ML19317F245

From kanterella
Jump to navigation Jump to search
Integrated Leak Rate Test of Reactor Containment Bldg.
ML19317F245
Person / Time
Site: Oconee Duke Energy icon.png
Issue date: 08/05/1971
From:
BECHTEL GROUP, INC., DUKE POWER CO.
To:
References
NUDOCS 8001090582
Download: ML19317F245 (72)


Text

- -

F 4 p1..1*m.

~, , y,"~

k. ,. .s

, f

. ;h .+, *gr.. ]

4 . a.2.. . > - .

.r .- u .

.? p .Js,A:A ,.:. f.v,

~.- . _ . . < . , _ . , -

. v o. .

.a s f. ,s1 e> W J. ' . e .u G, y ,- r i v.;., Q- *f1

.x-;*

X.'.

-4 -e .c : q q>, .ex;.,./y - , m..a.n.

.S 4 e , , u .

. r -

~. d & l;f - ; ya

< 5 ,,

%si,' r *Q.c Q .1,. .3:< v'

  • r ,'- Q,. - 'i .
~ Ir ,,

s s

,ab,

..,.'~&,> . 'e U..

3 f af;, n,M -i seqi. ' ' , F, . -, ' f *.,,'*'n,

, 2,g).Q ..-g i. <

' b 4 %p. , . t '. -.. ,

. .i (A .' +- .

. .~

p . : ~. c. , v . ,, r ,

5, n *w .qc,e ^

.... g'lf -

' s;' *.,.* .'5- ., . -}*

s, . , . .- f. ;., , .,- . '. y " ? - <c c.,*

  • g

( p, j' H,p * . g.t, ..1.;4 ~#- = . ,

'6.- ..

s g... M J f ..jj ;'

,g,i,

.,.4 7,f  %*

t[. .C. s a

'.4 ,

. n, 4  :# , 4. :e^ - .?.~,/.yo'

'n-e ' '

~-

' g,N: ...e,.

" , ., ~

lgi ', b l1. G 'iD 1 '

i 4 ,~4 - ; ' + !.

l l ', L- *' . .;. ~ .Y.' .i

~* '

.' ', ($i l tlL s t Q

. " ? *- -

f .f'[. l ..

~ ,

7 y' '

'?^ .t

. y , ',..s 3

[i ,

. - 1

..., . . , , - - t. . ,

7, ,...' <- -

. - . g4 ... .s. , w 4w.e.

s ,, 3 _.s .. , ~ . - O,4. <

. j  % e " f - 'g. [ Y g#

.e-

[ J W-

, . **j.. .. -M o,,;- -

w./..

  1. m; n .f%al . g. m y* :

.% gyy@ yp t '

l Q.M: Jy%%pf R C:i j' & Z *~ . . . . .qn; ,e ,.

Qf [,fy rigs y };'". Q r tv +p

' .Ok ;t.,z D, f ; g

'f sv w- , 't i,.y'.- v. '.,

r 2y m-:* -]z1.. .Q . 3W.e?4.'.[c l Q Q'm-f.. } '

u, . m, ,r% . %u.m.~ga f.

.s~f'p 4.yap> gr >

, , L. . .

' s ~w%

'. 9

. .",W .t.$.~,,t.

.wr .. y y .. ; s x .w h ~

t.s a J t c

.c W s

,. w +

s f :,p .y.~..Aa

\

q, ,l . )q .m.ju,. ::,> ~ ~, . v

./

n'f,. .& }- g g r4 ,;p. w.c y. lA,%

, ,- y.

, { .%

. .'.v.

' '. lc..^$,h'y  ;'. . &, e . v .}. . . i. [ W< ;f,.-ye~

3,. d  ;

. ~ ,w, 1 ,

, .. , . ...~..*y *g.

.. w. .m t. m a., a. y.,. 9. ,~- 4.;g.,i ,,yc.p.  ;-

. , , . . ..y . , . s cq,... . ,. .v ep. . M. A,. . . . +~

,p

k. ..h l  ;  : . .  :, . . .- '

q h . . 4 ,., . .

M*('."-

. m ,.s M,,M n< N o W _M M u. m. n xv ,M _$ ,0?$n,$$_g$;$n_@ w n'.,f y .. q,1.

f t *

)m' ,%s .

- r j=f n& Q.W,*.2ll..,n.;;%g 9 y. . g .Q f %n~' bg > p ,;,p

.w{ g<i.-s. -[";nr[<Q;Q.a l% v .,iQ. . ~v a , w:

g_,, .Nwf%+Q2

. g a, ':

m* r 3. - ..

_s'3'.e.5.3.w,t '$ k** %a.m.d,r- n."s*..,.s.

w.#m .)[, m,'k..a

, mn'., .4,7. Q.g G j

'w

.w.m 4 ,

,,.' .7,

'x,,.Y*.. (7. *) p . .

b

,g .L

  • g .l 'l ,ra.'

s * .

, , te. v. f. 443 ,t.w*' Y * * *, e + 4

  • YJ *s  % g * ?*- 3,. N *4,.h . y .' a% . 3 j" y a i

, . , - t.

i..Q t 1

j.' .

.I.L. 3, m> t i, *  ? .A,,'...

J . 4M. .~,'t ,; , , ,,-M. i

/. 3, G' . . Q . ' * . n' y

  • y" , .

i *

-.e. v i Q s. :c *j,*',% 4. :s}. w %Qlk; m. ;h, ,

, ,. s  %,

a

< L 'tr, ' " y n , z1 ,y;p; ',

e 'a.q a l**y'$wll;T. ,' .

L '

,+

0. JWm * -' + ~" q s.f.Q'E*

ij

.a c  : s .Y m +, . n. A ".a:'

[ ' '. .^. d~ . s. r. " . . ,

,.  ;.m. 0 ,e.%... (

-m,.~,.5,..v. ~ . - . , -Y.V* W .. -'.% qa * . 4, f .,. A., s , .

'.d

b. eN g , t '. Y [J'*#,I k . , ,[ ,,> '.';#'

~, . .

.~.

,, . , ' j

%. .e, .

>. c i.y r .. . y . ..<)

p..

i , n.a g $ .k  ;". y [. J~ . x. ,',,,'7', w :. .hh.'.[w. .

a g * 'I -

w' 1 ,

y' ,'/ -.. % ', e

,6 k. {},j, 'A

.'gvd4 >~3  : *F##b' t .  ?,,..' '.,,

- ?*s ~/ ' .,' ' , . .f 'n k-4,f , =

. j , ' i.

% 4 * ,

,4 .n

    • J s

.. *,., %i.-.e.p

..a y / '. ,' .t 4

. *i*6

. ;d. ,9. *.,ps .a.-

4 b[- ,,* *' *I-5't' 4 M.. . .' .  ; [

- . . , 5 *

,, S E.p, -s...[. , , .A..>.d..e< s)p*'"'[,f. ff

%;g -)

4i.- . tb ' . . c ,,

s i, -Q ,*ky. . J) +, . . -o ,: # ~N f , , , . . .

- ,. *'(

6 $ 4 e ,.*,

i.i ,4 e;p 's ,

  • i " ,, % /. ."  ; w . 4..'t ',

N t.M

  • c1 . ,
  • c-

-r

'v'

- . , . . , ,g., Qvl', $ .s.'

$. t y V w8 % .s ", l.y ,aeJ ' M' C v 4

4 .e E

. ,- _. o- ., pr3zv w ; .

J-

, s.> *;s , * ,4,:.-l

.,e, r%,  ;, . ,t. y . Ls. .

. s: Q . P,= .~-

s-

-r .

? - ,.r, w, ; v?'. . , ~ ,1.W.a-r.

p

-4 ,v e ' A.

s%. <n.*P. -.r. - '

<-}

,J

i. 7. -Q;J..g

, , i , r -

-, m r W r.

(

e

..,o f fk N p.,. $, e

  • N { ~ * . ,l

,3 . .f e.. . .- L.w. r....i .m,.T'

'b e,. ys,m < *. # PV. i , . - -.t 3, .p - - .a

,r t.. ,n. l ,-.,c  % ,- Jx y q., %. . ,.-. , %. , . .y,.., ts* ,eN w* .

,s ,em,n ,

r

.aq.s. > * : : ~ + g, s

,L .s s','Al

,  % f f R .:  % ,. 4 sY. '

.^,. ; Q , y'L u Q *;,;n,,:s m.

t -

>i jWen.[, G .".', ! 'y : i " s ' l.% . - J * ': [,*',W k. 6' ,j '

. n .J

,pM 2,,;2.5 ,4 r,.,v;f. +c Q:HW s.

M; ;c

.r ; * ' . %. .y,. . ,

s. r. . r....,.J,r.,'"'-

.- , c. 1. . . , > O.,e

~

.' t ,c i~.* 4 .

t; .

v .a. ;%vr .

  1. . i.

w m <s y 1.5u.i..s%

2 - ..:  !

l

,.e..m. m.;Q 1 c - j .. w u.w.w ;--

l; i ' '

.a w.a.-~..-

.a m :y . a.p.a - r, .gfp= .,= .1 .

yy

  • \,e i

- .' y y, ,., s - ;

4 .

y17 ,1- a, - 14; :c s r r i <t ,. &^yygg;j.;y.q

+ M D

y t?4&. ,

,.~g, ',y w- pyy. f'3 ,

.. 5.( c -

a ,s  ; s . c: n ,-

f .

2 5x

?! , s .,% o %c.

t 13'J L i lCN T ii E

  • i .' E ilk !n! ' F ilC 'Y * -

. . c .4 l

,,c .

" 7 vJ ,1

. .p. , 4 ,..,. .. ,.-

v c i ., .mw rq . . 4 .

m .9...: - ,,..t. . . - ,

i G.#,m$.4.a.y x 3: e

, .u. t ,, . ., o; $w$~

pp.

s

_ . - r. ' m. :,M t M E .,,, ,.E O-

.(

o P'~ n.,!!,0 .,5 .A. I 53 d..i 'J.'o --.gw. u m.'7

, ., , . uN.. i t

p tL

,t

, , . , . .a 1

t

,J ,r e.,e w, p1 : L, .J n , 3 :i i u I ; Lw7,., r ,.

11 , M. .

l wp r .%,N. +

9. ;1 p& -,,

i ., -

,, t, io 4 e,i .,.,!..UL c

, s .d; .a A ,,. 44 H , v. t ' ; y' N/ , . . ,d ( 'm.

si t L - , mii -,b

( ,U b b 1 il 4 ys,b-) i

% m - . . , ahs R!Y.';,iC e

' it n ; i a b ,o d[ ;,) .

J 94 .. ,.

t r,a l b i h. -. ,c , - y44QZpf 4 *,s..'A.2 M ,f i g.m ., ;i > M' g: y 4 o.,,H ,H--o t r,. .

3 ,,o , i 1. . .a - l q

y ,,A.

. , 4.

. e w> -- -1}

~

l. v%pr q. g gep3 A, %p.4.N7
  • 6 < %m r,4p- n e .-

.' t.).! \.N,.

.vv. n .

~J .

U.i r'E iC '. ! ? ' E R E TU k N '*H ,,

2l l M. ,. s.5.,8b,

- d y C.<.

.s . h,M .., N g .#.<

.. [,i

,*% 5 i y

,. Nkbh y,

. g. . g. % 1v, --. ,m.jt i

.*= s

! ) ,,

_. _ _ _ .. --_.u es , - f ,,4 u

d,N.p.bb.y~n

Eg ,0. , &

hh,Y I

. -Q Q?f. ~, Xl D .- )

r G };' ' :<Q[ &g.p%,

%rpf:% y:. t. . -Q\

b '

2 ___ m k[d5,nkM}Y'I M~w +M.n%

fp.<J i*.M v . '

-g , , .

q~m u wy n ,

.' ha ~

.Q:m.

w

-s+

kW s r . < :iW%)Jg - -

W.,fQ< 3%y&., s x. '4 p%.,

r.o - t

  1. jk'Ec.%.

.#. m m..)y s-Weq.V

  • n. a,,. - r 3

t . .es 9 f

.f.. f,e.o?. y 0.% m.,

N h5 5

y 'm Y? *
Y JN Nl CHIEi N *g. rh. sc y f n b' - 9 s..xhN.

S&w' u

r "

f cmsn neconos nmcw -

MphM~@h~pg

-,n ~- A-

+ -

- Q. /f 'E.~ f N m;m * + . .eh; .,

~) .i%, s aK'q+,t.N $n*>e d; + 'n I

[1M s fy sa fe?N. .

J wa vW' -

.i Or w M 4, W+M..&.% 1.

%P l 9 ;.? (

?y%s y WO_. mh. ~ Nw.~. .~n._, mw.?"97m.x'?%.+wlLnN W M, mW,. w @.. M B4I3, M G . _5 $:s .b_ '

.,  %' w?, - _s ,MM n .,w o yk . W .wm . kmg ...m

s. % c

% M Lg #.m.f.%_.m

,,,9 .

3 $ 4 W: W Q q, & *  % 4a MGW

. a Rh& W@ y ,.&ygl4l(-% .%.  % A @$,f,n ';;. 4QQs%w),y, dNVegg .: ( . q .,

qgMW w am b.g4~(~ Q M ;; M Qbs~,.U%,,*yf W.'r ,, t W G. v.Q -. - y o %yn n. .c "tW'? %jp^Wjfw n@'?Q r n&ugs%g.w@%

+

2 . W .

$.Q,p*4,b; w a s f&sQM -1 R$

hyWy:ff"fY* <

  • Hyrdaj QQ h&ThQTCW&W?Qh)&s&.n&'&.na:

Q.% n k &n.k C &. &. yFl$ &w j h M,.,$h M N ,N D E 51 %55C.'b bedddh M JI't e' 'M.O ,' ' ' 'y'"m'Q*M&. a#

n .

&4 hNr%$&]W.f y ' '

$ QW, Mfg $.-2TV?*Y.&.m' w ~?"W "

i

., /

j DUKE POWER COMPANY i OCONEE NUCLEAR STATION i

UNIT 3 .

1 1

i i

i l

INTEGRATED LEAK RATE TEST OF THE

, i REACTOR CONTAINMENT BUILDING f

i i

e i

4 PERFORMED BY DUKE POWER COMPANY WITH TECHNICAL ASSISTANCE BY i

BECHTEL POWER CORPORATION i

  • s i

2 r

-- -~~ ,w m- -

-4 to r"

m O

m O

O Z

-4 m

Z

-4 in J

O

i 1 l TABLE OF CONTENTS i

SECTION PAGE i

1.0 INTRODUCTION

1.0-1 1

2.0 -

SUMMARY

AND CONCLUSIONS 2.1-1 2.1 Synopsis 2.1-1 2.2 Test Organization 2.2-1 2.3 Initial Test Criteria 2.3-1 l

2.4 Test Results 2.4-1 2.5 Error Analysis 2.5-1 3.0 DESIGN INFORMATION 3.1-1 3.1 Reactor Building 3.1-1 3.2 Measurement System 3.2-1 3.3 Pressurization System 3.3-1 3.4 Recirculation System 3.4-1 3.5 Computer Programs 3.5-1 4.0 CONDUCT OF TEST PROGRAM 4.1-1

( 4.1 Local Leak Rate Test 4.1-1 Integrated Leak Rate Test 4.2-1 4.2 1

1 1

4 i

9

-www -_

a M

  • Q 2

-4 J3 O

O C

O

-4 O

Z s'

i

)

i 1.0 . INTRODUCTION i

The preoperational Integrated Leak Rate Test (ILRT) of the Oconee Nuclear Station, Unit 3 Reactor Building was satisfactorily completed on May 7,1974.

The testing was conducted in accordance with the requirements of FSAR Sections 5.6.1.2 and 5.6.1.3, Technical Specification 4.4, BN-TOP-1 (Bechtel Testing Criteria for Nuclear Plants) and ANSI N45.4-1972. The absolute method of testing was employed with containment temperatures measured at 24 locations and containment dewpoint temperatures at two locations. Leakage was measured at design basis accident pressure (59 psig) and at half that level (29.5 psig).

A measured induced leak was used to verify results at both peak and reduced pressures. Interpretation and final analysis of the test data show results well within the specified limits for this containment, which has a maximum allowabic leakage rate (La) of 0.25 weight percent of the containment atmos-phere per day at a pressure of 59 psig. The reduced pressure maximum allowable leakage rate (Lt) was 0.176 percerat per day at a pressure of 29.5 psig. The leakage rates for the Oconee iJnit 3 Containment Building were found to be 0.0242 percent per day (Bechtel calculations) and 0.0248 percent per day (Duke calculations) at 29.5 psig and 0.0209 percent per day (Bechtel calcu-lations) and 0.0215 percent per day (Duke calculations) at 59 psig.

I

\

1.0-1

9 e

il3 O th OC 2E OE rM C

ea o>

2

<a 2 0

1 i

1 1

1 1

l 1

i l

l l

l

2.0

SUMMARY

AND CONCLUSIONS .

2.1 SYNOPSIS

- The successful ILRT was performed in accordance with Test Procedure TP/2/A/

~

0150/03 as approved for use on April 15, 1974. This test procecure is based on specifications provided by Bechtel Power Corporation.

