ML19309E091

From kanterella
Jump to navigation Jump to search
Annual Ecological Studies of CT River,Vernon/Vt,Rept IX, 1979.
ML19309E091
Person / Time
Site: Vermont Yankee Entergy icon.png
Issue date: 04/15/1980
From:
AQUATEC, INC.
To:
Shared Package
ML19309E089 List:
References
NUDOCS 8004180371
Download: ML19309E091 (203)


Text

_

l 3 k

h yef'. q p ' k g- , . . 9* _ .s, ,, f

> + ' ' "'

^$ j

. , .. . s ., ,.?

s,  ;

s S , . . .. *.: . -- .. * - , .*

.7

, -, .a 1

'6 * '

V y 4  ; + . '

b, p I . -

g' , ,

.? '. #. . ,A

, .* 7, i

,. - , , 'J . , .4 S.' f ,g - * * ' . "-

eg . *- e- ,' -

'4,.,

. y '

s .

, , 5 .,

. >/.

. !M*g'3.ECOLOGIdiESTUDIESM p

h ., ,

4

. . - n e.M9M. ;.;M.

Wum ,TH s NNECTICOMMax . - -

M.a COER. <

M.

TERIVER7" 1. W- . OP,

~

f d. ERNONfVERMO*NTO l .*

..,.o .

e.

g , ,_ : '

~. ,

' . ' . ~. _ _ - ._ .,

g.

. . . e ..,,; .,:.  ;

,.q &

b Q, . :g . .

,

  • y .... <

i

,2 .

m

  1. 4

. . < j =

4 ,., 4 - .

,_d

. . , *+ . .

.' + , '" '

, ', l e ' h.

--. .,!  : .- . ,' ' ' ? - *$n **

i y i REPORT LX '

~poWQ VERMONT YANKEE DLM 1

%M ' '

i NUCLEAR POWER CORPORATION .

. l*

x m.so371

ECO:iOG CAL S'~U:3:::ES OF ~~KE ,

CONN:EC::CU' RXER VERNON/V:ERMON

REPORT IX JANUARY 1979 - DECEMBER 1979 f

PREPARED FOR VERMONT YANKEE NUCLEAR POWER CORPORATION BY AQUATEC, INC.

SOUTH BURLINGTON, VERMONT 1980

l f

ECOLOGICAL STUDIES OF THE CONNECTICUT RIVER REPORT IX VERMONT YANKEE NUCLEAR POWER CORPORATION TABLE OF CONTENTS ,

1. INTRODUCTION AND

SUMMARY

l

2. CONNECTICUT RIVER DISCHARGE 9
3. RIVER TEMPERATURE 13
4. WATER QUALITY STUDIES 59
5. PLANKTON STUDIES 129 5.1 Phytoplankton Studies 129 5.2 Zooplankton Studies 143
6. ENTRAINMENT STUDIES 155 6.1 Phytoplankton and Zooplankton Entrainment 155 6.2 Ichthyoplankton Entrainment 163
7. BENTHIC FAUNA STUDIES 167
8. FISH STUDIES 177  ;

8.1 Fish Impingement Studies 177 8.2 Resident Finfish Studies 180 LITERATURE CITED 203 i

I e

iii l

i

LIST OF FIGURES 1.1 Vermont Yankee Power Level Histogram, 1979 2 l 1.2 Vermont Yankee Sample Stations, Connecticut River 4 2.1 Connecticut River Discharge, Vernon, Vermont, 1979 10 3.1 Temperature, Station No. 3, 1979 14 3.2 Temperature, Station No. 7, 1979 15 4.1 Dissolved Oxygen, Station No. 3, 1979 64 4.2 Dissolved Oxygen, Station No. 7, 1979 65 4.3 Conductivity, Station No. 3, 1979 66 4.4 Conductivity, Station No. 7, 1979 67 4.5 Turbidity, Station No. 3, 1979 68 i 4.6 Turbidity, Station No. 7, 1979 69 4.7 pH, Station No. 3, 1979 70 4.8 pH, Station No. 7, 1979 71 4.9 Comparison of Observed Station 3 Sodium Ion Concentrations with Station 3 Concentrations I Predicted from Preoperational/ Closed Cycle Data,  ;

Stations 7 and 3, 1969-1974 72 4.10 Comparison of Observed Station 3 Sulfate Ion Concentrations with Station 3 Concentrations Predicted from Preoperational/ Closed Cycle Data, Stations 7 and 3, 1969-1974 73 4.11 Comparison of Observed Station 3 Chloride Ion Concentrations with Station 3 Concentrations i Predicted from Preoperational/ Closed Cycle Data, Stations 7 and 3, 1967-1974 74 4.12 Comparison of Observed Station 3 Alkalinity {

Concentrations with Station 3 Concentrations Predicted from Preoperational/ Closed Cycle Data, Stations 7 and 3, 1967-1974 75 5.1 Plankton Sample Station Locations 130 5.2 Seasonal Phytoplankton Distribution, Station  ;

No. 7 - Monitor 134 5.3 Seasonal Phytoplankton Distribution, Station No. 3 - Monitor 135 5.4 Comparison of Observed Monitor 3 Phytoplankton Count with Monitor 3 Count Predicted from Preoperational/  :

Closed Cycle Monitor Data of 1970-1974 137 5.5 Seasonal Zooplankton Distribution, Station No. 7 - Monitor 146 5.6 Seasonal Zooplankton Distribution, Station  !

No. 3 - Monitor 147 5.7 Lomparison of Observed Monitor 3 Zooplankton Count  ;

with Monitor 3 Count Predicted from Preoperational/

Closed Cycle Monitor Data of 1970-1974 149 v

i -

t

?

LIST OF FIGURES (CONT'D) l 7.1 Benthic Fauna Samole Station Locations 168  !

8.1 Fish Sample Stations, Connecticut River 181 L l 8.2 Resident Fish Species. Composition by Weight, 1979 Survey 191 8.3 Resident Fish Species. Composition by Number, 1979 Survey 191

  • 8.4 Resident Fish Species. Percentage Composition .

by Weight 192 8.5 Resident Fish Species. Percentage Composition by Number 193 1 8.6 Age-Growth Graphs - White Perch 195 8.7 Aga-Growth Graphs - Yellow Perch 197

, 8.8 Age-Growth Graphs - Walleye 199 l 8.9 Age-Growth Graphs - Smallmouth Bass 201 t

I LIST OF TABLES 3.1 Temperature Data, Station No. 3, 1979 20 3.2 Temperature Data, Station No. 7, 1979 32 3.3 Differences in Hourly Mean Temperatures in 'F  :

at Monitor 3 44 3.4 Frequency Distribution of Rate of Change of Temperature at Monitor 3 During Open Cycle

, Operation, 1979 17  ;

! 3.5 Differences in Hourly Mean Temperatures in *F  !

Between Monitor 3 and Monitor 7 51 l 3.6 Frequency Distribution of Differences in Hourly  ;

Mean Temperatures Between Monitor 3 and Monitor '

7 During Open Cycle Operation, 1979 19 4.1 Dissolved Oxygen and Conductivity Data, Station  !

No. 3, 1979 76 '

4.2 Dissolved Oxygen and Conductivity Data, Station -

No. 7, 1979 88 4.3 Turbidity and pH Data, Station No. 3, 1979 100 4.4 Turbidity and pH Data, Station No. 7, 1979 112 4.5 Results, Water Quality Analysis, 1979 124 4.6 Summary of Statistics from Linear Regression ,

Analysis of Preoperational and Closed Cycle Data at Stations 7 and 3 for Four Parameters 61 5.1 Dominant Phytoplankton Species, 1979 132 5.2 Comparison of Observed Monitor 3 Phytoplankton  !

Count with Monitor 3 Count Predicted by Regression '

Analysis of Low Range Preoperational/ Closed Cycle Monitor Data, 1970-1974 136  :

t vi i

LIST OF TABLES (CONT'D) 5.3 Checklist of the Phytoplankton of the Connecticut  !

River near Vernon, Vermont, 1979 140 l 5.4 Mean Percentages and Percentage Ranges of Diatoms, j Flagellates, Green and Blue-Green Algae, 1979 139 5.5 Dominant Zooplankton Species, 1979 144  !

5.6 Comparison of Observed Monitor 3 Zooplankton Count with Monitor 3 Count Predicted by Regression Analysis of Preoperational/ Closed Cycle Monitor Data, 1970-1974 148 5.7 Checklist of the Zooplankton of the Connecituct River near Vernon, Vermont, 1979 152 5.8 Mean Percentages and Percentage Ranges of Protozoa, i Copepoda, Cladocera, and Rotatoria,1979 151 r

6.1 Summary of Results, Vermont Yankee Entrainment Studies, 1979 158 6.2 Percent Changes in Live Plankton Concentrations .

Between Entrainment Intake and Discharge Samples 160 6.3 Calculated Percent Changes in Live Plankton '

Concentrations of River Effected by Entrainment 162 6.4 Vermont Yankee Ichthyoplankton Entrainment Studies, 1979 164 6.5 Vermont Yankee Ichthyoplankton Studies. Larval Concentrations in Connecticut River Near Vermont Yankee Intake Structure 166 7.1 Checklist of the Benthic Fauna of the Connecticut River near Vernon, Vermont, 1979 172 7.2 Comparison of Number of Samples and Number of Genera of Benthos Collected by Ekman Dredge 169 7.3 Summary of Results of Analysis, Benthic Fauna Samples, 1979 170 8.1 Summary of Weight and Total Length Extremes of Fish Species Impinged During Open Cycle Operation, 1979 178 8.2 Summary by Month of Number and Weight of Fish Species Impinged During Open Cycle Operation, 1979 179 8.3 Summary of Fishing Effort and Results, 1979 182 i 8.4 Fishes of the Connecticut River in the vicinity of '

Vernon, Vermont, All Collections, 1979 185 }

8.5 Fishes of the Connecticut River in the Vicinity of l Vernon, Vermont, All Collections North of Vernon Dam, 1979 186 8.6 Fishes of the Connecticut River in the Vicinity of Vernon, Vermont, All Collections South of Vernon Dam, 1979 187 8.7 Frequency Distribution of Fish Species by Total Length, 1979 188 8.8 Age-Growth Data - White Perch 194 8.9 Age-Growth Data - Yellow Perch 196 8.10 Age-Growth Data - Walleye 198 8.11 Age-Growth Data - Smallmouth Bass 200 vii

0 t SECTION 1 INTRODUCTION AND

SUMMARY

6 l

l

i . i l

r i l F

l

1. INTRODUCTION AND

SUMMARY

Vermont Yankee Nuclear Power Corporation's generating station operated at an average capacity factor of 77.7% in 1979. Power production was interrapted for two weeks in March to replace some faulty fuel rods and six weeks in late September to early November for annual refueling. Power was generated during 7195 hours0.0833 days <br />1.999 hours <br />0.0119 weeks <br />0.00274 months <br /> of the year (8 2.1%) on 107 days. The open cycle mode of condenser cooling was used during 177 days of operation; cooling towers were used in closed cycle cooling on 130 days of operation. The average power level during these 307 days of operation was 94.6%.

Figure 1.1 is a graph of the plant's record of power production in 1979. l i

In 1978, Vermont Yankee's NPDES permit, issued by the Vermont ,

State Agency of Environmental Conservation, the State of New f i

Hampshire's discharge permit, and the Technical Specifications of Vermont Yankee's operating license were all amended to permit (

open cycle operation, with certain thermal limitations, in the i period October 15 through May 15. Vermont Yankee operated in 1979 for the first full year under these amended conditions. This is the ninth report in a series (Webster-Martin 1971, Aquatec 1973, 1974, 1975, 1976, 1977a, 1978, 1979a) that have reported the [

environmental studies conducted under the conditions of Vermont  !

Yankee's discharge permits and the non-radiological Technical '

Specifications.

i Eight sampling stations in the Connecticut River near Vernon, i Vermont were used in earlier studies. The approximate locations '

of these stations are shown' in Figure 1.2. Collections were made l at only six of these stations in the 1979 studies. The locations I of these six in river miles north and south of Vernon Dam are {

shown below.

l f.

L-_ '

h' N,::,s a ,

s ,

(s s

-: s.

v-s s ,

of xx

?x 3,N'x'cge

'. - sNa 8

.,x. ' c.

s , sex _

y;' '

' 'q s. ' (' s

'e , , s

c. s g'"', '.D

- s  : ' ' q\% @  :

'c<cqygg;;zygg:s'ANc:gg; N

, , . .s . . . . , .. _

5 c<. ,;<.s.':h';;s -

l e

D .

~

U yO y O i'%3kM%'xh%3$d'8@M8

  1. ""' " "" *'* #* ^'^Ni ' q'Q

'\' ,'ic.; ' kN2<a*c,s c

'2 '; '" , 'ce-s s._

Z -D #'D'8 M M ' \'8' 'l'Y#'dN' " \' e. Td-N s

,g\ ;<# '

" ~

% =$ i: /sNNNd' - ' ' :s 5'f' 2 s

u;<- 'L"' 's'O' 4 e'c'~ --

jN en fg

.i c 'Scz ^

.g ':'Q' ' ' x-  %(x)p>gsg$g'e' e

.x

_$y x-

~N'.

H _y m .

. qq $s @ s;:: x' ;s:c A' oa :N D

KN w kN 2 _J c= ' 's .,s s s ' x N '::$$:,d'\'N'g g Ez  ;' ~

{'s' "'lN'N'dQs'N'Q .. ce qj' q h"'f$h5 '

n 8

R i

ame, 73A3183 mod .!.N30 W3d S

i b

2 6

a 3 I

Station No. Location Relative to Vernon Dam 2 4.70 miles south 3 0.65 miles south 4 0.55 miles north 5 1.25 miles north 7 4.25 miles north j 8 8.70 miles north

SUMMARY

OF RESULTS Water Quality Studies In 1979, the annual peak river flows of spring run-off oc-

  • curred in March, earlier than is usually the case. Mean Connecticut River discharge in March was more than double the March mez a dis-charge observed in the years 1965-1978. River flow rates .timinished rapidly after the March maximum. Mean flow rates for all subsequent months of the year were below monthly averages of the period October 1964 through 1978.

The relatively low river flows of the last eight months of the year resulted in some monthly temperature records that exceeded those observed in earlier years of temperature menitoring. The May mean temperature at the upstream monitoring site was greater than the previous maximum in 1975. Because of this unusually rapid warming of the river, Vermont Yankee reverted to closed cycle  !

cooling at 0145 on 13 May, two days before the date required by discharge permits and the operating license.

Record maximum hourly temperatures occurred both upstream and downstream of Vermont Yankee in August, at the downstream monitor '

location in January, and at Monitor 7, upstream, in December.

Vermont Yankee's operation in 1979 in the open cycle mode of

, condenser cooling was within the three thermal criteria imposed upon such operation. These conditions require that Vermont Yankee's

discharge not effect a temperature at Monitor 3 greater than 65'F the n'aximum hourly mean temperature observed there during open cycle '

l l VERMONT YANKEE

'\ ' SAMPLE STATIONS y

%. CONN. RIVER o < CHESTERFIELD e

O 1/2 I t

., SCALE IN MILES

~ ~

~,

GRATTLEBCRO I

~ @ 7

_'~~,V I .

GUILFORD , ge"

  • e n
  • , "c ,,

I y f'[o "

o NEW H AMPSHIRE l  %. 5 1

VERNCN

/ HINSDALE

' VERMONT YANKEE '

NUCLEAR PLANT ~3 vcy-VERMONT 3

1 2

5 & .. I

& E CC MASSACHUSETTS M' }f FIGURE I. 2 D**]D "]D J_c c J u o Ju , S.

A

_ ;3 L

operation was 63.0*F on May 12. The maximum allowable rate of ,t temperature change between successive hourly average temperatures  ;

at Monitor 3 is 5'F per hour; the maximum observed was 2.7'F  ;

per hour in February and December. The maximum allowable increase in river temperature effected by Vermont Yankee's discharge is 13.4*F; thq maximum' difference observed between downstream Monitor i 3 temperature and upstream Monitor 7 temperature was 10.2*F on January 1.

Some new record monthly maximum, mean, or minimum values for dissolved oxygen, conductivity, turbidity, and pH were observed also in 1979, but all exceeded those previously observed by small absolute amounts.

Grab samples, collected once each quarter in 1979 at the two monitor stations and from Vermont Yankee's cooling water discharge, were analyzed for sixteen water quality parameters. The concentra-tions of all parameters were found to be within previously observed ranges except two. The chloride ion concentrations at Station 3 in February and at both river locations in August were higher than in prior years of study. The total phosphate ion concentration in the May sample at Monitor 3, do#nstream of Vermont Yankee, was much higher than had been found in river samples since studies i were begun in 1967. High solids concentrations and turbidity, relative to either the plant discharge or the Monitor 7 samples, ,

were found also. The high concentrations of these parameters were undoubtedly caused by the work on construction of a fish ladder at Vernon Dam that was begun in early May.  !

Biological Studies r

Diatoms were again predominant, as in all prior years of study, in the phytoplankton samples of 1979. Also, as in former ,

years, the more commonly observed species of diatoms were Asterionella formosa, Fragilaria spp., Melosira italica, and Tabellaria fenestrata;  !

of flagellates were Dinobryon spp.; of green algae were Pediastrum spp.; and of blue-greens were oscillatoria spp. Small numbers of three species that h. not been found in earlier Vermont Yankee studies were observed .n 1979.  !

i l

  • I

Concentrations of phytoplankters in the late summer and early fall samples at both the upstream and downstream monitor stations were low relative to mean counts observed in the years 1970-1974.

At the downstream station, Monitor 3, phytoplankton counts were above the 1970-1974 means of January through April, June, July and December. For all these months, though, the counts were within ,

two standard deviations of thos6 means. The July count at Monitor 3 was greater, however, than that predicted by application of a statistical analysis of 1970-1974 data to the July upstream count.

One downstream zooplankton concentration observed in 1979 was also greater than that predicted by a statistical analysis of l 1970-1974 zooplankton monitor data. This was the Monitor 3 zoo-plankton count of the March sample, collected during Vermont ,

Yankee's shutdown for replacement of faulty fuel. Higher counts than the means of 1970-1974 were also found in May at Monitor 7, in February at Monitor 3, and at both stations in March and October. Zooplankton concentrations in summer months were low relative to former years.

Rotifers constituted at least fifty percent of the majority of the zooplankton samples collected in 1979. Those most commonly observed were Polyarthra sp., Synchaeta sp., Keratella cochlearis, i and Philodina sp. Protozoa, particularly Vorticella sp., were present commonly in the samples of winter and fall months. Copepods e were present in samples of all months of the year.

l Seventy-one genera of macroinvertebrates were found in the thirty-eight benthic fauna samples collected in 1979, twenty-eight collected by Ekman dredge and ten by Henson trap. The number of genera found in Ekman dredge collections at three of the four sample stations uned was greater than in earlier years when a similar number of samples had been collected there. Caddis fly and chironomid larvae were predominant in most of the spring and summer samples; planarians were the more commonly observed organisms in some fall samples. These three forms have been observed to con-stitute the major portion of samples in past years.  ;

1 l

t All fish impinged during open cycle operation in 1979 on l Vermont Yankee's traveling screens at the intake structure were  !

collected, identified, weighed, and measured. Over 50% of the fish impinged in 1979 were of three species - pumpkinseed, spottail l

shiner, and rock bass. No species were impinged that had not been observed in earlier Vermont Yankee studies. The daily mean numbers l l

and weight of fish impinged in each month of open cycle operation in 1979 were all within two standard deviations of the daily means observed for those months in the five phases of special open cycle testing in 1974-1978.

In 1979, 2461 fish were taken in 66 collections made by trap l net, gill net, and seine haul. Seventeen fish species were collected, -

1 of which sixteen were found in collections north of Vernon Dam and r

twelve were found in samples taken south of the dam.

The collection of over a thousand juvenile white suckers in seine hauls in 1979 increased the percentage by number of this J

species in the 1979 catch to a much larger percent than had been observed in surveys of prior years. A concomitant decrease in  !

number percentages of other species resulted in record lows for f

smallmouth bass and rock bass. However, all species compositions i

by weight in the 1979 collections were within percentage ranges of earlier surveys.

The age-growth data of 1979 for yellow perch, white perch, and smallmouth bass show rates of growth for these species similar  !

to those observed in 1969-1973, before Vermont Yankee began opera-tion. For walleye, however, the 1979 data indicate, as did the [

data of 1977 and 1978, an enhanced growth rate relative to the 1969-1973 data. But this indication is tenuous, for the sample size in

.t 1979 was small, as it also was in 1977 and 1978.

In conclusion, the 1979 studies have not developed any evidence that vermont Yankee's discharge of heated condenser cooling water into the Connecticut River has effected any adverse impacts on '

either the water quality or the aquatic biota of the river.

r l

S S

SECTION 2 CONNECTICUT RIVER DISCHARGE l

l l

t l

i

l

2. CONNECTICUT RIVER DISCHARGE Connecticut River discharge in 1979 at Vernon, Vermont, computed from the records of the Vernon Hydroelectric Station at Vernon Dam, is summarized in Figure 2.1. The mean flow [

rate, the maximum daily average flow rate, and the minimum daily average flow rate are shown for each month.

Annual maximum discharge at Vernon usually occurs in April. I In 1979, however, maximum spring run-off flow rates occurred in March. Mean discharge in that month was 33,590 cfs, more than two times the March mean observed in the years 1965-1978. The .

maximum daily mean discharge in 1979 was 69,060 cfs on 26 March; the maximum hourly discharge of 70,840 cfs occurred on 25 and

[

26 March. '

River flow rates decreased rapidly after the peak flows  !

of March. Mean discharges for all months after March were smaller than the monthly means for the period October 1964 through 1978 -

the period for which river flow data have been given in previous  ;

reports of this series. In July and August, the mean flow rates '

of 1979 were 52% and 48% smaller than the means for those months r in 1965-1978. The only month, other than March, in which the 1979 mean flow was greater than the mean of 1965-1978 was January.

The extremes of monthly flow rates observed in 1979 were not as great as have been observed in thb years 1964-1978. The maximum daily average flow of each month of 1979 was smaller than a previously observed maximum for that month, and the minimum daily average flow was larger than a minimum observed previously in 1964-1978.

CONNECTICUT RIVER DISCHARGE so -

VERNON, VERMONT 1979 70 - ,

f

\

{

60 - A

\ '

l\

So -

J

[

\ i

.\

o x 40 - j

  • i o i  !

\  :

30 - I

\\

j I'

I -

\ , \. . i 20 -

\ \ /\ N  :

\ lt '

\ /  !

io -

\l /

/s\ g

\ *----.

/  !

N

./ \

\

.s s.

.-/

~~,~.---- . . . . . - - - . .

l 0 i i i e i i i i i a i i 2 3 4 5 6 7 8 9 10 Il 12 MONTHS

M O NTHLY MAX! MUM ---

M ON TH'LY AVE R AG E FIGURE 2.1 M O N THLY MINIMUM ======

I r

When river flow rates are less than 10,000 cfs the Vernon Hydroeletric Station is operated as a peak load facility. Often at such times, only one hydroeletric unit is utilized during off-peak hours. Operation of this one unit meets a condition of the operating licenses of the Vernon Station and of Vermont Yankee - that a sustained minimum discharge of at least 1200 cfs  ;

be provided.

Periods of minimum flow occurred in all months of 1979 except t

April and on all days of the months February, July, and August.

On 80 days of the first six months of the year, 85 periods of l minimum flow occurred in a total of 788 hours0.00912 days <br />0.219 hours <br />0.0013 weeks <br />2.99834e-4 months <br />,18.1% of the time.

The duration of the minimum flow periods in these months ranged between 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> and 34 hours3.935185e-4 days <br />0.00944 hours <br />5.621693e-5 weeks <br />1.2937e-5 months <br />; the mean duration was 9.3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br />.

In the latter half of 1979, minimum flows were recorded during 2061 hcurs, 46.7% of the time, of 155 days. Minimum flow periods occurred 167 times with durations ranging from 1 to 65 hours7.523148e-4 days <br />0.0181 hours <br />1.074735e-4 weeks <br />2.47325e-5 months <br /> about a mean of 12.3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br />.

I e

l l*

SECTION 3 RIVER TEP.'PERATURE l

1

3. RIVER TEMPERATURE Temperatures of Connecticut River water are measured continu- I ously by two automatic water quality monitoring systems, installed in buildings on the Vermont shore of the river at Sample Station 7, upstream of Vermont Yankee, and at Station 3, downstream of the plant. The temperature data of 1979, reduced to hourly, daily, and monthly means, are shown in Tables 3.1, for Station No.

3, and 3.2, for Station No. 7, at the end of this section of the report. These data are summarized graphically in Figures 3.1 and 3.2. The maxima and minima in those figures are hourly means.

Monthly mean temperatures observed in 1979 at the downstream location, Station 3, were all within the extremes that had been previously recorded since monitoring began there in 1968. At the upstream location, Station 7, the mean May temperature, 57.5'F, was higher than any mean observed in that month since temperature data collection began there in 1970. The previous high for May at Station 7 was 57.2*F in 1975.

Record maximum hourly temperatures were observed at both sample stations. At Station 3, the January maximum of 42.2*F was grea ter than the previous January maximum of 41.7'F observed in 1977 and the August maximum of 84.9'F exceeded the previous August high of 81.5*F in 1973. The August maximum at Station 7, 81.7'F, -

was also higher than the previously observed August maximum there

--79.7'F in 1975. A new high, 41.7'F, occurred also in December at Station 7. The previous December Station 7 high was 41.0*F in 1975.  ;

TEMPERATURE STATION NO. 3 ar ac 1979 90 -

- 30

,, "\

/

\

so -

  1. \ l

/ \

/  % \

/ \

/ i\

70 - / d

... i \

- 20 / / x \

/ / 's i \

, / / 's \.

~ / / 's! \

I 60 - / g

  • s'g *\

/ /,

s 8 \

\  !

N

/ '\ \

/ /,#,/, 'g i \

\

/

50 - - to 7 / s\ j' g j / A. ' \

/t / -

s \

/ l l 's '

40 -

h "~/ 1/

  • \

's I / -

I

/'/' \\

32 - -O ~~ ~ ~ ~ ~ ~ ~ ~ ~""--'#

l l l ll l 2 3 4 5 6 7 8 9 IO 11 12 MONTH MON TitLY MAXIMUM -----

MONT HLY AVERAGE FIGURE 3.1 MONTit LY MINIMUM ---------

O e

m

TEMPERATURE STATION NO. 7 ar oc 1979 90 -

~ 30 80 - .# g

/ \

/ \.

N

/

/  !\

/ \

- 20 / /,/~~~~~~'s,N

/

, / /- 's '

\.

