ML20043G921
| ML20043G921 | |
| Person / Time | |
|---|---|
| Site: | FitzPatrick |
| Issue date: | 05/25/1990 |
| From: | Brons J POWER AUTHORITY OF THE STATE OF NEW YORK (NEW YORK |
| To: | NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM) |
| References | |
| RTR-NUREG-0313 JPN-90-41, NUDOCS 9006210313 | |
| Download: ML20043G921 (105) | |
Text
'
f<
123 Main simet -
i Wnhe Plains, NewYork10601 I
m4 6816240
,s' l
i h
[
John C. Brons Ofrata?"'
4# Authority May 25,1990 JPN 90-41 U.S. Nuclear Regulatory Commission l
Attn: Document Control Desk Mail Stop P1137 3
-Washington, D.C. 20555 4
Subject:
James A. FitzPatrick Nuclear Power Plant Docket No. 50-333 IGSCC inspection 1990 Refueling Outage Summary Report
References:
1.
NYPA letter, J. C. Brons to NRC, dated January 29,1990 (JPN 90-012),
"IGSCC Inspection Plans for 1990 Refueling Outage."
2.
NRC letter, D. E.1.aBarge to NRC, dated April 11,1990, " Review of intergranular Stress Corrosion Cracking (IGSCC) Inspection Plan for the -
1990 Refueling Outage."
Dear Sirs:
In Reference 1 the Authority detailed its plans for intergranular stress corrosion cracking (IGSCC) inspections during the 1990 refueling outage, in Reference 2 the NRC approved the plans. The ;
results of these inspections are detailed below and in the four attached reports.
A total of 76 welds were inspected during the 1990 refueling outage by personnel certified to the
' Electric Power Research Institute - Bolling Water Reactor Owners Group IGSCC certification program. Inspection personnel employed an enhanced evaluation technique using refracted
' longitudinal waves (L waves). As a result of indications found, a total of eight welds required weld overlays. Seven overlays were for new IGSCC Indications, and one was for a preexisting indication. All weld overlays were installed in accordance with NUREGG13 Revision 2 except
- one which was slightly undersized and which will be discussed in a separate submittal. All overlays were surface finished and final inspected with the exception of one overlay on the core spray line. The Authority's decision not to surface finish this overlay was based on the high estimated exposure (10 person-rem) required for the work and inspection, the non-destructive examination that was performed during Installation, and the plan to replace core spray piping.
1 during the 1991 refueling outage.
Dotalls of the inspection and evaluation are contained in the attached reports. Attachment 1 summarizes the results o; the IGSCC inspections: Table 13 in Attachment 1 summarizes the scope of these inspections. Attachment 2 summarizes the crack growth analysis. Attachment 3 provides detailed design information for each of the eight new weld overlays. Attachment 4 is the qr preliminary core spray weld overlay shrinkage stress evaluation. Shrinkage stress evaluations an hbh
/
9006210313 900525 7
9 8
b PDR ADDCK 0500o333 C
M O
PNU L-fi 4
gg 4
4
ab-built Information for recirculation system overlays will be submitted to the NRC six weeks after start up.
The Authority requests a prompt review in time for start.up currently scheduled for June 9,1990, if you or your staff have any questions on this matter, please contact Mr. J. B. Ellmers of my staff.
Very truly yours,.
7 i
hFC.Erons ecutive Vice President uclear Generation
~i t
JCB:SMT cc:
. Office of the Resident inspector U. S. Nuclear Regulatory Commission l
Post Office ' lox 136 Lycoming, New York 13093 Regional Administrator U. S. Nuclear Regulatory Commission 475 Allendale Road King of Prussia, Pennsylvania 19400 David E. LaBarge Project Directorate I 1 Division of Reactor Projects l/ll U. S. Nuclear Regulatory Commission Mall Stop 14 B2 Washington, D. C. 20555 R. McBrearty l
U. S. Nuclear Regulatory Commission 475 Allendale Road
[
King of Prussia, Pa.19400 l
l l'
L a
June 13,'1990.
yv*
The_ licensee (Judd Ellmers, Licensing Engineer New York Power
?
Authority) has informed me thet he has contacted Structural j
_ Integrity Associates, Inc. of San Jose, Ca. and determined that
.the enclosed material which is marked as being copyrighted, can be placed in-the public records.
ll/
-- Y David E. LaBarge, Project Manager Project Directorate I-1 Division of Reactor Projects - I/II Office of Nuclear Reactor Regulation 1
l at
- t.
a
]
\\
l.
i
' Y4 6-4 i
lt i
~
1 ATTACHMENT 1 to JPN 90 041 1:
SUMMARY
OF INTERGRANULAR STRESS CORROSION CRACKING INSPECTION t-
!~
DURING 1990 REFUEUNG OUTAGE 3
.)
.l
- l r
a,
u y
1 NEWYORK POWER AUTHORITY JAMES A. FITZPATRICK NUCLEAR POWER PLANT DOCKET NO. 50-333 t
l
l i
1, INTRODUCTION The Authority had planned to inspect 41 welds during the 1990 refueling outage (Reference 1).
Subsequently, one additional weld (28-33) was included to test the mitigating effects of hydrogen water chemistry. Three more welds (28 50A,12-61, and 28-56) were added when closeout discrepancies were revealed in inspection data from the 1988 outage. All inspections were scheduled in accordance with the FitzPatrick plant IGECC inspection program which conforms to the guidance of NUREG 0313 Revision 2.
As a result of indications detected during the inspectior s of 12' piping, the Authority expanded the inspection sample to 76 welds. The expansion includec weids in NUREG 0313 categories C, D, E, and F. All category C 12' welds on the Reactor Water Rocirculation System were inspected during this outage. in addition all category E and F unrepaired velds containing IGSCC were inspected during this outage. Since no IGSCC indications were nok d in 28' category C welds, the expansion sample emphasized 12' piping. All 22" and 28' pipe welds were inspected during the 1988 refueling outage with the majority inspected after system decontamination.
Weld sample sizes were expanded in accordance with NUREG-0313 Revision 2, paragraph 5.3.4.
Since flaws were detected in the original category C 12' weld sample, the Authority added 12'
[
welds and a sample of 28' welds in this category to the inspection schedule. Since a flaw was detected in the original category D sample, two welds were added to the category D schedule.
Unrepaired category E and F welds containing IGSCC were also inspected during this outage.
During this outage, the Authority detected flaws on six category C welds,12-1,12-8,1218,1219, 12-65, and 12 76. These welds were inspected in 1987 or 1988. All welds in category C which were previously inspected in 1987 have been reinspected during this outage. All 12' welds were inspected. No new indications were discovered in category C 28' pipe welds. A flaw was noted on weld 1014-494 on "B" core spray. This weld is a NUREG-0313 category D weld. All of the category D welds on "B" core spray were inspected during this outage.
Table 1 1 summarizes all welds inspected during this outage. Table 12 details the inspection summary by pipe size in both the original scope and the expanded scope. Table 13 details a summary of the indications by NUREG 0313 category identified during the 1990 refueling outage inspections, it includes the final flaw size used for weld overlay sizing and fracture mechanics evaluations. Table 14 is the original inspection plan as submitted in Reference 1.
Inspection personnel received a radiation dose of approximately 40 person-rem. Repair is estimated to require 80 person-rem.
- 2. IMPROVED INSPECTION TECHNIQUE An enhanced Inspection technique was employed extensively for the first time during the 1990 refueling outage. This enhanced technique used 60 degree refracted longitudinal waves (L waves) to evaluate and size IGSCC indications. All potential IGSCC indications were sized using this technique, and seven welds were determined to have new IGSCC Indications. A review of previous data reveals that five of these welds had previous indications in the vicinity of the existing IGSCC Indications, but these Indications had been attributed to weld geometry not to IGSCC.
From this the Authority concludes that, for this inspection, L waves are superior for IGSCC evaluation and sizing. We plan to employ this technique as applicable during future outages.
11
y
- 3. PERSONNELQUALIFICATIONS All inspections were performed by personnel certified in the techniques, i.e., detection, sizing, weld overlay, by the EPRI BWROG certification program. EBASCO Services, Inc. performed manual IGSCC detection examinations. Virginia Corporation of Richmond (VCR) performed automated detection examinations on a select group of welds. An EBASCO Level ll or Level lli inspector performed all siz!ng evaluations.
- 4. WELD OVERLAYINSTALLATION AND EXAMINATIONS Weld overlays installed as a result of previous inspections are described in the post-outage submittal for the respective refueling outage (References 6 and 8). To improve the quality of -
inspection, weld overlays Installed during this refueling outage were surface finished before -
inspection (except weld 10-14-494). Weld overlays will be surfaced to a field criterion of 250 rms with a flatness of 1/32' per inch. Weld overlay inspections were performed by examiners certified by the EPRI BWROG training program.
The Authority did not surface finish one weld overlay on the Core Spray System. Surface preparation of this weld could have resulted in an additional radiation exposure of 10 person-rem.
This cost would be incurred with no corresponding benefits, since this pipe is scheduled for l
replacement during the 1991 refueling outage. This overlay was designed to the requirements of a NUREG 0313
- standard' wc!d overlay. To compensate for the lack of surface finishing, the Authority performed a bonding inspection in the as-welded condition. In process examinations on each overlay include a VT 1 examination of each layer, in addition a dye penetrant examination was performed on the base material, the first layer, and the final layer.
S. WELD OVERLAY TECHNIQUES USED DURING THE 1990 REFUELING OUTAGE Weld overlays installed during the 1990 refueling outage were designed in accordance with NUREG-0313 Revision 2. The first layer of the weld overlay uses 309L (carbon < 0.02%) which contains more ferrite than 308L The remaining layers are high ferrite 308L or 308L Si weld metal and are installed using the automated Tungsten inert Gas process, in some cases, a manual weld repair was performed before overlay welding if the crack depth was greater than about 50%
through-wall. The Authority believes that this technique reduces or eliminates blowthroughs in the first layer. Weld overlay designs took credit for the first layer if the criteria outlined in Sections 2.1.1 and_4.4 of Revision 2 to NUREG-0313 were satisfied. Attachment 3 Includes weld overlay repair details for each of the eight overlays.
- 6. ' REINSPECTION OF WELDS WITH PREVIOUS INDICATIONS During the outage, the Authority inspected the four unrepaired welds previously reported to contain IGSCC indications. These welds are 12 4,28-33,28-53, and 28112. Welds 12 4 and h 4 28112 were inspected and found to contain no IGSCC indications. Welds 28-33 and 28-53 were both determined to have IGSCC Indications. Weld 28-33 was repaired by weld overlay. Weld L.
28-53 was evaluated to be acceptable as is (See Attachment 2, and will be reinspected during the February 1991 maintenance outage. Two additional welds (12-61 and 28-56) which showed evidence of IGSCC were reinspected to resolve discrepancies In the 1987 outage inspection data.
l Welds 12 61 and 28-56 had been inspected during the 1988 refueling outage, and no IGSCC had L
been noted. Both welds were determined not to contain IGSCC this outage. Weld 28-50A was l.
also reinspected to resolve a 1988 refueling outage data sheet discrepancy. No IGSCC was detected during this outage in weld 28-50A.
12 L
1.
~..
c WELD HISTORIES OF Wid OS WITH INDICATIONS Weld 121 1987 ITL/DNV inspected this weld in an IGSCC detection examination. They noted an indication from 28.5" clockwise through top dead center (TDC) to 0.5' clockwise for a total length of 14*. The EBASCO Level til inspector evaluated this weld and determined that it did not contain IGSCC.
1990 This weld was inspected and an IGSCC indication was noted in the same area. The EBASCO Level ill inspector examined the area and determined an IGSCC indication existed from 30.5" clockwise through TDC to 3' clockwise for a length of 13' with a maximum through wall depth of 36 %
The Authority has repaired this weld using weld overlay.
Wold 12-4 1984 EBASCO first identified an Indication 1' long upon completion of IHSI. The data was evaluated further by the Authority's Level 111 Inspector, and Kraftwerk Union (KWU) performed a discrimination and sizing examination in the area of interest. KWU determined the indication to be IGSCC,1.2* In length with a through-wall dimension of less than 7.5%
1985 EBASCO reexamined the weld using amplitude recording levels different from those used in 1984.
The data showed a total length of 2.5'. EBASCO was unable to size this indication or generate any crack tip signals. This indication was again evaluated by KWU and determined to be IGSCC 1.2* long and 7% deep.
1987 The Authority inspected this weld again and notod the indication in the same area with a length of 2.2". EBASCO was unable to size this indication or detect any crack tips of IGSCC responses.
The GE Level Ill inspector also noted the indication but was unable to determine depth or IGSCC characteristics.
1988 EBASCO inspected this weld with no IGSCC Indications noted. This weld was then reexamined by GE with no IGSCC Indications noted. However, the Authority's Level Ill inspector noted an indication 3'long and 7% deep. A crack growth evaluation was performed on this weld and was included in Reference 6.
l 1990 EBASCO reexamined this weld and noted no IGSCC indications. The Authority will continue to monitor this weld as a NUREG-0313 category E weld.
13
l Weld 12-8 1988 EBASCO noted indications with maximum amplitude at 1.5' clockwise and 7' counterclockwise.
The indications were misinterpreted to be root geometry, since the indications were noted on the opposite side of the weld (beam redirection).
1990 VCR inspected this weld using an automated detection method and noted IGSCC Indications in various sections. The indications were at 32' clockwise through 0 degree datum to 2' clockwise on the pipe side. Indications were also noted from 5' clockwise to 9' clockwise (pipe side) and 10' to 16.2' clockwise (elbow side).
An evaluation / sizing examination was performed by the EBASCO Level 111 Inspector using the refracted longitudinal wave technique and the following results were noted: the Indications were determined to be IGSCC with a maximum through wall depth of 46% at 0.5" clockwise and 37' s
clockwise. The area of 5' clockwise to 9' clockwise showed a maximum through wall dimension of 43%. The indication lengths wee not sized because of radiation protection considerations and due to the through wall dimension.
The Authority has repaired this weld using weld overlay.
Wold 12-18 1988 This weld was inspected by an EBASCO Level Ill inspector, and indications were noted with a maximum amplitude at 3.5" clockwise and 32' clockwise. The indications were noted to be typically 360 degrees intermittent. The indications were misinterpreted to be root geometry, since the indications were noted on the opposite side of the weld (beam redirection).
1990 An IGSCC indication was noted with a maximum amplitude at the 0 degree datum TDC.
{
This weld was evaluated by the EBASCO Level 111 Inspector using the refracted longitudinal wave technique. He noted an IGSCC indication from 7.5" clockwise to 12.5" clockwise with a maximum through wall depth of 64%. An indication was also noted at 30.5" clockwise with a reported length of 2.25' and a maximum through wall depth of 43%.
The Authority has repaired this weld using weld overlay.
14 l
-1 l
Wold 12-19 1988 An EBASCO Level lli inspector inspected this weld. Indications were noted with a maximum -
amplitude at 5.5' clockwise,6.65' counterclockwise, and 21.5" clockwise. These indications were L
misinterpreted to be root geometry, since the indications were noted on the opposite side of the I
weld (beam redirection).
1990 EBASCO Inspected this weld, and an indication was noted with peak amplitude at 16' 0
counterclockwise that required further evaluation. Root geometry was noted 360 degrees along the circumference of the weld.
4 An evaluation and sizing examination conducted by the EBASCO Level lli using the refracted
-longitudinal wave technique noted that the indications were typical of IGSCC with a maximum through wall depth of 29% with a length of 1'. An indication has also been noted at 151/2' clockwise with a length of 2.25' and a maximum depth of 31%
The Authority has repaired this weld using weld overlay.
Wold 12-65 1987 EBASCO Inspected this weld, and no reportable indications were noted. Low level geometric reflectors were noted 360 degrees of the pipe circumference, j
1990 l
EBASCO Inspected this weld. Axial indications were noted at 32.5" and 34.75' clockwise. Visual examination revealed a through-wall indication in this area. A circumferential indication was noted 2.5' long with maximum amplitude at 34.5' clockwise.
The EBASCO Level ll Inspector evaluated this weld, and the following was noted: IGGCC axla!
indications were noted at 32.5' clockwise and 34.75' clockwise. A through wall indication was noted in the same area. A circumferential Indication 2.5' long was also noted in this area.
The Authority has repaired this weld using weld overlay.
l-Weld 12 76 1988-This weld was inspected using automated P Scan by ITL/DNV. Indications were noted at 6' counterclockwise,13.7' clockwise,14" clockwise, and 16' clockwise. None of the Indications were determined to be typical of IGSCC. A detection examination was also performed by EBASCO, and indications were noted at 6.5" clockwise and 32' clockwise.
l 15 l
i i
l
EBASCO then conducted an evaluation examination, and they noted that the Indications were of
'i geometric origin.
1990 VCR reexamined this weld using automated IGSCC detection methods. The inspection showed l
Indications at 3.3' clockwise,20.0" clockwise,23.3" clockwise,30.0* clockwise through 36.8' i
clockwise.
l r
Evaluation and sizing by the EBASCO Level lll examiner evaluated these indications as IGSCC indications with the following sizing results noted: (Based on radiation protection concerns, only two of the six indications were sized.) The indication at 3.25' to 4.75' clockwise was determined
)
to have a maximum through wall depth of 43% An Indication from 35' to 36.5* clockwise was I
determined to have a through wall depth of 43%
The Authority has repaired this weld using weld overlay.
Wold 28-33 j
i 1984 l
EBASCO examined this weld in 1984 as part of the post lHSI examination process. They found no reportable indications at that time.
1988 EBASCO inspected this weld and identified an IGSCC indication of 7.5' in length and a depth of 11% GE also inspected this area and confirmed the IGSCC indication although a depth of 19%
was noted 1989 This weld was inspected by the EBASCO Level Ill inspector and the Authority Level lil inspector during the Fall 1989 maintenance outage as a result of previous NRC commitments. The results determined that the indication was IGSCC with a maximum through wall depth of 16% using 52 degree shear wave technique at 9.5' and 10.5" clockwise with an overall length of 7.5". This depth was confirmed using refracted longitudinal waves by the Authority and EBASCO inspectors.
1990 The Authority scheduled this weld for inspection, and an IGSCC sizing / evaluation was performed on the previous Indication. Using a 52 shear wave technique, the preliminary data reported a through-wall depth that was determined to be 22% although possible deeper IGSCC like crack tip signals were noted in the area. Using a refracted 60 degree L wave, it was determined to have a maximum depth of 66% with an intermittent length of 9.75". It was determined that the refracted
. longitudinal wave examination was the most precise technique to measure IGSCC through wall depth for this weld.
The Authority has repaired this weld using weld overlay.
1-6
Weld 28 53 1987 EBASCO inspectors used a 52 degree shear wave technique and noted an indication from 9.5' to 19.5' clockwise. The recorded depth was 0.10' corresponding to less than 10% through wall depth. Using a 45 degree spot technique, GE inspectors noted an Indication from 8.5" to 20.5" clockwise.' The depth recorded was 0.22'. ITL/DNV performed an automatic examination of the weld. The purpose of this exam was detection only. The inspection identified an indication in the same area with a length of 10.5*.
1988 During this outage EBASCO Inspectars evaluated the weld using three different techniques; a 30-70-70 examination,52 degree s%ar, and a bimodal technique. The Indication was located from 8.5' to 20.5' clockwise with t.n axial component notod. The deepest depth recorded was 0.29*, while the axial component's depth was less than 105 An axial indication was also noted at 13.25" counter clockwise with an estimated depth of less than 10L ITL/DNV inspectors noted an indication during their supplemental detection examination at about 101/2' to 201/2" clockwise. During their skewed scan at 15 degrees, inside diameter reflectors were noted at 11.1',13.8',89", and 91'.
A GE Level 11 Inspector used a 60 degree refracted L wave technique and noted a circumferential indication with a depth of 0.35' with an axial component at 11.5 clockwise. The inspector also noted an axial indication at 13.25' counter clockwise with a depth of less than 105 The Authority Level Ill inspector used a retracted L wave technique and had no response and thus could not confirm the GE Level ll's data as noted above. Using a 52 degree shear wave technique, the indication was determined to have a depth of 0.30 inches or 23% The axial indication was confirmed at 13.25' counter clockwise with a depth of 10E 1990 The weld was examined by the EBASCO Level 11 inspector. The inspector evaluated the indication as IGSCC with a maximum length of 9.0 inches. Using the 52 degree shear technique, the maximum depth recorded is 0.30 Inches. Using the 60 degree refracted L wave technique, the depth of the Indication is 0.40 inches. A depth of 0.40" corresponds to 31% through wall (pipe wall is 1.30 inches thick). Axial components were also seen in this area. The spot indication (axial) was seen at 13' counterclockwise but was evaluated as not having IGSCC type responses. The refractod longitudinal wave technique is considered the most accurate sizing inspection for this weld.
Using the most conservative data (i.e., refracted L wave versus 52 degree shear), crack growth is following the accepted crack growth curves. Using the pcCRACK program and including the as-welded residual stresses, crack growth is predicted and is consistent with current sizing.