The preoperational ILRT commenced on May 1,1974 with pressurization be-ginning at 1400 hours0.0162 days <br />0.389 hours <br />0.00231 weeks <br />5.327e-4 months <br /> on the same day. Pressurization was stopped at ten (10) psig and a containment entry was made to inspect for leaks. The reduced pressure (29.5 psig) ILRT commenced at 0045 hours5.208333e-4 days <br />0.0125 hours <br />7.440476e-5 weeks <br />1.71225e-5 months <br /> on May 3, following a twelve and three-quarter (12 3/4) hour stabilization period, ran for a duration of ten (10) hours. Following the reduced pressure test a five (5) hour verification test was performed which confirmed proper overall system operation. The containment was then pressurized to 68 psig to conduct the 115 percent of design pressure portion of the Structural Integrity Test. The containment was then depressurized to 59 psig in order to conduct the peak pressure ILRT.

The peak pressure ILRT commenced .at 0745 on May 5 and was conducted over a period of ten (10) hours. The ILRT was followed by a four and three-quarter (4 3/4) hour verification test. For the ILRT pressure cycle see Figure 2.1-1.

Instrumentation consisted of one (1) precision pressure sensor, twenty-four (24) temperature sensors and two (2) dewpoint temperature sensors which were used to measure containment atmosphere conditions during the ILRT.

Leakage rate data were recorded at fifteen (15) minute intervals for both the 29.5 and 59 psig ILRT's. Reactor Building atmospheric conditions were allowed to stabilize prior to commencing each ILRT. The imposed leak rate was es-tablished with a flowmeter at a known, pre-determined value. The method used to calculate the Reactor Building leakage rate was in accordance with ANSI N45.4-1972.

\

2.1-1

- +

2.2 TEST ORGANIZATION Duke Power Company Oconee Nuclear Station's Performance Group Unit #3 had overall responsibility for the Integrated Leak Rate Test. The testing activities were supervised by the Performance Engineer with technical assistance from Bechtel Power Corporation. See Figure 2.2-1 for organi-zation chart. The test personnel:

A. Test Coordinator (and 1 alternate)

Responsible for all ILRT activities.

B. Data Engineer (2)

Responsibility for testing activities on assigned shift.

< C. Computer Operator (3)

Responsibility for computer terminal operation, inserting and receiving test data.

D. Data Takers (3)

Responsibility for reading and recording test data.

E. Operators (2)

Responsible for operating and maintaining the pressurization system.

F. Instrument Technicians (2)

Responsible for calibrating and maintaining the leak rate instrumentation.

G. Computer Programmer (2)

Responsible for writing and maintaining the leak rate computer program.

H. Technical Consultant (2)

Advised the test coordinator and data engineers of the technical aspects of the test, analysis of the data, and evaluation of the results.

l l

1 l

4 2.2-1

o 2.3. INITIAL TEST CRITERIA J/i Pressures:

4 1

(A) Design Pressure 59 psig (B). Peak Test Pressure 59 psig .

l '

I (C) Reduced. Test Pressure 29.5 psig Leak Rate:

(A) Maximum Allowable at 59 psig La 0.25%/ day I

(B) Maximum Allowable at 29.5 psig Lt 0.177%/ day J

f Temperature:

(A) Minimum 60gF (B) Maximum 100 F Volume:

^

Containment Internal Free Volume 1,910,000 cu. ft.

l 4

e r

i e

i a

I i

i 2.3-1

. . l l

2.4 TEST RESULTS As shown in the computer printouts and graphs in Section 4.2 of this report, the calculated leak rates for both the reduced pressure test (29.5 psig) and the peak pressure test (59 psig) are well within the allowable leakage rate limits, thereby verifying that the Reactor Building is extremely leak tight.

The leakage rate test results were as tabulated below:

Maximum Allowable 75% of Calculated Test Leak Rate (%/ day) Maximum Leak Rate Reduced Pressure 0.177 0.1330 0.0242 (29.5 psig)

Peak Pressure 0.250 0.1875 0.0209 (59 psig)

For purposes of establishing a base for future tests, the leak rates for the preoperational tests were 0.0242% at 29.5 psig and .0209% at 59 psig. These calculated leak rates were obtained by using a linear least squares fit of the fif teen (15) minute leak rate data taken during each TLRT. These calculations are based on the total time method as described in ANSI N45.4-1972.

The ratio of Ltm/ Lpm as defined in Technical Specifications 4.4.1 is 0.0242/

0.0209 which is greater than 0.7. Therefore, in accordance with Appendix J to 10CFR50 the maximum allowable leakage rate calculated to be [La(Pt/Pa)lf ] = [0.25(29.5/59)3(Lt)

] = for

.176 subsequent percent pertests day. is The verification test consisted of imposing a known leak on the containment at the end of each ILRT. The verification test is satisfactory if the integrated test data and the verification test data are within 0.25 La for the peak pres-sure test and 0.25 Lt for the reduced pressure test.

At the peak pressure the imposed leak was 0.1659%/ day which is equal to 11.03 scfm.

At reduced pressure the imposed leak was 0.232%/ day which is equal to 9.25 scfm.

Comparison of the imposed leak and the calculated leakage for each test are as follows:

Reduced Pressure ILRT (29.5 psig)  %/ day Leak Rate calculated during ILRT, Ltm 0.0242 Imposed verification leak rate = Lt 0.2320 Total 0.2562 Upper verification limit = 0.2562 + .25 Lt 0.3002 Leak rate calculated during veritication test 0.2210 Lower verification limit = 0.2562 .25 Lt 0.2122 2.4-1

Peak Pressure ILRT (59 psig)

%/ day Leak rate calculated during ILRT, Lam 0.0209 Imposed verification leak rate 0.1659 Total 0.1868 Upper verification limit c 0.1868 + .25 La 0.2493 Leak rate calculated during verification test 0.2090 Lower verification limit = 0.1868 .25 La 0.1243 Comparison of th- ve shows that both verification test results are within the plus or minus 0.45 La (or Lt, as applicable) limits. The difference between the total of the calculated plus, the imposed leakage and the verific-ation test results is attributed to the fact that the accuracy and sensitivity of the ILRT measuring system was better than the accuracy and the sensitivity of the flowmeter.

i The data and results of these tests correlate closely with the results of

Oconee 1 & 2. Therefore, a high degree confidence exists that the ten (10) hour ILRT's are valid and that the leak rates at both test pressures are essentially zero.

j I

d I ,

1 I

I-f l

l 1

1 2.4-2 1

1

i 2.5 ERROR ANALYSIS The leakage rate in weight percent per day is computed using the absolute method by che formula:

LR = 2400 1 - To P (1)

H _ T Po_

Where:

Po = Initial Reactor Building absolute pressure corrected for water vapor pressure.

P = Final Reactor Building absolute pressure corrected for water vapor pressure.

To = Initial Reactor Iluilding mean absolute temperature.

4 T = Final Reactor Building mean absolute temperature.

H = Number of hours held at test pressure, i change or uncertainty interval in LR due to uncertainties in the measured variables is given by:

oLR = dLR . o LR . o + LR . a

+ dLR . a dT T (2) dP P0 To Where o is the standard error for each variable.

The error in LR after differentiating is:

- I 2 2

,e\ 2 1

eLR = 2400 -To . e p To P e pg + -P + To P . e TZPo T (3) 1 H TPo T Pod TPo To/

j - _

Where: e p =o p ep =o pg "To " #To *T T The analysis technique, based on equation (3) above, was verified by K. Horoschek j and E. Weipport in " Tightness Investigations on Reactor Safety Pressure

. Vessels," Vol. 13, No. 3, March 1961.

I For small values of LR:

, T = To, P = Po and ep =e p,e7 =e To 4

j 4

2.5-1

Therefore, the equation then simplifies to:

eLR = 2400 - "P , 4 4 or eLR = 2400 2 *P 2 *T H P T (4)

Where pe = error in pressure which accounts for the error in the absolute pressure measurement instrument (ePT) and the water vapor measurement system (eg) and where eT = err r in temperature.

ep = +

(ePT) ("Pv) -

e = Absolute Pressure Instrument Accuracy Error PT e py = Dew Point Sensor Accuracy Error (Number of Sensors) h e = RTD Accuracy Error T

(Number of RTD's)h To develop a numerical value for e LR it will be assumed that:

H = 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> RB mean absolute pressure = 60 psig RB mean absolute temperature = 539.6 R (80 F) based on 24 volume weighted dew point temperature sensors RB mean dewpoint temperature = 70 F based on 2 volume weighted dew point temperature sensors Substituting the instrument accuracy values given in Section 3.2.1 into the above equations yields:

e = + 0.001 percent full scale

  • Value of full scale repeatability used. This number is more significant for the error analysis than the absolute accuracy.

epy = + 0.5 F = + 0.353 F

/2 From the ASME Steam Tables at 70 F:

e py = 0.00437 psi i

2.5-2 t

i d

, ep = (0.0010 psi) + (0.00437 psi)2 j ep = 1 0.00448 psi i e = + 0.12 F i

i

~ (24)h .

e = + 0.0245 F 1 T -

i j Substitution into equation (4) yields:

_ - g

eLR = + 2 0.00448 + 2 0.0245 2400 l 74.7 529.6 10 4

eLR = 1 0.0257%/24 hours i

t 4

i i,

i 1

I i

4 l

i i

l t

s 2.5-3

s INTECRATED LEAK RATE TEST PstESSURE CYCLE 0030 2157 70- -

Structural Pressure (68 PSIC) 0311 1022

~

Leak Rate Test At Design Peak Pressure 50 -

m r

OQ c

et m 40 - 1900 Y n

> S 1145 8

un r W g M 30 -

M n Leak Rate Test y At 50% Design y Peak Pressure m

20 - 2400 1945

~

10 -

1357 Informal Leak Test 1559 1

+5-1-74 -~ + 5-2-74-**-5-3-71 *+ 5-4-74 -*+5-5-74 -**-5-6-75 ++ 5-7-74 -*+- 5-8-74 -*

I TIME 4

s REACTOR BUILDING INTECRATED LEAK RATE TEST ORGANIZATION TEST COORDINATOR BECHTEL I LEAK RATE TEST CROUP r"

E S

N Y

DATA SHIFT INSTRUMENT ENGINEER SUPERVISOR SUPERVISOR DATA COMP. INST. INST.

TAKER OPER. OPERATORS TECH. TECH.

8 a W

'O O

m O

O Z

Z n

O

D E

D d

O Z

}

I

, 3.0 DESIGN INFORMATION 3.1 REACTOR BUILDING The reactor building is a reinforced and post-tensioned concrete structure designed to contain any accidental release of radioactivity from the reactor coolant system as defined in the Final Safety Analysis Report (Reference 1).

The structure consists of a post-tensioned reinforced concrete cylinder and dome connected to and supported by a massive reinforced concrete foundation slab as shown in Figure 3.1-1. The entire interior surface of the structure is lined with a 1/4 inch thick welded ASTM A36 steel plate to assure a high degree of leak tightness. Numerous mechanical and electrical systems penetrate the reactor building wall through welded steel penetrations.

Principal dimensions are as follows:

Inside Diameter 116 ft.

Inside Height (Including Dome) 208-1/2 ft.

Vertical Wall Thickness 3-3/4 ft.

Dome Thickness 3-1/4 ft.

Foundation Slab Thickness 8-1/2 ft.

Linear Plate Thickness 1/4 Inch Internal Free Volume 1,910,000 Cu. ft.

3.1-1

. I

3.2 MEASUREMENT SYSTEMS .

Instrumentation used for the Oconee Unit 3 ILRT is similar to that used on previous tests conducted by Bechtel. The leak rate test measurement system is shown schematically in Figure 3.2-1.

Reactor Building pr' essure was measured by a Texas Instrument precision pressure gage. The unit was factory calibrated before the test and will be recalibrated after the test.

Reactor Building temperature was measured by twenty-four (24) calibrated RTD's and read on a Leeds and Northrup Numatron digital readout device. Each RTD was assumed to be representative of a fraction of the total containment volume. In addition to the twenty-four (24) RTD's used for the calculation of Reactor Building temperature, four (4) additional RTD's were used to measure the liner plate temperature.

Reactor Building dewpoint temperature was measured by two (2) Cambridge Dew-point Hygrometers, both traceable to the National Bureau of Standards. Air samples for the two (2) dewpoint sensors came from two (2) of the auxiliary fans which continually circulated air in the Reactor Building during the leak

ra te t es t . The relative location of the humidity sensors is shown in Figure A 0-10.45 scfm Brooks rotometer nas used in establishing a known leak 3.4-1.

rate.

3.2.1 INSTRUMENT LIST Specifications for the instrumentation used for the Oconee Unit 3 ILRT are listed in Table 3.2-1.

i 3.2.2 TEMPERATURE SENSOR LOCATIONS The locations of temperature seasors within the Reactor Building are described in Table 3.2-2 and shown in Figures 3.2-2 through 3.2-6.

3.2.3 RTD AND DEWPOINT VOLUME FRACTIONS Volume fractions were used for calculating the average temperature and the average dewpoint temperature in the containment. These fractions were determined using an equivalent volume for each sensor. The free volumt of the containment was divided into " cells" with a sensor center in each.

Volume fractions are given in Table 3.2-3.

3.2-1

, - . ~ ,

< 3.3 PRESSURIZATION SYSTEM

Reactor Building pressurization was accomplished by two (2) electric motor driven air compressors operating in parallel. These compressors, purchased for pressurization of the Oconee Reactor Building, also include aftercoolers as integral equipment. The discharge from the compressors passes through a single air dryer which reduces the moisture content in the air prior to its entry into the Reactor Building. The specifications for these components are as follows

A. Two (2) electric driven Joy Turbo-Air (20V2) centrifigua) cype air comp-ressors with a capacity of 2300 scfm @ 80 psig.

B. Two (2) Basco size 22048 after coolers (Integral to r.ompressors), type "ES" Fixed Tubesheet, with a capacity of 2100 scfm @ 14.4 psia and with a design pressure of 150 psig.

C. One (1) Hankison (Model H-15) refrigerator type air dryer with inertial impingement separator, and a capacity of 3750 scfm (100 F Sat. inlet) @

100 psig.

Three valves, 3LR:-15, 3LRT-16, and 3LRT-17 'are used to control pressurization and depressurization of the Reactor Building. The controls for these valves are located in the test panel. The pressurization system is shown schematically in Figure 3.3-1.

3.3-1 1

3.4 RECIRCULATION SYSTEM The Reactor Building Air Recirculation System consists of four (4) auxiliary fans and three (3) Reactor Building cooling fans. The auxiliary fans take suction through ducts in the upper region of the Reactor Building and circulate it downward. The Reactor Building cooling fans take air from midheight in the Reactor Building and exhaust it through duct work down to the lower levels of the Reactor Building. This is shown schematically in Figure 3.4-1.

4 1

1 1

3.4-1

. 3.5 COMPUTER PROGRAMS All calculations, summaries, and reports were performed using the Bechtel Power Corporation ILRT computer program and the Duke Power Company ILRT computer program. Computers used by Bechtel were the Pacific International Computing Corporation computers located in the Bechtel building in San Francisco and the General Electric Time Sharing Network computers. A remote data terminal (supplied by Bechtel) located at Oconee was used to input the data and to receive the ILRT calculations, summaries and reports. The Duke computer (General Electric Pac 4020) program was used as added support and verification of the results.

3.5.1 BECHTEL COMPUTER PROGRAM The Containment Integrated Leak Rate Program calculates the leak rate for a nuclear reactor containment vessel. The program computes the leak rate at a given time from input values of pressure, temperature and dewpoint tempera-ture (water vapor pressure).

~

The Containment Integrated Leak Rate Program is designed to allow the user to evaluate containment leak rate test results at the jobsite during containment leak rate testing. Interim leak rate test reports may be obtained at any time during the testing period. Each interim report can provide three print-outs. The first printout, called the Total-Time Method, uses the initial and latest input data to compute leak rate. Each computed leak rate is statis-tically averaged using a linear least-squares fit. Early in the test this method of computation gives the best indication as to whether or not the leak rate test is proceeding satisfactorily.

A second printout, called the Point-to-Point Method, is also provided. The Point-to-Point Methed uses the data at a given hour and the data from the previous topding to compute leak rate. The Point-to-Point Method of comput-ation, used only for data analysis, gives rapid indication of deviations in the measured leak rate late in the testing period.

The test resulte provided by tSe two methods indicate that either method is satisfactory for computing containment integrated leak rates. Both methods of computing the containment leak rate are presented in ANSI N45.4-1972.

However, the Total-Time Method is recommended by Appendix J to 10CFR50 and is therefore used to report the containment leak rate.

The third printout is the Trend Report. This report is based on total-time calculations and gives a more concise and timely description of test results.

In this printout the leak rate is reported as a function of test duration.

3.5.1.1 Explanation Of Program 4

The Containment Integrated Leak Rate Program computes containment leak rate using the Absolute Method given in ANSI N45.4-1972.

I 3.5-1

Prior to the start of the test basic data is entered which consists of:

(a) Number of containnent temperature points, vapor pressure points and absolute pressure points to be entered.