/ '

'N,l \

[

I 60 - / j'j \

\

\

/ \

/

/

/

/e \

\

\

\

l I

/ '/ \s \l 50 -- 10 / . / \'

/ ,/ \

! / N N

/ /  : 's, N%

/

  • N

~

40 - ,

f ,/ \

/ *

/

l

\

/ / I

'\

/ . #a/' l ~

\'

32 --O -- --

I l l

t 2 3 4 5 6 7 8 9 10 11 12 MONTH MONTHLY MAXIMUM ---~~

MONTitLY AVERAGE FIGURE 3.2 MONTH LY MINIMUM "--~~~~-*

In 1979, Vermont Yankee operated in the open cycle mode of condenser cooling in the periods January 1 through May 13 and November 2 through December 31. Such operation is permitted in the period October 15 through May 15 under thermal effluent limitations set forth in Vermont Yankee's amended NPDES permit ,

and the amended Technical Specifications of its operating license.  ;

These criteria, which define the maximum allowable thermal impact [

I on the Connecticut River, are as follow:

A. The temperature at Monitor 3 during open cycle operation shall not exceed 65'F; j B. The rate of change of temperature at Monitor 3 shall not exceed 5'F per hour; and ,

I C. The increase in temperature above ambient at Monitor 3 shall not exceed 13.4*F.

The temperature records at Stations 7 and 3 showed that these thermal limitations were not exceeded during open cycle operation in 1979. The maximum hourly average temperature i observed at Monitor 3 was 63.0*F on May 12. The maximum rate of change of temperature at Monitor 3, the difference between successive hourly average temperatures there, was 2.7'F/ hour.

A -2.7'F/ hour was recorded in February; a +2.7'F/ hour in December. Tabulations of the hourly rates of change in Monitor 3 temperatures during the months of open cycle operation are given in Table 3.3. These data are summarized, for the dates of open cycle operation, as a frequency distribution in Table 3.4. The modal, median, and mean race of temperature change during open cycle operation in 1979 was 0.0*F.

The hourly mean Monitor 3 temperatures (Table 3.1) minus the corresponding Monitor 7 temperatures (Table 3.2) are shown for the months of 1979 open cycle operation in Table 3.5. These data are reduced to a frequency distribution of the temperature differences, for the dates of open cycle operation, in Table 3.6.

The greatest difference observed during 1979 open cycle operation was +10.2*F on January 1 from 1700 through 2000. The modal and median range of differences during open cycle operation was +1.6 l

0 l

TABLE 3.4 FREQUENCY DISTRIBUTION OF RATE OF CHANGE OF TEMPERATURE AT MONITOR 3 DURING OPEN CYCLE OPERATION 1979 Rate of Temperature FD 1-17 3-30 1-13 2-30 ON Change MAR APR MAY NOV

  • F/hr

-2.7 1 1

-2.6 2 2

-2.5 1 3 1 5

-2.4

-2.3 3 3

-2.2 2 4 1 7 t

-2.1 2 2 1 5 '

-2.0

-1.9 2 2 2 1 7

-1.8 1 3 2 6

-1.7 1 5 1 7

-1.6 4 1 5

-1.5 5 3 1 1 1 11

-1.4 2 3 1 1 7

-1.3 3 1 1 1 3 9

-1.2 3 8 2 1 2 16

-1.1 5 7 2 1 3 18

-1.0 8 2 1 2 3 16

-0.9 5 7 1 1 4 4 22  !

-0.8 7 6 5 5 23 i

-0.7 7 8 1 10 6 32

-0.6 5 13 1 1 3 7 30

-0.5 7 9 1 1 7 7 32 >

-0.4 12 15 6 1 2 17 30 83

. -0.3 18 21 5 7 1 16 35 103

-0.2 32 60 5 17 17 61 87 279

-0.1 101 104 87 97 63 153 150 755 0.0 275 1105 199 1 210 95 155 182 1221 .

+0.1 67 41 55 134 69 50 83 549  !

+0.2 30 33 14 31 26 45 24 203  ;

+0.3 22 24 3 11 14 25 22 121

+0.4 20 31 7 4 3 26 l20 111

+0.5 16 48 2 1 2 17 10 96

+0.6 19 27 5 1 9 12 73

+0.7 9 12 1 8 9 39

+0.8 8 13 1 1 5 28

+0.9 5 13 2 6 26

+1.0 7 2 2 11

+1.1 3 1 2 7 13 '

+1.2 4 2 1 1 8

+1.3 5 2 3 10  ;

+1.4 1 2 1 4 ,

+1.5 2 2 3 2 9 f

+1.6 1 5 1 2 9  !

+1.7 3 1 1 5

+1.8 2 1 1 3 7 E

+1.9 1 1 2 i

+2.0 2 2

+2.1 1 3 1 5

+2.2 1 1 -

+2.3 1 1  !

+2.4 1 1

+2.5

+2.6

+2.7 1 1 l

i

- +2.0*F and the mean difference was in the +2.1 - +2.5'F range.

The mitigatory effect of high river flows on the impact of l Vermont Yankee's discharge on Connecticut River temperature is I evident in the statistics of both frequency distribution tables.

The ranges of rate of temperature change (Table 3.4) and of the AT effected in the river (Table 3.6) by Vermont Yankee's discharge are much smaller during the months of spring run-off than in the months of lower river flows.

k

[

I t

t t

4 I

TABLE 3.6 FREQUENCY DISTRIBUTION OF DIFFERENCES IN HOURLY MEAN TEMPERATURES BETWEEN MONITOR 3 AND MONITOR 7 DURING OPEN CYCLE OPERATION 1979 Hourly Mean 1-17 3-30 1-13 2-20 7 AT(*F) JAN FEB MAR APR MAY NOV DEC TOTALS

-0.5 - -0.1 7 7 0.0 2 2

+0.1 - +0.5 156 10 13 18 1 198

+0.6 - +1.0 57 120 65 111 44 39 436

+1.1 - +1.5 124 29 4 141 110 73 87 568

+1. 6 - +2. 0 229 177 58 219 50 156 108 997  !

+2.1 +2.5 126 140 24 71 11 107 129 608

+2.6 +3.0 33 79 19 9 78 139 357

+3.1 - +3.5 36 62 8 56 75 237

+3.6 - +4.0 24 52 4 28 47 155

+4.1 - +4.5 23 35 5 23 32 118 >

+4.6 - +5.0 19 30 3 17 19 88

+5.1 - +5.5 13 20 2 15 15 65

+5.6 - +6.0 11 20 4 12 11 58

+6.1 - +6.5 6 17 1 13 10 47

+6.6 - +7.0 8 6 6 13 33

+7.1 - +7.5 2 3 1 10 16

+7.6 - +8.0 2 4 3 9 '

+8.1 - +8.5 5 3 3 11 l +8.6 - +9.0 5 3 8

+ 9 .1 -- + 9 . 5 11 11 '

+9.6 - +10.0 7 7

+10.1 - +10.5 5 5 l

TAIALE 3.1-1 AVERACE llOURI.Y TEMPERATURE IN *F VERHONT YANKEE SAMPI.E STATION No. 3

, JANUARY 1979 DAll.Y DAY 110UR' AVERACE I 2 3 4 5 6 7 8 9 to 11 12 11 14 15 16 17 18 19 20 21 22 23 24 i I 41.2 41.2 41.3 41.5 41.6 41.7 41.6 41.6 41.5 41.5 41.5 41.4 41.5 41.7 41.9 42.1 42.2 42.2 42.2 42.2 41.9 41.5 41.2 40.8 41.6 2 40.7 40.7 40.5 40.2 40.3 40.4 40.6 40.8 40.4 39.3 37.2 35.6 %.6 %.2 M.0 31.9 33.8 31.6 31.4 33.2 33.1 33.0 32.9 32.8  %.6 3 32.8 32.8 32.8 32.8 32.7 32.6 32.9 32.6 32.6 32.6 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.6 32.6 32.6 32.6 32.7 4 32.6 32.6 32.6 32.6 32.6 32.6 32.6 32.6 32.6 32.7 32.8 32.8 32.9 33.0 33.0 31.1 33.1 33.1 32.9 32.9 32.9 32.9 32.9 32.9 32.8 5 12.9 32.9 32.9 32.9 32.9 32.9 32.9 33.0 33.0 33.1 31.2 31.3 31.3 33.4 31.4 31.4 33.4 33.3 33.2 33.2 31.2 33.2 31.2 31.2 31.1 6 31.2 31.2 33.2 31.2 31.2 31.2 33.2 31.2 33.2 31.2 33.3 31.4 31.5 33.5 31.5 33.5 33.4 31.4 33.3 31.2 31.2 33.2 33.2 31.2 31.3 7 33.2 31.2 31.3 33.3 33.3 33.1 31.3 33.3 31.3 31.4 33.4 33.4 33.4 33.4 33.4 31.3 33.4 33.4 33.4 33.4 33.4 33.4 31.4 33.5 33.3 8 11.4 31.1 33.3 31.1 31.4 31.5 31.5 31.5 31.5 31.5 33.5 31.5 31.5 33.4 33.5 33.5 31.5 31.4 31.4 33.3 33.2 31.2 33.3 33.2 33.4 I 9 31.2 31.2 31.2 31.2 31.2 31.2 33.2 33.2 31.2 31.3 33.5 33.5 33.6 31.6 33.6 31.6 33.5 33.5 33.4 31.4 33.4 33.4 13.4 33.4 33.4

$ 10 31.4 33.3 31.3 31.3 31.4 31.4 31.4 %.3 %.5 31.8 33.7 31.7 31.8 11.8 31.8 33.8 33.7 31.7 33.7 33.6 31.7 33.6 31.7 33.7 33.7 I Il 33.8 M.4 %.3 %.2 %.2 %.0 %.I 35.6 36.9 35.2 %.4 %.I 31.9 31.9 33.9 31.9 31.8 31.8 33.8 31.7 34.0 33.7 31.6 31.7  %.2 12 34.0 31.7 31.6 31.5 33.6 31.9 %.7 %.8 %.5 35.1 %.3 %.0 %.0 %.0 % .0  %.0 %.0 31.9 33.8 31.8 31.8 33.8 33.8 13.8  %.2 11 31.8 31.8 33.7 %.2 M.8 35.4 %.0 %.5 %.9 37.3 38.5 37.5 35.4 M.4 %.0 13.8 33.7 31.6 33.6 33.6 33.6 33.6 33.7 33.7 M.8 14 11.6 33.5 31.4 31.7 M.) 35.0 35.7 %.3 %.9 37.4 37.7 38.2 19.0 38.9 37.6 %.9 %.3 35.6 %.5 35.4 M.6 M.4 %.I %.0 35.8 15  %.i M.I M.3 M.8 35.3 35.7 %.2 %.8 37.7 38.9 %.7 35.1 %.5 %.2 %.I 31.9 33.9 31.8 33.8 33.7 31.7 33.7 31.7 33.6  %.8 16 31.7 33.8 %.I %.5 35.1 35.8 %.4 %.8 37.5 38.8 37.6 %.0 35.1 %.6 M.4 M.4 %.3 y. 2 %.0 31.9 33.9 31.9 33.9 31.9  %.0 17 31.9 %.0 31.7 31.7 31.7 %.0 35.8 37.0 %.3 35.3 %.6 %.3 %.2 %.I 33.9 M.0 31.9 33.9 33.8 33.9 33.9 33.9 31.9 31.9  %.3 18 31.9 31.9 31.9 31.9 11.8 31.9 %.2 35.1 37.8 37.1 35.7 %.7 %.3 h.2 M. I 31.9 31.9 33.8 31.8 33.8 31.7 31.8 33.8 33.8  %.3 19 33.8 33.9 31.8 31.8 %.0 %.2 %.4 %.9 %.2 37.8 %.3 35.1 ye.5 ~ %.3 %.3 M.2 %.I %.0 31.9 33.9 33.8 33.8 33.9 33.8  %.4 31 31.8 33.7 33.8 31.9 %.3 %.8 35.3 35.7 %.3 37.0 38.3 38.9 37.9 37.0 %.2 35.8 35.6 35.9 %.0 35.2 %.8 M.8 % .8 % .6 35.6 21  %.6 %.8 35.2 35.6 %.2 %.2 %.5 %.7 37.0 37.8 38.6 %.I 34.8 %.3 %.3 %.4 M.4 35.8 34.7 M.I %.0 33.9 31.9 33.8 35.3 22 31.9 31.9 31.9 31.9 31.8 %.I %.6 35.5 37.5 37.1 35.2 M.4 %.2 %.3 %.) %.3 34.4 % .3 35.2 %.3 %.0 31.9 33.9 33.9  %.6 23 33.7 31.9 M. 7 35.5 15.8 %.0 %.3 %.4 %.9 35.3 M.4 M.2 %.2 %.I 34.4 %.5 y. 5 %.3 34.0 33.8 33.8 33.8 33.7 33.8  %.7 24 31.9 %.2 %.3 %.4 %.4 %.9 15.3 35.5 35.5 35.6 M.6 M.I %.I %.I M.0 %.4 35.1 35.5 35.6 %.5 %.0 31.8 31.8 33.8  %.6 25 31.8 31.9 31.8 31.9 33.8 31.8 31.7 33.8 33.7 31.8 33.8 31.8 31.8 33.8 % .3 31.8 33.8 33.8 31.8 31.7 33.7 33.8 33.9 33.8 31.8 26 33.9 %.I 14.7 35.3 35.9 %.5 37.1 37.4 37.8 38.2 38.5 38.9 37.0 35.5 % .7 34.3 34.1 31.9 33.9 33.9 33.8 33.8 33.8 33.8 35.4 27 31.8 33.8 33.7 33.8 31.8 31.8 33.8 31.8 33.8 31.8 13.8 31.9 %.0 %.I M.I M.5 35.1 35.3 35.4 %.4 34.1 34.1 34.1 M.0  %.1 2tl M.I %.2 %.5 %.9 35.4 35.8 M.2 %.6 %.9 37.6 38.9 39.1 %.9 35.4 %.7 M.3 M.l 34.0 31.9 33.9 33.9 33.9 M .I  %.3 35.3 29  %.3 %.4 %.3 %.5 y. 5 %.7 35.5 37.9 M.4 %.9 M.4 y. . ! %.I %.I M.I M.I %.I M.I %.2 34.0 %.I %.3 %.3 M.3  %.6 3t1 %.4 %.3 %.2 %.4 M.4 %.6 35.1 %.3 38.1 37.2 35.4 y. 7 %.4 34.4 %.3 %.5 %.7 M.5 %.I 33.9 33.9 33.9 33.8 33.8  %.7 31 31.9 M.0 %.) 35.0 35.8 37.3 38.0 %.7 35.5 35.0 %.4 %.2 34.1 y..I  %.0 %.0 %.0 34.0 33.9 31.8 33.8 33.9 33.9 31.9 M.6 HollTHl.Y AVERACE 34.6 P

-- -- _. --- . _ _ - - . _ . - - - , - - - - -- - . . - - - - - . - . , ~ , , _ _ . -,r . . - --

e TA13LE 3.1-2 AVERACE HOURLY TEHPERATURE IN *F VERHONT YANKEE SAMILE STATION Ik). 3 FEBRUARY 1979 DAILY DAY HOUR AVERACE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 33.8 33.6 33.8 ye.2 M.7 35.4 %.2 37.2 38.4 %.1 %.9 M.) M.3 M.I %.I M.0 33.9 33.9 33.8 33.8 33.8 31.8 33.7 33.9 M.6 2 33.9 31.8 33.7 33.6 33.8 34.2 %.6 M.! %.3 M.0 35.8 M.7 %.3 M.I M.I % .0 %.4 %.5 33.8 33.7 33.7 33.7 33.7 33.8 M.4 3 33.7 33.6 33.4 31.5 %.I %.7 35.5 %.I 37.0 37.9 35.6 ye.5 M.2 %.I 34.0 M.2 M.3 %.7 34.2 33.8 33.7 33.6 33.7 33.7 34.5 4 13.6 11.4 31.3 33.5 31.8 M.4 %.9 35.4 35.9 M.6 38.2 38.5 17.4 %.7 %.I %.0 %.I %.0 35.6 % .t. M.0 13.7 31.7 33.6 35.2 5 33.7 31.6 U.6 33.5 33.3 33.1 U.6 %.I M.6 35.3 %.6 38.3 %.7 35.5 % .8 %.3 %.I M.9 31.8 33.8 %.0 33.7 31.7 33.6  %.4 6 M.6 33.3 31.1 33.3 31.7 M.3 %.8 %. I 38.2 %.0 %.8 %.4 %.3 %.2 %.4 %.7 M.7 34.8 M.7 M.1 33.9 33.9 33.9 33.9 M.5 g 7 31.7 33.8 31.8 %.0 %.4 %.8 35.4 %. I 37.8 38.0 %.3 H. I %.7 M.5 %.4 %.2 %.2 %.I %.0 %.0 %.0 74. 0 33.9 M.0  %.7 N 8  % .0 33.9 31.9 33.8 M.I %.7 35.3 %.I 37.7 37.5 35.6 %.8 %.6 M.4 %.3 %.2 %.I %.0 33.9 33.9 33.9 33.9 31.8 33.8 M .6 7 9 U.8 33.7 M.2 M.2 %.6 35.1 35.6 %.I %.9 38.9 37.8 35.6 35.1 % .7 %.5 %.4 M.2 %.0 33.9 33.9 33.9 33.8 33.8 33.8  %.9 10 U.7 31.6 31.8 %.3 %.8 35.4 35.9 %.4 37.0 M.4 %.7 %.9 %.2 31.9 33.9 M.I M.1 %.5 M.4 M.5 %.0 33.9 U.8 33.8  %.8 11 33.7 33.6 33.8 %.4 %.8 35.1 35.4 M.8 %.2 %.6 %.9 31.8 38.7 38.6 18.4 38.0 31.4 37.1 37.9 37.1 M.9 35.2 %.9 %.7  %.2 12 M.6 M.7 M.5 %.4 M.6 M. I 35.4 M.I 38.2 17.2 M.4 %.6 M.2 M.1 %.3 %.5 %.5 %.3 %.0 31.8 33.7 33.6 33.6 33.7  %.7 13 31.7 31.9 31.9 M.0 %.0 %.2 M.5 35.4 37.7 %.0 %.5 %.2 11.9 33.8 M.0 %.5 %.7 %.5 33.9 33.7 33.9 M.I %.3 %.2  %.4 14  %.I %.2 % .2 %.6 35.3 35.7 %.2 %.5 37.1 38.0 37.3 35.5 %.6 %.2 %.0 33.8 33.7 31.7 31.7 31.7 33.6 33.7 U.5 33.4  %.8 15 13.5 33.8 %.4 35.0 M.5 %.0 %.5 %.9 31.8 38.3 35.7 %.6 M.2 %.I 33.9 33.9 33.8 33.7 31.6 13.6 33.6 33.6 33.6 U.7  %.7

16 33.7 U.5 33.1 33.2 U.7 34.5 35.2 35.8 M.4 37.3 35.2 % .4 %.2 M.I M.I %.0 31.8 33.7 31.6 31.6 31.6 33.5 31.6 33.5  %.3
17 33.3 33.2 33.1 33.6 %.3 M.8 35.3 35.4 35.9 %.9 31.7 %.6 35.7 35.6 35.7 35.5 35.5 %.2 %.7 35.0 %.4 %.0 33.8 33.9 35.1 18 U.9 M.0 %.4 %.7 35.6 M.9 %.1 %.7 35.8 35.5 35.4 M.3 35.I M.3 M.6 %.5 %.9 37.3 37.6 38.6 38.5 37.1 %.5 %.!  %.0 19 35.9 15.7 M.6 35.5 35.5 35.6 35.8 %.2 %.8 37.9 38.2 37.3 %.7 M.4 %.0 35.8 35.7 35.6 35.4 %.5 %.3 34.3 %.0 13.8 35.8 31 33.8 %.3 %.4 %.6 M.I 35.6 35.8 %.4 37.2 38.1 %.8 M.6 35.1 35.2 35.3 35.4 35.3 35.2 35.4 31.1 37.4 %.6 %.I 35.6 35.7 21 35.1 %.8 %.8 35.1 35.4 %.0 %.6 37.1 38.1 40.0 31.7 35.8 %.9 M.7 M.6 %.6 M.7 35.1 %.6 35.1 %.6 %.4 %.2 %.2 M.6 22  %.2 %.2 %.4 %.8 35.4 35.8 %.3 %.9 37.9 39.7 37.7 35.9 35.2 34.9 %.7 M.5 %.3 %.I %.0 33.9 33.9 33.8 33.8 33.7 35.2 23 33.8 33.9 %.4 35.0 35.7 %.I %.6 37.1 38.2 39.3 M.8 35.3 M.7 M.4 M.3 %.3 M.6 %.8 %.9 %.7 34.7 M.7 %.7 34.7 35.3 24  %.8 %.7 34.7 %.8 %.9 15.2 35.6 M.2 37.6 M.I %.5 35.1 %.5 %.4 M.4 % .4 35.1 35.1 %.3 %.0 U.9 33.9 33.9 33.9 35.0 25  %.0 %.I M.) M.7 M.2 35.8 %.3 %.8 37.3 E.0 38.9 39.4 M.7 35.3 %.7 M.4 34.2 %.I M.2 %.0 %.0 %.0 31.9 %.0 35.3 26  %.0 33.9 31.7 %.0 %.5 M.I %.0 %.8 37.8 38.6 36.1 %.9 %.5 %.4 %.5 %.6 M.6 %.6 M.6 %.4 %.2 %.2 M.2 M.5  %.9 21  %.2 %.3 %.2 %.4 %.8 35.5 35.9 N.7 38.3 38.1 35.6 M.6 %.3 %.I %.I %.4 %.4 %.6 M.6 %.5 %.5 %.5 %.4 34.4 35.0 N  %.4 M.7 M.7 35.1 35.6 %.1 %.6 U.4 38.4 %.2 35.1 M.5 %.4 %.6 M.6 35.1 35.7 35.5 34.9 M.2 33.9 33.9 31.8 33.8 M.I MONTNLY AVERACE 35.0

TABLE 3.1-3 AVERAGE It00Rt.Y TEMPERATURE IN *F Vt.HilONT YAHlaE SAMPl.E STATION NO. 3 ftARCil 1979 DAll.Y DAY lio0K AVERACE 1 2 3 4 5 6 7 8 9 to 11 12 13 14 15 16 17 18 19 3) 21 22 23 24 1 31.7 31.8 31.9 %.I %.6 35.2 35.8 U.4 U.8 %.3 35.I %.7 %.6 %.5 %.6 %.6 %.6 %.5 %.2 31.9 31.8 33.8 33.8 33.8  %.7 2 31.9 %.0 %.I M.3 M.7 35.1 35.7 %.3 38.0 38.2 %.5 35.4 %.8 %.4 M.3 %.2 %.I %.0 %.0 31.9 %.0 34.0 33.9 31.9  %.8 3 31.9 31.9 %.I %.5 %.8 M.8 %.8 %.9 %.9 %.8 %.I 33.9 31.8 33.9 %.0 M.I %.I %.5 %.6. 35.5 %3 M.0 33.9 33.9  %.4 4 31.8 31.9 31.9 %.I %.4 %.9 35.6 %.2 U.0 31.4 37.6 %.6 35.7 35.2 35.1 %.8 M.8 %.7 %.4 %.0 31.9 33.8 33.8 33.8 35.0 5 31.8 31.9 31.8 31.8 11.9 %.I % .3 35.4 37.6 %.3 %.9 %.5 %.I %.0 %.0 %.I %.0 33.9 33.8 31.8 33.7 31.7 33.7 33.6 M.3 6 31.7 31.9 %.0 31.9 %.0 33.9 33.7 33.6 33.6 31.5 33.3 31.5 31.0 32.9 32.8 32.8 32.7 32.6 32.7 32.6 32.5 32.5 32.5 32.5 33.2 7

32.5 32.4 32.4 32.5 32.5 12.4 32.3 32.3 32.3 32.3 32.3 32.3 32.3 32.3 32.3 32.3 32.3 32.3 32.3 32.3 12.3 32.3 32.3 32.3 32.3 8 32.3 32.3 32.2 M.2 U.5 12.3 32.3 32.1 32.1 32.4 32.5 32.5 32.6 32.5 32.5 32.5 32.6 32.5 12.5 32.5 32.4 32.4 32.4 32.4 32.4

, 9 M.4 32.4 32.4 32.4 M.4 12.4 32.4 32.4 32.4 32.5 12.5 32.5 32.6 32.6 32.6 M.6 32.5 32.5 32.5 32.4 12.5 32.5 32.4 32.3 32.5 w 10 32.4 12.1 32.4 12.5 12.4 32.4 32.4 32.4 32.4 32.4 32.4 M.4 32.5 32.5 32.5 32.5 32.5 32.5 32.5 32.6 32.5 32.5 32.5 32.5 32.5 M

' iI 32.5 32.9 12.5 32.5 12.5 12.5 32.5 32.6 32.5 32.6 32.5 M.6 32.5 32.6 12.6 32.6 32.6 32.6 32.5 12.4 32.4 32.4 12.4 32.4 32.5 12 32.4 32.5 32.4 32.4 32.4 32.4 32.4 32.4 32.5 32.5 32.6 32.6 32.6 12.6 32.6 32.6 32.5 32.5 32.5 U.5 32.5 32.5 32.6 32.6 32.5 13 32.6 32.5 32.6 32.6 32.6 32.6 32.5 32.5 32.6 32.6 32.7 12.6 32.6 32.7 32.8 32.8 32.8 32.7 32.7 32.7 32.6 32.6 32.7 32.7 32.6 14 32.7 12.7 32.7 32.7 12.7 32.8 12.8 32.8 32.8 33.0 31.0 32.9 32.9 32.9 32.9 32.9 32.9 32.8 32.8 32.8 32.8 32.7 32.7 32.7 32.8

  • 15 32.7 12.7 32.7 32.6 32.6 32.7 32.7 32.6 32.7 32.7 32.8 12.8 32.9 32.9 32.9 32.8 32.8 32.7 32.7 32.7 32.7 32.6 32.5 32.6 32.7 16 32.6 32.6 12.6 32.6 32.6 12.5 32.7 32.7 32.6 32.7 32.7 32.7 32.9 31.0 31.0 32.9 32.9 12.8 32.8 32.8 32.8 32.8 32.7 32.6 32.7 17 M.5 32.5 32.4 32.1 32.2 32.1 M.I 32.1 32.1 12.3 32.3 32.4 32.4 32.5 32.5 U.4 32.4 12.3 32.1 M.2 32.2 32.2 32.2 32.2 M.1 18 32.8 H.I 32.8 32.1 32.1 12.0 32.0 32.0 12.1 32.1 32.2 32.3 32.4 32.4 32.4 12.4 32.3 32.1 32.2 32.2 32.2 32.2 32.1 32.1 32.2 19 32.1 32.1 32.1 32.1 32.1 32.8 32.1 32.1 32.2 32.3 12.4 32.5 32.5 U.5 32.4 32.4 32.4 32.3 U.2 32.2 32.2 32.2 32.2 32.1 32.2 20 M.I 12.0 32.0 32.0 32 # 12.0 12.0 32.0 32.1 U.3 32.1 32.3 32.4 32.5 32.5 M.5 32.5 32.4 32.3 32.3 32.3 32.2 32.2 32.2 32.2 21 12.2 32.2 32.2 32.2 32.2 32.2 32.2 32.2 32.2 32.3 32.5 12.7 32.7 32.6 32.6 32.6 32.6 32.6 32.6 32.6 32.6 32.6 12.6 32.6 32.4 22 32.6 13.1 11.2 33.0 US 32.9 32.8 31.0 32.9 32.7 32.8 32.8 33.0 33.3 33.5 31.5 31.5 33.4 33.7 31.7 11.8 31.7 33.9 %.2 M.)

