ML20024B818
| ML20024B818 | |
| Person / Time | |
|---|---|
| Site: | Crystal River |
| Issue date: | 07/06/1983 |
| From: | Westafer G FLORIDA POWER CORP. |
| To: | Harold Denton Office of Nuclear Reactor Regulation |
| References | |
| 3F-0783-04, 3F-783-4, TAC-51342, NUDOCS 8307110447 | |
| Download: ML20024B818 (17) | |
Text
_ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _.
- ressa k*
9 m$ v U : @JLA rs' no (f'
<f
'&w6;bhS)'
r i cc M
.P. o..w..e. i.r July 6,1983 3F-0783-04 Mr. Harold R. Denton, Director Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, D.C. 20555
Subject:
Crystal River Unit 3 Docket No. 50-302 Operating License No. DPR-72 Supplemental Information in Support of Technical Specification Change Request No. 32
Dear Mr. Denton:
This provides information requested in a telephone conversation with members of your staff on July 1,1983, regarding Cycle 5 operation with Reactor Coolant Pump Power Monitors (RCPPM's).
Testing of all of the Reactor Coolant Pump Power Monitor (RCPPM) strings prior to Cycle 5 Startup will consist of checking the time delays from the Bistables to the CRD.
This excludes the Potential Transformers (PT)/ Current Transformer (CT), the Watts Transducer and the CRD in the test string.
Attached are the references supporting the determination of trip delay time which were requested during the conversation.
Please advise if there are any further questions.
Sincerely,
' /
G. R. Westafer Manager Nuclear Licensing and Fuel Management Attachment
,gO DMO:mm
(
I i
8307110447 830706
{
PDR ADOCK 0500030 P
General Office 3201 Thirty-burm Street South e P O Box 14042. St Petersburg. Florida 33733 e 813-866-5151
___ A
RLe: PD-5M GEN ER AL h ELECTRIC usTsR ausinEss DEPARTMENT GENERAL ELECTRIC COMPANY, MAIN STREET, SOMERSWORTH, NEW HAMPSHIRE 03878 Phone (603) 692-2100 3
March 5, 1982 Mr. Steve Ulm Florida Power Corp.
P.O. Box 14042 St. Petersburg, FL 33733 Dear Mr. Ulm Several years ago, you had requested response time calculations for the JCM-4 and JVM-4 instrument transformers-This information was furnished via telephone on 6/20/80.
We apologize for not having foilowed up with written documenta-tion at the time. We would be pleased to do so now.
We will define response time as the time constant or time for the secondary output to decay to 66% of the original value when the primary input is inte rupted.
For the 1200:5 AMP JCM-4 response time will vary between 3 7 and 14.8 milliseconds depending on the point of Interruption on the pri-mary waveshape.
For the 7200:120 Volts JVM-4, response time at Z Burden is 3.8 milliseconds max, and for Y Burden it is 3 0 milliseconds max.
Let us know if you need any further information.
hb K
e
/Katherine A. Wezowicz/
.roduct Sales Engine
/Im copics:
J.R. Gunter, MBD R. Stetson, MBD J. Kelly, Tampa Office j
RLE: PD-SM Babcock & Wileox wo i.., pow.< o.a.r.iion oivi. ion a McDermott company 3315 Gid Forest Road P.O. Box 126o Lynchburg, Virginia 24505 June 8, 1982 (804> 384-5111 FPC-82-192 Mr. E.C. Simpson Nuclear Operations Engineering Manager Florida Power Corporation P.O. Box 14042 St. Petersburg, FL 33733 Attention: Mr. S.F. Ulm
Reference:
Task 352 - Calculations and Data Required to Determine Minimum Trip Setpoint and Maximum Trip Time Delay for the Pump Monitor Gentlemen:
The minimum trip setpoint has been determined to be 80 watts + 5 watts (watt transducer output) and the maximum trip time delay allocated to the RC Pump Power Monitor (all instrumentation prior to the RPS input) is 1.175 seconds. These data and their bases is contained in B&W Document 32-1134603-00.
B&W Document 51-1132614-00 contains the results of our analysis of the Visicorder graphs on starting a fourth RC Pump and transfer of RC Pumps from the startup bus to the auxiliary bus and back to the startup bus. A review of these graphs indicates that if the changes recommended by B&W Document 32-1134603-00 are made, the RC Pump Power Monitor would be able to " ride through" the bus power dips without tripping the reactor.
