ML20040C853

From kanterella
Jump to navigation Jump to search
Speech Entitled Radiation Exposure & Health Damage Due to Nuclear Power Production:Question of Stds & Need for Comparative Health Damage Analysis, Presented at 820103-08 Symposium in Washington,Dc.Certificate of Svc Encl
ML20040C853
Person / Time
Site: Big Rock Point File:Consumers Energy icon.png
Issue date: 01/03/1982
From: Franke B
GERMANY, FEDERAL REPUBLIC OF
To:
Shared Package
ML20040C851 List:
References
NUDOCS 8201290310
Download: ML20040C853 (42)


Text

o,-

fpy g j Annual Meeting I

E I /M-

/ :>i Washington i

, h1 COVER SHEET FOR PRESENTATION 3 8 January 1982 ernd N E AUTHOR:

AFFILIATION:

IFEU-Institut fur Energie-und Umweltforschung Heidelberg e.V.

Im Sand 5, 6900 Heidelberg, Federal Republic of Germany CO-AUTHOR:

AFFILIATION:

TITLE OF PRESENTATION:

Radiation Exposure and Health Damage Due to Nuclear Power Production: The Question of St.andards and the Need for Ccinparative Health Damage Analysis This document is (citcic onc ) :

Paper 2.

an Abstract 3.

Other (specify)

TIME AND DATE OF PRESENTATION:

10:00 a.m. /

.m.

on January 3 (I) 5 6

7 8

(Time - please give nour)

(Date - please circle)

PLACE OF PRESENTATION:

Capitol Hilton 3

(Hotel)

(Room)

SYMPOSIUM TITLE:

The Biological and Health Effects of the Nucl' ear Industry and Nuclear Weapons: A Curre~nt Evaluaticn ARRANGER:

Carl J. Johnson (University of Colorado, Denver)

(NCTE '.' CCRRES?CNDENTS: Rel a.se U.mc is the cbne oJ ytc.sena cion) 8201290310 820118 PDR ADOCK 05000155 0

PDR

r-RADIATION EXPOSURE AND HEALTH DAMAGE OUE TO NUCLEAR POWER PRODUCTION -

THE QUESTION OF STANDARDS AND THE NEED FOR COMPARATIVE HEALTH DAMAGE ANALYSIS B.Franke, IFEU - Institut fur Energie-und Umweltforschung Heidelberg e.V.,

Im Sand 5, 6900 Heidelberg, Federal Republic of Germany Abstract During routine operation nuclear installations emit small amounts of radio-active particles inte the environment. Safety re.gulations are expressed in

. terms of radiation dose to man. Links between the radioactive emissions and the doses received are provided by 1. environmental monitoring (such as ana-lysis of milk, plants etc.) and 2. radioecological model calculations based on emission rates. The sensitivity and deficiencies of current practices in both fields are analysed and discussed. Todays methods for licensing and con-trolling routine emissions night not ensure that doses in excess of radiation protection limits would be detected.

~

Furthermore, assessing only individual radiation doses is not sufficient for the evaluation of health damage due to nuclear power production. Also needed are population dose assessments including emissions due to accidents and other steps of the nuclear fuel-cycle as well as total health damage estimates in-ciuding those arising from construction and transport. Comparisons with health damages from other energy sources are presented. They should be based on ener-gy scenarios rather than on a "per-unit-of-energy" scale. Comparison of our own estimates with the results of other authors shows that using the " scenario" method the least health damage appears to be associated with a '! soft" energy path.

l

1. Introduction

.Because of the potentially terious health risks associated with the use of nuclear power most countries have a complex set of regulations designed to en-sure that routine emission.from nuclear installations is kept below a certain

" tolerable" level.

Tne regulatices generally recognize that a certain amount of radioactive emissions is inevitable, but specify that it must be limited to the level whichcould lead to no more than a certain do 2 to any single person. Figure I shows the various pathways of radiation exposure due to a nuclear facili.ty.

caseous eretueurs NUCtsAA FACIUTY J

\\

i e, \\

ucuso

,p

.. t,

't sertuenTs

.g

.g I

k EZ a

s f

f

\\

's L

..I {

e A

{, # 9 i 0 o G N; v #

.g ca e en c <D

.e,,

I s

N--

/

4,\\

-_ f

,d,

~

d-l R/

[

m

^

~ ~.I -

f

-- /

~, _

QQf.g oy :

6'.E " "

Figure 1:: Exposure pathways of radioactive effluents of nuclear facilities (from Soldat, 1976)

As all relevant pathways are to be considered, compliance of. actual radioactivity emissions with dose standards has to be varified with a system of prognostic radioecological estimates and environmental monitoring.

This paper deals in its first part with the problems of both practices with regard to individual radiation doses. In a second cart the necessity of col-lective dose estimates is pointed out. Finally, in a third part health risks due to different types of energy production are compared.

~

~

2. Individual Radiation Doses due-to Nuclear Power Production

^

i Table presents the radiation standards of the Federal Republic of Germany j

and of the USA.

Table 1: Radiation protection standards at locations of the highest dose offsite a nuclear installation country and pathway whole body thyroid Federal Republic _o,f, G_ennany #l a

liquid effluents 30 mrem /yr 90 mrem /yr airborre effluents 30 mrea/yr (only food chain)

U,. S. A,.DI liquid effluents 5 mrem /yr 10 mrem /yr air orne effluents (gaseous) 5 mrem /yr airborneeffluents(particulatesfl 15 mrem /yr 15 mrem /yr a) Radiacion Protection Regulation of October 13, 1976 values regard also potencial land / water usage (including preexposure) b) U.S. Nuclear Regulatory Commission "RM-50-2-design objectives"(from USETRCr 1977) values regard only actual land /wacer usage c) including H 3r C 14 and Iodines 2.1. Environmental Monito-ing The maximum allowable radiation dose to an individual.in tHe vicinity of NPRs due to airborne effluents of the nuclear installation mustnot exceed 30 mrem /yr for the total body in the FRG. This is about 1/3 of the natural background ra-diation. Limits ir the USA are somewhat lower although the practice of appli-cation is different. Table 2 gives a selection of radionuclides which are emit-ted into the air by nuclear facilities. The amount of radioactive substances emitted (with exception of emission by safety valves of the secondary circuit of PWRs) 4 5

h

.m--

--....y-y s_-

-..w

Table 2: Selection of radionuclides emitted by nuclear facilities into the air (t1/2>8 d) nuclide t

nuclide t

nuclide t

gg 1/2 1/2 l

corrosion products noble gases Ru 103 39.4 d P 32 14.3 d Kr 85 10.8 a Ru 106 368 d

I P 33 25.3 d Xe 129a 8.9 d Te 127m 109

.d Cr 51 27.7 d Xe 131m 12 d

Te 129m 33.6 d Mn 54 312.2_d Xe 133 5.3 a Cs 134 2.1 a Fe 55 2.7 a.

iodine-isotopes Cs 136 13 d

7 Ee 59

'44.6 d I

129 1.57x10 a Cs 137 30.1 a Co 58 70.8 d I

131 8

d Ba 140 12.8 d Co 60 5.3 a other fission oroducts Ce 141 32.5 d Ni 63 100 a

Sr 89

~50.5 d Ce 144 284.S d 8

Nb 92 10 a

Sr 90 28.5 a Nd 147 11 d

Sn 117m 14 d

Y 91 58.8 d actinides W 185 75.1 d Zr 95 64.0 d Pu 239 24 000 a U 237 6.8 a Nb 95 35.2 d Pu'240 6.600 a Am:241 458 a Cm 242 164 d Cm 244 17.8 a i

d = days, a = years l

t 4

is directly measured.

Directly measurable is also the external y-radiation dose and the concentration of radionuclides in air, water and food. The radia-l tion dose induced in man by inhalation or ingestion can only be calculated, assuming certain physiological factors. Depending upon the factors used, dif-l ferent radiation doses are.the result (see 2.2.).

Which radiation doses-can go undetected in the present practice of environ-i mental monitoring? An analysis of the sensitivity of environmental monitoring i

arrives at four main problem areas:

)

i

~

1. completeness of exposure pathways and measured radionuclides
2. achievable icwer level of detection
3. density of sampling
4. frequency of sampling Table 3 gives some examples of potential maximum radiatico doses which could go undetected, if the concentration of radionuclides is continuously just below the lower limit of detection required by NRC standards. For different pathways, radiation doses above 15 mrem /yr (NRC standard) could well go undetected, even if continuous monitoring is assumed. The influence of the milk sampling frequen-cy upon detection of peak concentrations of I 131 is shown in figure 2.

sample taken sample taken h

Concentration pasture grass (relative units) o milk detection limit 0

10 20 3b 4'O 56 time (d)

=

Figure 2: Concentration of I 131 in pasture grass and milk after a short-term emission as a function of time (see aleck-neuhaus, 19 stb):

monthly monitoring might not discover the peak The usual frequency of one measurement per month of milk samples allows that relevant peaks of activity concentrations could go undetected. The result is, l

that alone due to nigh detection limits and insufficient sampling frequency an excess of dose limits might go undetected. Much more unlikely it is that the often claimed value of 1 mrem /yr as " maximum offsite dose" could be proved to be accurate.

g Table 3: Sensitivity of environmental monitoring of radioactivity in the vicinity of nuclear installations lower limit of Potential maximum radiation dose left Exposure pathway detection (LLD) undetected by environmental monitoring Remarks US-si.andard a)

(examples) complete and continuous monitoring of maxiraum con-milk (I 131)

I pCi/l 40 mrem /yr (infant, thyroid) taminated milk assumed )

b dose conversion factor:

  1. l 0.11 mrem /pCi milk (Cs 137) 18 pCi/l 10 mrem /yr (teen, kidney) ibid.; d e co in 3 dI mrem /pCi fg 60 pC1/kg 70 mrem /yr (adult, thyroid) ibid.; d se com s n3 dl' rnrem/pCi ts ibid.; dose conversion I

fC 80 pCi/kg 70 mrem /yr (adult, kidney) factor 1.44 10 mrem /pCi 3

dl i

a) U.S. Nuclear Regulatory Commission, Radiological Assessment Branch Technical Position, Revision 1, November 1979 b) this is a very optimistic assumption, which in practice would be impossible to realize c) vuxi: a realistic value from Bleck-!!euhaus, 1981a d) from Bruland at al.,

1978 e) ingestion rates taken from USNRC, 19/7

2.2. Radio:cological Model Calculations

~

Before environmental contamination through a new nuclear installation is allcwed l

to take place, the compliance of licensed emissions with dose standards is re-viewed by radioecological model calculations. Figure 3 shows schematically the

~

i method of calculation of models in use for licensing procedures (USNRC,1977, BMI, 1979). Assuming equilibrium conditions, the radionuclide concentratior.s in the various ecological compartments are estimated using linear relationships.

Ci/sec x

sec/m x

m3/kg x

kg/yr x

mrem /Ci 3

mrem /yr

=

~

emission atmosphe-ecolo-inge-dose con-dose ric dis-gical stion version persion accumu-rate factor lation c07.D m,

..e e gr

~

'1 r

0 t

\\

l

<[> hh65 Y

t Figure 3: Methodology of radioecological calculations (equilibrium model)

Because of the fact that for each radionuclide more than 20 factors are needed for calculating the dose, there exists a considerable uncertainty in the estimates, which is insufficiently adressed in the US Regulatory Guide 1.109.

Seversi analyses of the uncertainty in data, models and assumptions used therein have been published (Hoffman and Baec III, 1979 for the US Guide; Hinrichsen,1981; Franke et al.,1980b,1981b; Hdpfner,1981; Steinhilber-Schwab, et al.,1981, Bleck-Neuhaus,1981, Urbach,1981, Teufel,1981 for the FRG guide at the Stuttgart symposium " Radio 0kologie", Oktober 1981).