21

%.4 %.5 M.6 %.7 %7 %.7 %.6 M.5 %.6 M.8 35.0 35.6 %4 U.I 38.6 39.2 39.4 39.7 39.8 J).8 M.9 M.9 40.0 39.9  %.9 24 39.8 39.7 M.2 M.4 19.2 39.2 M.2 f).2 M.3 39.5 M.6 M.7 M.8 M.9 40.0 40.1 40.2 40.2 40.3 40.3 40.3 40.2 40.2 '40.1 N.8 25 40.2 40.2 40.1 40.3 40.4 40.3 40.3 40.0 M.7 39.8 39.8 M.9 40.0 39.9 39.7 N.8 39.6 39.5 39.4 39.5 M.5 39.7 39.9 40.2 39.9 26 40.5 40.6 40.5 40.5 40.3 40.1 40.0 39.9 40.0 39.6 39.8 40.0 40.1 40.2 40.2 40.2 40.3 40.2 40.1 40.0 40.0 39.8 39.6 39.5 40.1 27 M.4 M.) N.1 N .0 18.8 38.6 38.5 18.4 38.2 38.2 38.3 18.3 38.4 38.5 38.5 38.6 38.5 38.6 38.3 38.2 38.2 38.1 38.0 U.9 38.5 28 31.9 37.8 37.8 R.7 17.5 37.5 37.4 37.2 37.3 37.2 37.3 37.4 H.7 N.9 38.1 38.1 38.0 18.1 38.0 38.0 38.0 37.9 37.8 37.7 37.7 29 U.7 17.7 H.7 U.5 37.5 U.6 37.5 37.5 N.5 37.6 37.6 U.6 37.7 37.7 N.7 37.7 37.7 37.7 37.6 37.7 37.7 U.6 37.7 37.7 37.6

3) 31.7 31.7 37.6 37.6 37.6 37.5 31.6 31.6 37.7 37.8 U.8 U.8 N.9 37.9 38.0 38.1 38.1 38.0 38.0 38.0 38.1 38.0 38.0 38.0 N.8 31 38.I 38.0 38.1 38.1 38.1 38.1 38.0 38.1 38.1 38.2 38.2 38.3 38.5 38.5 38.6 38.7 38.8 38.8 38.9 38.9 39.0 39.0 39.0 39.1 38.5 HONTill.Y AVERAGE 34.6

. , . - , --e =

TAllIE 3.1-4 AVERACE Il00RLY TEMPERATURE IN *F VERHONT YANKEE SAMPLE STATION NO. 3 APRIL 1979, DAILY DAY ll0UR AVERACE I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1

39.1 39.1 39.1 39.2 39.2 39.1 39.0 39.2 39.2 39.3 39.4 39.3 39.5 39.7 39.8 39.9 39.9 39.9 39.9 40.0 *0.040.140.040.0

. M.5 2

3 40.0 40.0 40.0 40.0 40.0 39.9 39.9 39.9 39.7 39.0 39.0 39.1 39.2 39.2 39.3 39.4 39.4 38.9 38.9 38.8 38.8 38.8 38.8 38.7 39.4 4

38.7 38.7 38.8 39.0 39.3 39.1 39.1 39.1 39.2 39.3 39.4 39.4 39.4 39.4 39.5 39.6 39.7 39.5 39.4 39.4 39.4 39.4 39.2 39.3 39.3 5

39.3 39.2 39.1 39.2 39.2 39.2 39.1 39.1 39.1 39.1 38.2 38.1 38.1 38.2 38.3 38.4 38.4 38.4 38.4 38.4 38.4 38.3 38.3 38.3 38.7 6 38.3 38.3 38.4 38.5 38.5 38.5 38.6 38.6 38.7 38.7 38.3 38.3 38.4 38.4 38.5 38.6 38.6 38.6 38.7 38.6 38.6 38.5 38.5 38.5 38.5 7

38.4 38.4 38.2 38.3 38.3 38.4 38.4 38.4 38.4 38.4 38.3 38.4 38.5 38.6 38.8 39.0 18.9 39.0 39.0 39.0 39.0 39.0 38.9 38.8 38.6 g 8 38.7 38.7 38.7 38.6 38.6 38.4 38.5 38.4 38.4 38.3 38.3 38.4 38.1 38.3 38.3 38.5 38.6 38.6 38.6 38.5 38.5 38.5 38.5 38.5 38.5 N 9 38.6 38.6 38.6 38.7 38.7 38.6 38.6 38.5 38.6 38.6 38.8 38.9 39.1 39.2 39.3 39.0 39.5 39.5 39.6 39.7 39.8 39.9 39.9 40.0 39.1 y 10 40.0 40.1 40.1 40.1 40.2 40.2 40.] 40.4 40.3 40.4 40.3 40.0 39.7 39.6 39.5 39.4 39.2 39.1 39.0 38.8 38.7 38.6 38.5 38.4 39.6 11 38.3 38.2 38.2 38.1 38.1 18.2 31.9 38.3 38.4 38.5 38.6 38.7 38.9 39.0 39.1 39.3 39.3 39.5 39.3 39.4 39.3 39.2 39.1 39.1 38.8 12 39.0 38.9 38.7 38.7 38.6 38.6 38.5 38.6 38.6 38.8 39.0 39.3 39.5 39.6 39.7 39.9 39.9 40.0 40.0 40.1 40.1 40.2 40.2 40.1 M.4 13 40.1 40.1 40.0 40.0 40.1 40.1 40.1 40.1 40.1 40.2 40.3 40.5 40.8 41.0 41.2 41.5 41.8 42.0 42.0 42.1 42.0 42.1 42.1 42.4 40.9 42.6 42.3 42.3 42.3 42.2 42.1 42.0 42,0 42.0 42.3 42.6 42.9 43.2 43.6 43.8 43.6 43.5 43.1 43.0 42.9 42.9 42.9 42.9 42.9 42.8 I4 15 42.9 42.8 42.8 42.8 42.8 42.7 42.7 42.8 42.8 42.8 42.9 42.9 42.8 42.8 42.8 42.7 42.7 42.6 42.5 42.3 42.2 42.1 41.9 41.8 42.6 16 41.8 41.6 41.5 41.4 41.4 41.5 41.6 41.6 41.7 41.8 41.8 41.8 42.0 42.I 42.I 42.2 42.2 42.2 42.2 42.2 42.2 42.2 42.1 42.1 41.9 17 42.1 42.1 42.0 41.9 41.9 41.8 41.9 41.9 42.0 42.1 42.2 42.3 42.4 42.4 42.5 42.6 42.6 42.6 42.5 42.6 42.5 42.5 42.5 42.5 42.3 18 42.5 42.5 42.4 42.4 42.4 42.3 42.4 42.5 42.6 42.6 42.9 43.1 43.1 43.2 43.2 43.2 43.2 44.2 43.1 43.1 43.0 42.9 42.8 42.7 42.8 19 42.7 42.7 42.7 42.6 43.0 42.5 42.5 42.5 42.5 42.7 42.9 43.0 43.2 43.3 43.4 43.5 43.6 43.6 43.7 41.7 43.6 43.6 43.6 43.6 43.1 20 43.8 43.6 43.5 43.5 43.4 43.3 43.3 43.2 43.2 43.2 43.2 43.3 43.4 43.6 43.8 43.9 44.0 44.0 44.1 44.1 44.1 44.2 44.2 44.2 43.7 21 44.2 44.2 44.3 44.2 44.2 44.1 44.1 44.0 44.0 44.1 44.1 44.2 44.3 44.5 44.6 44.7 44.8 44.9 44.8 44.8 44.8 44.8 44.8 44.8 44.4 22 44.8 44.9 44.8 44.8 44.8 44.7 44.6 44.5 44.5 44.5 44.6 44.6 44.7 44.8 45.0 45.1 45.2 45.3 45.3 45.3 45.3 45.4 45.5 45.5 44.9 23 45.6 45.6 45.6 45.7 45.7 45.8 45.7 45.7 45.6 45.5 45.5 45.4 45.3 45.2 45.2 45.4 45.5 45.6 45.5 45.5 45.5 45.6 45.7 45.8 45.6 45.8 45.9 45.9 46.0 46.0 46.0 46.1 M.0 46.0 %.I %.2 46.3 46.4 46.5 46.6 46.6 M .7 46.7 46.7 46.7 % .7 46.7 46.8 46.9 46.3 24 46.9 46.9 46.9 46.9 46.8 46.8 46.7 46.6 46.6 46.7 A6.7 SYSTEM INOPERATIVE 25 SYSTEM INOPERATIVE 26 SYSTEM INOPERATIVE 27 SYSTEM INOPERATIVE 28 SYSTEM INOPERATIVE 29 SYSTEM INOPERATIVE 30 SYSTEM INOPERATIVE MONTHLY AVERACE 41.4

TABLE 3.1-5 AVENACE iktHRLY 1EMPERATURE IN *F VERHONT YANFEE SAMPI.E STATION No. 3 HAY 1979 l>AY DAll Y nona AVERJ CE I 2 3 4 5 6 7 8 9 10 11 12 11 14 15 16 17 18 19 20 21 22 23 24 i SYSTEN INOPENATIVE $ 1.1 51.1 53.1 52.9 52.8 52.6 52.5 2

3 52.5 52.5 52.5 52.4 52.4 52.4 52.3 52.3 52.4 52.4 52.5 52.6 52.6 52.7 52.7 52.7 52.7 52.7 52.6 52.5 52.5 52.4 52.5 52.6 52.5 4

52.5 52.6 $2.5 52.6 52.7 52.7 52.8 52.8 52.9 53.0 51.1 53.2 53.3 51.3 51.2 51.1 52.9 52.7 52.5 52.4 52.2 52.2 52.1 52.0 52.7 52.0 52.0 52.0 51.9 52.0 52.0 52.0 52.1 52.2 52.4 52.5 52.8 53.0 53.2 53.4 53.5 51.6 53.5 51.5 53.4 53.3 53.3 53.3 53.3 52.8 5

6 53.2 51.2 53.0 52.9 52.8 52.6 52.4 52.3 52.1 52.1 52.4 52.5 52.7 52.8 53.0 51.1 51.2 53.2 51.2 53.1 53.1 53.I 51.0 51.0 52.6 7

51.0 51.0 52.9 52.8 52.8 52.8 52.7 52.6 52.6 52.6 52.8 53.0 53.2 53.3 53.3 31.3 53.1 51.0 52.9 52.8 52.8 52.7 52.8 52.8 52.9 52.7 52.7 52.6 52.6 $2.6 52.6 52.6 52.7 52.8 52.9 51.2 53.4 51.6 53.8 %.0 %.I %.2 %.3 %.4 %.4 %.4 %.3 %.4 %.5 53.5 8  %.5 % .6  %.6 M.5 %.5 %.4 %.) %.2 %.1 %.2 %.) %.5 %.8 55.1 M.4 %.6 M.8 %.I %.0 %.I %.0 %.0 %.9 %.0  %. I

/, 9 56.1 56.2 %.) %.4 %.5 %.5 %.5 %.5 %.6 %.5 %.6 %.9 57.1 57.4 57.6 57.8 58.0 58.1 58.2 58.1 57.9 57.9 57.9 51.9 57.1

.c. 10 8

57.9 58.0 58.1 58.2 58.2 58.1 58.5 58.6 58.6 58.8 59.1 59.4 59.8 60.2 u).1 60.9 61.1 61.1 61.0 60.9 60.8 60.8 60.7 00.6 59.6 11 12 u).4 u).4 60.4 us.5 ul.6 60.7 60.9 61.5 62.0 62.1 61.5 61.5 61.7 62.0 62.3 62.6 62.8 62.8 62.9 62.8 62.9 62.6 62.6 62.5 61.8 Il 62.5 62.5 62.4 62.1 62.3 62.1 62.2 62.2 62.2 62.3 62.4 62.4 62.6 62.7 62.8 62.9 61.0 63.0 62.8 62.7 62.7 62.6 62.6 62.4 62.5 62.3 62.2 62.2 62.2 61.8 61.4 61.2 61.2 61.1 61.1 61.1 61.2 61.2 61.3 61.3 61.3 61.3 61.2 61.1 61.1 60.9 61.0 60.9 60.8 61.4 14 15 60.9 u).9 u).9 w.9 ut.8 m.8 60.8 60.7 60.8 60.9 M.9 u).8 w.7 60.5 60.5 u).5 w.4 60.4 m .4 60.4 60.3 60.2 60.2 60.2 ul.6 16 60.2 60.2 60.2 ut.2 W.3 u).2 60.2 UI.2 60.3 60.3 60.3 u).4 ut.4 60.5 60.7 60.7 60.9 60.9 60.9 u).9 60.8 60.8 60.8 60.8 60.5 17 W.8 u).8 60.8 60.8 60.9 60.8 60.8 60.9 60.9 61.0 61.1 61.3 61.5 61.8 62.0 62.2 62.3 62.4 62.4 62.5 62.1 62.0 61.9 61.8 61.5 61.6 61.6 61.6 61.5 61.5 61.4 61.4 61.3 61.1 61.4 61.6 61.8 62.0 62.3 62.4 62.8 62.6 62.6 62.6 62.6 62.5 62.3 62.2 62.1 62.0 18 62.0 61.9 61.8 61.8 61.7 61.7 61.6 61.6 61.6 61.5 61.4 61.4 61.5 61.6 61.8 62.0 62.2 62.3 62.4 62.5 62.4 62.4 62.4 62.4 61.9 19 62.4 62.3 62.3 62.2 62.2 62.2 62.2 62.1 62.1 61.9 61.7 61.7 61.7 61.8 62.0 62.5 62.4 62.8 62.2 62.1 62.0 61.9 61.9 61.9 62.1 31 62.0 61.9 61.9 61.9 61.9 61.8 61.8 61.9 61.9 62.0 61.9 61.9 62.0 62.2 62.4 62.5 62.5 62.5 62.3 62.3 62.3 62.3 62.3 62.3 62.4 21 62.4 62.4 62.3 62.3 62.3 62.2 62.2 62.2 62.1 62.1 62.1 62.0 62.1 62.2 62.4 62.5 62.7 62.9 62.9 61.0 61.0 61.0 63.0 61.0 62.5 22 61.1 61.1 63.0 61.0 63.0 61.0 62.9 63.0 61.0 63.0 63.1 61.3 63.9 63.8 M.I M.4 M.6 M.7 M.7 M.6 M.4 M.I M.0 63.8 63.6 23 61.6 61.4 63.6 61.5 63.4 63.4 63.3 63.2 63.2 63.3 61.4 61.4 61.5 63.6 61,8 M.0 M.0 M.I M.2 M.I M.I 63.9 63.7 63.6 63.6 24 63.5 63.5 61.4 63.1 61.2 61.0 62.9 62.8 63.1 62.9 63.0 61.1 61.2 63.3 61.3 63.3 63.3 63.1 63.0 62.7 62.4 62.1 61.9 61.7 63.0 25 61.1 60.3 59.7 59.1 59.2 59.1 59.0 58.8 58.6 58.5 58.4 58.2 58.I 57.8 57.4 57.2 57.0 %.7 %.4 %.2 %.0 %.0 %.9 %.8 51.9 26 27 M.7 %.7 M.8 M.7 55.7 M.7 55.7 M.8 55.9 55.8 55.7 55.6 %.5 %.5 %.5 M.6 %.8 55.9 %.I %.2 %.2 %.I %.0 %.8 M.8 28 55.6 %.5 %.3 %.2 %.0 %.9 %.8 %.9 %.6 %.7 %.7 %.8 %.9 %.9 %.9 %.9 %.I %.I $5.0 55.0 55.0 55.0 %9 %.9 M.0 29

%.0 %.0 %.9 %.9 %.8 %.8 %.7 %.7 %.8 %.7 %.7 %.7 %.8 %.9 %.0 M.I M.3 55.4 55.6 M.6 M.7 %.8 %.9 %.0  %.I 30

%.2 %.2 %.2 %.2 %.2 %.2 %.2 56.2 %.2 %.2 %.3 %.) %.4 %.4 %.6 %.7 %.8 %.9 %.8 %.7 %.7 %.7 %.8 %.7  %.4 31

%.6 %.6 %.5 %.6 %.6 %.7 %.8 %.8 %.9 %.9 %.9 57.0 57.1 57.2 57.2 57.3 57.5 57.6 57.7 57.8 57.8 57.7 57.7 57.7 57.1 57.7 57.8 57.8 57.8 57.8 57.8 57.8 57.7 57.7 57.7 57.8 57.9 58.0 58.1 58.2 58.3 58.5 58.5 58.4 58.5 58.5 58.6 58.7 58.7 58.1 MONTilLY AVERACE 58.4

TAILLE 3.1-6 AVERAGE Ik)URLY TEMPERATURE IN *F VERHONT YANKEE SAMPLE STATION No. 3 JUNE 1979 DAY DAILY HOUR AVERACE I 2 3 4 5 6 7 8 9 to 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1

2 58.7 58.8 58.8 58.8 58.9 58.9 58.9 58.9 58.8 58.9 59.0 59.2 59.3 59.5 59.6 59.7 59.8 60.1 60.1 60.3 60.3 60.4 60.4 60.4 59.4 3 60.4 60.4 60.5 60.5 60.6 60.6 60.6 60.6 60.7 60.7 60.8 60.9 61.0 61.0 61.1 61.2 61.2 61.2 61.2 61.2 61.2 61.2 61.3 61.2 60.9 4 61.3 61.4 61.3 61.4 61.5 61.5 61.6 61.7 61.8 61.9 62.0 62.0 62.1 62.I 62.1 62.1 62.1 61.9 61.9 61.8 61.7 61.7 61.7 61.7 61.8 61.6 61.7 61.7 61.7 61.8 61.8 61.9 61.9 62.0 62.0 62.2 62.4 62.6 62.8 63.0 63.2 63.2 63.2 63.1 63.0 63.0 62.9 62.8 62.8 5 62.4 6 62.7 62.7 62.7 62.7 62.6 62.6 62.5 62.4 62.4 62.5 62.6 62.9 61.1 63.4 63.7 64.0 64.1 64.1 64.1 M.0 63.9 63.9 63.8 63.9 63.2 7 63.9 63.8 63.9 63.9 63.9 63.9 63.9 63.9 64.0 64.2 64.5 64.9 65.5 65.6 M.I 66.4 M.7 %.9 67.1 %.9 M.7 %.4 2.1 65.9 65.2 8 65.7 65.6 65.5 65.5 65.5 65.4 65.4 65.4 65.4 65.5 65.6 65.8 66 I M.3 M.6 M.8 %.9 67.0 67.0 M.9 M.8 M.7 %.6 %.5  %.1

[ 9  %.4 M.3 M.2 M.I 66.0 M.0 65.9 65.8 65.9 65.9 %.0 M.0 %. I M.I M.3 E.5 %.5 %.7 M.7 M.8 %.8 %.8 M.9 M.9 M.3 m 10 M.8 66.8 % .8 M.7 M.6 M.5 M.4 %.3 M.2 M.2 66.2 %.3 M.4 M.5 66.6 M.7 66.8 M.9 M.9 67.0 67.0 67.0 67.1 67.1 M.7 I 11 67.1 67.1 67.1 67.1 67.2 67.2 67.2 67.2 67.2 67.3 67.4 67.4 67.5 67.6 67.8 68.1 68.5 68.9 68.9 68.6 68.4 68.5 68.5 68.4 67.8 12 68.3 68.5 68.5 68.3 68.3 68.2 68.1 67.9 67.8 68.0 68.2 68.2 68.3 68.4 68.6 68.8 68.9 68.9 68.8 68.8 68.7 68.6 68.4 68.3 68.4 13 68.2 M.2 M.2 67.9 M.I 67.7%.I 67.5 67.3 67.1 67.0 M .9 E.9 67.0 67.0 67.1 67.3 67.4 67.6 67.5 67.4 67.4 67.2 67.0 %.8 M.5 %.4 M.) 67.2 14 M. I %.0 65.9 65.8 65.9 M.0 M.I M.2 66.3 % .2 %.2 %. I %.1 %.I M. I E .0 66.0 M.0 %.0 66.0 66.1 15  %.0 65.8 65.8 65.8 65.6 65.665.7

%.0  %.0 65.9 65.9 65.465.6 65.365.4 65.3 65.3

,65.265.3 65.265.3 65.365.4 65.4 65.5 65.6 65.7 65.8 65.?

65.9 %.0 M .I 65.9 66.0 65.9 65.9 %.0 65.9 65.9 65.9 65.8 16 M.3 M.5 M.6 M.7 %.8 M.8 %.8 M.8 65.9 17  %.8 M.9 66.9 M.9 M.9 M.9 M.9 %.9 67.0 67.1 67.3 67.4 67.6 61.7 67.9 68.1 68.2 68.3 68.3 68.4 68.3 68.3 68.4 68.4 67.6 18 68.4 68.4 68.3 68.3 68.3 68.3 68.3 68.4 68.6 69.0 68.9 68.7 68.7 69.1 69.5 69.7 69.8 69.5 69.5 69.8 69.7 69.9 70.2 10.3 69.1 19 70.4 70.4 70.5 70.7 70.6 70.5 70.5 70.6 70.0 70.0 70.2 70.5 70.6 70.8 70.9 70.7 70.6 70.5 70.4 70.3 70.3 70.3 70.4 70.4 70.5 20 70.5 70.6 10.6 70.7 70.8 /0.6 70.4* 70.2 70.0 10.0 10.0 70.1 70.3 70.4 70.6 70.9 71.1 71.4 71.5 71.6 71.6 71.5 71.4 71.2 70.8 21 71.3 71.6 71.6 71.5 71.4 71.3 71.1 11.2 71.3 71.7 71.1 10.8 71.1 71.2 11.4 71.7 71.8 72.0 72.1 72.1 72.0 71.8 71.9 72.1 71.5 22 71.9 71.7 71.6 Fl.4 71.3. 71.1 71.0 70.9 71.0 70.9 70.9 70.9 71.1 71.3 71.5 11.5 71.5 71.2 71.2 71.5 12.0* 12.2 72.3 72.2 71.4 72.0 71.9 71.9 71.7 71.6 71.6 71.5 71.5 72.4 71.6 11 .7 71.9 72.0 72.0 72.0 72.0 12.0 72.3 12.5 72.6 72.5 12.3 72.3 72.1 72.0 13 24 72.,1 72.0 72.0 71.9 71.9 11.9 71.9 71.8 71.7 11.7 71.8 71.7 71.8 12.1 12.4 72.7 7247 72.6 72.5 12.3 72.1 12.1 72.0 71.8 72.1 25 71.7 71.5 71.3 71.1 71.0 70.7 70.6 70.6 70.6 70.7 70.9 71.0 71.0 71.0 71.0 71.1 71.0 71.0 70.9 70.8 70.6 70.5 70.4 10.2 70.9 26 70.1 70.0 69.8 69.6 69.5 69.4 69.4 69.3 69.5 69.6 69.4 69.6 69.7 69.7 69.7 69.7 69.7 69.7 69.6 69.9 71.7 70.8 70.1 69.8 69.8 27 69.4 69.2 69.0 68.7 68.5 68.5 68.2 68.2 68.2 68.5 68.5 68.6 68.8 68.9 69.2 69.3 69.5 69.7 69.7 69.6 69.4 69.1 68.9 68.6 68.9 28 68.4 68.4 68.5 68.5 68.5 68.5 68.5 68.5 68.5 68.7 68.7 68.8 69.1 69.2 69.3 69.4 69.3 69.3 69.3 69.4 69.3 69.4 69.4 69.4 68.9 29 69.6 69.6 69.6 69.6 69.6 69.6 69.5 69.5 69.4 69.4 69.5 69.6 69.9 70.1 70.1 70.2 70.3 70.2 70.2 69.9 69.7 69.6 69.6 69.7 69.8 30 69.8 69.8 69.8 69.8 69.8 69.8 69.8 69.8 69.8 69.9 70.0 70.0 70.1 70.4 70.5 70.8 71.7 71.5 71.3 71.2 71.1 71.1 70.6 70.6 70.4 70.5 70.6 70.5 70.5 70.5 70.4 70.3 70.6 70.6 70.7 70.6 70.7 70.7 71.1 71.7 73.4 74.5 73.8 74.0 73.6 73.6 71.5 71.5 71.1 71.5 MONTHLY AVERACE 67.6

TAllLI: 3.1-7 AVERAGE HOUNI.Y Th.He'ERATURE IN *F VERHOHT YANKEE SAHl't.E STATION Mo. 3 J UI.Y 19 79 DAILY DAY llOUR AVERACE I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 71.0 71.0 70.9 70.7 70.6 70.6 7u.4 70.5 70.5 70.8 70.7 70.9 71.1 71.9 71.9 71.7 74.6 71.5 71.2 73.3 71.2 71.0 71.1 71.1 11.0 2 71.0 71.I 71.1 71.0 71.1 71.1 71.2 73.3 11.3 71.5 71.8 11.4 71.7 72.4 72.1 72.5 12.7 72.9 72.4 72.8 72.8 72.4 72.4 72.2 71.8 3 71.8 72.3 71.7 71.7 71.9 71.6 71.9 71.7 72.1 71.8 71.8 72.2 72.4 72.4 72.7 12.8 72.7 72.9 72.9 72.9 72.9 72.9 72.6 72.4 72.3 4 72.3 72.2 72.1 72.1 72.0 71.9 71.8 71.9 71.7 71.6 71.7 71.5 71.5 71.7 12.1 12.8 74.5 M.0 M.3 M.I 74.7 7I,. 3 74.5 74.5 72.9 5 74.2 74.I 74.0 73.8 73.6 73.5 73.1 12.8 72.5 72.3 72.0 71.9 11.9 12.0 12.0 72.I 72.1 72.6 72.4 72.4 72.3 72.3 72.3 72.2 72.7 6 72.2 72.2 72.2 72.4 71.9 71.9 71.7 71.8 71.7 71.7 71.9 12.0 12.1 12.2 72.3 12.7 72.7 72.8 72.8 72.7 72.6 72.5 72.5 72.4 72.2 7 12.3 72.2 72.1 12.0 71.9 71.8 71.8 71.7 71.8 72.0 72.3 72.6 72.9 73.4 73.6 73.8 74.1 74.3 74.4 74.4 74.2 74.3 74.3 74.2 73.0 8 74 .1 74.0 73.8 73.8 73.6 H.5 H.4 73.3 H.3 73.4 71.7 74.0 74.0 74.1 74.4 74.6 74.6 74.3 74.1 73.5 73.5 73.1 73.2 73.2 73.8

, 9 73.2 U.0 72.8 72.6 72.5 12.4 72.3 72.4 12.4 72.6 H.I H.7 U.9 73.7 73.5 H.3 12.9 72.8 72.6 12.5 12.4 72.2 72.1 72.3 12.8 ea 10 72.3 72.3 72.2 12.1 12.1 72.0 72.0 71.9 71.6 71.4 71.6 71.8 12.0 72.0 72.3 72.3 12.4 72.6 72.8 73.1 73.1 H.0 72.9 72.8 72.3 m 11 72.8 72.8 72.6 72.3 72.3 72.3 72.3 72."b 12.3 72.3 72.4 72.7 72.9 H.I H.2 73.2 H.4 73.5 73.4 H.2 H.2 H.0 72.9 72.9 12.8

