ max _2 890 m3/hr Flow (maximum) tiuough suction h

BWRtype 6 BWR type (Enter: 1,2,3,4,5, or 6) (ABWR = 6)

Test 66 deg C Temperature (maximum normal operating) of condensate storage tank -

water Hvent_pc 27.2 m Elevation of containment vent (centerline) located above TAF Hsp_lco 7m Elevation of minimum suppression pool water level LCO Hsc_ tap 14.2 m Elevation of suppression chamber pressure instrument tap Psp _ des 3.16 kg/cm2 Pressure rise (design load), suppression pool boundary i

Psp _srv 1.55 kg/cm2 Pressure rise (maximum load) on suppression pool boundary resulting from SRV actuation Mf_sp_lco 3558426 kg Mass of water in suppression pool with' water level at minimum LCO and water temperature at maximum LCO for unrestricted operation at

(,.32f Power j Ppc_ vent 5dr25 kg/cm2-gauge Pressure (maximum) in airspace at which containment vent will open Pdw_maxop

  • 0.053 kg/cm2-gauge Pressure (maximum normal operating), drywell ,

Psc_maxop

  • 0.053 kg/cm2-gauge Pressure (maximum normal operating), suppression chamber Pdw minop 0kg/cm2 gauge Pressure (minimum normal operating), drywell .

Pse_minop 0 kg/cm2-gauge Pressure (minimum normal operating), suppression chamber  ;

paw scram 0.12 kg/cm2-gauge Pressure setpoint for high drywell pressure scram

- -1 1

I IBD 1-2 Amendment 22

,=

ABWR uramix Standard Plant utv. 4 TABLE 18D.1-1 (Cont.)

BWROG EPG REV. 4 APPENDIX C INPUT DATA FOR ABWR PARAMETER VALUE PARAMETER DEFINITION 1

Tsp _ scram 57.2 deg C Temperature of suppression pool at which reactor sc;.an is required l l

Tdw_maxop 57.2 deg C Temperature (maximum normal operating), drywell Tsc_maxop -;iLfrtfeg C Temperature (manmum normal operating), suppression chamber airspace il3 3 l Tdw minop

_ 49.4 deg C Temperature (minimum nonnal operating), drywell Tsc_minop 10 deg C Temperature (minimum normal operating), suppression chamber airspace Tsp _minop 10 deg C Temperature (minimum normal operating), suppression pool Tse_ des 103.9 deg C Temperature (design), suppression chamber Vdw 7350 m3 Volume (free) of drywell and vent system I/II: Vol. drywell & vent system III/ABWR: Vol. drywell(vent sys = 0)

Vse_lco 6005 m3 Volume (free) of suppression chamber above minimum suppression pool water level LCO WLsp_srv 7.1 m Water level (inside bottom of pool = 0) of suppression pool used to determine maximum suppression pool boundary load resulting from SRV actuation WLsp_lco 7m Water level (inside bottom of pool = 0) LCO (minimum) of suppression pool >

dPdw ww_ 0.21093 kg/cm2-dif Differential pressure capability (maximum), drywell below werwell (if value is greater than 0.7031 kg/cm2-d, enter 0.7031)  ;

Hda N/A Elevation of Mark I/II downcomer openings Vsc_dco 7619 m3 Volume (free) of suppression chamber above Mark I/II downcomer openings or volume (free) of suppression chamber above top of ABWR horizontal vents Hhorvent 3.85 m Elevation of top of Mark III/ABWR horizontal vents .

Ten _ des N/A Temperature (design), Mark III containment n_1 DRYWELL HEAD loentification H_1 36.14 m Elevation (inside bottom of suppression pool = El. 0)

Loc _1 DW Location (Enter: DW or WW) 1 Amendroent 22 18D,1-3 i

ABWR uuimia Standard Plant aty. x TABLE 18D.1-1 (Cont.)

BWROG EPG REV. 4 APPENDIX C INPUT DATA FOR ABWR PA R AMETER VALUE PARAMETER DEFINITION Mat _1 6, Material types (Enter: 1,2,3,4,5 or 6,7) 1 = SS304, SA240, SA320, and A312 '

2 = S21800, A193, and A194 3 = A36 4 = A160 Gr. B and A105 5 = A201 Gr, B, A212, and SA516 6 = (User Definable Material No.1) 7 = (User Definable Material No. 2)

Peale_1 6.328 kg/cm2-gauge Pressure capability (maumum) .