Sunnarizing the results of the studies cited it can be shown that in tne usual models along with other important points (e.g. meteorology)

1. data have been derived using unscientific methods,
2. many recommended factors lie at the lower limit of realistic values,
3. the chemical form of radionuclides is being neglected,
4. in important cases the variation of dose conversion factors is being neg-lected
5. special groups at risk in the population are neglected.

ad 1. An important parameter for calculation of dose is the transfer factor y

soil - plant, relating plant and soil activity concentration. Figure 4 shows the derivation of the values recommended by the NRC. The trans-fer factors are found by formal division of " typical" concentrations of stable isotopes in plants and soil, whereb'y the plant concentrations are taken from an English handbook, the soil concentrations from a Russian handbook. Sinilarly, the transfer factor fodder - meat has been derived by relating stable element concentrations in American cows and.English plants grown on Russian soil. This method is completely unscientific. In any case, site specific values for these paran:ters should oe prefered as even recommended by the NRC, which is standard practice at all West German plant sites.

t S-l

" typical" concentration of stable isotope in meat Ng et al., 1958, from US american scources fooder - meat transfer factors k

derived by NRC through formal division

" typical" concentration of stable isoto;a in plants USNRC 1977 Ng et al., 1968, from English handbook soil - plant transfer factor y

derived by NRC through formal division

" typical',' concentration of stable USNRc 1977 isotope in soil Ng et al, 1968, from Russian handbook Figure 4: Derivation of factors reccmmended by the NRC to describe terrestrial foodchain transport of radionuclides t

ad 2. Figure 5 shows measured transfer factors plant - soil for Strontium taken from more than 70 publications (Franke et al., 1980a and 1981c) plotted against the content of exchangeable Ca-ions in soil. It shows also that the transfer factor recommended by the'NRC lies well below of nearly all measured values.

Table 4 compares the variation of transfer factors soil - plant for Cs and Sr for different plant species, showing that the oficially re-commended values,not distinguishing between different plant species, cannot be used for a realistic estimate.

Similar results have been obtained for other radionuclides (e.g. Pu 239, Zn 65, Ru 106, Co 60) for which a considerable range of transfer factors have been measured. NRC values mostly lie at the lower end of the range (see Franke et al., 1980a and 1981b).

10.

t e 9

em 3

-oS %

e o

e b

30 3

- is 1.

Og o

a 5'

j e

2 o

o e a

g c,

8 0

cir 3

a

,a,=-

o Od g

33 0

O o reo oj g6 g

8 e

f@

2 0

0 0

0 2

0 O

62

.1 h

O e

o f

e 0

A NRC value for " vegetation

  • O

.01 O

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 enchangeable Ca. ions in soil (mval/100g)

Figure 5: Transfer factor plant - soil for strontium (grass) against exchangeable Ca-ions (see Franke, Ratka, v.d. Sand, 1980) l l

~

Table 4: Variation of transfer factors soil-plant for cesium and strontium (pC1/kg frzsh plant : pCi/kg drj soil) plant species transfer factor for Cs transfer factor for Sr leafy vegetables 0.0075 0.9 0.08 7.8 grass 0.00068 - 14.

0.01 9.8 potatoes 0.023 0.16 0.015 0.38 clover 0.004

- 33.

0.22 7.4 root vegetables 0.0025 0.15 0.055 - 21.

" vegetation" "I 0.01 0.017 a) as recommended in USNRC (1977) ad 3. Radiocobalt contributes to a high degree to particulate effluents of LWRs. In the food chain it is built into Vitamin B in meat and milk.

12 This fact has beert neglected in previous estimates. which have considered only inorganic Co-compounds. As Vitamin B is resorbed and accumulated,

12 much more than inorganic Co-compounds in the human body, liver doses have been drastically underestimated (Bruland et al., 1979). Previous estimates following NRC recommendations underestimate the dose due to Co 60 ingested via the milk pathway by a factor of 280 to 2.300 (see Table 5). Even the new data in ICRP Publication 30 (1980) does underestimate the specific case of vitamin B by a factor of up to 100.

12 Table 5: Comparison of radiation doses to liver by Co 58 and Co 60 after con-4 sumption of contaminated arlimal products with and without considera-

~ tion of the transfer into vitamin B12 (relative units, rounded)

(ftcm: Brulanda Franke Teufel, 1979) r exposure pathway inorp.

Co 58 considering Co 60 considering Co a vitamin B vitamin B 12 12 l

consumption of 1

5.4 - 77 22 - 480-beef consumption of 1

67 - 370 280 - 2300 milk a) according to recommendations in USNRC (1977)

~

Relevant influences of th2 chemical form of radionuclides for the dose calculations have also be::n investigated in tha case of Plutonium (Steinhilber-Schwab and Franke,1981).

ad 4. As already shown for environmental monitoring of food products, the value of dose conversion factors linearly influences the calculated dose for a specific nuclide. The values recommended by the NRC are based on the publication of Committee II of the International Commission for Radio-ecological Protection (ICRP, 1959). These do not take into account the variation of parameters as shown in Figure 6 for the Co 60 liver dose con-version factor (inorganic Co).

The probability plot has been generated by Monte Carlo sainpling of the distribution function for the dosimetric parameters taken from the literature (Urbach, 1981). Similar approaches have been realised by Hofman and Baes III (1979) for the I-131 dose conversion factor.

I c-4a cai o,..un rea.v_ o f values Mc mended by the NRC m

C for c

=

5 X50 X95 X99 X

l 8?t 2_

i f

l_

illl,i ill lti t in t i le ne t,

t i

l i

u 4

i 200 t.00 600 800 1000 1200 1400 Dose conversion fact r (mrem /uct)

Figure 6 : Frequency distribution of the Co 60 liver dose conversion factor (mrem /pCi ingested), generated by Monte Carlo sampling of the distribution function for the dosimetric parameters (from: Urbach, 1981) indicated are the mcdian (% )>

the 9Sch and 99th percentile; NRC-values are taken from USN,RC, 1977

~

ad 5. Estimates as recommended by the NRC only includs members of a so-called 1

- critical group (e.g. milk drinking infants). This distinction, however, is not sufficient,as 1. the variability of many parameters is not con--

sidered (see 1-4) and -2. special groups at risk in the population, such as

- old and ill people

- pregnant women

- people with unusual habits -(e.g. mushroom eaters)

- embryos and fetuses are neglected although there exists considerable evidence that those groups need to be looked at more closely. Bone fractures for ex. can leed to 100 times higher radiation doses per year compared to NCR's v

recommendation only valid for healthy persons (Caesar et al.,1979).

Embryos and fetuses are highly radiosensitive (Stewart, Kneale, 1970).

They accumulate 2-12 times more I 131 than the mother and are therefore 4

the special group at risk for some pathways which have been investigated already.(Steinhilber-Schwab and Franke, 1981). The I 131 inhalation path-way for example leads to highest radiation doses in fetal thyroid _(3 - 20 higher than in adults or children).

Conclusions The points investigated above do lead to the question of how radiation doses should be calculated. It has often been claimed that the model or the data used therein would lead to conservative dose estimates. This is not true as has been shown with several examples. As most of the factors are not influencing linearly the total dose calculated, but only the dose to one organ or by one nuclide and exposure pathway, the uncertainty and the shortcomings of the model calculations in total should be reviewed. Due to the complexity of radioecological parameters and the difficulties with measuring noted above, a comprehensiv analysis considering all radionuclides, all exposure pathways, all organs exposed and all special groups at risk is not yet possible. Previous analysis has shown that it is well possible that todays licensed emission. rates of modern nuclear power stations could lead to excess of dose limits (see Bruland et al,1978, the "Heidelberg Report").

The best investigated example in radioecology is the pathway of I 131 deposited on pasture, leading to thyroid radiation exposures of milk drinking infants. On the other side, because of its high volatility, especially in elementary form as I, 131, this isotope is of great concern in routine emissions of nuclear power stations. In the following, two examples ?re discussed in which for the same nuclear power plant different approaches of dose calculations have been realized.

i l

Of the various methods used to gain input data and models for calculating radiation doses, namely:

- using mean values

- using maximum values

- using probability distributions

- using deterministic scenarios only the last two seem to be appropriate for = realistic' approach.

According to the parameter distribution for the I-131

. cows-milk-infants' thyroid-pathway - the probabil.istic function of infants' thyroid dose due to the yearly emission of 0.3 Ci I-131 (of which 50%.is I,), and assuming ave-rage atmospheric distribution is given in Figure 7 for the proposed nuclear power plant at Wyhl in the south of the Rhine valley in West Germany.

i can

- si,t,e_specificgarameters:

[ Q =.3'Ci i 131/yr (50 1I 2

X- = 6 10*I s/m' (cas, 19sr>

500 6 months grazing season 7

A.

~

? 200 3

4 100 3o

}

?

Sc j

5

... "..'?-*-----.--------------------=

zn t I t i I

f I f f i t I t

t I f f

99

0. n 2 0.5 1 2 5 in '.?0 30 40 50 6n 70 90 90. 95 90 99 998 319

% cumulattve probability Figure 7: Cumulative probability of radiation dose to milk drinkin; infants due to :-131-emissions from a nuclear power plant at the area of maximum activity. Calculations based on values of Hoffman and Baes III (1979) except site specific parameters.

[

t Table 6: A selection of cases, in which excesses of thyroid dose limits (FRG standards) for the milk drinking infaint near nuclear installations are to be expected (after. aleck-Neuhaus, 1981a)

Atmospheric Transfer factor Dose conversion Emission Milk consumption Dose dilution.

milk / air factor average over 10 months average average average high 93 mrem

-7 (0 = 0.3 Ci/yr; 50% I )

(x=C-10 s/m*)

(T= 4,300 m'/1)

(U=0.82 1/d)

(D/0.=30 mrem /nci) 2 1

short term release average for over 20 hours2.314815e-4 days <br />0.00556 hours <br />3.306878e-5 weeks <br />7.61e-6 months <br /> const. wind dir. high high average 112 mrem (O = 0. 0007 Ci I,-131)

(x =2.3 to s/m*)(T=38,000 m'/1)

(U=1 1/d)

(D/0 =16 mrem /nCi) 3 short term release from constant wind, very high high (with rain) high 118 mrem sr. ety valves low windspeed (1/2 maximum)

(0 = 0.00002 Ci I -131)

(x =1.5 10~ s/m')(T=80,000 m*/1)

(U=1 1/d, for (D/O.=SO mrem /nci) 2 1

t two weeks) 4

Calculation with official data set derives a dose representing the 25th

)

percentile of the cumulative probability, meaning that with 75 % probability this value could be exceeded. Assuming that all parameters represent equili-librium conditions and are independent of each other, and that the distri-bution function is the real one, the values could be considered to be a rea-listic distribution of doses. In fact, this assumption cannot be taken as rea-listic so that the value of a probabilistic approach is limited.

As a complete investigation of distribution functions of all radioecological parameters seems at present to be impossible, the second approach is the most flexible.

Table 6 shows some ecamples of a deterministic approach to dose calculations:

for the same plant site. With this approach, time dependency of parameters can be evaluated, which is not possible with the usual models. As it is more likely that e.g. the transfer factor milk / air is higher for a few hours than for a whole grazing season, the influence of variation of one or more parameters can be evaluated dependent upon different moments in titne. The values of Table 6 show, moreover, that for realistic combinations of conditions which rely on already measured (and not extrapolated) values, radiation doses above FRG federal limits cannot be excluded - muchless so for US conditions with lower thyroid dose limits.

However, a number of questions especially the question of special groups at risk such as " embryos and fetuses" are still open.

3. Collective Radiation Doses due to Nuclear Power Production The considerations discussed above were based on the necessary protection of the individual. This view is not sufficient in. itself, however, as the only criterion regarding radiation risks. Raising the release height (i.e. the s. tack) of nuclear power planc emissions would lead to a decrease of the dose in the immediate vicinity: the amount of radioactivity released would, however, re-main the same. The radiation induced health effects would only be more widely distributed.

Therefore the population dose as the total of all individual doses (unit:

" person-rem") is the relevant one. Assuming a linear dose-response-relation-

~

snip, the risk of cancer induction is-the same, regardless of whsthar 1000 people receive 10 rem or 1,000,000 p ople receive 10 mrem.

Especially long lived radionuclides (e.g. C 14 with a half live of 5,700 years) are causing only low individual doses per unit of tir.: but, rega-ding long time periods, the collective doses are substantial. Therefore it must be con-sidered that with a single emission radioactive substances can also cause radiation damage in future generations.

In Table 7 a summary of the global collective doses integrated over 500 years due to various radiation sources is listed. The number of subsequent cancer cases is given, assuming a linear dose-response-relationship with ICRP values and a realistic higher estimate.

According to these estimates, up to 2,100 cancer cases will have been induced by the year 1980 due to peaceful use of nuclear energy. Table 7 also.shows that:

-natural background radiation is responsible for a high number of cancer cases

-nuclear weapons testing has caused up to 800,000 cancer ca.ses

-radiation damages due to coal-fired plants are low compared to those caused by the nuclear fuel cycle

-the. greatest uncertainty of potential health damage due to nuclear power pro-duction is. caused by reactor accidents.

4. Comoarison of Health Risks for Different Energy Suoply Systems An important contribution to the discussion of the risks involved in the produc-tion of energy with different primary energy carriers can be considered to be the Inhaber report performed for the Canadian Nuclear Energy Commission and published in 1978 (revised 1979). This study came to the result that natural gas and nuclear energy are the energy sources with the least health risk, and that regenerative energy sources like solar and wind energy are up to 80 times more dangerous than nuclear energy, and petroleum and coal even as much as 700 times more dangerous. As the Inhaber repor t has come to be of central impor-tance for the discussion o'f the risks of different energy carriers, a criti-cal look at its strength and its weak points will help to give an understan-ding of the meaning of risk as it is.used in the energy discussion.