' 12 72.9 72.9 12.9 72.9 72.9 73.0 H.I 73.2 73.3 H.2 H.2 73.3 73.5 H.7 74.0 74 .5 75.0 M.5 M.7 M.8 75.8 M.7 75.9 M.9 74.I 13 M.9 5.9 M.7 M.6 M.5 M.5 M.3 M.3 M.1 M.0 15.2 M.I M.I M .'.! M.2 75.4 M.5 75.6 M.8 M.8 M.7 75.6 M.8 75.9 M.5 14 M.8 15.8 M.8 75.7 75.6 5.6 M.7 75.7 M.7 76.0 76.4 M.8 77.2 U.3 H.6 71.6 U.4 71.1 M.9 76.8 76.5 76.2 76.2 76.1 M.4 15 76.0 76.0 M.9 M.9 15.9 M.9 M.9 76.s M.) 76.5 76.6 76.8 77.0 H.1 H.2 U. I 71.1 H.I 77.1 H.0 76.8 76.6 M.4 76.4 76.5 16 76.3 M. I 76.2 M.1 76.2 M.2 M.) 76.4 M.2 76.8 76.0 76.0 76.4 M.7 :6.7 16.9 71.1 H.5 H.6 78.0 78.1 78.0 78.0 78.0 76.8 17 H.9 H.9 H.9 U.8 U.9 U.9 U.8 77.9 U.9 78.1 78.1 78.4 78.6 78.6 18.1 18.1 78.2 78.2 78.4 78.4 78.4 18.2 78.3 78.4 78.1 18 78.4 78.2 18.1 78.0 78.0 78.0 78.0 78.1 78.1 U.6 U.3 U.2 77.2 U.I U.I H.I H.0 M.9 M.8 77.0 H.3 77.3 U.I H.0 H.5 19 U.0 U.0 76.9 76.8 M.8 76.7 76.6 76.6 76.6 M.6 M.9 76.9 M.8 U.0 H.4 H.8 U.9 U.9 U.7 77.5 H.2 U.I M.9 76.7 H.I al 76.6 76.5 M.5 76.4 M.5 76.4 76.4 76.5 76.5 76.8 U.I 77.2 U.) 77.3 77.6 77.7 H7 H.6 U.3 U.2 U.0 H.I U.4 77.5 U.0 21 H.6 77.6 77.6 U.5 U.5 77.4 U.4 U.3 U.4 H.5 77.7 H.9 18.2 78.6 78.9 78.8 78.3 78.1 78.1 78.0 H.8 U.6 U.6 U.6 77.8 22 H.6 H.6 H.5 U.5 H.5 U.5 H.5 U.6 H.6 U.5 H.8 78.2 78.4 78.7 N.0 79.1 79.2 79.0 78.8 78.6 78.5 78.2 78.1 78.0 78.1 23 78.0 78.1 78.0 18.0 H.5 U.4 U.9 78.2 78.4 78.4 78.4 78.3 U.9 78.2 78.5 78.8 78.9 79.0 79.0 N.2 N.2 79.3 79.6 79.9 78.5 3 79.8 19.8 79.6 79.4 79.3 79.2 79.2 79.3 79.5 79.5 N.6 N.8 N. 7 79.7 19.6 19.6 N.6 79.6 79.5 79.3 N.2 78.9 78.9 79.2 79.4 25 79.3 N.3 79.2 79.0 79.0 79.0 79.0 79.0 78.9 78.9 78.9 79.1 79.2 18.9 N.I 19.5 N.6 79.5 79.5 79.9 N.8 79.7 79.5 79.4 79.3 26 N.2 N.I 79.1 79.1 N.I 79.1 79.2 79.2 79.3 N.4 79.5 79.4 79.3 79.4 79.7 80.0 SLO 80.2 80.1 H0.0 N.9 79.9 80.1 80.2 79.6 27 80.3 80.4 80.3 80.3 80.4 80.4 80.4 80.5 80.5 80.5 80.6 80.6 80.8 80.9 81.0 81.0 81.2 81.0 81.1 81.5 81.7 81.9 81.9 82.1 80.9 28 82.1 82.2 82.2 82.1 82.1 82.1 82.1 82.1 82.1 82.0 81.9 82.0 82.3 82.4 82.2 82.1 82.0 82.0 82.0 81.7 81.5 81.4 81.4 81.3 82.0 29 81.0 81.0 81.0 81.0 81.0 81.0 81.0 81.0 81.1 81.3 81.5 81.7 81.8 81.8 81.7 81.5 81.5 81.6 88.5 81.4 81.3 81.1 81.1 81.0 81.3 30 81.0 81.0 80.9 80.9 81.1 81.0 81.0 81.0 81.0 81.1 81.4 81.9 82.3 82.6 82.7 83.0 82.9 82.7 82.6 82.4 82.1 87.0 81.8 81.6 81.8 31 81.5 88* . .3 81.2 81.1 81.1 81.1 81.0 81.0 81.1 81.5 81.6 81.6 81.8 82.0 82.1 82.1 81.9 81.7 81.4 81.1 80.9 80.8 80.6 81.4 HOIITiiLY AVERACE 76.3

TABI.E 3.1-8 AVERACE HOURLY TEMPERATURE IN *F VERMONT YAN8 TEE SAMPLE STATION NO. 3 AUGUST 1979 DAY DAILY HOUR AVERACE I 2 3 4 5 6 7 8 9 10 12 13 14 Il 15 16 17 18 19 20 21 22 23 24 I

2 80.6 80.7 80.7 8).7 80.8 80.9 8).9 80.8 80.9 81.0 81.0 81.2 81.3 81.4 81.5 81.5 81.6 81.6 81.5 81.3 81.2 81.1 81.0 8).9 81.1 3 81.0 81.0 81.0 81.0 81.1 81.2 81.2 81.4 81.3 81.3 81.2 81.2 81.3 81.5 81.8 82.1 82.3 82.2 81.9 81.6 81.2 81.0 81.0 81.0 81.4 4 81.0 81.2 81.2 81.2 81.2 81.2 81.2 88.3 81.4 81.4 81.7 81.8 81.9 82.0 82.2 82.2 82.4 82.7 82.8 82.8 82.5 82.3 82.1 61.9 81.8 5 81.8 81.8 81.7 81.6 81.6 81.5 81.5 81.5 81.6 81.7 82.0 82.1 82.4 82.8 83.3 83.6 83.9 84.0 84.0 84.0 84.0 83.8 83.7 83.6 82.6 6 81.4 83.4 83.4 81.4 83.4 83.4 83.3 83.4 83.4 83.6 84.0 84.2 84.5 84.7 84.9 84.9 84.7 84.4 84.1 83.6 83.1 83.2 83.4 83.7 83.8 7 83.7 83.6 83.5 83.4 83.4 83.4 81.4 83.4 83.4 83.6 83.4 83.4 83.4 83.5 83.4 83.5 83.5 83.4 83.3 83.3 83.3 83.2 83.1 82.9 83.4 8 82.8 82.7 81.6 82.4 82.3 82.1 82.0 81.9 81.8 82.0 82.3 82.6 82.8 82.7 82.1 81.8 81.6 81.5 81.6 81.6 81.4 81.3 81.2 81.1 82.0 g 9 81.1 81.0 80.9 80.9 80.9 80.8 80.7 80.7 80.6 80.5 80.7 80.6 80.5 80.5 80.4 80.4 80.5 80.5 80.5 80.5 80.4 80.2 80.2 80.1 80.6 M 10 80.1 80.0 80.0 80.0 79.9 79.9 79.8 79.8 79.8 79.9 80.0 80.1 80.2 8).2 80.1 80.2 80.4 80.5 80.7 80.5 80.4 80.2 80.1 80.0 81.1 y 11 80.0 79.9 79.8 79.8 79.7 79.6 79.3 79.4 79.1 79.2 79.1 79.1 78.9 79.0 78.9 78.7 78.7 78.6 78.5 78.4 78.2 78.2 78.1 18.1 78.1 78.0 U.9 H.9 H.8 U.8 H.8 77.7 H.1 1?.7 U.6 H.5 H.4 77.5 H.7 H.9 H.9 U.8 H.7 H.6 H.6 H.5 77.4 77.4 79.0 H.7 12 H 77.3 75.5 75.4 U.I H.I 75.3H.0 H.0 74.7 74 H.0 76.9 76.9 76.9 76.8 76.8 76.7 76.3 76.2 76.5 76.3 76.0 76.2 76.1 75.9 75.5 75.3 75.2 75.5

.4 74.1 16.4 74.0 71.6 H.5 D.5 73.5 73.7 74 .0 74.3 74.5 74.5 74.7 74.8 75.5 75.5 75.4 75.3 15.3 15.3 74.6 14 15 75.2 75.1 75.1 75.0 74.9 74.8 74.8 74.8 74.7 74.6 74.2 73.6 H.7 73.7 H.7 73.8 74.3 74.8 14.I 73.4 73.2 H.) H.3 H.2 74.2 16 73.4 73.8 U.7 73.5 D.4 73.4 U.2 H.2 U.0 72.8 72.6 72.5 72.5 72.4 72.4 72.4 72.4 72.4 72.6 U.1 73.1 U.0 73.0 73.0 73.0 72.8 72.8 72.9 12.5. 72.4 12.4 72.3 72.3 12.1 71.6 11 .5 71.5 71.6 71.9 72.0 72.1 72.1 72.0 72.1 72.6 72.1 71.9 72.3 12.4 72.2 17 18 72.3 72.2 72.1 72.0 11.9 71.8 71.7 71.7 71.7 71.2 71.3 71.3 71.5 71.7 71.8 72.0 72.1 12.1 72.1 12.3 72.4 72.4 72.5 72.5 71.9 19 72.3 72.2 72.0 72.0 72.0 72.1 72.1 72.1 72.0 12.0 72.1 71.5 71.3 71.7 71.8 71.8 71.8 71.7 71.4 71.3 71.2 71.1 71.1 71.1 71.7 20 70.9 70.9 70.8 70.8 70.8 N.8 70.8 70.7 70.6 70.6 70.6 70.7 70.9 11.0 71.1 71.0 71.1 71.1 70.9 70.8 70.1 69.9 70.4 70.5 70.7 21 70,4 70.3 70.3 70.3 70.4 70.5 70.5 70.4 69.4 69.2 69.5 69.5 69.9 10.1 70.3 70.6 70.9 71.0 71.1 71.4 73.3 71.3 71.5 71.5 70.5 22 71.4 78.3 71.4 71.4 71.4 71.4 71.4 71.5 71.4 70.9 70.5 70.4 70.5 70.7 70.9 71.1 71.3 73.3 72.0 71.8 71.5 11.3 11.3 71.3 71.2 23 71.2 71.8 71.7 71.1 11.6 71.1U71.0 .5 70.9 70.7 70.7 70.7 70.7 70.9 70.8 71.0 71.0 71.2 11.5 71.6 71.9 72.2 72.4 72.4 72.2 72.I 12.1 12.0 71.4 24 71.5 71.5 71.6 71.6 71.6 71.6 71.3 11.2 71.2 11.3 71.4 71.4 71.2 Fl.I 71.3 71.5 71.3 11.2 71.2 71.1 11.4 25 71.0 71.0 71.0 70.9 71.0 71.0 70.9 70.9 70.8 70.7 70.5 70.4 70.2 70.1 70.1 70.I 70.0 70.0 70.0 30.0 70.1 70.1 70.1 70.0 70.5 26 70.1 70.0 70.0 70.1 70.1 70.0 70.1 70.1 70.1 70.2 70.2 70.4 71.0 71.3 11.3 73.3 78.3 71.2 71.1 71.0 70.9 70.8 70.8 70.7 70.6 27 70.7 70.6 70.6 70.6 70.6 .70.6 70.7 70.7 70.7 10.9 71.6 71.7 71.9 72.I 72.3 72.3 72.2 72.2 71.9 71.6 h.3 71.0 71.0 71.4 71.3 28 71.1 71.1 71.0 71.0 71.0 71.0 71.0 71.1 71.1 71.2 71.0 71.0 71.2 71.4 71.5 11.7 11.9 72.0 72.1 72.4 72.6 72.8 12.8 72.8 71.6 29 12.6 72.6 72.5 72.6 U.S 72.5 72.6 72.7 72.8 H.0 72.9 U.0 73.1 73.1 U.2 13.3 73.5 73.6 13.5 H.4 U.6 H.6 U.S D.3 U.0 30 73.2 73.0 73.0 73.0 D.0 U.0 72.9 U.0 72.9 72.5 12.4 72.6 72.9 73.0 D.0 73.0 13.I U.2 73.2 73.2 73.2 73.2 H.2 73.1 73.0 31 72.9 73.0 H.0 U.I 73.0 73.0 72.9 72.9 72.9 72.9 72.9 72.9 D.0 H.0 72.9 12.9 72.9 U.0 73.1 73.3 H.5 73.8 74.0 74.0 U. I U.9 73.8 D.5 D.6 U.S 73.5 D.5 D.5 U.5 U.7 74 .0 74.1 74.0 73.9 H.7 U.7 73.7 U.7 73.8 73.9 74.0 74.0 74.0 74 .0 H.8 MONTHLY AVERACE 75.5

TAllLE 3.1-9 AVERAGE HoultLY TEMPERATURE IN *F VEkHONT YANKEE SAMPLE STATION Ho. 3 SEPTEHBER 1979 DAILY DAY HOUR AVERACE I 2 1 4 5 6 7 8 9 to il 12 13 14 15 16 17 18 19 20 21 22 23 24 1 74.0 T3.8 73.7 71.7 73.6 73.5 73.5 73.5 73.5 71.5 73.5 73.6 71.7 73.7 73.8 73.5 73.5 73.4 73.4 73.I 72.8 73.0 73.1 73.2 73.5 2 73.2 73.2 73.2 73.3 13.1 73.2 73.2 73.1 71.1 73.1 73.5 73.5 73.5 73.5 73.6 73.2 73.2 73.2 73.2 73.3 73.3 73.3 73.3 73.3 73.3 3 73.1 73.3 73.3 73.1 73.3 73.5 73.4 73.5 73.5 73.5 71.8 73.9 74.0 14.3 74.4 74.3 74.2 74.0 73.9 73.9 74.0 74.0 74.0 74.0 73.8 4 74.1 n.1 74.3 74.1 74.1 74.3 74.1 74 .I 74.2 74.4 74 .5 74.8 74.9 75.1 75.2 75.1 75.4 75.3 75.2 75.4 75.5 75.6 75.5 75.5 74.8 5 75.5 75.5 75.5 75.4 75.3 15.2 75.1 75.0 15.0 75.0 74.9 75.0 75.0 74.9 74.8 14.8 74.8 74.8 74.9 74.8 74.8 74.8 74.7 74.7 75.0 6 74.7 74.7 74.7 74.8 74.8 14.8 74.8 74.7 74.6 74.6 74.5 74.5 74.4 74.4 74.4 74.4 74.4 74.4 74.3 74 .2 14 .1 74.0 73.9 73.8 74.5 7

73.8 71.8 73.8 71.8 73.8 73.7 73.7 73.7 73.5 73.6 73.6 73.7 73.8 74.0 74.2 74.3 74.5 74.4 74.3 74.I 73.9 11.6 73.2 72.8 73.8 8 8 72.5 72.2 71.8 71.4 71.I 71.0 10.9 71.0 11.1 71.4 71.7 71.9 12.0 72.1 72.2 72.2 72.2 72.2 72.1 71.9 71.7 71.6 71.4 73.3 71.7 y 9 71.1 71.0 N.9 70.7 10.6 70.4 70.1 70.1 79.0 70.1 70.2 70.3 10.5 71.0 71.4 71.6 71.8 71.7 71.3 71.4 71.4 71.6 71.4 71.2 70.9 e 10 71.2 71.1 71.1 71.1 71.1 70.9 10.9 71.1 70.5 70.4 70.4 10.5 70.7 70.9 71.0 71.0 11.0 11.0 71.0 10.9 70.9 70.8 70.7 70.8 70.9 ll 10.7 70.7 70.6 70.4 10.7 70.2 N. I 70.0 69.9 69.9 70.1 69.9 69.6 69.6 69.7 69.7 N.0 70.0 70.0 69.9 69.9 69.8 69.8 69.5 N.0 12 69.6 69.4 69.1 69.2 69.1 69.1 68.9 68.9 68.8 68.8 69.0 69.1 69.1 69.3 69.4 69.7 69.9 70.0 70.0 69.9 M.8 69.8 69.6 69.6 69.4 13 69.5 69.4 69.4 69.4 69.3 69.2 69.2 69.2 69.1 69.1 69.2 0.2 69.0 69.2 69.0 69.2 69.2 69.2 69.2 69.2 in.2 69.1 69.1 69.0 69.2 14 69.0 68.9 68.9 68.8 68.7 68.7 68.6 08.6 68.7 68.7 68.9 69.0 69.1 69.2 69.1 69.3 69.2 69.3 69.2 69.2 69.1 69.1 69.1 69.0 69.0 15 68.9 68.9 69.0 69.0 68.9 68.8 68.7 68.5 68.6 68.5 68.4 68.5 68.4 68.5 68.7 (8.9 69.1 69.0 68.8 68.9 69.0 69.0 68.9 68.9 68.8 16 68.7 68.6 68.5 68.1 68.3 68.2 68.2 67.6 68.2 68.3 68.7 69.2 69.3 69.4 69.5 69.5 69.7 69.4 68.9 68.4 68.3 68.3 68.3 68.3 68.7 17 68.3 68.2 68.2 68.0 68.0 67.8 67.8 67.7 67.7 67.7 67.8 68.2 67.8 67.5 67.6 67.6 67.7 67.9 67.9 67.8 67.7 67.1 67.3 67.2 67.8 18 67.1 67.2 67.2 67.I 67.0 66.9 M.9 67.0 67.1 67.1 (7.1 67.6 67.4 67.2 67.3 67.4 67.4 67.5 67.6 67.7 67.7 67.7 67.6 67.6 67.1 19 67.7 67.7 67.6 67.5 67.5 67.4 67.4 67.4 67.3 67.3 67.2 67.2 67.1 67.1 67.1 67.1 67.1 67.0 M.9 M.8 M.6 M.5 M.5 M.3 67.1 al M.2 M.0 65.9 65.8 65.7 65.5 65.4 65.3 65.1 65.3 65.4 65.6 65.7 65.5 65.5 65.7 65.9 65.8 65.6 65.3 65.2 65.2 65.1 65.0 65.5 21 64.9 M.8 64.8 M.7 M.7 M.6 M.6 M.6 64.5 M.5 M.5 M.5 M.5 M.5 M.5 M.5 M.5 M.5 M.5 M.6 M.6 M.6 M.7 M.9 M.6 22 65.0 65.0 M.0 M.9 M.9 M.9 M.9 M.9 M.7 M.7 M.7 M.7 M.7 65.0 65.1 65.2 65.2 65.1 65.0 M.9 M.8 M.7 M.6 M.5 M.9 23 M.5 64.4 64.3 M.2 M. I 61.9 63.7 63.5 63.4 63.5 61.7 M.0 64.1 M.2 64.1 M.) 64.2 64.2 M.I M.0 63.9 63.7 63.5 63.5 M.0 24 63.4 61.3 63.4 63.4 64.3 61.3 61.2 61.2 63.2 63.1 63.1 63.2 63.2 63.2 63.4 63.6 63.8 63.9 61.7 63.4 61.1 61.0 62.9 62.8 61.1 25 62.7 62.6 62.6 62.5 62.5 62.4 62.4 62.4 62.4 62.4 62.5 62.7 62.9 61.0 62.7 62.7 62.7 62.7 62.7 62.6 62.6 62.4 62.4 62.2 62.6 26 62.1 62.0 62.0 62.0 61.9 61.9 61.9 61.9 62.0 62.0 62.0 62.0 62.1 62.1 62.2 62.4 62.6 62.8 62.5 62.4 62.4 62.5 62.5 62.5 62.2 27 62.4 62.4 62.1 62.1 62.2 62.2 62.1 62.I 62.1 62.I 62.1 62.1 62.2 62.4 62.5 62.7 62.9 63.0 62.8 62.6 62.4 62.2 62.0 62.0 62.3 28 61.8 61.8 61.8 61.7 61.7 61.7 61.7 61.7 61.8 61.8 62.0 62.1 62.0 62.0 62.1 62.1 62.1 62.1 62.1 62.1 62.1 62.2 62.4 62.4 62.0 29 62.5 -62.4 62.4 62.5' 62.5 62.5 62.5 62.4 62.5 62.6 62.4 62.4 62.5 62.5 62.6 62.7 62.7 62.8 62.9 62.9 62.8 62.9 61.0 61.0 62.6 10 63.0 61.0 63.0 62.9 62.9 63.0 62.9 62.9 62.9 62.9 63.0 62.8 62.5 62.5 62.7 62.9 62.8 62.7 62.5 62.3 62.2 62.1 62.3 62.5 62.7 i

NONTHLY AVERACE 68.2

--.,.,,,,-.,,y _. _ _ _ , _ . , - - - , , _ _ , , - - . . . , , _ _ e,-

TABLE 3.1-10 AVERAGE HOURI.Y TEMPERATURE IN *F VERMONT YANKEE SAMPl.E STATION MO. 3 O(.TOBER 1979 DAY DAll.Y H00R AVERACE I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1

2 62.4 62.4 62.4 62.3 62.3 62.3 62.4 62.3 62.3 62.1 61.8 61.9 61.8 61.9 61.9 61.8 61.8 61.8 61.8 61.8 61.7 61.7 61.7 61.9 62.0 3 62.1 62.3 62.1 62.7 62.1 62.1 61.8 61.5 61.5 61.5 61.5 61.5 61.5 61.6 61.7 61.8 62.0 62.0 62.0 62.0 61.9 61.8 61.7 61.6 61.8 4

61.5 61.5 61.5 61.4 61.3 61.2 61.2 61.3 61.1 60.9 60.9 60.8 60.8 60.9 60.9 61.0 60.9 60.9 61.0 61.1 61.2 61.3 61.4 61.4 61.1 5

61.4 61.4 61.4 61.4 61.3 61.2 61.1 61.0 60.9 60.8 60.9 61.0 61.1 61.2 61.3 61.4 61.5 61.5 61.5 61.3 61.2 61.1 61.0 60.9 61.2 6

60.8 60.9 Gl.9 61.0 61.0 61.1 61.2 61.3 61.4 61.4 61.6 61.7 61.8 61.8 61.9 61.9 61.8 61.8 61.7 61.6 61.6 61.6 61.5 61.5 61.4 61.5 61.4 61.3 61.3 61.2 61.2 61.1 61.0 61.0 61.0 61.0 61.1 61.2 61.5 61.7 61.9 62.0 61.9 61.8 61.7 61.6 61.4 61.4 61.4 61.4 7

61.3 61.3 61.3 61.3 61.1 60.9 60.8 60.9 61.0 61.1 61.3 60.9 60.8 60.6 60.5 60.4 60.3 60.3 60,1 &).O 59.9 59.8 59.7 59.5 60.6 8

I 9 59.2 58.9 58.7 58.5 58.4 58.3 58.2 58.1 58.0 57.9 58.0 58.0 38.2 58.5 58.7 59.0 59.1 59.1 59.0 59.0 58.9 58.7 58.6 58.4 58.6 y 10 58.4 58.4 58.3 58.I 58.2 58.1 58.0 58.1 57.7 57.4 57.2 57.0 57.0 57.0 57.2 57.2 57.3 57.4 57.3 57.3 57.1 57.0 %.8 %.8 57.5

II  %.7 %.7 %.6 %.6 %.6 %.5 %.5 56.6 %.0 55.7 55.5 55.2 55.0 %.9 %.8 %.9 55.1 55.0 55.0 55.0 55.0 55.1 55.1 55.0 55.6 12

%.8 %.8 %.8 %.9 %.8 %.7 %.6 %.5 %.2 %.0 53.8 53.7 53.7 53.6 53.6 53.6 53.5 53.2 52.8 52.6 52.5 52.6 52.7 52.7 53.8 13 52.7 52.7 52.7 52.7 52.7 52.5 52.6 52.5 52.5 52.5 52.3 52.1 51.9 51.7 51.5 51.4 51.3 51.3 51.5 51.7 51.8 51.8 51.8 51.7 52.1 14 51.7 51.7 51.8 51.9 52.0 51.9 51.9 51.9 52.0 52.1 52.5 52.7 52.7 52.7 52.7 52.5 52.2 51.8 51.6 51.4 51.5 51.5 51.4 51.4 52.0 15 51.3 51.3 51.2 51-2 51.0 50.6 M.0 49.8 49.7 49.7 50.0 50.3 50.6 50.8 50.8 51.0 51.1 50.9 50.5 W.5 50.5 50.5 50.5 50.3 50.6 16 50.3 50.3 50.3 50.3 50.1 50.0 50.0 49.9 49.7 49.7 49.6 49.5 49.5 49.6 49.7 50.0 50.0 50.0 49.9 49.7 49.7 49.7 49.7 49.5 49.9 17 49.3 49.1 49.0 49.1 49.1 49.0 49.0 49.0 49.2 49.3 49.8 49.9 W.0 49.9 49.7 49.6 49.5 49.4 49.4 49.3 49.2 49.1 49.0 48.8 49.3 18 48.5 48.6 48.6 49.2 49.1 49.1 48.2 48.2 48.1 48.1 48.9 48.1 48.1 48.3 48.4 48.5 48.6 48.6 48.5 48.7 48.5 48.8 48.8 48.9 48.6 19 49.4 49.9 M.0 50.0 50.1 50.0 49.9 49.1 48.9 48.9 49.0 49.0 49.1 49.0 49.3 49.2 49.5 49.5 49.6 49.6 49.6 49.5 49.6 49.6 49.5 20 49.9 50.3 50.4 50.4 $0.3 49.9 49.9 49.5 49.4 49.5 49.5 49.5 49.5 49.7 49.8 49.9 50.0 50.0 49.9 49.8 49.7 49.6 49.6 50.0 49.8 49.6 50.0 50.5 50.5 50.6 ,50.4 50.4 49.8 49.5 49.4 49.5 49.6 49.7 49.8 50.0 50.2 50.3 50.3 50.4 50.4 50.4 50.4 50.5 50.5 50.1 2I 50.5 %).8 50.9 50.9 51.0 51.1 51.2 51.5 51.8 51.2 50.8 50.8 50.9 51.1 51.4 51.4 51.5 51.5 51.6 51.7 51.7 51.8 51.9 52.0 51.3 22 52.3 ;

