ML19332F589

From kanterella
Jump to navigation Jump to search
Forwards Suppl Info Re Basis of Composite Spectra Shown in Figure 2 of 891017 Submittal
ML19332F589
Person / Time
Site: Catawba  Duke Energy icon.png
Issue date: 12/08/1989
From: Tucker H
DUKE POWER CO.
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
NUDOCS 8912180017
Download: ML19332F589 (8)


Text

._. -

i. %w;;

l; > ' *I Duke her Company ll:t u h kn -

PO Box 33198 fice l>sident

' Charlotte, N c 28242 Nudrar Production (704K1734531 l

. DUKEPOWER December 8, 1989-

.U. S. Nuclear Regulatory Commission Attention:

Document Control Desk

_ ashington,-D. C.

20555-W F

Subject:

Catawba Nuclear Station,-Units 1 and 2

Docket Nos. 50-413 and 50-414 Direct Generation of Response Spectra s

' Gentlemen:

Your August 29, 1989 letter transmitted a request for additional information.regarding my May 10, 1989 submittal. My October 17, 1989 letter:. transmitted the response to the-request for additional information. Please find attached: supplemental information on the basis of the composite spectra shown in Figure 2 of my October 17, 1989 submittal.

Very truly yours, H.

Tucker JGT/6/DIRGEN Attachments xc: Mr. S. D. Ebneter Regional Administrator, Region II:

' U. S. Nuclear Regulatory Commission

.101 Marietta St., NW,-Suite 2900 Atlanta, Georgia 30323 Mr. W. T. Orders NRC Resident Inspector Catawba Nuclear Station Dr. K. N. Jabbour Office of Nuclear Reactor Regulation U. S. Nuclear Regulatory Commission One White Flint North Washington, D.

C.' 20555 fool 89121ecoi7 89120e I

fDR ADock 05000433

'/

\\

xoc L

  • a.

~e oc '

.Y

\\

h g

Supplemental Information To Response To August 29, 1989 Request For Additional Information

' Reference Figure 2 of Duke Power Company's October 17, 1989 response to the

.NRC' August 29, 1989 request for' additional information, the NRC has verbally requested by telephone that supplemental.information be provided on the basis of:the composite spectra shown in'the referenced figure.

Supplemental e

information including pertinent background information is provided as follows:

Figure'2, reproduced in this submittal as Attachment 1, is a composite of the Newmark. spectrum and the staff provided site specific spectrum on Catawba e

. Nuclear Station.

The composite spectrum was constructed using the following b.

sources of information:

CNS - pSAR/FSAR Newmark Spectra Site Specific Spectrum CNS - SER

-- NRC Graph Site Specific Spectrum The Newmark Spectra, anchored at.15 g, termed design response spectra or ground response spectra, is defined in the Catawba Nuclear Station FSAR.

Attachment.2, reproduced from Figure 2.5.2-7 of the FSAR, shows the Newmark spectra for 0.5, 1,2, and 5 percent damping. A complete discussion can be

.found in the Catawba FSAR,.Section 2.5.2.

t The Newmark spectra was used as the basis for seismic design of Category I structures. The staff concluded at the CP-stage (CP-SER) "... that a horizontal-acceleration of 0.15 g used with an appropriate response spectrum was adequate for representing the ground-motion for the maximum earthquake."

The "... appropriate response spectrum..." that was used was-the Newmark spectrum anchored at 0.15 g.

During the OL (Operating License). review stage, the staff identified'a

. potential problem with the shape of the' spectrum used to define the SSE design for Category I structures and. equipment.

It was at this stage that the staff

' introduced a site-specific spectrum for Catawba. The staff constructed a site-specific spectrum that was stated to be "... reasonably representative, for-the Catawba site..." by averaging the Wolf Creek (NUREG-0881) and Perry (NUREG-0887) site specific spectra. Attachment 3 is a reduced copy of the 27 inch by 32' inch graph provided to Duke power of the staff provided site -

specific spectrum. 4dditional informa' tion can be found in the Catawba Safety Evaluation Report (NUREG-0954), Section 2.5.2.3.

In this section of the SER,

.the staff compared the site-specific spectrum to the Catawba design spectra

and observed the following:

"(a) Between the frequencies of 10 to 30 Hz the Catawba design spectrum (Newmark 0.15 g ZPA spectrum) matches the site-specific spectrum reasonably well.

(b) Between the frequencies of 3 to 10 Hz the site-specific spectrum exceeds the Catawba design spectrum by 15 to 16%....

f*-

3 k'

.a 3,

v.1 t

O L'

(c) At-frequencies less than 3 Hz the Catawba design spectrum exceeds j'

r the site-specific design spectrum.-

s (d) The synthetic earthquake time-history spectrum, discussed in Section 2.5.2.3(2), exceeds the site-specific-spectrum at all frequencies."

i t

Since the staff provided site-specific spectrum was 5% damping, the corresponding.5% damping Newmark spectrum was used for all comparisons and subsequent work.