Risk is considered to be the probability of human beings suffering health losses or death as a: result of construction and coeration of an energy technical plant. This is the basic definition used by many authors like Inhaber and Teufel

Table 7: Global collective doses and induced additional cancer cases due to various radiation sources collective dose *#

cancer cases radiation source (person-rem) low estimatehl Cl high estimate 8

1 year natural background radiation 4.0 x-10 80,000 400,000 0

nuclear weapons testing 8.0 x 10 160,000 800,000 4

1977 electricity production with 4

3.0 x 10 6

30 coal (world: 1,000 GW installed) e 5

1977 electricity production with 4.2 x 10 84 420 nuclear power (wcrld: 80 GW inst.)

e cumulative production of electr.

6 with nuclear power up to 1980 2.1 x 10 420 2,100 (worldwide 396 GW, a) el 7

1 year nuclear power in the year 1.1 x 10 2,200 11,000 2000 (wordwide 2,000 GW installed)fj e

(routine operation) d reactoraccidentsheryearwith 2,000 GW installed :

e 4

5 % - percentile 2.4 x 10 5

24 7

95 % - percentile 5.6 x 10 11,000 56,000 one coal-fired plant per year 3.0 x 101

.006

.03 (1,300 MW )

3 one nuclear power station per year 5.3 x 10 1

5.3-(1,300 MW )

e a) from UNSCEAR, 1977, except reactor accidents b) ICRP 26, 1977 c) Schmitz-Feuerhake, 1980 d) according to the German Risk Study (GRS, 1979] including " subjective sonfid 2nce interval" e) without eastern countries fP estimate according to UNSCL1.R, 1977

et al. (1980). Th:se risks involve both those persons having to do with the energy plant for professional reasons (as employee etc.) ana those endangered by th2 emission of dangerous substances for ex. into the atmosphere.

In order to obtain some degree of comparability the individual contributions to the total risk during the life-time of the plant are put in relation to the quantity of energy produced (see Figure 8). Damages to health are measured in man-days-lost. In the Inhaber report deaths are quantified with 6000 man-days-lost.

recovery g

of fuel hskto production of

(hepublic materials 4

construction 4

or plant u

operation risk through 4

total risk of plant transport a

reprocessing 4

waste products

. risk to emol yees storage /dispo-sal of waste 1

Figure 8: Connections between the individual risk contributions in different stages of the energy cycle r

l An analysis of the Inhaber report reveals a large number of methodological mistakes, incorrect use of literature information, inconsistent models and assumptions, nonconsideration of certain risk contributions, wrong choice of energy ccmponents and even arithmetical errors (summarized in: Franke et al.,

1981a). The results of the corrected (but preliminary) calculations can be taken-

-4

from Figure 9. With th corrections the results of the Inhaber report are quite different. Tha highest risk (maximal value) is now to be associated with nuclear energy: regenerative energy sources, on the other hand, bear a much lower risk assessment than qualified by Inhaber.

There were several points which could not be considered in our evaluation but which when considered would presumably lead to a higher risk evaluation

~

for nuclear energy and fossile fuels:

- long-term health damage which results primarily from nuclear and fossile fuel power plants

- risks from dangerous substances apart from S0 and radioactivity, which re-2 sult from oil and coal-burning precesses

- other types of reactor accidents than those mentioned in the German Risk Study (GRS, 1979)

- risks occuring during the construction of plants belonging to the nuclear fuel cycle

- genetic consequences of radiation.

Most of the uncertainties concern the risk estimates of nuclear and fossile fuels. The risk from regenerative energy source. is mainly due to statisti-cally quantifiable working accidents. Therefore more: complete estimates tend to result in increased. risk of nuclear and fossile fuel mainly.

Generally speaking the results of such risk analysis are dependent upon:

- the complete recognition and consideration of all ris!; contributions

- the use of data for the cost advanced technology or a differantiation between different ("old" and "new") technologies

- social evaluations (for ex. using only working days lost or days of life lost is a valuation of human life).

It is therefore necessary to look at such comparative risk analysis critically.

Not all risks involved with energy production can be quantified in man-days-

-lost.

For example,' changes in climate due to CO emissions, ecological changes 2

due to 50,, and destruction of other natural resources cannot be measured adequately in man-days-lost, but still represent real risks to mankind.

Another point which reduces the value of such comparisons is the fact that inevitably different types of risks will be subjectively viewed differently.

Catastrophic accidents,which occur seldom, have a different subjective effect on us than minor accidents, which occur often. There is also a difference in the perception of a cured cancer case with 100 man-days-lost, and a cured bro-ken leg with 100 man-days-lost, for example. Long-term, slow working health damage due to dangerous substances set free throu;hnuclear and fossile energy sources cannot be accurately measured or quantified.

Rather than this method of simply adding all risk contributions together and relating these to the quantity of energy produced it appears better to look at complete energy scenarios. In this way it is also possible to assess the poten-tial health damage due to er;ergy scenarios calculated by the Enquete Commission "Zukunftige KernenergiepolitiK" (future of nuclear energy policy) of the German federal parliament. This commission, consisting of representatives of all parties in parliament as well as of scientists with different opinions towards the use of nuclear power, issued a report on the future eriergy policy of West Germany in 1980. The main statement of the repert was the presentation of four alternative energy pa+.hs (Figure '0).

10'00, 800-path # 1 g

'xlear path # 2 PC"'"

T SPe ya

+

m e.0

'liNf*/.'h,'

g 4 0t.

coal g 400-

.::e."E!.;i,

c:Y 4.:.?:

~~

.2

^

,s,'

  • M.:'::..l;li.'D.;.*..**:? ;;.

"' F: =k: '

200-

?

C'1 1 m.

Yatbr!! 112

~.

. ; W.

iragetrative 0'

0" energy sources 1950 1980 2000 2030 1950 1980 2000 2030 path v 3 path 8 4 l

l

'5

'00' 9 :>-

5 :.00-y',;:: :+' ~:

g.;:g.gg.;

.. ;. m c..,,,,,., _,

a g-

" c:d 5 ' j !

e,

' '" '.'$'qf.<%="~ ; g,g;}

e,-

400

- 200<

M

- *" *i~

y. ;

s,9

=

1950 1980 2000 2030 1950 580 2000 2030 Figure 10: Primary energy input according to the four paths of the Enquete I

Commission "Zukunftige Energiepolitika b) of the German federal par-1 l

liament. All four paths result in the same energy service for consumers. (from: Enquete-Kommission,1980) a) 1 t SKE a 8,130 kWh b) = future of nuclear energy policy I

l

(

All four paths assume tha same anergy service (e.g. the comfortable temperaturcs in buildings, tha same number of passenger miles).

They differ, however, in the main areas of effort,.whether in energy conser-vation (#4) or in increase of nuclear power plant construction including fast breeders and reprocessing (.1). Other differences are e.g. the growth rates of industrial production.

The four paths represent feasible alternatives for the Federal German energy policy. The question of health risks associated with each path is therefore one criterion among others (e.g. international relations, social justice, eco-nomy, reliability of energy supply,. flexibility in further decision options).

Figure 11 shows a first approach to the conmarison of health risks associated with the four energy paths for West Germanys energy situation in the year 2030.

Assuming equal risk per quantity of primary energy, the soft path (#4) would involve the least risk, and the hard path (with forceu nuclear energy input) would be the one with the highest risk.

1 relative risk

.5 energy path et

  1. 2 83 #4 WI
  1. 2 v3 84
  1. 1
  1. 2 #3 #4 81
  1. 2 #3 #4 ec al risk per unit mean values for risk mean values for risk mean values for risk primary energy from Irnat'er (1979) from Holdren 'et al.(1979) from Teufel et al.(1980)

Figure 11: Relative health risks of the four energy paths of the Enquete Com-mission "Zukunftige Kernenergiepolitik"*> of the federal German parlia-ment for West Germany's energy situation in the year 2030 future of nuclear energy policy a)

=

~

The conclusions remain the same regardless of whether the risk values have been o

cerived by authors as cootroversial as Inhaber (1979) or Holdren (;1979) or Teufel (1980 For these results, however, we have not considered the risks involved in con-servation measures or the different possible uses of the primary energy sources (for example, coal can be electrifiedor gasified, used for home space heating).

These details would have to be clarified for a final risk a;sessment of the individual energy scenarios.

The advantage of using the energy scenario method is that this method shows the actual risk alternatives open to society. The aim of an energy scenario is to arrive at an optimal combination of primary energy input to the national energy supply system. By considering an entire energy scenario with different proportions of each of the primary energy sources we can assess the risk in-volved in providing the necessary energy service anticipated for the nation over a period of time. Looking at only a single energy production process dces not enable us to minimize the risk of providing a desired amount of energy ser-vices, because no single primary energy source is capable of providing all of a country's energy service needs. Furthermore, as emphasized aDove, looking only at the energy production processprecludes risk evaluation of different degrees of energy conservation measures,which lead to the prevision of equal energy service with less primary energy input.

l I

References Bleck-Neuhaus J. (1981:), " Die Behandlung radio 0kologischer Fragen in der Praxis", Radio 0kologiesymposium der Arbeitsgemeinschaft fur Umweltfra-gen und des Bundesgesundheitsamtes, Stuttgart 15./16.0kt.1981 Bleck-Neuhaus J. (1981a), "Gutachten zur Strahlenbelastung der Schilddruse durch radioaktives Jod 131", fur den Verwaltungsgerichtshof Baden-WUrttemberg, Jan.1981 Bleck-Neuhaus J. (1981c), "Kann ein Gleichgewichtsmodell die Radio 6kologie von Jod 131 beschreiben?", Gemeinsame Strahlenschutztagung des FS und der SFRP, Lausanne 30.9.-2.10.81 BMI 1979, Bundesministerium des Innern, "Allgemeine Berechnungsgrundlagen fur die Strahlenexposition bei radioaktiven Ableitungen mit der Ab-luft und in Oberfischengew8sser", Gemeinsames Ministerialblatt, 15.

Aug.1979 Bruland W., Erhard T., Franke B., Grupp H., v.d.Lieth W., Matthis P.,

Moreni W., Ratka R., v.d. Sand F., Sonnhof U., Steinhilber-Schwab B.,

Teufel D.,

Ulfert G., Weber T., "Radioecological Assessment of the Wyhl Nuclear Power P' ant", Ospartment of Environmental Protection, University of Heideiberg, Heidelberg, Federal Republic of Germany, May 1978 and July 1978, NRC Translation 520 Bruland W., Franke B., Teufel D., " Transfer of organically bound radionuc-lides through food chains to man: model-example with radiocobalt and vitamin B12", International Symposium of Biological Implications of Radionuclides Released from the Nuclear Industry, IAEA-SM-237/17, Vienna 26.-30.3.79 Caesar R., Hanske B., Opitz G., Teufel D., "Gutachten Uber die beim Verzehr kontaminierter pharmazeutischer Produkte der Firmen Lohmann und Lohmapharm besonders gefshrdete Bev61kerungsgruppe von Menschen mit Knochenkrankheiten und Knochenverletzungen", IFEU-Institut fur Energie und Umweltforschung Heidelberg e.V., Heidelberg, Febr.1979 Enquete-Kommission "Zukunftige Energiepolitik" des Deutschen Bundestages, Bericht vom 27.6.1980, Bundesdrucksache 824341 Franke B., Boikat U., Ratka R. (1981b), " Transfer radioaktiver Stoffe aus dem Boden in Pflanzen", Radio 6kologiesymposium der Arbeitsgemein.

schaft fur Umweltfragen und des Bundesgesundheitsamtes, Stuttgart 15./16.0kt.81 Franke B., Kruger E., Steinhilber-Schwab B., Teufel D. (1980b), "Emissio-nen aus NukTearanlagen, Radioaktive Strahlenbelastung" Wissenschaft aktuell -2, 39-47,1980 Franke B.,

Loeben S., Schott W., Teufel D. (1981a), "Gesundheitsschsden bei der Energieerzeugung", Sicherheit in Chemie und Umwelt _1 (1981),

175-177 Franke B., Ratka R., v.d. Sand H. (1980a ), "Zur Abschutzung des Transfers von Radionukliden aus dem Boden in Pflanzen, Modellstudie Radiobko-logie Biblis Bd.9, im Auftrag des Hessischen Ministers fur Wirtschaft und Technik, Wiesbaden M8rz 1980, IFEU-Institut fur Energie und Umwelt-forschung Heidelberg Franke B.,