23

' 2.6 52.8 53.0 53.1 53.2 53.3 53.1 52.2 52.0 52.0 52.1 52.3 52.5 52.6 52.8 52.9 52.9 52.8 52.8 52.8 52.7 52.7 52.7 52.7 24 52.8 53.0 53.0 53.0 53.2 53.3 53.6 53.6 53.I 52.8 52.8 52.8 53.0 53.2 53.3 53.5 53.5 53.5 53.7 53.4 53.3 53.3 53.3 53.3 53.2 25 53.6 53.9 53.9 %.0 %.I %.0 %.0 53.8 53.7 53.7 53.7 53.7 53.7 53.9 %.I %.3 %.4 %.4 %.3 %.2 %.I %.I M.0 53.9  %.0 26 53.9 %.0 %.0 53.8 53.6 53.6 53.5 53.4 53.4 53.3 53.3 53.4 53.5 53.5 53.6 53.6 53.8 53.8 53.9 53.9 53.8 53.7 53.7 53.6 53.6 27 53.6 53.5 53.5 53.4 53.4 53.2 53.1 53.0 52.9 52.9 52.9 53.0 53.0 53.1 53.1 53.1 53.1 53.0 52.9 52.8 52.7 52.7 52.7 52.7 53.1 28 52.7 52.7 52.7 52.6 52.5 52.5 52.4 52.1 52.3 52.3 52.3 52.2 52.3 52.4 52.5 52.6 52.6 52.5 52.4 52.3 52.2 52.1 52.1 52.0 52.4 St.9 52.0 52.0 51.9 51.8 51.7 51.6 51.5 51.3 51.2 51.1 51.0 50.9 50.9 50.9 50.8 50.8 50.8 50.8 50.7 50.6 50.4 50.4 50.4 51.2 29 50.3 50.3 50.2 50.2 50.1 50.0 49.9 49.8 49.7 49.7 .9.7 49.6 49.8 49.8 49.9 50.0 49.9 49.9 49.8 49.6 49.3 49.4 49.4 49.3 49.8 10 31 49.2 49.2 49.I 49.0 48.9 48.8 48.7 48.7 48.8 48.7 48.5 48.5 48.5 48.6 48.6 48.7 48.6 48.6 48.5 48.3 48.2 48.2 48.1 48.0 48.6 48.0 47.9 47.8 47.8 47.7 47.7 47.6 47.6 47.7 47.8 47.9 48.0 48.1 48.2 48.2 48.4 48.3 48.3 48.2 48.1 48.0 47.9 47.8 47.7 47.9 MONTHl.Y AVERACE 54.0

, . , - - , . - - - . , - - . . ,e-.- w - w-- o,-, w-er.ee--- y e-- --y- ,w vr -

w--r-- --w e-w1r ---i- -rw --*-g ay e'v-- - ,1 wvvt -- -- .--=

4

, TM31E 3.1-11 AVERACE HOURI.Y TEMPERATURE IN *F VERMONT YANKEE SAMPLE STATION No. 3 NOVEMBER 1979 DA l '.Y DAY HOUR AVERACE I 2 3 4 5 6 7 8 9 to il 12 13 14 15 16 17 18 19 3) 22 23 24 I 47.7 47.6 47.5 47.5 47.4 47.4 47.4 47.3 47.4 47.4 47.4 47.5 47.7 47.9 48.0 48.3 48.7 50.2 49.8 49.5 56 , 49.4 49.4 49.3 48.2 2 49.2 49.5 49.6 49.8 50.2 50.6 51.2 49.3 48.6 48.2 47.8 47.9 48.1 48.2 48.3 48.3 48.3 48.2 48.2 48.2 48.0 48.2 " 48.3 48.8 3 48.4 48.4 48.3 48.5 48.5 48.4 48.4 48.5 48.4 48.4 48.3 48.1 48.2 48.1 48.2 48.4 48.5 48.5 48.5 48.3 48.2 48.I , '.8.2 48.3 4 48.2 48.2 48.3 48.4 48.5 48.6 48.7 48.7 48.7 48.6 48.8 48.9 49.1 49.2 49.0 49.1 48.9 48.8 48.8 48.7 48.7 48.6 48 A.6 48.7 5 48.5 48.3 48.3 48.2 48.I 48.0 47.9 47.9 48.9 49.1 48.8 48.5 48.5 48.5 48.4 48.3 48.1 48.2 48.1 48.0 48.0 47. 47.9 47.9 48.3 6 47.8 47.7 47.7 47.6 47.6 47.5 47.5 47.4 47.4 47.4 47.5 47.6 47.7 47.7 47.7 47.7 47.5 47.3 47.1 47.0 47.0 %.9 46.8 %.7 47.4 7 M.5 %.4 4.2 %.I %.0 45.9 45.9 45.8 45.8 % .0 %.I 46.1 46.1 %.I %.I %.2 4.1 %.0 46.0 %.0 %.0 45.9 45.9 M.0 4.0 8  % .0 %.0 45.9 45.8 45.7 45.6 45.8 46.4 47.9 48.4 47.6 46.9 46.7 46.6 46.6 46.5 46.3 46.4 45.9 45.7 45.6 45.5 45.4 45.5  %.3

[ 9 45.6 45.5 45.4 45.3 45.2 45.5 47.3 47.9 47.5 4.8 46.6 M.5 46.6 46.4 46.2 %.I %.0 %.3 45.9 45.6 45.S 45.6 45.8 46.0 46.1 o la 46.1 46.2 46.4 4 .6 4.8 4 .9 47.0 47.7 49.2 50.4 51.0 51.2 51.5 51 6 52.2 52.2 52.4 52.7 53.1 53.1 53.4 53.6 53.9 53.9 50.4 I 11 51.8 51.6 50.9 49.8 48.8 48.4 48.0 47.9 47.6 SYSTEH INGPERATIVE 12 47.5 47.4 47.5 47.5 47.5 47.4 13 47.3 47.2 47.7 47.7 47.9 48.0 48.5 48.6 49.0 47.1 47.3 47.4 47.5 47.5 47.6 47.6 47.5 47.1 4.7 %.6 46.646.74.7 M.7 47.4 14 4.6 M.6 %.6 46.6 M.8 47.2 47.6 48.5 49.0 48.4 47.9 47.5 47.3 47.2 47.2 47.2 47.1 47.0 46.846.74.7 M.7 4.6 4.5 47.2 15 46.5 %.5%.446.54.8 47.2 47.7 48.2 47.9 47.5 47.5 47.5 47.5 47.3 47.3 47.4 47.3 47.3 47.3 47.2 47.046.8%.74.7 47.2 16 4.5 %.3 4 .3 46.2 %.2 46.2 4.1 46.8 47.5 47.3 46.9 46.8 46.6 46.4 46.1 46.0 45.8 45.7 45.5 45.1 45.1 45.0 45.0 44.9 46.1 17 44.9 44.9 44.9 45.0 45.2 45.2 45.1 45.0 45.0 4 .1 45.8 44.9 44.7 44.6 4's.1 44.7 44.7 45.0 %.045.644.944.8 44.8 44.7 45.0 la 44.8 44.7 44.7 45.1 45.5 45.8 4.1 46.2 46.4 46.5 46.7 47.0 47.3 47.8 48.1 48.5 48.6 48.8 50.349.547.34.44.246.1 40.8 19 M.I %.I % 3 46.7 47.0 47.1 47.2 47.2 48.0 48.0 47.3 46.5 45.8 45.5 45.4 45.4 45.2 45.1 44.6 44.3 44.2 44.2 44.2 44.2 45.9 20 44.2 44.2 44.1 43.9 43.8 43.6 43.4 43.2 42.9 42.9 42.9 42.8 42.7 42.8 43.0 43.2 43.4 44.0 44.744.544.34'.344.244.1 43.6 21 44.1 44.1 44.1 44.2 44.2 44.3 44.5 44.6 44.8 45.0 45.3 45.3 45.2 45.1 45.1 45.0 44.9 44.8 44.3 44.3 43.9 43.9 43.9 43.8 44.5 22 43.8 43.8 43.9 4's.0 44.1 44.2 44.9 45.4 M.I 47.2 46.8 45.8 45.1 44.9 44.8 44.8 44.9 45.3 46.2 % .I 45.4 44.9 44.7 44.7 45.1 23 44.7 44.8 44.7 44.8 45.2 45.8 46.3 46.7 47.1 47.6 48.3 48.0 47.1 46.4 45.8 45.5 45.3 45.1 4'. 7 44.3 44.2 44.2 44.3 44.5 45.6 24 44.6 44.9 45.4 4.1 46.6 47.0 47.4 47.9 48.3 48.9 49.3 48.5 47.3 M.5 %.2 46.2 % .6 M.8 %.4 46.2 45.0 45.9 45.8 45.8 46.7 25 45.9 46.0 46.2 4 .5 47.1 47.3 47.7 48.2 48.6 48.9 49.2 49.4 49.7 $0.1 50.4 50.6 50.8 50.9 49.6 48.1 47.4 47.3 47.2 47.5 48.4 26 47.7 48.0 48.3 48.7 49.I 49.3 49.8 50.0 50.5 50.5 50.0 49.5 48.9 48.6 48.6 48.5 48.6 48.8 48.7 48.5 48.4 48.2 48.0 48.I 48.9 27 48.1 48.2 48.2 48.3 48.2 48.4 48.4 48.4 48.5 48.8 49.2 49.6 49.7 49.6 49.6 49.3 49.1 48.9 48.8 48.7 48.6 48.6 48.5 48.3 48.8 28 48.2 48.0 47.9 47.9 47.9 47.9 47.9 47.8 47.8 47.7 47.6 47.6 47.6 47.7 47.6 47.5 47.4 47.3 47.1 47.0 4.8 M.6 %.5 46.3 47.5 29 M. I %.045.945.945.945.945.945.945.945.845.845.845.745.6 45.6 45.5 45.3 45.2 45.1 45.1 45.0 45.0 44.9 44.9 45.6 31 44.8 44.7 44.6 44.5 44.5 44.3 44.3 44.3 44.3 44.4 44.5 44.6 44.7 44.7 44.8 44.8 44.7 44.5 44.3 44.2 44.0 43.9 43.9 43.8 44.4 MONTHl.Y AVERACE 46.9 Y

_ _ _. _ _ ._ - -~ ~ .- . . - - _ -

TABLE 3.1-12 AVERACE HOURLY TEMPERATURE IN *F VERHONT YANKEE SAHPLE STATION NO. 3 DECEM8ER 1979 DAY DAILY HOUR AVERAGE I 2 3 4 5 6 7 8 9 to 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1

2 43.8 43.7 43.6 43.5 43.5 43.4 43.3 43.3 43.3 43.5 43.7 43.7 43.8 43.8 43.7 43.6 43.5 43.3 43.2 43.I 43.0 42.6 43.0 42.9 43.4 3 42.9 42.8 42.6 42.7 42.8 42.9 43.0 43.3 43.8 43.9 43.5 43.4 43.2 42.8 42.6 42.5 42.5 42.3 42.2 42.2 42.0 41.9 41.7 41.5 42.7 4 41.4 41.3 41.1 40.9 40.8 40.7 41.0 42.5 42.7 41.0 42.6 42.2 42.0 42.1 42.0 41.9 41.8 41.8 41.6 U .3 40.9 40.7 40.5 40.3 41.5 5 40.0 39.7 38.7 38.8 38.7 39.738.7 M.9 39.0 40.0 40.2 39.9 39.8 39.7 M.9 40.0 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.0 39.8 39.4 39.1 M.9 38.8 39.8 6

M. I 39.2 39.1 M.I 38.9 38.9 39.1 39.2 39.2 39.1 M.2 39,3 39.3 39.2 39.3 39.0 39.0 M.0 39.0 39.0 7 38.9 38.9 38.8 38.7 38.8 38.7 38.7 38.5 39.4 39.9 40.1 39.9 39.6 39.5 39.5 39.5 M.2 39.3 39.2 M.I 38.9 38.5 38.3 38.2 39.1 8 38.1 18.0 M.8 U.8 31.7 37.7 37.8 37.8 W.9 38.4 18.8 38.9 M.I 39.2 39.4 39.6 39.5 39.8 39.6 39.4 39.3 39.7 39.I 19.I 38.7 g 9 38.9M39.0 37.6 .5 39.3 39.2 41.0 39.1 38.7 38.6 38.5 38.4 38.2 19.0 40.6 40.9 40.6 40.3 39.7 39.5 39.2 38.8 38.4 38.3 38.1 37.8 39.2 w 10 37.4 37.3 U.I %.9 %.9 37.2 37.9 38.7 39.3 40.2 41.0 41.7 41.9 42.0 41.6 42.3 41.9 40.1 39.0 38.6 38.2 31.9 39.2 37.9 37.8 37.7 37.5 37.3 31.4 U.7 38.6 M.9 41.2 40.6 39,3 39.1 38.7 38.5 38.I 37.9 31.7 31.4 31.2 31.0 %.9 37.0 31.0 38.1 7 11 12 U.0 %.9 %.9 %.9 %.9 %.7 %.6 %.5 38.2 M.3 39.4 39.0 38.7 33.5 38.4 38.3 38.2 38.2 38.2 38.0 38.0 38.0 U.9 31.9 31.9 13 37.8 U.6 37.8 U.8 31.5 37.8 37.7 37.838.3 U.8 U.7 38.937.8 M.3 39.9 41.0 41.6 40.7 40.1 M.4 M.0 38.9 38.7 38.6 38.4 38.3 38.3 38.1 37.9 37.8 37.8

  • ).3 40.4 40.2 39.4 39.0 38.8 38.7 38.5 38.4 38.3 38.1 38.0 31.9 31.7 H.3 37.2 31.1 38.8 14 38.3 15 U.0 37.0 %.9 M.8 %.8 %.9 %.9 %.9 %8 %.7 M.9 37.0 37.0 U.I 37.0 37.1 37.2 37.2 37.4 U.2 %.9 %.6 %.4 M.2  %.9 16  %.I %.0 35.9 35.7 35.5 35.4 M.2 35.2 35.9 %.9 37.2 31.3 U.0 %.8 %.6 M.4 %.4 %.5 %.5 %.2 %.0 35.8 35.8 35.8  %.2 IF M.7 M.5 M.4 M.3 M.4 M.6 %.3 M2 38.0 38.6 39.3 40.4 41.0 41.4 41.8 42.0 42.1 42.5 41.8 M.3 38.3 U.5 M.9 M.9 38.5 18 37.0 %.9 %.7 %.6 %.5 %.6 37.0 37.9 39.0 40.6 40.6 M.1 37.9 37.4 %.9 %.5 %.3 35.9 %.0 35.8 35.2 %.9 M.8 M.8 N.0 19  %.8 %.7 %.6 M.5 %.3 %.I %.I %.8 U.5 38.2 17.5 %.8 % .3 36.1 15.9 M.8 35.7 35.6 35.5 35.5 35.2 %.9 M.7 %.5 35.5 20 M.4 M.6 M.0 35.4 M,9 %.) %.6 %4 35.7 M.! %.9 M.7 %.7 M.7 M.7 35.0 M.4 35.5 35.3 % .9 %.5 %.4 M.3 M.2 M.I 21

%.I %.I %.0 %.I %.0 %.0 %.0 %.0 30.0 %.0 M.9 %.0 %.2 M.2 %.2 M.3 34.3 M.2 %.I %.I %.0 %0 33.9 33.8  %.1 22 33.7 33.7 33.7 33.8 M.2 %.6 35.1 35.7 37.5 M.3 38.2 %.8 %.0 35.6 35.2 %.9 %.8 %.6 M.6 M.6 %.5 %.6 M.5 %.5 35.2

%.5 %.5 %.4 %.5 %.8 M.2 M7 %.2 %8 38.2 39.2 39.3 38.9 38.6 38.4 38.2 U.7 U.4 38.2 J8.9 38.4 38,0 U6 37.3 31.1 23 24 U.3 37.0 %.7 %.7 37.0 37.4 37.8 38.1 38.7 39.2 39.4 M.7 40.0 40.3 40.4 40.6 40.9 41.0 39.2 38.0 %. 7 35.9 M.4 M.2 38.3 25 35.2 M.3 35.4 M.4 35.6 %.0 %.4 %.9 37.8 39.0 39.5 38.8 U.7 M.8 %.4 %. I %.0 %.6 %.7 35.7 %.9 %.6 % 5 %.3  %.3 26 34.6 35.2 35.5 35.6 35.7 35.9 %.0 %.0 %.I %.I 35.2 %.3 33.9 33.7 31.6 31.6 33.6 33.5 13.5 33.5 33.5 33.4 33.3 33.3  %.5 27 31.2 31.2 13.1 33.0 32.9 32.8 32.8 32.8 32.8 32.8 32.9 12.9 33.0 33.0 33.0 31.1 33.1 33.2 33.2 33.2 33.3 33.3 33.3 33.2 33.0 28 33.2 M.2 33.I H.0 32.9 32.9 32.8 32.9 32.9 32.9 32.9 33.0 33.1 33.1 31.1 31.1 33.2 M.2 33.2 M.2 M.2 33.2 33.2 33.2 U. I

, 29 33.2 31.2 33.1 33.1 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 31.1 H.I 33.2 33.2 33.3 33.3 33.3 H.3 33.3 33.3 U.3 33.1 31 33.3 H.3 D.I M.2 31.2 33.1 33.0 M.0 B.I 33.1 33.2 33.3 33.4 33.4 33.6 33.7 33.7 33.7 33.7 33.7 33.8 33.8 33.8 33.8 33.4 33.8 33.8 33.7 U.6 33.7 33.9 35.0 M .3 37.4 31.2 %.3 35.0 %.5 %.3 7. 2 %.3 %.2 %.I %.1 %.0 M.0 %.0 %.0 34.0  %.6 31  %.0 %.0 % .0 %.0 33.9 M.3 %.4 34.4 %.5 34.6 %.6 34.7 %.7 %.8 MM  %.9 34.8 34.8 %.5 %.2 %.0 31.9 33.8 33.7 M.4

, MONTilLY AVERACE 37.2 4

-.- - -- -.-- - - - - - - --- - - - - - , - , - , . - , , , , - . --w - , , , - - - - - - , , - - - - - - - - - - - - ,-,-v - - - - , - - , , , - - - . , , , - - , ,,r--,--

TABLE 3.2-1 AVERAGE tluuRLY TEMPEkATUkE IN *F

, VENHUNT YANKEE SAHPl.E STAil0N NO. 2 JANUARY 1979 DAILY DAY HOUR AVEltAGE I 2 3 4 5 6 2 8 9 10 Il 12 13 14 15 16 17 18 19 20 21 22 23 24 1 32.0 12.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 H.0 32.0 32.0 12.0 32.0 2 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.2 32.1 32.I 32.1 32.1 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 3 32.0 32.0 12.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 4 12.0 32.0 32.0 12.0 32.0 32.0 12.0 32.0 32.0 32.0 U.0 32.0 U.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 5 32.0 32.0 32.0 H.0 12.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 6 12.0 32.0 32.0 32.0 12.0 32.0 32.0 12.0 32.0 32.0 M.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 7 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 8 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 U.0 32.0 12.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 12.0 g 9 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 U.0 32.0 32.0 32.0 32.0 32.0 32.0 U.0 32.0 32.0 32.0 32.0 12.0 W 10 32.0 12.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 H.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 M.0 32.0 32.0 32.0 32.0 32.0 I IL 32.0 32.0 32.0 32.0 12.0 12.0 32.0 32.0 32.0 12.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 12.0 32.0 13 12.0 12.0 32.0 32.0 12.0 32.0 32.0 32.0 H.0 32.0 32.0 12.0 12.0 32.0 32.0 32.0 32.0 U.0 12.0 32.0 32.0 32.0 M.0 32.0 12.0 14 32.0 H.0 12.0 12.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 15 32.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 16 12.0 12.0 32.0 12.0 12.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 12.0 12.0 32.0 32.0 32.0 17 32.0 32.0 32.0 12.0 U.0 32.0 32.0 22.0 32.0 12.0 32.0 32.0 12.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 18 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 U.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 i 19 12.0 32.0 12.0 32.0 32.0 32.0 32.0 12.0 32.0 12.0 32.1 32.0 12.0 32.0 M.0 32.0 32.0 12.0 12.0 32.0 12.0 32.0 32.0 32.0 32.0 31 32.0 32.0 12.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 12.0 M.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 21 32.0 12.0 12.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 12.0 32.0 12.0 32.0 12.0 32.0 32.0 32.0 32.0 22 32.0 32.0 32.0 32.0 32.0 12.0 M.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 21 32.0 12.0 12.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 12.0 12.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 24 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 25 32.0 32.0 12.0 32.0 12.0 H.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 26 32.0 12.0 32.0 32.0 12.0 32.0 12.0 32.0 32.0 3' S 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 27 32.0 12.0 12.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 M.0 32.0 32.0 32.0 32.0 28 32.0 32.0 32.0 M.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 29 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 M.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 31 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 31 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 M.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 HONTHLY AVERAGE 32.0

3

, TAI 1LE 3.2-2 AV'ERACE HOURLY TEMPERATURE IN *F.

VERPR)MT YANKEE SAMPl.E STATION No. 7 FEBRUARY 1979 DAY DAILY HOUR AVERACE I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 M I

2 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 3

32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 31.0 32.0 4

32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 5

32.0 32.0 M.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 6

32.0 32.0 32.0 32.0 M.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.1 32.1 32.0 32.0 32.0 32.1 32.0 32.0 32.0 32.0 32.0 32.0 32.0 2

32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 M.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 8

12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0

[ 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 w 9 32.0 32.0 32.0 12.0 H.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 l 10 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 11 12 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 *32.0 32.0 32.0 32.0 32.0 32.1 32.1 32.1 32.1 32.0 32.1 32.0 13 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.I 32.I 32.I 32.I 32.I 32.1 32.I 12.I 32.I 32.I 32.I 32.0 32.I 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.5 32.1 32.0 32.1 32.0 32.1 32.0 32.1 32.0 32.0 32.0 32.0 32.0 14 32.0 32.0 32.3 32.0 12.0 32.0 32.0 32.0 32.0 32.0 12.0 12.1 32.1 12.1 32.1 32.0 32.1 32.1 32.1 32.1 32.0 32.1 32.0 32.0 32.0 15 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.0 32.1 32.0 32.1 32.0 16 32.0 32.0 32.0 32.0 32.0 M.0 32.0 32.0 M.0 32.0 32.0 32.0 32.I 32.1 32.1 32.1 32.1 32.0 32.1 32.1 32.0 32.0 32.0 32.0 32.0 17 32.0 32.0 32.0 32.3 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 18 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 H.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 19 20 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 M.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.1 32.1 32.1 32.1 32.I 32.1 32.1 32.1 32.1 32.1 32.1 32.0 32.0 21 12.0 32.0 32.0 12.0 32.0 32.0 32.2 32.0 32.0 32.1 32.1 32.1 M. I 32.1 12.1 32.1 32.5 32.1 M.I 32.1 32.0 32.0 32.0 32.0 32.I 22 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.0 32.0 32.0 32.0 32.0 23 32.0 32.0 32.2 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.1 32.1 32.0 32.1 32.0 32.0 32.0 32.0 32.0 32.0 32.0 M.0 M 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.3 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 25 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 26 32.0 32.0 32.0 H.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 27 32.0 32.0 32.0 M.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 2 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0

. IsoleTMLY AVERACE 32.0

~

TABLE 3.2-3 AVERAGE IN)UNLY TEHl'ERATURE IN *F VERHONT YAHitEE SAH1'LE STATION NO. 7 MARCH 1979 DAILY l>AY 110UR AVERACE 1 2 3 4 5 6 7 8 9 to il 12 13 14 15 16 17 18 19 20 21 22 23 24 1 32.0 32.0 12.0 12.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 2 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 3 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 4 32.0 32.0 32.0 12.0 32.0 12.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32 0 32.0 32.0 32.0 32.0 32.0 32.1 32.0 32.0 32.0 5 31.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.1 32.0 32.0 32.0 32.0 32.0 32.1 32.3 32.1 32.0 32.0 32.0 32.0 6 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 7 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 M.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 8 32.0 32.0 32.0 12.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 1 9 32.0 32.0 12.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.1 32.1 32.1 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 U 10 32.0 32.0 12.0 32.0 32.0 32.0 12.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 I II 32.0 32.0 32 0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 13 32.0 32.0 32.0 32.0 32.0 32.0 U.0 32.0 32.0 32.0 H.0 32.0 U.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 14 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 31.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 15 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 16 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 U.0 32.0 32.0 32.1 32.0 32.0 32.0 32.0 32.0 U.0 32.0 32.0 32.0 17 32.0 32.0 12.0 32.0 12.0 12.0 32.0 12.0 32.0 12.0 12.0 32.0 32.1 32.1 32.2 32.2 32.2 32.1 32.0 32.0 32.0 32.0 32.0 32.0 32.0 18 32.0 32.0 32.0 32.0 32.0 32.0 12.0 12.0 32.0 12.0 32.0 32.3 12.1 32.2 32.2 12.3 32.2 32.2 32.1 32.1 12.0 H.0 32.0 32.0 12.1 19 32.0 32.0 32.0 12.0 12.0 12.0 32.0 32.0 32.0 12.0 32.1 12.2 32.3 32.4 32.4 32.7 32.4 32.3 32.3 32.2 32.2 32.1 32.1 32.1 32.2 20 32.1 32.5 32.1 12.1 32.1 12.0 32.0 32.0 32.0 12.0 32.6 12.2 12.3 12.4 32.5 32.4 32.4 12.3 32.3 32.3 32.3 32.3 32.2 32.2 32.2 21 32.2 12.2 32.2 32.2 32.3 32.2 32.2 12.2 12.2 32.3 32.4 32.6 32.7 32.9 32.9 13.0 13.0 32.9 32.9 32.9 32.8 32.8 32.7 32.6 32.6 22 12.7 32.7 12.6 32.7 32.6 32.6 12.6 32.5 32.6 32.7 32.9 31.0 31.1 33.2 13.7 33.9 33.9 % .0 M.) M.5 %.6 M.7 M.8 M.8 33.4 21 M.8 M.6 %.5 M.4 M.2 %.I M.3 M.5 34.9 35.4 35.9 %.1 %.7 31.2 37.6 38.0 38.3 38.5 38.6 38.6 M.6 18.4 38.2 37.9  %.4 24 17.7 17.6 31.4 37.4 37.5 37.6 37.6 37.6 37.8 18.0 38.0 38.0 18.2 38.4 38.5 38.6 38.7 38.7 38.7 38.7 38.6 38.7 38.7 38.7 38.1 25 38.8 38.9 38.9 38.7 18.5 38.0 37.7 37.8 37.8 37.9 38.0 38.1 38.1 38.1 38.I 38.1 38.2 38.3 38.3 38.5 38.6 38.6 38.7 38.8 38.3 26 38.7 38.8 38.6 38.5 38.4 38.3 38.2 38.1 31.7 38.1 M.2 38.4 38.4 '38.5 38.7 38.6 18.6 3M.6 38.6 38.5 38.4 38.2 38.1 37.9 38.4 27 38.0 37.6 37.5 38.1 37.0 %.9 %.8 %.7 %.7 %.7 %.7 %.7 %.8 36.9 %.9 37.0 37.0 37.0 37.0 %.9 %.8 %.7 M.5 %.3 37.0 28  %.2 %.2 %.0 35.9 35.8 35.6 35.4 35.4 35.4 35.6 35.7 %.0 %.2 %.4 %.7 %.9 36.9 %.9 %.9 Ju.8 %.6 M.4 %.3 %.0  %.2 29  %.I 15.9 35.7 15.7 35.7 35.7 35.7 35.7 35.7 35.7 35.8 35.8 35.9 35.9 %.0 %.I %.2 %.3 M.4 %.3 %.3 %.3 %.2 %.3  %.0 30  %.I %.I %.I %.0 %.I %.I %.I 36.2 %.2 %.2 %.3 %.3 %.4 %.4 %.5 %.5 %.5 36.6 %.5 %.5 % .5 36.6 %.6 M.6 M.3 3I  %.6 %.6 %.6 %.7 %.7 %.7 %.7 %.8 30.8 %.9 %.9 37.1 U.2 37.3 U.4 37.4 37.5 37.5 37.5 31.6 37.6 37.7 37.7 31.7 37.1 HollTHLY AVERACE 31.6