Ly In' order to satisfy.all of the staff's concerns related to the shape of the q

spectrum and how the~-input spectrum represents the site characteristics, a :

composite spectrum was. constructed.

The composite spectrum was constructed from information provided above, as follows:

1 The staff concluded "... between frequencies of 10 to 30 Hz the F

Catawba. design. spectrum (Newmark 0.15 g ZpA. spectrum) matches the site-specific spectrum reasonably well."

The composite' spectrum uses the Newmark spectrum (design response spectrum) between 15 Hz and 30 Hz. 'It was decided not to use the Newmark spectrum in the 15 Hz to 10-Hz range because the site-specific spectrum is higher in these-

. frequency ranges.

'. Between-15 Hz and 10 Hz the site-specific spectrum was used for the-composite spectrum.

'The staff concluded "Between the frequencies-of 3 to 10 Hz the site-specific spectrum exceeds'the Catawba design spectrum..."

'Therefore, between'3 to 10 Hz the site-specific spectrum was used for the composite spectrum.

- -The. staff concluded."At frequencies less than 3 Hz the Catawba design v

spectrum exceeds the site-specific design spectrum." Therefore, for

' frequencies less than 3 Hz the Catawba design spectrum was used.

LTwo additional attachments are provided as information, as follows:

, - Graph showing a comparison of the Newmark, site-specific and composite response spectrum.

- -Attachment 5 - A table-listing the control points for the composite response spectt'um.

4 The staff's concerns rela' ting to the shape of the spectra, the input response

.. spectra representing the site characteristics and meeting the minimum power spectral dencity requirements have been addressed and Duke power believes the Leoncerns have-been reasonably satisfied with the use of the composite input

response spectrum. 'i.

+.

m

. Composite.RS from the DRS-G the Site. Specific-RS:

(SSE Response Spectra anchored 'at O.15g ZPA) 10.0

~'

=i i lll ri i 1 JJ

- a i ig File :.C1 SITE.rs Damping =.05

~

1.00 -

_m

~

~

" ~

~

c e

~

o c

N

~

E I

e

,4 8

/

u

/

1

< 0.10,

/

_.. __... L.

C I

/

t

~

[

Z

/

F

/

l

)

PC Frogram RS PLOT 0.01 fIIII

. i

_a _4._. 4_

iilI

          1. 88

. i 1 i I&

O.10 1.00 10.0 100.0 Frequency ' (Hz.)

4 l

tigure 2

.m

-- - ~ - - ~ ~ ~ ' ^ ~ ' ^ ~ ~ ' ~

30

\\

s/

\\

X

.20M-f,^/ A,\\ 'yNNNN A

/9bk[f X ^ #\\X WM s

p

Q gj;@@<X ooF58@

K

\\

N

\\ //A// AA M/\\N s\\ /

\\/ \\

/

V W.

'A

>" "x e *(N Q

W X$//f(# )A

/X X'\\%W X/N W

X A YWI WI# ^ Y\\WWNME M 6 N.K'OGK f X( /x X Ys'sXxX//x'XI ^ - -

5 4

</

x

\\

Il XMM&' <^>('>d82MM 'XS s

3 i 5 mx-*

x xmx xww, A

g WhWSM NXOhlY 3W C69M$s26 XNO%sj i f 68 x

$ $ 80 C

MC Y$N5 S

X Of /

\\/ \\ //X /X

/\\ X NX NN

  • ~

V W//^/ X t

/\\.

I y *g '

%\\

/ \\ /[/ N/\\^

Y \\\\M

/ \\ ////YL/\\ /\\

r ANNY X/N /X /\\

X \\ WNX VNVX

/\\.

b

[

[

g s

\\

\\

o8Y

\\

MNGC<//X' X

^x X WMxA@W /<J f'N t

[3 *4fdXx?W /WX82M'MN/\\/

/

/\\ l/ 'o. />I/VY UU bo' T A DESIGN RESPONSE SPECTRUM, 2

h.'

CATAWBA NUCLEAR STATION

/

/

j Figure 2.5.2-7

/

/

'c o,.

/

/

'*do

.\\ /

/

~.an,,m.s

,.uxn O.050.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 Undomped Period (Sec.)

\\

r - - -

w

. y un

.c Z

ltEG. GU!DE I.O el.42g y /\\/v AvrRAGE n[$PON';E SPEClitA 5

l

. w GENEHA1ED FROW DESIGM -


DESIGN SPECTRA PER

,.J TRANSIENT MOTIONS HEG. GUIDE L60 $.!3g

== w. 4

=..

g a

+

N l

l s

{

~

N

\\g

,i

. ' /,. ' ' '

3ox,2 s

'/. f';

/ / =,/

,e

\\5 1" __]

s x

,f f

s

/

'4

\\

/

\\q L.

5%

.' c v

w j'

)

A.

/

/

/,

Y l

f\\

\\;

f,

'~

/

'l

?,

. I ', '

'so /, l A f.

~

i

?,,.

., a.

.--+.s- ~~f/ y.