Ratka R., v.d. Sand H. (1981c), "RadionuklidUbergang vom Boden zur Pflanze", Sicherheit in Chemie und Umwelt 1 (1981), 293-294 GRS-Gesellschaft fur Reaktorsicherheit, " Deutsche Risikostudie Kernkraft-werke", Verlag TOV Rheinland, K61n 1979

~

l

GRS-Gesellschaft fur Reaktorsicherheit (Handge P., Urbahn H., Biesold H.),

Stellungnahme zu, den Strahlenexpositionen der Bev01kerung in der Umge-beag des Standortes durch die Ableitung radioaktiver Stoffe mit der Fort-luft aus dem geplanten Kernkraftwerk Sud, GRS-A-482, K0ln Aug.1980 Hinrichsen K., "Ausbreitung radioaktiver Stoffe in der Atmosphure: Kritik der Ausbreitungsparameter, Kritik des maximalen Aufpunktes", Radio 0kologie-symposium der Arbcitsgemeinschaft fur Umweltfragen und des Bundesgesund-heitsamtes, Stuttgart 15./16.0kt.81 Hoffman F.0,. Saes III, "A statistical analysis of selected parameters for predicting food chain transport and internal dose of radionuclides",

ORNL/NUREG/TM-282, Oak Ridge 1979 H0pfner U., "Zur Bestimmung der Transferfaktoren Futter-Fleisch", Radio 0kolo-giesymposium der Arbeitsgemeinschaft fur Umweltfragen und des Bundesge-sundheitsamtes, Stuttgart 15./16.0kt.81 Holdren P. et al., " Risk of Renewable Energy Souices: A Critique of the Inhaber-Report", Energy and Resources Group, University of California, Berkeley June 1979 ICRP-International Commission on Radiological Protection - Publication 2, Pergamon Press, Oxford 1959; Publication 23, Pergamon Press, Oxford 1975; Publication 26, Pergamon Press, Oxford 1977, Publication 30, 1980 Inhaber H., " Risk of Energy Production", Report AECB-119, Atomic Enerqy Con-trol Board of Canada, Ottawa MNrz 1978; erweiterte Fassung Mai 1978, Nov.1978, Nov.1979 Ng Y.C., Burton C.A., Thompson S.E., Tandy R.K., Kretner H.K., Pratt M.W.,

" Prediction of the maximum dosage to man from the fallout of nuclear devices.IV., Handbook for estimating the maximum internal dose from ra-dionuclides released to the biosphere", UCRL-50163, Part IV, 1968 Schmitz-Feuerhake I., "Stellungnahme zum Fragenkataiog 'Strahlenrisiko'" im Auftrag der Enquete-Kommission des Deutschen Bundestages, Msrz 1980; Materialienband 1 zur Bundestagsdrucksache 8/4341 Soldat J.R., " Radiation doses from Iodine 129 in the environment ", Health Physics 30 (1976), 61-70 Steinhilber-5 5wab B., Franke B., "Belastungspfade und ausgewMhlte Beispiele",

Radiobkologiesymposium der Arbeitsgemeinschaf t fur Umweltfragen und des Bundesgesundheitsamtes, Stuttgart 15./16.0kt.81 Stewart A., Kneale G.W., " Radiation Dose Effects in Relation to Obstetric X-rays and Childhood Cancers", The Lancet 1 (1970), 1185-1188 Teufe' O., "Auswahlkriterien fur Daten und dereii Festlegung in beburdlichen Regelungen", Radio 0kologiesymposium der Arbeitsgemeinschaft fur Umwelt-fragen und des Bundesgesundheitsamtes, Stuttgart 15./16.0kt.81 Teufel D., Loeben S., Schott.W., "Vergleichende Abschutzung der Risiken bei der Erzeugung von Strom aus verschiedenen PrimNrenergietrNgern, Vorstu-die: Analyse der Inhaber-Studie", Forschungsvorhaben St.Sch.706 im Auf-trag des Bundesministers des Innern, IFEU-Institut fur Energie und Um-weltforschung Heidelberg, (1980b)

Urbach M., "Unsicherheiten und Bandbreite des Ingestionsfaktors", Radio 0kolo-giesymposium der Arbeitsgemeinschaft fur Umweltfragen und des Bundesge-sundheitsamtes, Stuttgart 15./16.0kt.81 UNSCEAR-United Nations Scientific Commitee on the Effects of Atomic Radiation, Scources and Effects of Ioniz,ing Radiation", Report, New York 1977 USNRC, Regulatory Guide 1.109, " Calculation of Annual Doses to Man from Rou-tine Releases of Reactor Effluents to the Purpose of Evaluation Com-pliance with 10 Cfr 50", Appendix 1,1977 l

~

f PROCEEDINGS SERIES artA su n

TRANSFER OF ORG ANICALLY BOUND

~

RADIONUCLIDES TilROUGli FOODCII AINS TO M Model - example with radiocobalt and vitamin B 2 BIOLOGICAL IMPLICATIONS

w. nRutAND. a rRmE. n. TEuret

"""'"'""""'"-"""""*"'"*""5"""*""*""

OF RADIONUCLIDES RELEASED llZ'i,j.

FROM NUCLEAR INDUSTRIES l

l Abstract PROCEEDINGS OF AN INTERNATIONAL SYMPOSIUM TRANSFER OF ORG ANICALLY BOUND RADIONUCLIDES T11ROUGil FOODCil AINS l

ON BIOLOGICAL IMPLICATIONS OF RADIONUCLIDES TO S1 AN: hIODEL - EXAhfPLE WITli RADIOCOBALT AND VITAhtIN Baa-RELEASED FROM NUCLEAR INDUSTRIES Rada c alt in the rns f I nghed act s Iis oftear en*ted am ng the efNetus frorn ORGANIZED BY Tile INTERNATIONAL ATOMIC ENERGY AGENCY primarily based on the inorganic form of cobalt. Ilowever, considerable amounts of inorganic AND !! ELD IN VIENNA,26-30 M ARCli 1979 cobalt are known to be complexed into organic forms, such as vitamin B in the foodchain grass-hvestock milbmeat-mar. Because of the h!;h sesorption rate of vitamin B s in the i

GI-tract,its specific accumulatpc in the liver and its long biological half-hfe, the uptake of

/n M Folumes organic forms of radiocobalt may lead to a relatively high liver dose rate. The relevance of these considerations has been shown in a revised radg> ecological model calculation based upon OLII a comparison with the conventional assumptions and the available values in the hterature.

The revised calculation shows that the values for the **Co-fodder milk pathway may inwohe underestimations by a factor ranging from 280 to 2300. In the revised radioecological model calculation non-rnean values hase been chosen for the parameters to illustrato a potential example of worst <ase c>timate. hfore investigatnons m this field are percssary.

1.

INTRODUCTION As long-lived cerrosion products the radioisot& s of cobalt form a high proportion of the aerosol emissions from modern ras.;Aar plants (Table I).

Depatting from the model spectrum of the Strahlemchutzkommission [1], up to 97.WA oflong-lived aerosols (iodine excluded) may consist ofCo. Despite,

this consideraNe amount of emission, the annual dose commitment by Co isotopes after ingestion of contaminated food products has so far been considered in radioecologica'i model calculations, compared with the dose INTERNATIONAL ATOMIC ENERGY AGENCY commitment from 83'Cs and Sr. Only the low dose conversion factors for VIENNA,1979 inorganic cobalt were used in those calculations. Dose conversion factors for radiocobalt taken up by man in the form of vitamin B : may be up to three orders of nagnitude higher 13l.

4e.

I AE A.$M.2 37/17 2h0 BRULAND et al.

TAllLE II. SU51stARY OF LITiiRATURE VALUliS FOR TRANSFER' TAlli.E I. AllOUNTS OF COllALT 1501Ol'LS IN G OF 'lOTAL AEROSOL

!- ACTORS PLAN T/ SOIL FOR COllALT ACfIVITY (liXCEPf ?O!)lNE; tg > 8illIN Tilli EhllSSION OF NUCLliAR PLANTS IN Tile FRG 1974 121 pri/kg pl.mt. fresh weight: pCi/kg soit dry weight;.ruumption 201 Comparison of measured values [21 with model spectrum lll.

dry weight.'

Transfer factor Plant species eo.

set.

0 006-0.26

,,,"70.8 d rutiiuted plants Nuclear Mant t,

5.27 a o 074 - 0.5 r

r Graw, herbs 0 0072-o.009' KR!$ Gundremmingen (B% R) i1.7 I I.('

15:ure vegetation 0.0049-0.I9 KWW Wurgassen (BWR) 8.7 25.7 Grass. clover KBA Bibbs (PWR) 97.6 0 0094 KWO Obrigheim (PWR) 29.0 65.4 KWS Stade (PWR) 15.7 7.9

  • Based on stable Co concentrations.

Model spectrum (BWR) 20 30 (PWR) 25 35 method of dividing data on plant concentrations by data on soil concentn

~

of stable Co isotopes that are not related [5]. The experiments described the literature (Table 11) show, however, a great variation in the amount of The aim of our review of the literature is to investigate the amount of which depends on plant species, the state of growth of the vegetation, the organically complexed compounds of cobalt in the form of vitamin B in food-value of the soil and the amount of stable Co in tia soil. Transfer factors i2 chains and to re-evaluate the radioecological hazard from radiocobalt. Important the range of 4.9 X 10 0.5. The highest transfer factors are to be expe parameters such as plant / soil-transfer factors, fodder / meat or milk transfer in Co-deficient sandy soils, the existence of which cannot be excluded wi' factors, and parameters for the calculation of dose conversion factors are also the environment of nuclear facilities. The value of 9.4 X 10-3 does not ce discussed. For the present model calculation values departing from the observed these possibly higher values, thus for conservative estim.ites higher defaut site specific means have been used to give a potential worst-case estimate of the values should be used if site-specific data are not available. According to radioecological hazards.

literature reviewin Ref.[Ii], a value of 0.24 is used in the fo!!owing mode The results are compared with the official assessments in the Federal calculation for a worst-case estimate.

Republic of Germany [l], wiiich are based on US handbooks [4,5] and ICRP Cobalt is complexed into vitamin B by soil microorgar.hms; this I i

recommendations [6]-

primarily in compost [12] cad ia the roots of Fabaceae [13]. liigher piar however, contain only small amounts of vitamin B In the seeds of pea 2

example, only 0.033 pg vitamin B 2/kg fresh weight were found [141. Cc in animal food products these amoun 2.

TRANSFER OF RADIOCOBALT FROh! SOIL TO PLANT with the proportion of vitamin 11: 2 less important for radioecological considerations.

i in th6 unit pCi/kg plant, fresh weight 3.

TRANSFER OF COBALT AND VITAh11N 11,2 SYNTl!ESIS IN ANihi AL ORGANIShfS pCi/kg soil, dry weight the transfer factor plant / soil describes the amount of soil activity taken up by According to Ref.[1],1.3% of the daily amount of Co ingested will vegetation. The official value of 9.4 X 10-3 [1] was obtained by the questionable by horned cattle will be foun'd at equilibrium in i kg of mest and 0.1% ii

f((f

.;jl l!

l i

s.

k d nt e

n a

n o n

h t

t oe t

r a e f u,

l ini b i I

oB n

o u

r r h a n e tn a 3

l c n

. o f

r o oe a

t I

e a s t

f Vti h

n lp n i pf n mk vlaB s

r hb od D

lu d

a t

a o

a e ooa e

t t

n gi r r e r i ei i oi n

t e

5W N

lb l

a p nt d

t d

e t

t r

c m c

o h

w t

n a

o d e a f A

v i ot o.

t f

lu r

d h mot p eC ly ot a a a

om T

Tc

)

f r

oe p

oT a o n

i a "

]

f s r c e g e t

v L

n c s yt r

b d

n uk. r n n pinh n n

e n t

mui gi A

i o 2

r 5

s s

o u o o

l d

t id e o h

l f

ioi te e s S B

d ah f '

c s n r e md r

e Y

y n n a. oor t

s

'"2 e

O a

r ml n

t r

r g

e a

o o mn c g a a

s r t

" (2 ia c k

d vd d c

o y c a u

v C

i e o

d n tc d

c ai o

O l

d s

l n e

/

eil e a

.r ab n n I

2 f n iov ta v a ma i

f n

o o a a i

t n

r a

a r

a e i d a t

r f

, F D

ot a

)

gBCi f

g a

r l

e i

l ir l

t t

t e

t v

e y

n a n n al d is s in l

]

r i

s a 'Vi

.a A B r

e t

a

/

impf in o

7 ei eb 9

R o

E e

r b

e ei i r s ou h o 1

d N

a mmmh t

p n s s a e n m

o n

t

" e '

n pj e t

t u

t e

d r c

[

e RI c

lb "

" h 7

a a C on s ta iwh os t

t a r f

. x a u 3

a,\\

n f o l

e OM f

a 2

e or i

f ci s i r o

t cd T

'

  • m T

a p

h nt v

2 a v e

o n N

f FA n n

)

y e

o o : d ed.

t e e.

s t

t blb o u i o b

l RI ioi

  • s.

t t

(

e S T n

d n p e e r n e m e

)

t e

C1 eh d y nh i

k 1

l t

e k

s d

  • [6 la e n t

t e i e 4

b e tc C

o c

V s

o a

t r e o mnd e a c u c

(

im O

e t

u d e hi la s f ta r i t

e vT a m o e

)

t i

u ma f

T D v a ' P m

b e

o in muh n

g" e pd f

f d

k a

r g

(

CE oi R

u al n s ai hmr S

c t

s g

s

)

a k

l A L c s C

" c y

ot t

n s e e f

/

/

oA p n

i y i a r s

t r

a a t

oh l

v c o s s a e df h d

d F L e #

I

' c o '."" #

e F )8 s

t e v s

o a

r a

a a g u e m "!