If you have any questions, please call me.
Very truly yours, dd J.A. Castanes Engineering Product Manager JAC/kjb A%... < A cc:
T.C. Lutkehaus
~
P.Y. Baynard
.e r a.' ' ';'.
W.P. Ellsberry
.;-.- Q g) g
- '.
- Q:..i : L'; 9 \\
l
.%?N 14 032n.,@,.
l l.
'.=u.mc s f.2l v ^' '
sma;
~
m3
BWNP-20210-1 (1-78) a CALCULATION DATA / TRANSMITTAL SHE Q j,
CALC.
32 -l134603 00 DOCUMENT IDENTIFIER TRANS. 86 TYPE:
_assaaca a erm.eraerr _sArm mr.rsts nzicar _ __we. sent. turvr _ __etsrew noe. _.,_.,etsres v:xtr.
Xerm TITLE FPC RCPPM RECOMt1EtlDED SETTIrlGS gy,4;"*7M,p PREPARED BY.
. REVIEWED BY I. [
$Al'4WJoIy [A/S DATE h [# TITLE
[ ~r.
DATE 4/7/fL TITLE PURPOSEr Determine: 81 stable low watt setpoint RCPPM sensor time delay allocation
SUMMARY
OF RESULTS (INCLUDE D00. ID'S OF PREVIOUS TRANSMITTALS & SOURCE CALCU PACKAGES FOR TIIIS TRANSMITTAL) 81 stable low watt setpoint - 80 watts + 5 watts RCPPM time delay allocation - 0.1E0 sec, isolator.
0.020 sec. current / voltage transformers, 0.115 sec.
watt transducer / bistable 0.890 sec. time delay relay (1.175 sec. total)
- References used here in 86-1103844-01, 582-7087 51-1132614-00, 582-7087 32-1134068-00, 582-7087 51-1128452-03, 583-7087 Telecon record 6/3/82, T3.13.1, 582-7087 32-1119698-00, 620-0007 DISTRIBUTION l
Page l-of 4
e r 32-1134603-00 1.0 BISTABLE LOW WATT SETPOINT Given 8
- No load watts at watt transducer output 11.46 watts (86-1103844-01, " Power Rating of RCPPM, 582-7087)
Then 8 A conservative valve 80 watts + 5 watts selected by the preparer as the watt meter bistable low setpoint because:
1.
80 watts is 19.5% of the highest normal operating watts of 410 watts observed in 51-1132614-00, " Pump Power Monitor Visigraph Analysis," 582-7087 2.
80 watts is also above the no load watts 2.0 PREPARER'S COMMENT - RECOMMENDED DELETION OF WATT METER BISTABLE HIGH SETPOINT FUNCTION There are no safety analysis requirements for a RC pump trip on high watts (i.e., locked rotor) (see 86-1103844-01 " Power Rating of RCPM, 582-7087 and references for details)
No high watt trip function is reconmended.
The function should be deleted.
If a high watt trip function is used for reasons other than safety analysis, caution should be used to avoid spurious tri>.s.
The caution is based on 100 watt indications observed in 51-1132614-00 " Pump Power Monitor Visigraph Analysis," 582-7087.
The 700 watt observation occurred on starting a fourth RC pump.
3.0 RCPPM SENSOR TIME DELAY ALLOCATION CALCULATION Given 8 RCPPM sensor time delay requirement of 1.175 seconds (32-1134068-00, "CR-3 Cy4 operation for revised pump monitor delay time',' 582-7087 and 51-1128452-03,#FPC pump monitor delay time relaxation','
582-7087).
The sensor delay includes all instrumentation prior to RPS.
l Find 8 How the 1.175 second requirement is alloacted in the RCPPM sensor I
l 1.175 - 0.150 - 0.020 = 1.005 seconds (1) 1 where 0.150 - maximum isolator delay, 32-1130545-00, " Response Time for Pump Monitor Trip Equipment," 582-7087.