An Inspection of this weld is planned for the 1991 maintenance outage. Monitoring this weld in the future would also allow the Authority to ascertain the effectiveness of hydrogen water chemistry on a weid that has been determined to contain IGSCC. The crack growth evaluation for weld 28-53 is in Attachment 2.
17
~,
q 1
i i
c Wold 28 56
~
1 1984;
[
EBASCO found two indications. The first indication (indication 1) was recorded as having a length of 0.75'. ' A similar indication (indication 2) was also noted 20' from indication 1. Indication 2 exhibited the same signal characteristics as indication 1. Due to radiation exposure concerns, only indication 2 was evaluated by KWU. Indication 2 was determined to be caused by root geometry.
1987.
This weld was reinspected. EBASCO detected indication 1 and sized it at 1' long and 15% deep.
Indication 1 was also sized by the GE Level til inspector and sized at 2.5' long and 20% deep. The change in reported length could be attributable to the difference in recording levels between the 1984 and 1987 examinations. Indication 2 was not considered a reportable indication.
1988
(
EBASCO reinspected this weld. No inspections noted IGSCC in this weld. This weld was thoroughly examined following decontamination.
1990 l-L
Wold 12-61 1984 EBASCO and KWU detected this indication during the pre-lHSI examination. EBASCO reported a length of 3*. KWU evaluated the indication as IGSCC with a length of 0.5' and a depth of < 10%
EBASCO then performed a post lHSI examination and found the indication to have a length of 5".
KWU decrin%ated this area and found this condition to be counterbore. No through wall dimension vuld be determined. The Authority's Level 111 inspector also examined this weld and reported a length of 5', but the signals did not exhibit IGSCC characteristics.
1987 EBASCO examined this weld and found an IGSCC indication in an area of sharp count-bore (area noted in 1984) with a length of 0.4' and a depth of less than 10% The GE Lev
aspector confirmed this to be IGSCC having a length of 0.5" and a maximum depth of 10%
1988' This weld was examined by both EBASCO and the GE Level lli inspector with no IGSCC noted.
i Because of decreased radiation levels following decontamination, extensive time was spent evaluating this weld. This weld was placed in NUREG-0313 category C 3.
l l
1990 EBASCO reinspected this weld and noted no IGSCC.
18 l
Wold 28112 1984 EBASCO Inspected this weld and detected an indication with a length of 0.5". KWU confirmed this indication as IGSCC with a length of 0.5* and a maximum depth of 17%
1985 EBASCO inspected this weld. They detected IGSCC type indications In the same area with a length of 0.5' recording and a maximum through wall dimension of 0.2*. KWU reinspected this weld for discrimination and sizing and found it to be IGSCC with a length of 4.75', and a maximum
' through wall of 16%
1987 EBASCO again detected this indication in the same area. A sizing examination performed by the EBASCO Level til inspector revealed this indication to be caused by root geometry. Also the signal did not exhibit any iGSCC characteristics. The GE Level ill inspector also examined this weld in the area of interest and could not discriminate any IGSCC Indications In this area.
1988 This weld was reinspected and found to contain a circumferential IGSCC type indication. The Indication is 21' in length with a depth of 0.26" or 20% through wall.'
1989 This weld was again reinspected after extensive surface preparation of the weld crown.
Inspe;tions by two independent inspectors (the Authority and EBASCO) revealed no IGSCC.
Nevertheless, the indication was evaluated conservatively as containing IGSCC using the 1988 data. A crack growth evaluation was performed on this weld and was included in Reference 8.
1990 This weld was reinspected by EBASCO and determined not to be cracked, it will be monitored in the future as a NUREG4313 category E weld.
- 7. FLAW ANALYSIS summarlzes the fracture mechanics evaluation for weld 28-53 which has IGSCC indications, but the indications are not severe enough to require weld overlay. A brief description of the fracture mechanics methodology is also included. The flaw evaluation is in accordance with NUREG-0313 Revision 2. The analysis was performed by Structural Integrity Associates.
19
i V
i
' ' 8. SAFE END TO NOZZLE WELDS A total of 17 safe end to nozzle welds contain inconel 182 weld metal. Eight were inspected during this outage with no indications. The other nine welds were inspected in the 1988 refueling outage (References 5 and 6). Both inspections were performed using techniques recommended in GE Sll 455. Calibration blocks that represent the as-built configuration are used for each weld.
- 9. RESIDUAL HEAT REMOVAL (RHR) SYSTEM WELDS Each RHR loop at the FitzPatrick plant has three bimetallic welds (six welds total) that contain inconel 182 " weld butter." For the 1988 refueling outage, unique calibration blocks were fabricated for each weld configuration based on the original construction records. Three of the welds were inspected during the 1988 refueling outage. The three remaining welds were inspected during this outage with no indications noted. The welds were inspected from the wold crown using refracted L wave techniques.
- 10. WELD OVERLAY DESIGNS AND INSPECTION RESULTS Weld overlay repairs were designed based on the guidance of NUREG 0313 Revision 2. No credit was taken for the original pipe material.
Weld overlays are designed in accordance with the criteria of ASME Section XI, Article IWB 3641, 1986 Edition. The design uses primary stresses (pressure + dead weight + seismic). Table 12 lists the values for these stresses. The design also uses the allowable stress value from ANSI-
. ASME B31.1 (15.9 ksi) rather than the Section lli allowable Sm (16.95 ksi) for additional conservatism.
The weld overlay design calculations for welds10-494,121,12-8,1218,1219,12 65,12 76 and 28 33 were performed using the proprietary computer code pcCRACK. The design thickness is indicated on the design drawing. For weld 28-33 the as built thickness was less than the design
. requirements. An engineering evaluation has been performed and will be provided under separate cover.
Minimum acceptable weld overlay length is determined by two independent factors. The first is that the overlay be long enough to provide adequate structural reinforcement. The minimum full thickness length of the repair (L) is defined as:
L = 1.5 ( Rt)1/2 where R = radius t = thickness The second consideration is that the overlay be long enough to allow adequate ultrasonic inspection through the weld overlay. This will typically require that the overlay be somewhat
. longer than is required for structural reinforcement. This length to support inspection is determined in the field based on experience.
Calculations for these welds and design drawings for these repairs are included as Attachment 3.
1-10
114 Ml0-CYCLEINSPECTlON One weld (28-53) has an IGSCC indication that has been evaluated in accordance with the attached Crack Growth Analysis (Attachment 2) and determined to be acceptable for operation for -
1 the next 3.6 years without exceeding Section XI criteria. This weld was not overlaid this outage and will be reinspected during the February 1991 scheduled maintenance outage.
e
- 12. REFERENCES 1.
NYPA letter, J. C. Brons to NRC, dated January 29,1990 (JPN 90-012), "lGSCC Inspection Plans for 1990 Refueling Outage '
i 2.
NRC Generic Letter 88-01, dated January 25,1988 transmits NUREG 0313 Revision 2,
" Technical Report on Material Selection and Processing Guidelines for BWR Coolant Pressure Boundary Piping."
3.
NYPA letter, J. C. Brons to NRC, dated August 16,1988 (JPN 88-041), provided plans relating to piping replacement, inspection, repair, and leakage detection.
4.
NYPA letter, J. C. Brons to NRC, dated April 9,1987 (JPN-87 018).
5.
NYPA letter, J. C. Brons to NRC, dated November 10,1988, (JPN 88-062) summarized results of 1988 Refueling Outage.
6.
NYPA letter, J. C. Brons to NRC, dated November 10,1988 (JPN-88-061) summarizes the results of Fall 1988 outage IGSCC inspections.
7.-
NRC letter, D. E. LaBarge to J. C. Brons, dated April 11,1990, " Review of Intergranular Stress Corrosion Cracking (IGSCO) Inspection Plan for the 1990 Refueling Outage."
8.
NYPA letter, J. C. Brons to NRC (JPN 89-063), dated September 29,1989, " Fall 1989 Malntenance Outage IGSCC Inspections."
t 1 11
'1 L.
u
.p
-l 1
- Table 11 IOSCC inspection Summary NUREG Number of Number of Wolds Number of Number of -
Category Wolds in for Scheduled Wolds for Welds Notes Category inspection Expansion -
Remaining l
A 26 2
0 24 C
63 12+(2 added) 24 25 1
-C3 3
0+(1 added) 2 0
1 i
C* -
2 0
1 1
D 32 16 2
14 2
l E
20 -
7+(1 added) 1 11 3
lF 2
1 1
0 4
G-3 3
0 0
Total 151 45 31 75
.o Totalinspected is 76.
The 22' and 28' category C weld inspections show no new IGSCC indications. All 22' and 0
28' welds were inspected during the 1988 refueling outage, with the majority of the welds
- examined after decontamination of the system.
All 12' category C welds were inspected during this outage.
o-Category C* consists of two welds that have been protected by Resistant Heating Stress
-o improvement..These welds were inspected during the 1988 outage.
1 12 m
^
f 6
NOTE 1 -
Twelve category C welds in original scope. Three welds (12-61,28-56,28-50A)
- were added #3 a result of a review of previous outag) data. All 12' category C welds were ?,nspected.
Giginal Sarnpi's Added Results p
12' 8 1(C 3) 212' welds contain IGSCC(121,12-65) 28' 3 2
128' weld 28-56 reported to containIGSCC in 1987 no IGSCC detected in 1988 or 1990 22' 1 No indications 1st Expansion 12' 11 412' welds (12 76, 12-8,12 18,12 19) contain IGSCC 28'-1 Noindications 2nd Expansion (based on 1st -
expansion results) 12' 13 No indications 28' 2 No indications 1 13 4
V
q
. NDTE 2 -
One category D weld on *B' Core Spray loop was determined to contain IGSCC, The remaining category D welds on "B" Core Spray loop were inspected.
n Category D Welds "B" Core Spray Welds 5
Safe End to Nozzle Welds (Inconel 182) 17 Jet Pump Instrument Assembly Welds 6
3 RHR Welds (inconel 182) "B" loop 3
Total 31 The number of welds in category D has been reduced from 32 to 31, because weld 10 494 has been weld overlaid and is now category E. All 'B' Core Spray welds were inspected during this outage. The category G welds on the "A" RHR loop will be upgraded to category D based on the inspection completed this outage. The -
total category D welds after this outage will be 34 welds.
NOTE 3 -
One category E weld (28 33) showed indication depth greater than in previous outages. It was repaired by weld overlay. The remaining category E weld (12 4) was inspected. Inspection results show that this weld is not cracked but will be
- continued to be monitored according to the respective NUREG-0313 category.
The remaining welds in category E were repaired by weld overlay.
. NOTE 4 -
The remaining category F weld (28112) was inspected due to minimal noted IGSCC growth in neld 28-53 (original scheduled weld inspection), inspection results show that this weld is not cracked, but the Authority will continue to monitor it according
+
to requirements for NUREGG13 category E during future refueling outages.
1 14 l
L a
g
v
.a t
Table 12.
Inspected Wolds by Categoryand Size
'4 Original Scope Expansion Sample Category A 2-2?.'
O Category C i
8 12"'
3 28' 5-28' 22 12' 1 22' Category C 3 1 12' 2 12' Category D 8 Safe End to Nozzle Welds inconel 182.
2-10' Core Spray 4 Core Spray 10' Welds Welds 4 Jet Pump instrument Assembly Welds Category E 128'(IGSCC/lHSI) 128'(IGSCC/lHSI) 312' Overlay 122' Overlay-3 28' Overlay Category F 128'(IGSCC/lHSI).
112"(IGSCC/lHSI) s Category G i
3-24' RHR BlMETAl.LIC
' None remaining Note-All 12' category C welds were inspected during this outage. in addition, eight 28' and
. one 22' category C welds have been inspected during this outage. - All these welds 3
.-were inspected in the 1988 refueling outage with a majority completed after decontamination of the Reactor Water Recirculation System.
1 15 l
t i
- 1
)
a Table 13 Summary of 1990 ISI/lGSCC Indications
' Weld Configuration -
NUREG 0313 Last Flaw Resolution Category inspected 28 53 Elbow to Valve F
1988 9'x31% -
Evaluation circ. with 1991 j
axial maintenance components outage l
inspection 1 spot axial Indication 121 Pipe to Safe End C
1987-13*x38%
Weld cire.
Overlay 12-65 Pipe to Elbow C
1987 2.5'x30%
Weld circ.
Overlay axial 100%
1218 Pipe to Elbow C
1988 5"x64%
Weld 2.25'x43%
Overlay
- cire, l
Overlay 1.5'x43%
.circ.
t 1014-494 Pipe to Elbow D
1987 1'x29%
Weld cire.
Overlay 28 33 Elbow to Valve E
1989(M) 9.75'x67%
Weld in deeposi Overlay area /cire.
' 12 8 Pipe to Elbow C
1988 43% cire.
46% circ.
1219 Pipe to Elbow C
1988' 1"x29%
Weld circ.
Overlay 2.25'x31%
circ.
Note.-This table shows the NUREG 0313 category before this refueling outage.
l 1 16 i
l l
i
Table 1-4
~
Original Inspection Plans for the 1990 Refueling Outage As Approved by the NRC' NUREG 0313 Number of welds Number of welds category in category schoduled for i
inspection j
j A
26 2
C 63 12 C.3 3-0-
l C*
2 0
D 32 16 E
20 7
F 2
1 j
G 3
3 I
3 Total 151 41 Notes-
)
- A Long seams are included in category A, but are not noted as such. The long seam l
welds are inspected when the circumferential weld is inspected.
C..
All catagory C welds were inspected in 1987 or 1988.' All welds are inspected at least once every 10 years, i
i
- C.3 -.
Wolds with high stress, lHSI has been performed and the three welds were inspected in the 1988 refueling outage. See Reference 10 for the Authority's position on these -
- welds, n
' C* -.
Welds with Resistance Heating Stress improvement performed as noted in Reference 5.
Both welds were inspected in the 1988 refueling outage, l
i
' E..
Eighteen of the twenty weids in category E have been overlaid. The other two welds
- (~,
contain IGSCC and have been lHS1 treated, m
i 1
1 17 l
l!c
i l
i 4
Table 15 Stress Components at Wold Overlay Loostions Wold Pressure Deadweight Seismle (ps0 (ps0 (os0 i
i 1
10 14 494 4746 507 1232 (as reported) 120221 4689 610 3544 (scaled) l 12-02 2-8 4592 115 1442 (scaled) 12-02 2 18 4592 72 2174 (scaled) 1202219 4592 259 1521 (scaled) 4 2802233 5024 900 1412 (scaled) 1202265 4592 100 1212 (scaled) 1202276 4592 76 2030 (scaled) h
(
l l
1 18 1-.
f
?
~
w
--+-.,w w
m ATTACHMENT 2toJPN O 041 CRACK GROWTH ANALYSIS I
i I
i NEWYORK POWER AUTHORITY JAMES A. FITZPATRICK NUCLEAR POWER PLANT DOCKET NO. 50-333 i
l
During the 1990 refueling outage inservice inspection, flaw indications were identified on nine welds. These wolds and associated flaws are shown in Table 13 of Attachment 1.
The Authority inspected these welds as part of the intergranular stress corrosion cracking inspection program at the FitzPatrick plant.
The result of the flaw evaluation for weld 26 53 is summarized in Table 21 of the attachment.
There is ample margin between the current indication size and the Section XI allowable flaw size, even assuming low toughness submerged arc welded material, and observed flaws as much as 40% of the pipe circumference in length.
Table 2 2 details the stress components including shrinkage stress used for the flaw evaluation.
The evaluation was done in accordance with NUREG-0313 Revision 2 procedures and the attached pcCRACK analyses. The pcCRACK computer data sheets are also included in this attachment. All weld residual stress distributions used in the crack growth analysis are in accordance with NUREG-0313 Revision 2 and earlier flaw evaluations done for these welds at the FitzPatrick plant. No credit was taken for induction heating stress improvement or hydrogen water chemistry in the analysis.
The attached computer calculations include allowable flaw size tables for each evaluated weld. To determine the allowable flaw size for these welds, an iterative process is used, assuming that the i
aspect ratio (a/l) will increase by the same factor as the flaw depth at the end of the evaluation j
period. The depth ratio is assumed to increase to the allowable ratio. This process is outlined in NUREG-0313 Revision 2. The end of cycle flaw length was used to determine the allowable flaw depth. For crack growth calculations, a 300 degree flaw model is used.
The flaw depth is predicted to remain below the Section XI allowable flaw depth beyond the conclusion of the next operating cycle.
The flaw Indication in weld 26 53 is judged acceptable at this time without further repair. This weld I
will be inspected during the 1991 maintenance outage.
1 l
l 1
21 l
i i
Table 2-1 EVALUATION RESULTS OF OBSERVED UNREPAIRED FLAW Wold Observed Flaw Allowable Depth Crack Growth Length Depth Predicted Time Required 28 53 9' O.4'(31%)
00% (l/c<0.4) 3.6 years Notes-1.
Usted flaw depth is most conservative of all inspecti.1 results.
2.
Upper bound erack growth cortelation from NUREG 0313 Revision 2 is used.
3.
No credit is taken for hydrogen water chemistry.
4.
Remaining life is time required to grow from current depth to Section XI allowable depth.
5.
Allowable flaw depth is from ASME Section XI,1986 Edition.
6.
The 28' analysis assumed as welded residual stress distribution from NUREG-0313 Revision 2.
Mi' -cycle inspection of weld 28 53 will be performed during the 1991 maintenance outage.
7.
J Table 2-2 STRESS COMPONENTS FOR FLAW EVALUATION -
(psi)
WALL WELD THICKNESS PRESSURE DEADWElGHT THERMAL SEISMIC SHRINKAGE 28-53 1.30' 5424 85 802 1007 1000 A shrinkage stress of 1000 psiis used as a bounding case.
22
i i
j i
l
' STRUCTURAL CALCULATION FILE NO: NYPA-250-304 INTEGRITY l
' ASSOCI AT ES. IN C.
PACKAGE
"" J"
' "'"^- 2 5 0 PROJECT NAME: J. A. FitzPatrick 1990 Outage Suppcirt CLIENT: New York Power Authority CALCULATION TITLE:
Flaw Evaluation: Weld 29-53 PROBLEM STATEMENT OR OBJECTIVE OF THE CALCULATION:
v Evaluate flaw life to NUREG-0313, Revision 2 i
criteria, with acceptable end-of-cycle flaw per ASME Code,Section XI IWB-3641-5 (1986)
P
%+'
W4 Proj. Mgr.
Signature, inittels Document Af fecte d and Date Revlelon Description Approval Revlelon Pages
'I l-
/Date and Checkere 0
1-8 Initial Issue
/M 4-1V14 // M N@
I V tv o M
V?%
ny-w i-PAG E 1 OF 8 l
Flaw Growth Evaluation for Wald 28-53 of J. A. FitzPatrick obiective:
j Weld 28-53 contains a flaw which has been monitored for several years.
The purpose of this calculation is to determine the remaining life of the flaw in this weld; where remaining life is defined as the time to grow to the allowable flaw size from Section XI of ASME Code, IWB-3641-5 (1986).
The assumed growth mechanism is IGSCC.
Flaw Descriotion:
The reported flaw (1) is 0.4" deep, 9" long.
The component wall thickness is 1.3".
The resulting a/t is 0.31 or 314.
Stress Components (Acolied):
These are taken from a previous anlaysis (2) and are based upon data in the GE Stress Report (3):
Pressure Stress = P,= 5424 psi Dead weight DW = 85 psi OBE
= 1007 psi Thermal
= 802 psi Shrinkage
= 1000 psi (bounding)
Predicted shrinkage stress at 28-53 is 53 psi, based upon (Note:
analysis prior to the present outage.
Overlays applied in 1990 will change this value slightly.
It is expected that 1000 psi will still represent an upper bound.)
The stress ratio is defined as P, + PB+EE
^
2.77 15.9 ksi PB"#DW + #0BE PE"#TH + # SHRINK l
S. Ratio = (5424 + 85 + 1007) + (802 + 1000)/2.77 15900 t
Revison 0
Preparer /Date JM y ?Y 10 Checker /Date
@ [d l
File No. 'NYPA-250-304 Page 2
og 8
l
..... ~
i
= 0.45 (Muliply by 1.1193 to account for SAW weld in 28" pipe) 0.5
=
For this stress ratio, allowable flaw a/t
= 0.6 for flaw length 5 0.4 of circumference.
The present flaw is reported as 9".
NUREG-0313, Rev.
2 (4) requires that a flaw be required to increase in l_ by the same factor as a increases.
Therefore, a
o 9"
- ~0. 6
= 43.5 f " *d'o~
- 0.6 0.31 " 0.4" 0.31 a f g = 0.6 x 1.3 = 0.78 a
lg = 43.5 x 0.78 = 33.93"
't 33.93 33.93 circ "
r0
" r x 28.263 = 0.381 < 0.4 So allowable a/t of 0.6 still applies.