Mats _l. YS Strength used to determine pressure capability (Enter: YS or TS) -

Teale _1 371.11 deg C Temperature used to determine pressure capability n_2 RUPTURE DISC Identincation H_2 17.2 m Elevation (inside bottom of suppression pool = El. 0) -

Loc _2 WW Location (Enter: DW or WW)

Mat _2 7 Material types (Enter: 1,2,3,4,5 or 6,7) .

1 = SS304, SA240, SA320, and A312 2 = S21800. A193, and A194 3 = A36 4 = A160 Gr. B and A105 '

5 = A201 Gr. B .A212, and SA516 6 = (User Definable Material No,1)

(,,32,7 7 = (User Definable Material No. 2)

Peale_2 H3.rkg/cm2-gauge Pressure capability (manmum)

Mats _2 TS Strength used to determine pressure capability (Enter: YS or TS) 176.67 deg C Temperature used to determine pressure capability - I Tcale_2 J

LHGRmax 47.24 kw/m Linear heat generation rate (design maximum) (the maximum allowable j value is 14.4 kw/ft)  ;

Margin (demonstrated) to cold shutdown at most reactive point in life :I Kmarg_cs N/A with worst rod out (only applicable for active fuel length less than or '

equal to 146 inches) i Mela! 91128.24 kgm Mass of clad and channels Mfuel 171596.88 kgm Mass of fuel (UO2) i Nbuns 872 Number of fuel bundles Qrx_ rated 3926 M Wt Power (rated) i 18D 1-4 Amendment 22

ABWR

~

uunwxR Standard Plant aty ,

i TABLE 18D.21 BWROG EPG REV. 4 APPENDIX C RESULTS FOR ABWR P A R A M ET ER VAlEE PARAMETER DEFINITION CSBW 541.8 kgm Cold Shutdown Boron Weight l

l MSBWP 4.2%* Maximum Suberitical Banked Withdrawal Position Tsp _heti_2 .10}$C /J 7.7 Heat Capacity Temperature Limit low-Pressure Endpoint Temperature Tsp _hetl_1 J56:2'*C /g3,2 Heat Capacity Temperature Limit High-Pressure Endpoint Temperature Ppc pcpl_1 442 kg/cm 2 Pnmary Contamment Pressure Limit at Elevation of Muumum p,49 Suppression Pool Water LevelLCO MNSRED 6 ,

, L8f Muumum Number of SRVs Required for Emergency Depressuritation MRFP ;LMkg/cm 2 Muumum RPV Flooding Pressure MSCRWL -79.41 cm** Muumum Steam Cooling RPV Water Level  :

MZIRWL -111.2 cm** Minimum Zero-Injection RPV Water level MSRP 0 kg/cm 2 Muumum SRV Re-openmg Pressure WLsp_tpli 12.65 m SRV Tail Pipe Level Limit Low-Pressure Endpoint Water level SCSIP y2ng/cm 2 Suppression Chamber Spray Initiation Pressure

[None] 2 g Minimum Number of SRVs for which the Muumum Attemate RPV Flooding Pressure is below the lowest SRV lifting pressure 0% = Fully inserted

    • 0 = Top of Active Fuel (TAF)

Amendment 24 1 BD2-2 a?

. ABWR uAu=AR Standard Plant REv. i TABLE 18D.2 (Cont.)