'~
32-1134603-00 l, <
4 0.020 = maximum current and voltage transfonner delay suggested by FPC (S. ULM) in a 6/3/82 telecon, record, 582-7087, T3.13.1 i
1.005 = delay to be allocated to watt transducer / bistable time delay relay Preparer Assumption - RCPPM sensor is all instrumentation prior i
to RPS.
The RCPPM sensor consists of current transformers, potential transformers, watt transducer, bistable, isolator. No credit taken for deletion of Clare relays that once existed in the RCPPM sensor.
From 51-1132614-00, " Pump Power Monitor Visigraph Analysis",
582-7087, the highest nonnal operating watts is 410 watts as
'shown on attachment II.1 and II.2.
The C and D RC pump initial watts are neglected on Attachments II.1 and II.2 because starting marker may have been late. The 410 watts has margin in that the normal operating watts appears in 375 to 400 watt region.
410 - 75 = 335 watts = trip set span (2) o i
From 32-1119698-00, " Pump Monitor Response Time," 620-0007 Figure 1, a 335 watts - trip set span on Y axis results in about 0.112 second delay on the X - axis using the maximula time curve.
0.115 seconds is selected by the preparer as a conservative value for the delay s
of the watt transducer bistable.
1.005 - 0.115 = 0.890 seconds (3) 0.890 seconds is allocated for time delay relay.
The preparer's reconnended acceptance criteria for setting the time delay relay is 4
0.840 seconds nominal. 0.890 seconds maximum to allow for tolerances.-
4.0
SUMMARY
- Bistable low watt setpoint 80 watts + 5 watts
- No high watt function required
- Time delay relay acceptance criteria 0.840 seconds nominal 0.890 seconds maximum
- Time delay allocation 1.175 seconds requirement
-v--
- " ^ - - - ' ~ " - ' '
~ ' -
32-1134603-00 0.150 seconds, isolator 0.020 seconds, current / voltage transformers 0.115 seconds, watt transducer / bistable 0.890 seconds, time delay relay, maximum 1.175 seconds allocated 5.0 REVIEWER COMMENTS 4
None e
4 e
9 L
- i' r
Babcock & Wilcox u i, p
, o...,.ii.
oivi. ion a McDermott company 3315 Old Forest Road June 4,1982 P.O. Box 1260 FPC-82-188 Lynchburg, Virginia 24505 804) 384-5111
/C:' y.,,f(:y ~I?:.% '\\
j j#i P:i.?!s 5
- gj 4,didyg"s$ry Mr. E.'
- . Simpsoa p.:;
Nuclear Operations Engineering Manager j
U.1gIOO2n.[h Florida Power Corporation
.i P.O. Box 14042 M,
p,y St. Petersburg, FL 33733 Syg Attention:
Mr...S.F. Ulms..
'(/*
.V
Reference:
Task 385 - Reanalysis of Four-Pump Coastdown T n3 Tent Gentlemen:
The objective of Task 385 was to perform a four RC Pump Coastdown analysis to justify a relaxation in the current Pump Monitor delay time of 0.349 seconds.
The result of this analysis has determined that the FPC Pump Monitor delay time requirement can be relaxed to 1.175 seconds (reference B&W uocument 32-1134068-00).
To support tnis Pump Monitor delay time requirement, the RC Pump coastdown andlysis with pump status trip protection assumed a total trip delay time of 1.50 seconds.
The bases for the 1.50 second pump status trip total. delay time, and the Pump Monitor delay are as follows:
The total trip delay time for the pump status trip is the time period from the existence of the trip conditica in the process variable (i.e., loss of AC power to the pump) to the initiation of control rod drop (or the time when the rods are free to fall).
Tne basic components are:
Pump Monitor
+
+
Breaker + CRD
= Total Trip Del ay Delay Del ay Reiease Delay Time Delay The FSAR analysis assumes that the Pump. Monitor delay time is the time from the onset of a RC Pump coastdown (due to the sudden loss of AC power to the pump) to the time that the RPS (Reactor Protection System) receives the Pump Monitor signal.
This equipment breakdown assumes the pump monitor delay includes delays caused by all instrumentation before the RPS.
The 1.175 second Pump Monitor delay time is based upon a 1.50 secono pump status trip total trip delay time.
This total trip delay time will provide minimum DNBR greater than 1.43 and pennits the four pump coastdown to be classed as the limiting RC Pump Coastdown event.
