ML19329D634

From kanterella
Jump to navigation Jump to search
Min Containment Pressure Model for PWR ECCS Performance Evaluation
ML19329D634
Person / Time
Site: Crystal River Duke Energy icon.png
Issue date: 07/07/1975
From:
Office of Nuclear Reactor Regulation
To:
Shared Package
ML19329D626 List:
References
CSB-6-1, NUDOCS 8003160258
Download: ML19329D634 (8)


Text

-

~

oO BRANCH TECH?i! CAL P051TIO:4 CSS 6-1 MINIMt"4 C0! iia!!.!'E",T TEE 5502.E MOCEL FOR PW ECCS PERTOT%';CE E'u.'.UA!;0:1 A.

aACCCJ!;3 Paragraph I.D.2 of A;;endia K to 10 CFR Part 53 (Ref.1) requires that the contam ent J

pressure used :: evaluate the perfor ance capacility of a pressurised water react:r (;;R) emergency c:re cooling system (ECCS) r.ct exceed a pressure calculated c:-servatively f:r that pur;cse. It furtrer requires that tr.e calculatien in:1ude inc ef fects of e; era: :n of all installed ;ressure-recucing systems and ;re: esses. inerefere, the foll:.<ing bearen technical position has teen develc;ed t.3 provide guidance in '.nc ;erfor ance of rin:

9.

containment pressure an nlysis. Tr.e a;;reacn d:s:rited belc.: ap; lies enly t: the ECCS.

related contair. ent pressure evaluation and n:t to t*e contair ent functicnal ca;a:ility evaluation for postulated design basis accidents.

8.

BRA?ir_H TECF':!Ct.L ;05!!E 1.

I npu t I n f e r__i: i: n ':e ;fy,1, a.

Initial Cent 3ia Jn: * ;eryl Cc-diti:ns The minirum ccatair e.t gas :

cra:are,..ininum centair..ent :ressure, and r:axies: h r.idity t>:at r:ay te er.::sniered u. der li.iting nomal c::r a:

r-

. )

conditions should te used.

b.

Initial Outsice Centair ent k iir-t Cenditiens A reaso9 ably ice a.-bic';t temperature external :e tre :en: sin ca.: 5":;id ?: ust:.

1.

c.

Conteir ent V:lt. e The raxic.un r.ct free c:n: sin en v:lu c se:ald de used. This.ari a. frce volume should be d::cr-ined fre-tt: gr ss ::n eir. ent solu e rirus : e v:: es r

i of interdal stru::ures sa:h as walls aad fic.-s.

structural steel, -aj c:::: ent, I

.i and piping. The irdividual volume calculatio..: Lt.:vid reflect ;*e un:er:s tn:/ in l

the con;onent volu es.

2.

Active Hea: S i r'< s a.

Soray and Fan C:olia-E.- s te-s The operation of all en;ir.eered safety fea vre contain ent hea: re : val syste s operating at raxirun n:at rer.cval ca;a:ity; i.e., with all c:ntair.9ent s; ray trains c,' crating at maxi.s. fic,, c;nditions and all e.ergency fan ::cler units operating, sn:uld be asse.cd. :n additicn, tre cinica-- te : era:;.re of :ne s:cred water for the s; ray c:: ling sys:cr and tre c:aling water su;; lied to tr.c fan coolers, based on te:nnical s;ccification limits, sn:uld be assured.

I D**D

  • 0 s.2.1.s.3 1

S-

=

oo o

8003180 y

03 LUG (cerat0ng Weense stage. apoWcanas sKuO brevCe a 6eTaVtrnsg av e

passive h ' sinks, with a;;ro;riate di..cnsi ns ar reperties.

b.

Heat Transfer Ceefficients The following conservative concensing heat transfer coefficients for heat transfer to the exposed passive nest sinks during the tiewd..n and post-blo4 : n ;5ases of the loss-of-ccolant accident sh:uld be used (See Fit,.-c 2):

~

(1) During tre bles.d:-, phase, assume a linear increase in the cendersin; heat 2

transfer ccefficient fren n. itial=8 Stu/hr-ft

  • F, at t = 0, :: a ;eak j

in.

'value fcur tires greater tnan tr.e raxica, cal:alated c:ncensir; sca; t-ans-fer coefficient at tne end Of bica :..n, using ne Tagami correlati:n (Ref.2), 0.62 h

= 72.5 raX W:

- P -

2 n

where h

= raxtrun heat trar.sfer ceefficient Stu/hr-ft

'F can Q

= prieary coolant enercy. Stu 3

V

= net frc: centair.:nt vah..-=, f t t,

= tim interval to end of ::10 :d:wn, sce.

I (2) During the Ics ;-ter., ::st-bled:v.n phase :( the a:cicent : 2racteri:ed :y l

low turbulence in

-e contain ent at-Os:ncre, asur-e condensing est trarsfer coefficients 1.2 ti es greater t!an those predicted Sy tre ac'.ida c:ta (Ref. 3) and given in Tabic 3.