--.yl.

l-D s. --

pw

,4 y'-

y.j~_

.k j

to-

~

y

. L..-

?

.p

-r ys

.c

, l' p

r

/

/

{~~

y

\\

/

,'g

.l

/ '\\

. ]. X,

~/

\\

/ NI

/

h^.>b /

[ ,

~ $

-T~TJ-Q t,7%

  • y.

f

./

s

's' I

/

/ ;-

n t

/

3 A,,%

~7 ' / Y\\

^

g' :. -pt-G i-.. M i

i

/ /, s.-

?

l/e./)

'7)/x g/he sf.4

'.', @N,g Qe*

A -f. s s

N

~,,'.

A // N< x'

. s

/

vf

</ -A

.( xsfys s'-

A

'5/ N' s

(

6,,K ylfi N N

'.'. /[/j' _.s N ^ N g

' /.A/

/ ls

,A g

y 4

3 g//g/

[

s 7

/2,/N N/s N

N

. NNyN

- 'e f,/ / e.

jx

,A N4 s

s

.,p. j,y,X N x'

'. b' 'f

,A/(' sQQ'// /, 'N X

.N;

'e '[f.g 1/

x

&_ j'7'N l'M

/f/'\\ / &c'd22h' /' /'\\ /x 'N s

Nf.

[9

[' f

[ /?)y%M'f,,/ 'y j x

h y X.'/ A /g'\\ j_ ',/ /

f'

)_<,g,y t' './NKNY'A,7 N/ /_af

$hi hh

)

~

,k,.

~

A p'

,'I N

/

/

x r

. _. P'_ _ _(

j

/

.p, AYf

..w_

s _._

V

'\\

'N "XN y 3

'X

/

/ N.

Y

@h#$~ kh/

b,j k,/

s N

X' f

x s

x:,

j 'N

\\x/'x/,X.g 4 s

9

%/

s A ^

N

//

. X /N A N: ex sN /

N /// /x Nx x v

i;'i q -N X X,i'l

^ //

/,^

cN 'x1NN s,A A(f,

' v',^

A. vQ f.', }'SfM VT, /, *[

,^

^

).y

'} 6'/NJ/

['

'/ ///- / /\\./\\.h/N[\\.\\N 76 ^/ /D\\ X @

x. $:s N ^

\\

.i/

\\\\ \\///[v^/

,^f,^..

\\,-A s

'h.g\\d d % //

v/'N JXj 'N \\ X<X/ / 7'.,X

-'N.X ',

s

,$O X9 'jX'x'/

/'s /xN e%V/

g^s /x N E'

Y _f

'* /

N

/

h

' l

[l

' f

? Y 'l.~,I

/,'//lQ /;Qf&

Y

</

~

s

/ /

xN N/

N:'N

/

N.)x N \\ s.,fD'M T

/j/.,,/

'i X. / /

A

// //

/

s s

ay

-/ /

7sG

/

/

/

/

s N ys

/

g j/

's

/ [

'N

\\

s

\\

/

/

N f(

/

,/ 'N s'

~

s s

s N

/

s M/

./'wi'td l'illi'dMfAkh m b tfEd,NM5 s

g

.s w

a.

.oh...n.h.n.

.4

.o a rP9 r

-a

,o m

Undomped Period (sec. )

IE

,m

' MdL :...-..

n

..-l.

,y l

g g

l j

4.

w.

j-

)

i F

e L

Design

Response

Spectrum for Direct Generation NRC Site Specific RS. Catawba.DRS'O 0.15g.~S Composite RS for Direct' Generation i

10.0

- i I i lll

- i I illl

- i i H_g File : CSITE.rs Damping =.05 4

su'8%"

1.00 e

pi g h5 y

44 e

s C.

f

/

a i

e o

o< 0.10

/

/

____ File : C1 SITE.rs Damping =.05 l

/

PC Program HE_ PLOT till 11ll Ill!

0.01

. i

~

O.10 1.00 10.0 100.0 Frequency (Hz.)

g(~w-n-

' c' Catawba Nuclear Station Composite-Design Spectrum for Direct Generation Techniques SSE Response Spectra Anchored at 0.15 g i

12-01-1989 RS File: CISITE.RS No. RS Points:

21-

[.

Damping:

0.050 Pt Freq

' Accel 1.

0.25 0.035600 2.

0.33 0.061900 3.

1.11 0.208200 4,

1.43 0.268100 5.

1.67 0.313100 6.

1.82 0-341300 7.

2.00 0.375000 8.

2.50 0.375000 9,

2.86 0.375000 10.

3.33 0.375000

-11.

3.41- 0.375000 12, 4.00' O.410000 13.

5.00 0.440000 14.

6.00 0.420800 15.

6.67 0.410000 16.

10.00 0.340000 17.

11.11 0.320000

18.. 14.29 0.250000 19.

15.86 0.223100 20, 33.00 0.150800 21, 33.33 0.150000 Frequency - Hz Acceleration - G's 6

1/1 e

_