(

(

e. o f

n s

E s

r r t

it d

a n

t m

or wwr la is a h e

NB oi I n

a m

e.

1 o

r i lai 1

IS t

vl u

d a

x ed s w ]I l t

1 t

n 0

0 OA e

r r

c mt

. h :

l s

w w*l l

h e tn f

f r

mr g v

L e

a n

e 1

d u V [e R i 2 imu o in]

h X

X RE il w " l. *

' o 1

t s

g3 u

i iwh ly n

a l

e u e

s v n l

o t

5 e

c o lei e

a n mc y1 mb t

n w=ai al

. h b 5

5 EV r

f f

t t

i t

t oc 6

4 VI o o#

a xf p[ s o

d ob o

s e

e e

t i

C e a a t

a e nyl e a r ik c T

f r R

h v eT e

t u

C s u t

d d b'h mfel limd gM

=

=

N r a t

mnl

=

igh n u

O A o"b e

v e

y "

t r i r

)

i ei 1

n g g o s

)

)

" n m

t n

nd n C O luf i

oiM Bi B:

EI ok 2

2 f lib l

s o a/ :ci e

2 1

s k

n a y n d

r a o n

2 d r s d

o o

e o

  • in*"

nm l

1 t

p 2

2 i

d s

d pBBi a r l

d l

(

leil te r

v g

h t b a e o

(

(

S D n

me d] v c M

e c

OA h

it o

b Vh y e0

" s s

n n uh e1 it c

n u e

a b

n o

T T

I s

u0ii mT in[ c A T

T DR T

a a p d

lu

a ' r a

r a

imt lb tcI e0 ii m o me a

4.

a c

g mmi c

e 1

t e

o k e t

a a n t

a a I

r t

t i

b e s e J a

n v

a tumht Tf 1

w7 v s r

a e

f O

2 T

W i p

)

r

.B t

5 N

n u

e s

u

]

e I

f g n

-i 6

8 tn ).

n R

h

)

n ini nh s

1 ot a

me E

o e

t a

e

[

c w e

o o -

0 o S

a t

b ak f o

k r

o o i 3 7 o F

i h m

D d

t kl mtol 2

t a o s n i 1

t D

n nit s

(

v B e N

t a

t F

9, 4

O U

r 4

im r

U inf i

a :

g 0 d

ta/

1 F

o 1

01 e

h inb P 0

g n

T mk u

l o

M G C X X h

c1 71 S

i g 7,

6 O

g t

d d l

D v (#

3 3,

ef 6 R

G 1

1 n

[

O 1

4 te x o1i a

e s

O F

8 a

t I

F 4

m ls lp n,

T

)

i a

u.

N S

L n

'o1 1

e im m oH 0

t o mn A

U A

B n c i

s t

O B

x X a

(

d, a y m

p I

O c

1 0

n e

h l

h i_

la ta R

R 2i T

2 2 a

to c C

la t

L A

B h

bi f v D

V F

n oo c

ON r

r a t

D D

F IM to i d e

o g%n N

U O

R h

f r i

o1 A

'l E A n s e

t L

T F T e

ei f U

F N

S h

o 3_

ml t

R U

E NV I

b t

e a e B

I N

i R A c

o T

A S o

le n

b g no o a m N.

r e c e o 1

O ta T

)

e v c

~

S 8

a l

C e

RF 7

r l

a s

t N

r O

t t

2 p

n OF 9

l a

r e

O B

FU

. ia cA e 1

C p

S

. 5 d

.d

( ]

r r

e e

N f

S T la l1 e n is tn d

e d

d o

I d

d IM R

o D

s s f L

s o o d

O l) s t

r e a

lA A

o O

e/e oh f

f f

r T

h t

n n h

C O gd n l

e i i T

t h

n e o

n t

t I

e f

F N( a oyl A

r n n V

m s

s t

s C

FT

.%inl 0

a a

tn te e

e a

r I

d l

o o V.

t f,

. N lk 2 lt e ia c u

n n

l d

e 0 a mb d l

o r.

c c

r l

VE le imt b e

I f

e f

o u oe f

f o

R f

e m m E

tu i h E

L d

w L

tu h

a or r n f

v.

f E

f l

f s

u u c e w

or C ei n L

o tc i i B

d k,

B d

e tc 2

l m

l Grmd ir' F

s m m s

o h mb l

n, i

p A

i TD B M l

f F

f f

k t

y n

t o

e o

e l

r 2

I i

l R

s t

O T

o e

l AI

'u e i t

a In h

A yk a

e u

s g

B M i

b l

l l

ljl llfllli l

o

'h I AE A SM-237/87 2b-3 BRULAND c al.

1 AULE Vi!!. COMPARISON OF RADIATION DOSES TO LIVliR FRO TAllLE VI.

SUMMARY

OF LIVER DOSE CONVliRSION FACTORS l'OR AND Co AlrTER CONSUMP'llON OF CONTAMINATED ANIMAL FO ADULTS ("Co AND '*Coh ORGANIC AND INORGANIC FORMS STUFFS WITil AND WITilOUT CONSIDERATION OF Tile TRANSFEI VITAMIN 11,2 (RELATIVE UNITS, ROUNDED)

Liver dow conversion factors Chemical form (mrem /pCi)

Ref.

"Co

  • Co I.xposure pathway inorg. Co "Co considering "Co con

%tamin Ds:

2 7 X 10**

2.9 X 10-'

l20]

[lj vit. D wit. 8:

% amin D 3.3 X 10'*

4.2 X 10-3

[2lj 3

Vitamin Bs2 6.3 X 10-'

[22l Consumption of beef I

5.4 - 77 22 - 48 Vitamin Baa 2.1 X 10-*

8.1 X 10

[23j Consumption of milk I

67 - 370 3.80 Inorganic Co 6.3 X 10~'

2.1 X 10-*

[1]

TABLE IX. DATA FOR RADIOECOLOGICAL MODEL CALCUIATIC TABLE Vll. INPlTT DATA FOR CALCULATION OF LIVER DOSE CONVERSION FACTORS AND CALCULATED CONSERVATIVE FACTORS I

Para meter Data for inorganic Co [6]

5 Aerosol emission rate I Ci/a Transfer ratio (tg > 8 d, iodine excluded)

Co: 25%; "Co: 3 5'*<

foodstuff / liver 70%

0.7%

Percentage of nuclide spectr.

Weight of hver 1700g 1700 g Average dispersion factor 1.4 X 10-8 s/m' 1.1 X 10-a m/s Effective energy 0.29 MeV(ssCo) 0.29 MeV (ssCol Deposition velocity 0.72 MeV ("Co) 0.72 MeV ("Co)

Initialretentiori factor 0.5 Biological half. life 750 d 9.5 d 0.85 kg/m' vegetation density Liver dose conversion Meteorological half life 14 d factor ("Co) 5.7 X lo-* mrem /pCi 6.3 X 10 mrem /pci Crop exposure time 30 d Liver dose conversion futur ("Co) 1.2 X 10*' mrem /pCi 2.1 X 10-* mrem /pCi Soit surface density' 240 kg/m' Transfer factor vegetation / soil 0.24 lloldup time for half of the fodder 180 d Consumption rate of contaminated 55 kg/d 4

feed by animal

~ biological half-life up to 750 d [26]. For inorganic cobalt compounds, however, I I X 80

a food / liver transfer rate of 0.7% and a biological half life of 9.5 d is assumed [6].

Tc. (Biz) beef 4.1 X 10-*

For a conservative worst-case estimate the liver dose conversion factors for Tc.,(Biz) milk d

"Co (B,2) and Co (B,2) were calculated as 5.7 X 10-* mrem /pCi and s*Co: 5.7 x 10 mrem /pCi Liver dose conversion factor og g x g-:,g 1.2 X 10-a mrem /pCi, respectively.

There is some evidence that liver dose conversion factors for radiocobalt 3 m at abserbed as vitamin B can be up ts 5700 times higher than those factors

^""",al e nsumption of animal

4 I AE A-SM.237/17 2M BRUL AND et al l'on a conserutive niimate the maimum tr.msfer tactors of Iable V and TAllLE X.

RESUL 1 S OF ~1Ill. CONSliRVA IIVli.\\lODlit CAI CULA IlON OF LIVER DOSE 1O ADULTS FRONI "Co AND'"Co calculated hver dose conversion factors were used ~l he results are shown 5

Table X. On these assumptions we calculated a liser Jose of 34 mrem /a..

to one third of the accepted dose limit (90 mrem /a)in the Federal Reput, Pathway

Co

" Co E

Oermany. The contribution of 5"Co to the total dose is of minor importa (mremla)

(mre mla)

A parallel calculation considering only inorganic con. pounds of coba led to liver doses of < 0.05 mrem /a for adults, which corresponds to a cal Consumption of beef o.27 (3.5 X 104 )*

19 (3.9 X 10-2) dose of 700 times less. A sensivity analysis resulted in the reduction of th 34 t4 M X 10.,-)

value h only when using the plant / soil transfer factor of 9 4 X 10" Con >umption of nulk 0.22 (5.9 X 10-')

15 a5xlo")

The resulting values could easily vary in either direction with different ini parameters.

  • Bracketed values are for inorganic cobalt.

In summary,it may be concluded that according to the available dat potential hver dose arising from emission of radiocobalt from nuclear faci may have been underestimated by up to several orders of magnitude. hlo detailed investigations in this field are therefore needed. The availability.

more site specific transfer factor data through measurements would be us 5.

PREDICTION OF DOSE RATES BY EMISSION OF RADIOCOBALT for the clarification of uncertainties in the currently proposed model cale FROM NUCLEAR FACILITIES REFERENCES 5.1. Comparison with previous calculations By neglecting the chemical form of radiocobalt in the radioecological

[1] BUNDESMINISTER DES INNERN, Allgememe Berechnungsgrundlagen far dia Bestimmung der Strahlenexposition durch Emission radioaktiver Stoffe mit der calculations one may incorporate a Considerable amount of underestimation in the (Empfehlungen der Strahlenschutzkommission), Ponn (1977).

possible dose rates. The extent of this underestimation niay be described by

[2] WINKE LM ANN, I., ENDRUL AT, II.J., RtEDEL,11., STils/75, Bundesgesund multiplying the transfer factors and dose conversion factors for both inorganic Neuberberg b. Munchen (1975).

Co and vitamin Bn, while assuming a constant intake of radiocobalt as fodder.

[3] INTERNATION AL COMMITILE ON RADIOLOGICAL PROTECTION, Publi Table Vill shows the relative dose rates of 58Co and "Co by the fodder-meat Protection of the Patient in Ra6cnuclide investigations Pergamon Press, Oxfor and fodder-milk pathway with and without consideration of Co transfer into

[4] US NUCLEAR REGULATORY COMMISSION, Calculation of Annual Doses te from Routine Relesses of Reactor Effluents for the Tarpose of Evaluating Com vitamin Bn. We calculated the possible range of values by multiplying minimum with in( TR 50 Appendix 1. Regulatory Guide 1.109(1976).

and maximum values. According to our data, we found a considerable under-

  • ** 'b
  • estimate of potential dose rates, for the "Co-fodder-milk pathway in the range Devices, Part It (ll,m1 book for Estimating the Ma. mum Internal Dose from I-of 280-2300. Obviously, because of the uncertainty of the input data, these nuchdes Released to the thosphere). UCRL-Sol 63 (Part IV)(1968).

values should only be interpreted with caution. The above range could significimtly

[6] IN TERNAllONAL COMMirILE ON RADIOLOGICAL PRO'I LCllON, Reps change if other input data were used. Vitamin Bn deficiency could lead to Committee 11 on Permissible Dose for Internal Radiaton, Pergamon Press, Osfo individually higher doses. In any case we conclude from our data base that

[7] GRUMMIT, W.E.," Transfer of cobalt 60 to plants from soils treated with sewa

"'d' "'"8Y '"d E"FY R*$""5 'I' c. 4t h Nat. Sy mp. Radioecology ). Cor radiation doses for the pathways we studied could be up to three orders of (1975) 331.

magnitude highcr than previous estimates.