(b) Volume fractions assigned to cach temperature and vapor pressure sensor.

At the start of the test the following information is inserted:

(a) Test title.

(b) Test pressure.

(c) Maximum allowable leak rate.

(d) Pressure sensor tube constant.

(e) Containment free air volume.=

(f) Verification imposed leak rate.*

The recorded data, which is used to compute the leak rate, is then entered.

Recorded data consists of:

(a) Containment atmosphere dry bulb temperature.

(b) Containment atmosphere absolute pressure.

(c) Containment atmosphere dewpoint temperature.

Temperature pressure and vapor pressure values are entered as read at the test panel, i.e., each dry bulb and dewpoint temperature is entered in F and pressure is entered in psia uncorrected for tube constant. If a temperature or vapor pressure sensor becomes inoperable during the course of the test, the sensor is eliminated and volume fractions recomputed. The new volume fractions are then entered in the computer program for the leak rate com-putations. Af ter all data for a given time step is entered, a print-out summary of the measured data is provided. In the Summary of Measure Data, each temperature entry is printed out in F as entered and in F as corrected based on calibration data. Each dewpoint temperature is printed out in F as entered and in the equivalent water vapor pressure in psia. Pressure is printed out in psia as entered and as corrected for the tube constant, if applicable.

At this point the user is given an opportunity to check the data and correct any errses. Following any corrections, if required, a Corrected Data Summary is printed out. This summary consists of the date, time, one average con-tainment air pressure (corrected for water vapor pressure and water vapor pressure volume fractions). These corrected values of temperature and pressure are the values used in the containment leak rate computations. Basically the 1

  • For verification test only.

-3.5-2 l

L

leak rate is computed as follows: -

P ',' = W RT y y y (1)

PV=W 2

RT2 2 (2)

I leakage 24 1 - 2 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 7 W x 100 W l

Solving for W1 and W2 and substituting equations (1) and (2) into (3) yields:

1 2 L = 2400 g 1T 2P Where:

W,W y =2 Weight of contained air at time ty and t 2re8Pectively.

T,T = Absolute temperature of containment volume at time ty and 1 2 t re8Pectively.

2 P,P = Absolute containment air pressure (corrected for water vapor 1 2 pressure) at times ty and t respectively.

2 t=t -t in hours.

2 l L = Leak rate (percent / day).

V = Containment internal free air volume (assumed constant).

R = Gas Constant (assumed constant).

Linear least-square fitting is used to establish the value of  !

leak rate at 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. The leak rate as a linear function sf l time is: 1 L=a+bt 1

-Where:

a=[Lg[ti 2 ,

t

{tLii i i i i N1t gZ

([ti)4 I

b=N[Li 1

Tg -

[Lt [ eg i

N[tg 2

_({g)2 i i 3.5-3

L = Calculated leak rate from equation (4) above at time tg.

N = Number of leak rate calculations.

3.5.2 DUKE COMPUTER PROGRAM The Integrated Leak Rate Program calculates the leak rate for a nuclear reactor containment vessel. The program computes the leak rate at a given time from input values of pressure, temperature and vapor pressure. The leak rate, as a function of time, is determined by elementary linear least-square methods.

  • The Integrated Leak Rate Program is designed to allow the user to evaluate containmene leak rate test results at the jobsite during containment leak rate test' - Interim leak rate test reports may be obtained at any time during ths -ting period. Each interim report consists of two printouts.

The first printout, called the total-time computation, uses the initial and latest input data to compute leak rate. Each computed leak rate is statis-

~

tically averaged using a linear least-squares fit. Early in the test this method of computation gives indication as to whether or not the leak rate is acceptable.

. A second printout, called the point-to-point computation, is also provided.

The point-to-point method uses the data at a given hour and the data from the previous reading to compute leak rate. Each individually computed leak rate is then statistically averaged using a linear least-squares fit.

The results of the two methods used indicate that either method is a satis-factory method for computing containment integrated leak rates. Both methods of computing the containment leak rate are presented in ANSI N45.4-1972.

However, the total-time method is recommended by Appendix J to 10CFR50.

3.5.2.1 Explanation of Program 3.5.2.1.1 Purpose l

(a) Process raw data for use in leak rate calculation. l (b) Calculate leak rate on a point-to-point or total time basis.

(c) Calculate a statistical point-to-point or total time leak rate by a linear least squares fit of the data. 1 (d) Output data.

l 3.5.2.1.2 Process Raw Data ,

I (a) Temperature (a.1) Unit - F.

(a.2) Number - 28 (Includes 4 on liger plate).

(a.3) Input to computer will be in F. The computer will apply necessary calibration corrections to the temperature.

(a.4) Each temperature (28) will be weighted by a volume fraction. The calculation for the average building temperature is:

T = IT . V 3.5-4

Where: T = Average Building Temperature, F T = Temperature at each point, n + 1-28, F V = Volume fraction for each point. The volume represented divided by the total volume. Volume fractions must add to 1.

The Average Temperature must be converted to R by adding 459.7.

, (a.5) The temperature on the liner plate will be available for output.

(b) Pressure (b.1) Unit - psia.

(b.2) Number - 1.

(b.3) Input is in psia. The computer will apply necessary calibration i correction to the pressure.

(b.4) The pressure will be weighted by a volume fraction. The calculation for the average building pressure is:

P=W P 1 t Where: P = Average Building Pressure, psia P = Pressure by Texas instrument, psia W1t = Volume fraction (must equal 1)

(c) Barometer (c .1) Unit - Inches of Hg @ 32 F.

(c.2) Number - 1.

(c.3) Input is not used by calculations, but will be available for output.

(d) Dewpoint Temperature (d.1) Unit - F.

(d .2) Number - 2.

(d.3) Input to computer will be in F. A calibration curve will be as-sociated with each sensor and the input will be corrected.

(d .4) Each Dewpoint Temperature is weighted by a volume fraction. The calculation for the average is:

Ty =W +

3 v1 4 v2 Where: Ty = Dewpoint Temperature, F g Tg = First Sensor Dewpoint Temperature, F T = Sec nd Sensor Dewpoint Temperature, F v2 W = Volume Fraction (W3+W4 = 1)

(d . 5) From the Dewpoint Temperature (Saturation Temperature) the Vapor Pressure (Saturation Pressure) is determined from the steam table *-

The range required is 40 to 120 F from the steam tables.

Py = f (T y) 3.5-5 I

l l

.-' 3.5.2.1.3 Leak Rate Calculations (a) Leak Rate on Hourly Basis Leak rate will be calculated on a point-to-point basis from data obtained at the previous point readings (data subscript 1) and data obtained at the present point readings (data subscript 2).

(a.1) Absolute Method

~

La = 2400 - , T1 (P2-Pv2 E OE T

2 (P1 -P yy ,

Where in (a.1) above L = Percent leak rate per hour (La or Lx)

T1 = Average absolute temperature of Reactor Building air at start of each test period, F T2 = Average absolute temperature of Reactor Building air at end of each test period, F P1 = Absolute pressure of Reactor Building at start of each test period, psia P2 = Absolute pressere of Reactor Building at end of each test period, psia Pvl = Vapor pressure of Reactor Building at start of each test period, psia Pv2 = Vapor Pressure of Reactor Building at end of each test period, psia At = Time interval between start and end of test period, hours (b) Statistical Point-to-Point Leak Rate Linear least square fitting is used to calculate a statistical point-to-point leak rate for the Absolute Method.

Li = a + bei Where: a = Ili I(ti ) - Eti Elici N E(ti2) - (Iti)4 b = NEliti - Eti Eti NZ (ti4) - (Z ti)-

Li = Statistical leak rate 11 = Calculated leak rate ti = Time between data sets N = Number of points to be fit (number of data sets)

(c) Leak Rate Froc Initial Data Set Leak rate from the initial data set to each successive data set is calculated by the following equation:

3.5-6

A (c.1) Absolute Method t

Laa = 2400 1 - Ti (Pt - Pvt)-

TI , Tt (Pi - Pvi)

Where: .

i = Indicates data from initial set t = Indicates data from each successive set TI = Time from initial data set (d) Statistical Leak Rate From Initial Data Set The leak rate is calculated by a linear least squares fit over a period from the initial data set to each successive data set.

(d.1) The equations are the same as in 3.5.2.1.3(b).

(d.2) The data used is obtained from 3.5.2.1.3(c).

(e) 95 Percent Confidence Limits CLi a Li + T oi Where:

CLi = Confidence limits at time ti Li = Statistical leak rate at time ti ci = Standard deviation T = Tabulated constant T = 1.95996 + 2.37226 + 2.8225 (N-2) (N-2)2 Where: N =, Number of data points ,

oi = Variance ~1 + 1 + (to - t)T j

N E(ti-E)Z_

Where: tp = 0 t = 1 I ti N

Variance =

[I(ii - a - bei) ] + {N-]

3.5-7

I I

( INSTRUMENT SPECIFICATIONS Pressure Digital Readout Serial No. 10132 2646

, Mfg. Texas Instrument

! Model 145 Type Precision pressure gage Range 0-100 psia or, 100,000 counts l full scale  ;

Stability i .001 psi  !

l Repeatability i .00025 psi i

Resolution 1 001 psi Accuracy i .015% of reading i

]

Pressure Gauge i

j Mfg. Heise i Range 0-100 psig i Accuracy 0.1 psi

! Repeatability 0.1 psi j Temperature Elements f Serici No. 1773462

Mfg. Leeds & Northrup I

Model 8197

{ Type RTD, Copper, 100 ohms j Range 0-1500F i Repeatability and hysterisis 1 02 F Accuracy 1 0.12 F Temperature Indications for Temperature Elements Mfg. Leeds & Northrup l Model 245 Numatron Range 0-1500F j Reproductivity i .07 F from 60 F to 120 F

Accuracy 1 12 from 6GC'F to 120 F and 1 48 Below 60 F 0 Serial No. 49201 i

Dewpoint Temperature Mfg. Cambridge Model 992-Cl Range -1000F to +200 F Accuracy 1 0.5 F Serial No. 332 and 333 l

i j Table 3.2-1 l

1 _ __. _: -. . ,_ _

. ~ . - . . - . _ , _ __. ..

Flow Indicator Mfg. Brooks Type Rotometer Model 1110-24 Range O to 10.45 scfm Accuracy i 1% of instantaneous reading Repeatability Better than 1/4% of instrument reading Serial No. 7004-39848 r

Table 3.2-1 (Cont'd)

SENSOR LOCATIONS WITHIN REACTOR CONTAINMENT

1. RTD-1 Under centeg of access opening Azimuth 180 Elevation 787'
2. RTD-2 8' South-west of steam generator 3B Azimuth 90 Elevation 787'
3. RTD-3 Between pressurizer and reactor coolant pump 3B1 Azimuth 112.5 Elevation 830'
4. RTD-4 On railing of open hatchway Azimuth 180 Elevation 830'
5. RTD-5 Ins 11e incore instrument tank Azimuth 335 Elevation 830'
6. RTD-6 Just north gf open hatchway Azimuth 180 Elevation 850'
7. RTD-7 Just north of steam generator 3B Azimuth 60 Elevation 850'
8. RTD-8 Inside refueling canal near reactor head Azimuth 0 Elevation 850'
9. RTD-9 Top of removable shield section east Azimuth 250 Elevation 866'
10. RTD-10 Top of removable shield section west Azimuth 110 Elevation 866'
11. RTD-ll 10' North-North-East of steam generator 3A Azimuth 290 Elevation 787'
12. RTD-12 15' from prfmary shielding (placed in opening in secondary shielding)

Azimuth 325 Elevation 787'

13. RTD-13 Just squth of access to reactor cavity Azimuth 180 Elevation 787'
14. RTD-14 Between steam generator 3A and reactor coolant pump 3A2 Azimuth 315 Elevation 830'
15. RTD-15 Just west of core flood tank 3B Azimuth 30 Elevation 830'
16. RTD-16 Just east of incore instrument tank top Azimuth 315 Elevation 850'
17. RTD-17 Above grading near reactor building wall Azimuth 0 Elevation 866' Table 3.2-2

I I

18. RTD-18 On east end of polar crane about 25' from Reactor Building wall Azimuth 270 Elevation 923' i 19. RTD-19 Onreactorguildingsprayheaderwitharadiusof30'fromcenter Azimuth 180 Elevation 943'
20. RTD-20 Just south of reactor coolant pump 3Al j Azimuth 260 Elevation 850'
21. RTD-21 Above core flood tank 3B

! Azimuth 35 Elevation 850'

22. RTD-22 On west end of polar crane about 25' from reactor building wall Azimuth 90 Elevation 923'
23. RTD-23 on reactor building spray header with a radius of 30' from center Azimuth 0 Elevation 943'
24. RTD-24 On center of reactor building dome Azimuth 0 Elevation 970'
25. RTD-25 On reactor building liner plate near penetration #38 Azimuth 300 Elevation 816'
26. RID-26 On reactor building liner plate near penetration #53 Azimuth 90 Elevation 811'6"
27. RTD-27 On reactor building liner plate near electrical penetration EB-ll Azimuth 250 Elevation 826'6"
28. RTD-28 On reactor building liner plate near electrical penetration WB-11 j .zimuth 45 Elevation 826'6" 3

Table 3.2-2 (Cont'd)

_ ~ __. ,. ._ _ _ . . _ . , _

i e

VOLUME FRACTIONS 1

Volume Fractions for RTD's 4

RTD # Volume Fraction 1 .03 2 .02 3 .02 4

4 .05 5 .02 i 6 .03 -

j 7 .01 i 8 .08 l 9 .05 i 10 .05 11 .02 l 12 .02 13 .01 14 .02 4

15 .02 16 .01 17 .05 4 18 .09 l 19 .11 i 20 .01 j 21 .01 22 .09 23 .11 24 .07 Total 1.00' i j Dew Point Sensors Volume Fraction Dew Point Sensor # Volume Fraction 1 (Azimuth 100 Elevation 850') 0.4 2 (Azimuth 260 Elevation 850') 0.6 '

4 Total 1.0 i

i i

f e

i Table 3.2-3 l

L

- g. n , - , ,

-.-,x , .... . , , . , - . - - , ,,. ,, , , . , - - $ ..

0 9

  • 0 0

5 1/ \

\3 0 H

/ G

/ \ U O

R H G T N I

N D O L I I l* T U

' l l -

0 C B .

E

- S R O

M L T

/ A C

/ T N

O A

E R

Z s

\ I R

0 0 O 0\

1 3

3 H

2 S a S

E N CY CR

- AE L

NL

- OA G

DG "0 N N

I - - E T

D L * '5 I

0 7 7 7 U 2 B 'L E

R #

O -

T _- '

C A

E

~

R _- 7 ~

"9 "3 - m

'3 '3 _

T

/ ) N E EH -

C MC A

F I

. R U

Pm U

Q A D. S E -

I A

" E _

T N _

1 I..AL s i O I

- P T

'5 C R E 1 E S 1 N I

L O

T

( "6 t

'8

\

y

_ n "oN

uy4

e e 9

LEAK RATE MEASUREMENT SYSTEM d

4 31A-91 3f A-90 31A-A3 Y '-- W W 2 -111 1A-113 REACT'E Mita!Iuc n m.,

4 1 1

o o C3 A. u .

Presis ten Pr es swee e....

Figure 3.2-1

_ _ _ _ _ _ . . . _ ~ . _ __ ._. _ __ _ _ _ _ _ _ _

.i .

REACTOR BUILDING 1

BASEMENT FLOOR J

ELEVATION 787' i.

270 t

. O

j '

--ZM;i;r. ..

-i.Be' ;#,

O

--p.N'<d. D

' 4. .

.Q':*.%

' ;. U '

. NL*,.,

.. 4:..

3;? h

g .;.

.. ' i; L J-M:.  %..

. y 60 .!

- ' 11 S.C.

b g N'$ .k-

.. M.;..'.

g . . .

h.n' N .; Elevator

. g[f 12 t 5

E .".r.

c. o 9^ toe L: , , s.. ,r' f : .. . , . . . n.*
M*,T'f~? ,l, l -y .; E Wl.= ' < . . '* e . .' ** & D D . '.

M, F *,

,'y

-C- m ,' q f<

's ilJ,' , ;

I4:yj; o Vi J" Emer. . ' .! I' D r '* ;

o 1 0-b.

,. Sump .--'

s R.V. i m -

1

.i r

-  :'. ..s -180

'l-

' t. ).

?.*".l,.

% r/. k?!

'l. .

')3. :'..

\ ** *I

  • g*.

.e,-

.k * * .,' 3:. . -lg' ,..)  %.: .3.;

b.-r s?.), ' '^ :

...;,y!iSNIhfd

_\~ >

, ',' \ -

g

,.9,.' . f,[.f D.

.i

  • Norma 1

. s

,'5 ump 3..

, C,'

4 ,i <

%.' ,3: :'.a.

-]

'. S.C. '.i, U

.- .F. $0 ..

! .{, ';.

3B r.' Tank , >.

' ?