~
crack Growth calculation pc-CRACK Version 2.0 (5) is used to determine the time to grow from 31% to 60% using:
applied stress = P,+ FDW + #TH + # SHRINK = 7311 Psi Note that seismic stresses are not used, since these are not sustained.
Crack Growth Law from Reference 4:
g.161 in/ hour
-8 2
h=3.59x10 Residual Stress Distribution from References 1 and 4:
3 0.147 - 162.41x + 164.96[ - M.65x a
=
RESID Revision 0
Preparer /Date Mj V4T4a Checker /Date
% dd Re No.
NYPA-250-304 Page 3 of _ 8
(x = distance from inside surface in through-wall direction).
l The pc-CRACK output is attached.
The results show that the i
observed flaw takes 31,666 hours0.00771 days <br />0.185 hours <br />0.0011 weeks <br />2.53413e-4 months <br /> to grow from the observed depth to a/t = 0.6.
This is 43.38 months or 3.6 years.
Operation for an additional fuel cycle (18 months) should therefore be justified.
References:
1.
Ebasco Data Sheet [[::JAF-UT-034|JAF-UT-034]] (pages 1-8, dated 4-6-90),
[[::JAF-UT-034B|JAF-UT-034B]] (pages 1-4, dated 4-23-90).
2.
SI calculation for weld 28-53:
NYPA-19Q-300 pages 1-12, dated 10-22-88.
l 3.
GE Stress Report 22A2622, Rev.
1, Dec.
6, 1976.
4.
NUREG-Q313, Rev. 2 5.
pc-CRACK Version 2.0, August, 1989.
Revison 0
Preparer /Date WM MMO Checker / Dele
.%M Fiie No.
NYPA-250-304
~ '
4 8
Page of
I to pc-CRACK (C) COPYRIGHT 1984, 1988 STRUCTURAL INTEGRITY ASSOCIATES, INC.
SAN JOSE, CA (408)978-8200 VERSION 2.0 Date: 24-Apr-1990 Tice:
1:55:32. 3 ALLOWABLE FLAW SIZE EVALUATIONS USING ASME SECTION XI, IWB-3640/50 PROCEDURES AND CRITERIA FOR CIRCUMFERENTIAL CRACKS IN STAINLESS STEEL PIPING MATERIAL IS SPECIFIED AS SUBMERGED ARC WELD DEFAULT PROPERTIES:
DESIGN STRESS
=
16.95 FLOW STRESS
=
50.85 NYPA-25Q, WELD 28-$3, APR.90 USER SUPPLIED MATERIAL PROPERTIES:
DESIGN STRESS
=
15.90 FLOW STRESS
=
47.70 PIPE GEOMETRY:
. OUTER DIAMETER =
28.3630
? WALL THICKNESS =
1.3000 CRACK GEOMETRY:
CRACK DEPTH
=
0.4000 CRACK LENGTH
=
9.0000 THE FLAWED PIPE IS ASSUMED TO FAIL DUE TO UNSTABLE DUCTILE TEARING (EPFM)
THE ALLOWABLE FLAW SIZE IS DETERMINED USING CODE TABLES AND DEFAULT SAFETY FACTORS FOR NORMAL OPERATING (INCL. UPSET & TEST) CONDITIONS
=
5.4240 (SAFETY FACTOR =
2.770)
MEMBRANE STRESS (Pm)
=
1.0920 (SAFETY FACTOR =
2.770)
BENDING STRESS (Pb)
=
1.8020 (SAFETY FACTOR =
1.000)
EXPANSION STRESS (Pe)
DESIGN STRESS
=
15.9000
=
0.4098 (Po + Pb)/Sm STRESS RATIO
=
0.5045 (DOES NOT INCLUDE S.F.)
M FACTOR
=
1.1193
=
0.3077 a/t
=
0.1010 1/ circumference
=
0.6000 ALLOWABLE a/t 1/ circumference 0.00 0.10 0.20 0.30 0.40 0.50 ALLOWABLE a/t 0.6000 0.6000 0.6000 0.6000 0.6000 0.4900 Prepared by:
MId NMO
- JR tV #8*
Checked by#A-DM. To 9 pm, r>r 1r m__
MVP4-7IC'301 tm pc-CRACK
( C) COPYRIGHT 1984, 1988 STRUCTURAL INTEGRITY ASSOCIATES. INC.
SAN JOSE, CA (408)978-8200 VERSION 2.0 Date: 23-Apr-1990 Time: 13:38:25.58 STRESS CORROSION CRACK GROWTH ANALYSIS NYPA-25Q: WELD 28-53 INITIAL CRACK SIZE:
0.4000 WALL THICKNESS:
1.3000 MAX CRACK SIZE FOR SCCG:
I.0400 STRESS CORROSION CRACK GROWTH LAW LAW ID C
N Kthres K1C NRR 3.590E-08 2.1610 f.OOOO 200.0000 STRESS COEFFICIENTS CASE ID CO C1 C2 C3 APPLIED 10.0000 0.0000 0.0000 0.0000 RESIDUAL 30.1470
-162.4100 164.9600
-19.6500 Kmax
' CASE ID SCALE FACTOR APPLIED O.73 RESIDUAL 1.00 TIME PRINT TIME INCREMENT INCREMENT 40000.0 1000.0 1000.0 l
i crcck model:CIRCUMFERENTIAL CRACK IN CYLINDER (T/P:0,1)
I CRACK ---------------STRESS INTENSITY FACTOR ---------------
SIZE CASE CASE APPLIED RESIDUAL 0.0208 2.835 7.996 0.0416 4.028 10.603 0.0624 4.955 12.146 0.0832 5.747 13.081 0.1040 6.454 13.602 0,1248 7.102 13,812 Prepared by:
8 M Y-G-70 0.1456 7.747 13.859 Checked by: N iki-MO O.1664 8.378 13.735 m No*#f#4 2f6 -b Y 0.1872 8.988 13.443 O.2080 9.582 13.009 Page 6
, og T
h
i gypk<2fR'304
\\
oc-CCACK VERSION 2.0.
pagg O.22C8 10.163 12.451 0.2496 10.733 11.786 I
O.2704 11.325 11.070 0.2912 11.943 10.310 f.
O.3120 12.561 9.474 0.3328 13.177 8.571 O.3536 13.793 7.610 0.3744 14.410 6.597 0.3952 15.060 5.609 0.4160 15.814 4.793 0.4368 16.575 3.956 0.4576 17.345 3.105 0.4784 18.124 2.248 0.4992 18.910 1.390 0.5200 19.705 0.540 O 5408 20.551
-0.286 O.5616 21.408
-1.103 0.5824 22.274
-1.901 i
O.6032 23.150
-2.674 0.6240 24.035
-3.416 O.6448 24.931
-4.121 O.6656 25.890
-4.869 0.6864 26.'879
-5.608 0.7072 27.879
-6.305 0.7280 28.891
-6.951 0.7488 29.914
-7.541 0.7696 30.949
-8.066 0.7904 32.034
-8.230 0.8112 33.172
-7.998 O.8320 34.322
-7.638 O.8528 35.485
-7.143 0.8736 36.661
-6.502 0.8944 37.849
-5.708 0.9152 39.078
-4.993 prgpgrgdby;[A AV d M y-P.3 40 0.9360 40,405
-4.852 I.N Checked by:h - E f C-3 'N (T
0.9 File No. W 0.9984 44.476
-3.485 1.0192 45.861
-2.674 pggg 7L gy 9"
1.0400 47.260
-1.663 l
4 TIME KMAX DA/DT DA A
A/THK 1000.0 16.54 1.543E-05 0.0154 0.4154 0.320 2000.0 16.34 1.504E-05 0.0150 0.4305 0.331 3000.0 16.14 1.464E-05 0.0146 0.4451 0.342 4000.0 15.94 1.425E-05 0.0142 0.4594 0.353 5000.0 15.74 1.387E-05 0.0139 0.4732 0.364 6000.0 15.55 1.350E-05 0.0135 0.4867 0.374 7000.0 15.36 1.316E-05 0.0132 0.4999 0.385
FINA"25k-101 DC-CR^CK VERSION 2.0 PAGE 8000.0 15.19 1.283E-05 0.0128 0.5127 0.394 C000.0 15.02 1.253E-05 0.0125 0.5252 0.404 10000.0*
14.87 1.226E-05 0.0123 0.5375 0.413 11000.0 14.75 1.204E-05 0.0120 0.5495 0.423 2000.0 14.63 1.184E-05 0.0118 0.5614 0.432 13000.0 14.53 1.le6E-05 0.0117 0.5730 0.441 1c000.0 14.43 1.149E-05 0.0115 0.5845 0.450 15000.0 14.35 1.134E-05 0.0113 0.5959 0.458
.C000.0 14.27 1.122E-05 0.0112 0.6071 ' 467 17000.0 14.21 1.111E-05 0.0111 0.6182 0.476 18000.0 14.16 1.102E-05 0.0110 0.6292 0.484 19000.0 14.12 1.096E-05 0.0110 0.6402 0.492 20000.0 14.09 1.091E-05 0.0109 0.6511 0.501 21000.0 14.06 1.087E-05 0.0109 0.6620 0.509 22000.0 14.04 1.083E-05 0.0108 0.6728 0.518 23000.0 14.02 1.080E-05 0.0108 0.6836 0.526 20000.0 14.02 1.079E-05 0.0108 0.6944 0.534 25000,0 14.03 1.081E-05 0.0108 0.7052 0.542 2$000.0 14.04 1.083E-05 0.0108 0.7160 0.551 27000.0 14.09 1.091E-05 0.0109 0.7269 0.559 28000.0 14.13 1.099E-05 0.0110 0.7379 0.568 29000.0 14.21 1.112E-05 0.0111 0.7490 0.576 30000.0 14.30 1.1275-05 0.0113 0.7603 0.585 31000,0 14.42 1.148E-05 0.0115 0.7718 0.594 i
32000.0 14.59 1.177E-00 0.0118 0.7836 0.603 l
33000.0 14.95 1.240E-05 0.0124 0.7960 0.612 34000.0 15.44 1.329E-O')
0.0133 0.8092 0.622 35000.0 16.12 1.459E-05 0.0146 0.8238 0.634 35000.0 16.95 1.626E-05 0.0163 0.8401 0.646
'000.0 17.94 1.839E-05 0.0184 0.8585 0.660 v8000.0 19.17 2.123E-05 0.0212 0.8797 0.677 39000.0 20.75 2.518E-05 0.0252 0.9049 0.696 40000.0 22.74 3.068E-05 0.0307 0.9356 0.720 END OF pc-CRACK hy()
V-J 3-9d Prepared by:
Checked :IN N FueNo.
vg - 2 r N eV I
I of L
Page l
a f
l
?
x
- 'p t
i NYPA-25Q: WEL3 28-53 CRACK GROWTH l
l 1.3 1.2 -
l
\\
l 1.1 -
l i
1-g 0.9 -
w b
O.8 -
allowable a/t = 0.6 (=0.78")
l E
v 0.7 -
l a.
W 0.6 -
o i
f d
0.5 -
1 l
0 0.4 -
g[
0.3 -
- r 1:
LK&
T P if g j
0.2 -
k k..=
0.1 -
I I
I 9 vi t
o i
i i
i i
i i
as,N O
10 20 30 m
I s3<A 11ME (HOURS) )
Chau==ade i
0 E
.,,w.
.v,-
ni, Fa2 w
. 80 A1meden Espeouwer em.
sone ssa M1Plau opmegen Sea Jose,CA 96114 May 14, 1990 (408) 978 8200 HI4-90-016 18 5euth1411erbed sune 10 PAL (4 M
\\
Almos. Chie 44313 (21$)$$(g tu memust Mr. Robert A. Penny New York Power Authority 123 Main Street White Plains, NY 01601 subject:
Treatment of circumferential Flaws with Axial Components in Flaw Evaluation Analyses Rafarancet s2 Calculation NYPA-25Q-304 for Wald 28-53 at J. A. FitzPatrick Dear Bobs Flaw evaluation analyses such as are contained in the referen package generally consider only the circumferential aspect of an ced identified flaw.
Allowable flav depth is determined based upon end-of-cycle flaw length and applied stresses.
around the pipe circumference, growth calculation is performed The actual flaw
~
which is clearly a conservative assumption with respect to the The circumferential flaw is a potential structural concern actually observed flaw langths.
such a flaw could conceivably reach a depth and length which since would lead to fallure of the component under applied loads.
In contrast, the structural concern, axial flaw is unlikely to represent a ' true This is due to severalbut would most likely result in the worst case.
orientation.
The stress, aspects of the axial for determining allowable flav size, which acts on an axially oriented flaw is only that due to the hoop pressure stress.
due to axial pressureAlthough the hoop pressure stress is twice' that
- stress, instance, to seismic effects, deadweight, bending stresses due for weld overlay shrinkage do not act on flaws in-the axial thermal expansio,,
n or direction.
In addition, the consideration of potertial low toughness veld material in flaw evaluations is expressly excluded from applicability to axial flaw evaluations by section XI, IWB-3640.
As a result is gener, ally greater for an axial flaw than for ath IWB-3641-3 & 4 360
circumferential flaw In
- fact, the actual margin to structural failure is appre.
is represented by the Section XI tables.ciably greater for an axial flaw than Using the techniques of Appendix C of Section XI, 'it can be shown that the length - of through-wall aximi flaws which would be required to be degrade code margins is greater than is normally credible. gin to This.
.. _. _ _.. _ _... -... ~,
I Page 2 Fay 14, 1990 t
R. A.
penny HIG-90-016 b
B is because the axial length of an IGOCC flaw is limited by the extent of the heat affected zone (H.4) of the component butt veld.
Beyond the HAZ, the sensitized material required for IGSCC propagation does not exist.
Appendix C recognizes that flaws are generally not truly either exial or circumferential in nature.
The evaluation technique presented in that Appendix includes projection of the actual flaw into both the axial and circumferential components, and cvaluating each projected component separately.
In reality, this is difficult to do since inspection rarely can map an actual flav in sufficient detail to make this meaningful.
- However, the evaluation is implicitly done for axial components by noting that an axial flaw could generally be through the original component wall, and have a lon i
i o structural concern.ger than credible length, without presenting The circumferential flaw is conservatively addressed by determining an end-of-cycle allowable depth based t
upon a crack grown in length by the criteria of NUREG-0313, Revision 2,
and using a 360 model for the actual crack growth calculation.
In summary, axial cracks are not likely to grow to a length which is unacceptable to ASME Section XI, because of their direction of growth into either IGSCC-resistant weld metal on one side, or 4
~
s colution anne *'1d base metal at the other and of the crack.
cnd-of-cycle This c sial crack length is generally predicted as less than 1 inch, well below u allowable axial flaw length based on IWB-3640.
On~ the other
- hand, circumferential cracks can conceivably grow around the full circumference of the pipe and become unacceptable with respect to ASME Section XI requirements.
Thus, the consideration of the circumferential flaw indication for the limiting analysis is justified.
compenents of a 1
I hope that the above information meets your needs.
If you have any questions, please call.
Sincorely, H.
L. Gustin
/mc cet NYPA-250-102
my a ' w.s us e r arm.n.s w<. amemsiv m%
L< m 313 a m n'; w M.
se RIS -
bat!MamiOpmutses Sanjoes.CA 95118 SISedMaarReed i
May 15, 199o see10 (44 954000 inmiteitsucCf MLG-90-017 Abes,0We etals
- umeenemato (218)tu. ate v
Fusieemme k
Mr. Robert A. Panny New York Power Authority 123 Main Street o
white Plaine, NY 01601 subjects Evaluation of Flaw in Wald 28-53 Dear Bob l
The 105CC iidication in veld 28-53 was primarily circumferential, w
with a smal'.. axial component.
L The flaw evaluation was based upon y
a circumforential flav conservat Wely assumed to aiutand completel around the pipe for ti.e purpose of crack growth analysis.y This conservatively bounds any analysis of axial flaws.
which could lead to pipe failure, while an axial flaw,A circumfere even if through wall, would leak but would not be a structural concern.
i Leak before break applies to axial flaws.
By demonstrating that the observed circumferential flaw is acceptable, any concerns '
associated with the axial flaw are automatically addrasansL If you have any further questions, please call.
M*,
Sincerely,
.n...
N
.b,,
i
-.:.: y "E;F H. L. Gustin, P.
E.
-.,s
/$$
7 cc NYPA-250-102 t
+T' 4
g e <*
4
.e
+
6 I
" ~'
J,
?
..--.v~,-...-.---~w--ee-
1 l
4 ATTACHMENT 3 to JPNw041 WELD OVERLAY DESIGN PACKAGES
'l 1
1 I
1 l.
L I
l~
1 l-l J
'i I
l i
l l
l~
NEWYORK POWER AUTHORlW I
JAMES A. FITZPATRICK NUCLEAR POWER PLANT DOCKET NO. 50-333 1
1
A
!
8 FLOW
=
=
c
=
45' MIN -
TYP o
I['((['(('['(((('['((N['((((((['((-['Mk t
/
s wA
/
/
t
- 4. WELD WELD OVERLAY REPAIR DETAILS FLAW DESIGN DIMENSIONS WELD NUMBER CHARACTERIZATION t
A B
=12-02-2-01 circumferential 0.27' 2.0" 2.0a 12.75" Long x 36%
(min)
(min)
(min)
Throughwa11.
+
l l '
Daft DESCRIPT!0N PREPARED gg y/g /9g Standard Weld Overlay Design for' Weld 12-02-2-01 per NUREG-0313 CHECK 08(
Daft Revision 2 lb^t%
WWe<>
J08 NO:
PLANT / UN!T:
REV NYPA-250 J.A. FitzPatrick STRUCTURAL
~
SHT FILt NO DWG N0:
xe l
NYPA-250-303 NYPS-250-003 1
0F 1
l i
/
\\
A
=!= NOTE 1 +
~
=
45' MIN -
TYP n
t jff'((ffsissiti"titiiii'n'#'
o
/
/
/
PIPE SAFE END t WELD WELD OVERLAY.
REPAIR DETAILS FLAW DESIGN DIMENSIONS WELD NUMBER CHARACTERIZATION t
A B
12-02-2-01 Circumferential 0.27" 2.0" Note 1. Note 1: Blend the 12.75" Long x (min)
(min) repair into the 36% Throughwall safe end transitior::
as necessary to i
complete repair.
t i
i PRE'ARE BY DATE DESCRIPi!ON:
j.
A y,30.g o Standard Weld Overlay Design l
for Weld 12-02-2.
l CHEC D BYs DATE per NUREG-0313, Revision 2 4 T O 108 NO:
REV PLANT / UNIT NYPA-25Q J.A. Fitzpatrick
- is y si; 1
FILE NO:
SHT NYPA-250-303 0hY0A-250-003 y
1
~-
l' I
1.
b STRUCTURAL CALCULATION FILE NO: A/ @* 250 *3cf
. I.N.T E G R IT Y
"" d"
ocims, in c.
PACKAGE
've-ra PROJECT NAME: N Y /h-Tf Q l b'Y)[ d '6k /TTO
@
- I y * # g F Y~
CLIENT: M Yu#
[Ner dwb (Yy CALCULATION TITLE: gyg)d p)c)h g y y /
- Meg, g
hw N
l2-0?#?~01 PROBLEM STATEMENT OR OBJECTIVE OF THE CALCULATION:
f Me
$s=):-r b
D V e<
has ep W t Y ll'01
- L ~o /
WU $ Q& ' O 311 & 83 % 5 0 !"
(
Proj. Mgr.
Signature, initiale Document A!!a c te d and Date Revlelon Description Approval novi. ion P.g..
of Preparers
,o,ie and Checkers C
I" h In titJ I ts u <.
NW'l.2,, FM M q-2,-vo d}*fhh 440-$o i
l
[
PAG E I
0F
KIN O O % k T. A. Rh, f+ rp < eic dii-or-e-oi t
o p rp L k
I
- O de it.-o2-c-oi
. a c% LQ &
y 4 J n 8%
j Alwe64 - an3 ht L y d
'?
WS n -o?- z-ot
& 4*wy a ca. n ~ w J & diL.y W~ la o. ? 2 " [2, y y y JA P-U T-o vl2']
l TL
/W M
ft2 p % M du. A J A ~ ~ J J L %)=Lk A L Ak &.:- k w J
u Tahki. M fDJ m LlJ n %.e.
. o= J
% pe=n a 1z rs p u.
An N,
- D' p m :m & )
r 'f. 7 bo *-zo x'
I n-A #. M Ls-b()
r If e ym,We.}
v i
e
Revelon 0
Preparer /Date MMYk checker /Date M y/w/h File No. # YM 2fa - 3 0 3 Pao.
L of E
% ~2 O W W J G -1 M y & ),,
r ulus b w lpyk ~2J g (oo';-son t = W k&~ = h (o p tzb 'sp ode 12.662" D]'
'~
f r Q '~
Nhh$ f3t
~
f LE L
Pg 3
6*y s6~oge = 917 7 pse
=
M
=1510o j)st g e atace n z.o - A MM Q l
E1Q M % N,N @
W W)M 0_ = a. '
d.&
A O
24.