[Nj B AS !! AN, R.K., J ACKSON, W.B.,"Cs.137 a nd Co.60 in a terrestrial commum l~niwetok Atoll", Radioecology and Lncryy Resources,(Proc. 4th Nat. Symp. i 5.2. Radioecological model calculation for a nuclear power plant site ecology), Curvalhs 0 9751314

[9] !!EINE, K., WlECi!EN, A., Milchwissenschaft 33(1978)230.

[10] TEUFEL, D., Zur AbschStrung des Verhalteas kUnstlicher Radionukhde m der As a basis we took the emission rate of I Ci long-lived aerosols (iodine

""d d d'raus entstehenden Strahlenbelastung fur Menschen in der Umgebung excluded) per year often permitted in the Federal Republic, assuming a ratio technischer Anlagen unter besonderer Beracksichtigung des Verrehrs landwirtsci of 25~r 58Co and 3 5'1 "Co. The parameters assumed are listed m. Table IX.

pg

%;,,,gg.

g,_ gg

2hh BRULAND et al.

I AE A-S%l 237/l7 jiij 11 I U. INS ill U l' I U R I N1.imit. UND UMM I.LI ORSCllUNG lit II)! t til.RG I.v-(titical nuclnle in the waste air el nutlear lioner plants. and that, veond.11 Zur Abwhattung des 'Iransfers son Radionukliden aus dem Boden m Pflanzen a tiedrg radiation dose lesel from the ingestion of organically bound **Co may appt zur Atodellstudie R,iJiot,Lulogic Ihbin) lleidelberg i1978)

F hl R Mli of Germany. Your paper l12] PR AT T. LM-. Inorganic Chemistry of Vnamin Bn, Acadc mw Pren, London. New Yo:L common with all other previous publications by the group,in my opinion (1972) highly oserestimates the enviionmental effects. So I should like to make tl

[13] DUD A, PEDZINILK, ZODROW, Acta MicrobioL Pol. 6(1957)233.

[I4] IsLONDL AU.C.R., C. RenJ. Scr. D 272 (l971) 2781.

following comments in order to elJrify the situation:

l15] NG, Y C.. COLSitL R, C.S.. QUINN, D.J., lilOMPSON, S E., Rep. UCRL 51939 (1978).

Firstly, the maximum dispension factor is overestimated by a factor ot

[16] GIESLCKE. D. lil.NDRICKX. l! K.."Vaamin B 12", thologie and Biochenue der secondly, the deposition velocity for aerosols is Ao too high by an order o ma robic!!cn Verdauung.13LV. Munxh t 1973).

M NQ

.1 'r factor for soil to grass is overestimated

[17l KIRCllGESSNER, M, I'Ril SLCKE. Il. Wirkstoffe der praktischen Tierernahrung' a fxtor of 30. It seems even higher than the highest value experimentally BLV, Munach (1966).

determined by Teufel for grass and clover under very questionable conditic

[18] AD AMS. J l', McEWAN, F., WILSON, A., Br. J. Nutt. 29(1973)65.

as my colleagues at the Jidich Nuclear Research Center have recently point

[19] SOUCI, W., et al., Die Zusammensetzung der Lebensmittel, Nshrwerttat; ellen, Wissensch.

Verlag., Stuttgart (1974).

fourthly, as only a small fraction of cobalt in cattle, and even lest in grass,

[20] RElZENSTEIN, P., Acta Med. Scand. 165(1959) 467.

n the form of vitamin Bn (your figure is 10%), the transfer factors grass t<

VN R,J te al e carc ou cil K Rep. PIRC I80(a); cited from Ref.[3].

fiftMy, for We same reason h he conwh MM n NdWd M

[23] McEWAN, A C., Unsealed Radioisotopes in Medical Pmtk e in New Zealand, National it is not the normal practice to calculate the dose conversion factor using Radiation Laboratory, Dept. of ifcalth, Rep. NRL/PDS (1967).

e val '

[24] POLLYCOVE, M., APT, L, New EngL J. Med. 255(1956)207.

highest biological half-life measurement (750 dl, rather thr.a an w,aos

[25] SCRIVER, M.G., Pediatrics 46 (1970) 493-To sum up, the 60Co ingestion doses from the waste air of nuclear po

[26] KLEINM ANN, M.T., VOLCilOK, ii.L., Science 166(1969) 376.

plants are in fact some - if not many - orders of magnitude lower than you have reported, and are also several orders of magnitude below the dos.

of 90 mrem /a in force for the liver in the Federal Republic of Germany. I DISCUSSION conclude by making it clear that the transfer factors specified in the Germ regulations are not meant for extreme soil conditions, for example, on the Y.C. NG: Your, aper raises an important point with regard to the difference Enewetak Atoll, for which the high reference value - No. 8 - may be s in behaviour of the various chemical forms of the same element. This point has The regulations explicitly state that under these conditions siteupecific tr:

8 been alluded to already and it is dealt with in detail in our paper I should fac ors have to be used, like to ask how the dose conversion factors for liver compare when one takes it FRANKE: The approach I adopted in the paper was to show thi the latest ICRP data on uptake and retention in man into account?

of possible liver doses from Co isotopes in the form of vitamin B 2, as con B. FR ANKE: Compared with the ICRP Committee 11 Report of 1959, with curant calculations that disregard that fraction. The model calculat ICRP's revised metabolic data (as yet unpublished) assume that a fraction of I showed wm designed to give a conservative esumate.

1.5'A of organically bound cobalt reaches the liver from the GI tract. Fractions The dispersion factor depemb on local weather conditions. As lland Iloffmann point out,valuesfor the Federal Ecpublic of Germany vary frc 2

of 60% 20% and 20% are assumed to be retained with biological half lives of 6,60 and 800 days, respectively. llence if we follow the revised ICRP 4 X 10-8 s/m to 5 X 10-6 s/m3 for stack heights of 50-150 m. So our s 3

recommendations, the liver dose conversion factors for cobalt-60 may be some of 1.4 X 10'6 s/m', actually computed for a plant site in the Federal Rept 20 times higher than those in the ICRP Committee Il Report. Tbc special case of Germany, falls within this range.

of vitamin llo does not seem to be adequately covered by the new recommendations.

The deposition velocity of aerosols varies by seveul orders of magni K.J. VOGT: Your statement that the transfer factor for some 6 Co in the The value of 1.1 X 10-2 m/s, taken from Ref.[27),is given for dry and ws form of vitamin Bu is higher than originally thought may be true in principle,

[

but I disagree completely with your conclusions that, first,6 Co may become a

\\

See Environmental Surveillance around Nuclear Installations (Proc. Symp. W 2

omt Iar4 v.

  1. pno to

=

I ljjl jI f n t

l a

e a a ; i t

li t

h n imFf ab v

l l f e m c

r gl t 1 g

a. e sl

(

t s

c a t

d ut m

.m 1 n ov c nu imu u r h

l e

r ea a t ai e

ot h r

n e a e e a yf f

o r

a n o on hi t

r o

n e u n e s

vbi yl r s

t e

e w ng s f t

s

.ioC ndF a i ab r t

i yo n s s ed e

s lih eb n o

e In(

n d g e e

cb a e s ly a n. mf er wh i us h opd oR.

2 o

tp*

n

,b s p a

i h g n a e d

h u 2

r ly1: r e i ohd r s, t d oi s el t

t ia t

n t

c8 g

c r g u or o

oni oh o 1

u n u e n

r iy4f

. p

.B?

wu g

e r

kd od n

otl mt a e

t t

r e

I n e el f

a e c r s

s p we s

f o r v h e inl le7 l

nVf ed o

e a n ah b y pu r

f b i r

r a

a u

ms a h wii o

e oir

. md ofobf c

o s, lot mCto "t r

n e ed d sd e qdis f r a oi mled el o or g t r e l

e v

ch ud u 2i i o r e vl n u a ig a n e woe sh Bt s

s e o n r a ab t

h c a a f ct a d

u a l

o n

r d s i o ob g r

ind e t

t t

e vi a a a

t e

o a

s s

a vTl i

l s

oih o r d, o so

),. uAt t

a g v

r n n

vf e a ad t

n r r f u

ut icid o ub eb c t

c

.d

/ s oe C4 e. d ime n ed i r c i]

e oin ou n

u n ci af t

s s

,d a/,

owisi t

r s

a n

r r r

f u

i 3

a b g me u ul r s c

ut 2 g eCk e/1 C

n u s n e i

r a

p2 e na af uh e oo c a e e v oB t d e

r o

g f

e on o a v

ym v

wo) t s C y n pt a

i mf s

h n e

gh i p a

s ioi r oh a gt s Vi nt t

n e 'i t

g a c

mi u

e t

mn u a

i o0 n

l e

mr int f

t e r a v a of r

7 k

f ib b m :. o o i e imp i e r R o e f r n oe o a u uk I

o s ol e

t n

i 4 n

oo m s

t ow h

n c a a4 0

e t

f v

t r

l o

b oe3 C i m o

t sf i

e r

/

t Inot ei.

yyhk ilb nt w

y. v' n

it r

e s 8

a i

c s 0 n c t

eb e7 l

t t

r ad t

r l

e o r e ci ia v t

a t

n s ai iu n t

s a2 f

ak0 a l

oni mC ebi v 7

iyhd oo s a r t

h on P

s r t i

t 3

. r 2

bf f

n Ta7 iut ev e

e o a ur B o c e o6 i ma m n a ( t r

2 u5 o s 0 e f

e oll s 1

v o v n a e

P nf i r

l i

n s f l

s -

d u g a

r k h a s e e c t

4 li 2

c n ak yo mmgl r

r r

nf s t s

o miot aX ig is e i y - di a

ooi o eil d a s n oo s b y5 f

5 s

f d P 3d ib mu g e 'n n R r n

e e n mi 0 mr o

,T o

i e u v l

s n a a af oa n tc r

f oys a l

n o a n5 a oi l

n s

A c2 E

)

R a

o i s int oi C

to 'e t

t s

u n y e

J y r a k

s I

yC a e t

e: 1 ei A

I Cl cd di7 s

ob s t s s a o n

a r

d Ds i c r bi od of u

o a. mab I

I"I r

r

(

v v a e a y n it e

e g e l

ml ir n u t

c r n

(

a t

f v l

s d h i a at f r

c u 2

t el e p"

o o

.l t

e o

b or ni n u pe c

v e n r

r u

e p y s l

ad n i h e e e o ot s

f f t

r i t

h p n a

a o

r. 0i d ms lot n n g) la mt ni t

oB a o od t

ef a o v t

o o n c e s h c a c C p s u a la t

h e e g efi t

s s s r t

e e e i c ii m r

n s ub e oi e tol e wl n t

e ef m

s t

e h b a

e ts t o

pt d n ots immn vi al o v h r 0 nk y r

e a n w f-r r

r a s g oa u

og e y s s a

e3 ir s

o e nt c c pt u c

h e n

n e ih c pl d

uo c r n n el a i a t

a ma ooe. V i

r a

v el e s c

sdh h E

a r c y c oe e r qt t

r e

u 2Xah e t

T Li Tef a u

f b nl v e t

r e c

i d lai o e n :

K g E a e

w e oh uh ul As e e ly lc r iv5 i OBI v r a

r u r b

h o o imt ot, y

lpi r n c a s n

e o c a u

f uf e

I a toh d ig A

s t

t a

1 e ic c u v a s e o o gd a

h l

t y

y n'e inl log e : e b

i qYil h E t

k my n e r d

t nh a E

ts e e ml t

Kh e

e gl r

ma b o r a

t K

S o t

ot i mn ly it

.r N n aT ed lp e is ly la f n

. ei i s oI f

c e

s r Ki u s o nh a v h n t

aTa lo d

c e t

n s?

nh qot oc lut t

i lyF u eN O

Nt s s r g

r a n d

a oad af yf c ivi eb i OoiR n

.a i Rt s C mior o

n L

h A. Mn? A a r e

gi d S a e i op r s

d r

u e A g i d eh e h li i e t ig a

g s

2 r

t mef e n

a r

r

. f e m

s nR s a ws i eF n gh V yhF o l.