' ~

. ,$ / . en v .-

.y o i

@c.: #;e.  :

egi

'Ig. g. Q ..,

b g - .#f

. ;,' ,. a a g .-cr * -

y'**

' ! .b.e .,,., q,,, ;3.., .; y.,. dy.,**.,-

j M:[: ,-

g I

90 Y

a

- 1 1

Figure 3.2-2

REACTOR EUII. DING

]

IERMEDIATE FLOOR

.i.EVATION 830' d

270* .

f i

d

  • 1'.'..'

re.t.

. c. ,e - lilillllllll " F

. I r .

..a .,. . s "

e.:- .g.V q.+ w i.~~ ' . ., ~ I ,

,7. . .: . p- p ..- .: .

3A2 J'

. ;- ** S.G. - 3Al ...' m y-e m

,x. .

'!'.' R o @'m o I

~~j s ==' s g .

.r: ..

8,.

' . - [f.?4I.8.90; ;. ..

e; *. - i.' liP'H l '

- H Y [., # .

l .; .. .s :-' -r------, I

.6,, .:;. .

o ,?.

o_ i .

~l80

l.

. ,5'k .!

.' I l y

l4 s.,

j y ..; , ,

g;

~i L----..--

. . . 1, .

'. N,c.yi:i:tJ:. Q.  ; ', '.'Q (,y..,'.'.,: .

- '.' H ::

  • l'. . ;'

c,y, ..

Tank l.P -

'I-l /, ' '.

..* e,. /

Q Ta k; -

.e N. , .

Press i ( ~, 34 .-

s-Ud

.f...s.

, . pa 3y

.. ^

' <.. 'r0 : . s.r . . ; ;.;-l*

, .g. ~

r....

... 1 ..

%., llllllllll!ll NIN

.u ,; , ..w.

?. . . - *'}4:

  • s 90 l

i r

l Figure 3.2-3 G

i s 1

t REACTOR BUII. DING OPERATING FLOOR ELEVATION 850' 270 l I . l l

.. 1

. . . u. t : 9. . .: -)=:.

.H. . 1

. 1 t n, N_g  %'; '

nig '.

^ j

~'

  • 4; '

I s.c. -

  • %. I

. , - 'j - @ , ,

X

f. 3

% f.( **:{

(o) \

J c)g h..

t:=k l

U. N_.- / _s ha

$~{/ A -l

.@ { \l=if

'/.:: Re o' 0-?- ~h ['g - 180

,. v... 1  ;

Wf):

t,' ., ~ I

~

l:$')

R.V. /,@/

' 'v.\. @

551 .$n I 00 r' is c. 3 0 at . e"'/.)".(.r' s .

"r

"C;, \J s/ ltd- di.T

,' ^

?je

~>:f.,

l

~ .:(.'. f,, . .Q

g. *
  • 3'

^ %,. ..

D _ t

-,. .. d

. . :..c .

l4Hilsyiiiig ..,:O"

. w. ..;::.#, e Tf"~

t I

90 i

i i

I

! Figure 3.2-4 l

I e

"J. ACTOR BUILDING SHIELDING FLOOR ELEVATION 866' 270 '

.w .I s avs

.g ty10- D N; D 44.g.g.

,orgt .  %. .

~ hg. ..

2 d, '  % ..

.nl e . ; _. - w

'A: ?,- ,

c. nn....

h r s9 6..' :. s?in:a. t'. . ,*s

. 7;-

a 1; jy ,. '  %;-G:- .7  %

i

+

.'y  :

.. ..' hY "A" LOOP. .. * >see-

&'C .. (& CAVITY f*

m..

~ s *

  • ,. y *

'.!,y ' '9,t-9' tpk

' .Q* (, & ?y. ';

R?

& J. s; d, 'i),

l;l

.tl.4 t,vi -.

v.:

g- q:tyg., , . . . - -

, . y ,,,,gg (q g, rs

\ - M,e.

.t.!- ..,

a? tI c.

i c '. K1 0-9 1 r SHIELDIN 180 B),0CKS  ?.

j

t. ..

.< .e w,,

. .s ,_ -

..a

's

. p.*

8t*. . if .1

  • hG9 4 st ne **%'* **

f ,, s I.5,. $i: "B" LOOP '; '5 4s I; CAVITY  :

r. -

,. . M. .

10 *

p. w*

.r.

g .h' ..

,, T. .  : ;, . . , -

.s . < ... .. . 7. -

'?:k. U, ~. $h?

k ~Q,i;'3, ~~

i?[- /.'

5. 5e 4,?.; M y i $ > . l-?

$**@ . /-

%.3 . -. .C ' '

-4 :.. / . .e

. '?.% . /. * ,*

  • f 4.-:2?-

':,y'. *, 4~: V.y:Jy:s:vrdb' r.. e.y.'.:D

. a i

90 Figu:c 3.2-5

i a .

y '3 ve2'3 g4

{9 l9 g E 4

u 4g O

M a / -

v t h

'0 9

7 k e s

e W

t r

o N

n g

. a n g ve r i n C k i l o k E r- o o 1I

~ a L o

- r l L o r h2 P e e l

d n il!

a a eJu 1l1ll l

e r el! H C y r a a r l I p o S P f f o o

_ h

  • w e

w e

s i i V V h _

h t

u o

\

S t s -

- 'e L

m to et a . Ym L

I RZACTOR BUILDING PRESSURIZATION SYSTEM Righ Pressure Service Water 7 Press. Press.

Cont.

?]. Cont.

[-

, - i.

e l 1

l r3 ri r3

{ r? ri et j j i c- G vv- . Nl l Mr . Mr i I Filter I Filter I t i No. 1 No. 2 s t

[ 0 rgh II SA

_J'_______________l IRV-150 b U'- Motor h

~ IRV-151

_b T-5 s

-DIE} 2 -

{(LRT-6 L After cooler is integral part

, of compressor LRT-11 '

kk 8" CS\ '

PI LRT-10

('

\

Air ryer 4

v [~~LRT-12 Air Operated Butterfly Valve Regulates Dryer Discharge Pressure LRT-46 X To Units 1 & 2 R3 3 LRT-13 '

LRT-

-+O 4 f3LRT-13 31J T 16 P..Outside Vent

-15(8"CS

~-

3LRT- 7 PI

\ Reactor Containment Tir,ure 3.3-1

REACToa 301W12G Att BECitf.VT10if ST3tsst

__f i_

[iMgi\Ed m%

~

/ //

NN N$

_ . .. / .... . . . r -

(

E,,, "f E,1t 1

o , s ..st.sn' (T*,ng o y Q" " ,

3A 33 3C yg I l l l un suiv-ti l 3de i N ~N N

[ i N

r usv-v

[ -

r: . l=

cM.,

g I \

. I I.

NV .

I Figure 3.4,1

4.0 CONDUCT OF TEST PROGRAM 4.1 LOCAL LEAK RATE TEST The purpose of the Local Leak testing program was to systematically check the integrity of valves (seats and packing), flanges, pipe and electrical penetrat-ion welds, seals and compression fittings that are part of the boundaries of the containment system. These tests, specified by section 4.4.1.2 of the Technical Specifications, have,a combined Acceptance Criteria of less than or equal to 0.125% of the reactor building atmosphere per 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.- Final analysis of all per.etration leakage rates shows that the total penetration leakage rate was approximately 2.9 percent of the allowable.

4.1.1 TEST METHOD All electrical and mechanical penetrations, including all locks and hatches, were tested by pressurizing the penetration volume with air to a structural pressure of 68 psig. The pressure was then reduced to 59 psig and a leak test was performed.

The pre.ssure, temperature, and barometric pressure were recorded before and after the leak test (time determined by penetration volume) and, knowing the volume, the leak rate was calculated. The allowable leak rate for each electrical pene-

-3 tration was 9.237 x~10 lbs/hr and for each mechanical penetration, lock and hatch, was 0.5 lbs/hr.

4.1.2 PENETRATION TEST RESULTS Per Technical Specification 4.4.1.2.3, the total leakage from all penetrations and isolation valves shall not exceed 0.125 percent of the Reactor Building atmosphere per 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. For Reactor Building conditions of 800F and 59 psig, 0.125 percent /24 hr. of the Reactor Building atmosphere represents approximately 35 lb/hr. The total measured leak rate from all penetrations equals 1.0228 lb/hr.

Results of individual penetration tests are given in Tables 4.1-1 and 4.1-2.

l 4.1-1

4.2 INTEGRATED LEAK RATE TEST CALCULATIONS AND RESULTS The following are the results of the computer calculations as obtained from the Bechtel and Duke computers for the half pressure (29.5 psig) and peak pressure (59,0 psig) test. Also, the calculational results for the verifi-cation test are attached. .

) 4.2.1 BECHTEL COMPUTER CALCULATIONS 4.2.1.1 29.5 Psig ILRT The curve of Leak Rate vs. Time is given in Figure 4.2-1. Supporting summary i data are given in Tables 4.2-1 and 4.2-2.

4.2.1.2 29.5 Psig Verification Test The curve of Leak Rate vs. Time is given in Figure 4.2-2. Supporting summary data are given in Tables 4.2-3 and 4.2-4.

4.2.1.3 59 Psig ILRT ,

The curve of Leak Rate vs. Time is given in Figure 4.2-3. Supporting summary data are given,in Tables 3.2-5 and 4.2-6.

4.2.1.4 59 Psig Verification Test The curve of Leak Rate vs. Time is given in Figure 4.2-4. Supporting summary data are given in Tables 4.2-7 and 4.2-8.

4.2.2 DUKE COMPUTER CALCULATIONS 4.2.2.1 29.5 Psig ILRT The curve of Leak Rate vs. Time is given in Figure 4.2-5. Supporting summary data are given in Table 4.2-9.

4.2.2.2 29.5 Psig Verification Test The curve of Leak Rate vs. Time is given in Figure 4.2-6. Supporting summary data are given in Table' 4.2-10.

4.2.1.3 59 Psig ILRT The curve of Leak Rate vs. _ime is given in Figure 4.2-7. Supporting summary data are given in Table 4.2-11.

4.2.1.4 59 Psig Verification Test The curve of Leak Rate vs. Time is given in Figure 4.2-8. Supporting summary data are given in Table 4.2-12.

I 4.2-1 I

4.0 CONDUCT OF TEST PROGRAM O

MECHANICAL PENETRATION TEST RESULTS i

Penetration No. Description Leak Rate (/Uhr) 5 Reactor Building **0.5 Normal Sump Drain 6 Reactor Coolant 0.0062 Letdown Line 7 Reactor Coolant Pump 0.0028 Seal Outlet Line s

9 Normal Makeup 0.0000 to Reactor Coolant System 10 Reactor Coolant Pump 0.0000 Seal Inlet Line - Loop A 11 Fuel Transfer Tube Blind 0.0008 Flange-East 12 Fuel Transfer Tube Blind 0.0000 Flange-West 18 Quench Tank Vent 0.0075 19 Reactor Building Purge 0.0103 l

Inlet

  • 0.0069 20 Reactor Building Purge Outlet i

i 23 Reactor Coolant Pump Seal 0.0015 i

Inlet Line-Loop B 29 Quench Tank Return Line 0.0359 38 Quench Tank Drain Line 0.0540 52 High Pressure Injection 0.0000 Line

    • Electric motor operator for valve 3 LWD-1 was not available at time of ILRT.

Maximum allowable leakage was assumed. Penetration will be retested after installation of electric motor operator.

Table 4.1-1

1 P

MECHANICAL PENETRATION TEST RESULTS i

Penetration No. Description Leak Rate (#/hr) 60 Reactor Building Sample 0.0106 Line from Reactor Building 61 Reactor Building Sample 0.0424 Line to Reactor Building Personnel Lock O.0675 Emergency Lock 0.2750 Equipment Hatch 0.0005 Total = 1.0219 #/hr i

g i

i l

i t

i Table 4.1-1 (cont.)

ELECTRICAL PENETRATION TEST RESULTS Penetration No. Leak Rate (#/hr) Penetration No. Leak Rate (#/hr)

~

-5 0.30X10 WA-1 0.90X10 WC-10

-5 -5 WA-2 0.20X10 WC-11 3.30X10

-5 WA-4 0 WC-12 0.90X10

-5 -5 WA-5 0.30X10 WC-13 0.90X10

-5 -5 WA-6 0.90X10 WD-1 0.90X10

-5 -5 WA-7 0.20X10 WD-2 0.20X10

-5 -5 WA-8 0.20X10 WD-3 1.75X10

-5 -5 WA-9 0.90X10 WD-4 1.70X10 1.25X10

-5 WD-5 0 WA-12

~ -5 WA-13 1.85X10 WD-6 1.85X10

-5 1.85X10

~

WB-1 0.30X10 WD-7

-5 0 WB-2 0.90X10 WD-8

-5 0 WB-3 0.90X10 WD-9

-5 -5 WB-4 0.20X10 WD-10 0.80X10

-5 WB-5 0.90X10~ WD-11 0.80X10

-5 WB-6 0.90X10~ WD-12 0.90X10

-5 WB-7 0 WD-13 0.20X10

-5 1.50X10

-5 WB-8 0.20X10 WMV-1

-5 0 WB-9 0.90X10 WMV-12

-5 WB-10 3.70X10" EA-7 0.90X10

-5 WB-11 0.20X10~ EA-8 0.20X10

-5 WB-12 0.40X10~ EA-9 1.85X10

~

-5 WB-13 2.70X10 EA-10 0.20X10

-5  !

WC-1 0.30X10 EA-11 0.20X10~

-5 1.25X10

-5 WC-2 0.20X10 EA-12

-5 WC-3 6.20X10 EA-13 0

-5 WC-4 0.20X10 EB-8 1.25X10~

-5 -5 WC-5 1.50X10 EB-9 6.30X10

-5 0.60X10~

WC-6 0.90X10 EB-10

-5 -5 WC-7 0.30X10 EB-11 0.90X10 0 EB-12 5.90X10~  !

WC-8 WC-9 0.90X10~ EB-13 0.20X10~

Table 4.1-2

b 1

Penetration No. Leak Rate (#/hr) Penetration No. Leak Rate (#/hr)

~

EC-1 0.80X10 53fV-1 0

-5 -5 EC-3 1.85X10 Div-2 0.40x10 J

EC-4 O

-5 -5 EC-8 0.30X10 TOTAL 92.45X10 #/hr

-5 EC-9 0.90X10

-5 EC-10 0.40x10

-5 EC-12 0.20X10

-5 EC-13 0.80X10

~

ED-1 0.20X10 4.6X10

-5 ED-2 0.30X10

-5 ED-3

-5 ED-4 0.30X10 ED-5 0.20X10~

ED-7 1.70X10~

~

ED-8 0.90X10 0.30X10

-5 ED-9

~

ED-10 1.85X10 ED-11 0 ED-12 1.85X10~

j ED-13 0 0.30X10

-5 EE-1

-5 EE-2 0.80X10

" -5 EE-3 3.70X10

-5 EE-4 0.20X10

~

EE-5 3.7X10

-5 EE-10 1.50X10 EF-3 0 EF '+ 0.40X10" l EF-5 0 EF-6 0

~

EF-8 0.20710

-5 EF-9 0.20X10

~

EF-10 0.90X10

~

EF-11 0.20X10 Table 4.1-2 (Cont'd)

. .. .. - . _ . . . - - - . . _ . . ~ . .  % . . . .

, T: y i DCCNEE UNIT 3 29.5 PSIG ILRT e LEAK FATE (FEP CENT PER DAY)

BATED ON TOTAL TIME CALCULATIONS TIME AND LPTE AT OTART OF TEST: 45 0503 ELAP5ED TIME: 10.00 HOURS TIME TEMP. FFESIUFE MEA!UFED CALCULATED '95*. CONFIDENCE (F) (PIIA) LEAK RATE , LEAK RATE LIMITS 100 75.69 44.797 0.101E+00 0.926E-01 -0.62E-02 0.19E+00 115 75.70 44.799 -0.295E-01 0.90?E-01 -0.96E-02 0.19E+00 130 75.73 44.901 -0.250E-01 0.691E-01 -0.11E-01 0.19E+00 145 75.79 44.501 0.223E+00 0.574E-01 -0.13E-01 0.19E+00 '

200 75.91 44.303 0.153E+00 0.85dE-01 -0.14E-01 0.19E+00 215 75.83 44.305 0.161E+00 0.635E-01 -0.15E-01 0.1?E+00 230 75.86 44.308 0.118E+00 0.821E-01 -0.17E-01 0.15E+00 245 75.57 44.810 0.679E-01 0.803E-01 -0.19E-01 0.18E+09 300 T5.97 44.814 -0.289E-01 0.78dE-01 -0.20E-01 0.18E+00 315 75.91 44.814 0.439E-01 0.768E-01 -0.22E-01 0.18E+00 330 75.94 44.815 0.6e0E-01 0.751E-01 -0.23E-01 0.1TE+00 345 75.96 44.815 0.839E-01 0.7335-01 -0.25E-01 0.1?E+00 a 400 75.96 44.317 0.477E-01 0.716E-01 -0.26E-01 0.17E+00 i' 415 76.02 44.818 0.990E-01 0.696E-01 -0.2?E-01 0.17E+00 430 76.05 44.819 0.121E+00 0.680E-01 -0.30E-01 0.17E+00 ,

445 76.06 44.522 0.823E-01 0. 66?E- 01 -0.31E-01 0.16E+00 ,

500 76.06 44.823 0.575E-01 0.645E-01 -0.33E-01 0.16E+00

  • 515 76.05 44.923 0.454E-01 0.628E-01 -0.35E-01 0.16E+00 I 530 76.06 44.925 0.391E-01 0.610E-01 -0.36E-01 0.16E+00 545 76.11 44.927 0.569E-01 0.533E-01 -0.36E-01 0.16E+00 600 76.11 44.827 0.553E-01 0.575E-01 -0.40E-01 0.15E+00 615 76.13 44.529 0.471E-01 0.555E-01 - 0 . 4 2 E- 01 0.15E+00 .