- 1. r [ 12 +} ' = t s> [4.331 *o Vt] **
\\
- 2.2 m e.o' A
^
F s. c. E % Q 2 2 h ?4 '2 1, & I y 411 tel.
x, h
ogtQ rA F u r-o 41 Arv 9-t-e o a)
.Th P-4 $NI A $ '!-%-Yo f*fR0l' 4 f
R. vision
.O me.ao.,.
- )f)sk Ch.ck.r/Dat.
M WH[%
n.m N yg-t re - 163 Pade 3
d [
\\
f I4$LE I
~
sold 1201 i
00(lu):
12.662 i(IN):
0.72 10(IN):
11.222 P(Pll):
1215 I(f):
562 A(IN'2):
21.0!!
!(IN'4):
76.336 N0DE 254 f0RCt M0 MINI MOMINI TOTAL AXIAL LOCAi!0N
$1Ri$t (AXIAL) y i
M0Miki liRits WILDNO.
TYPE (P11)
(PSI) l:
1201 P
4669 12 01 DN 300 17400 42300 45739 610 1201 1201 04!.l.
1600 79500 173100 190483 2555 1201 Olt.2 3!00 142700 219500 261808 3544 TOTAL 8823 P8:
DW + 08tMAX 4154.151 PM:
P 4668.540 3
pp3:.HIul%?
, Prepared by:
gfg c w ked A
ggt,y,)
Fue No. g i
M of _ y p,g, i
e.
tm pc-CRACK (C) COPYRIGHT 1984, 1988 STRUCTURAL INTEGRITY ASSOCIATES. INC.
SAN JOSE, CA (408)978-8200 VERSION 2.0 Date: 20-Apr-1990 Time:
9:29: 4.26 STRUCTURAL REINFORCEMENT SIZING EVALUATION STRUCTURAL REINFORCEMENT SIZING FOR CIRCUMF. CRACK, WROUGHT / CAST STAINLESS NYPA-25Q: WELD 12-02-2-01 WALL THICKNESS:
0.7200 MEMBRANE STRESS: 4669.0000 BENDING STRESS:
4155.0000 STRESS RATIO:
0.5550 ALLOWABLE STRESS:1'5900.0000 FLOW STRESS:47700.0000 L/ CIRCUM -
0.00 0.10 0.20 0.30 0.40 0.50 FINAL A/T 0.7500 0.7500 0.7500 0.7500 0.7500 0.7275 REINFORCEMENT THICK.
0.2400 0.2400 0.2400 0.2400 0.2400 0.2696 END OF pc-CRACK 1;GLOt9/ufeo Prepared by, M NM Checked try#A'IM ~
File No. "T I
- ~
of Page 1
1 i
i,
. ~,
,s.
/ l o ?- 2 -l
.l 0a17757 TABLE 01 (CONTINUED)
J j
GENERat, Ettcratc compaNT spec no, zazezz
- ngy, Ng, lij i
.............'Em REACTOR 575fE=$ DEPARfmENT Pact NO 80! LING
=A
.................................................................,.1 f!TZPATRICE RECIRC O!? CHARGE L,1NC 6 RISERS AND NEADER J0!NT NO, TYPE 00
.!D Y
INERf!A I
i 25m N0Z ZL E t ap v )
12.662 11*. a s t 0.610 a20.5 66.a2 3,
!st,000 i
NA M6 aC LaPaNSION
=0 MENT $s
- 310357,
.e45205, et75569 DEAOLOAD aQ,4E N f 5 s
- 5935, 17370, a 2 3 0 7.-
Pelaamv SE!Salc
=0*E=fla Y2715.
ta2720.
219:50.
d
.f-SECONDARY SEISMIC M0aENf3s 0,
0, 0,
'i STRESS RatlO l A, PRIMARY SfnE55 INTEN3!?tts OEAOL0a0
- PRES $uRg a
- 6366, 0 a00 r' " {
OtaQLOa0 + #WES$Udf
- SEISMIC 1084.1.
On587 s
u, SECONDARY STRESS RANGE EIPANSION 4547
~"e.3.Q.,,, '
O C. '
EsPANSION e $LCONDART SE13MIC,
a
- 4547, g,313
)
C. PR!a&#v P'luS SECONARY STRESS RANGE i
DEADL.0AD + PRES 3uRC
- CEPANSION a
- 13929, 0.264
W OEA0 LOAD e PRESSURE
- sE!sm!C
- TNERMat,
- EXPANS!ON s
- 17344, 0,333
- 0. R A WE E '.'E N T S.P R I M A R Y STE55 LIMIT ALLCuauLE STRESS a
- 19080, ELELT!C EVELUATED PR! MART SYNESSES A8 ShonN BEL 0s
$fRESS Raf!O f*ERGENCY cow 0!f!ONS tut.t>P80*10E.3 QEADLOAD + PRLS5URE
- 00uSLE PRIMARY SE!$MIC
- 11595, 0,a0 F OEAOLDAD + MA1, PRES $yRC e PR! NARY SE!SMIC
- 11594, 0,405
~
FAULTED CON 0!!!ONS 10E.3*Pe0810E.e OE AOLO40.aan,*1 Essure.00ueLE PRtmaRY sElsa!C
- 15641, 0,att
._i
\\
t
'C.
Prepared by: - I M Vade #
N twne w. XHu u-u u FHe No. NY/A-t re -3o3 Page
-b fog P-
[
o
., (
.0s17752 TABLI.C1(CONTINUED)
~
GEhEnaL ELECTRIC COMPa'uf 3 P E C MO, zzAz044 mgy, sig[ 1 BOILING haf t/t mE ACfon systems DEP ARTMENT
.....................................................................PAGENO,48 FITZPATRICA AECIRC OtSCMARGE LINE 8 415tR4 A4'0 IiEADER
-fatt,E Pet J0!NT
.f7PE CASE FORCE $(41PS)
MQME N T S (! No A l P 3)
DEFLECTION 5(IN) 40 40 FA FS FC MA.
MS MC I
7*
2
,, m 236 'fMERMAL 1
=1,#
6,5 *1,4
- 19,4-21,0 236,2
- 0,34 0,5) *0,69 1
/
236 ut!GMT 1
0,3 0,4 0,3 eter.
1,6 10.7 0,00 =0,00 0.00
[
236 SE lsalt i 6.s 5.e. 0.9 23.1 30.7 65.7 0 9,,L J,d_3,,0.01 3
244 &E;;&4;,C 2 6,e 5,9 1.1
,Ja,9 43,3
,75.1 0,01 0.0 o,01 237 fHERNAL 1
- 1.9 3.2 5.6 2.s 185.s
.tte.)
0.31 0.47 0.7e
,f',
237' mEIGM7 1
0.3 *0,2 =0,3 0,2 6,4
=4,2
.0.01 *0,00 *0,00
"'/ '
237,SE!5NIC 1 Sea 11 est 32,1 4,2 94,0 0 01 0.04 0,01 237 sEfsmic 2 8.5 1.6 1.1 49.a 6.8 96.s 0.01 e.cs 0.02 238 fMERMaL 1 1,9 3.2 5,6
=2,s 559,a 312,5 0.04 =0,17 1,44 238 4EIGHT 1
el.4'=0.2 0.3
.0.2 35.7 22.1
- 0. 0 2 0 dt,__g.3,0 0
234 SEl$Mic 1 7,0 0,3 1,2 32 1 102.3 39,4 0,02 0,0s 0.04 234 SEISMIC 2 7,1 0,3 1, ',
49,4 122,6 44,4 0,03 0,04-0,82 e
,e 239 fMEAMAL 1 et,9 3,2 5,6 e2.s ee39,2 154.7 0,05 =0,2s et,06 1
239 mE!GMT 1 el.5 =0,2 0,3
=0,2
.40, 29,1 0,02 0.00 0,01 239 SEllwit 1
(.
5 0.8 1.1
- 32.1 til.t 14.7 0.03 0.04 0.09 239 3E13 MIL 2 6,5 0,e-1,1 89.5 128,4 39,4 0,04 4,
it s ',
258 fatemat 1 0.7 5.6 10.6 310,4
.4a5.2 175.6 g rc=0.a4 0,5a.0,N 25e
.tIGnf L
=0,J 4,2 0,e 5,9 ti,e 42,3
'0, v,
v.
25e SEISMIC 1 1,6 4,6 1,3 49,5 79,5 173,1 0,00 0,00 0,00 25a 5t!Sa!C 2 3.1*
5.0 2.2 72.7 ta2.7 219.5
- 0.00 0.00 0 00 255 fHERMal. 1 0,7 5,4 10,6 e 310. 3 '
126,1 0,4
=0.60 0.51 =0,37
/, '
255 WE!GMT 1 =0.3 1.5 +0.4
- S.9
- a.9 1.5 0.
0.0 e 00 z33 stismIc tot e,s 1,3 89,3 ea,e 76,3 0,00 0,4
, FO 255 sElsu!C 2 3,1 4,4 2,1 72.4 79,7 134,4 0,00 0.02 0,01 e
2'a t IMERMAL 1 5,1 5,6 7,1
=175,1 tiet 224,5 0 c3 0.47 *0,44 256 nE!GMt 1 et,6 0,1 et.1
- !,4,
=22,6*
5,9 0,
0,00 0.00 256 SEIsaft 1 3.5 3.1
.3 17.2 50.0 75.4 0.00 0.02 0.01 o
256 3EI3MIC 2 4,1 e,0 H,1 15:e 41,2 122,0 0 01 0,02 0,03 257 TMERual 1 10.4 5.2 =2.2 3.s 9.1 e236.3 40 63 0,41 =0.s7
\\,
257 eEIGaf 1 *2,1 0,1 0,4 2,5 26,e 11.2 0,00 0,00 *0,00
\\
257 SElsni!C 1 8,4 1,6 t,3
- 25,9 28,9 73,0 0,01 0,02 0,02 257.SE!$a!C 2 a.6 3.1 2.1 al.1 36.2 98.1 0.01 0.03 0.04 254 fatamat I 10,8 5.2 2.2 3,a 283.6 459,0 0,a2 0,23 0,86 258 aE! Gat t
3.7 0.1 0.a '
2.5 22,8 3,9 0,og o dL.7,s.0_0 0
254 6Els.!c 1 3.0 0,4 1.2 25,9 133.8 75,9 0,04 f,0 2 te 258 SEtsm!C 2 3e 0,9 1,2 e5,1 196,9 115,9 0.14 0.03 0,23 uzu @de mPave qgofp Checked b :
File No. # NO. S.
Page' F
Of i
n,-
FLOW A
B
=
=
=
45' MIN -
TYP i
o
' ' ' ' ' 6 6 ' ' ' ' ' ' ' ' 'J.' 6k.' ' ' ' ' ' ' ' ' ' '
/
1 m\\
/
I
/
i l
i tWELD WELD DVERLAY REPAIR DETAILS i
FLAW OESIGN DIMENSIONS WELD NUMBER CHARACTERlZATION t
A B
12-02-2-08 Circumferiential 0.25" 2.0" 2.0" Flaws (min)
(min)
(min) l PREPARED BYi DATE DESCRIPTION:
~^
8 Y 90 Standard Weld Overlay Design for Weld
-2
~
12-02-2-08 per NUREG-0313. Revision 2 L-CHECKED Bf DATE Ot<A Sfff0 5k REV JOB NO:
I PLANT / VNII:
NYPA-25Q J. A. FitzPatrick 0
>ra;g FILE NO:
DVG NO Wx i SHT NYPA-25Q-310 1
0F 1 t
l l
1
TRuCTuRAL CALCULATION FILE NO: Al YfA-2fd-Jpg INTEGRITY
- ASSOCI AT ES. IN C.
PACKAGE PRNE T NOgyg,yge
- 7. A. Fa I) [airic E l99#
8d 8f/ e T' PROJECT NAMk:
4 ye CLIENT:
A/tW Ye r /-
,d
[dn,/ y pww CALCULATION TITLE:
g
]
gp,,/
p,3, her W &l )
g2 07-2-Og PROBLEM STATEMENT OR OBJECTIVE OF THE CALCULATION:
5%Ju) WdA beely De.
p,,p e p e, H a ec,, -o r 13 Ru a '~
2 Lw
/~2-b?-2-o&
l l
Pro). Mgr.
Signature initiale o..,nent Af fe c te d Revlelon Description Approval and Checkers O
l~S
$ htSA 533a t
})h $$l% f. W W9hp Mrs PAG E I OF I l
i
..... ~... ~. -.. - - - -.
_ -. -. ~.. - - -..
W d 0 vel.*
D A In T.A. 4 Poinck w e M 12 -o T I
( c'em pleie des #i1adem.'#2.o2-t-or) aA:
WJ) n -o
- W -y py,. t
,y s cyu 9. a a
-y n.
3 A n,J q%ansc,-o,s s e'n.
J 2l k Oy es_.J,[ b
- SL ):Y W
D J Le
% & k e% z, 2k.4 g
A,n d :
wa a -o r.
v. ~, =
-A f
7 noe# 2.3f 4 Ab + /.
Lsh1-A pl -s f.':-
f 7
m
-LJ;id & p e n-H JM-;
e.si" Tk ~- & JrL ns
~+
L rta. % w, ass. Ma.n%. w w.A Jkb D 2 m
J 3
- L. m = A J
- ~
.h
=UA w
& wn,k%--
- 4. s. m k
+
r.16i. M =&_
r p
L,
c,a J i b!
pm.
6-4~
0:p Pc: n u
o avr p c. YL.j%/n-dLt~~
A c. e. nLJh.
1.br=n
. ~ ~ ~
~
PA a (joy) Uoot- @of.'
p,. ~.,.
e.-
o~.= W +
- bc g_1y), z' b
E F
/
S "O ^---
Revision d
Propww/Date
//IMk checkw/oet.
7/c # 9 y;se na $/1ffr
~2SQ - W 'W '
Paoe 2
of 8
a.s-m w
r~,
no.z,>
,,-+.*A s+-
w
+~*m
=*as=-+-mamaa-
"r-e' n**m**ae-a-ee.-
m
--=a*
a
--w a m-m m M "4-**.*mt-s-mmem-es-
--e~~4M-+=-ea-an,
...a..
s
-.g e
7
- 8 945Wuh g
g
~
T ^A.
R
%%^-
W$.. ^
^
?.
& e. W'a-'&,
~
A...
A p
y(00*-70-)
8 v = saa z
4
.n 0 0 m.TD
/
og 37 2.cci
pct]
" ~
~~50..
1
- T.k n+.0y J~w P,= r, q Sg zy sc
=
oa {Ges. &,
=
IS'5~?psc
~A<-
fg
' t
.h Allowslh M % = t c 9eo,ose,
h w
Z'_..
hi M A A= w,74.pe 4 4.iE~
~
~Np}'
J N.
t=
o, e s
l t
1.sfs.33lXo.? 3 )
F
- 0..
(:
L =
' 5 1/P. t-
=-
- *I. o..g
=
h ts e A Ara ttA26n A E.7. f. p n U +$ :--
. a. E basco y 3AF -u T-ssy, S-2-90 H fy )':~_
~
Revision C
Properw/Date NNh4
~
cnocueiosto LTk/r-K~ M, peae 2
at Y ye m M4PA-L 50~ - iI&
~
.- ~..---
~
5'.
t A#g,
,~
t:
.c 5.
0417752
' TABLEC1 (CCNTINUED) -
jg GENEpaL CLECTRIC COMPANY SPEC NQ,2MZb22 80! LING mafER aEACTOR SYSTE*S-DEPAAT ENT AEv NO,47 1
PAGE ho, F172PA,fRICK RECIAC 0!SCMARGE LINE 8 RISERS AND MEADER f
7A8LE Fet i
q l
N.
J0!NT TYPE CASE FORCES (M1PS)
MQMENTS(!N.n!PS)
OEFLECT10N5(!N) 40 NO FA' F8 FC*
MA M6 MC I'
Y Z
209 THERMAL 1=10,3 12,0 *7,3
- 102,2 e506,4- =367 a 0,55 0,20 0,98 209 WEIGM7 1
0,7 2.1 =0,9 83.8 55,0 27,7 0,02 =0,011 0,01
' 209-SEISMIC l'
5.7 a.a 1.6 221.7 190.9 713.6 0.02 0.06 0.04
'N(
, 209 SEISMIC 2 e,7 a,5 13,0 a31,2. 1780,6 70s,5 0,01 0,0e 0.04 s
~~~
7ta futamat 1 0.1 10.0
.7.7 300.5 16u.8 480.4 0.01 0.5a.0.56 216 #E3GM7' 1 0,7 0,5,3,3
- t7,0 etta,6 21,8 0,.
- 0,00 0,
214 SE!$MIC 1 1,6 12,6 0,7 18,1 a9,6 473,0 0,00 0,00 0,00 214 SEISMIC 2 2.0 12.5 0.5 15.a 3a.6 47a.6 0.00 0.00 0.00 215 THERwaL 1 0,1 Lo,0 7,7 390.5' 109,8 150,9 0,0s 0,57 0,72 s
-215 kt!CMT t
0.7 0.5 2.9 17.0 10.8 5.8 0.00 0.01 0.
\\
215 SELSMIC 1 les 12,2 0,7 18,1 35,6 62,3-0,00 0,04 0,00
~~
215-SEISMIC 2 2.0 12,1' 0,5,
.1.5,a 30,4 74,9 0,00 0,0s 0,00 l
216 TMERMAL 1 e5,4 10,0 a5,5
- 222,0 1160.255,8 0,08 0.56 +0,75 216 ut!8M7 t
2,4 05 1,5' 10,8 22,8 9,5 0,00 +0.01 0,00 1
216 SE!SMIC 1 9.5 7,. 8 0.7 28.6 22.
93.5 0.01 0.05 0.01 216 SE1SalC 2
- ,5 7.8 0,5 29,4 16,8 96,2 0,00 0,05 0,01 j.' 3 x
217 THERMAL t.7.7 0,1 10.0 ".28.8' 210.8
'30.6
'0.ta-0.51 0.53 211 mE1GMT 1
2,e *0,7 =0,5 3.4 8,0 27,9 0,01 0.01 0,00
- i L
i 217 SE13m!C 1 12,2 1,6 0,7 33,2 8,0 139,8 0,01 0,06 0,02 217 SEISM 1C 2 12.1 2.0 0.5 32.0 8.5 138.8 0.01 0.06- 0.02
- '{
28,8,e992f9 39,a 0,55 0.07 0,95' 7MEAMAL 1 *7,7 =0,1e10,5-0 l
218 wt!GM7 1
1,1 =0,7
=0, 3,6 51,9 53.2 0,02.0.01 0.01 218 I
218 SEISMIC 1 10.1 0,2 1,9 33,2 102,0
- 1,1 0,02 0,06 0.03
[)..{,
218 SE13M!C 2 10,0 0,2 tot 32,0 160,3 30,6 0,01 0,0e 0,05
'N' 219.fMEAMAL 1 e7,7 =0,1=10,0 e28,8 1202,4 eles 0,55 =0,20 *0,94 219 mEIGM7 1 *t,3 *0.7 0,5 a3,6 e65,a fles.
0,02 =0 01' 0,01 219 set $mLC 1 9.2 0.3
- 1. 9-33.2-ta2.6 ao.5 0.02 0.06 0.02 i
21,9 SEISMlC 2 9,1 0,3 2,1 32,0 200,9 32,2 0.,01 0,0e 0,04 234-TMERMAL 1 0,0 6.7 0.1 336.5 ta,6 32a,a.
0.28' 0,5 a. 0, e 9,,*,7 23e mEIGMT 1
0,0 0,1 1.0.
45,a
=33,1 9,2
-0, 0,
0, s
234 SCISm!C 1 1,1 8,7 1.0 23,a 62,2 313,2 0,00 0,00 0,00 t
234-SE!SMIC 2 1.6 8.8 1.1 22.6 87.9 326.8 0,00 0,00' O.00
~~,,
235 7MERMAL 1 0,0 6,7 0.1
- 336,e 12,u 122,1
- 0,33 0,55 0.e2 oo 235
.ElGut 1
0.0 0.2 0.7 15.e
.F5 a.7 0.00 0.00
=0 g l
235 SE13MIC 1 tot 8,e 0,9 23,5 iTf7 e7,0 0,00 0,Il 0,00 p
,e 235 SE13MIC 2 1,6 6,5 tot 22,7 61,5 87,3 0,01 0,02 G,00
~
E Prepared by:
E[d E{hp h
~ ' - ~
Checked by: JFC/r-<7-ro
. F File No... NYB4 - ) Th 3 7o L
'Page 4
. of
' 8' A
o
' f '"~
s 0487757 TABLE D1 (CONTINED)
GENERAL ELECfa!C COMPANY
$PEC N0, 22A26T2~
ALv, NO,1
.80! LING =ATER REACTOR SYSTEPS DEPARTMENT P ACE NO,176
~*
FITZPATRICK RECIRC 04,$CMARGE LINE 8 R!sERS ANO MEADF.R a
J0!NT NO, TYPE 00 30 Y
INEATIA 2-235
- 8. WELD Aw/Am 12.662 11.sa2 0. 6 t' 0 a20.5 66.a23
!s!,000 MA M8 MC ExPAN$lON MOMENf5a 330 sat,
- 12s39, 122130,
?