% .c._ _ _ y- . ,, - , . - -

TM3LE 3. 2-4 AVERACE Il0URI.Y TEMPERATUltE IN *F VERHONT YANKEE SAHFLE STATION NO. 7 APRIL 1979 DAY DAILY llo0R AVERACE I 2 3 4 5 6 7 8 9 10 12 13 I4 15 16 17 Il 18 19 20 21 22 23 24 1

2 31.7 37.6 37.6 11.6 37.6 37.6 37.6 37.6 17.7 37.9 37.9 38.1 38.1 38.7 38.1 38.4 38.4 38.4 38.4 38.2 38.4 38.4 M.4 38.4 38.0 3

38.1 38.3 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.1 38.0 3d.0 31.9 31.8 31.8 37.8 31.7 37.7 37.6 37.5 38.0 4 37.5 37.5 37.5 37.5 37.5 37.5 31.4 37.4 31.4 37.2 31.4 31.4 31.5 37.5 37.5 17.6 37.6 17.7 37.6 37.5 31.5 37.5 37.4 37.3 31.5 5

37.3 37.2 31.1 31.0 %.9 %.8 %.7 %.6 %.7 %.7 %.8 %.9 31.2 37.3 37.3 37.5 37.5 37.5 37.5 37.5 37.5 31.5 31.5 37.5 31.2 6 37.5 37.4 31.4 37.3 37.2 37.2 37.1 37.1 37.0 37.0 37.0 37.0 37.I 31.I 17.2 37.2 37.4 31.4 31.3 31.3 31.2 37.2 31.1 31.1 37.2 7

37.1 17.0 %.9 %.9 %.8 %.7 %.6 %.7 %.6 %.6 %.7 M.9 17.1 37.3 37.6 37.8 37.9 37.8 31.8 37.7 37.6 37.5 37.4 31.3 37.2 8 37.2 37.2 31.1 %.9 %.8 %.7 %.6 %.4 %.4 %.4 %.6 %.9 31.1. 37.I 37.1 17.2 31.4 37.4 37.4 31.4 37.4 31.4 37.4 37.4 37.0 37.3 31.2 37.1 31.0 %.9 h.8 %.6 %.5 %.4 %.4 %.6 %.8 37.1 37.5 31.9 38.1 38.3 38.4 18.4 38.4 38.4 18.3 38.5 38.5 37.5 b 9 38.5 38.6 38.6 38.5 38.4 38.2 38.2 38.0 31.8 37.7 37.6 37.5 37.4 37.0 %.5 37.0 36.9 %.7 M.6 %.4 %.3 %.2 %.2 %.I 37.4 un 10 8

11

%.2 %.2 %.2 %.3 %.3 %.4 %.5 %.5 %.6 %.7 %.8 %.9 37.0 31.1 37.2 31.3 31.4 31.4 37.4 31.3 37.2 37.2 31.1 31.0  %.8 12 17.0 17.0 %.9 %.8 %.7 %.6 %.6 %.6 %.6 %.7 %.9 37.2 17.5 37.9 38.2 38.5 38.8 38.9 39.0 38.9 38.9 M.9 18.8 38.8 37.7 13 38.8 18.8 18.7 38.6 38.4 38.1 37.8 37.7 37.7 31.9 38.2 38.4 38.9 39.3 39.7 39.9 I4.2 14.3 1d).4 14.6 40.7 14.8 41.2 40.7 39.2 14 40.6 40.5 41.4 40.4 40.4 40.3 40.2 40.2 4L4 40.2 40.3 40.4 40.7 40.8 41.0 41.1 41.2 41.3 41.3 41.2 41.2 41.2 41.2 41.2 40.7 15 41.1 41.2 41.7 41.2 41.2 41.1 41.1 41.1 40.9 40.9 40.8 40.7 40.6 40.5 40.4 14 .2 40.1 40.0 39.8 M.8 39.8 39.7 39.7 39.1 40.6 16 39.7 M.5 39.5 39.8 39.8 M.8 M.8 M.6 39.8 39.9 39.9 M.8 39.9 40.0 40.1 40.1 40.1 40.2 40.2 14.1 40.3 14.3 14.3 40.2 40.0 17 40.2 40.2 40.2 40.2 40.2 40.2 40.1 40.1 40.1 40.1 40.1 40.2 40.3 40.4 40.5 40.7 40.8 40.8 40.8 40.8 14.8 40.8 40.8 40.7 40.4 18 40.7 40.6 40.6 40.6 40.6 40.6 40.5 40.5 40.6 40.6 40.8 14.9 41.1 41.2 41.4 41.5 41.5 41.5 41.5 41.5 41.5 41.4 41.4 41.4 41.0 19 41.3 41.3 41.2 41.1 41.0 40.9 40.9 40.8 40.8 41.0 41.1 41.4 41.1 41.9 42.2 42.4 42.5 42.6 42.6 42.6 42.6 41.0 42.5 42.4 41.7 20 42.4 42.2 42.1 41.9 41.7 41.5 41.4 41.3 41.3 41.4 41.6 41.9 42.5 42.6 42.9 41.0 41.1 43.2 41.3 43.3 41.3 43.3 43.3 43.2 42.4 21 43.2 41.1 42.9 42.7 42.5 42.4 42.2 42.1 42.1 42.2 42.3 42.6 42.8 43.1 43.443.643.843.94'4.044.0 44.0 44.I 44.0 41.9 43.1 22 41.8 43.7 43.5 41.3 41.1 42.8 42.6 42.4 42.4 42.5 42.7 42.9 41.2 41.5 43.8 44.1 44.3 44.5 44.7 45.0 44.9 44.9 45.0 45.0 41.7 44.9 44.8 44.7 44.5 44.3 44.1 41.9 43.7 43.6 43.6 43.7 43.6 43.7 43.8 44.0 44.1 We.3 44.6 44.6 44.7 44.8 44.9 44.9 45.0 44.3 23 , 45.0 44.9 44.8 44.7 44.6 44.4 44.2 44.0 44.0 44.1 44.2 44.4 44.7 45.0 45.3 45.6 45.8 46.0 %.3 %.3 M.4 %.4 46.3 46.1 45.1 24 25 46.0 45.8 45.6 45.5 45.3 45.2 45.1 45.0 45.0 45.2 45.4 45.8 46.2 46.4 46.7 % .9 41.1 47.3 47.2 47.3 47.2 47.2 47.I 47.0 4.2 26 46.9 %.8 %.7 %.6 46.4 %.246.045.9 46.0 46.1 46.1 46.1 46.3 M.5 %.6 46.8 47.0 47.1 47.2 41.4 47.5 47.5 47.6 47.5  %.7 27 47.4 47.3 47.1 46.9 46.6 46.5 % .4 46.3 46.3 46.5 46.7 47.0 47.2 47.8 48.0 48.3 48.4 48.6 48.7 48.9 49.0 49.1 49.1 48.8 47.6 28 49.1 49.0 48.9 48.8 48.7 48.6 48.6 48.6 48.6 48.7 48.7 48.7 49.0 49.1 49.2 49.5 49.6 49.7 49.8 49.8 49.9 49.8 49.9 49.8 49.2 29 49.7 49.5 49.4 49.2 49.1 49.0 48.9 48.9 48.9 49.0 49.1 49.4 49.6 50.2 50.3 50.6 50.7 50.8 50.8 50.7 50.7 50.7 50.8 50.8 49.9 30 50.9 51.0 49.4 51.I 51.1 50.9 50.8 50.7 50.6 50.6 50.7 50.9 51.0 51.3 51.5 51.6 51.7 51.7 .51.7 51.8 51.8 51.9 51.8 51.6 51.2 51.8 51.4 51.2 51.0 50.9 50.7 50.6 50.4 50.3 50.3 50.5 50.5 50.8 51.0 51.2 51.4 51.6 51.8 51.9 52.0 52.0 52.0 52.0 51.9 51.2 HONTHLY AVERAGk 41.8

-. - _ . , _ _ - , , - _ _ _ - , . . _ , - _ _ - , ,, _ - , . ,- , v _ _.-m., , . _ , , - . , . ,

t i

TABLE 3.2-5 i

AVENAGE th)UHl.Y TEHl'EHATilRE IN 'F ,

VERHONT YANKEE SAHl't.E STATION No. 7 HAY 1979 DAY DAll.Y llOUlt AVERACE I 2 3 4 5 6 7 8 9 to 12 13 14 15 16 Il 17 18 19 20 21 22 23 24 1

2 51.8 51.7 51.5 51.4 51.1 51.2 51.1 51.0 51.0 50.9 50.8 50.9 51.1 51.3 51.4 51.5 51.7 51.9 51.9 51.9 52.0 51.9 51.9 51.8 51.5 3

51.8 51.8 51.8 51.7 51.5 51.2 51.1 50.9 50.7 50.6 50.6 50.7 50.8 51.0 51.2 51.4 51.5 51.8 51.8 52.0 52.0 52.0 52.1 52.2 51.4 4 52.3 52.3 52.4 52.3 52.2 52.I 52.0 51.8 51.7 51.6 51.4 51.3 51.2 51.3 51.2 51.2 51.0 $1.0 51.0 51.0 51.0 51 1 51.1 51.1 5I.5 5

51.1 51.2 51.3 51.1 51.4 51.4 51.4 51.4 51.4 51.4 51.5 51.6 51.8 51.9 52.0 52.2 52.4 52.5 52.6 52.5 52.4 52.3 52.2 52.1 51.8 6 51.9 51.7 51.6 51.5 51.5 51.3 51.2 51.2 51.1 51.1 51.1 51.2 51.1 51.6 51.8 52.0 52.2 52.4 52.5 52.5 52.5 52.4 52.3 52.3 51.8 7

52.1 52.0 51.8 51.7 51.6 51.4 51.3 51.2 51.I 51.0 51.1 51.2 51.2 51.5 51.6 51.7 51.9 52.0 52.0 52.0 51.9 51.9 51.8 51.8 51.6 8 51.9 51.9 51.9 52.0 51.9 51.9 51.7 51.6 51.6 51.7 51.8 52.0 52.1 52.3 52.4 52.8 53.2 53.4 51.6 51.6 $1.6 53.6 53.5 53.4 52.5 9 53.3 51.3 51.1 51.0 52.9 52.9 52.9. 52.9 51.0 53.1 51.4 53.3 51.3 53.7 53.8 %.2 %.4 %.6 %.8 %.9 55.1 55.2 55.2 55.3 53.8 55.1 55.4 55.4 55.4 55.4 55.3 %.3 55.4 55.4 55.4 55.4 55.5 55.5 55.7 55.8 %.0 %.3 %.6 %.7 %.9 57.1 57.2 57.3 57.4  %.0 1 to 57.4 57.4 57.5 57.5 57.5 57.6 57.6 57.6 57.7 57.7 57.9 M.1 58.1 58.3 58.3 58.5 58.7 58.8 58.9 59.0 59.1 59.3 59.4 59.6 58.2 os 11 1 12 59.6 59.7 59.6 59.7 59.7 59.6 59.6 59.5 59.7 59.7 59.7 59.9 ul.2 u).5 60.7 61.0 61.1 61.2 61.1 61.1 61.1 61.0 61.0 61.0 60.3 61.1 61.1 61.1 61.1 61.1 61.2 61.3 61.4 61.4 61.5 61.5 61.5 61.5 61.4, 61.3 61.1 61.0 60.9 60.7 60.7 60.6 60.7 u).7 60.8 61.1 11 14 u).8 60.8 60.8 ut.7 u).5 m.4 u).4 u).) u).1 60.4 60.3 60.1 60.3 (L.) u).3 u).2 60.2 60.2 60.2 u).2 60.1 60.0 60.0 59.9 60.3 45 59.8 59.7 59.8 59.8 59.8 59.6 59.6 59.7 59.7 59.7 59.7 59.7 59.8 59.8 59.9 60.0 60.1 60.2 u).2 u).2 u).2 60.2 60.1 u). I 59.9 ut.0 u).0 59.9 59.7 59.7 59.6 59.5 59.5 59.4 59.4 59.5 59.7 59.8 u).O 60.3 60.5 60.7 up.8 60,9 60.9 60.9 u).8 60.8 60.8 60.1 16 17 60.7 u).7 60.7 u) 7 u).6 60.6 00.6 60.6 60.5 60.5 60.4 60.4 u).9 61.2 61.3 61.5 61.7 61.8 61.8 61.9 62.0 62.0 61.9 61.8 61.1 61.6 61.5 61.3 61.2 61.1 61.0 60.9 u).8 60.8 60.7 60.6 60.7 61.0 61.2 61.5 61.8 62.1 62.3 62.5 62.5 62.5 62.6 62.5 62.5 61.6 18 62.4 62.3 62.1 62.2 62.2 62.1 62.1 62.1 62.1 61.9 61.8 61.5 61.4 61.3 61.5 61.5 61.3 61.2 61.1 61.0 60.9 60.9 u).9 60,9 61,6 19 20 60.8 60.9 G) 9 u).9 u).9 60.9 u).9 60.9 61.0 61.1 61.1 61.4 61.5 61.6 61.6 61.6 61.5 61.7 bl.3 61.9 62.2 61.8 61.7 61.5 61.3 21 61.4 61.4 61.3 61.3 61.2 61.2 61.2 61.2 61.2 61.2 61.2 61.2 61.3 61.4 61.4 61.4 61.5 61.8 61.6 61.6 61.8 61.9 61.9 61.8 61.4 22 61.9 61.8 61.8 61.8 62.0 61.8 61.8 61.9 61.9 62.0 62.2 62.3 62.6 62.7 62.8 62.7 62.9 61.0 63.1 63.1 63.0 61.0 63.0 62.9 62.4 21 62.9 62.9 62.8 62.8 62.7 62.6 62.6 62.6 62.5 62.3 62.3 62.6 62.9 62.9 61.0 61.3 63.5 61.7 63.8 63.8 63.8 63.8 63.9 63.9 61.1 24 61.9 61.9 61.9 63.8 63.7 61.7 61.7 61.7 61.7 63.7 63.5 61.3 61.2 61.4 61.4 61.1 62.9 62.9 62.8 62.8 62.9 63.1 63.2 61.3 61.4 25 61.4 63.4 61.5 61.4 63.4 61.4 63.3 63.2 63.1 63.0 62.8 62.6 62.5 62.4 62.2 62.1 62.I 62.1 62.G 61.8 61.2 60.3 59.3 59.1 62.3 26 58.9 58.7 58.6 58.4 58.1 58.0 57.8 57.6 57.5 57.3 % .9 %.6 %.2 %.I %.0 55.8 55.6 55.6 55.6 . 5 55.2 55.2 55.1 55.3  %.7 27 55.1 55.2 55.2 $5.2 55.3 55.3 55.2 55.1 55.0 %.9 %.9 %.9 55.0 55.2 55.4 55.6 55.9 %.0 55.8 55.. ...) 55.3 55.2 55.0 55.3 28

%.9 %.7 %.7 %.5 %.4 %.3 %.2 M.2 %.2 %.2 %.2 %.4 %.5 %.8 %.9 54.9 55.0 55.0 %.9 %.9 %.8 %.7 %.7 %.7  %.6

%.7 %.6 %.5 %.4 %.3 %.3 %.2 %.2 %.2 %.4 %.4 %.5 %.7 %.8 %.9 55.3 55.6 55.8 %.0 %.I %.3 %.3 %.4 %.4 55.1 29  %.) %.2 %.2 %.I 55.9 55.7 55.5 55.4 55.4 55.5 55.6 55.9 %.I %. I %.2 %.4 % .5 56.7 56.7 %.7 %.5 %.4 %.4 %.4  %.I 30 31

%.5 %.5 %.6 %.7 %.8 %.8 %.8 %.8 %.8 %.8 %.8 %.9 57.0 57.1 57.1 57.3 57.5 57.5 57.5 57.6 57.7 57.7 57.7 57.8 57.1 57.7 57.7 57.6 57.5 57.3 57.2 57.1 57.0 %.9 57.0 57.1 57.3 57.5 57.6 57.8 58.1 58.2 58.3 58.7 58.8 58.8 58.9 58.9 59.0 57.8 HONTHLY AVERAGE 57.5 9

.e

. , . . - = w

TABIE 3. 2-6 AVERACE HOURLY TEMPERATURE IN *F VERMONT YANKEE SAMPLE STATION NO. 7 JUNE 1979 DA ll.Y DAY HOUR AVERACE I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 59.1 !9.1 59.0 58.9 58.7 58.5 58.4 58,4 58.3 58.2 58.6 $8.7 59.0 59.4 59.6 59.9 60.2 60.3 60.4 60.4 60.5 60.6 60.7 61.1 59.4 2

60.8 60.8 60.8 60.8 60.7 60.6 60.5 60.4 60.3 60.2 60.I 60.2 60.3 60.5 60.7 61.0 61.1 61.3 61.3 61.4 61.6 61.5 61.6 61.7 60.8 3

61.8 61.9 61.9 61.9 61.9 61.8 61.7 61.6 61.5 61.4 61.3 61.2 61.2 61.2 61.3 61.4 61.5 61.5 61.6 61.7 61.8 61.8 61.9 62.0 61.6 4

62.0 62.1 62.1 62.1 62.1 62.1 62.1 62.0 62.0 61.9 61.9 62.0 62.1 62.2 62.3 62.5 62.5 62.5 62.6 62.7 62.7 62.6 62.6 62.5 62.3 5

62.4 62.3 62.3 62.2 62.2 62.2 62.2 62.2 62.3 62.4 62.6 62.7 62.9 63.1 63.3 63.5 63.7 63.8 63.8 63.9 63.9 63.9 64.0 64.0 63.0 6

M.0 M.0 64.1 M.2 M.3 M.4 M.5 64.7 F4.8 64.8 M.9 M.8 64.8 U 9 65.0 65.2 65.4 65.6 65.7 65.8 65.8 65.8 65.8 65.7 65.0 7

65.7 65.7 65.6 65.5 65.4 65.2 65.1 65.1 65.1 65.2 65.4 65.5 65.5 65.6 65.7 65.7 65.8 65.8 65.8 65.8 65.7 65.7 65.7 65.7 65.5 8

65.7 65.7 65.7 65.7 65.7 65.7 65.7 65.7 65.7 65.8 M.0 M.I M.2 M.3 M.4 M.5 M.3 M.3 M.3 M.3 M.I M.0 65.9 65.9 M.0 h.J 9 65.8 65.8 65.8 65.8 65.9 65.9 M.0 M.I M.! M.2 66.3 M.4 E.5 66.6 M.7 M.8 M.9 66.9 M.9 M.9 M.9 M.9 66.9 M.9 M.4 10 8

M8 M.8 M.8 M.7 M.7 M .7 66.8 M.8 M.9 M.9 67.0 67.0 67.1 67.3 67.4 67.7 67.8 67.9 68.1 68.1 68.3 68.4 68.4 68.6 67.4 11 68.5 68.5 68.4 68.3 68.2 68.2 68.2 68.1 68.2 68.3 68.3 68.2 68.1 68.I 68.I 68.0 67.9 67.7 67.5 67.3 67.2 67.1 67.2 67.3 68.0 12 67.4 67.5 67.4 67.3 67.2 67.0 M .7 66.5 M.2 M.I M.I M.I M.I M.3 M.4 M.5 M.5 66.5 M.5 M.4 66.3 M.2 M.I M.I M.6 13 65.9 65.8 65.6 65.4 65.2 65.0 M.8 64.7 64.7 64.9 65.1 65.2 65.4 65.6 65.8 65.9 M .0 M .I M.I M.0 65.8 65.6 65.3 65.0 65.5 14 M.8 64.6 64.4 64.2 64.0 63.8 63.8 63.7 63.8 63.9 64.1 64.3 64.4 64.7 64.9 65.1 65.2 65.3 65.4 65.3 65.1 65.0 64.9 64.7 64.6 15 M.6 64.5 64.3 64.2 64.2 M.2 64.2 64.2 64.2 M.3 64.5 64.7 64.9 65.2 65.5 64.9 M.I M.3 M.4 E.5 M.4 M.4 M.2 M.I 65.2 16 65.9 65.8 65.8 65.7 65.6 65.5 65.5 65.4 65.4 65.3 65.4 65.6 65.9 66.3 67.0 67.4 67.9 68.2 68.4 68.4 68.5 68.5 68.4 68.4 M.7 17 68.3 68.3 68.3 68.3 68.3 68.3 68.2 68.2 68.2 68.2 68.2 68.1 68.0 67.8 67.8 67.9 67.9 67.9 67.9 68.0 68.3 68.6 68.9 69.0 68.2 18 69.0 69.0 68.9 68.8 68.7 68.7 68.7 68.7 68.7 68.9 69.0 69.1 69.2 69.7 70.4 70.3 70.2 70.1 70.0 69.9 69.8 69.7 69.6 69.5 69.4 19 69.4 69.2 0.1 69.2 69.3 69.4 69.5 69.6 69.8 69.8 69.8 69.6 69.6 69.7 69.8 69.9 70.0 M.2 70.2 M.2 70.1 70.0 69.8 69.7 69.7 al 69.5 69.1 69.3 69.2 69.1 69.0 69.0 68.8 68.8 68.8 68.7 68.7 68.5 69.0 69.2 69.3 69.7 69.7 69.8 70.0 70.0 70.1 70.1 70.2 69.3 21 70.2 70.3 70.3 70.3 70.3 70.3 70.3 70.4 70.4 70.5 70.5 70.5 70.5 70.4 70.3 70.3 70.3 70.4 10.5 70.7 70.9 70.7 70.8 70.9 70.5 22 70.9 70.9 71.0 70.9 70.9 70.8 70.6 70.6 70.6 70.6 70.4 70.2 70.2 70.2 70.2 70.5 70.8 71.1 71.2 78.3 71.3 11.3 71.2 71.2 70.8 13 71.2 71.2 71.2 11.2 11.2 71.2 71.2 71.2 71.2 11.2 71.2 71.1 71.0 70.9 70.9 70.5 70.8 70.7 70.7 70.7 70.6 70.7 70.7 70.6 71.0 24 70.5 70.4 70.3 70.2 70.0 69.9 69.9 69.9 69.9 69.8 69.9 69.7 69.9 69.8 69.9 69.6 69.6 69.5 69.4 69.3 69.1 69.0 68.9 68.8 69.7 25 68.7 68.6 68.6 68.5 68.4 68.4 68.3 68.3 68.3 68.3 68.2 68.2 68.4 68.6 68.9 69.2 69.0 69.0 69.0 69.0 68.8 68.4 68.I 68.0 68.6 26 ' 68.0 68.0 68.0 67.9 67.9 67.8 67.8 67.8 68.0 68.2 68.0 67.9 67.9 68.0 68.2 68.2 67.8 68.3 68.2 68.2 68.2 68.3 68.4 68.3 68.1 27 68.2 68.3 68.3 68.2 68.2 68.3 68.2 68.2 68.2 68.2 68.1 68.1 67.8 67.6 67.7 67.9 67.9 68.0 68.1 68.2 68.3 68.3 68.5 68.6 68.1 28 68.6 68.6 68.7 68.8 68.8 68.8 68.8 68.9 68.9 69.1 69.1 69.1 69.0 68.8 68.8 68.9 68.9 69.0 68.9 68.9 68.8 64.8 68.8 68.8 68.9 29 69.0 69.2 69.2 69.I 69.1 69.0 69.0 68.9 68.9 68.9 68.8 68.8 68.6 68.5 68.6 68.7 68.8 68.8 68.7 69.0 69.2 69.3 69.4 69.4 69.0 30 69.4 69.4 69.6 69.5 69.5 69.6 69.6 69.6 69.7 69.6 69.6 69.6 69.7 69.7 69.7 69.7 69.7 69.7 69.6 69.7 69.8 69.8 69.9 69.9 69.6 MONTHLY AVERACE 66.8

TABLE 3.2-7 AVEpiCE HOUBl.Y TEMPEHATUNE IN *F VENHUNT YANKEE SAMPl.E STAYlUN Ho. 7 JUI.Y 1979 DAILY DAY llout AVERACE I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 69.9 69.9 69.9 69.9 69.9 10.0 N.0 70.0 69.9 70.0 10.0 69.9 70.0 70.0 70.0 69.9 69.7 69.8 t,9.8 69.8 69.7 69.8 70.0 69.9 69.9 2 69.7 69.7 69.9 69.9 69.9 70.0 70.0 70.1 70.2 70.3 70.1 70.1 70.1 70.1 70.3 70.4 10.4 71.1 70.6 70.6 70.7 70.7 N.7 70.6 70.3 3 N.5 70.4 70.2 N.0 69.8 69.7 69.7 69.7 69.7 69.7 69.7 70.1 70.1 70.7 70.5 70.6 71.2 70.9 71.0 71.3 71.4 71.3 71.2 71.1 70.4 4 M.9 70.8 N. 7 70.6 70.6 70.5 70.5 70.5 70.5 70.6 70.6 70.7 70.8 70.9 70.9 70.9 70.9 10.7 70.7 70.7 70.7 76.9 71.5 71.4 70.8 5 71.2 71.0 70.9 70.9 70.9 70.8 70.7 71.6 70.5 70.6 70.5 70.2 70.0 70.0 70.3 70.4 70.6 70.6 70.8 70.8 70.7 70.7 70.6 70.5 70.6 6 70.5 70.5 70.4 70.4 70.3 70.3 70.3 70.7 70.4 70.4 N.5 70.8 71.1 70.7 70.7 70.7 10.9 70.9 70.9 70.7 70.8 70.7 70.6 70.5 70.6 7 N.4 70.4 70.1 70.1 10.0 69.9 69.8 69.8 69.7 69.6 69.5 69.4 69.2 69.1 69.I 69.0 69.1 69.0 69.0 69.0 69.1 69.1 69.1 69.1 67.5 8 68.9 69.1 69.0 69.1 69.1 69.2 69.1 69.2 69.I 69.2 69.3 69.4 69.2 69.2 69.1 69.0 69.1 69.1 69.1 69.0 69.2 69.3 69.4 69.5 69.2 9 69.4 69.3 69.1 69.1 69.3 69.4 69.3 69.3 69.3 69.4 69.7 69.9 70.2 70.3 70.5 70.5 70.9 71.2 71.3 11.3 71.5 71.5 71.5 71.4 70.2