BWROG EPG REV. 4 APPENDIX C RESULTS FOR ABWR PA R AM ET ER VALUE PARAMETER DEFINITION MARFP SRVs MA!d7 Minimum Altemate RPV Flood Pressure f,0 (kc/cm2) 8 or more 9.48 7 10.98 6 12.98 5 15.78 4- 19.99 3 27.00 2 40.99 MCFI SRVs MCFI Minimum Core Flooding Interval LO Unia.1 8 or more 43 5 f 7 595f 6 845'l WLLI Highest DW Minimum Indicated Water LevelInstrumentNumber 1:

Run Temo. (*O Level (cm) Shutdown (345.3 to 1272.3 cm)

LDE Hid1 65.6 426.5 ~

65.6 121.1 439.9 121.1 176.7 458.2 176.7 232.2 482.1 232.2 287.8 514.6

%Q2 Highest DW MinimumIndicated Water LevelInstrumentNumber 2:

Run Temo. ('O Level (cm) Narrow Range (3453 to 497.8 cm)

LQE High 65.6 389.6 65.6 121.1 382.5 121.1 176.7 372.9 '

176.7 232.2 360.7 232.2 287.8 345.3 DWSIL Drywell Drywell- Drywell Spray Initiation Limit

[m) (See Figure in Section 18A.5) 0.21 463 0.28 81.9 0.33 105.4 0.40 139.1 ,

0.47 173.1 0.54 207.9 0.61 243.8 0.68 280.9 0.75 319.5 Amendment 30 1BD 2-3

ABWR :Esima Standard Plant m

4 TABLE 18D.21 (Cont.)

BWROG EPG REV. 4 APPENDIX C RESULTS FOR ABWR PA R A METER V A LL'E PARAMETER DEFINITION ,

1 HCTL RPV Suppression Pool Heat Capacity Temperature Limit j g jc,"#*

    • ]* (See Figure in Sections 18A.4,18A.5) 44 3.5 4sy}. 137.'1 4.2 491-4 /3G..t 5.6 8 I33 P 7.0 -964 t 33.0

% 10.5 434 /2/.'l 14.1 M / 26.3 21.1 864 /22.6 28.1 4B4 //9. & )

42.2 GB B //y, </ 1 56.2 M //0. /

70.3 69-B /06. 0 80.9 -66 4 /03.7 HCLL HCIL Suppression Pool Heat Capacity Level Limit Margin Water 1.evel*

g (See Figure in Section 18A.5) 3 ]