OEAOLOAD MOMENT 3s
=15at7,
- 7a68, a717, PafMARY SEfSMIC moment 5s 22658.
61479 87 Ms.
SECONDARY SLISMIC MOMENT 5s 0,
0, 0,.
RATIO STRESS A,
PRIMARY STHE33 Itif E NS I TIE S DEADLOAD
- P4ES$0RE
- 5919, 0,37a
-.O E A DL O A O + PWESSURE
- SE!5MIC a
7e96.-
Cy3 8, SECCF0ARY STRESS RANGE s
5392.
0.194 E IP A N S,[QN EXPANSION + SECONDARY SE!SMIC a
- 5392, 0,196 C. primary PLUS SECONARY STRESS RANGE DEAOLOAD + PRES 3URE + EAPANSION s
- 11303, 0.217 DEA 0 LOA 0 + PRESSURE
- SE!SMIC + THERMAL
- EXPANSION a
- 122au, 0,235' O
RARL'EvrNT5=PR!uaav STEss LIMIT
~ ~, -
~
ALLuaA8LE STEE55 s 19080 ELESTIC EVELUATED PRIMARY STRESSES AS 3M0mN BEL 0w STRESS RATIO EMERGENCY CON 0!TIONS 10E=t>Puo>10E=3 l "l OEAOLDA0
- PRES 5URL + DOUSLE PRIMARY SEISMIC
- 4653, 0.302
.0EADLOA0 + MAX, PHES5URE e PRIMARY SE!sMIC
'4653, 0,302 L-FAWLTLD GQNQ1TIQN5 4GL*)>PGQD10E*t DEAOLOA0*"AX, PRE 55URL+00U6LE PRIMARY SE!5MIC 10292,.
0,270 L
(
-f v
9 a
~~
/W S-/'//9d Prepared by: WC/ff-fo.
Checked by:feA - 2 F A -3 fo File No.
d 5
,lPage
, C., of 8"
i 1
1
e 1
'1
-)
W[LD1208 OD(IN):
12.662 i(IM):
0.73 10(!N):
11.202' P(PSI):
1275 1(F):
~ 562 A(IN'2):
27.364 I(IN'4):
77.210 N00[235 FORC( MOMINI MDM(NT TOTAL AX1AL LOCATION
$1RES$
(AXIAL)
.y 2
M0 MINT $1RISS WELDNO.-
TYP[
(P$1)
(IN-L8) (IM LB) (IN LB) (PSI) 12 08 P
4592 1208 DW 0
-7500 4700 8851 115 1208 1208 Ott,1
!!00 39700 67000 17879
-1049 1208 00(,2 1600 61500-87300 106787 1442 TOTAL 6148 P8:
DW + 08tMAX:
1556.185 PM:
P:
4592.035 1
Prepared by:
/lM f/V/?d Checked by: t7? cfr-r-ro l File No. A) W4 -250 ~ y i O
'Pago-
/o of-r 1
I
7 tm
?=
i pc-CRACK (C) COPYRIGHT 1984, 1988 STRUCTURAL INTEGRITY ASSOCIATES, INC.
SAN JOSE, CA (408)978-8200 VERSION 2.0 Date:
4-May-1990 i
Time: 12:25:58.94'
{
l STRUCTURAL REINFORCEMENT SIZING EVALUATION
, STRUCTURAL REINFORCEMENT SIZING FOR CIRCUMF. CRACK, WROUGHT / CAST STAINLESS l
i NYPA25Q: WELD 12-02-2-08 l
i WALL. THICKNESS:
0.7300 MEMBRAHE STRESS: 4592.0000 4
BENDING STRESS:
1557.0000 STRESS RATIO:
0.3867 l
ALLOWABLE STRESS:15900.0000 FLOW STRESS:47700.0000 l
L/ CIRCUM O 00 0.10 0.20 0.30 0.40 0.50
-1 FINAL A/T O.7500 0.7500 0.7500 0.7500 0.7500 O'.7500 i
REINFORCEMENT THICK.
O.2433 0.2433 0.2433 0.2433 0.2433 0.2433 i
END OF pc-CRACK 1
i i
/
1 l Preparod by: )N DNd Chechedgb : OFC/S*-1'-To Flie No.
- 4 -8I6 ~ 2 / o
'Page of T
l 1
s
.J
}
~.g FLOW A-
=!
B a
=
=
=
45? MIN -
TYP U
l
.A
\\
s
/
I 1
4
% WELD WELD OVERLAY REPAIR DETAILS a
FLAW DESIGN DIMENSIONS 0 NUMBER CHARACTERIZATION t
A B
12-02-2-18 Circumferential 0.25" 2.0" 2.0" (min)
(min)
(min)
PR{ApR BYiy DATE DESCRIPTION:
AK 4-3 o-go stanaara wela overlay oesign
~
for Wela 12-02-2-18 DATE per NUREG-0313, Revision 2 C CKED i
Yf Ofh0
[ jab '
[08NO:
PLANT / UNITi REV NYPA-250 J.A. FitzPatrick 0
i
>e;4 FILE N0i OWG NO:
.se x ac SHT NYPA-250-306 NYPA-250-005 y
y 0F
^
STRUCTURAL CALCULATION FILE NO:# #A-75&.jng INTEGRITY-
"" d"
' ASSOCI AT ES. I N C-PACKAGE
'afM-44
.J,k, Eti) faf tc K A
11TO 04466 r ((vY PROJECT NAME:
8 CLIENT:
MM Y erg. h c.r' A *Tfled'T /
g gy/
g gr CALCULATION TITLE:
+
VO) 12 - o z --t - /1f PROBLEM STATEMENT OP. OBJECTIVE OF THE CALCULATION:
M YU k$~OEI],k';'^ & Q g ) ~ 02 l T i
Prol. Mgr.
Signature, Initlele Document Af fe c te d and Date Revlelon Description Approval Revlelon Pages
'I
/Date and Checkere O
l~ W
[ h $SEV6 h
.N M Ub6 y/1 oho 76 h
f%$
3*-fo 9
PAG E 1 OF I
W O O v"&
k }n s. A.14 Painee weJd I% -o 2-2-trT:
' ^
/
/
/
L Wsk)I02.'2-IT W,a y^ o/v.)h:, ~}-
Ob,' & :
7 7 _.
k r *;Ert-r e,':-%. Ct. Y n%
A w] o
~d,
.j -A. n aua, -
,,a s;+a.
n.
wd J I.a &.
" SL)~
i h&_ l b.l.nA))2-02-t.-If
@y4 1 ') 4 v :_ L i,
~ ~ ~
g nne# / til 4
l.
L iEe 1-A Ay e -> f.L-_
l
%d
},,, m wer) w o.kk Y^ A'.
W4As. %bAb=)
e. 6 I ' ',
o4
% " -As) N L
.--' e at
- .~_
S h
W I1 iss d i k o. W.T h P r ucn / n = d
~~
f
& kka. m :=1'?A N
.~.~_
W
[s ]
n k m ) 8 e Y ' ' & 'e s v _ l c ~ f S L '...
h.Th.Fh=b n k T O I. M.
s e.=
pq cua e 3%ht
&~.
4 ::
A ~ lw /m
'I5-..---
W W.
fr em a2?.fpst.
a 7
Pp
~
9 ()D)Il%[.(00Y- (1.D W
M c c.J lfe
()p,-.
p.:
h' del 4 &, %_4 d'*
=
+
N
--4 "C -
y 4
Revision d
Preparer /Date
. [jM9[7f/W Checker /Date M VD?/fo Fils No. W$fh-T60- YM Page
]
of E
Ma h M wW n=2 7% L 4 TM W,
~
4s wE' - J.
" ~
1
~A: A p:
y (oo* -I p')
=-
~t = s- $;_ 4 g ('oo,zo)og 4
9 3t 50:
,2.642 %f/]
bW%
k k ~
T <ess a,
45 9 2pgi
=
r
% EA fa ' % kGec,.hu 2.2 % sc
=
T f
Tie All d L % = tr 90o,ose.
.fc. C rat X
& t.
wo. & b den ~= + v
- ..~_ _^
_. '. _ & N &a.
%5:=m. Tle. f e l'A4k N~
~
k i= 0. 25
~
A ver.
(.'
L: 8 f [$. f-e 15
- 6. TJ /,)IO,73 )
7_
3,27
.==.4.o[
~
M
~
'c q e % Ap.a ua 2 &zz
%.1 m mist ~._
eeu e M Rsvisen 0
Prop.r.r/Dat.
Oh-
~
c e.r/D.i.
MX 4.Mo, n m N VfA-4 50 ~ 3 o6 ' '
Paos 3
of I
'"I" TABt.EC1(CON 71 HUED)
GENERAL ELECTRIC COMPANY.
~ $PEC NO, 22A2622 R'E v. % c, i 80! LING WATER REACTOR SYSTEMS DEPARTMENT P AGE No. 45 FIf! PATRICK R E C I R C 0,1,3 C H A R G E LINE 8 RISERS AND MEADER
...,.s.... T Att,E 9 e t
~
.301N7 TYPE CASE FORCES (KIPS)
MOMENTS (IN.K!PS)
DEFLECfl0N3(!%)
.g NO NO
.FA.F8 FC MA M6 MC A
Y 2'
.l 1
178-fMERMAL,1 1,8 7,7 1,3
.257,4
.69,0, 445.0.
0,87 0,58 0.27 178 mEIGHT 0,2 e8,9,. 8, 9=.
18,9 28,4 20 7 0,
O.
6, 9
178 SE!$Mtc 1 1.6 6.1' 1.h 49.3 81.7 220.0 0.00 0.00 0.00 178 SEISMIC 2 3,0 e,2 2eh
,79,7 180,e 273.0' O 00 0.00 0.0'04 181 'Ywtam&L i 1.0 7'. 7 l'. 3 257.1 22.6 176.5 0.62 0.56 0.33 j
181 NEIGHT 1
0,2 8,6 0,7.
.*18,9 e4.3 2,6 0,
=0,03 O f00
'181 SE!SMIC E 1,8 5',8 - 1,3; 49,3 45,8
. 81,8 0.00 0,02 0.00 181 St!SMIC 2 3.0 5.9 2.2
79.7 75.0 140.6 0.40 0.02 0.01 182 TMPmAL 1 3,3 5.4.4,8 127,7 56.5 195.6 0.69 0.55 +0,35 l,','.
182
.t4GM7 1
0.6 0.2 0.4 11.0
- 9. 5.
13.9' O.00 0.00 0.00 182 SE!SMIC 1 a,7 3,9 1.3 19,9 50,7 86.0 0,01 0.02 0.01
. 142-SEISMIC 2. 4,5 4,4 442 22,9 41,1/
114,6 0.01 0.03 0,03
..vn..,.
143 THERMAL 1 +5,T 4,2.e3,6 19,5 91,5 131,8 0,75 0.50 =0,33 06 8,1 e8,3., ' 6,4 16,9 7,1 0,00 0.00 0.00
. 183 WEIGH 7 E
~
183 SEISMIC 1 5,.8 1.8 1.3 29.1 29.2 88.5 0.01 0.01 0.02 183 SE2sM1C. 2 5,9. 3,8. 2,2 39,2 42,1 91,6 0.01 0.04 0,04 4
s.
t84 7 mE R M a t.
1 +5.7 4. 2 '.' 3. 6 19.5'.387.7
.422.6 1.08 0.14 0.14 18s mEIGHT 1
1,0 0,1 0, I 0.8 37.3
. 9 ','5 0,01 0.00 0,02 184 SEISMIC 1 4.1 0,9 1,)
29.1 135.8 79,3 0.09 0,03 0.15 184 SEtsM.C 2 4.1 1.0 1.6 39.2 224.5 123.1 0.13 0.04 0.23
/
.r.
7HERM AL. 1 e6,5 '.5,7' e t,07 r3 39, e', '.21. 0'! 9,5' e636.6 1,09 *0.21 =0,t4 185 wC T Gh 7' t et.2 0.1
=0.3 0.8 ott.3 0.01 *0 00 0_t_0 3 r*..-
185 185 SEISMIC 1 1.1 3,8 2.7 133,3 103.9 29.1 0.10 0.03 0,15 185. SEISMIC 2 3,5 6,7 2,5 213,6 147.5 39,2 0.14 0.04 0,23 T.
185 TMERMAL 1 5.T 4,2 3,6 19,5
.438,9 e481,8 1,09.*0,21 0,14
.105 mEIGMT
't *0,2 =1,2
=0,2.
12,5 0,8 20.3 0.01 *0,00 0.03 at85 SE!$m!C 1 3.6 1.0
- 1. 0' 29.1 146.7 83.9 0.10 0.01 0.15 i
' 'I tab 5E13MIC 2 3,5 1,0 1,4 39,2 T37,9 124,3 0,14 0,04 0,23
\\
'186 THERaat t
- 5.4 5'.7 t.0 139.0 59.5 636.5 1.09
- 0. 21 0.M 14 156 a f.10en T 0,3 2,4 0.1 17,0 5,e 73,5 0,01 0,01 J.
~'
s 16 SE13MIC 1 1.5 3,6 2.7 145.2 83,0 162,9 0,06 0.04 0,12 8
4 186 SE!Sm!C 2 2.1 7.3 2.5 240.8 tia.5 30s.2 0, 9,8,,,,, 0. 0 5 0.18
.189 THERMAL 1 5.2 3.5 4,5 59.1 12,7 122.6 0.93 0.20 =0.62 18e.EIGut t
0.30'.5 0.3 25.9 6.5
.4.9 0.02 =0d 1 0.02 149 St!5w!C 1 2.1 3,3 2,T tuu.5 203,e 324.9 0.03 0.05 0.09 189 SEISMIC 2 1.8 7.4 2.5 255.6 197.2 658,2 0,03 0.05 0.13 Prepared by:
- d t/-25-94 '
.f,2 '
n.e,..
me w m 1" e
unecnea oy:fh '~ 25Q-30 L R' N [.
Flie No. N V a
t
..L.
N Page 4
of f
i
~.
< u
4.-
,s.
g 041??S7 TABLE 01 (CONThuED)
~
GENERAL LLECTRIC GumPANY S P E G NO, 44A(.D 44 R(T"~Eg s g
P AGE ho 151 60! LING =ATP.R REACTOR SYSTEMS OkPARTMENT e
FIT 2 PATRICK RECIRC 0,13CMARGE LINE a RISEAS AND MUDER J0!NT NO, TYPE 00 10 Y
INERT!A 2
161 6.mELO Ad/AM Y2.662' 11.se2 0.610 420.5 66.823
!st,000 MA MB MC i *'.
i l,-
EXPANSION MOMENTSs
- 257065,
.22577,
- 176501,
.r-Dr. A OL O A O MOMENT $a
- otteet, 8291,
- 2627, g-petuaRv srtsatt powENfsa
- 79705, 7u96e.
ta0576.
1 ;,,
SECONDARY SEISMIC M0aENTSs*
.0, 0,
0,
{ '.* 3.
STRESS RATIO A,
PW1 MARY STRESS INTENS!IlES
- v 7' OEAOLOAD
- PRE! CURE o
- 5966, 0.375
" {\\..
DEAOLOAO e PRESSURE + SE!$MIC a
4588 Leet S
SECONDART STRESS'RA%E s
'4707.
0 17' q\\\\
EXPANS ?ON EXPANS,ON
- SECONDANY SEISMI,C a
- 470T, 0,17,
/
C. PRf"ARY PLUS SECONARY STRESS RANGE l
QEADL0no
- PRESSURE
- ExPANS10N 8
- total, 0,20e DEAOLOAC, PRESSURE, SE!$MIC e THERMAt., EXPANS!ON 8
- 13033, 0,250
-r D. RARE EVENTS.PR1*tARY STESS LIMIT f '-
ALLonA6LL STRESS a
- 19080, U2 ELESfic EVELueTED PRIMARY STRESSES AS SHumN BELow STRESS RATIO EMERGENCY CON 0ffIONS 10E.1>Pa0>13E.3 DfACLOAD
- PRESSuAL
- DOUBLE. PRIMARY SLIsMIG
- 970s, 0, J70- '
l DEAOLDAD e Max,. PRES $uRE, PRIMARY SE!SMIC 9706.-
0,33' rauLTgg cg%oIIIONa lot.JaragangE e DEAOLOA0* MAX, PRES $URE*00USLE PRIMARY SE!$M!C 12363 G,325
- /s, o
i
^
.g L
1 L
l nep g,
g pjgo Checked bygg q g Filet 40. - I Of - g' 1
jPage.
\\
/
.i
.c
. = -
u(LD 12 02 2 18 00(IN):
12.662 i(IN):
0.73 10(IN):
11.202 P(PSI):
1275 i(f):
562 A(IN'2):
27.364 l(IN'4):-
77.210 i
N00E 181 i
FORCE MOMENT MOM [Ni TOTAL-AXIAL LOCAi!ON STRI$$
(AXlAL) 8.
C M0 MINT $1RE$5
[
WELDNO.
.-TTPE (PSI)
(IN LB) (IN L8) (INLB)
(PSI)
'12 18 P
4592 12 18 DN 200-4300 2600 5025 72
'12 18 12 18 08E,1 1800 45800 81800 93749-1280 1218-08t,2 3000 75000 140600 159353 2174 r
TOTAL 6838
^
P8:
0W + 06(MAX:
2245.915 n
PM:
P:
4592.035
)
l-i L
j u
o N M Y 2#' W Prepared by: M Yll*/ fD Checked by:fW'200 ~30b Flie No. _W Y Page -
of I
j 6
l i.
p-tm
_pc-CRACK (C) COPYRIGHT 1984, 1988 C
STRUCTURAL-INTEGRITY ASSOCIATES, INC.
SAN JOSE, CA (408)978-8200 VERSION 2.0 iDate: 28-Apr-1990 Time: 14: 17.:17.77 i'
a.
STRUCTURAL REINFORCEMENT SIZING EVALUATION STRUCTURAL REINFORCEMENT SIZING FOR CIRCUMF. CRACK, WROUGHT / CAST STAINLESS 7
NYPA-25Q: WELD 12-02-2-18 W(dL~ THICKNESS:
O,7300
. MEMBRANE STRESS: 4592.0000
= BENDING STRESS:
2246.0000
' STRESS RATIO:
d.4301 ALLOWABLE STRESS:15900.OOOO
[
FLOW STRESS:47700.OOOO i
L/ CIRCUM o.OO O.10 o.20 0.3o 0.40 0.So FINAL A/T O.7500 0.7500 0.7500 0.7500 0.7500 0.7451 REINFORCEMENT THICK.
O.'2433 0.2433 0.2433 0.2433 0.2433.O.2497 4
END OF pc-CRACK
+
-i J
f l
l Prepared by:
M Y-24-9 0
[
Checked by;.A!M Wie/90 l File No. 41l'A *2f G ~3 6 4
{iPago P
of f
.j l
' sw
.1 A.
!
B FLOW
^
=
=
45* MIN -
j TYP-l 9
Y
'Y'd',
/
/
wb\\
/
1
/
l 1
% WELD WELD OVERLAY REPAIR DETAILS 1
i
%+
i FLAW-DESIGN D'IMENSIONS WELD NUMBER-CHARACTERIZATION t-A B
l 12-02-2-19 Circumferential 0.25" 2.0"
'2.0" Flaws (min)
(mir)
(min).
j l
PREPME0 BY DATE DESCRIPT!0N:
f-[
f/q /9 g Standard Weld Overlay Design for Weld 12-02-2-19 per NUREG-0313, Revision 2 CHECKE0 BY OATE d
70 JOB NO:
PLANI / UNIT:
REV NYPA-25Q J. A. FitzPatrick 6
0 FILE NO:
DWG NO:
gg SHI NYPA-25Q-309 NYPA-25Q-007 1
0F 1 l
l
i STRUCTURAL CALCULATION FIL E N O: d'fA 2fe -307 -
INTEGRITY
' ASSOClATES. INC, PACKAGE PR JECT NO g yfp,gg4 J,4, fd
[Mr ac k 199o C wYy Typ rY PROJECT NAME:
CLIENT: gw Ypr g fu,,.
hbif y ggJ J
k;bld ^ C y er /
D es t CALCULATION TITLE:
g fr W e. l)
(2 2 -l 9 PROBLEM STATEMENT OR OBJECTIVE OF THE CALCULATION:
n et S$
Y b 9 er 0
fr w
h N h
- 03/3 2
M f6Y
/ 2
- C 2 " 2 ~~ l
.f-v i
l Proj. M gr.
Sig n ature, initials Document Af facted and Date Revision Description Approval Revision Pages
/Date and Checkers o
I-8 rn dJ.h e
- Jh/do //XLtrn l
4x2 c/f ffC f 10 l
l l
l PAG E I OF I i
I
w <D o A w 'in s. A. F4 Pai,J nU
!2 - i?