[

a) 10 71.6 71.1 78.1 71.0 71.0 70.9 70.9 N.9 70.9 71.0 71.0 71.0 71.1 11.3 71.3 71.5 71.8 72.0 72.2 72.1 72.2 72.2 72.3 72.2 78.4 11 72.2 72.1 72.1 72.1 72.1 72.4 72.1 72.2 72.3 72.3 72.3 72.2 12.2 72.1 72.1 72.1 12.3 72.3 72.5 72.5 12.6 72.6 72.9 72.9 72.3 8

12 72.8 72.9 73.0 73.0 73.0 73.0 73.0 72.9 72.9 72.9 72.9 73.0 13.2 73.1 73.2 73.3 73.6 73.7 73.9 74.0 73.9 73.9 74.0 73.9 73.3 13 73.9 73.9 73.9 73.8 73.8 73.7 73.7 13.7 73.7 73.7 73.5 73.4 73.3 73.5 73.7 73.8 74.4 74.3 74.3 74.5 7. 7 74.7 74.6 74 .5 74.0 14 14.6 74.7 M .7 74.7 74,6 74.6 74.5 74.5 74.5 74.5 74.5 74.4 74.4 M.3 14 .2 74.1 74.1 74.1 M.I 74.1 74.1 74.1 74.1 74.8 74.4 15 74.1 74.2 14.4 14 .3 74 .3 74.5 74.5 74.6 74.6 74.6 74.5 74.5 14.5 74.4 74.4 74.5 74.5 74.4 74.5 74 .5 14.5 M.5 74.9 14.5 74.5 16 74.6 M.6 74 .7 74.6 74.6 74.6 74.7 74.8 .74.9 75.0 75.0 75.4 75.1 75.4 75.6 75.7 75.9 76.2 76.4 M.3 M.5 76.4 M.3 76.5 75.4 17 76.3 <6.5 76.4 76.2 76.3 76.3 76.2 76.2 76.3 76.3 76.3 M.I 75.7 75.4 76.0 M.2 76.5 76.7 77.0 76.9 77.0 M.9 M.8 M.8 76.4 18 M.7 16.7 76.7 76.6 76.7 M.7 76.6 76.7 M.6 76.7 76.7 M.8 76.9 77.0 17.0 77.0 77.1 77.0 77.0 77.0 77.0 76.9 76.9 76.8 76.8 19 76.8 76.6 76.6 76.5 76.4 76.4 76.3 76.3 76 .3 76.2 76.2 M.2 76.1 76.0 76.0 7).8 75.8 15.8 75.9 76.0 75.9 75.9 75.9 15.9 16.2 20 75.9 75.9 76.0 76.0 M.0 75.9 75.9 75.9 15.8 15.8 75.8 75.8 75.9 M.0 76.0 76.1 M.2 75.9 76.0 76.0 M.3 M.2 76.2 76.3 M.0 21 16.2 M.I 76.2 76.2 76.1 76.2 76.2 76.2 76.2 76.1 76.2 M.2 M.I 76.1 M.2 M.I 76.2 76.0 75.9 76.0 76.1 76.2 76.2 M.1 16.1 22 76.2 76.3 76.3 M.I 76.0 M.0 76.1 76.1 76.1 76.I 76.2 76.3 16.4 76.5 76.5 76.3 76.4 M.3 76.3 76.4 M.4 M.4 76.4 76.4 M.3 23 76.3 76.3 76.4 M.3 76.3 76.6 76.4 76.2 76.1 16.1 76.2 76.0 16.2 76.4 76.5 76.8 M.9 M.9 77.2 11.0 77.3 71.9 77.1 77.1 76.6 24 77.4 17.4 77.4 77.5 17.4 77.5 17.1 17.1 77.6 17.6 77.5 11.5 17.5 17.7 77.7 17.8 17.1 11.6 77.8 71.9 78.I 78.3 N.4 78.1 71.7 25 78.0 71.9 78.0 18.1 78.1 18.0 78.2 78.2 78.1 78.0 78.0 78.1 78.1 78.0 71.9 71.9 77.9 77.9 71.9 77.9 17.9 78.0 78.0 78.0 78.0 26 78.1 78.0 78.1 78.3 78.3 N.4 78.4 78.4 78.4 78.4 78.4 78.4 78.1 78.4 78.4 78.3 78.3 78.4 78.4 78.4 78.6 78.7 78.6 18.5 M.4 27 78.5 78.6 78.7 78.7 78.7 78.8 78.7 78.7 78.7 78.6 78.6 78.6 78.6 78.5 78.6 78.5 78.6 78.5 78.5 78.4 78.4 78.5 78.4 78.3 18.6 28 78.2 78.3 78.0 78.2 78.3 78.5 78.6 78.7 18.7 78.8 78.8 78.5 78.4 78.5 78.5 78.5 78.5 78.5 78.4 78.5 78.5 18.5 M.4 78.4 78.5 29 78.4 78.3 78.3 78.4 78.4 78.5 18.5 78.5 78.5 78.5 78.4 78.4 78.4 78.4 78.4 78.4 78.4 78.4 78.3 78.4 78.3 78.3 78.3 78.3 M.4

.10 78.3 78.3 78.3 78.2 M.i 78.1 78.2 78.2 78.1 78.2 78.4 78.3 78.1 77.9 77.7 77.8 78.0 78.2 M.2 78.3 78.5 78.4 78.5 78.4 78.2 31 78.3 78.5 18.5 78.5 M.5 78.5 78.6 78.5 18.6 78.6 78.5 78.6 78.7 78.8 78.9 79.0 79.1 ?9.2 79.2 79.2 79.4 79.5 79.4 79.4 78.8 HONTHLY AVERACE 74.4 O

- . - - , - . .- - - , - n - ., - - , , -- . .

c TABLE 3.2-8 AVERACE Il0URLY TEMPERATURE IN *F VERHONT YANEEE SAMPl.E STATION NO. 7 AUGUST 1979 DAY DAll.Y 110UR AVERACE 1 2 3 4 5 6 7 8 9 to 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1

2 79.5 79.4 79.3 19.3 79.3 79.2 79.2 19.4 79.4 19.4 79.5 79.5 19.6 79.6 79.8 79.9 79.9 a).O 80.0 80.1 19.9 80.0 80.0 M.6 80.0 3 79.8 79.9 79.9 80.0 80.0 00.1 80.0 79.9 8t).0 80.0 79.9 8). I 8). I 8).0 19.8 79.9 80.0 80.1 80.0 80.0 79.9 80.0 al.0f31.0 m).1 4 80.1 tio.3 80.5 80.6 80.7 80.6 al.6 80.6 80.6 80.5 80.5 80.4 a).4 8).6 80.7 flu.8 80.6 80.8 80.9 81.0 80.9 8).7 80.8 80.8 81.6 5 81.0 81.1 81.1 81.2 81.3 81.4 81.5 81.4 81.3 81.4 81.3 81.4 al.8 80.5 80.5 80.4 80.5 80.5 80.6 81.7 80.9 81.0 8).9 al.9 81.0 6 80.8 8).9 81.0 81.0 80.9 81.0 80.9 m).8 80.6 80.6 80.6 8).5 80.6 al.6 m).5 80.6 80.5 80.4 80.3 a).2 m).1 al.1 80.2 80.3 a).6 7 8).3 80.4 80.3 80.4 80.6 80.7 80.6 80.7 80.6 80.5 8).4 80.5 80.1 80.8 8).9 81.1 81.3 81.3 81.4 81.5 81.6 81.7 81.6 81.7 80.9 8 81.6 81.5 Bl.4 81.3 81.3 81.3 81.2 81.2 81.3 81.2 81.1 81.0 80.9 80.9 80.8 80.8 80.7 80.7 80.7 80.6 80.6 80.7 80 J 81.0 8).7 I 9 al.7 80.8 8).9 81.9 80.9 80.8 80.8 80.7 80.8 80.7 80.5 80.5 80.3 80.2 81.2 al.2 80.5 80.4 80.5 80.2 80.0 80.2 5).6 m).6 80.5

$I 10 80.6 8).6 81.5 80.5 m).4 8).4 80.3 8).2 al.2 80.2 80.2 80.3 80.4 80.2 80.4 m).4 80.6 80.2 81.1 80.2 80.380.58).4 al.) 80.4 11 80.2 al.0 80.0 79.9 79.8 19.8 19.6 79.6 79.5 79.4 79.4 79.3 79.1 79.3 79.3 79.2 79.0 79.1 79.1 78.9 78.8 78.8 78.7 78.679.4 12 78.4 18.3 78.2 78.2 N.2 78.1 78.0 18.0 18.0 78.0 78.0 18.0 18.1 78.0 17.5 77.7 77.5 77.5 77.5 77.4 77.3 77.3 77.2 77.2 77.8 13 77.1 77.0 76.9 76.8 76.5 76.7 76.6 76.5 76.1 76.4 76.3 76.2 76.1 76.1 76.1 76.0 15.8 75.8 75.6 75.5 75.4 75.2 74.6 14.8 76.1 14 74.6 14.5 74.3 74.2 74.1 13.9 73.8 73.8 12.8 H.0 72.9 73.3 73.4 73.4 73.5 73.4 73.4 73.5 73.2 73.3 73.4 73.4 73.3 73.273.6 15 73.2 U.! 73.1 73.0 73.0 13.0 72.9 72.8 72.8 77.8 72.8 72.8 72.8 72.7 72.6 72.5 72.3 72.1 71.9 71.9 71.9 72.0 71.7 11.9 72.6 16 72.1 71.9 72.0 71.9 71.9 71.8 71.7 71.6 11.6 71.6 71.4 71.4 71.3 78.2 11.1 71.1 71.1 71.0 70.9 70.8 70.8 70.6 11.2 70.5 71.4 17 70.5 70.5 70.4 70.4 70.4 70.4 70.4 70.3 70.4 10.5 10.6 70.7 70.7 70.9 70.9 71.0 11.1 11.1 11.1 71.0 71.0 70.9 70.9 10.8 10.7 18 70.8 70.8 70.7 70.7 70.7 70.7 70.6 70.6 70.5 70.6 70.6 70.5 70.6 70.4 70.3 70.1 70.2 70.3 70.3 10.2 70.1 70.0 70.2 70.1 70.4 19 70.1 70.1 70.3 70.2 70.1 70,0 70.0 70.0 69.9 69.9 69.9 69.9 69.9 69.9 69.9 69.8 69.7 69.7 69.4 69.6 69.6 69.5 69.5 69.3 69.8 20 69.3 69.2 69.2 69.0 69.1 69,0 69.0 69.0 69.0 69.0 69.0 69.1 69.1 69.1 69.0 68.9 69.0 68.9 68.9 68.9 68.8 68.8 68.8 68.7 69.0 21 68.8 68.8 68.9 68.9 68.9 68.9 68.9 68.8 68.9 68.8 68.8 68.8 68.8 68.7 68.5 68.5 68.5 68.7 68.8 68.7 68.5 68.5 68.4 68.4 68.7 22 68.5 68.5 68.5 68.6 68.6 68.6 68.6 68.5 68.5 68.5 68.5 68.5 68.5 68.5 68.7 68.7 69.1 69.1 69.0 68.6 68.6 68.7 68.8 68.8 68.6 23 68.8 68.8 68.9 69.1 69.0 69.3 69.3 69.2 69.2 69.4 69.4 69.4 69.3 69.3 69.2 69.2 69.I 69.1 68.9 68.8 68.9 69.1 69.0 69.1 69.1 24 68.9 69.0 69.0 69.1 69.1 69.0 69.1 69.2 69.2 69.2 69.4 69.4 69.4 69.2 69.1 69.2 69.2 69.3 69.3 69.3 69.3 69.3 69.4 69.3 69.2 25 69.5 69.3 69.5 69.4 69.5 69.6 69.5 69.4 69.5 69.6 69.6 69.5 69.5 69.4 69.4 69.3 69.3 69.4 69.4 69.4 69.5 69.5 69.5 69.6 69.5 26 69.7 69.7 69.7 69.7 69.6 69.6 69.8 69.8 69.9 69.9 69.8 69.9 69.9 69.9 70.0 10.0 70.0 69.9 70.0 M.0 69.9 69.9 70.0 10.1 69.9 27 70.1 70.1 70.1 70.2 70.1 70.1 70.2 70.1 70.1 70.1 10.1 70.1 70.2 70.5 70.3 70.3 70.2 70.2 M.2 70.2 70.2 70.3 70.4 70.2 70.2 28 10.1 70.2 70.4 70.2 70.2 70.2 70.4 70.4 70.4 70.4 70.5 70.6 70.4 70.4 70.7 71.1 71.3 71.6 72.0 72.1 71.9 71.4 71.4 71.5 70.8 29 71.6 11.6 71.5 71.5 71.5 71.6 71.6 71.7 71.7 71.8 71.8 71.8 71.8 71.7 71.7 71.9 72.2 12.4 72.3 72.3 72.1 71.8 71.9 72.0 11.8 30 72.1 72.0 12.0 71.9 71.9 71.9 71.9 72.0 72.0 72.0 72.1 72.1 72.1 72.0 72.1 72.1 72.1 12.2 72.3 72.3 72.4 72.5 72.7 72.8 12.1 31 72.9 72.9 72.9 72.8 72.9 72.8 12.9 72.9 72.8 72.8 72.8 72.9 73.0 73.0 12.9 72.9 73.0 73.2 73.3 73.3 73.2 73.3 73.4 73.3 73.0 73.2 H.0 D.0 H.2 n.3 D.2 H.2 D.2 73.1 73.2 H.I D.3 H.3 73.4 U.3 U.4 73.5 73.6 73.8 73.7 73.8 73.8 13.8 U.8 H.4 Il00lTitLT AVERACE 74.2

L i

l TABLE 3.2-9 AVERAGE HouHl.Y TEHPENATURE IN *F

( VEkHONT YANKEE SAHPl.E STATioH NO. 7 SEPTEMBER 1979 DAILY I DAY HOUR AVERAGE I 2 3 4 5 6 7 8 9 10 Il 12 Il 14 15 16 17 18 19 3) 21 22 23 24 1 73.1 73.7 11.7 13.6 73.6 73.5 73.6 73.5 73.5 73.5 73.5 73.4 73.3 73.3 73.2 73.1 73.0 73.0 73.1 73.0 73.1 73.0 73.0 73.0 73.1 2 73.0 73.0 73.1 73.1 73.1 73.Q 73.1 73.0 73.0 72.9 73.0 73.0 73.0 73.1 73.0 73.1 73.1 73.0 73.0 73.1 73.2 73.2 73.1 73.2 73.1 3 73.1 73.1 73.2 13.3 73.2 73.2 73.3 73.2 73.2 73.3 73.3 73.4 13.3 73.4 73.4 73.5 73.5 73.6 73.6 73.6 73.7 73.6 73.6 73.6 73.4 4 71.5 71.6 73.6 73.6 73.7 73.6 73.7 73.7 73.7 73.8 71.7 73.8 73.9 74.1 74.2 74 .3 73.8 73.6 73.6 73.7 73.9 73.9 74.3 74.2 73.8 5 73.8 7.1.9 74.0 74.3 74.3 74.2 74.3 74.2 74.2 74.2 74.2 74.1 74.2 14.1 74.2 74.3 74.5 74.7 74.8 74 .8 14.7 74.6 74.4 74.4 74.3 6 74.4 74.4 74.3 74.3 74.3 74.3 74.3 74.3 74.3 74.3 74.2 74.1 74.0 74.1 74.1 74.1 74.0 74.0 14.0 74.0 74.0 74.0 73.8 73.6 74.1 7 73.3 73.0 72.8 72.8 72.7 72.6 72.5 72.5 12.4 72.3 72.0 71.7 71.6 11.5 71.4 70.8 70.7 71.1 71.2 71.4 71.9 72.3 72.5 72.6 72.1

, 8 12.6 72.5 72.3 72.2 72.0 71.9 71.6 71.5 71.4 78.3 11.3 71.3 71.4 71.5 71.6 71.6 71.6 71.7 71.6 71.6 71.7 71.8 72.0 72.2 71.8

.s. 9 72.1 72.1 72.1 72.0 71.9 71.9 71.7 71.6 11.5 71.5 11.6 11.6 11.4 71.3 71.2 71.1 71.0 70.9 70.8 70.9 71.2 71.0 10.9 70.8 11.4 O 10 I 10.7 70.5 70.4 7U.3 70.1 70.0 70.0 b9.9 69.7 69.4 69.1 fe.9 68.1 69.0 69.2 69.8 70.3 70.4 70.4 70.3 70.2 70.0 69.9 69.9 69.9 11 69.8 to.8 69.7 fd.6 69.5 69.4 69.4 69.3 69.3 69.4 69.5 69.4 th.6 M.7 M.7 M.5 69.7 69.9 69.9 69.8 69.8 69.7 69.6 69.4 69.6 12 69.3 69.2 69.1 69.1 68.9 68.9 63.7 68.8 68.7 68.7 68.8 68.8 fA.6 68.2 M.2 M.5 M.9 69.1 69.? W. Ue.4 69.1 M.2 69.2 68.9 13 69.1 69.0 69.0 69.0 68.9 68.9 68.8 68.8 68.7 M.8 68.8 6H.7 M.4 68.3 68.5 68.6 69.0 69.3 6 .5 en.) 69.3 69.1 69.0 68.8 68.9 14 M.4 fe.1 68.2 68.1 68.2 68.3 68.4 68.4 68.4 68.4 68.3 68.1 67.9 67.8 67.8 67.9 68.0 68.2 68.4 68.6 68.7 68.6 68.5 68.3 68.3 15 68.1 63.0 67.9 67.8 67.7 67.6 67.6 67.5 67.6 67.6 67.8 68.0 67.9 67.9 61.9 67.9 68.0 68.0 68.0 67.9 67.8 67.8 67.8 67.7 67.8 16 67.6 67.5 67.5 67.4 67.3 67.2 67.2 67.1 67.1 67.0 67.0 67.0 M.9 M.8 M.7 M.6 M.5 M.5 M.4 M.5 M.6 67.0 67.3 67.0 67.0 17 M.8 M.6 M.5 M.8 66.7 M.7 M.6 M.6 M.5 M.5 66.5 60.5 M.5 M.2 M.2 M.3 M.7 67.1 67.4 67.4 67.4 67.2 67.2 67.2 M.8 18 67.0 67.0 M.9 (4.8 M.8 M.7 M.7 M.6 M.6 M.7 M.7 M.8 f4.7 M.8 M.7 M.9 67.0 67.2 61.4 67.6 67.4 67.3 67.3 67.1 M.9 19 67.0 M.9 M.9 M.9 M.7 M7 M.6 66.6 M.5 M.5 M.6 M.6 M.7 M.9 M.9 M.9 67.0 67.0 M.9 M.a M.7 66.7 M.6 M.5 M.8 20 M.5 M.4 M.) M.2 M.2 M.I M.I M.0 t,6.0 M.0 M.0 M.0 M.9 65.9 65.3 b5.7 65.8 65.8 65.8 65.8 65.7 65.7 65.8 65.7 M.0 21 65.7 65.7 65.7 65.6 65.6 65.5 65.5 65.5 65.4 65.3 6).2 64.9 M.7 M.5 64.3 64.I 61.9 61.7 63.7 63.7 63.8 63.8 63.8 63.8 64.7 22 63.8 63.8 63.8 63.8 63.8 63.8 63.9 63.9 M.0 M.0 64.0 M.I M .0 M.0 M.0 M.I M.I 64.1 M.0 M .0 63.9 63.8 63.7 63.5 63.9 26 63.4 63.4 63.3 61.2 63.1 63.0 62.8 62.7 62.8 62.9 62.8 6?.8 62.8 62.7 62.8 62.8 62.7 62.7 62.7 62.7 62.6 62.6 62.7 67.6 62.9 24 62.6 62.6 62.6 62.5 62.5 62.4 62.4 62.3 62.3 62.2 62.1 62.0 bl.9 61.7 61.3 61.1 61.0 60.9 60.9 61.0 61.0 61.0 61.1 61.1 61.8 25 61.0 60.9 60.9 61.0 61.0 61.1 61.1 61.1 61.0 61.0 61.0 61.0 60.9 61.0 61.0 60.8 61.0 61.0 61.0 65.0 61.1 61.1 61.I 61.2 61.0 26 61.2 61.2 61.2 61.2 61.3 61.3 61.3 61.2 61.2 61.3 61.3 61.3 61.3 61.2 61.3 61.4 61.3 61.3 61.2 61.4 61.3 61.2 61.6 61.5 61.3 27 61.5 61.5 61.8 61.7 61.6 61.6 61.6 61.6 61.6 61.6 61.7 61.8 61.7 61.6 61.6 61.7 61.7 61.7 61.7 61.8 61.9 61.9 62.0 62.0 61.7 3 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.1 62.1 62.1 62.1 62.1 62.1 62.0 61.9 61.9 61.8 61.8 61.8 61.7 61.7 61.7 61.8 61.9 29 61.8 61.7 61.7 61.7 61.7 61.7 61.6 61.6 61.6 61.7 61.7 61.7 61.7 61.8 61.9 61.9 62.0 62.1 62.1 62.0 62.1 62.1 62.1 62.0 61.8 30 62.0 62.0 62.0 62.0 61.9 61.9 61.9 61.9 61.9 61.9 61.9 61.8 61.8 61.8 61.7 61.7 61.6 61.6 61.6 61.6 61.6 61.6 61.5 61.5 61.8 HONTHLY AVEllAGE 67.6

.e

e TAI)LE 3.2-10 AVERAGE liOURI.Y TEMPElATURE IN *F VERHONT YANKEE SAMPLE STATION No. 7 OCTOBER 1979 DAY DAll.Y Hour .

AvitRAGE I 2 3 4 5 6 7 8 9 to 11 12 11 14 15 16 17 18 19 20 21 22 23 24 1

2 61.5 61.4 61.4 61.4 61.4 61.4 61.4 61.3 61.4 61.3 61.4 61.1 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.4 61.4 61.4 61.3 61.4 3 61.2 61.1 61.1 61.1 61.0 61.0 61.0 61.0 61.0 60.9 60.9 61.0 61.0 60.7 60.5 60.2 60.0 &l.2 60J 60.7 60.8 60.9 60.9 60.9 60.8 4

60.9 61.0 61.2 61.3 61.3 61.4 61.4 61.5 61.5 61.9 61.6 61.7 61.6 61.4 61.3 61.2 61.1 60.9 60.9 60,9 60.9 60.9 60.9 60.9 61.2 5 60.9 N).B 60.8 60.9 60.9 60.9 60.8 60.6 Gl.5 60.3 60.2 60.2 Gl.2 u).3 60.4 60.7 60.9 61.1 61.1 61.3 61.4 61.4 61.4 61.5 &l.8 6 61.5 61.5 61.5 61.5 61.4 61.2 61.2 61.1 61.0 61.0 G).9 61.I 61.1 61.1 61.2 61.2 61.1 61.1 61.2 61.2 61.3 61.4 61.4 61.4 61.2 7 61.3 61.2 61.0 60.9 60.9 60.7 u).6 60.4 60.3 60.3 60.2 60.1 59.9 59.6 59.7 59.7 59.8 59.6 59.8 59.8 59.7 59.7 59.8 59.7 60.2 8 59.6 59.6 59.8 59.8 59.7 51.8 59.7 59.5 59.4 59.5 59.5 59.3 59.0 58.8 58.5 58.5 58.6 58.7 58.6 59.1 59.7 60.1 60.2 W).2 59.4 1 9 60.0 59.9 59.7 59.6 59.5 59.5 59.4 59.3 59.2 59.I 58.9 58.8 58.7 58.3 58.5 58.2 58.0 58.0 58.1 58.3 58.2 58.1 58.1 58.1 58.8 e 10 58.0 58.0 57.9 57.9 57.9 57.8 57.8 57.8 57.6 57.4 57.2 57.0 %.8 %.7 %.7 55.8 55.3 55.7 %.I %.2 %.I 55.9 55.7 55.5  %.9 I II 55.4 % .1 55.2 55.2 55.1 %.I %.0 55.0 %.9 %.9 %.7 %.7 %.6 %.7 %.3 53.9 53.4 53.1 52.6 52.6 52.7 52.8 52.9 53.0  %.2 12 53.1 53.2 51.1 51.2 53.3 51.3 53.1 51.2 53.2 53.1 53.2 52.5 52.4 52.3 52.0 51.8 51.3 50.8 50.8 51.2 51.7 52.1 52.3 52.4 52.4 11 52.4 52.4 52.4 52.4 52.4 52.3 52.3 52.2 52.1 52.0 52.0 51.9 51.6 51.5 51.3 51.1 50.6 50.1 50.4 50.6 50.6 W.7 50.6 50.6 51.5 14 M.6 50.6 50.6 50.6 50.5 50.5 50.5 50.6 50.5 50.5 50.4 50.3 50.3 50.2 50.0 49.1 48.8 48.248.84.449.649.949.9 49.9 50.0 15 50.0 50.1 50.0 50.0 50.0 50.1 50.0 50.0 49.9 49.9 49.8 49.7 49.7 49.549.649.549.349.349.20.149.049.0 48.9 49.0 49.6 16 49.2 49.1 49.3 49.2 49.1 49.1 49.1 49.0 48.9 49.0 49.0 49.0 48.8 48.7 48.9 49.0 49.0 49.0 43.9 48.7 48.7 48.7 48.6 48.6 49.0 17 48.6 48.6 48.5 48.5 48.5 48.4 48.1 48.5 48.5 48.5 48.6 48.5 48.5 48.4 48.5 48.5 48.5 48.5 48.5 48.4 48.3 48.2 48.0 47.9 48.4 68 47.9 47.9 47.9 48.0 48.1 48.2 48.2 48.2 48.2 48.1 48.3 48.3 48.3 48.4 48.5 48.6 48.6 48.7 48.9 49.0 49.0 49.0 49.0 49.1 48.4 19 49.1 49.0 49.1 49.1 49.1 49.2 49.1 49.2 49.2 49.3 49.4 49.4 49.6 49.6 49.6 49.4 49.5 49.6 49.5 49.7 49.6 49.5 49.0 49.3 49.3

~20 49.1 49.1 49.0 48.8 48.8 48.8 48.8 48.8 48.8 48.8 48.7 48.7 48.7 48.6 48.7 48.8 49.0 49.0 49.1 49.2 49.3 49.2 49.3 49.4 48.9 21 49.4 49.4 49.3 49.4 49.4 49.3 49.4 49.4 49.5 49.5 49.7 49.7 49.9 50.0 50.1 91.3 50.3 91.3 50.3 50.2 50.2 50.3 50.5 50.5 49.8 22 50.5 50.5 50.5 $0.6 50.5 50.5 50.5 50.6 50.6 50.6 50.7 50.8 50.7 50.7 50.8 50.8 50.8 50.9 51.0 51.2 51.5 51.6 51.5 51.3 50.8 23 51.3 51.3 51.2 51.1 51.0 51.0 51.I 51.3 51.5 51.7 51.8 51.8 51.8 51.9 52.0 52.5 52.6 52.7 52.6 52.3 52.2 52.1 52.1 52.1 51.8 2re 52.1 52.0 52.0 52.0 52.0 52.1 52.1 52.1 52.1 52.2 52.3 52.4 52.4 52.5 52.7 52.9 51.1 53.3 53.5 53.5 53.3 51.2 53.2 51.3 52.6 25 , 53.3 51.3 51.3 53.4 51.4 53.4 51.4 51.5 53.6 53.7 51.8 51.8 51.9 51.9 53.9 %.3 %.4 %.4 %.3 %.2 %.2 %I %.I %.I 53.8 26 M.I %.0 %.0 %.0 53.9 51.9 53.9 51.9 51.9 53.9 53.8 53.9 51.7 53.7 51.7 53.9 %.0 51.9 53.8 53.8 53.7 51.6 51.6 53.4 53.8 27 51.4 51.3 51.2 53.2 51.2 53.2 51.2 51.1 51.I 53.1 53.1 53.1 51.2 51.3 51.3 51.1 51.1 53.0 52.9 52.8 52.6 52.6 52.5 52.5 53.0 28 52.4 52.4 52.4 52.4 52.3 52.3 52.3 52.3 52.2 52.2 52.1 52.2 52.4 52.7 52.8 52.7 52.6 52.5 52.3 52.1 51.9 51.7 51.6 51.5 52.3 2R 51.4 51.4 51.3 51.3 51.2 51.2 51.2 51.1 50.9 50.8 50.7 50.4 50.2 50.0 49.7 49.8 49.8 49.8 49.6 49.5 49.4 49.3 49.3 49.3 50.4 10 49.2 49.2 49.1 49.1 49.0 49.1 49.1 49.1 49.1 49.0 49.0 48.9 48.9 49.0 49.1 48.6 48.0 48.0 48.2 48.3 48.3 48.2 48.2 48.2 48.7 31 48.1 48.1 48.0 48.0 48.0 47.9 47.9 47.9 48.0 48.I 48.2 48.2 48.2 48.3 48.4 48.3 47.9 47.9 48.0 48.0 47.9 47.8 47.7 47.7 48.0 47.6 47.6 47.5 47.5 47.5 47.4 47.4 47.4 47.5 47.5 47.6 47.6 47.7 47.7 47.7 47.3 47.1 47.2 47.3 47.4 47.4 47.3 47.2 47.1 47.4 HONTHl.Y AVERACE 53.4

. . - . . _ ., . r - ,., , - . _ _. _ - - . , , - . , _ ,,.