cBFI

, r

,l ad g

pt n. e v

s a

i u r

o a c o e e

I e u e r c te s s o e g

r t

y/

ed e s

t t

n n. G i s n

o e.i ui r

t t

v h nh V d a n

s gI nl a c

. i b t

s n

p e

inV

'l n ok i y e. os te v r B aY aiB n

awn e

t ek l

t o eb tad n v e c e me o B (o k e

m g m h a a 0 mgi e

t s e s

r e

e a

n ol s t

r yt i

ot e

r b on n ek ; m s c u

e a

t b b n e la v i h

a Ca1 re Ci e e

a t

mc i

t t

a C

oh n taHi r n e t

u oa h

s n p o t

v

- uh oh oC wis i m5 pc a oi 5 B c 6

Ts c r vlig wt e

ini i s t

a d s a or f n v

ni n r

af

),

2 n

io B:

g s

o d n 2

. e r r

d.

n l

imi e

eb o 1

t t

s e

1 l

f a e e

i i s u eh s d r h r i h g v

e l

t d

p n

g i

nt y a

e a a

e u h

s v

uh o h o n

- a lul l

g y

t i

s n

t wiaT n a n u r i

ei e

]

i a a e o r r a v

n r

a t

t a

o e d e l

d a v

e e g t v. e t

t e

n a

s h n t

t u

e t

7 mc mf C o

d ni lc l

o i h i s n ni g )z h oh r

v d

e ci s

l a o e s f n

s v

g af n

f mr ini I

i ad m

ui i n p i f t

e t

I tu mmhl ei e

e e e tr o d le e a s u s c r

. n l

uh y [s t

t

'mi tc ni nd t

i of f

)

t t

o o t

l vf v n e i b t

i a ot b a

b le s s

g eli c

ua s

v o

5. B o o r n s n o

y d

a e p e

)

a d e e i e e ty c

n n

e s d

f s

s t

t r h 5 li s

l s

r e h h inb l

f b u om n

u a e a

n e e

e' 6 imk y p r iwb i r im h mb

)

oC p oir n - v a

h s

c eb t

n wf t

ie n aib d i e p p a e al r s ni eB oi ta r

a u ot ~

a e o o

r h r v iv o g

a e

n w

e t

cl i ly n 2 a ta t

e al c oe s r

mf c

s s o e t ek e e. e t

t r

s ol v

(

ln s u o r b p iwh img isBi b e r

n n

e i i nh f d lei t

a o u me ci ch l

o v

y uB v

o o s e p o n l

v c o nb lut

m. e t

a h c o x n a u uT a c

a c a

os e a

t i n ed h

2 e a a f T i r u tr

. on cb in a gl e

inf h r e nioit mS ot ig r

r o n( r c c r

f e e nY m e. i e pi gk n e

cit g

n s

a o

't d i r o ymh1 d ul c n e t

a y

o 2

i t f nl la nl ol h c o al o a i d t

u t

e.

a u.

e e a e c

it h

r ni l

gl a tn7 a ai s a iob o

t h h. n ol ly im g -

l s o c B c e in u r r a s

t u e a c t

n m g

nf b a lah or el ma c s d e t

e e

l k

i oiv o o t

t c r r

B a e mo t

a f

t ci e

el u n u i h u inh ml gCa o in u :

f c

o n e s p o

/ e s f n

t a c t

u a l

n o n r

s ef o s

d e o f

u in ini r

ivh r

o nk v nt e t

lc ad c al r gt mud t

a a

n p )2 d

]

s n e n r r

h m aOa ed e ol e ow o yc t

a b a gf 6

t o ah e tog to t

i

.k n

e g

l y l n e t

af r

a v

r l

nBi wed di mci ek o o mg od B

r o

2 t

a t

t r

e c ni n cf c

n mh a s

a t

f y

ni v u

ndk iof i f n i g s

da l

mn e t

nd s a

y e eil ed v e d o oh in t

t lpl e a oid i oa r

e e t

t n n n

on N

t R

b t

h a i b s

ooii e

f eh d d e ni D

o e e s a e moin im md n eif r t

a m mh o a ot s

t t

e l

a r t

k e c a a h s p

mt ob e a r

wu md h

t c

imWon o o a ot e

nd r

c s oil f s a te wh u

r v in )s f i e a. c a T ui s r e n a n p

x

,q l

f d ot ad

( t t

r

)

s f r nt s n e A

a o t f h a mo a e ni 2

uih n o e u c n e 'k r

o r L

h r wt id a r v

mt imh iK e. b

(

e 2, pi t

s r

o v

et o me md i

t h o o

i h r

2

,t o

r u U

r s s

u B

x (g oB mr B we. e, ad e

e n h n k

r4y i i

a t

r t

R e

2 n noo

,m2 lu t

t J

v 4 o el ly j

B e h ic In t

e.

t f

o s

f s i r s

n 2 n a a tp r t

4 ed lo2 cl oe t

e ei oI o

mie a

n uB oh t

s I

]

r r

t f

r a I

c0 8 T mBh ms iIn) a v caC p i ai cf vi o n

t s h c

t f

s b a e.

e e ui med l

f e ni d o ed r

o

]

m,o mins ci e

e mt e m t

d c

u l

n ot o o ir ik f

t ai o mI t

s o n e c r h 9 I

t el s

n u

e e e me n eb aV r 2 u t

ah it e pb t

t m

ol c 4 e[ mhaCs m. o r

t t

y h s uv a a c

e l

c t

e n ml vi ai a

- a s

p t t

mo of I

e t

a r

a s

n s a

6 ic a t

a a vled s t

t t

e yh T u e g

m t

e n

e t

t r

m ioi a l

n mf e e s

t s b df ix n i i oi n

e r o we ta e u nt n

yi f a n a la h e a c e f im oimi n

a a o a id r v tc mei t b e

r w

g v e t

C v o

v ub s e oio gTf R p

u a

yf mh o e a p t

a a

mt n c a

t r

r s

od t

p e n e r l

r d

t bb u eC or ot ei oh nl d d is inhh e b oi a e af u

u e o a u t

r i v r o a cf d oCe in( r a

o n

s e y u s s

t h

d

)

eh e la d. ig r e

la n ut v r a

u c v e s

e c

s s r s

g r ef h a t

a a s d n e ek a

t s

ma e e o u C

e n eh o e o p n0(

r f

s s ut a

m. ci oi r n u wl v o o t

c s s i o. n a d

t i e s

o r o e

e o

o a i5 d nf S l

b h o cd oy d s

s r I a

t wp 2 n e

we o n o r

a l

e,

t n e r

r h

l iei t

e e u i r e s u ". h

. lo a t

c mp d

ol s

s c gd %c or c r s wf a t

mf 2 ivf f

, o c l

e i i of : e s a ad imI ot f r o

a s s e a e u e v et tni eF il e s

. y nb r ro9 af 3 e v

a t

u u p t

n eb n wc t

gL s u ot o s o

s o w s r

n. wo tof e t

t n

r e c A od, g oCl e e r b

o. pa e a a u eh r t

r 1

r t

r r wo o o c n mul r Vt oB mi o

ef nd e r n 2

e oi~d nd tr t

ok a e inf s e n

e ol s o n u a ta e

ts a s i icI v

d c eh v

, h i d ls a

h e e a r ef s

I e o a

t a ed n s od h t

i n.

t n g t

e ot fi A ebl V. wn s

e s i 7 i i o r

8 t

r f e r t

e e t

e e c

s i

t t

m r, gf 0 wu In n n

o m in oia c t

2 i t

a r

n f

t a r a a

e e n r

eC s

a aTol e

s a

a u

r f el o m i m wd l

t i

n n I

s e

t dl f f r

o

[.

m e n u oh u n h s a

u t

f e

t e mp 0 e

m. f 0

pf g

n e r a t

r r

t c e u a s

t e

t n o oh ot e r

r c i eid el i t

s l

e e

o e af o a s h s n v o

l e

0 e

e oa v t

t t

o wia e r r

t 2

d R t

i a c n

v c p e I

oE n cT3 b

pof f e t

e al c s i p i b a vd b o w t

lll l

..~

~.

.~,--

~. --.

. _ -,.. ~...

=

j

.s

?

I 292 BRULAND et al.

i 1

The resorption rate depends on the absolute quantity of cobalt and li :

i administered. For vitamin 11:2 optimum resorption ratesof up to b'74 luve

]

been observed for quantitics of ~ 3 pg per meal. In the' case ofinorganic compounds, physiological abnormalitics may also lead to increased uptake.

l The most relevant difference for dose calculations, however,is the fact that the biological halflife of vitamin B in different tissues is longer than that 2

of inorganic compounds of cobalt.

RADIOECOLOGICAL ANT SNVIRONMENTA MOBILITY PARAMETERS 0 RADIONUCLIDI >

l ROLEIN RISK EVALUATIO" AND' I

SURVEILLANCE FOR SAF L /

I r

i k'

i i

i

}

I i*

/*

i

?

Radionuklidiibergang vom Boden zurPHanze R. Franke. R.Rath a und 11. ran de Sand Radionuklide aus der Abluft oder dem Abwuser kerntech-die empfohlenen auftreten k5nnen: dadurch wird die zu er-nischer Anlagen fnbren auch Ober die Kontam; nation von wartende Strahlenbelastung erheblich untersch5tzt. Die im Nahrungs-oder Futterpilanzen zur Strahlenbelastung von Vorspann der,,Berechnungsgrundlagen" aufgestellte These, N1cnschen. Im Boden akkumulierte Radionuklide werden die Daten scien,,durchweg unter pessimistischen Annahmen in bestimmten Verhaltnissen du'ch die Pflanzenwurzeln auf-ausgewnhlt" worden, tritTt zumindest in diesen Fallen nicht genommen; dieses Verh5hnis wird als Transferfaktor TFor zu. Vielmehr verdeutlicht die enorme Schwankungsbreite die beschrieben (Einheit: pCiikg Pflanzenfrischgewicht, pCi,kg Notwendigkeit der Ber0cksichtigung 5rtlicher Verh5ltnisse Bodentrockengewicht). Gerade for die Absch5tzung der bei der Absch5tzung zu erwartender _Arahlenbelastungen.

langfristigen Kontamination der Umwelt mit radioaktiven Dies ist auch in den,,Berechnungsgrundlagen" vorgesehen.

StotTen ist die genaue Kenntnis Qber die 115he des m5glichen Transfers von Radionukliden bedeutsam. Am Beispiel der Radionuklide des C5sium und Strontium soll die Problema-2 Parameteranal,vsen tik der Transferfaktoren dargestellt werden.

Bei strdortspezifischen Untersuchungen Ober den Radio-nuklidtransfer Boden-Pilanze beeinflussen folgende Para-meter die ll5he des Transfers:

I Schwankungsbereich der Transferfaktoren Boden-Pflanie - Bodeneigenschaften (Tongehalt. Austauschkapazit5t usw.)

Das Bundesinnenministerium emptiehlt in seinen Berech- - Pflanzeneigenschaften (N1ineralstollbedarf, Pflanzenart nungsgrundlagen [1] fur Genehmigungsverfahren um kern-usw.)

technische Anlagen oh. DitTerenzierung in Pflanzengrup- - klimatische Bedingungen (Luftfeuchtigkeit, Niederschlag pen f0r,, Vegetation" Transferfaktoren bei Sr von 0,2 und usw.)

bei Cs von 0,05. In Tabelle I ist die aus mehr als 80 Publika- - Anbaumethoden (D0ngung, Pflugschartife usw.).

tionen [2] ermittelte Schwankungsbreite der Transferfakto-Einige Autoren haben den EintluB verschiedener Parameter ren, aufgeschinsselt nach Pflanzengruppen angegeben. Es auf die il6he des Transferfaktors mit eigenen Experimenten icigt sich, dab z.T. wesentlich h5here Transferfaktoren als verglichen. Die geringe Anzahl der Einzelmessungen und die unterschiedlichen, z.T nicht angegebenen Randbedingun.