-H o.o -7,04 7.oo

  • O m = Bottom of Suppression Pool

-MO .2.f 62 G Vf

~~~4> nt?-? S', & --649- G a t  !

- f. 5 -543 IY

-6 4 J/. / +4B 5 3*

--3-9 r J.f H 5*

e 4 . '7 4 66 Y' '73 3.C /9. f --+45 6 9 6 47-B </V. V 4-46 </ V

  • PSP Suppression Pool Suppression Pressure Suppression Pressure Water Level
  • Chamber Pressure (See Figure m. Section 18A.5) g g,jg3 0.0 0.00
  • O m = Bottom of Suppression Pool  ;

4.5 0.00 4.5 W3 I. 3 # l 2- f.5 -040- / 7'7

--6,4- 4 44- >

'44 4 4;6- -440-  ;

--7 -4.54-12.7 1.05 12.7 0.00  ;

PCPL Pnmary Suppression Primary Containment Pressure Linut

"** "t hk (See Figure in Section 18A.5)

Water 1.evel, Pressme Iml &2/cm2i  !

  • O m = Bottom of Suppression Pool 0.0 M*5* 7 27.2 .5dr"5 '1 27.2 0.0 1 BD.24 Amendrnent 22 i

n.

., w n. 1 n ' *' wm^r

. %BWRJ- ,

'm ' Standard Plant- ww . - -

. TABLE 18D.2-1 '(Cont.)

' BWROG EPG REV. 4 APPENDIX.C RESULTS.FOR ABWR' -

' ~!

PARAMETER V A LIJE PARAMETER DEFINITION- L 4

'- 't .:

j'.

_(. ,

MPCWLL Suppression Primary Maximm Primary Containment Water Level .

Ji Chamber . ContainmW . Lisit ~g ,,

Pressum Water level" L s  :

(ke/cm2) Igg ' (See Figure in Sections 18A.4; 18A.5,18A'.6, . '

',+, ' '

s 18A.11,18A.17, and 18 A.13) s , ;

"~

X 0.0 27.2 . . .

z.'

_ J:6"0e3 27.2

  • O m = Bottom of Suppression Pool i h JY y,3 0.0 c -

MCUTL Time After Maximum Core Uncovery Time Limiti

~

Shutdown MCUTL . .

fndal h a} (See Figure in Section 18A.11) - ,

435f 4.2/ O 60.0 4.62 90.0 5.24 120.0 5.55 '

500.0 8.46 1000.0 10.21 1 j 3000.0 14.09 ' q 6000.0- 18.29 i STPLL Sur ession Pool SRV Tail Pipe Level Limit ,

RPV Pressure Wer Level * ..

(ke/cm2) Igg - (See Figure in Sections 18A.4,18A.5) ~

i 0.0 12.7
  • O m = Bottom of Suppression Pool: c1 28.1 12.6 ,

95.3 7.1 ,

RHR VL Suppression Pool RHR'(LPCF) Vor:ex Limit ,

lj Pump Flow Water Level *

(m3/hr) igg (See Figure in Sections 18A 4,13A.12) 0 1.54

  • O m = Bottom of Supprepion Pool 852 1.54 909 1.60 l 1.73 1022 1130 1.87 ,

HPCF VL Suppression Pool HPCF Vortex Limit )

Pump Flow Waterlevel'  ;

(m3/hr) In1 (See Figure in Section 18A.4) ,

I O .1.50
  • O m = Bottom of Suppression Pool 662 1.50

, 795 1.67 890 1.82 j I

-i i

/

Amendment 22 18D.245 fW ,"i' i j .

m- ,.

+

s me

mama ABWR c-a a-* cm Standard Plant PROPRIETARY INFORMATION -

ci.= m - --

g4 TABLE 18D.2-1 (Cont.)

BWROG EPG REV. 4 APPENDIX C RESULTS FOR ABWR P A R A M ET ER V A LtJ E PARAMETER . rTINIT;ON RPVS RPV Pressure Temperatum RPV Saturation E -

(kr/cm7) .Q (See Figurein Section 18A3) 80.86 295.2 1 7031 in 285.8 56.25 2713 4 2.19 253.8 .j 28.12 231.2 l' 14.06 197.7 g 7.03 169.9 1 4.22 152.9 1.41 126.0 0.70 115.2 g 0.00 100.0 lj RHR NPSH Pump Suppression PoolTemp(*C) RHR (LPCF) NPSH Limits

^

Flow for Ovarerwie of(kg/cm2)

(m3/hr) 0.0Q 031 G L01 ! ./ '76 ,2 96 .7f/

0 90.6 101.7 109.4 116.1_ _ff_G,7 /35 6 /3P.9 820 85.6 97.8 106.7 113.9- ~j .t v.o /33.9 ffD /

954 82.8 96.1 -105.6 112.8 i24. 8/ /i33 / YlT )

1130 78.9 933 1033 11 S /23.3 13J.T / 36. /)[ _

HPCF NPSH Pump Suppression PoolTemp(*C) HPCF NPSH Limits Flow for Ovur-e of(kg/cm2)

q. LnMal 0.00 Oli D.20 105 4 7C- 1 96 0 95.6 105.0 112.2 118.9_ _ / 4 f, '/ ___ / JG. '77 _ _ . _ _ _ l 500 95.0 104.4 112.2 _1183_ . ._12 f. $ / 36..f 44t'Ho 933 1033 111.1 117.8 . 1 2 ') 7 . ._ / 3 6. / ) _ _ . _