I
'(c~f<1<Yes'ynA'k; l
/ *' o ? - * -19 A
a;&:
w.U 12 - n W.
{. n
._+
,Q
~) e r
- f. a J
; - d.L h. ~~ 4% e JL L~k. L ~ &voot- (10t.' ~~ k p Goy)YM a'+ h' l 6.~.. - e.= P/p LW + gd.;g z-e-- b L V / die- "$^ e. Reveion d l Preparer /Date MMI[M40 l Checker /Date Jff.phh-N File No. MTPA z 5 G -@O 9 Page 3 of 8 L% u 4 & E-re. a -tM n=g
- }_
T. 4- @ M. A- % 9: y(oo.-xo')
- ..~.
s fY=% % 4 g [co, zo ) jog t 9 = 00.:- 2.u2. pci.] ..c 3% w Q L L.= r,,ess- = 4 592 es,. L _% L2 A P % +(g. L = w rec 3, 3 _s g)) J s % sm= ic 90o pse. .h c n y w 2. - 4 LLL> v .;:~ c; 6 J % AL>n. 74 p a4F ii + M h. t
- l. : ' f h. f--
1.I b.JJ/,)IO.73 h .',[ d 1-e 332"-V..?.[_$ = h ~ ~' .-.i..;q s A Aga z z A 2 4 z 2. 4.7 W yr.,ir I JAF-O ogz g, c.2 -go, Npp)) 3_ .~ 2. e eac. JhF ~ H T - oSZ 9 23m o. (; L [[::JAF-M7-orzl|JAF-M7-orzl]],, 4-23 -9e csp ) L i ), T& f Orb fu ay kYb) % Md Gi-(ST ),-S.y -9s-- I l l neven o_ Preparer /Date ') h f id y Checker /Date 7C[FF-fa, n. m n y A - z. s o ~ 2 0 s ' ~ e.a. 3 a_r l L .a c h L ta17752 l TA81.EC1(COMilNUED) L ~ GENERAL ELECTRIC Comp &NY SPEC NO, 22A2622 R'E v N Q, 1 SOILING mafER REACTOR SYSTEMS DEPARTMENT P AGE h0, 45 FIT 2 PATRICK RECIRC 013 CHARGE (jNE $ R{3ER3 AND MEADER '..".,.l.'- ...TA81.E P=t , u ~ J0!N7 TYPE CASE FORCES (RIPS) M0mENf3(IN= KIP 8) DEF LE C T ION 4 (I's ) 7 NO NO FA. F8 FC MA MS MC I Y Z ~ l -176-fMERMAL 1 1.0 7,7 1,3 e257,1
- 49,0 445,0.
0,87 0,54 0,27 P 178 mE1GHT 1 0,28,9. 0, 9'. =18,9 =28,4 =20,7 3, 0, 0, L 178 SE!$MIC 1 1.8 '6,1' 1.3 49.3 81.7 220'0 0,00 0,00 0,~0 0 i 178 SEinMIC 2 3.0 e,2 2,2 79,7 180,4 273,0' 0,00 0.00 0,0b - 'l 181 T a t a.M 6 L i 1.0 T.7 l'. 3 257,t 22.6 176.5 0.62 0.56 0.33 j i 181 mEIGHT 1 0,2 et,6 0,7. =18,9 et,3-2,6 0, =0.00 O iO O '181' SEllMIC 1 1,4 5',4 1,3; 49,3 45,8 41,8 0,00 0.02 0,00 l tot Sf!.1M!C 2 3.0 5.9 2.2 ' ' 7 9. 7' 75.0 1a0.6 0.00 0.02 0.01 182 THEmaAL. 1 *3,3 5,4.4,8 127,1 56,5 195,6,. 0,69 0.55 0.35 182 =EIGHT 1 0.6 0.2 0.4 =11.0 9.5 13.9 0.00 0.00 0.00 182 SE!$MIC 1 4,7 3,9 1,3 19,9 50,7 86,0 0,01 0.02 0,01 4 . 142 SE13MIC 2. 4,5 ::.,4 242 22,9 81,1/ 118,6 0,01 0,03 0,03 4 .,...s... 143 TmERMAL 1 5,7 4.2 el,6 19,5 91,5 litet 0,75 0.50 *0,33 163 mEIGHT 1 06 4,1 et,3, ' 0,8 16,9 7,1 0,00 0.00 0,00 /a 183 SEISMIC 1 5,.s 't.8 t.3-29.1 29.2 48.5 0.01 0.03 0.02 l l 183 SEISMIC 2 5,9. 3,0.<2,2 39,2 at,1 91.6 0,01 0.04 0,04 I84 TrERM&L 1 5.7 8.2'.3,6 19.5 ~ 387.7 .422.6 1.04 =0,Ia.0,1a 184 nEIGMT 1 =1,0 0,1 =0, I 0,8 17,3 9,'5 0,01 *0.00 0,02 144 SE!SMIC 1 a,1 0,9 't,J 29,1 135,8 79,3 0.09 0,03 0,15. 184' SE!5m'.C 2 a.1 1.0 1.6 39.2 22a.5 123.1 0 13 0.0a 0.23 ./ .r. V 39,0','=21.0 185 THERMA 1. 1 5,4'e5,7 et,0 4 '!9,5 e636.8 1,09 =0,21 =0,14 0.8 ett.3 0.01 =0.00 0_t 0 3 L L85 NE!Ghft et.2-41 =0.3 ,45 SElsmic 1 tot 3,8 2,7 133,3 103,9 29,1 0.10 0,03 0,1T 185. SEISMIC 2 -3,5 6,7 2,5 213,6 lef,5 39,2 , e ta 0,04 0.23 s t 155 iMERMAL 1 5,7 4,2 3,6 19,5 .438,9 ea81,8 1,09 0,21 =0.ta ,. e, .105 NEIGMT '1 =0,2 et.2 0.2. 12,5 0,8 =20,3 0,01 *0,00 0,03 J 3t 85 SE!Sm!C 1 3.6 1.0
- 1. 0 '
29.1 l'46.7 83.9 0.10 0.01 0.15 -155 5E15MIC 2 J,5 1,0 1,4 39,2 227,9 126,3 0,1e 0.04 0,23
- 186 7mERm4L 5.a 5.7.t.0 139.0 19.5 636.5 1.09 =0.21 0.18
_ ast mEIFmT 0,3 ed,a.0.1 17,0 5,4 73,5 0,01 *0,01 0,02 o 186 SE13NIC 1 1.5 3,6 2.7 185.2 83,0 162.9 0,06 0,0a 0,12 ./ 186' SE!SMIC 2 2.1 7.3 2.5 2a0.8 118.5 30s.2 0,0,8_ 0.05 0.18 189 THEmmat t.5,2 3,5 4.5 =59.1 12,7 122,6 0.91 =0,20 0,42 189 mEIGuf 1.o.3 0.5 0.3 25.* 6.53 .a.9 0.02 0M t 0.02 is9 Sk!5m!C 1 2.1 3,3 2,7 luu,5 203,.i 324,9 0,03 0,05' 0,09 189 SE!$MIC 2 1.8 7,a 2,5 255,6 197.2 658,2 0,03 0,05 0.13 l 'l Prepared by: b f/d9o. _1 Checked by: M/5 #-% L i File No. MYPA'&O-301 q .g g l-s. J ....i*
- i h, ; ',.
Oa17757 TABLE 01 (CO. TINUED) N L'1** GENERAL ELECTNIC COMPANY SPEC NO, ZZA20ZZ REY NQ, - . J A, 80! LING nafER etACTON SYSTEMS DEP ARTMENT PAgl NQ, * \\ F!T2 PATRICK RECIRC 01sCHARGE,LINE 8 R18ERS ANC MEADER
- .p.,a 00
!D T* .!NERT!A Z s J0!NT NO, TYPE s20.5 66.423 185 B. MELD Aw/Aw 12.662 11.aa2 0.610 Iu!,000 .. e d.,;
- 91537, 131770,
/ Q. EXPANSION MOMENf5s 19519 i ,/ 3., DE Act,0 A 0 MOMENTS:
- 773, 16496, 7140,.
PefmARY REISMfc 204ENyss 19170. a2120. 91611.. SECONDARY SEISMIC.MQMENf5s 4, ; 0, 0, STRESS R ATIO l ~ A, PRIMARY sfRE33 INTENSITIES a 59a4 0.37a \\ OEADLOA0 + RRES$uRE s 7505. 0.393 N DEADLOA0 + PRES $URE
- SE!SMIC
'..c... \\ 8,. SECONDARY STRESS RANGE s 24h3.
- 0. 0L9 ' :
?** ~ 5-EXPAg8f0N 5 2#h3, 0,00' i EXPAN410N + $4,CONOARY,SELSMIC,, I. g 5 CI PRIMARY PLUS SECONARY JTRESS 3&NGE s
- 43a2, 0,100 DEAOLOAti + 8RESSURE
- EXPANSION
- 0. RARE EVENTS. PRIMARY STESS LIMIT
-9913 0,190 DE ADLQLD + PRE 55URE + L'E!3MIC
- TMERMAL
- EXPANSION
- I' ALLQ a t.8 L E 3TRE33 s 19g30
~ - P,._ ELESTIC EVELUATED PRIMARY h RESSES A8 SHOWN SEL,0W 8 TRESS Raf;0 T L . N. EMERGENCY CON 0!TIONS 10 E e l > >'s 0 310 E * ) L. g DE AOLO AD + PRE 53WRE + 00U86E PRIMARY SEISMIC
- se43, 0,303 L
l..- - .DEAOLOAD + MAXe PRE $$QRE.6 PRIMART SE!sMIC
- 8663, 0,303'<
rk FAVLTED coNDITIuh3 1cE.3aPuos10E.6 DEAOLOA0+ Max, PRESSURE +0OUBLE PRIMARY SE!sM!C
- 10286, 0,270
.1. ~W' 4< it h. t. .\\, \\.- ..'\\ ~. .5 N. b b NW Prepared by:. [ Checked by: WN+b L
- i. Filp No. N V PA tsd - } 09
.,...s. ) PB G Oi.5 p s .-.. _ ~ 4 .j .. ? 9 1,. 1 i WELD 12 19 00(IN): 12.662 i(IN): 0.73 10(IN): 11.202 P(PSI): 1275 i(F): 562' A(IN'2): 27.364 2(IN'4): 77.210 NODE 183-FORC[ M0 MINT-MOM [N1 TOTAL AX1AL. LOCAi!0N' $1RESS (AXIAL) y z MOMENT STR[$$ WELD N0. IYPE (PSI) (IN L8) (IN LB) (IN L8). (PSI) o.... 12 19 P 4592 12-19 DW 600 16900 7100 18331 259 12 19 12 19 Olt,l' 5800' 29200 88500 93193 1419-12 19 08t,2 5900 42100 91600 100812 1521 I" '10!AL 6373 ' " ~ ' PS: Du + 08EMAX: 1780.633 PM: P: 4592.035 \\ l k 1 l l l- )]p s/4/9D . Frapared by: l Checked by: EN'F' ?O l File No. # Y#A' N# $ ~ 3 0
- D 1
-(- page 6 of 7 L ~.. - i tm oc-CRACK (C) COPYRIGHT 1984, 1988 STRUCTURAL' INTEGRITY ASSOCIATES, INC. l SAN JOSE, CA (408)978-8200 e VERSION 2.0 D0te: 4-May-1990 Time: 12:27:49.67 STRUCTURAL REINFORCEMENT SIZING EVALUATION i STRUCTURAL REINFORCEMENT SIZING FOR CIRCUMF. CRACK, WROUGHT / CAST STAINLESS l = Ij NYPA-25Q: WELD 12-02-2-19 WALL THICKNESS: 0.7300 MEMBRANE STRESS: 4592.0000 BENDING STRESS: 1781.0000 -STRESS RATIO: 0.4008 ALLOWABLE STRESS:15900 OOOO FLOW STRESS:47700.OOOO L/ CIRCUM .i O.00 0.10 0.20 0.30 0.40 0.50 FINAL A/T. 0.7500 0.7500 0.7500 0.7500 0.7500 0.7490 REINFORCEMENT THICK. O.2433 0.2433 0.2433 0.2433 0.2433 0.2446 END OF pc-CRACK j l ] CinSEg's3;d%+-~ U'2: 2~~ 1 s * 't i -g . ~... ~ ema. 6 i' 4 2 FLOW A =l 8 = = = 45' MIN -N TYP / e p ' 'Y 'Y' 'Y Y / / A \\" l /- l / l i 1
- 4. WELD 4
i WELD OVERLAY L REPAIR DETAILS c: y FLAW DESIGN DIMENSIONS L WELD NUMBER CHARACTERIZATION t A B i 28-02-2-33 Circumferential 0.54" 3.6" 3.6" (min) (min)- (min) i 1 l PREP Y DATE DESCRIPT!0N: l g/p hp Standard Weld Overlay Design for Weld 28-33 per NUREG-0313, l. L. CHEC BY DATE Revision 2 1 ,l me 517/90 J08 PLANT / UNIT: REV NYPA-250 J. A. FitzPatrick 1 N ~ ftLE NO: CWG NO: ASSOCIATESH4C SHT NYPA-250-305 NYPA-250-004 1' i 4 p TRuCruRat CALCULATION FILE NO: NifA-Zfd-70f' 4 E'o'cWTiuC. PACKAGE "" d" 'Nf e4-29 PROJECT NAME: N i 94' AfR I E lhTP. l c K 1778 ddpSp*M CLIENT: WW Ypr V ?@ bhLY f CALCULATION TITLE: g, jW p [)y, b z re _1_ g PROBLEM STATEMENT OR OBJECTIVE OF THE CALCULATION: - p,b W p u 4 sq -o.sl 3 W2 p J d-oa-n. Proj. Mgr. Sign ature, initials Document Af fe cte d and Date Revision Description Approval Revision Pagee /Date and Checkers O j( } & 35 $44. f }l$-1W Yld . ftAd 4-7T10 b h we PAG E I OF 1 M 0 7,4. [MM W 2F-4 2-2-3J i' O MM J-v N k M '2. t-4 2-t. -7 J ; E M -o N 448 6 G o 3/3' M 2., W' ~l l W& Q g' - o l - t ' 3 3 QP; )s & & 't o ) 7 A[Q, Yh d W r=jrbd 2L. y + i.v . % J n 9a i g r, ~ t. cs ". my w a c,. a > a a
- kb
,y Q M W /~~s M- % al n& JL%Q Ekm 4 A A . A th m u _ 2 T A l. C' P p f 6 3 - ,Ww q w J 6 3., p - z <vrp< NrJA> C Dw; LW) r- +F' WANk. k L6 A d _ l M + ~Jmp,uf i -r S. A Revision O Preparer /Date NM V-2510 cn cker/oete &YWe File No. N YIk - 2, f & -3 47 PaQe 3 of I MAA^W "N'O 1 heU~r 4M, j
- h 11 1-W6, A"hf 00.-.E D * )
W M = [ (op4 ~ coy)gg =' 6b= e-V. 619 i &%= fn = So t < f s t 0-fg : L 3*l l fst Y " S = m IS*l oo js t ot.lA4CX % 'z. o m NAW AM MW M M*. N 1 yre a ~ t LJ. M % % A -o.sv" l s.rcet)'% r.c >< 6v.3 x 1.caf' 9% 0 = =
- 7. I Revision O
Preparer /Date O M Y 8I-te Checker /Date M mig File No. # y/A - 264-3 & Pad J of I 0-l6&g 1 4 E.% g , % ), p gj, toy $N'w %L M TA f-Q T-oSS~y I Aibly)fe 2 JA F ~llT-ory yq At4 vhe/rv I' j e i ^ .) 1 1. j Revision O
- m. pun / oat.
JA+W checkn/ oat. WK t w+ File PJo. # Ik"I 60 "3 0D Pabe Y of I 1 I tm pc-CRACK (C) COPYRIGHT 1984 1988 STRUCTURAL INTEGRITY ASSOCIATES. INC. t SAN. JOSE, CA (408)978-8200 VERSION 2.0 DSto: 25-Apr-1990 Timc: 10:21: 4, 3 STRUCTURAL REINFORCEMENT SIZING EVALUATION STRUCTURAL REINFORCEMENT SIZING FOR CIRCUMF. CRACK, WROUGHT / CAST STAINLESS NYPA-25Q:-WELD 28-33 WALL THICKNESS: 1.5300 i : MEMBRANE STRESS: 5024.0000 -BENDING STRESS: 2321.0000 STRESS RATIO: 0.4619 4 ALLOWABLE STRESS:15900.0000 FLOW STRESS 47700.0000 L/ CIRCUM 0.00 0.10 0.20 ' 30 0.40 0.50 r'NAL A/T O.7500 0.7500 0.7500 .e00 0.7500 0.7412 i:.INFORCEMENT THICK. 0.5100 0.5100 0.510--, 0.5100 0.5100 0.5342 j i END OF pc-CRACK i
- /(J 4-2540 Prepared by:.
,9 Checked by#.. ~# File No. " Page I of _ -.. - -. -.. ~. - -.. _ l Il33.N Bednesday, April 25,1990 p., g ~ %RL E l ii g littl8tl 0$t0 It itM ANALYlls 00(!N): 21.619 i(!N): 1,53 10(!N): 25.559 P (Pil): 1275 i(f): 562 A(IN'2): 1H.207 2(IN'4): 837.315 i E0t M1 f0RCE ADMINI NOMINT TOTAL AX1AL i LOCAi!0N 814t88 (AX1AL) y X MDMINT $fRil8 -Wl(0NO. ITPt (LI) (IN LB) (IN LB) (IN LI) (P81) 2433 P 5024 2033 DN 16300 525800 392500 656142 M9 20 33 TN 0 40500 132100 140722 168 2033 Olt.1 !?200 471600 715300 456773 1232 7933 Ott,2 27700 691900 727400 1003911 1412 PS: DN404thAX 2320.512 PM: P 5024.044 t Propar.d by: M ## Checked by: E P"# File No. "0"#'f# ~ # .E of ny _ w _.,_.-._._,-...,s,..._ i o o 6417152 TAtti C1 (CONTINLTD) N EEMEuas LLECTNIC Compe=T 5 P E G = 0, IzAizzz mL v, wo,1 80!Ltus watta staCfo# 87575>$ Otpsetatwf Past 60,$1 Flf2PATRACK RECIRC 015CMaRGE LINE 4 DISCmaAGE auw TA0(E Fet JOINT TYPE CA5E'FORCL5tatP5) moment 5(th.iTPs) DEPL CTIon:I t = > -- NO NO FA F6 FC MA at MC I Y t 1 301 inEqpak 1 *0,0 *0,5 3,4 +391.7 45,5 132,1 0,60 *t,Ja et,14 let ht t f.M 7 1 47,.816 3 *.1 +2,8
- 0s,0
- $45,0 392.5
- 0,01 =0.01 0,07 i
0 H.8 7 750.7 aft.6 75.3 0.0a 0 0 6,,,o,3),3 301 30! SCC 1 not SEllalC 4 27,7 4,a 10,5 39a,1 691.9 Tal,a 0,05 0,06 ~ 0,24 102 Twf4*at t of.a 0.0 0.0 .t15.0 .tst.6 44.t 0. 6,,1 s. t d) 302
- ElGMT 1 1 tot 1,1 4,8
+3a9,9 400,t
- 049,5
- 0, 0 4,,,.J
- 0, 0,08 303 8E!sMIC 1 19 1 19 5 7,4 441,5 770,6 392,23 0,0s 0 05 0,13 302 stinatC 2 19., a 19.,9 10.5 491.5' 001.2 3
a21. 0.05 0.05 0.21 305 tutam6L 1 2,4 0,0 0.0
- 165,0 350,4 ta9,6 0,41 =1,54 *t,13' 9
H5.6 =0.0), .0. a 2,99 3,05 at:: Gat i 2.0='2.6.l.1 ea36.9 3a6 305 SEm5 MIG 1 ~3,a H7,2 7,5 516,9 .7s6,5 t,0,0 0,0s 0, 32 305 SEISM!C 2 2,4 27,7 10,1, 450,1 506,3 555,3 0,05 0,0a 0,20 306.TMEmmak & =de a Ge7 *0,4
- 165,0 54,9.