630

  • 76.16 645 700 76.15 76.19 44.829 44.830 44.833 0.711E-01 0.756E-01 0.485E-01 0.540E-01 0.52EE-01 0.505E-01

-0.44E-01

-0.45E-01

-0.47E-01 0.15E+00 0.15E+00 0.15E+00 f.'

715 76.23 44.334 0.662E-01 0.487E-01 -0.4?E-01 'O.15E+00  !

730 76.24 44.836 0.5?9E-01 0.470E-01 -0.51E-01 0.14E+00 $

745 76.26 44.537 0.6??E-01 0 .452E- 01 -0.53E-01 0.14E+00 1 800 76.28 44.840 0.524E-01 0.435E-01 -0.55E-01 0.14E+00 815 76.27 44.843 0.193E-01 0.417E-01 -0.57E-01 0.14E+00 h 830 76.23 44.843 -0.233E-02 0.400E-01 -0.58E-01 0.14E+00 1 845 76.31 44.844 0.319E-01 0.352E-01 -0.60E-01 0.14E+00 e 900 76.30 44.845 0.2122-01 0.364E-01 -0.62E-01 0.14E+00 e 915 76.34 44.?46 0.322E-01 0.347E-01 -0.64E-01 0.13E+00 930 76.34 44.248 0.19fE-01 0.329E-01 -0.66E-01 0.13E+00 g 945 76.33 44.849 0.335E-01 0.312E-01 -0.68E-01 0.13E+00 i 1000 76.3? 44.850 0.302E-01 0.294E-01 -0.70E-01 0.15E+00  ;

1915 76.40 44.852 0.266E-01 0.277E-01 -0.72E-01 0.13E+00 ",

1030 76.43 44.853 0.351E-01 0.259E-01 -0.75E-01 0.15E+00 1045 76.43 44.652 0.407E-01 0.242E-01 -0.77E-01 0.12E+00 [

MEAh ME&:UFEB LEA' ;6TE tut. *. FEF DAY) = 0.584E-01 ITANLAPD DWIATION CF MEA.7.1.+ED LEAK FATE 3 FFDM THE MEAN = 0.512E-01 IE:IMUM ALLCAFLE LE6i. F ATE = 0.177E+ 00 THE C ALC'.' LOT ED LEAV PA TE ,'.t 3T .*.< D AY) AFTED 10.00 HOUF1 OF TEST = 0.242 E- 01 Table 4.2-1

DCCitEE Uh1T 3 29.5 POIG ILRT TF ErlD 'F EPORT BAIED Of t TOTAL-TIf1E CALCULATICNS TIME ASD LATE AT'3 TART OF TEIT: 45 0503 ELAFiED TIME: 10.00 hCUPO .

tiO. DATA ELA75ED (1EAli NEhiUdED CALCULATED CHG Ili CALC L/R POItiTO TIME LEAK FATE LEAR FATE FFDM LAST POIf47

- ,-----------------------------------------------------~~~-------~~

10 2.25 0.5575-01 0.855i-01 11 2.50 0.515E-01 0.711E-01 -0.144E-01 12 2.75 0.501E-01 0.679E-01 -0.318E-02 13 3.00 0.804E-01 0.709E-01 0.299E-02 14 3.25 0.779E 0.6?3E-01 -0.761E-02 15 3.50 0.794E-01 0.70TE-01 0.7?7E-02 16 3.75 0.821E-01 0.815E-01 0.111E-01 17 4.00 0.822E-01 0.81?E-01 0.225E-04 18 4.25 0 .8 07E- 01 0.766E-01 -0.528E-02 19 4.50 0.7375-01 0.6?35-01 -0.650E-02 20 4.75 0.767E-01 0.630E-01 -0.682E-02 21 5.00 0.757E-01 0.606E-01 -0.236E-02 22 5.25 . 0.747E-01 0.594E-01 -0.225E-02 23 5.50 0.735E-01 0.551E-01 -0.326E-02 24 5.75 0.733E-01 0.562E- 01 0.115E-02.

25 6.00 0.734E-01 0.580E-01 0.173E-02 2( 6.25 0.725E-01 0.554E-01 -0.253E-02 27 6.50 0.722E-01 0.559E-01 0.357E-03 28 6.75 0.715E-01 0.544E-01 -0.139E-02 29 7.00 0.715E-01 0.545E-01 0.127E-03 30 7.25 0.70iE-01 0.532E-01 -0.136E-02 31 7.50 0.639E-01 0.478E-01 -0.53GE-02 32 7.75 0.666E-01 0. 4 0 3E- 01 -0.744E-02 33 3.00 0.655E-01 0.378E-01 -0.255E-02 34 8.25 0.642E-01 0.343E-01 -0.350E-02 35 8.50 0.'32E-01 6 0.324E-01 -0.159E-02 36 8.75 0.620E-01 0.233E-01 -0.307E-02 37 9.00 0.612E-01 0.281E 01 -0.127E-02 38 9.25 0.604E-01 0.266E-01 -0.145E-02 39 9.50 0.5955-01 0.249E-01 -0.169E-02 40 9.75 0.599E-01 0.242E-01 -0.675E-03 41 10.00 0.564E-01 0.242E-01 -0.627E-04 THE CALCULATED LEAR PATE G4T.5 DAY) AFTER 10.00 HCL.P! GF TEST = 0.242E-01 Table 4.2-2

t T

H E -

S 11 11 11 1 11 1 111111 111 1 T C T 77766665555444433032. I A A 31 0431 0431 0431 0431 04 .

f 1 .

L N 05050505050505050505. E C 0 U A .

L F A D 77777777777777777777. T T VV f 1 66666666666666666666 (E E EE DE . . . . . . . . . . . . . . . . . . . . FM .

D RR EA 67666677776766566555 ) P II VN 909232420281 83952743. .

L FF I

  • E II Af 1 T A CC TE P I k AA IA 44444444444444444444 .( P N TT OO E O F II NU 44444'.444444444444444

. . . . . . . . . . . . . . . . . . . . . PE O0 A D C

O A OO R 08888868560G008GG0G0 I0 T NN CE 55555555555555555555 .A0 N A N C FD 44455553666765556666.) P D 0L E TT kE EE E

( EE t 1 L . LD DA U O; EE AA K U T TT AA - - FT O N

. Ch 00000000000000000000 L 0E NR I

% LL U . . . . . . . . . . . . . . . . . . . . EM E A T 1 / EE RF 1 1191 1 222223321331 42 AE DA TT h D AA EA 57770069495004594885 KA T OE 3 b A VV DT 3234G4351 40S6554386? 0 T T -

l Y E EEEEEEEEEEEEEEEEEEEE FU IO A( 2 a ) FP L * * + - + * + * + * + * + + + * + * - + . AF MT LP 9 4 AA E( 00000000000000000000 . TE EA E .

A TT AU 0001 000000000000001 0 ED  : R TR 5 2 F EE KT T I

- T . MC P 3 E LU F O EE O .

R OP A% . C 5F N I MP T 00000000000000000000 . LA . .

CT G EE EP . . . . . . . . . . . . . . . . . . . '. EL 0T A 5 R .F 0E 222202211 111 1111 11 1 1 AC 0E LP V

. P 2i11 0009998007776665 VU S CE E.

0 LL F 1G41 G41 841 7.4 1 7 4 1 7 4 1 7 L HT UR P 0 II FD EEEEEEEEEEEEEEEEEEEE RA O L I MM DA + * * * + + + + + * + + + * + + + + + * . AT . U AD F H II MY 0000000000G000000000 TE R TA I .

O TT ) 0000000000O000000000 ED S1 IY C U T . 2 O) A R == H= 3 N T O E 0 0 I

- - - - - - - - - - - - - - - - - - - - O O 00 N0 00000000000000000000 . . 0 N F . . E. . . . . . . . . . . . . . . . . . . . . 5

  • 22 A1 1111 1 1111 11111 111111 .

. 9 0 T 19 N8 82222223G3444556?789 5 3 -

i E 08 9 EEEEEEEEEEEEEEEEEEEE  %

S EE = E + * + + + + * + + + + + * + + * + + + +

T ++ + 00000000000000000000 LC 00 0 00000000000000000000 IO

= 00 00 MN

. IF 1 00000000000000000000 . TI 0 4 . . . . . . . . . . . . . . . . . . . . OD .

. 7 55555555555555555555 E .

E E 66544332211 100000000 N .

2 + EEEEEEEEEEEEEEEEEEEE., C . -

1 0 * + + + * + + * + + + + + + + + + + + + E E 0 000000000000000n0000 . -

+ 00000000000000000000 -

0 0

OCONEE UNIT 3 29.5 POIG VERIFICATION

.. TREND REPORT DA0ED ON TOTAL-TIME CALOULATIONO TIME AND DATE AT OTART OF TEST: 1830 0503 ELAP!ED TIME: 5.00 HOURO fiu. DATA ELA.'OED f1Enti MEASURED CALCULATED CHG IN CALC L,'R POIt4TO TIf1E LEAR FATE LEAR R8TE FROM LAST POINT 10 2.25 0.181E*00 0.390E+00 11 2.50 0.1GCE+00 0.383E+00 -0.158E-01 12 2.75 0.190E+00 0.384E*00 0.122E-02 13 3.00 0.201E+00 0.366E+00 -0.159E-01 14 3.25 0.209E+00 0.370E*00 0.200E-02 15 3.50 0.212E+00 0.362E*00 -0.758E-02 16 3.75 0.2 05E + 00 0.31GE*00 0.448E-01 17 4.00 0.199E+00 0.282E+00 -0.354E-01 10 4.25 0*.193E+00 0.251E*00 -0.312E-01 19 4.50 0.192E*00 0.241E*00 -0.103E-01 20 4.75' O.191E+00 0.232E+00 -0.G78E-02 21 5.00 0.1G9E*00 0.221E+00 -0.109E-01 THE CALCULATED LEAK RATE <t.lT.. DA'D AFTER 5.00 HOURO OF TEST = 0.221E*00 i

Table 4.2-4

3 OCOh5.E Uh1T 3 59 F0!G ILFT I

LEAU FATE (FER CErf7 FEP DAY) 1 EAIED Crt TCTAL TIME CALCULATICNO .

TIME AtiD DATE AT START GF TE3T: 745 0505 ELAF5ED TIME: 10.00 HOUR 3 >

T Il1E TEMP. PFE!IUFE TIEA30 FED CALCULATED 95% CONFIDENCE (F) (PilAi LEAK FATE LEAK PATE LIMITS 600 ?1.26 74.25f - 0. 254E+ 0 0 0.61?E-02 - 0.1 dE+ 0 0 0.17E+00 815 51.?4 74.291 0.301E+00 0.65sE-02 -0.16E+00 0.17E+00 839 51.14 T4.d96 -0.4312-01 0.69?E-02 -0.16E+00 0.17E+00 225 ?1.41 74.I01 0.1012+00 0.731E-02 -0.16E+00 0.17E+00 900 81.?? 74.?07 -0.211E+00 0.769E-02 -0.16E+00 0.17E+00 915 E1.ai 74.311 0.1492-01 0.906E-Oi -0. lie +00 0.17E+00 930 61.46 74.315 -0.474d-01 0.?44E-02 -0.16E+00 0.17E+00 945 2~.0; T4.219 6.T012-02 0.66EE-02 -0.15E+00 0.17E+00 1000 81.56 74.323 0.4152-01 0.919E-02 -0.15E+00 0.17E+0]

1015 91.61 74.325 0.5412-01 0.957E-02 -0.15E+00 0.17E+00 1010 61.63 74.333 0.?26E-01 0.995E-02 -0.15E+00 0.17E+00 1045 61.65 74.337 0.755E-02 0.103E-01 -0.15E+00 0.17E+00 1100 51.70 74.341 0.3412-01 0.107E-01 -0.15E*00 0.17E+00 1115 G1.71 74.547 -0.2152-02 0.111E-01 -0.15E+00 0.17E+00 1110 01.73 74.253 -0.2372-01 0.115E-01 -0.15E+00 0.1TE+00 1145 81.77 74.554 0.114E-01 0.11GE-01 -0.15E+00 0.17E+00 1200 81.83 74.355 0.369E-01 0.112E-01 -U.15E+00 0.17E+00 1215 81.87 74.?64 0.315E-01 0.126E-01 -0.15E+00 0.17E+00 1230 $1.59 74.365 0.424E-01 0.130E-01 -0.15E+00 0.17E+00 1245 81.93 74.363 0.5312-01 0.131E-01 -0.15E+00 0.17E+00 1300 61.97 74.372 v.58?E-01 0.137E-01 -0.15E+00 0.17E+00 1315 81.9.4 74.576 0.50?E-01 0.141E-01 -0.15E+00 0.15E+00 1330 92.01 74.384 0.19EE-01 0.145E-01 -0<15E+00 0.18E+00 1345 52.03 74.339 0.937E-02 0.145E-01 -0.15E+00 0.18E+00 1400 82.06 74.389 0.317E-01 0.152E-01 -0.15E+00 0.18E+00 1415 82.08 74.392 0.199E-01 0.156E-01 -0.15E+00 'O.18E+00 1430 6;.10 74.396 0.234E-01 0.160E-01 -0.15E+00 0.16E+00 1445 82.14 74.401 0.192E-01 0.163E-01 -0.15E+00 0.18E+00 1500 G2.18 74.404 0.306E-01 0.167E-01 -0.15E+00 0.18E+00 1515 $2.18 74.409 0.715E-02 0.171E-01 -0.15E+00 0.18E+00 1530 82.20 74.412 0.110E-01 0.175E-01 -0.15E+00 0.162+00 1545 52.25 74.417 0.171E-01 0.179E-01 -0.15E+00 0.i?E+00 1600 $2.25 74.424 -0.116E-01 0.151E-01 -0.15E+00 0.18E+ 0 0 1615 82.29 74.427 -0.60-E-02 0.166E-01 -0.15E+00 0.18E+00 1630 82.31 74.432 -0.101E-01 0.190E-01 -0.15E+00 0.15E+00 1645 62.35 74.435 0.593E-02 0.194E-01 -0.15E+00 0.15E+00 1700 $2.40 74.437 0.1612-01 0.197E-01 -0.15E+00 0.15E+00 1715 62.42 74.441 0.1002-01 0.201E-01 -0.15E+00 0.19E+00 1730 82.45 74.445 0.95SE-02 0.205E-01 -0.15E+00' O.19E+00 l 1745 82.51 74.451 0.166E-01 0.20?E-01 -0.15E+00 0.192+00

LEA" MEA:U.CED LE6? FATE ddT. *. FER IAY) = 0.135E-01
TAflD6FD LEVIATICH CF t1ER M ED LEA:- F ATES FT Cil THE MEArf = 0.778E-01 MANIMUM ALLC W LE LED FATE = 0.250E+00 THE C ALCLLATED LE6!. FATE OJT.*.' DAY) AFTEP 10.00 HOURE OF TEST = 0.209E-C:

Table 4.2-5 1

1

. e,

/-

8 i

,t I

OCOfiEE UtiIT 3 59 PSIG ILRT TFEND DEFORT ./

BAIEL Die TCTAL-TIf1E CALCULATION? .

f TIME AND LATE AT ITf?T OF TEST: 745 0505 ELAPTED tit:E: 10.00 HOUFO ftD. DATA ELF.F!ED t'EAtt f:EATU~ED CALCf.' LATED CHG IN CALC L/R FCIriT! tit LEAR. RATE LEAL FATE FCOf! LAST FOINT

_______________'E____________________________________________________

10 2.25 -0.7476-02 0.681E-02 11 2.50 -0.129E-02 0.256E-01 0.168E-01 12 2.75 0.1606-02 0.319E-01 0.631E-02 13 3.00 0.227E-02 0.289E-01 -0.292E-02 14 3.25 0.472E-02 0.339E-01 0.493E-02 15 3.50 0.423E-02 0.282E-01 -0.565E-02 16 3.75 0.171E-02 0.161E-01 -0.122E-01 17 4.00 0.231E-02 0.166E-01 0.510E-03 18 4.25 0.434E-02 0.225E-01 0.568E-02 19 4.50 0.584E-02 0.261E-01 0. 26 0E- 02 20 4.75 0.776E-02 0.312E-01 0.510E-02 21 5.00 0.101 E- 01 0.375E-01 0.6395-02 22 5.25 0.124E-01 0.436E-01 0.605E-02

. 23 5.50 0.141E-01 0.474E-01 0.380E-02 24 5.75 0.144E-01 0.456E-01 -0.134E-02 25 6.00 0.142E-01 0.423E-01 -0.32SE-02 26 6.25 0.1492-01 0.428E-01 0.479E-03 27 6.50 0.154E-01 0.429E-01 0.117E-03 28 6.75 0.157E-01 0.42 0E- 01 -0.83GE-03 29 7.00 0.159E-01 0.4 07E- 01 -0.135E-02 30 7.25 0.164E-01 0.410E-01 0.308E-03 31 7.50 0.161E-01 0.382E-01 - 0.276E- 02 32 7.75 0.159E-01 0.362E- 01 -0.201E-02 33 5.00 0.159E-01 0.351E-01 -0.109E-02 34 8.25 0.151E-01 0.305E-01 -0.435E-02 35 8.50 0.14SE-01 0.275E-01 -0.32'E-02 5

36 8.75 0.13 E E- 01 0.241E-01 -0.342E-02 37 9.00 0.136E-01 0.227E-01 -0.13?E-02 38 3.25 0.1366-01 0.225E-01 -0.202E-03 33 9.50 0.135E-01 0.217E-01 -0.818E-03 40 9.75 0.1345-01 0.209E-01 -0.771E-03 41 10.00 0.135E-01 0.209E-01 -0.330E-04 THE CALCULATEL LEAK FATE (ktT.N LAY) AFTER 10.00 HCUR$ OF TEST = 0.209E-01 s .