These results nave been demonstrated through analysis for FPC power levels up to and including 2,544 MWt.
p:.
s Babcock & Wilcox 2
June 4, 1982 It is important to note that the 1.50 second Pump Monitor delay time is based upon two key assumptions normally outside the FPC licensing bases:
(1) that the 1.5 second Pump Monitor delay time is expected to be acceptable at an FPC power level of 2,772 MWt (an estimate - not a calculation) and (2) it is desireable to maintain the four RC pump coastdown as the limiting coastdown event.
To illustrate the first assumption, a Pump Monitor delay time of 1.88 seconds could be permitted, if power were limited to 2,544 MWt.
A 0.38 second penalty is added to the 1.88 second delay to provide flexibility for future 2,772 MWt operation, yielding a 1.5 second delay.
The second assumption is illustrated in Table 1.
The four pump coastdown results in a lower minimum DNBR (i.e., is more limiting) for total trip delay times less than 1.88 second.
However, tne three pump coastdown (from three pump operation) results in a lower minimum DNBR for total trip delay times greater than 1.88 second.
A total trip delay time of 2.52 seconds could be permitted, as both the four and the three pump coastdown have a minimum DNBR of 1.43 or greater (minimum DNBR values of 1.59 and 1.43 respectively).
However, a significant analysis and licensing effort would be required to permit the three pump coastdown to be the limiting coastdown event.
To maintain the present licensing concept of the four pump coastdown being the most limiting coastdown event, a total trip delay time of 1.88 seconds or less must be required.
Hence, a penalty of 0.64 seconds is added to the 2.52 second delay, to ensure that the four pump coastdown is limiting.
For clarity, these two penaltie's (for 2,772 MWt operation, and the four pump coastdown as the limiting event) are illustrated below.
2.52 seconds Total trip delay time at 2,544 MWt with minimum DNBR > 1.43 for both four and three pump coastdown.
less 0.64 seconds Penalty to guarantee that four pump coastdown has lowest minimum DNBR (i.e., is limiting coastdown event).
less 0.38 seconds Penalty to provide acceptable DNB results for four pump coastdown at 2,772 MW (estimate not supported by analysis).
\\
1.50 seconds Recommended total trip delay time.
TABLE 1 Four and Three Pump Coastdown Minimum DNBR Results for FPC at 2,544 MWt Coastdown Delay Time (Sec.)
Minimum DNBR i
4 pump coastdown from 4 pump 2.52 1.59 operation l
l 3 pump coastdown from 3 pump 2.52 1.43 opeation l
, YW Babcock & Wilcox 3
June 4, 1982 TABLE 1 (continued)
Four and Three Pump Coastdown Minimum DNBR Results for FPC at 2,544 MWt Coastdown Delay Time (Sec.)
Minimum DNBR 4 pump coastdown from 4 pump 1.88 1.83 operation 3 pump coastdown from 3 pump
,1.88 1.83 operation 4 pump coastdown from 4 pump 1.50 1.97 operation 3 pump coastdown from 3 pump 1.50 2.04 operation Attached are B&W Documents 32-1134068-00 (CR-3 CY4 Operation for Revised Pump Monitor Delay Time) and BAW-1684 Revision 3 dated June,1982 (Crystal River Unit 3 Cycle 4 Reload Report). Document 32-1134068-00 provides the documentation to support the revised delay time for the Power / Pump Monitor Trip and BAW-1684 Revsion 3 modifies the Cycle 4 Reload Report to reflect the revised delay time.
This submittal completes the deliverables for Task 385.
Should you have any questions, please contact me.
Very truly yours, 8_,
/
J.A. Castanes Engineering Product Manager l
JAC/kjb l
cc:
.T.C. Lutkehaus P.Y. Baynard W.P. Ellsberry S
e
&NP-20210-1 (,1-ts)
CALCULATION DATA / TRANSMITTAL SHEET CALC.
32
/ / 7 Yo 4f
,oO TRANS. 86 l
TYPE:
___ ass Anca s emurerr dArm m4z.rsts men _m:c. sm. Irw:
ocszcx aqx:.
3a tes.n zr.
=m TITLE c.R-m" cx y a para rie~ ren Revisea punts nemreR netar rin.
PREPARED BY %'e le > d REVIEWED BY I i h.