1 (3) Durin; the transitien,m.ase of the a:ctd:nt, tet.cen the e-d cf P :a*...n a c the long-term ;:st-:le J:.:n Fase, a re:senably ::"e-vative ect : tu!

transition in tt.e c:ndensin; neat tr:nsfer c:afficic.: 5.culd to ass. cd (see Figure 2).

The calculat'ed ccndensin; neat transfer ce?fficients ::s:d en tne a.':ve et.!

should to a;; lied to all e.s: sed ;assise neat sinks, i:tr. etal ar: c:-:rc.c, and for both. painted and un;ainted surf aces.

Heat transfer bet..een adjoining raterials in passive neat sinks s aAd be :ased

.on the assu ; tion of no resistance to he: f1:a at the merial interfa:es. An exa: ple of this is the c:r.ta,in ent liner to con: rete inter'3:e.

I C.

REFEREt;CES k

1.

10 CFR 150.45, Acceptar.:e Criteria for E.-ergea:y Core C:oling Syste-s for Lignt 'r ater Nuclear Pcaer React:rs " ans 10 CFR Part 50. A;;cndix X, "ECCS Evaluati:n "Ocels."

2.

T. Tagami, "Interi- ;c;:rt on Safety Assessments and Facilities EstaDlis-ent project in Japan for Peried Ending June 1955 (?::. 1)," pre:ared for the tational Rea:t-- Testing

)

l

' Station. February 23, 1956 (unpublisned work).

i 6.2.1.5.

~

.%b t

~*

f a

I 3,

N. Uchida. A. 0/ '. and Y. Toga. " Evaluation of Post-tr.c nt Cooling Syste-s of Light-Water Power React.rs." Proc. Third Internatienal Conferen:e' en tne Peaceful Uses of

{

Atreic Energy Volure 13. Session 3.9. United Nations. Geneva (1954).

t.

- 6 I

9 w

- l-1 I

O

. )

1 i

l l

1 6.2.1.5-6

' ' l

.nb l

'a-mM

TABLE 1 O..

10CNTIFICATICN CF CC'ITA!'NENT HEAT $!*.35, I

1.

Contain ent Building (e.g., liner plate and external concrete walls, ficor, and su a, and liner anchors).

2.

Contain ent Internal Structures (e.g., interr.s1 separatten walls and ficers, refueling pool and fuel transfer pit walls, ar.d shielcing malls).

1 3.

Supports (e.g., rea: tor vessel, steam generator, peeps, tanks,.cajor con.;:ncnts. ;i;e supports, and storage racks).

4.

Uninsulated Syste.s and Cc ;ccents (e.g., cold water syste-s, hea. ting, ventilatien and air conditienin syste-5, ;u ;s, retors, fan coolers, reco-'aners, and tani.s).

5.

Miscellaneous E;ai;. ent (e.g., ladders, gratings, cle:trical cable trays, and cra es).

1 D

a mN W 'vY

. 2...k k

eg f

9 S

6.2.1.5-7

.l g g

i-

,TAEtt 2 HEAT $!M THERO:sysica pp. pCET!ES l

Specific The mal Densi3y Heat cergue:gyi i Material Ib/ft Stu/15.*F S t s / P. r. f t_. '_

Cor. crete 145 0.156 0.92 Steel 490 0.12 27.0 e

k l

l l

l y

~

6.2.1.5 8

.g I

n. m.. m.m e. m, m m..,,= _

m-nN= y m m.

m

..,.m, CX L

TAB 1.E 3 UCN!DA NfAT 7:2':$rts cotrr!CfE 3,

Mass Heat Transfer MJ s s H*at Transfer Ratio Coefficipt Ratio Ceefficig.:

(1b air /1'a steam)

(Btu /tr.f t.'F)

(leair/lbstead (6tu/hr.ft;.iF1 50 2

3 29 20 8

2.3 37 18 9

1.8 46 e

14 10 1.3 63 10 14 0.8 sa

~

7 17 0.5 140 5

21 0.1 230 4

24 0

G 9

4 0

1 i

I l.

I I

i l

6.2.1.5 9 1

g

d t.

4 7

/

2 1

des ive R

4 I

tn emn ia tno C

t e

f d

i 6

s 0

n 1

3 I

I 1

x s

ek rn e

ui m

CS u

I l

Ft o

a V

c o

e t

I e

l r

e F

e t

t S

ne f

1 2

m o

n i

a a

e t

r n

A o

C 1

5 4

3 2

1 s

"aW noM X saw<,.,S m $*0* as J*

qge aH u

r a

Qbb@3 cc@aw oa m*N

'mLo n

=

i i

li l

~

f 1

g

}

Figure 2 i

Condensing llent Transfer Coefficients for Static llcat Sinks uc0

~

o C

s.oo h

- 4. x h 7

o max Tagami P

[

linear l

.025(t-t )

T 9l3 stag) e I

h-h

+ (h

-h P

stag max u

v.

I c) a; l

1 x

I h

= 1.2 x h i

S stag Uchida Q

'A

. l (SEED i /

i g

h,=8.

i t p Time

' b I outlown i rcflood

=J@

s a

i c==='

Es w==

tF=

3

.