- 890 87.8' 99 4 107.8 115pQ .2 f. (,, /5%Pf Bi1T Suppression Pool Reactor Baron injection Initiauon Temperature Temperature Power  !

{ag LS (See Figure in Section 18A.4.18A.12)

-46 3L 89.(, < 2.21  ;

46J9. f4.(, 2.21 i M 59. 2 M S. % 1 6 f9.1 -> 2 56 - 5".9f, J

G Arendment 17 15D.2-6

F

~

BWR- 23A6imia .

Standard Plant aEv. i F

k I

ii r-j, If while executing the following step primary containment water level and 7 suppression chamber pressure cannot be maintained below the Maximum Primary Containment Water Level Limit, then irrespective of whether adequate core cooling is assured terminate injection into the: primary containment from sources external to the primary containment until primary containment water

! level and suppression chamber pressure can be maintained below the Maximum Primary Containment Water Lev;l Limit.

i' MAX PRIMARY CONTAINMENT WATER LEVEL LIMIT

! 30 _

l g i stop .ceerwmou ourvon ==esame couransseur i @p; Q

& 27.2 yg Gj 25

, -+

l @a ,. '

l et >s, 20 3

E .!$ '

'S W ,,.

g -

g s}

6 0

10

,k g ga

!5 c.

0- j j

0 1 2 3 4 5 6 . 7 6.3 j SUPPRESSION CHAMBER PRESSURE (kg/cm2) l J

ABWR RC-3 4

Amerdment IB A 4-3

L BWRL -m6iwa Standard Plant aEv. x 4

RC/P-1 If any SRV is cycling, mamially open SRVs until RPV pressure drops to

[68.32 kg/cm2 g (RPV pressure at which all turbine bypass valves are fully open)].

If while executing the following steps:

- Suppression pool temperature cannot be maintained sr #6 ,

below the Heat Capacity Temperature Limit, maintain ,

RPV pressure below the Limit.

HEAT CAPACITY TEMPERATURE LIMIT 1so E

14o h EMERGENCY RPV -

g 137.7 "-

2 DEPRESSURIZATION g EQUIRED .

g. 1*o 120 z

11o E

a 8 *

- l 10 20 so 40 so- so 70_ so no a.s4 ,

RPV PRESSURE (KG/CM2 ) j 1

.l

  • Suppression pool water level cannot be maintained -l below the SRV Tail Pipe Level Limit, maintain RPV rr #6 j pressure below the Limit.  :!

1 I

ABWR RC-8 j ll i

Amendment 18A.4-8

. - - , = .. . .- . . .

q

. . .. 1

'ABWR 23xei0oia ~ l Standard Plant uv. iq l

,i i

RC/Q4 Before suppression pool temperature reaches the[(Boron Injection .;

Initiation Temperature)] but only if the reactor cannot be shutdown or the:

control rods are not inserted to or beyond [4.2% (Maximum Suberitical  :

Banked Withdrawal Position)], BORON INJECTION IS REQUIRED; inject - ,

boron into the RP'/ with SLC and prevent automatic initiation of ADS. ' l a

. BORON INJECTION INITIATION TEMPERATURE 1 100.00  !

9

~ '

wo - . i ,, ,

.s e - ' . t w n L a$+4

> Q, i wg I': _

iR ' . ;l e . s >

7p* s. , ,t +  ;

, 3 s 1 3 N

% ;' 7-g 4; w c;m , - , s g:,

M y;p i'; INJECT BORON g,J 84.0 ,

q E a 3

, 80.m y ((M , l, , # Y s di j@fjji}[U lj O wy,gF i fi @g

$A' 70.00  !

R lv

& */

AlMQiMj ' l$$0N? -3....

Wl .'

!{ Q V v;g e' h q6 ,

.1  !

00.00 5

50.00 .I C  !

a. 5 C- '
  • 40.00 l Ti 0 2l 4 6 8 10 -  ;

2.21 - 5.46 ll' REACTOR POWER (%)

i If boron cannot be injected with SLC, inject boron into the RPV by one j or more of the following alternative methods:

[a CRD]

[+ HPCF] l

[* RWCU) .;

[- Feedwater]

[- RCIC] l

)

1 ABWR RC-14 ~j l

e Amendment 18A 414 l

1 I

i

- , + _ .E

ABWR  ; a3xei0oia .

Standard Plant utv. x SP/r Monitor and control suppression pool temperature below . .