TITLE ce -6A _ cs C., Nath '
DATE 7/f/f.1 TITLE hAJS'M b,
DATEMAf[Ft-PURPOSE:
rs fA s Vtae
- o. s c.x gar,4 rios of 4 A e vitra c ets y rier FeA rMe fe s'en /' P to 8 P how tra n rR t P.
rMr.t sqen L Y t ts !!
AA An o f tA s4 ro n C' PeufR La vel of 2.t~ '/ V fr e o f'.,
te r TM P c<.n ?
ffDNt rens sa r*A4r Pl4pr MPs
.t ys rrn. THis is a st. V fvnLM T'*"
of TNd LR 'IEC' Apg -2 s Ytre et.
rHe re rn t.
4 64.AY rth s s.s 4 t~
a f C.
7 He $
R A*vt a d's Pen
,y PwhP s =As r ao s.a Pa. rc< n o."
- *H o <.H a TH4
'% */r L ?tI ra p e.
ce As roe,op tycoar, AND Ptevoeds Pg. ree rsed f*M 0 NrJ R.
l i
SIDefARY OF RESULTS (INCLUDE DOC. ID'S OF PREVIOUS TRANSMITTALS & SOURCE CA PACEAGES FOR THIS TRANSMITTAL)
A s t<<tra e s*
rws.r Fils ca rt.t.
ne rses~imiere o i,v s a s -.s e~ rs :
f4 - // 2 '/06 y -a o 19se P4 - // 2 Y 0 70 - c ::
TOTAL Pe sodR Phn! ttosotr. d T R i? O d t.s9 y rtn ec
/..t" sg -
e.
R /pai,e n.
,,.a i
5 a-<.s
,<u, r,n.-
i.aa, n
- Tecy, spee. v4 Luc Fast TRi? netAv rtMe
=
1.
'l Y re' c.
TWif f*E G8.
Sf!G.
A CLA Y T*sM C V4t u t jg
- -.o,g
,,,eqg y
y geg, Sfec.
tag t.g
.1. 1 -a feg s ee R ver LLsqHed T E J r~s d G.
DISTRIBUTION
- - ~
$ff OAN 1
3
%oa 0 ae
'../
,,g Scbcsck&Wilc3x an = = > i' *"
Nuclear Power Generation Division GENERAL CALCULATIONS C O 'N 76 N T f SEc 7 to a pg c e I) '. PuRp.s e 2
a) sesenim.s a
3) est e at an.s y
v) a n conneurs c.
,r)
R EFEA e gets 7
i O
e i
re.v.a.o.Y
%b Y
- ~
,fbflTA o.r.
occ,no, D - H 2YO U.oo
/$ 6d M 5 /17 /Is-a
..vi....
o.r.
.... ~ o.
I Scbenck&Wilesx
""' a ' i""
Nuclear P;w7 e e' a' tion Division GENERAL CALCULATIONS lb Plt. R P o EE ry, s sk a
- ac s <.c.u - r f.a esa punt n. ~, r. a.
li f / M C-Rf sN s rn rdo sa ra TMd A P.C ryrren fo /t c A - ZZZ~.
C.* YC* l. d' V
e /rsT4 7 ion, Ales &
u e TH 19 ' c.NASC.e tN r M e A ct.4 )
1~/M c fog TNe. Po uck / Pan?
No wi run rK IA rNo anterxAt 1
c A?.zzt e y e.la y n asircir essi case u < rs Punt n.s a ra.r Paese or Aws An A Pos.nen levet e s A s ' Y v Ar u 1: r&r /~it e WtL Alte taff r##
AfW M s.* 7.,
AN4
- .*/ 44 C. lof 44 Y RffdAdid i
1*H f o A t C t ws t C Ye t 4 Y i4stAl y ts.t".
rMe reca.
Troc. occ.A y rtMe CALeu.t A rea os fHrs F/s c tr f* R res* w r 1,
re sH. Sffs.
!"At3 L 6
- 3. 2
.3 f*8 2 set e ft Lt g r e.o res rip c.
t'~'
V S
b e t t. R 1 9 71 o At T Un*
OCLA Y TING C.A L<. u l 4 7' san on 7)Vs.t Cs /l c~.