Table 4.2_6 1

OCCriEE Uri!T 3 59 PSIG VEFIFICATI'Cri LdAK RATE (FER CEriT FER LAY)

DA?dD C.i TOTAL tit:C CALCUl ATICTC TIME FHD FAT' AT OTP T OF TECT: -- -

315 0506

. < a nu.s.u r-cu .: ._ v ii... . : .-

TIi;E TEF7. T .i;.'; : U.7.2 'cAiU ED

. CALCULATED 95% CCH* IDENCE F) ( F .t I A ) LE70 4 ATE LEAX PT-4TE LIMITS 330 53.60 74.503 0.173E+00 0.166E+00 0.265-01 0.30E+00 345 53.64 74.509 0.346E+00 0.169E+00 0.4 0E-01 0.30E+00 400 $3.65 74.513 0.1182+00 0.171E+00 0.44E-01 0.30E+00 415  ??.6? 74.515 0.1?.2+00 0.173E+00 0.4SE-01 0.30E+00 430  ?? .6 9 74.517 0.912E-01 0.176E+00 0.51E-01 0.30E+00 445 GI.72 7-1.519 0.127E+00' O.17?E+00 0.552-01 0.30E+00 500 $?.73 74.520 0.126E+00 0.181E+00 0.58E-01 0.30E+00 515 ?3.77 74.521 0.1512+00 0.18?E+00 0.61E-01 0.31E+00 530 32.82 74.522 0.237E+00 0.155E+00 0.63E-01 0.31E+00 545 53.22 74.524 0.1 c_ c l + 0 0 0. iS5E+ 0 6 0.6eE-01 0.31E+00 600 83.51 74.524 0.1642+00 0.190E+00 0.65E-01 0.31E+00 615 83.55 74.524 0.21UE+00 0.192E+00 0.70E-01 0.31E+00 630 8?.66 74.523 0.213E+00 0.195E+00 0.72E-01 0.32E+00 645 83.90 74.526 0.222E+00 0.1.37E+ 0 0 0.74E-01 0.32E+00 700 83.93 74.527 0.22?E+00 0.200E+00 0.75E-Oi 0.32E+00 715 83.93 74.528 0.2012+00 0.202E+00 0.77E-01 0.33E+00 730 83.94 74.531 0.186E+00 0.204E+00 0.78E-01 0.33E+00 745 83.95 74.530 0.217E+00 0.207E+00 0.79E-01 0.34E+00 800 83.99 74.532 0.197E+00 0.209E+00 0.79E-01 0.34E+00 MEAff MEAIU.;ED LEAU FATE OlT. % FER DAY) = 0.185E+00 ETAfiDAFD DEVIATIOri CF MIAIUf4D LEAK RATES FFOM THE Menti = 0.564E-01 VER I F I C AT I U's TCCT LJii' PAT 2 00FE' LIMIT = 0.227E+00 YZF IF IC f,T ID:t TEIT LEA' F ATE LC'.:2R L IMIT = 0.102E+ 0 0 THE C ALCt."_ ATEL LEFL F ATE O'T .*. ' DAY) PCTEP 4.75 HOURS OF TEST = 0.209E+00 I

i l

Table 4. 2-7 . -

i l

l

J Dr.C.-lE U: . I T 1 SE PCIG 'vZr:IFICATICri TREHD REFCOT PAIED CH IUTAL-TIMI CFLCULATIONS TIME AttD OATE AT STAT:T GF TEST: 315 0506 ELAP!EL TINJ: 4.75 HOUF5 NO. DATA ELAP5ED MER:t MEAIU?ID CAL 5ULATED CH3 IN CALC L/F POINT! tit:E LEAS AATE LEAK RATE FECM LAST POINT '

10 2.25 0.171E+00 0.15!E+00 4 11 2.50 0.173E+00 0.164E+00 0.874E-02 12 2.73 0.172E+00 0.163E-00 -0.116E-02 13 3.00 0.175E+00 0.175E+00 0.125E-01 14 3.25 0.178E+00 0.18dE+00 0.104E-01 15 3.50 0.181E+00 -

0.196E+00 0.103E-01 16 3.75 0.1442+00 0.204E+00 . 0.333E-02 17 4.00 0.165E*00 0.207E+00 0.30dE-02 16 4.25 0.185d+00 0.2 05E+ 0 0 -0.222E-02 19 4.50 0.187E+00 0.210E+00 0.440E-02 20 4.75 0.186E+00 0.209E+00 -0.37&E-03 THE CALCULATED LEAR PATE (WT.%eDAY) AFTER 4.75 HGURS GF TEST = 0.209E+00 1

Table 4.2-8

- - - ~~- - --'

CUKE PCntt R C OMP ANY LC0htE NtCLEAR STAllCN - - - - - ~

INT ECR AT E D L E AK R AT E 'T E S T --~

uSTOST7%

..._. 29.5 PSIG VE RI F IC Ail 0N ' TE ST ---

T9END REPORT t FROM INIT CALCU / A85 ")

7 ATK7t 6 sIMt PRE 53URt iEMPERATURE ABS LH ABS ER v5TC0KFIDENCE rin112

( P 5J A ) (F) hEA5URED CALCULATED

. 7./ DAY  %/0AY LOWER UPPER

. .._ _ 3 7 . . _ . - 1 :0 0 A ~ 45.4674---- - 15.6882 0'.C9041

  • 0.00000 0.00000 38 s':15 A 45 T694 s57033 - N ks -u.us36) -

i

-- 3:30A 4 5.rg 714 ---- 75.7264 -0 C2713 -0;04889 -0;34329 0.28904~

-' 40 -- '- 3:45A 45.11724 -- ' ---- 7 5 .7 8 6 0 0721986 0s12161 -0;25399 0. 69 3 7 2 - ------

s5.8109 u17955 u.17219 -0 0954) u.45461 cr 41 g:00A 45.1744

---'42 4 5.1764 ~-"- 7 5.83 2 2 0-15971 0;18622 -0.04030 0.35973 e 2:15A'

. -- 2:30A 45.1794 -- - 75.8604' 0711736 Os17312 -0.06503 0.29975 ~

Y v!O6691 u.a429c -0TII143 u;24526 e 2 24 S A--- 4 5.1B14 -- 75.868.3

-- 3:00A 45.1344 - 75.871.0 --- -0.03022 0;08574 -0.23521 0.17477 3:15A 4 5 A 8 44 - '-7 5.910 4 - -- - 0.04339 0;07163 -O'.13989 - 0.22667 47 3:30A 45.1854 s5;9379 OTC6479 0.068 3ir -0;1007v D.23029 ,

- As -- 3 :4 5 A 45 4864- ~- -7 5.9 55 7 - 0.C8151 0107100 -0.07005 - - -0.23308

-- 49 -- 4 :00 A 45.1884 - 75.9562 0;C4710 0206355 -0.09456 0.18877 - "

76;019u OTC973i O.07076 -0;03871 0;23345

-3G 4:15A 45.:1904

-- 51 -- -4 30A 45.1914-'-----76.0501 0.12090' 0;08218 -O'.00975 -

0.25155

~ 4:45 A 45.1924 7 6.0 5 6 9 --- 0. C8 0 3 8 0.08202- -0 .04 0 3 9 ---- 0. 20115 - - ---

53 5:00A 45 A954 76;0553 0.C5614 0.07666 -0.05918 - 0;17146

-' 54 - -- - ' 5 :15 A 45 4954- - -7 6 .0 4 6 5 ----- 0. C4 3 6 7 0;06973 -0.07103- --- 0.15 8 3 7 ----

- - - - - 5:30A' - 4 5 A 9 74 -- - 7 6.0 616 - 0;C3862 0.06302 -0.07068 ---- - 0.14792 a c, 2.%2a *2.u994 s 6 .1*J7c u.0565u 0.060 s s -0T04726 0.1602.

57 6:00A 45.1994 76.113.5 ~-- - ~0.C53 83 - 0.05842 -0.04957-'--- ~ 0.15722 --- -

~

58 6:15A 45.2014 76.13C4 -"- ~~ 0. C4 5 8 5 ~-~--~ 0. 05 510 " '- - -0.05191 0.14362 Lv C:30A 4T 2024 16 ID 3 U.uiOB2 U .0567 ) -07U2664 u.1682s