[35.0 C (most limiting suppressiori pool temperature LCO)] using available suppression pool cooling.

  • When suppression pool temperature cannot be maintained below [35.0
  • C (most limiting suppression pool temperrature LCO)]:

SP/r 1 Operate all available suppression pool cooling using only those RHR pumps not required to assure adequate core cooling by continuous operation in the LPCF mode.

SP/r-2 Before suppression pool temperature reaches the [(Boron Injection Initiation Temperature)], enter [ procedure developed from the RPV Control Guideline] at (Step RC-1] and execute its concurrently.with this procedure.

BORON INJECTION INITIATION TEMPERATURE -j

  • 100.00 0 D

<+ .:.- ~. ll0 WR '

,+

^

y, jg W 9.

-7,(i[t Rf ? ?y.) \

. c e - - ,,a @$h n F

90.00

< ,a . ~ . n y,m . -

h 2

84.6  :

k"jih3 p 4el_

i M

a[ -

INJECT BORON -s l4 -

.j w 80.00 m i

[ $$ , J Sj;- , ysM ggfif; j o D% &:  % , M. j " ,- ch ,'M :l

[ .Shh , '[ph .:[h.< .

,. . m . - .. i

~

, , 0. '

\

' (*s vgs

^*

, MR 60.00 z

w 50.00 E

o.

40.00 1

0 2 4 6 8- 10 2.21 5.46 REACTOR POWER (%)

ABWR PC-2 ,J Amendment 18A3-2

n . .

% .r .

ABWRl .

niamw Standard Plant 1xs u -

. ! .e L :,

p_-

SP/T-3 When suppn:ssion pool temperature and RPV pressure cannot - -

be maintained below the Heat Capacity Temperature Limit, - .

EMERGENCY RPV DEPRESSURIZATION IS REQUIRED, HEAT CAPACITY TEMPERATURE LIMITJ-

- 150 ,. - , . . . . ~ . . .

$..,. 3;$h.

8 S shifz' S.ik : $4 N ,$, E y{ '- gj ,Ek35ki

  • %. .$,5 .Qg@y T.!u,.;{gp}m d'%-[g1 b

^

m Q s 4 -e gf -

9 y 4:3,9 3,;4

~-

~ '-ia .>

Y JI4 t;@ $$it > M.. N.5 y"Cf$$ rs $yl # 6 Jugh y*f[fs ;g i 140- . .

g w ' 137.7 -~ E+ ! ~wp EMERGENCY RPV.: <

(L E gy ". ,

Tf{g,<.

gj DEPRESSURIZATION NhML

[""

~)@ ~

4s@ s , REQUIRED - fjgj$g

@p w 130 , ' ' ' *'

. . . . . . .s.. , .~,

U$x, f;{f 3  ;, ,  ;.,g}ls.,f fi ih 5 m 1;? #* pat  %;.fjl. #8 %8 k

b,

] 110 NM fk j k,m.;,.: m m

h@l alh N cc . Nbk. 5. N g

e :1e

']

O .

v2 100 s i

'. Ol 10 20 30 40 . . 50. 60. ~70- 80' '90 .

3.54 RPV PRESSURE (KG/CM2 )

l 1

i i

'i ABWR PC-3 l

'i Amendment 18A.5-3 -!.

l i

l

.$: BWR :nAsi=Aa --

Standard Plant - arv.A PC/P-3 When suppression chamber pressure cannot be maintainid below the Pressure Suppression Pressure, EMERGENCY RPV -:

DEPRESSURIZATIONIS REQUIRED.

PRESSURE SUPPRESSION PRESSURE 1.80 '

1. tt%f 2" pl , r

,,;} '

{l-.

i;-l EMERGENCY RPV .j 8 Jyp @

g y "r '

DEPRESSURIZATION "+

,q g .. l', ,j r .Ac x,

REQUIRED '

<o 1.05 "

WISD e- ~p 0.80

$iUS$

0 0.60 5  %*^

8 o 40 0.20  ?,

hj d 4 4.5 5.5 6 8 . 10 12 = 12.7 ' 14 '

SUPPRESSION POOL WArER LEVEL (m)

'l l

(PC/P4 Deleted - not applicable to ABWR.)

ABWR PC-9 Amendment - 18A.5-9 L_ __ a __ .- : - - _ _ - - _ __:-_-_______-___-__-_______--___-_ . _ _ _

ABWR ~

2346iooix Standard Plant arv. A PC/P-6 When suppression chamber pressure cannot be maintained below

[(the Primary Containment Pressure Limit)], then irrespective of whether adequate core cooling is assured:

PRIMARY CONTAINMENT PRESSURE LIMIT 7 i R START SPRAYS E

6 6

5.7- l E

5 a

O 4

5

< 3 6

z 9 2 8

E a

0-0 5 10 15 20 25 . 30' 27.2 PRIMARY CONTAINMENT WATER LEVEL (m)