8416s r~Mr s t~48) Ago Rf.C ~ Z fA sp o gtg y rik e H e rd o c ol. c.y.
rwr n a rx.a ir TAA es 4 in re.r4 y fae/v R6 f EA f Nc 6 A..
rHg n e fHos us eb Potev od1 Dova A fAo re s pesa o
Pot Y s4 a 3 Pern P
<e ses r D s e.o.,
rHe ro1M L o seg y ran e et r
s c o n f..se a
=P THe res.s.it,
/t PS, DRrAxeR,Asa cRo h Aken.rc 4 fLA y r shes.
A Ment o e riert ta a et cg. e s*ne a
.s*
7?hr Pas?
h o n s 11tt rA t t*
- 2 f.s ss a s.*
R f f.
V.
i
'11 $ Yi b> -
can r/2o /Pa.
aa e. n o. 3 2 - i n y o c g - o o menneo er 50b)&
aa n T h 7 l 7 7-ne n m a er esae no.
3
/[ ! Bcbesck&Wilc9x ros ='a=* ' i' ='i
. m o.......,
Nuclear Power Generation Division GENERAL CALCULATIONS 3b C. A L c. ca L a rio s/
T MG TOTAL 7"A tP 4 GLgy 7dr e ent r o IW FSAR CHAP. IV Acconger gy4ty.gg,g if ryg y /s g g SRe pt s.s j/g y ryg P Ro e gg.r s
VAtt /dGlf E se c a-ro.g TNG rA /P
.t e rPo ra r s< u rs t THE c e ~ rne.
Ros s 06Gra to Fs L L Que rs G RA vs t y.
VMd CAstc c a n to srea rs fo g 7?fe o evr y rs8 6 A Rc litre o deca e.o.*
seer.s asenxen sRoM ro TAL Arts RPs
-}
pgegy RCLEasE TR (P
~
o clay Ogtgy ggggy i
7~Bo t ft c T/fo Col e C. y tf raked FAsist Ref. A 480 4, os 15 sfAS D A A 0 fo R. A LL
/77 fd os lo9Mr re D94 rAtt A dl4 Y rit*< e~
ci9t c g, g g ri.pg, 7 pfg gpo s.ap v4 g ug,g pag yy,,
p, w eg / p sp,nr ftoporen TRep setty gge gg p, ct, aa g R Ps cessy
=
./31 cee.
( Rex p,)
GR E AxcR Detny
.07 sec.
(g e f. 2 )
=
C Rb H RElen se bGlny
.0C se c.
(ger. Q b Ahktsfa reTAL rR IP Dd 4,y 3
/. [ Sc c.
(ggj', 3) r//6 Asssorte runet..rMIP D d Cs4 y rt h 6 of
/. S'.so c.
J.C'
IeO re
! Ao ot ed t** t?
ON8 pre rfe.rr ea s ett Y AsQ c
3 s.<.h e*
e c e,4 s f o e s.s M. TMsf CM s ssl 1tosmo /J omsm*.itJ f f M V
(.! 0 30 N $ t's/9 4 A?S 4
em.<. < L s ro ess.
A,.o A tt. es reo rung c.t p of
- o. a t~y see.
tr As3 a n ea (su.a.jrse p*x p. rep rist en,4 i c c.e ae ree t
PREPARED BY D DAtt "79 M DCC. NO. M ~ //3 Y* SI~ 0 6 I B7/ i Y
REviEwfo er N
MMhl4 OATE PAGE NO.
_ )
y'
/
Babccck&Wilcox Nuclear Power Ge oration Division GENERAL CALCULATIONS I,
- 4. A f c asL A 17a+64L o A
&~ Q La.td* l's 6 N f*
A C.c ss ftA c.r F3 b.
i Leo e 714 fMd 04 *rA e /*
f?fG f/2 ft/touJ fA C 6
/f s.t' d4 f*/ hAffD f*M A f*
A 4 / ~) J' 3 ec.
s* '< n /* h e s f*!A ZdN.lott
/) fLA' Y o
l AdQ lstR fftfn 7 4 i L.L fir Pfo tr THf
/. f 70 rdL rit st* AfdAY Mrf s
T~&st smot Li Alte Ato fs* C as GRAR/ Lory (i. e..,
Sfoucs PttennGilo r O
of S P'sR to u s P ss n t*
stdrast 7"A sPZ ).
l
\\
TW&~
/.r* ECC.