- 4:45A 45.2034 76.1838 - 0.C7501 0.05812- -0.01662 0.16664 --"

~~~ 61 - '7:00A 45.2054 ' 76.1890~ '- 0.04791 0;05558 -0.04350 - - - 0.13931

'- ~ - - -

67 sn5A 4 5~.Z364 s 6- 2 2 5.v uT0653J u.D559e -0 01998 UTIS 063 7:30A 45.2084 ~' -~76.2378' -0;C529s 0;05451 -0 .03 216-----~ ~--~ 0.13 8 0 9

'~~ 64 - 7:45A 45.2094 ' " 76.2603 0.06356 0;05474 -0 .0 214 0 - - ~~ 0.14 8 5 3 --- -- -

g 6 5-- a:00A 45.2104 16 2809 07:5T 96 u .uS3'4 u -070265) u l'J048 m

~ ~ 66 ~ ' 8 :15 A - 45.2124 ~ - -76.2681 - - 0.C1947 0;04812 -0.05892--- 0.0 9 7 8 5 ~----

- '- 67 - -- a:30A 45.2134 ' - 76. 2336~- -O'.00286' 0;04069 -0.0 8112 ---- -' ~' 0.0 7 5 41 ' - -

7e 63 8 :~4 5 A--~4 5.2144 iG307c 0703191 u U3821 -0.04624 (T;11007

-" 69 ~~~ 9:00A 45.2153 "76.3012" 0.02104- 0;03475 -0 .05 7 01 ------- '- ' O .09 90 9 - - ' ~ "

o -' 70 - - 9:15A 45.2163' ' - 76.3353--- - 0.03209 0;03290 -0 .04 5 8 5 ----' ~ 0.1100 4 ----

s

- il 7 : 3 0 A----- 4 5.218 3 46.3360 u.u39Je u.0298) -0 05175' u.09039 D

~ 72 ~ - 9 :45 A 45.2193 --"'76.3773 0;03339 - 0;02861 -0.03761- 0.10438 -- - -

- 10 :00 A 45.2203 - -

76.3842' O.03004 u;02716 -0 .04 0 8 8 -"--- 0 10096 "- - -

14 10 :15 A 45.2223 4 6.4 01T u . u2 67<. u.u2547 -0 ;D4461 us0970v

--' 75 - - 10230A 45.2233 - ~ 76.4333- 0.03482 u.02480 -0 ~.0 3 5 9 6- -- - - 0 .10 5 6 0 - --- '

-- 76 -- 10:45A 45.2243 - '- 76.4345 0'.04093 0202480 -0 .0 2 9 7 9 ~ ~- --- - 0.11165

--- ~. .. . . . ..e,*-

    • h . se -mm- g e - m.a .

Oewe mM e-o.m om_, , ,

E

l l

l l

l i

i C e e C e oc a F. C 4 dl en P4 - CP P eg < 4 m m .d ela M n as .m 06 wi F1 N di M J Pil N .

.4 e e a d N N 4 .g e1 4 N -4 et al N w #1 se e ra CP ==

e4 c3 mi ad a , at as vi em d M as o d d d V wi e 1 1 1 1 I C C 4

C C C C C C C CI C C Q c Q Q c I C ul bi 3l w

3.. N au-v cl v .

m c

o

s e ic e

M Q

N N

F n

m

=d

- a rg c e6 s 4

e M

  1. 49

,e

-4 A

e m cP

.g P*

n st Je M

P 8%

P

-d

~

P=

et el w r%

as a il e a wq c5 4 c N p1 au - de d es q c N ag n Q Q Q, e4 at as

, Q C,

e4 N.

nf

< J. '1 99.O, -

C, , , e4.I P.4 r%. a au,

' * = a '  ??*  ??  ?  ? " ?  ?  ?  ?  ? ?i

s u

-d 4

=* O 3 uI e N O 4 0 m a e P 04 e sa 01 c P4 =d P e O

d au n 4

=a >=> nl sa su V N dl e N 04 P sEl Q dd el W4 @

.i d ad ai 6 O n. Wi al .l$4 4 P1 P #*t P= d3 c5 (P Q ae a-E .4 IP 4 4 J W P P9 P eq mill ** sm J 49 r%

M C &l3 l t.il 4 fe' J P1 pj pl ed M pq reg F1 e4* N Na N a,wm 4 4

  • 4 4 i
  • 8 9
  • e
  • 4 e v ad

> ut e .J C' Q c C' C C C c c 3 c c c O C C C o c Ewi >< l at bi l I w w W ..c = >u at

]

Z w= Q

=4 e no ad 4b> e3 r si g 4 t$.

n d ed W u uJ u at W P. =e as P

! as at

  • ut t O P. P et C W # N 2 a 4 N 01 N 4 e Q # #

F. og a w> # ni a3 N P' M Pi a Q gy en N O og W) N r% 04 .=

c4 w and C$

N i

and J Ci at 2l I at 4 -Q -- N N d J 4 J CM cre J 4 e e4 J P= 4 rw en n %r =. uA su 3 C3 If1 V as @ (n a3 J d d c4 Cr a.M 09 ,C$ O Q @ f4 eiq y r Q3 Wi 3e d w i vt N N Ci l ed. Fj F) C3 6 pj F1 rQ rN d na ng e4 1 C y .=

4 4 4 e e e a e 4 e g el 4 e, Z is4 Cp l >= a$ at m 4 4 4 <

9 a I >e s.1

  • w C C C C J- C C C C C d c 0 C C C C c c uJ w e4 =* E i i W uJ at 4 33 2 e$ c4 C3 O e4 e v >+ uj
  • 4 d .at, cp n u Ni 2 d C 2 SS 2 C e4 re F1 d F1 e4 d @ d & S

- >. o1 P w1 o J J

N .de m en r4 o d as ci 4 (o O

n4 ec9 o9 et m a, N

c4 og N

cz a a

d .= N v' rm N 4  % na -4 a E W 43 43 P- f4 Pd P 41 d2 =C d3 P4 4 u =  ; $

13 f ] JI A

  • fl  ! .* .l e

J J4 . ,

n 4 da <3 24 da 43 di 44 C 4N 4'3 43 4 3 N P P N Pt r= P P P P P f= P= P P= P P P= P P u

s 6L e' e' le r e e' te e r se F' M Fi fr CPI P em P M i8' a a CM O @ C* O 00 c19 3 01 "P 04 afs .C @ d @ Jil #

=,t e af N rN e$ N: P4 N rN N N nd P4 Pe n8 N N m3 M 5 6 c4 n. N et ni ni ni ni et N nt na c1 *4 r% N ed et wi wt e e e q 4 e e < = m a

  • a a q <
u. & vt v v1 W1 er, sq W1 v. J1 di e gy vt c in wy c g( nn er a ** @ .1 @ @ Q @l @i Q 41 =7 @ @ @ @ 4 @ @ @ @ @

CI d d a 5 5 h dhq d d d d 1 4 d & M Q

d E cu d a W c u W1 C C3 W) C3 og Q Wt O3 W14 O (ni O Gil 1 p1 ir J 4 e' w p1 J 1 F1 J ret s ct

.a, .- .g ** *. ** +4 *4 *g == *4 *= 4=1 c.4 **4 *= ea ** e e<

c4 e. .= .- rN nl n r4 er' P' rei N1 @ 4 44 4 J1 J1 #

J M e z N a o - - 6 #-. v1 .c P=

.su @ si - es @

. .. - - .. .a - - - - N n, r% N N r%

km C

l i

l

! Table 4.2-10 l

- *~~

OUKE PCWER COMPANY-- - - - - - - * - - -- -

OCONEE NUCLEAR STATION INTEGRATE 0'LEAKRATE TEST

- - - - - - - - ~~ - -

uS/US/7%

59.0 PSIG VERIFIC ATION-TEST

- -- -- ~ - - -

- _ . . _ __ ___ _ _____ __. T RE NO R EPOR T- l F R OM I NIT C ALCU / ~ A8 5 3"~ -~

unTA 5ET T T:4E P R E SSUR E iEMPERATURt ABS T.M ABS EK 9 5TCDNF10ENCCTIMIT3 IP51A1 (F1 HEASUREO CALCULATED t/ DAY LDhER--

4/0AY UPPER

- --~

4 8:00A 74.6886 81.2571 - - -0.24116

  • 0.00000--- - - 0.00000 ---

5 8:15A 14 6936 81.-3432 u;30529 u.20529 -

  • 6 8:30A 74.69J6 -' 81.3 3 8 5 ~- -- -0.04 0 9 3 0.'10785 -2;30729- -2.22543-- - -

p 7 8 :4 5 A 74.7036 '81.4059 - - O'10719

. 0;13742 -0.61248' - - -" 0 . 8 2 6 8 6 - - - -- -

tr 7 B173671 8 9 :0 0 A '--- 7 4 .70 9 6 - -0 R0590-- -0;04064 -0.32093 u;40913

  • 9 9:15A 74.7145 81.4627 --- ' -- 0 . 03 3 7 8 -0.00772- -0.41146 --" ^0.47901- - - -

~

- 10 9:30A 74.7195

~

81.4628- m 0.'04694 -0.G2610 -0.40071 0.30682 - - - - -

- ~--'~11- - 9 :4 5 A -- 74.7235 81.5132 0 00654 -0;01512 -0 2904v v 3035u 12 10 :0 0 A 74.7275 -

81.5606 '-- - 0. 0418 9 - 00555

. -0.21845- - - 0.30224" - ~ ~ ^ - -

- 13 10:15A 74.7325 81.6066 - - 0.05470 0.02417 -0 18101 - - - 0.29041 ---

-' 14 - 10 :3 0 A' -- 74.7 3 75 -~81.63 3.2 0;03410 0703077 -0;11763 0;24582-15 10:45A 74.7415 61.6466^ 0.00811 0.02781 -0.18859 -- - - 0 . 2 0 4 8 0 - -- - - -

16 11:00A 74.J455 81.6959 - - 0.03509 - 0.03285 -0.14670 - - -0.21688 - - - "

17 12:15A 74.7S14 81;7129 -0.00111 0;02731 -0217121 0~.16899 18 1190A 74.7584 81.7271---- -0.03193 De01543 -0.19720 - -0.13334 - - - - - - - -

- 19 11:45A 74.7594 81.7726- - ---0.01244 0.01602 -0 .14 4 6 6 ---- - 0.16954 - - "

d 12
00 P-74.7644 81~. 8 2 8-1 0.~03825 0T02203 -0211058 0.18716

- -' 21 12:15P 74.7704 ^81.8689 -- - - 0.03304 0;02583 -0.11130- 0.17737 ---- -

- - - --- 22 -

12 :30 P 74.J714' --81.8889 0.04355 0.03098 -0 .09 2 3 3 --~ -- -- 0 .17 9 4 4 - --- -- --

o a 2 e95 r s4;775r. .1;927.y 6.655*i 6.03751 -0.07547 s.i8708

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___-______m_

24 1 :00 P 74.7794 81.9646 -- ~-- 0.05976~ 0 . 0 4 3 6 6 ' ~'- -0.066s6

~ ~ -

'O.18638 --

~

25 - 1:157 7%.7843 81.9911 ' -" 0 . 0 5 2 3 6---~ ~ - '-- 0. 0 4 7 5 7 - ---- - -0 .06 9 5 6 0.17427 to 1130v I4-7923 52- DT7D unn4 a u 04531 - G1G014 u;T4296

'27 --~ 1:45P 74.7973 - 82.0305 '----- 0.01048 0 .0 4 2 5 4 - -"-"- ~ -0 .10 63 4 -

0.12730

'-~

~-'28'~~ ~ 2 :00P 74.7973 - ~82.0626 ---~ 0 . 0 3 2 81 0.04303 -0.07914 - ~ ~ -' O.14476 ~ ~

4V 2:15P 74^.3003 82.0836 0.03101 u.0431) -0.05065 034271

- - ~ 3 0 - -- - 2 :3 0P 74.8043 82.1052' O.02497' O.04238 - --0.08174 -

0.13168- - ~

-~~ 31 - - - - 2:45P 74.8093 - - -' 8 2.136 4~ 0.02084 0.04111 -0.04567 -' O.12734 -- - -

p 32 3 00P 74.8123 82377) 0. U3191 u.U4'Isa -U.06946 u.13328 a*

7 ^ -- ~33 - 3 :15 P 74.&173 ' 8 2 .17 5 8 - --' 0 00840 0.03867 -0 .0 9 2 8 0 '---- -' - D .10 9 6 0 -

.# ~~"34 - - 3:30P 74.6202 -'82.2054- D.01259 . 0.03672 -0.08a46 "--"0.11363' ' - - - '

3> J:45P 7 4 '.B2 52 82 252i U D132 i u.u3564 -D;U7746 u.11399 m 36 4 :00P 74.8332 82.'2535 --- - -0 . 013 0 5 - 0.03102 -0.10865 - - - - ~ ' O.08255 -~

$ 74.6342 - --- 82.2866 -0.00470 D'.02779

s - - -- - ~ 4 :15 P - -0.10015 ---- 0.09078 re

[ J 5- 4:30P 74.5394 u 2 315~4 -0 DUB 3s u702446 -0710374 u.U569v

_ 39 _ __4:45p. 74.8402 -~~~'82.3500- 0;00738 0;02311 -0.08788 - - - 0.10264 - - -

-- - 5:00P -74.8442 - 82.4010 0.01764 0;02295 -0.07206- - 0.10735'-- -

41 5 :15 P----- 7 4 . 54 72 -82.4171 v .u1161 - 0 02218 -0~.07 s 00 D.10123

-- '- 5:30P '74.3522"-- --82'4469 . 0;01123 0e02144 +0.07830 0.10077' -

~

- - 5:45P -74.8951 --- - 82.5073" 0'.01836 0.02145 -0.07110 - --- - - 0.10781 -

1

- ~ - - - - - ~ ~ - - ~ - - - - - - ~ ~ - -

DUKE POWLR COMP A!4Y ~

OCONEE NLCLEAR STATION

~~ ' - ~ ~ ~

INTE ORAT E D LE AKR ATE T E S T - --'- --- - - - - -

u 570b77%

- - - - - - - - " - " - - ~ ~

. _ _ _ . _ _ . _ ._---- $ 9.0 - P S I G ~ VE k l F I C A I 10N -T1: 5 T

~~ -- -

TREriO dEPCRT t FROM"INIT C ALCU / A85^ l WATA-Sts 11Mt PRESSURE sEMPERATURt ABS Lu A85 LK v 5TtDNF10ENCE TIMITS (PSIA 1 (F) MEASURED CALCULATED t /D A Y t/0AY LOW E R --- UPPER-

__.. 2 ---- - --- 3 : 3 0 A - 74.9200 - --- 83.6032 - 0.18221

  • 0.00000 0.00000 J J T4 T A (4.921u u3764Vu u.JE774 v.J4974 -

4 -- 4:00A - 7 4 .9 2 5 0 ~ ~- ~~ 8 3 . 6 5 4 3 0712245 0;18825 -0.87741' ~1 12230 - - -

N -- 5 -- 4:15A - 74.9270- - - 83.6805 Di14326 , 0714779 -0 .16 9 4 4 " -- -- - ' O .4 5 5 9 6 --~ ~'- - -

tr 7 o 4:30A 74.9289 o7 6394 UT09399 u.10I7) -0.V8514 D727317

-7 - - - -4:45A 74.9309 - -- 83.7214 0;13029 0209846 -0 .011 15 --~ ~- - 0. 2 717 3 -----

t 8 - -- - 5 :0 0 A 74.9319'-~ - 83.7406 0714170 010314 0.01584 - - -' 0.26756 - - - - -

N 9' 5 :15 A J4.9329 83 77v-a 0.1825) u J2396 0.05083 0.31427

-' 10 -- 5:30A 74.9339 83.8159--- -- 0623788 0715911 0.09529 ~ ~ 0. 3 8 04 6 -- - ~

11 - 5:454 74.9369 -83.8188 0;19199 0;16771 0.06239 -" ---- 0.32160

~7 Z 6100A i4.9369 33.8131 v.16540 v.a654i 0.04837 0.28243----

0.17723 0 .10 0 6 6 --- --~' O . 3 2 0 5 7 -

- 3 3 - - _. - 6 :15A 74.9369 - - 83.8532 0.21062 14 -- 6:30A 74.9369 -83.8629 - 0.21339 0;18689 0 .110 31 -' - --- 0. 3164 6 - -- --

72 6 45A 74.739v a3;9044 0772299 u.1967o s.12093 W 32505

- - - - - - 7 :00A 74.9409 - -- - 8 3 .9 2 5 4 -- 0.-22427 0.-20481 0.12886- - 0.31968 -

17 -- - 7:15A 74.9419 83.9312 0;20862 0T20759 0.12001 -- - -- 0.29 72 4 - --

18 7:30 A 74.9449 83;9437 0718667 0.20504 0.09860 0127474 -

._. _ 39 _.- 7:45A 74.9459- - 84.0000- 0.23697 OT21320 0.15587 --- - - 0 . 31 e 0 7 --

- ---- 20 -- "- 8 : 0 0 A ~74.9479 - -- 8 3 .9 6 4 7 - ~ 0;19681 021207 0^.11609 - ----"0.27753 '~ -

1

  • . .. ~.

= _ - . . . ~ ,,.a l

.1

p.. ...T..... ...18 n
4
**: :n
t ~: ."[=l=i... .g.; . =~j:. 1:[- . Tt: -. -r-t:-~ .--r ..::. - i

. in .* : t:: ~; t m .nnynn it jj.n:.

t;'
t: .;; ::: {L .:...:- -

- l- "{ :>  :- ,J.=;n:

_ . l.t- -.

. . . . . . + _ . ~. .... . . . . . . . . . .o. 7. .;..

. g :. . ......p~.,..

, .. ..f n . .... n..

---m. :=. __4 n. . >:.+.

=. . l:J: .

v.g :: . ::..

.l  :: .  : t. :. :. :. . n. :. .'

. ,*..: n.:.n. t.t* ~. . .n"-.4 .

..t....

..= n: . .= : - ~==

cl:bp:::h':

.r

,7 . n-t--r- . .. :n1:-

'=I ~ :. -:f.:-.

.:. m.;;

- :! . - - n* . :' -~  : ~~- ; = : .;:=t:::.:-

+

n=.4._

M S:4Ni ;iliEi! .!ffF MT*%E.5E ~id.s%i52. E5isi..f~~

~

l .- i

:1 i

.t:.. .. ::- '

a a I* ::{:.n:p- *-h::- - "} ;. l':'::T:t*.: r. **m

. ..h" ::, t. if ': t - +- _2

' } :-

  • _.w . _

~

'f '! ih f Nf ffh 'l' I

fh hkJU~N -k*t:r-t-~;$  ;

!.*_'t fU.::h.; ; r '~II*=T =;*1iE

  • ~
1. i' 47. : . ~. : t.. . ..!' & "*-* ~ j y,3" "l ". : m: .:' I

. -  ! 1:..h.

1:  : :t:

!:': - t-  : nM:  !~ : .!:* :t:*" . !!;- tmur

.. . : . t=t=

i '),a j "l i

j

{- :t.

- *- - ] -:"l:.

" t: :l .

= {-

~

:::- : t:

' *:j--.'

f:n-um

~ ~ =

=:. ~ -

+"tn: l=.:n; :n t=

l r,;a7;.2 ..... n ;; .  :

p: -l: .l:.  : -=4n: :::q:w= .=n= =,- = 1,' ;- =l:t ..n n un nn:-

. .1. . a -- ~  ::: . :l: .  :- 2.

' "- ;n*-tun: .a...

! 1 . ;1 - }; 1 -i . . :: t . !: . I: *t:::

t :t .t t *

l. nt'- ..! 1: M tt * :n = ['t:r.n 'j t= ". __-tL_. . ._ 6 f .[ [ l  ! h .'I I'  :( :h:.

4 ift MI'(( ...

. :: ;; ":l:'. . .::}. ...  : .. . . - .

l- -I ':  ::

, l.

. l { f. 1 1 1 .f:

. .f. . .. . . . . :i. n... .7

U:..: :: : --

I- d.

  • !! ~; T.. . . . . . . . . .: T* " . .

l l l l l ( t .f ,

'... l 'f...

I

.]

-, . l:...;*..

'"3, , , , .. .

.g...e,.......

{: . ' :. ... r . .: 4..g... 4 l.. 'l. .ig .t. :

l l

l. l -l.
f. - II

. t: l :l:.. . . 4. ..; lm=. .

fu- ::d::n'- [::i'.:.~

I . t Fr. *

. :'I: :f .l..d :t W EE.'h.::h::~:.'=;

'l I l l.

,  !. l *

.l..

", r: : ~

" c:

- ' N - - * --

.f*.......'-

- ! > f . f .-

l .

( l  ?

! l .l -

l - I

! #  :!t .G:j{Ui

  • t

{ l l 2l :l, mv. .

ll' [

((.

iif

,s . . . . . .

l. { , . h. ..

I. .I. I '. '. /5 . I..*._