337,5 1,12 ft.15 *0,97 4 103,2 =0,03 +0.07 0,09 304 et!6MT 1 tot 't,4 =0,8 .*a36,9 314,8 306 SE!$m!C i 10 4 2.3 10 1 494.6 967 386.0 0 0a 0.02 e.07 306 SE18mit 4 10,5 3.4 14,4 941,5 967,6 436,a 0,05 0,04 0,,1 309 Tkttm&L 2.s 0 0 *0,0 165 0 299 1' taa a 1,17.)dt.0,9 7 n 309 mLIGai d,0 1,3 *,,1 d30,9 =al 0 349,5 =0,037 0,95 0,99 309 st!sm!C 1 10,8 2,3'10,1 a94,6 1020,3 347,6-0,0s 0,02 0,06' 309 SEtsatt 2 10 5 3 2 ta.a 921.4 1085.3 sa3.s 0,05 0,02 0,09 i 3h2 THtamAL 1 0,5 1,0' 0, =5,9' t,9 16,9 0,77.l.20 elet9 Stz wt1GHT t 00 00 00 01 0.1 0.5
- 0 00 *0 03 0 16
!!7 sLIsals a Jet 3,4 1.0 la,L 19,0 Tes 0.9) 0,97 e,Il Ali 8Etaa!C 2 '3,1 tot 1,0 11,9 9,9 7,9 0,07 0,04 0,19 M Tite N a AL 1 cl 9, .L,0 +3,9 .g3,9 .g,' 1"T4 et,ta eterv e 31.3 ut!GN7 1 +0.1 +0,0 0,0
- 0,3 el 2 0,3
=0,02 *0,03 0,09 343 st!3m!C 1 bel 0.3 10 13.7 16.1 La.s 0,y 0 00 045 31J SLISMIG a col 0,5 1,0 13,1 34,3 .,#, a G,11 0,08~~b,a3 Sta fut9 mat t 0.5 1.0 0 .t.e 2,9 .aa.1 1,09.t.25.t.It Jia at.Eaf a
- 9,7 0,9 9,9 0,3
- 0:3
- 10,3 0,93 *0,93 0,19 10 314 stisatt 1 0,8 1,3 0.9 36,4 tot 16,0 0,07 0,04 0,24 its SC!$m!C 2 0.4 6.3 0.9 31.6 1.8 15.9 0.10 0.08 0.
316 TatR*4L 1 0,5 0, .t.0 5,9 .a6.0 2,9 lett *t,25 et.21 316 at!Gaf I =0.a.0.0 0.0 =0,1 a.0 cs 0.03 0,01 0 to e 316 '3LI5*15 1 0,6 'e3 0,5 Je t, e,0 15,9 c 07 0,D , '9 ~ e 316 SElsalc 2 0,4 1,3 0,9 35,6 a,1 15,7 0,10 ' 04 0.30 t l MPered by: f)Q
- y.., p. y Checketi by: M)\\
l File No. Nf4 "agg gq g_95 i g, g Page_ y y l l + .,"IIIII
- TRt.101 (CONT!*ED) 4thtaat (LtcfRIC CoaPANY SPEC NO,22A2522 Rty, no 1 30! LING yafE4 RE6Cf0R SYSTEMS DEPARTMENT pa$t NO 204
...v..................... ~ F!f!PafRICE REC!dt 0!$' CHARGE LINE 4 O!$CMARGE Rt[N" Y J0!NT ho, fY*E 00 10 ' f INERf!4 1 101 S mtLO Aw/ar 26.619 15.867 1.176 19956'.2 769.661 'Ist,000 ,e. mA M S* Mc EIPAhS!ON POMthfSS e)9$7)1, 44$$$g } j {'$'7 3 g i Ota0 LOAD MOMENT $s
- e44041, es21741, 194s%9, petmaev REftmic acatwine 710670.
s t i t le. 71111a. ~ SECONOAAT SEISMIC,MOME,NTSE 0, 9, le i,r. statst matto 4, Pt !M AR'? STRESS INTEN8!f!ES
- ela9, 4,att DEADL0a0
- Petlaunt DEASLn40
- petsauet
- til1Mtt 7914.a_ J.a tl 8
8, SECONDARY STRES8 RANGE e taa. 8 Jag rapaws10N a
- sea, e,sas Espans!0n e stCOnpaRT st!s,MIC I
e, palm 48V PLUS Stcomany statss a&NGC .e oses,, e.!st DuaosDa0 reassure e sneanslow p* :' f. : e
- 4874, 0,159 DE ADLOAD + PRES $URE
- SE!SMIC
- THERMAL
- EXPANSJON D
meet tvtN75e#41 MARY STESS. LIMIT aLLosangt af4F.88 s
- 19039,
."[ ELEst!C Evttuatt0 Pa!Many statsses as sM0pN SEL0m STRES8 Raf!0 EuteGtWCT CON 0!? IONS 10tel>P40>10te) OtacL0a0
- Patssunt
- 00utLE Pa!M&AT SE!SMIC
- 90F6, 9,317 DEAOLDAO
- MAI, PRES $URE e PRIMARY SE!SMIC
- 9976, t,)lf FAULTED CON 0!TIDN3 Lote 3*P80819t*6 Ot&DLOADeaAX, Pets 3URE*00uSLE PRIMARY 8EtsM!C
- 18534, 0.276 4
N ! '1 'E N Prepared by: i . w, g _ g m . w.sc-n pi[eNo. M U *~3'I r. \\ '? ,)Page I -,0f, I -Q, ; ~ __,..__..,.,.s, ,_,..m.,_ .m .. m FLOW = -A B = = 45' MIN - TYP u MIIIIIIIIIIIII?shhI?d3['k3$3,3[kk t h h / / I iWELD WELD DVERLAY REPAIR DETAILS B% w FLAW DESIGN DIMENSIONS WELD. NUMBER CHARACTERIZATION t A B 12-2-6S Axial (Through 0.25 2.0 2.0 Wall) l l t PR6 PARED SY 0 ATE DESCRIPil0N: Standard Weld Overlay I 4-10-90 Design per NUREG-0313 Revision 2.. CHECKED BY DATE C; fM __4-10-90 J08 NO: PLANI / Units REV I NYPA-250 J. A. FitzPatrick STRU AL 0 l FILE NO OWG NO: SHT NYPA-250-301 NYPA-250-001 1 0F l' m i p STRUCTURAL CALCULATION FILE NO: 41#h 250-)o/ INTEGRITY i'D A380CI ATES. INC. PACKAGE "" J" ' WA m PROJECT NAMES N YfA* L % Ys * } FAT $ ' t l(- f Eff'Y 1990 0 CLIENT: Nw Ywg [g q A g fA.,,,] 9 CALCULATION TITLE: $ 6)u ) k)s)) 0ocrf hes 7 n4er W</l c i t - h 5~ PROBLEM 8TATEMENT OR OBJECTIVE OF THE CALCULATION: ), S4&od Wskb Ovt/I} 0*5'lM ftr yz y ay s.03,5 n, s.s,m t +n a cad a-'a- $4,g" Proj. Mgr. Signature, inillate Document Af fected and Date Revision Description Approval Revlelon Pages 'I /D ate and Checkers O I-1 Ins 4swl 55Su t Nh /1'l**10 ll & Ul$ 4 ~le 0 {'/O O PAG E I OF I t i w 4.0 o A L:., )n :r. A. 4 P.fr,c e w J a. =-w { / / / l i ob;&: W 4 it-2-ss-W & qrftrt y%r
- f. a A
<pk waA A g-Aawasc,-,.r,.7 o'+ z.
- &w
'o u> D I.e m M. Af* : w. S i t - 1. - s r ms% nnje zr 4 l. 1 m 44.= A $ +.# klh kJ p e nd wdlM v>v. a e. 6 t ", % ~ - wu) J L a g%. 1 A Lo.w'p].7t-A / %,= d 5, A {l ] Y W2' '" * "E f% -b M % &'&e~,k 2La M== h7 I. Yw=h w EI 3 QAa f 3 ^^ * ^ =: a a u sc. /JLt.^ % n e A c. e A J k & ~ W(O C'~ 3 0 0 \\ m e-Pp ( ./ p,. D &.. :ht,L'=L r = f +
- N' S
0 ^Q $ g Revision d Preparer /Date kJV///40 Checker /Date O[d File No. M T PA ~t 6 G - 3 o f PAge 2 of F +2-1-w1 -ma+-e y- - = vw+ ww w +-3-..-e-n- ,,__>,---____._--______m-mm M G 4 w& E- - 7% t < 1M w =+, g 4. % d'7.M. A: N j@ y (oo*-I o')
- A0 f (co",104) log Tte w&
L Pn = cq,. ass a,., 9.s4 z pc = I3/L f** % %.L Pa'%+(Ses%u = fSt T1< Alld L % = tr 900 pc, P e. c % y 6 t. m 4 k U~=> v y a JLLJ. % alm. f %J 74 p a4< e f = o. 2 r ', 1.sfs.33lXo.73)] G,.{\\ : L = '. 7 dit t-0 =- z..a 2 , 4.o k (L% s 1 qE % Y tzA 2622 Ar l y 36,76. g, %6 q% 8. Pey (v r/4) % 14. sd (G) 4 9 o. i Revision C Preparer /Date //M 4[/ph Checker /Date 7/%. M File No. N NA-d S G % 3el PaQe-3 of-Y
- 1265.OUT Tuesday, April 10, 1990 Page 4
tm pc-CRACK (C) COPYRIGHT 1984, 1988 STRUCTURAL INTEGRITY ASSOCIATES, INC. SAN JOSE, CA (408)978-8200 VERSION 2.0 Date: 10-Apr-1990 Times 12:39:19.37 STRUCTURAL REINFORCEMENT SIZING EVALUATION STRUCTURAL REINFORCEMENT SIZING FOR CIRCUMF. CRACK, WROUGHT / CAST STAINLE51 NYPA250: STANDARD WELD OVERLAY DESIGN FOR WELD 12-65 WALL THICKNESS = 0.7300 MEMBRANE STRESS = 4592.0000 BENDING STRESS = 1312.0000 STRESS RATIO = 0.3714 ALLOWABLE STRESS =15900.0000 FLOW STRESS = 47700.0000 L/ CIRCUM O.00 0.10 0.20 0.30 0.40 0.50 FINAL A/T 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 REINFORCEMENT THICK. 0.2433 0.2433 0.2433 0.2433 0.2433 0.2433 l Prepared by: l'
- M u // v v o 7 N 6 87 b 4
l Check:J by: Flie No. UY pay 2 Sd~yet Page Y of. f I e ~ a .= .STR1265.m i m eay, apell 10,1990 P., i i i STRESS DATA FOR WELD 12-65
- (IN):
0.73 00(!N): 12.662 ID(!N): 11.202 P(PSI): 1275 i(F): 562 A(IN'2): 27.364 !(IN'4): 77.210 N0DE25 FORCE MCMENT MOMENT TOTAL A!!AL LOCAi!ON STRESS (A!!AL) y 1 MOMENT STRESS i' WELD NO. TYPE (PSI) (IN-LB) (INLB) (INLI) (PSI) 1265 P 4592 12-65 DW 0 1551 -7522 7600 100 12-65 TH 2600 -197433 189850 273903 3643 r 12-65 OBE,1 900 29900 49900 58172 786 12-65 DBE,2 1400 4B500 75400 19652 1212 l TOTAL 5904 PB DW + OBERAI 1312 PM P 4592 4 9 ) Prepared d'.':.JI J ~/0/V C11 14i [ ,(([ 9-- P,,,.. m/:. -zra -m of.E Pap tJ1PA LS Q-3 M 5 -m._ 1 j ~
- Ge17757 TA8LE 01 (CO.NT!!QCD) f,L%tuat (LEC141C CO** ANT SPt C 90, INIIZ dtir, =0, 76 1
80!LtNG matt 4 8tatica St$tt S CEpaafutNT 8aCL NO, ............................."........+.......... 4................................. P1f2PatalCE 9ECTRC Tf5TGiff L lit A afTOis T407 CiCta ~~ JotNT i.e. tvPt 00 10 f !Ntatta 2 ss n..tte s e n. i s. us 'it.sas a.ain asa.s an.au !st,000 ma me ut t Pa=s!0= =Catwiss
- 355009, 19fa33,
- 109050, DEAOL060
= cat =tse .tst99,
- 1551, 7522, set.3_e, stis te
__ q ty_t_t 1 3.18. _gtsse. tute. stC060aar satsmic = cat.stse 0, 0, 0, lta t s,s matto a, Patmane steiss thttwstilts Ota0,cao e petssuet e
- 1920, 0,313 a
- Sttsatt e_, J 21),,,,,,0,370 Dy ckdao. entstv t e, SECON0any 87 Atl8 9&NCE.
6fteg __,,0:2dt, e (sesi.sjcw e
- 47ht, 0,2e6 tipTi.'11D*
- SkC3%Qant SL(Sm!C c
88 1 m a e v
- L U $ SE C,0 w s e v S T sj sg s a w c r DLa0 Loa 0 + Pats 3yAt, Estah,4tQq e
ggge}, g,2ja Cla0LC60
- pats 30eE e SE18mic
- THERuaL
- EXPah8t04 s
- 13267, 0.265 tyta t sites L!af t ALLunacC(l.ust.ameff81bs a
- gg680, O, sawt i
l ELESt!C EVELuatto petmasy ster 35ES'AS $> con 8tLCe $tatsa 86f10 (=tect%CT CUhCITIOkl ICE.lspacolotel CCV86 D atmaar $tla.3C 437%, 0Tf9'2~ ~ CE40 Lea 0
- PWL33Wat *
( DE AOLDAO, mas, petssyst, PalmaRY 8t!SMIC
- 8370, 0.292 Fab 6TL; EG%Q[TIQ%3 IGC.)DF#UDICt.e cla0 Loa 0* mas,78E85unt*00LdLE pegmaat litsm1C 9739 0,255 4d -
9 F W _m N S* esse eme eeu* 9 l 0" W q Check. R : rTh f 9' ' 1' \\ mo. &&.ya - n l a ygtt-2 5 &-3 W - Pge_ b _ et y,[,,' ' " ~ M1 752 TABt,E C1 (CONTINUED) GENERAL LLECfw!C CCmPANY $9EC NQ,22^ 6 2 ~ II, 60, 36 W i PAGE 0, 90! LING wATEa WEACTOR SYSTE.S DEPa#fENT ...........................................................................=......... ~" FiftPafRICs, WEC!dC 015CMaaGE LINE a st!sER3 AND mea 0EW TABLE Fet J01N7 TYPE CASE F0HCES(K!PS)
- 0*ENfC(IN.E!PS)
OEFLECt10NS(jN) NO N0 FA F5 PC ma mt MC I v Z I. ~ O la THEmmaL t-2,6 0,9 5,4 355,7 359,3 e56,8 =0,20 0,$a 0,s4 I is mE!GMT 1 0,0 0,5 0,6 15,2 12,9 .22.5 0, 0, 0, ) 2a.5EISutt t 0.9 7.0 0.7 15.a a3.2 251.,0 0,1,0 0 a.0A,_0_,.01 1 2e SElbatC 2 tes 7.0 0.9 17,5 69,1 2ei,9 0.00 0,00 0.00 as t w r p. a t_ t 2.6 8.9 5.a 15s.8 197.s 189.9 .o t_03e L,gge ) 25
- ElGMT 1
0,0 0,8 0.2 =15,2 t,6
- 7. 5 0.00 0.00 0.00 25 Sk!$w!C 1 0.9 6,8 0.6 15,2 29,9 u9,9 0.00 0.02 0,00 as strsure a t.s e.a o.a i7.a u8.s 7s_a o.gn n. o t__L,0 a 26 twEmaat, t.3.5 +7,1 7.3 198.5
't31.0 252.1 0,0s 0.57 0,na 26 s E t t' h 7 1 0.t 0.e S.1 7.9 0.6 10J .ciq g,_. q,9.0 __0 0.0 26 SE!SMlG 1 5.1 8.5 0.4 23,8 18,0 50,3 0,01 0.02 0,01 26 SE!SMIC 2 4,9 4,8 0,8 27.5 3,3,9 55,0 0.01 0,03 0,01 27-fMERMAL 1 7,7 ele 2 7,a 0.7 226,4 65,0 0,03 0.53 0,67 l 27 WE!GMT 1 0,0 0,2 0,3 0,1 .7,4 4,1 0,41 0.00 0.00 27 SEtsu!C t 6.. 0.9 0.6 26.6 4.6 75.7 0.01 0.01 0.01 27 SEISMIC 2 6.8 te s 0,e 8 38,9 70 72,0 0,08 0,03 0.02 75 28 t wE n w a t. 1 .7.7.t.2 7.4 0.7 .762.9
- 100.3 One l.0 dt,_02 28
=LIGMT 1 .t.e 0,2 0.3 0,1 35,2 21.4 0,02 0.00 0.00 } 24 $E!$.!C 1 5,6 0,3 0.9 26,6 69.8 32.s 0,02 0.03 0.0% 28 SEtse!C 2 4.5 0.3 0.9 38.9 102.5 33.1 0.02 '0.03 0.09 29 THERMAL 1 16,2 13,0 3.9 .625.0 351,3 1381,8 0,65 90,18 0,76 0 Q 0.00 0,00 29 sE!GMt 1 0.7 2.1 0.2 .45.9 23.8 .Sh5 1 29 SE15.!C 1 3,3 6.7 5.0 150.7 107.2 194.s 0.01 0,03 0.05-29 5E!5MIC 2 3,8 11,8 4.7 289,8 158,6 613.7 0,05 0.03 0.09 29 TMERaab 1 7,7 1.2 7s a 0,7 8,8,7 118.0 0,e5 0.1A D elt 29 nE1GH7 1 1,8 0,2 0.3 0.1 39,7 28,8 0,02 0,00 0.00 29 stisutC t 5.e 0.8 0.9 26.6 76.0 31.2 0.03 O J,3 0.05 29 5E13 1C 2 5.5 0,a 1,0 36,9 102,5 31,9 0,03 0,03 0.0' 31 t w t a w a t, 1 16.6 13.0.t.3 .e33.7 '.e36.a 105'2.3 O 54 0.19 0,90 ~ g '270 01 0,0't 0.0 ~~ 31 n E F f' t 0,7 .t.3 0,1 49,1 28,d 5,5 31 SE!$m!C 1 3,9 t,5 5,0 159.6 300,6 599,3 0.02 0.04 0,03 31 5E!5w!C 2 3.7 11.7 a.7 251.I 265.o 9 8 0,3,5,,_,,,,9,i,0,2,_0.t.9 8 _0. 0 T,_, .I ' 37 THEnnat 1 16,n 12.5 3.9 291.8 558.6 603.s 0.42 0.14 1.00 17 aE! Gat 1 0.7.c.s.o.1 .sh 3 21 0 us.s.2 =.0202_=,0 01_*A 01. _, 37 SEasalc 1 e.5 e,0 5,0 188.7 8e0,9 791,2 0,01 0.0a 0.02 37 SEl$m!C 2 s.7 tt,a c.7 259,6 s19,3 13al 8 0.01 0,0u 0,0a i 1 p. W '{ ((p fQ) ~ ~ ~ ~T c glffc - gg- .L " %.F6'-Jo! ) ~ R 1 MY/4-zgo..w s. '1 Pn _,?- r V i ' ~ _- - _ _ = l FLOW A
!
8
=
=
=
45' MIN -
l TYP l
t v
MNDI$$$$1950M$$$$$h t
x aN N
/
/
l tWELD WELD DVERLAY REPAIR DETAILS c
~.
FLAW DESIGN DIMENSIONS WELO NUMBER CHARACTER 12ATION t
A B
au n
12-02a2-76 Circumferential 0.25" 2.0" 2.0" (min)
(min)
(min)
DATE DESCRIPil0N:
/PEPAREDBY 4-3 0 -T 0 Standard Weld Overlay Design
/
for Weld 12-02-2-76 C
KED DATE per NUREG-0313, Revision 2 Y
N$W$O
~
i J08 NO:
PLANT / UNITi REV NYPA-250 J.A.
FitzPatrick
-0 t
- 4 sys ;
.h'h-k i SHT FILE N0:
OWG NO:
NYPA-250-307 NYPA-250-006 1
1 0F
STRUCTURAL CALCULATION FILE NO: A/y%-n~G Joy INTEGRITY PR JECT NO:gg-pgg
' ASSOCI AT ES. IN C.
PACKAGE PROJECT NAME: J. [\\. [d kAT/ $/ f<-
8*f%C g
6 wYp 9 NY Cl.lE NT:
Mev) Ygg
.fg er k wfff p g y y CALCULATION TITLE:
g
$w Ye ?
12 - O 2 - E ~ l lo PROBLEM STATEMENT OR OBJECTIVE OF THE CALCULATION:
Wq W
A h\\kf(&'O.113 15'OE' 2." } $
4
,-4 Proj. Mgr.
Signature. Initials Document Af fected Revlolon Description Approval Revlelon Pages
/Date Chee e
g l~T y& $4%
h YdO*4i $
'NO ME yho PAG E J._ OF i k
- W O O A W 'In 5.h. E'4 Pe%c k w edd 1.2- 0 7-2 -74~-
/
/
/
~]
i E
Ok,'M_ t Wd ( 2.-o2 - Z-M @.
of r_) A. 1.-
g
% r *ghe
.a4 e t,%
Mr N
A*<M
% M y e G dr - a J,.y A
'~ '
- 2..
- w'wko J I.a p p w,
EnLO :
%).a)) I 2 -o 2 R b y> 7s-h ';4
~
'I l
& * %C 4
M w e - l.