Ve rAl 7'A/P bel 4Y f~/Hf softLL s /0 4aJ <Of l
a VfA tfr d'e 7"NMe se G H /1 r/hr 4 tLAY C44 a u 4 Artes r* TJ.L rMs! Oct.Ar rtMe
- S in.t e R & RPS f GACAMd"4
- CRos,
t' hAA Gep a
//77 f./J/ f. 0 f f. 0 4.
- f. o f* V S
/..(* JfC
- l. $ st s
- /[ JfC tC T'e r4 L rAof D 6 lay rth g S
- f. j~ Je c l
i 198efHen Kr.rs L r e/ 7xis ' enta asts trea se rye
?MP N6s*I198
$ din!seR A LLAY r*/h 4 Ofta G l/ ftt / f t ft) 49],*
Psx!
heaoten.1982en Rioaandxrar n
- t. / -),5~ ses.
FRen aeF. /, rye r e e y.
s A a. c..
vg L e
o,e fyar t* tsh P her ored orc n y r'th t s.t n L.t a c.nta.acg rea :
s recM.
s/s<. sntese seseseK + Rts+ GRenAcrie
/.17f f./3/ t.0/
/. 3ff,
.5 f c.
PREPAR.O BY D.Tl I Y/
DOC. NO. 3E * //2 */ * (= f* *
- 26WmW o.r. 5 47/F2 r
........ Bv
,40. ~ 0.
(.
/
/
Babccck&Wilcox
'a " 'a = ' i " 'i nuci.ar Power Generation Division GENERAL CALCULATIONS THis recH.
3 1s cc v4 4 u.e of TNe Pen sio Mowren OfLAY
- !~/M d
/Nf sr r f%
1~6 c d.
JPdt.
- r44 4 f J..? ~ A fe A' E l'8 V6/ L l A dc d 7~4 C'f't w C..
A/o 7~f Tsf47 fHd MARG.sw AAJC
'fN4 C A. D M r/h 67 4Rd sve r sas c & tra ge.
7 psg ss o d'c M ssj e f*Me' Y 00 NOr A ffl e cr~
rNr Asc stRec y of TNG G G ls/ P n d*w 1*
ffJrf'O O k. A /^' C
'rH g RfsPeN16 Tsh 9 Zcr A y esLL 4 s c G" 7~C17"sw C.
fftH. ZA6c. ALfPh edlA Y 77Mf '
/. 2 P6 JCc.
O Yb QA conRewrr L. /.s A. M A A m.ue rm.a to-n% - >p a np % a 2-m.;An
.NU
- '}
h d (L
- r/a y/n oce.
. n n3va u..o r.. a..
- oar, 2bR
- o.. s /:7/r2.
4
- /.
Babcsck&Wilcox
5"""
l 3-Nuclear Pow ne ation Division GENERAL CALCULATIONS S)
R G FrR e s/c e s I.
r1Eno k.D. ruler (snfery ssnt y.rs t )
ra N. A. BAxeg ( pao Toef E N C./N KdA/N G- )
" R P.T Det.or rme /NPa. r.c Fox Tcc s,<
C Poc r.
7 l 9 / 7/.
I
\\
R.
3 2. - // A C o o y - o o c p
.1, c x 2, Ps c v 7-Po RP r scrPow r cal cwldr seMr "
~1/~l9 l9/.
G. S.
Jgu gt.A i
- 3. TG - // 2.'L G A2 -o e
.rpe.g cg.sco o*Pfr a gu y teen cg - 2 4~/fA h. o.
MAL '%
i If, f)= ll2 ?<f.ra -oe f'PC Pant trn us rttep J.1/ta}pg g,ps, gezog.s et f?C A rt.
OctAy rinc Rev.
il6l$A X. a. rmt.f Y
~
- A F? c.
Mt3 At A r *2 fen A c. Fle en
/t9/f.1
- x. D. Tk.lf:
~
C e
i l
%dMEu r/aoha oa no. 3a. in vo s r-oo e.een.no.r o,,,
2$ thh o r. 5 / 2 ~7 / r '2.
7
.. m...,,
,*o
~ o.