If suppression pool water level is below {l1.70 m (clevation of bottom of suppression pool-to-lower-drywell vent) and drywell temperature and pressure are within theDrywell Spray Initiation Limit, shut down drywell cooling fans and initiate containment sprays. Containment spray may be augmented by the fire protection ,

system and the firewater addition mode of RHR(C).

l l

ABWR PC-10 Amendment 18 A.5-10 4 I

l e

l .

1 .

~

" $< Gig g.A h . _ (;

1 ABWR momia Standard Plant asv. i SP/L-3.3 Maintain primary containment water level below the l Maximum Primary Containment Water Level Limit.

MAX PRIMARY CONTAINMENT WATER LEVEL LIMIT 30 . .

. { cce mactuw. mou oursa muam coma.mswr 1 '

_E, 27.2 d 25 1

d 20 i i $ I s  !

b 15 10 o

$ 5 l

$ i 0-4 5 6 7  !

0 1 2 3 6.3 SUPPRE SSION CHAMBER PRESSURE (kg/cm2)  ;

If primary containment water level cannot be maintained below the Maximum Primary Containment Water Level Limit, terminate injection into the primary containment .

from sources extemal to the primary containment irrespective of whether adequate core cooling is assured.

ABWR PC-15 Amendment 18A.515 l /%hWNM VOfk%T

( :. '

-iBWR 2346iooin .

- Standard Plant - arv. 4 If while executing the followmg steps pnmary contamment water level and suppression chamber pressure cannot be maintained below the Maximum Primary Containment Water Level Limit, then irrespective of whether adequate core cooling is assured terminate injection into the primary containment from sources external to .

the primary containment until primary containment water level and suppression .

chamber pressure can be maintained below the Maximum Primary Containment Water Level Limit.

MAX PRIMARY CONTAINMENT WATER LEVEL LIMIT l

30 .

9 x i emp wueenom enou ouvesar newsamv cowTAmmewt 1
2 h.y 4" .

$ 27.E (Ij 25

$ M/A

@pE 1 ~

Y 20 g.

L'

,w c.

R xN a"z u;b o e+

> ll  ;

[fi

_ 5 . ,

1  : >

Mk 0-0 1 2 3 4 5 6 7-6.3 SUPPRESSION CHAMBER PRESSURE (kg/cm2) 1 ABWR Cl-2 l l

Amendment 18A B-2 I I

l l

I

ABWR- 2346icoxa

? Standard Plant aev. x If while executing the following steps primary containment water level and suppression chamber pressure cannot be maintained below the Maximum Primary Containment Water Level Limit, then irrespective of whether adequate -

core cooling .s assured terminate injection into the primary containment from sources external to the primary containment until primary containment water level and suppression chamber pressure can be maintained below the Maximum Primary Containment Water Level Limit.

MAX PRIMARY CONTAINMENT WATER LEVEL LIMIT-30 .

'M  ! I ero, une xm amoes ouveme enmaany cowrannsewr I Mi;
; .,..

[ 27.2

[f-,

, 25 ,] s n.

b.b 20 3 . V 15 i

3 V t 10 - 1 p

s

')

k , '+

a s m -;

E  ;@A -

-o- -

0 1 2 3 4 5 6 7 6.3  ;

SUPPRESSION CHAMBER PRESSURE (kg/cm2) _j AllWR C4-2 Amendment 18A.ll --

i-3e . .

ABWR - 23ssiooxa .

Standard Plant - asv. 4 ;

18A.12 CONTINGENCY #5, LEVEL / POWER CONTROL CONTINGENCY #5 1.EVEL/ POWER CONTROL If while executing the following steps:

  • RPV water level cannot be determined, enter [ procedure developed from Contingency #4].

- All control rods are inserted to or beyond [4.2% (Maximum Suberitical Banked Withdrawal Position)] or it has been determined that the reactor will remain shutdown under all conditions without boron, enter [ procedure developed from the RPV Control Guideline] at [ Step RC/L].