Tabc//c 1. I'crg/cich von Trans/crfaktoren Ih/en-Pflan:e TFn, der gen der Experimente lassen aber eine Verallgemeinerung nicht Radionuklide des Cdsnmt und Strontiunt (PCi kg Pttan:e, frisch!

pCi Lg thicn. tracken)

$1 Nukhd Pflanzengruppe Schw ankungsbreite Empfehlungswert M

Cs BlattgemQse 0.005- 0.9

~ nach [1]

y,.

nach [2]

==

h 2

Gr5ser 0,0006S-14 g

  • I,,, *

,}'

!s Karto Teln 0,023 - 0,16

- 0.05 s

, *

  • P, Klee 0.004 -33 j

(

1 Sr Blattgem0w 0.08

- 7,8

~

j

,. 8 I *;*. f.

j Wurzelgetriise 0.0025 - 0,15

}

1l;l'Pg.$ja s

B Griser 0.01

- 9.8 g,,

3 Kartotfeln 0.015 - 0.38 0,2 P l' a t s

Klee 0.22

- 7,4 d

I A

OO 1.0 18.9

,P, 8

Wurzelgemuse n.055 -21 15.5 te.t 25.0 M.0 n.3 e8.3 as.e

$3.0 59.s tonGI.iaLT,,i Bild 1. CJsium.Transfertaktoren Boden-Gras in Abhuneigkeit vom I""*#" 0 #"#"' '"" # ~ '"'"'"""" "'" ""#""

Bernd Franke, Dr. Richard Ratka und Dr. Henri van de Sand autleerraecnen Transferfaktoren :cigen, jab bei konstantem Tongehalt sind.\\litarbeiter im IFEU - htstitutflir Energie und Untwelt' im Boden der Transferfaktor aufgrund anderer Eintfufer50cn his um l

Jbrschung Heidelberg e. l'., Heidelberg.

len Fak tor Hohchwanken kann i

a Auff511ig ist, dab bei gleichem Wert fnr den Bodenparameter der Transferfaktor aufgrund anderer EinfluBgr5 Ben (z.B.

h Dungung) um bis zu drei Gr5Benordnungen schwanken

'8 f

kann. Signifikant bei < 17; Irrtumswahrscheinlichkeit war

[* h,

  • der EinfluB folgender Bodenparameter, geordnet nach St5rke M
  • h*e,8 der Korrelation r:

Y 4" ![e C5sium:

pil-Wert (r = - 0.49) > Tongchalt (r = - 0,46) e e';

ta

> Organische Bestandteile (r = 0.24) > Ge-

  • gp je p,,

g

!u 3 ~j l

samtkationenaustauschkapazit5t (r = 0,22)

=

Strontium: austauschbare Ca-lonen (r = -0,47) > Ge-o samtkationenaustauschkapa7itut(r = -0,43) >

pH-Wert(r = - 0,28) > Tongchalt(r = -0,27).

a Die niedrigen Korrelationskoeffizienten lassen eine Vorher-u,

. w$[b. S,j' sage der Transferfaktoren Boden-Pflanze anhand bekannter

'" E**

udd 2. Strontium-Transferfaktoren Boden-Gras in,1blu'ngigkeit wm i

Gehalt austauschbarer Ca-lanen im Boden inach [2]). In diesem fan ist M k onstantem Bodenparameter die l 'ariabilitut des Transferfak tors geringer ais im ersten Beispiel 4 Schlunfolgerungen Folgende Konsequenzen lassen sich aus den Ergebnissen zu. Um die Ergebnisse vieler Einzelexperimente zu verglei-ableiten:

chen, wurden deshalb mehr als 80 Publikationen Ober den

1. Korrelationsanalysen sind geeignet, den EintluB verschic-EintluB ausgew5hlter Parameter auf den Radionuklidtrans-dener Faktoren auf die li5he des Radionuklidtransfers fer Boden-Pilan7c ausgewertet [2]. Die meisten Datenpunkte Boden-Pilanze darzustellen.

ergaben sich int G r5ser. Bei Cs waren es 286, bei Sr 285 Werte.

2. F0r eine Vorhersage der Transferverh51tnisse an einem Wegen der Bedeutung von Gr5sern in der Ern5hrungskette bestimmten Standort sind sie als nicht brauchbar anzu-erscheint diese Auswahl sinnvoll. In einer ersten Analyse sehen.

wurde das Datenmaterial auf bivariable Korrelation zwi-

3. Standortspezifische Ermittlungen der Transferfaktoren schen dem Logarithmus des Transferfaktors und folgenden sind daher unerl5Blich. Dabei ist groBes Augenmerk auf Bodenparametern untersucht:

experimentelle Randbedingungen wie D0ngung, Luft-

- Tongehalt ( ?;)

feuchte usw. zu legen.

Gesamtkationenaustauschkapazitut (mval/100 g)

4. Bisherige Absch5tzungen der Strahlenbelastung durch

- Anteil organischer Bestandteile (";)

kerntechnische Anlagen fGhrten oft zu einer erheblichen

- pil-Wert Untersch5tzung des Risikos.

- austauschbare Ca-lonen (bei Sr) bzw. K-lonen (bei Cs)

(mval!!00g)

Literatur

- Konzentration von Cs 137 und Sr 90 im Boden (pCi/kg)

1. Der Bundesminister des Innern: Allgemeine Berechnungsgrund-lage fur die Strahlenexposition bei radioaktiven Ableitungen mit der Abluft oder in Obertl5chengewasser; Gemeins. Niinisterialbl.

3 Ergebnisse v.15. 8.1979

2. Franke. B.: Ratka. R.; van de Sand.11.: Zur Absch5tzung des Das Ergebnis der Korrelationsanalyse ist an zwei Beispielen Transfers von Radionukliden aus dem Boden m I tlanzen; Beitrae abgebildet: Die m den Origmalarbeiten auf Trockengewicht zur Ntodelktudie Radio 6kologie Biblis im Auftrag des liessischer$

bezogenen Angaben wurden unter Annahme von 20";

stinisters fbr Wirtschaft und Technik; IFEU-Institut fnr Energie-Trockengewichtsanteil auf Pflanzenfrischgewicht bezogen.

und Umweltforschung fleidelberg e.V.;lleidelberg.Oktober 1978 k

.i

AFFIDAVIT OF EUNICE J. HENDRIX My 1.2me is Eunice J. Hendrix.

I live at - 1139 Vesper, Ann Arbor, Michigan 48103.

I have lived here 24 years.

I have been employed by the Ann Arbor Public Schools as a Naturalist since 1967.

I have reviewed Mr. John O'Neill's Contention.IIF very carefully.

In addition, I have consulted with two pro-fessionals at The University of Michigan and with one at the University of Minnesota, and one who teaches at Michi-gan Technological University.

In addition, I hold a Bachelor of-&ience degree and a Master's degree from Michigan State University and The University of Michigan, in that order.

I wish to respond both specifically to the Affidavit pre-sented by Mr. Sinderman and generally to the Contention itself.

Because of its confusing circular wording, I am suggesting a rewording purely for the sake of clarity.

Please consider my two responses separately.

~

W' s

Eunice J. Hendrix 1139 Vesper Road

. Ann Arbor, MICH. 48103 (313) 769-8767 On this 22nd day of January, 1982 before me a Notary Public in and

. for said county personally appeared Eunice J. Hendrix, who acknowledges

'this to be a true statement.

Stato of Michigan Mary ice Power My commission expires Aug. 21, 1982

O'NEILL CONTENTION IIF - DOCKET 501-155 The Contention Because'the required calculations for the proposed expansion of the spent fuel pool and for the continuing releases and/or accidental releases of radioactivity do not take into consid-eration:

1.

the very poor sampling techniques used in the 1972 studies referred to by Mr. Sinder-man; 2.

the fact that no recent studies nor measure-ments of present levels of radioactivity in the biota or the water have been done to up-date the 1972 studies used by Mr. Sinderman as his reference, although present levels de present a human health hazard; 3.

the fact that no updated studies have been done since 1972 on what species could or have already become radioactive (some radio-activity is uniquely derived from Cesium 137),. Strontium, Phosphorus 32, and Phos-phorus 90 are activation products, and ac-tivated body products are one kind of-fission; 4.

the fish sampling techniques lump all-fish together, yet people select certain large predator fish to eat (large predator fish l

l

~have a ten-fold' potential for radioactiv-ity);

5.

the need for continuous monitoring for all l

kinds of radioactivity and the fact the

~

training of monitors is always behind schedule; and l

6.

the fact that no determinations have been made as to what radioactivity in Lake Michigan is due to atmospheric contamina-tion and what is due to a point source of contamination, in this case, the Big' Rock Plant; l

Therefore, what evidence from recent studies (within the past l

year, 1981) does the licensee and the Nuclear Regulatory Com-

~

4

!s Th'e Contention (continued)

Page 2 mission submit to assure me that bio-accumulative factors of radioactive concentrations in Lake Michigan water, and its biota do not present a' hazard to human health, especially in the event of expansion of the spent fuel pool.or from an ac-cidental release?

4 o

4 a

i i

1 i

4

Specific Responses I wish to take issue with the following statements made by Mr. Roger Sinderman in his Affidavit made before the Atomic Safety and Licensing Board in the matter of Consumer's Power Company (Big Rock Point Nuclear Plant), Docket No.

50-155, Spent Fuel Pool Expansion.

Page 5.

" Krypton 85 is the only gaseous radionuclide re-maining in spent fuel having decayed for a year or more."

THIS IS NOT TRUE.

MR. SINDERMAN HIMSELF MEN-TIONS IODINE 20 AND TRIDIUM.

Page 6.

"an instantaneous release from the plant of all Krypton 85, THIS IS NOT A CREDIBLE STATEMENT.

HE HAS IG-NORED THE FACT AN L.O.C. ACCIDENT COULD HAVE A LARGE RELEASE.

Page 7.

"There are no unusual food pathways."

THERE ARE UNUSUAL PATHWAYS.

FOR EXAMPLE, ONE PATHWAT 6F CESIUM 137 IS THROUGH DEER THAT CONCENTRATE IT.

MR. SINDERMAN ALSO IGNORES LARGE PREDATOR FISH.

Page 8.

"a continuous measurement of radioactive ma-terials in the liquid is made by the liquid radwaste system discharge monitor."

MR. SINDERMAN DOES NOT MENTION INDIVIDUAL RADIONUCLIDES.

SOME HAVE A HIGHER POTENTIAL FOR CONCENTRATION.

Page 14. Table V.

MR. SINDERMAN DOES NOT MENTION ZINC 65 OR PHOSPHORUS 32.

HE ALSO FAILS TO MENTION PLUTONIUM'

-_____r_;_ ~ ~

~

~~

a Specific Responses (continued)

Page 2 Page 15.

Mr. Sinderman does not present any recent data.

He only presents conclusions.

I WOULD LIKE TO ASK THE BOARD TO REQUEST THAT HE PRESENT TO THE COURT THE SPECIFIC DATA THAT LED TO HIS CONCLUSIONS.

t IN ADDITION. MR. SINDERMAN HAS OMITTED THE SYN-ERGISTIC RELATIONSHIP BETWEEN THERMAL POLLUTION (HEAT RELEASE) AND RADIOACTIVE RELEASES.

(MIN-NOWS IN THE COLUMBIA RIVER THAT CONCENTRATED NEAR THE THERMAL' PLUME WERE 70 TIMES MORE RADIO-ACTIVE THAN OTHER MINNOWS.).

~

l

r-CX ME;c:

I CERTIFICATE OF SERVICE P

t friS5 I certify t: hat copies of the foregoing ff Opposition to Surn.tary Disposition were serfbdC on' the; attached

%:.L ;y,G & :: g;.,

list on the day of January, 1982 by deliYd5hg copies to the office listed thereon or by U.S. mail, first class postage prepaid.

[

-4) s i

[

_.{.

Herbert Semme.E

\\

Attorney for Intervenors Christa-Maria Mills and Bier Antioch School of Law 2633 16th Street, N.W.

Washington D.C. 20009 (202) 265-9500 l

4

Atenic Safety and Licensing Jeesp? Cal ~e, T.nquire Ecard Pane'l Ishe, Linen 3n and Beale 3

U.S. Nuclear Regulatory 12 2 0 Cor.ne cti cutt' Ave, N.W.

Conn ssicn Suisc 325 Washingte.., D.C.

20555 Washington, D.C.

20036

. Esq., Chairman Peter B.

Bloch, Atomic Safety and Licensing 3

g Board Panel U.S. Nuclear Regulatory i

Commission Washington D.C.

20555

..?

Dr. Oscar H. Paris Atomic Safety and Licensing l

Board Panel U.S. Nuclear Regulatory Dockettng and Service Section Commission of fice of the Secretary Washington D.C.

20555 U.S. Nuclear Regulatory connis s ion Mr. Fredrick J. Shon Washingten, D.C.

20555 Atomic Safety and Licensing John O'Neill, II Bosrd Panel Route 2, Bcx 44 U.S. Nuclear Regulatory Maple City, MI 49664 Commission Washington D.C.

20555 Janice E.

Moore, Esc.

Counsel for NE Staff U.S. Nuclea r Re gulatory Connission Kashington, D.C.

20555

-,%> : a.

E fk'N'*]<I.*'t,.

{

@4.M_.

~

I r

H

.