. . . _ . . s4 3s ._ !. _ . .

i i

_ ..i __1.

! .li 3 D-M l!. $!N

.!. . _l l . $,. . .,:l:  !.

].:..l. :j .r :c.k. .:.. t., _

l l  ! ~{ .  :

'. i.

p4 m ,.  ;

i . .. .

00

. ,u. .

I l

l

. ,n.'I -

-t.

- (..-

  • * ; . ["; .

~

l:. - -Ul ::; n:

.. n'E- .. g .-- f I

A C3 W  ;

..{' - . d<.l. - '. ; .

s as .

, j l

i l 1

, I i.. . [' .- l -. .- i

,. e, m  ;

m i. i 1 :i,l.  :::  :  :

.w i.._., 3 .,... m.

y --{:. __

{m

. . __ . 1_.:

4, e> .

i u , . . ,

a 2.,

l  :  ; i  ! .I',g..l: i- li! : N i i I,

i ,

i  !

r.

. ._ i .  ;

. _l ,__.. _I f , [. . ! + i O .i . .. _ .

b h !- Ii - ~ Ib-d  !  !  !  ! [l . . . . .

]. -..

i a-t ._,

l ' _Ii i - -

t

p ::_

i

!  ! [  !  !  !  :

.' . _ _. .i . . _ . _  !. . _

j f  :  :

i. j: 4 :t i l

! [_

u t

l ,

l ,

.  ! i  ! .

. : .,l '

..1.___.L._... .

. . ..; . . . .. } . _j . _. ._ j I . _.  !

[. , ,

i i I. '

l  !-

'l

! l

! ,  ; j

.! .I [

' i  : i  :.

i l a i.

. . . l m i  :

p. . .

' - l ,

l 1

',  ;}-

, i I; . ,

.l m i . .

. i ,

. J i

1.

(A80/3 .. L -

  • a2*H M)g/" W I.

i 4

i l

1 i

.e o e m .e o

. a.

n. . . o. o.

Figure 4.2-1

Y .k j b l: 5 . .

~

l

. l" z 4

i

j. l l i ..p i.;$. _ .=. . .!.a. _ F. =.*% . . . _-=.

+ * :4==

.,_.u4._.

Q  ;. f :U:n zut:In

,
- 2

.::!=: . -

, .}, .g... j.. j. . ,.  : [;. . . g . .."; .: .n- - -t --- , . . . . i _ : H_..._-!_--*'-

.l. ., .

l  ! l- f. l'  ! 'l- lf! ' :} .' [h {C73..; _._j'~

f j.  !.  !. .
;;:nn.:!:m..-M~~-- ' -

jO

. t.< =m i  !

l

. l.

j

-l: - t- 21:= ' *dnn'.C-I : -

, , , ... .r. . . . . .

I i '-*

M1. { .t'

.l- .4 _ .[ .. : . f =. . . ;. !. = C*;

inn. - 1. = :.

i e . l l .

I t

i i, so lhe. . .. }

l ..

.l: .  :

- [ .--.. -: :l:C2::{::m1

.  : n - 2 :- r-:r: :J -j .m:r 1 r

~

I -

i i "[3d. i: i i i Il I "t il' ~:1:= re t ur ~in i 'j. ,j. :in:t:: :i ur j

rij u , i j j q- i.

,'8,loi e -c -

t i l 1 i  :

!
' .!! li-t-

2dd l l i  ! l I' l l l.

~

j i j , l  ; l t

.l t :i--

i  ; l i  ! '

i: I i _

i i, l l  : l l' l,  ;

l .a, _.d._'. .

l i i

i  ! l 3 $; ,[ l -

l  ! l i l1 i l i i j w w i 7  ! .

,  ;  :  : g y i/. I  : 1. - - , .

3 l *

.4...-

I '

N .s : ld. l-l l l'  !- l'  !,

a  : j i

.._.o _

U Nw._ __1 i  :

> l T -

___.; e -

u e i i 7 .

i*

l I L  ::

q

/l I h 7 I  ; J' l

[j  !  ;

>w. -

c , .-- ,

I.  :*

I +

au n i I

I

.e.sca cc =

f-- , .w iu

' ,/. '

l

__ is a

_ [.a9, ._._.' -

/ .

.. ~

" I '

/

l  ! l l  !

!L{ i

, ,. i ..

i l, ,I ..

w I 4 j i

m  ! l ho 1

! l- .  ! ,

i. l  ;"l 0

-. u _ . _. . x . _ '

1 __

t l

!  ; . $ i-I ' l l

.$ l , , I l I i

I s

1

_ _ . _ _ _ . _ _ _ . . 'g _.

l 1- '

l 1 I

[ '

i, I j l .  ;

' i j i

.}. -. _ . . j .___. _ l I

i i  : I

( Aec/% '3M) aag zwa'g l _

l i i

. . . ._ 7._

j.

e. i. i. __

~s. m. n. .e Figure 4.2-2

T

.  ; i

+

I I. I

.! I . B. t _ .ased i

t,

. c. o..To c. a. l .: T. . $me

' .. . -L- .Chiho lationesfReart-59 Paig ILRT Th .M45 . 5/5/74 -

. Unit 3 '

l l TLeak. Rate:ws'.M Time  !

. 2 67 l .- - - -

9 . i I

. '  ; g.I ..; M14 .;.R  ;.;
. 1..

I .

] ,

La = .25%/ day i

! i

,,,, ..., .h... ig:t ' ..

.. . p n

Ilt .j. :.,; .,

.q, :i.. d. . g;i i ,

!  ; l . _ . .. _. .. a -. a.: q. a.. __. ;  ;. ' t[th]  ;. . }'

7;,,' .;,j Jg;$

' ti! . l d.. l..

j (

$ 9[ TllSl' [:; b U--

I

.24-- - - - - -- i - ; -- 4- -- ; "-- :L 2 ,cl -"

- l - -- -- p ~- 3 p:;: ...

!;:i 1:- i t!

i' ..

g':;j;jp,lj.lj 'j; '.

i ,

. ( .. .
a . . .  :. 3,- . . . . Li . . . . n.,  :.L?.q:; L;jj .j .,

... : .' !.: .' l... t ::::; l.I'i;ll :4

l';!  !

I I . ,1.:. . , ;. .! I i .t i ,

sw - m I ,

+ i , - - - - - - ~ ~

~ ~ ~ - * - * ~.i

~ 1 -+-'** +

6 .. ..

  • t;t' h n- r. . - ~'**+
    +1
  • t" g l l . ,

'i '! *!'

'l-  !

l ,Q m. = ..ijj i 0; ;jd hp h.t' l

, j . . . _ . . _ . .

m i. i ,

m'

..! .- it ..

e- n. i j '

  • ~

4

    • .06-~ -u c

et v

r ,

i

- n. - i .i u .

e I +

I  ;:

A ' I

- S u,.

.u

. - _ ._ . _ , _. _ _. ._. _. t:..

Y l -

w .

l

..~ '.'.,. ..I .' p...:;;.. ..i {

8 I l __.. . ,. .. .

u .

y . . . .. _ 1 , ..

_.7 N

. - m m .

=.

. t ; :. . :!r

. .... . i ,. , .

e l u ..mm :1;;

u u l

.04-~ 3 4 - + -- -- -- - - + - -

i m --  %

I [ _n. =

1Q  :
.a ;.

. .ir ,

n__...:n u g n.; 1; !:;d;' 1, '.. . ; jai u: ,; :

t- .t.;

}

.. . .. .._  ; . . . a..

= r,%" _

.['

'4

~ '

i;

_:i! '::; -..::. iH} .{ .:

8, a;' . 7. t ; ' !. ::ji

": 'u; :;r :!:

. . f_

i fjNijjf h} njj] j j - . . . _ . . . . __, . . _ _ . . . . . _  ; .n. = = ..I- .;n = = ;uj !N.  := .dh .

-jjij

) MMkISUtl

I I l i

.02

. l g j.3 '. p%

. ,1. . r.!!y

. ... .. .!. _a . . ..

,.9 .

.;;.d ,

.g '.... . . _ . .. ._  ;. _ .J. L  ; .;  ; =  ; 4.; =;  ;; = 43 .Cj;  :/Jj- jl;; jjt 4't II l 51 M. .P. I

.} -.I ..! jf.

, t .i !. ,i., .., ...

gp.

_. .  ; ";! :h 4 it ; '-

7 3,,,1 j

_ . .: _ . . ._.._ I_.

..7'._. ,, ,

,q , , . ,

,,.. .h f; 7

_' .' .: . ,:{M..Ih, , .: --. .:-!!U

. '. I  !

j pu. . ,,

q

l. . ,

,.: , ... 1 .

.1..; p; d,: ,7n, ;.: q

. t l i n a: in ' -

a a: n; 9 j ;!t ,p 0 ,

,., ' g
_. . 1: . :::.

]f 7j.

7p_:

, l . _ . .. . _ _ .._ . _ . . _ _ . . __ .. .

t:}' .

p ,

  • . -! .. 3::

i! ql, ;. %.

I  ;

__4 .gg. g. .gg .gg .g ,,

a: :1 - :

7, -

+: .. ..

un

! t.  ; l' I . ._ . _ . . .x . . =- .: ; up . _a: _; " - -

I '

3  ! q J 6 7- 'H ': Ti ' i. I:.41 i 3!!. ' . nH. l.

. l_._l.. g .t. .. .m._.

_ _ .m. I l__ . _ _ _ _ _

l -

?

59 Psig Verification Test .

Unit 3 . ... . .

Leak Rate Vs. Time , ,

  • l

, l  ;

i 1 1

, . Bas aL. Time i

' Cal.ed culatices ion . Tot . . M zt.;

I' j  ;

Time: '0315 - 5/6/74 ,

1 i .

. a i

l '

- i l- m ' l . .

x . ,

i

e i ,

l j [

i O * '

I .

J i

e4

  • I 'I .

M . ,

  • u l a __ ._.

g .3- g  ; . _ _ 7. _ _.

i n .

' I i m ,  ;

  • Y  !  ! i i l Upped Limit.  ;

I

__1.... ____.

. m  ; ,

!  !  ! l

  • x l 1 I a

.2-- -

O .-U~ . -.U_- - - - . . . - .__

_f - _ - - . _ _._-

mM

~ ~ ~ -

7 a , ,

f,  ! _ __! . . . . . . . . _.. . _ _ ._. . _ _ _ .

I 4 Lower Limit i .

. t i -L-

.1- - . ,

H - .. - - , _

i i i * , .

t . .. ._ ..; __ _ _ _ _ .

' t I I 3 I

1 1

y

_. . ! . __ _'. _ _ . __ __ _. [ _ , _ _ _ _ _ _ _ __ __ ,_L...

i ,

I i - _ _ _ _ _ . . _ _ _ _ _ . __

. }

. i 0 .

I I l l -l -,

l --

i l t _ . . . . . .

,t [ ' dime (l!.our s /fto rE tar ec f 'Iest) [. . _ . _ .

l ___ ___ ._. _ _ . _. . y I.l . . _ .. __

._. 7_ _ ._

j

.}..

' l-

, I l a.

j .  ;  ;

. j . . . .

+ l.

.. j

[j; I _..i, . . _ .

l

._.__}.__. /. _ _

-t i .

3 4 5

I' l

29.5 Psig ILRT Based on hotal Time l Calculatihns'. $ tart Unit 3 0045 - 5/3/74 {

Time:

. 20- Leak Rate vs. Tim _e

i. .

l Lt = 0.177%/ Day __

i  :

.16 - l '

I

. .l

. i M I m .12 -  :

a n ,

m *

, y

  • g i

y ,

  • I - --
  • s H  ;

i  ;

i- .

. 08 -:n  !  ! .

_ . . . . , ..L_

. i .  ; - .

. I A

i l i j , l  ! -

.. ....i

.04-." ,

I I

t y u

_r ___

i -

. i ,

+ -

O ' ^

. I

, c  ;

e . .

I - -

  • i i l 3 l I  :  !
! T TIME l(HmJRS ATTER START OF TEST)

~

g 3 4 5 6  :  !

7 8 9  !

'It)

I I I 1 I i '

11

. s l '- l l r i l i i E j $l  !!S

-= 7=__4. . . ;l: . _, ,. .

.g j.. l.

. -l:.2 .;:.:i}=. .,g: .:q: = ;;.j_: :;,:_1-i ,.

.i

..i- -l.

j F,d , 1 . [ .l i j. aj. ;ll _ !l.Uill _j{jic ?!ijp.: J

] .l.

.; l jN ,4 -li l: j.  ! }. .{ ~ ' 'ijlj- :fC }li; iip"i[. ifP! -

I I l }  != l!~ j!~ :li -  !!: i!!-  :!

! l ) gg*

.+._ gI  : q .___ . . . .l . -_q}. _,_ l -

7 ,

~1.

I

.m-- , _, } 1: .1. ---

! -r I >

_N .

l 5G  ; j j ,q  ; -j_ j. .j: :l:- qj .j t

l  !

1( l' . ;- l l

l l  ! - l: -l- 4} 2  :( .

_.[ ~

Il 5@N i. l ,

l l j l  !  !

l' l l i  !  ! [ l .

l I- :li { l I >

1 l- l-  ! j l ,

i i l

I l' l (

!  ! l l . _1

!i L1 -

.  ; I T a i i i i i?

~N ~i l

! l ij l.] -

.' l.'

i LT .

i j

-8 w g i, - ,

i. >

i, i l 6 l [r -

y

[ .

l l

l- 1 o

  • ~M

, y l]

  • d b* .  ; w a .

' l' i e  !

^

i I  ! '

l @ l I  !

l:

0

_ - m .e Du#

l  ! '

l-

! l[

. i

~

l l l I IN la i

. u- a. 'l '

}

t i t-

  • i C Cw l

,1 i

_, > :s g -

3 a Q

i l; l /I  !

l  : l4 l o

! I 3 .' ' ',  ! ,

l[! l

}

i l  :

l , j .  !$ -

n . - ,

-- i i i

j 2

[! N l

i l l i

' i f

i . I  ! l  !  !  ;

_ I

' l

! l >

l

_4_ = -

- O .

' j l

. . \  !

  • _. J

-__.;__. L_ .i____g._._.. 7.

n 1

t 1

' j l

. ._...____j_____..__ _..._.. _.

__ _ . . . . ..______4 ,

_ _ _ _ . _ ~ _

,i a i

! . I p.._. _ _ _ .

I

_ . _ . . _ ._ _ i . (19g/y,. !2aj 32v1.MirI_.' .

t 1

t. i. ,

t m n a o e e e e

Figure 4.2-6

, s e

) i

,' ' f  ; . l . .u . ; .. jq j j . _. .

i l  ! j l l .. .. .. :i

-Ba.aeo-oe:-Tc ta] --TJme-I . - - .

c-i ' '

59 Psig ILRT i i

t'

. ( e Ca leulat 100 .. Sta rt'--

l l Unit 3 -

}-

- TJme:-- -( 74', w- 5/~'/F i

' Leak Rate vs. Time. .

- -- l - .

. 26 --- 1 l ,,

[ -- , . , , ,

I . : _. u_ a; .n. .= ;;g l l' l  ; j . . _ . ... .. . . .

I.o - 4. 251/ bay ;  !!!!

i i . -

j

.= .}y' y1. = .ip;::= .jg ::;

. i i i ' *

, I . . _ . ;_. . :1. 2 Li, i

ar. .:. a;:

l ',

l  ;

.24 -- --

i j , q- -

-y l

- - - - -- J- --- -- 2---- '

..ll .g

'l  ;!!! ; .l 1

1 q _. . . . .

.m g

g. g ., g'

~ ,

. . __: __ ___ . . . . _ _ . .._ . . . . . _ . . .; :_._ . __u ..

~'

_. .;n ;ik !!L :1_. IL, i!!i :i!! .,: ":

T , .

! l ~,:.

.;;j

. 4 .. . . _. .: . .;. . . _ L;. g;. g j_n .J. 94 111. g:j ,1, m I i i

tt r  ; ' - - - --

I m .06 -- .

,! n-- - ,

c , j i - -[ - - .

' ' I ._. .I. . . _ .: . _. a_:  ;._. .._. _. _,.2 .u nn . . . J_

Q m

, g i

i ..

,d as

a. ,

i I , ,. _ .

l 3._.

-_- _ _ .- .{. -- ,_ .. . - -

N N

.I i. ...,

4 u_

y i  ; I s i O Oihyt  ; ,

.04 - ~ -- - t - --- , - - - - r -- r - -- --

J '

. . _ . . . _ . ..:. N - .: ;_ ._ .a. .2, =! n_ .; _ : .;_; ill. j ._ . . . .  !

. . . . .  : f  :;!.

. J. . . _'. _

. .- .__.L._ _~ _ - . . +f _._ ._.__ __: .

_ ..; . _._ .u u...;_.1ja;. 4l: us . _ . , . ..

!;!! !it :li M  :;l

' _q

.;; - n;j a; u I .j . .[ -

_ . . .__. ._ ._ .a. . . .

HM%i;.

.;.; _nj .J It!: :!:' it' fjj 33;

.02 --- - . ., , .. ..

!.:, .:.i :,. ;: .:. '

.jij ..
j ::t

! l i

l . . . . .. . . . .. .. . . . . . . . . . :. l .... .

{'
1

.g

*; ; t'l I.
i: ;i: i  :: .: ;  ;..:

j

.! .__ . _ . , __j' _ . _!_. . .a.n_. .ih ,[ 2' gljj! U  :[j ill 'r ll; g:.i{lj

:n  :: ;l :l:; ti :::

,' g ,

. _ _ . _ _ _ . . _ . . .n. . _ . x; .= .__ _ .u. _m. .=

ng ::: p.ij =:

u g ,

0 , ,

I

.g.

. . }

. .u: .u. un a _.:

u.'; =: g nu ti.: .

.p l

i l l l TI(E. (HOLIRS .AFIER START -OF -TEST) = -n _- .-a -a na y9 _;a-p- ._-

i

.l.

l g= g

.u; j 7 a.

i  ; .y

._.c. . g . g . ._

3 4 3 l .. . . _ . . . . . .1._l_

_.l_....

o 4 ,

j -

l

^ ' r i

l i i I  !  !  ! .l i l- .{! ;h '!i -  ?

l I

!l g -l -  !- i .l: -t .... .  !"2 CI@

l l

! l

.! E .y $.

.d.d s l-l l l- :l- l:

-l.- . . _ ,[..

MIi i; -i.[2; ""f". .hiri {-

- :~ H, .i--

.2=-

c :j. :rI ::rm:j: .-: = : 2.;t-- --

.n

! l  ; ';;

,  !, 1- l  ! l.- r . f r- <

i I i l}g b ^ j: l  ; I! 'l l -l: IF $!!._.:l: .Ilf~ i

_ _ ! .j-. . ' .l . ._@__' t rd?

t

,$wn. iy; :y=r} --

yO  !. . j.. '

} L :i:. _ _ _ _ . .

Riii?=

l gi'g- - ---l,- I- l

~

i  ! i 1 -

!- it- -Eli- EU i li;-

A t .i m..- . c. . .. . e. . . . . . .l - . . . . .

l i

!  ! i e _

. j! l 1 l  !

l l l 1

l -l:"i I-]  !'

l -

! i l  ! ,

l

l. l' T fi

~~----- -

, . i j

l j 1 j. 1  !: j .

' i l T l l , l 1

! i l -

a ,

m '

i o I i  !

' l l. {

.Fe _. 7._

j. II.

i I J l.

e i  ! - l >

I

,, 1 l i. .

o .

- ,, ~ , , ,

.i.t. M

- e. ,

- 1

  • .[ 1 i M .s mi a m .  ! a . . w, o =i. r - - - '-- - , .

- +

- > ' i

'  ; . .a ,

l<4  !

1 e !' -

w w u , ,

-w-, s ' le - -

u a u i e I o!

a l I s po p-a:n ,  ;

l.

4

, n; p

j4 c- ,

'l .[

. g w

t .

w y I ,,

,, .~ i e

e v i, l l- '

[Ml l A w - -

'  !",ej l

!  ; l l e l

.O_....

O ,

,_, 9' 1  ! l l

! '<j '

m l i l wl n

'E

)

' 5w i.

' k I i i l

,E l l

.  ! e!

l l

. . . _ . . _ ._ _ _ _ _ . . y _ ____ ,

i  ! .

l, l\ l *

-m a

_.2..._ ._

,s 6 . .

Y%

. . . p _ _ __ L _ __ . _ _ . _ _ _ _

i j

' ~ ~ ~ ~ *

-[fec/y, 23) asuu neat' ,  ; ,

__ ..___L_. - '

I e l e d, i, ,

o

m. n. a.

Figure 4.2-8 i