maintained below the Maximum Primary Containment Water Level Limit, then irrespective of whether adequate core cooling is assured terminate -

injection into the primary containment from sources external to the primary '

containment until primary containment water level and suppre.,sion chamber pressure can be maintained below the Maximum Primary Containment Water Level Limit.

MAX PRIMARY CONTAINMENT WATER LEVEL LIMIT:

30 . . _ _

4, , 4 ]l oro, suaeven anoes ouveros passamy contamassur li * ; dj g7

.Ei 27.2 .g;i 25 g r%_.

s V , .

R Qi1N '

h o

10 '^

j

> y 23 5

e M<

0-0 1 2 3 4 5 6- 7 6.3 SUPPRESSION CHAMBER PRESSURE (kg/cm2)

ABV1 C5-1 Amendment 18 A.12-1 l ': 1 L

---__-_---__-__-__)

L 'l-

~ABWR msma Standard Plant arv. A p

h C5-1 Prevent automatic initiation of ADS.

m C5-2 If:

  • Reactor power is above {5% (APRM downscale trip)] or cannot be determined, and -
  • Suppression pool temperature is above the Boron Injection Initiation Temperature, and l
l. ,

BORON INJECTION INITIATION TEMPERATURE

@ 100.00

{lQ? $$y t m;p

~~'

lyg2O l{L NQ5 i% Q L n; E

R 90.00 h x$: hbh$$f m

~h h hl~$h' ;fkkhh g ,,

sw. . .-. m qqg., .gg

, INJECT BORON y

80.00 Kp9p hllgy.;+

N m:i : 90 Q wa "f.8g$%d;.

% )Wir &Mkik;khIfh Adj G IAQjQJ^'hk

@ dn&H E6hb s'*

w 70.00 l_ .@

9$p;@* pfkgie -, C EEg 60.00 "J yg4NQp ""

lWQtgly v

8 50.00 cc b 40.00 I

O 2 4- 6 8 10 i 23 5.46 i REACTOR POWER (%) -

i

  • Either an SRV is open or opens or drywell pressure is above  ;

[0.12 kg/cm2 g (high drywell pressure scram setpoint)],

]!

.i l

ABWR C5-2 Amendment 18 A.12-2 l

________________n_____.__________._____. _ _ _ _ _ _ _

g x ..

-ABWR - mamia -

PRIMARY CONTAINMENT FLOODINQ.

If while executing the following steps:

MAX PRIMARY CONTAINMENT WATER LEVEL LIMIT

12 + M f y I sior ousevica FE ouvaios painisanv contamissur I M ,

_ d}% .}

E 27.x ggg.

Gj 25 g TT$

cc Hkh IO kg >y-g 'i ,

uJ 15 10

?  %, , ,.+ ,

y ,

EE pn s.

0-0 1 2 3 4 5 6 7 i 6.3 l SUPPRESSION CHAMBER PRESSURE (kg/cm2) i i

+ RPV water level can be restored and maintained above [0 cm (top of active fuel)] enter [ procedure developed from the RPV Control Guideline] at

[ Step RC/L].

ABWR C6-1 1 B A.13-1 '!

Amendment

'l i

j

do? 4:

p ABWRi 23A6iooAa-t l Standard Plant' any: A C6-4 When primary containment water level reaches [223 m (elevation of top of -

' active fuel)], maintain primary containment water level between [223 m .

(elevation of top of active fuel)] and the Maximum Primary Containment Water Level Limit with the following systems taking suction from sources external to :

the primary containment only when required: 4

  • HPCF
  • Feedwater/ condensate

+ SPCU RHR(LPCF)

  • Head spray
  • Fire protection system and firewater addition mode of RHR(C), injecting into the RPV
  • ECCS keep-full systems:

HPCF, RHR

  • [lnterconnections with other units],

[Other primary containment fill systems) .

vg V;)I stop sweenom nions ouveme ens innv connue ed fl@) , + ]6['

E 27.E

wQ pg

@ li e g$N,$m g

9 g %Mg W $n g 15 ..

E 2h v ams

.+

5 to o

gg , s .y

'r a

e s

a

,N K so 0-0- 1 2 3 4 5 6 7' 6.3 SUPPRESSION CHAMBER PRESSURE (kg/cm2)

ABWR C6-3 Amendment 18 A.13-3

_ _ _