Th. s W =
- nH w -i.:
b f
7 W<A4. %Iel M b e-)
e eM M Mb :$'_
b
~
l 6. 6 I ' ',
o4 - %
-A Ws &
- e +_'
of h kl
% $ k.sshkndI*bO1Y.Th Arus-/Se= $
~'~
h
~
h $ w e= er ) N
~ ~_.
[I ]
I
% '=h)sk % Ys.$"m ls~TSE..
N. ~i%. Fh b n 11.w -J k 70 I. M _.
f tr3 &
b _ O =,,
n W*.
^^ = : ^!
9 P,:m u
> z rr p c.
it..
fd4h :
i L
~. ' ~ -
A W t;- c.J J#e zh ~
f(oo)'- (.:2 0)'_
p (1 0) ?/ C.
b - -
e.:
P/p pg3
,, FA \\
YMs'the' 4
g-i g,.
J f, Q m ># '~ bb) & % ej>=$sAse i
g n.v. ion 0
e m a w io nse ilthVMn' ct=*n/o.i.
MKVNfo File No. W$fk 'lSQ~'bO?
P ge
]
6 8
\\
u &kk ma re. u-t M n=+,
1 4.
A. u.
~~'
1
- b q=
q coo -x o')
t h
og f
(CD m
^
~
ZD i
. <, u
pt13
~50.-
2
.7% wy P, =
r,,,,,,.,
yS92pse
=
.% % h P ' % $edu
= 2 /o6pc i
.Th AllJ L % = ic 90o pc,
.Acwx w z.
~ 4.%A G v
~
Z.L..
.h M %
vbl=>u. 74 pc d4i42'
.Q h JD.
t o. U '.'
~
- l. J (6..IJ //0. 7.?) 4. -
1 1
d.
(s l: 'f[8.f--
(
. [
c' g.
3.22
= 4.. ?
7.. -
W.,
-k q e n. p-p.a zea2&n
% ;i y 1 r, 9 1.3 egesawese
.*e De sam e e Reveson d
Preparer /Date Nbk.%
c e.r/ oat.
/J5CV/Mo, ne m M(PA-z SQ~ To f' '
Pace 3
or Y
\\
~ ~~~~
. TABLE 01.(CONTHe'ED)
GL NE W 4 L ELic id ! C C oad a's' SPEC NO. 22AMf2
~~"' A t V."i 0.'1 '~
..s 80!EING e&fE4 #EACt:R 3 5fE*5 CE* ART ENT
..........................'............"............................... pact %0,98 Fif tmatutta EECloc 0,15CMaWCE
(,jNE a 4[$Eli$ AND MEaCES
~'
J0 TNT ho, typt CD 10 f
INERfta 2
SS 8
- ELD a=/aw 12de{, 1,t.cel 0 *10 8D J_ M23
!=1.000 aa u.9_..
a.C '
EspaN5!ON "0mENf38
- 268904, 40276,
- 776de, dea 0 LOAD
=0=ENT$a
- et7v7e, 3e24,
- 3938, a w imf_P.J 3 L 1.1a ! E
= 0.'1LM1 e a 191.7.-
?1951 111140-3 E C O*'0 & # 7 3E!351C MONENf5s 0,
0, 0
S t a Q,3 aat;g ~
a PR1"4RT STRESS INTEN&lf{ES
~~~
o Ot&0 LOAD + PRE 55VSE gge7 0.37e ME ACLD3R 3 !'f.13 k.8.k. t 1E ! t " f t -
e
- adu, 0,e,39 _ _
to SECDwcaRY STRESS NANGE t X P agsj pw a _.J.L0 t.
0 J53 3
La#ah510N * $ E C O'40 a R Y SE13MIC a
- d200, 0:153 C. 88 t M.'.#v
'LUS SECONaa, staE33 asket CE ADLuao + PRE!3URE * (IPAN$104 s
9$46, 4,144 OE40 LOAD + PRESEURE
- SEIS"!C
- THERMAL
- ExpaNg!QN s
(1894, 0,d21
, _ O d a R E t v ( N,7 $ h i n E 5 5 a.* * ! = ta v-itJ 5.)_L I M !.?
^
aLLU=atLE
.teoso.
S !
ELE 371C EvkLJafED PRIMA.1Y STRESSES && Sm0*N SEL0a STWE88 RATIO EaERGENCY CONC!?!ONS 10 E e.l.*_8 e c k t.9,E. 5 JEa0 LOAD
- 87.55VRE
- DCuteLt 7.41MANY 8 t.'15 5 3 C 98dte O s'TIO,_..
6 OEa0L0a0
- m43, PRE 35t:RE
- R ESabmE
0.311 4
e
.1
- N _ $1,U.~. Lit..
.. _. = - --
n wysn
- MK W W %
Checked kjW2M 90 7 -
File No.
V of I
,.Page
-. -... -. _ -.. - ~. _. _. _.
~
- -. ~..... n. n
,o 0917752 TABLE C1 (CONTIN'UED)
GENERAL ELECTRIC CO*P&NT SPEC NO, ZZAZ5ZZ.
dE v, NO,1 l
.........,4 e+......................."..............................................
00!(ING "soCR REacf08 SYSTE*S DEPART ENT PaGE %Q, 38 j
((E{f.fRICnRECIRC043 CHARGE LINE A R!sERS AND MEaCER
~~
7&SLE Fet
~
~ ~.
JOINT ffPE CASE FORCE 3 TRIPS) momEN73(INon!PS)
DEFLECT 10N4(tN)
NO NQ FA FR FC Ma MS NC I
Y Z
i 66-
?>ERMAL 1 =0,2
- ,2 e3,1 120,3 809,*
e160,1
+0,36 0,5a 0,68 66 6E.M7 i
2,5 0,2 t,8 -
32,8 ti,9
+0,00 0.01 =0,00 6 6. _,.5 E ! 5 M f C 1 1.4 4.8 0.6 16.4 18.1 12.1 0.01 0.03 0.01 jS 64
?EISMIC 2 5,3 5,3.0,8 28,6 34,9 58,8 0, 0) 0,03 0,01 67 fMERust t.P.3' 3.9 *2.7
.5.7 89 1
'13a.2 0.35 0.a9 g41.4 3
67 ut!GM7 1
2 '9 0,4 0,4 1,3. e31,1 30,1
- 0,00 *0,01 *0,00 67 SE!SMIC 1 7,2 1,& 0,6 20,4 6,2 78,2 0,01 0.03 0.01 67 SE!Sm!C 2 7.4 1.5 0.8 42.2 5.a 75.9 0.01 0.0a 0.02 68 7kERust l' *2,3 3,9 =2,7 el,7
=266,0
.382,9
=0,22 +0,15 1,12
,,4 60 mE4GMT 1
1.3 0.0 0.a 1.3 28.1 19.3 0. 0 2. q2,0j.o.02 a
86,6 33,1 0,02 0.03 0,05 68 sElsm!C 1 5,9 0,4 1.0 20,2 114,5 31,5 0,03 0,0s 0,10 68-SEISMIC 2 6,0 0,4 1,0 42 l
69 TMEmmat t =2,3 3,9 +2.7 ele 7 a304.0 es37.2
=0,22 +0,22 tota 69 WE!GM7 1
1,1 0,6 0,4 1,3 34,7
+24,6 0,02 0.01 =0.02 49 SE!SMIC 1 5.9 0.4 0.9 20.s 95.9 32.1 0.0H 0.01 0.05 69 SEISMIC E 6,0 0,a 1,t a2,2 115.8 30,3 0,03, 0,0s 0,10 es as fwtRuaL 1 2.3 es,7 *0.7 265.0 301.9 6a.5
- 0 a8 0,5a O_ 2 8,,
,j, Su mE!GMT 1
0,2 et.2
+0,6
- 17,5 10,8 e34,8 0,
0, 0,
88 SE!S*!C 1 1,8 4,1 1,0 32,3 62.8 157,a 0,00 0,00 0,00, 84 set $m!C 2 7.9 a.1 2.0 63.s 130.5 211.6 0.00 0.00 0.00
'85 TwtRMAL 1 2,3 4,7 et,7 ' $6 4,'9 40,3'
'77,96
=0.60 0.52 0,36
'3 0.-
40.00 =0.00 85 wt!GM7 1
0.2 4.9 *0.4 17.5 3.6 0
61 0,00 0,01 0,00 85 SEIS*1C 1 1,a a,9 1.0 32,1 33,6 129 a 3,
1,9 62,9 73,0
,4 0,00 0,01 0,01 s
85 3Els"!C 2 2,9 s.
\\.
86 fMERMAL 1 7,9 es,4 a,4 157,&
141,8
- 182,6
- 0,6s 0,50 0,a!
86 mEIGM7 1
0,7 0,2 0,5 *
.9,8 9,5 13,3
- 0,00 0,00 0.00 86 SLISMic 1 3.1 2.8 1.0 11.6 33.5 56.7 0.00 0.02 0 01 6
86 SE13MIC 2 3,2 3,8 1,9 11,a 71,9 103.2 0.01 0,02 0,02 i
t 47 THERhat t 8,8 5.2 0.3 6.7
.46.5 236.6
- 0.45 0.sa 0.s6 87
=E1GMT 1
0,6 *0,1 0,2 1.3
- 16,8
- t,0
- 1,00 *0,00 *0,00 i
/
87 SE!Sm!C 1 a,0 1,4 1,0 18,9 16,1 55,5 0.01 0.02 0,02 87 SEISpjC 2 3.9 2.9 1.9 a0.a 29.8 72.2 0.01 0,03 0.0a
.\\
3
+452,5
- 0.68 +0.20 0,90 88 THE9 mat t 8,8 5,2 0,3 6,7
.46,7 88 mE!CW?
I
.t.0 0.1 0.2 1.3 15.
8.9
- 0.01 0.00 =0.02 84 '5E15=1C 1 3.0 0.5 0,7 18,9 97.1 61,4 0,06 i,02 0,09
,Q*
48 SE15m!C 2 2,9 0,7 0,9 40,8 179,7 109,7 0,13 0,03 0,20 Ptepared by:
N1G) V-2F 74 -
Checked by: AFX WWM o
-fpe No. ^!NN-LCG - g o 9r l
,Page.
E of Y
l
i WILD 12 02 2 76 OD(!N):
12.662 i(!N):
0.73 10(!N):
11.202 P(PSI):
1275 i(f):
562 A(IN'2):
27.364
'l(IN'4):
77.210 N0DI 85 FORCt M0 MINT MOP [Ni TOTAL AXIAL LOCA110N
$1R($$
(AXIAL)
I C
MDMINI STRI$$
WILDNO.
IfPt
.(PSI) (IN L8) (IN LB) (IN ll) (PSI) 1276 P
4592 12 76 DW 200 3600
-3900 5378 16 12 76 1216 0l[,1 1400- 33600 61400 69992 958 12 76 00E.2 2900 73000 129400 148571 2030 TOTAL 6698 Pts DW + Cl[ MAX:
2106.217
~
PM:
P:
4592.035 i
M V-2Mo Prepared by:
Checked by: M O'/ T O File No. N IN' 2M ~ 3#
L of T
l,Page
[-
f tm pc-CRACK (C) COPYRIGHT 1984, 1988 STRUCTURAL INTEGRITY ASSOCIATES. INC.
SAN JOSE, CA (408)978-8200 VERSION 2.0 Date: 28-Apr-1990 Time: 14: 21:19.78 STRUCTURAL REINFORCEMENT SIZING EVALUATION STRUCTURAL REINFORCEMENT' SIZING FOR CIRCUMF. CRACK, WROUGHT / CAST STAINLESS t
NYPA-25Q: WELD 12-02-2-76 WALL THICKNESS:
0.7300 MEMBRANE STRESS: 4592.0000 BENDING STRESS:
2106.0000 STRESS RATIO:
Q.4213 ALLOWABLE STRESS:15900.0000 FLOW STRESS:47700.0000 L/ CIRCUM 0.00 0.10 0.20 0.30 0.40 0.50 FINAL A/T 0.7500 0.7500 0.7500 0.7500 0.7500 0.7466
~ REINFORCEMENT THICK.
0.2433 0.2433 0.2433 0.2433 0.2433 0.2478 END OF pc-CRACK I
Prepared by:
S IJ V-25-70 18A WJo/9 o Checke1 by://4-2fd-307 l File NO.
M jPage 7
of f
1
r.
A
l
B FLOW
=
=
45' MIN -
TYP
.u
$nitififsisi5'Xsii'sitii'@h t
4 6
/
/
l Pipe Elbow
- 4. WELD i
J WELD DVERLAY REPAIR DETAILS FLAW DESIGN DIMENSIONS _
WELD NUMBER CHARACTER 12AT10N t
l A
B
- g.. ; -
10-14-494 circumferential:
0.24" 4.5" 1.5" Note that transi-1" Long x 29%
(min)
(min)
(min) tion angle shown through-wall above may be 0
greater.than 45.
This may be necessary to blenc with elbow intrados.
PREPARED BY DATE DESCRIPTION: Standard Weld Overlay g
yy y 9o design per NUREG-0313, Revision 2 OATE CHEC 37mh f&
Vll8790 E
- 0s NO
PLANT / UNIT:
REV NYPA-250 J. A. FitzPatrick 0
[c SHT FILE N0:
DWG ND:
NYPA-250-302 NYPA-250-002 1
0F 1
w
sTRuCTuRAt CALCULATION FILE NO: Ny/A.?iQ.bt issoci RIT Y INTEG
"" d"
T es. inc.
PACKAGE
'ay94-250 M T f4 -Ef Q : Ed j [4Telt K 19 90 dwige lug # P PROJECT NAME:
CLIENT: p/cw/Yprit fg er kdor, f y g4Wp4gg geJJ j,,, /
ec, g CALCULATION TITLE:
fW Wslb 10-14-494 PROBLEM STATEMENT OR OBJECTIVE OF THE CALCULATION:
344)g)
W&$o herl Oe s t 7 4 fr we
()er NUf*YG**El3 2.
h
( 6 - ILl - 4 9 4 Proj. Mgr.
Signature, inillate and Date Document Af fected Revision Description Approval f Preparere Revlelon PaSee
/Date and Checkers UM/8/.lMO flM M O
I
,{ ~
In g71 A L 3 53 % 9.-
i 4-IV-10 l
l l
PAG E I OF f v
7 W) O h k bn 3'.h. Sd Psrere. tc We)) w ig -q q i
l
(
I f
l Ohs t 0 6 's
\\hl 80 #84' 4 % Y
& W h w=
4 t
A.
b w
N.A
' + -
h+ a4 5 ny Js./s oms-,w ss.AJ w
mpp.J. n _
o dWL Ib L
Md j
j W
1 A
E W
A d.I h
b I
L! A QA p A cl1 D w 7
'u b b].
y
- ,gs y 1-ps W
W d. 838, [#t4A/
di ' d p a bl, c ApA w
W id-/N"L/TY
,/N (M h -
1 A g J 7%)% 6-u ),wh lO*l4*NNY Y
W.
% Lt3 m:
~,. g
.iu.n 3
P t st)i). v46 tst D
(s St7 p sd 005 st)
I 2. 3Z p s t Revson C
Preparer /Date M blf TC i
Checker /Date My//gfc l
File No. pyhAa 1[$'- 3 #1 Rage d of j
l
-.. - ~ - - -,.... -.
f[
i j
l M
Tu l
\\
' & '2h $ w & wAh &
A e>- u;J ~ q% naq W%I Aum A%
qu gn, Ares
=
ww Caam a
'l?46 st f
kam
= { (o o' 10:n )
A nw : 4 (og - x og, )
Sr ke, psf-bo.pr-sM-2.f frwure (nassr q )
49 44 x do.y?)'- ( /o.7r-o.7 AV-k0 hN [3(
0-G%
mod
& y,k Q' ce
):;.= o s cas= iei9 n.))
es 0 :=
^
V V
W
~
pt w ppm h DH- %D
=
Itl1 x d$4 ~ SOhm
,,7,9, f0.95)'-(20.1s -2= o.sgj G o,95} I
( 10 95 - 2.3 04)1 I f P9 Fsi 3-Revson CP Preparer /Date MMM-lf 1)
Checker /Date kk Y[/f/g File No. M T P A' L f 6 - 3bb NQe 3
Of
. N N
,05'i'h sM 4 Y<Ae~ u $m,(fQ_
bN Mr sM C t adh a &
W.: 1, 4
Y h 4 A ~
IS~,9 ocjst Pe -ctlA c K' S 2.0 4 &%W e-
=ssA
& le 3Le*
tu y, Yd"-m, nn n 1
WO.
1%
t.= e. z y '!
Lw s And 4
- I'T Y I. 5 Y.l.2:F r o,9
~
2 O 2.9 l "3'
~
O.
TL< % W
%:. f e. U-s c X f ed d 'w JA!k Q Ay p.
l wn i
l. Gw $N
%A F -V T-o o r &
4-3-90 L
<4 &co. n
.% cf TAF-47-,cott
& y-13mo l'I2p
- 2. 0 % ) &
L~= n fg CNfff) &(
isv)
- Pet - n-on pu g-20-n Revision 0
Preparer /Date NM 8f IT-70 checker /Date M Mg/to i
Ee No. M T [A - 2. N ".201 Rage i
of___f
r i
tm pc-CRACK (C) COPYRIGHT 1984, 1988 STRUCTURAL INTEGRITY ASSOCIATES. INC.
SAN JOSE. CA (408)978-8200 VERSION 2.0 i
Dato: 18-Apr-1990 Tim 3: 15:21:33.93 STRUCTURAL RED FORCEMENT SIZING EVALUATION STRUCTURAL REINFORCEMENT SIZING FOR CIRCUMF. CRACK, WROUGHT / CAST STAINLESS NYPA-25Q: WELD 10-14-494 WALL THICKNESS:
0.7000 MEMBRANE STRESS: 4064.0000 J
BENDING STRESS:
1589.0000 STRESS RATIO:
0.3555 ALLOWABLE STRESS:15900.0000 FLOW STRESS:47700.0000 L/ CIRCUM 0.00 0.10 0.20 0.30 0.40 0.50 FINAL A/T O.7500 0.7500 0.7500 0.7500 0.7500 0.7500 REINFORCEMENT THICK.
0.2333 0.2333 0.2333 0.2333 0.2333 0.2333
]
END OF pc-CRACK l
l Prepared by:
/lTM 4 let, Checkedk :
AlifK YM/90 File No. #y#4-5 f 4 M o 2 l
. Page f
of f
.. ~., _
E-4 ATTACHMENT 4 to JPN CORE SPRAY WELD OVERLAY SHRINKAGE STRESS EVALUATION l
4 b
?
NEWYORK POWER AUTHORITY JAMES A. FITZPATRICK NUCLEAR POWER PLANT DOCKET NO. 50-333 s
P'
)
S.tuctural intogrity Associates, Inc. (SIA) ovaluated the shrinkage stressos on the core spray B loop. Using the Algor Supersap program, SIA developed a three dimensional finito clomont model of the Coro Spray "B' system.
The model conservatively assumes that the systom is fixed at the vossol nozzle and at the drywell penotration and is unrestrained at all other locations. The Core Spray System pipo material changes from stainless stool (intergranular stress corrosion cracking susceptible) to carbon stool (immune) at valve CSP.14B. Consequently. no wolds upstream of this valvo are candidatos for overlay, and shrinkago stresses at those wolds are insignificant.
Each potential or existing wold overlay is described by a piping elemont definod by two nodos.
Those nodos aio throo inches apart at each wold location.
The modol simulatos wold overlay shrinkage by forcing a thermal contraction at active wold overlay locations, while preventing contraction at non-overlay locations, it does this by artificially defining the coefficient of thermal expansion (a) in non-overlay locations to bo zero, and by defining the coeffielent for active wold overlay locations as one. The temperaturo boundary condition at ench activo clomont is that temperature which produces the appropriato shrinkago value in the overlay. For examplo, if a 3.0 inch overlay produces a 0.25 inch shrinkage, the corresponding temperature for uso in the analysis is:
Shrinkage =a x ATempemture x Length or
- = ATempemture if Shrinkago
= 0.25 inch
= 1.0 inch / inch of longth/*F a
longth
= 3.0 inches then A Temperaturo
= 0.25/3.0 'F
= 0.0833 *F in this way, a finito olomont model can be used to predict the stressos induced by " shortening tho pipo locally" at each unropaired wold. A shrinkago of 0.25' was assumed for wold 1014 494. This is greator than the actual shrinkage and conservatively predicts higher stresses.
41
_a f
- - +
Table 41 WELD OVERLAY LOCATIONS SHRINKAGE DATA Weld Shrinkage j
493 0.209 as built 494 0.25 assumed 495 0.177 as built 496 0.24 as built i
1 i
Table 4 2 l
SUMMARY
OF WELD OVERLAY SH3lNKAGE INDUCED STRESSES Wold Stress (ksi) 1
-l
'~
492 2.45 497 1,76 498 1.06 l
501 2.22 502 2.63 Note-All welds listed in this table were inspected during this outage.
l 42 I
l t
J