TAlli.E 3. 2-11 AVENAGE IlOUHLY TEHt'ERATUNE IN *F VERHONT YANKEE SAMPLE STATI0H Ho. 7 140VEHRER 1979 DAILY DAY HOUR AVERAGE I 2 3 4 5 6 7 8 9 to 11 12 11 14 15 16 17 18 19 20 21 22 21 24 I 47.0 46.9 4.9 46.8 46.7 46.6 46.6 46.6 46.7 46.6 46.7 46.7 46.8 46.9 47.0 46.9 4.7 46.546.446.546.44.546.6%.7  %.7 2 46.7 46.9 46.8 46.9 46.9 % .9 46.9 46.8 %.8%.846.947.1 47.4 47.7 47.7 47.7 47.5 47.3 47.3 47.3 47.4 47.5 47.5 47.6 47.2 3

47.6 47.6 47.6 47.6 47.6 47.1 47.7 47.7 47.6 47.7 47.7 47.7 47.7 47.7 47.7 47.8 47.9 48.1 48.2 48.3 48.3 48.3 48.2 48.1 47.8 4

48.I 48.1 48.0 48.0 48.0 47.9 47.7 47.7 47.6 47.5 47.5 47.5 47.5 47.6 47.5 47.5 47.4 47.3 47.2 47.2 47.2 47.2 47.1 47.0 47.6 5

M.9 46.8 46.8 46.6 46.5 46.4 46.4 46.3 46.3 46.4 46.6 46.8 46.9 46.8 46.9 4.9 46.8 46.8 46.7 %.7 46.6 46.5 46.4 % .4 46.6 6 46.3 46.2 46.1 M.0 45.9 45.8 45.7 45.7 45.6 45.5 45.6 45.6 45.7 45.8 45.7 45.5 45.4 45.2 45.0 44.9 4 .8 44.7 44.7 44.6 45.5 7

8 44.5 44.5 44.5 44.5 44.5 44.4 44.4 44.4 44.4 44.4 44.4 44.5 44.5 44.5 44.5 44.5 44.5 44.4 44.3 44.2 44.2 44.1 4.1 44.0 4'. 4 44.0 44.0 41.9 44.0 41.9 41.8 41.9 41.8 41.9 44.0 44.0 44.0 44.1 43.9 41.8 44.0 44.1 44.2 44.3 44.3 44.3 44.4 44.4 44.4 44.1 1 9 44.1 44.3 44.2 4.2 M.I 44.0 44.0 44.0 44.0 44.0 44.0 44.1 44.1 41.9 44.0 44.2 44.4 4 .4 44.5 44.5 44.6 44.6 44.6 44.6 44.2 M 10 44.544.54.544.6 44.6 44.7 44.7 44.8 44.9 45.0 45.1 45.3 45.4 45.4 45.5 45.4 45.4 45.4 45.4 45.4 45.5 45.5 45.6 45.6 45.1 11 45.6 45.6 45.5 45.4 45.6 45.5 45.4 45.3 45.3 45.1 45.2 45.2 45.1 45.1 45.1 45.0 45.0 45.0 45.1 45.1 45.1 45.2 45.2 45.2 45.1 12 45.2 45.2 45.3 45.1 45.1 45.3 45.3 45.1 45.3 45.3 45.3 45.2 45.1 45.0 4 .9 44.8 44.8 44.9 44.9 44.9 44.9 44.8 44.8 44.8 45.1 11 44.8 44.7 44.7 44.7 44.7 44.7 44.9 44.7 44.7 44.8 44.8 44.8 44.9 M.8 44.6 44.4 4.4 44.6 44.7 44.8 44.8 44.8 44.8 44.8 44.7 14 44.8 44.9 44.8 44.8 44.8 44.8 45.0 44.9 44.9 45.0 45.0 45.0 45.1 45.0 44.9 45.0 45.1 45.1 45.1 45.1 45.0 44.9 44.9 44.8 44.9 15 44.7 44.7 44.6 44.6 4'. 5 44.5 4.5 44.4 44.4 44.4 44.4 44.5 4'. 4 44.3 44.1 44.0 a.4.0 44.1 4 .2 44.1 44.0 43.9 41.9 41.8 44.3 16 41.8 41.9 43.8 41.8 43.8 43.8 41.8 43.8 41.7 43.7 41.7 41.6 41.5 41.4 43.2 41.0 42.9 42.9 41.0 42.9 42.9 42.8 42.8 42.7 41.4 17 42.7 42.6 42.6 42.5 42.4 42.4 42.3 42.3 42.3 42.4 42.4 42.4 42.3 41.9 41.3 41.0 41.0 41.2 41.7 42.0 42.1 42.1 42.1 42.2 42.I 18 42.2 42.5 42.2 42.2 42.2 42.1 42.0 41.9 41.9 41.9 42.0 42.2 42.8 42.6 42.6 42.6 42.5 42.6 42.5 42.6 42.7 42.5 42.3 42.1 42.1 19 42.0 41.9 41.9 41.8 41.7 41.6 41.6 41.6 41.8 41.9 42.1 42.1 42.2 42.3 42.0 42.0 42.0 42.0 42.0 41.9 41.9 41.9 42.0 42.0 41.9 20 42.0 42.0 42.1 42.1 42.0 42.1 42.1 42.2 42.2 42.2 42.2 42.3 42.3 42.3 42.0 42.0 42.1 42.1 42.1 42.1 42.0 41.9 41.9 41.8 42.1 21 41.8 41.8 41.8 41.8 41.8 41.9 41.9 41.9 42.0 42.0 42.1 42.1 42.1 42.2 42.2 42.2 42.1 42.1 42.1 42.0 41.9 41.9 41.8 41.8 42.0 22 41.7 42.0 41.7 42.0 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.5 41.5 41.5 41.5 41.6 41.6 41.6 21 41.5 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.7 41.7 41.9 42.1 42.2 42.4 42.4 42.4 42.5 42.5 42.4 42.4 42.3 42.3 42.3 42.0 24 42.2 42.3 42.3 42.3 42.1 42.4 42.4 42.5 42.5 42.6 42.7 42.8 42.9 43.0 4).I 41.4 41.6 41.8 43.8 43.8 43.8 41.8 41.9 44.0 41.0 25 44.0 44.1 44.I 44.2 44.1 44.2 44.2 44.2 44.1 44.1 44.1 44.1 44.1 44.2 44.3 44.4 44.6 44.9 45.0 45.1 45.2 45.4 45.5 45.5 44.5 26 45.5 45.4 45.3 45.3 45.2 45.2 45.2 45.1 45.1 45.1 45.0 45.0 45.1 45.5 45.9 46.2 46.4 46.5 46.5 46.7 46.8 46.9 47.0 47.1 45.8 27 47.3 47.6 48.1 48.44,8.648.7 48.7 48.4 48.3 48.1 48.0 47.9 47.9 47.9 47.9 47.9 48.0 47.9 47.8 47.6 47.4 47.2 47.1 47.0 47.9 35 46.9 46.9 46.8 46.7 46.6 M.3 46.1 46.0 45.9 45.8 45.8 45.8 45.9 45.8 45.7 45.6 45.5 45.4 45.4 45.2 45.0 44.9 44.8 44.8 45.8 29 44.8 44.8 44.8 44.7 44.6 44.4 44.2 44.0 43.9 41.8 43.8 41.7 43.7 43.7 41.6 41.6 43.6 43.5 43.5 41.4 43.2 41.1 42.9 42.8 43.8 30 42.8 42.8 42.8 42.8 42.9 42.8 42.7 42.7 42.6 42.5 42.4 42.4 42.5 42.4 42.4 42.4 42.3 42.3 42.3 42.2 42.0 42.0 41.8 41.7 42.4 MONTHLY AVEEAGE 44.5 8

- , , . . - ~, . - m . . - - . .- - - . _ . - --. . .-. _ - - . _ _ ____

TAllLE 3.2-12 AVERACE Il00RI.Y TEHl'ERATURE IN *F VERHol!T YANKEE SAMPl.E STATION NO. 7 DECEMBER 1979 DAY DAILY HOUR AVERACE 1 2 3 4 5 6 7 8 9 to il 12 13 14 15 16 17 18 19 20 21 22 23 24 1

2 41.7 41.6 41.4 41.4 41.3 41.3 41.2 41.1 41.0 41.1 41.1 41.1 41.2 41.3 41.3 41.3 41.1 41.0 40.9 40.9 40.9 45.9 40.8 40.641.1 3 40.6 40.5 40.4 40.4 40.4 40.4 40.3 40.3 40.2 40.2 40.3 40.1 40.0 M.8 39.7 39.5 N.3 39.1 39.1 39.1 39.1 39.1 38.9 38.8 39.8 4 38.8 38.8 38.8 38.9 38.9 38.9 38.8 38.6 38.5 38.5 38.4 -38.5 38.5 38.0 37.5 37.6 37.8 38.0 38.1 38.2 38.0 37.9 37.7 37.738.3 5 37.7 37.7 31.6 37.5 37.4 N.3 N.2 37.2 37.2 37.1 %.9 M.7 %.6 %.6 %.7 M.T M.8 %.8 M.9 M7 %.8 %.7 %.6 %.5 37.0 6  %.5 %.4 %.4 %.4 %.4 %.3 %.3 %.3 %.3 %.3 %.3 %.3 %.3 %.4 %.4 %.4 %.4 %.4 %.4 %.4 %.3 %.3 E.2 %. ! 36.3 7  %.0 M.9 35.7 35.6 M.5 35.5 35.5 35.4 35.4 35.4 35.5 M.5 35.6 35.6 35.6 35.6 M.6 35.6 35.6 35.6 35.7 35.8 35.9 35.9 M.6 8  %.1 %.2 %.2 %.3 %.3 %.3 %.4 %.3 %.4 %4 %.5 %.6 %.6 M.7 %.8 %.9 M.9 %.9 %.9 %.9 N.9 %.9 %.8 %.9  %.6 i 9  %.9 %.I

%.!  %.8 %.I

%.7%.I

%.6 %.5 %.5 %.4 %.4 %.4 %.4 %.4 E.4 %.5 %.7 M.5 M.5 M.5 %.5 %.4 %.2 %.2 %.1 %.1 %.!  %.4 8- 10  %.2 %.2 %.2 M.3 %.4  %. I %.4

%.I %.I M.435.9 35.8 35.9 35.8 35.8 35.8 35.9 35.9 35.8 35.7 35.4 35.3 35.2 35.0 34.6 M.4 %.3 35.6 y 11 35.0 %.9 34 3 % .9

y. 4 %.5 %.6 34.9 M.0 35.0 35.1 35.0 %.8 M.9 35.1 M.2 35.2 35.1 35.1 35.1 35.0 M.9 M.8 %.9 %.9 M.8 %.8 %.9 %.9 %.9 M.9 M.0 M. I M.1 35.1 35.2 35.2 35.2 35.3 35.3 35.3

%.8 12 35.0 13 35.3 35.3 35.3 35.3 M.3 35.4 35.4 35.4 35.5 35.5 35.5 35.7 35.9 %.0 %.1 %.1 M.1 M.0 M.9 35.9 35.9 35.9 35.9 35.9 M.7 14 35.9 35.9 35.9 35.9 15.8 M.8 35.8 35.7 35.6 35.6 35.6 35.6 35.6 35.7 M.6 35.5 35.4 35.2 35.1 M.9 M.9 M.9 35.0 .%.9 M.5 15 M.9 M.6 %.6  %.8 M.6 34.7 M.7 %.6 M.5 %.4 %.3 M.2 %.2 M.2 %.2 %.2 %.3 %.3 %.3 %.2 34.2 %.3 3's.1 34.3 M.4 34.5 %.5  %.4 16  %. 7 %.7 M.6 %.7 M.6 M.6 34.5 %.4 %.4 %.5 %.4 %.4 %.3 M.2 %.2 %.4 %.4 %.3 %.3 M.3 % .2 M.5 IF M.2 M.1 %.I %.I %.2 %.I %.2 %.2 %.2 M.2 %.2 %.2 .%.3 %.4 M.4 %.5 %.5 %.4 M.5 %.5 %.5 %.5 34.1 %.0  %.3 18 33.9 33.8 33.8 31.9 33.9 33.9 33.9 33.9 33.9 33.9 33.9 34.0 34.0 33.9 31.6 33.3 33.2 13.3 33.4 33.4 33.2 33.2 33.1 32.9 33.6 19 32.9 32.8 32.9 12.9 32.9 32.9 32.9 12.9 32.9 32.8 32.8 32.7 32.8 32.8 32.8 32.7 32.6 32.7 32.7 32.6 32.5 32.4 32.3 32.1 32.7 20 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 3270 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 21 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 22 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.I 32.0 32.0 32.0 32.0 32.0 32.6 32.0 32.0 32.0 32.0 32.0 23 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0.32.0 32.0 32.0 32.0 32.0 12.0 32.0 32.0 24 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 25 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 26 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 27 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 2 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 29 32.0 32.0 12.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 30 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 31 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.1 32.2 32.2 32.3 32.2 32.2 32.2 32.2 32.2 32.2 32.1 32.0 32.1 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 MONTMLY AVERACE 34.3

.-. . . - . _. . ._. . _ . , . _ _ . ~ . _ . . . - - . __. . . _ _ _ , _ _ _ - - . _ . _ . _ _ _ .

o e

4 d. =. C. C.C. O. . =. C.C. =. C.O. . =.C. O. O. . N. . O. . O. =.C. =.N. O. O. O.

N 03C30C0000000003300000030300000 a e 6 e a e a e a e m m. =. O. O. O. O. O. =. O. =. =. O. . M. O. D. O. O. =. O. O. O. . O. . C. O. N. O. =. O.

M COOOOOOOOOOOOOOOOOOOOOOOOOOOOOO ee e s 6 4 N d. =. C. O. O. O. O. C. C. =. m. C. O. N. D. O. O. =. C. o. =. =. C. N. =. C. O. O. N. O. =.

M OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO t e aa a 6 e a

m. =. =. C. O. O. O. =. O.=. M. O. O. e. O.O. O. =.=. w. m. e. G. e. O. =. m. O. =. C. O.

N= 03000000000330000000000030S0000 a e e e e a a e t 6 e e T O O. N. O.O. O. =. O. . O.=. =. C.C. =. =.=. =. C.O. e. d. e. N. =. =. C. C.O. N. N.=.

N COOOOOOOOOOOO=OOOOOOOCC=CO-COOO e e e ee a a e e e a a e a 6 4 e e m O. N. O. N. =. O. O. O. O. O. C. =. c. e. O. N. O. O. =. =. =. =. ~. =. O. O. =. =. =. 4. =.

=

O@e @C0000000000000000==OO0000000 e 6 e a e e e e ea e C. N. O. O. =. =. O. m. =. C. O. =. =. N. .=. =. =.=. M. 4. p .M. 4. C. N. N.=. C. N.O.

= 00000000000000000000-=303000000 e e e a e a 4 4 6 e a e a e a e e

% =. =. O.C. C. =. =. C. =. =. =. O. =. @. C.=. =. O. . M. O. =. O. N. O. N. e.N. O. N.O.

COOOO73cCCOOOOOOOOOeOOOOOOOOOOO ee 6 e e a e a a a T e e e N. =. O. m. O. C. =. C. O. C. C. O. N. N. N. O. =. N. =. d. =. O. =. 4. +. 4 4 4. C. N. C.

= C000000000000000330300000000000 6 4 4 a 6 e e 4 4 e e e- N. N. O. O. O. O. O. =. C. O. C. O. d. m. =. N. N. =. c. e. O. O. M. =. d. e. O. N. O. a. =.

COOOOOOOOOOOO=OOOOOOOOOOOOOOOOO 6 e a e e o e e e a 6 4 e e

3 4 N. W. O.=. =. O.C. =. C.O. C. O.O. . m.e. =. =. N. e. d. =. =. C. O. e. .e.C. O.O. ,

OOOOOOOOOOOO-COOOOSOOOOOO=O=

e 6 s e i e 4 a T a a COO 6 e e e

' W a

l m

m m =. C. C. =. =. =. C. C. =. =. N. o. m. e. d. e. =. d. d. o. m. M. O. O. c. e. . N. O. *. =.

4

=

O-OOOOOCCOOONOOOOOO-=OOOO=ONCOO m

9 e a t e 6 e a e t e e e- ae W

b 4 g N =. @. C. O. O. =. O. O. O. O. m. m. O. e. d. e. m. O. N. e. e. W. N. e. O. 4. =. N. me N. N.

I W

k

  • e

=

C=COOOOOOOOO-O==O-=ONOOOOOOOOOO i e 4 e I e e i e a I a e 4 e 4 e g  %

  • E 8 e 4 O =

y W k 3 = C. =. =. . =. =. C. O. N. =. e. m. N. m. N. N. N. 4. e. m. e. e. e. O. O. m. o. m. e. e. d.

Z = > O =

ONGOOOOOOOOO-ON=C-==O-O= COO =O=Oe E E I e a e 1 1 e e I e e e i a

~ -2 M. a .3 5 -

N m E g C H < O C. =. O. =. =. O. =. C. =. =. %. d. e. e. N. M. O. O. @. m. e. d. e. =. =. 4 0. %. e. m. e.

g 4 9 =

O=COOOOOOO==CC===O-COO =COCOO=CCe e 4 = I e I e i I a e b Z

=

e . *. C. O. O. O. O. O. O. N. m. e. w. a. e. ~. ~. O. m. a. m. O. e. O. m. e. C. m. e. e. N.

e CCCOOOOOOO=OCOOOON=ODNOOOOOOa==

W e a e e e s t u

E W

a m O. N. m.O. =. C.O. O. O.m. e. .e. @. d.4. N. e.e. 4. N. e. =. M.=. m. O.4 4. N.e.

6 OOOOOOOOOO=NCOCC=OOOOOOOOOOON==

e s

=

3 * =. M. M.C. O. O.N. C. O.O. =. e. d. N. e.d.e. m.N. e. m.e. m. 4. =. e. c.d. e. e.m.

C000000000000000=OC000000000000 e s a =. =. =. C. O. O. N. =. C. O. N. m. 4. m. e. m. e. =. N. e. o. m. N. e. o. @. O. W. N. N. e.

COOOOOOOOOOOOOOOOOOOOOOOOOOOOO=

a e a e =. =. =.C. O. O.Q. =. O. . O. =. @. @. @.@. C. =.M. W. e. =. m. O.m. @. C.e. O. c.e.

033000000000C30000000000000003C t i 8 4 I

4 N. M. O. O. O. O. O. O. O. C. =. c. e. m. e. d. O. C. O. =. d. C. 8. =. =. @. =. 4. N. N. N.

i OOOOOOOOOOOOOOOOOOOOOOOOCCOOOOO e a l

e . N. O. c. c. O. =. C. O. O. =. =. =. =. N. m. m. =. =. =. ,. O. m. =. =. . .=. m. =. =. m.

C000000000000000000000000033QO0 e 4 6 6 e e e e e e e N O. C. O.C. O. C.O. =. O.=. @. @. C. =. O. .=. O. =. =. N. O. N. m. =. N. O.=. =. =.=.

COOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 6 4 e e e i

- = . = . C.C. C.O.O. . C.C. =.m.C.=.=.=.C. O.C. O. O.=.N. =.O. . O.=. O.=.=.

COOOOOOOOOOOOOOOOOOOOOOOOOOOOOO e e a 4 k Nef

< =Nmde4AemO=NededN= = = = = = = = _e e C = N a d e @=NNNN~NNNNN2=m O

1 i

e s e N. =. =. =. =. O. . D. O. O. N. O.a. =e =.=. =. d. N. e. O. . C. O.=.P. O.D.

N COOOOOOOOOOOOOOQQOOOOOOOOOOO e a e e 4 e a e e a e m

N =. O. =. C. O. O. =. =. O. =. m. O. N. M. O. =. N. @.m. e. N.O.O. O.=. O. .=.

0300000000000000000000000000 6

6 6 e o e 4 4 e e e i e s N

N D. O. =. m. m. O. C. O. O. =. N. =. N. =. O. =. 4. d.S. S. N. =. O. O.O.O. O. O.

COO4 e00000000000000=O000000000 e i e e a e i 4 e e

=

N C. O. =.e. N. M. O. O. =.e. N. =. N. =. O. O. 4. =. N. d. e.O. O. .O. N. O.m.

0000000000-00000000000000000 ea e 6 e e e a e e a e 4 s a O O. =. d. N. O. @. O. O. O. p. e. N. N. O. O. O. N. O. e. d. e. =. N. m. M. N. =. h.

N COO e a =OOOOOOOOOOOC==O==OOOOSCO a 6 e e a e a e e 4 6 e eT a e e =. N. e. d. =. =. =. =. =. m. e. M. @. @. =. =. e. m.M. N. e. =. =. e.=. C. O.@.

=

C00S0000000000000000=OO00000 e e a T e e e e e ee e a e e a e e

=

O. =. w. =. N. =. =. =. N.4. m. w. M. O. =. =. h. (.=. =. d. N. N. O.=. O. N.N.

C000000000000000000000000000 e a e a e 6 e a e e e e a e a N

=

m. w. =. =. N. O. C. =. N. O. @. O. N. =. =. N. O. 4. . =. =. N. m h. M. O. O. @.

CO00000000000000000000000000 4 a 6 e e e e a e a e 4

=

@ =. =. N. =. e. m. M. =. =. N. w. N.e. N. O. . N. e. N. =. O. N. O. O.m. =. m.e.

0000000000000000000000000000 ee e a eea e a 6 e e 4 e e C. O. =. @. h. M. a. =. N. O. N. N. N. N. N. O. =. M.d. =. =. N. =. O. @. =. O.O.

=

CC05000000000000333000000000 6 T a a e e a a e e a 4 e e e

3

=

4 N. N. =. h. N. =. N. N. e.m. =. =. =.4. =. =. =. N.m. =. H.m. m. =.q. =. N.N.

m

=

C00C=O000000000000000000=OO0 e e a 6 e e o e o e s e s e s i e 6 e e e a e e a W

m H

3 m C. 4. m. =. @. =.4. N. e. h. e. d.m. e. 4.N. e. N.@.e. e. h. @. @.h. o. m. =.

<a

=

OOO==OOOOOOOOOOOOOOOOOOONOOO a e a e i 1 e 6 6 e 6 s a e a e a e a e 6 6 I e e e w

N g N

@. =. =. m. N. d. N. e. N.e. e. m. m. e. =.m. =. =. e. N.. e. h. e. d. e. N. O @.

w g

H m e

=

C==O-O-ON=

a e e 6 e 4 e COO f ==O=CO=====O==O e e e I e e a e e e e t 6 6 I a n, z w N

e

< O -

m w E

w

= >

a =

M. N. m. @. m. M. h. e. =. h. m. e. @. N. d. a. m. . m. e. m. =. e. @. e. e. @. =.

O W >

E a

NN=======O==ONNOOO=NNNNONN

i e e B e e e e 8 e i e a e 1 6 e e e e e e M

, a m a a

=

> a O m. h. e. N. N. N. N. N. =.4 4. c.h.e. m.=. O. m.m. e. e.W.=. e.h.e. N.N.

4 W

, E w

=

N=OOONOON=O-=OCO=O-O====OOON a t a ee o ae U E e

=

W e N. N. e. c. e. .h. @. h.@.e. .m.e. e.@. e. e.d. e. O. O. =. 4.e. O. @.O.

M == COON ==COONNOO=COQOm===O=== t N

W a m W O. e. @. e. e. m.h. m. e. c. e. h. e. m. d.@. =. O.d. @. e.@. e. @.e. m. m.e.

h w

=O@c0=0000000000000000000000 Q

N

m. @. m. e. m. e. @. @. e.m. m. m.m.e. e.h. e. #.N. N. @. e. e. d.e.e. m.e.

CC0000000000000C030000000000

@ h. w. @.@. O. d.e. @. e.@. m. e. N. e. c.e. e. m.=. c. e. d. 4. m . .@ .@ . .@ e 0000000000000000000000000000 e eeNe 4. e. N. d. e. m. w.e. e. N.O. m.e e c. h. e.c.e. m.@.e h =.c.e. d.e.

C@@OO00000000000000000000000 6

4 d. =. =. =. =. N. N. =. c. e. d. =. =. m. d.=. e. m.=. N. m.d.@. =.W.M. N.4 0000000000000000000000000000 e e e e e a m N. a. N. =. O. N. C. O. e. H. H. N. C. O. 4. N. =. 4. =. . O. N. e. O. N. N. =. O.

C000000000000000000000000000 e e 4 e a e 4 e 4 e b

M N..=.N.=.m.=.=.=..=.=.N.=.d.N.=.=.N.e.m.O.=.=.=.=.=.m.

C000000000000C@@@@OC00000000 e o e e a e t 6 e e ea e e a e

= =.O.=. O. . O. N.O. C.=. =. =.=.=. C.O.N. O.N.O.e.O. =. =. =. .O. m o.

00000000000 COOOOOCOOOOOOOOOO 6 e e a s e a e a e e O

=NM46@heeO=Nm@@@h e e O*- N m @ e @ he

==========NNNNNNNNN e C. O. O. =. =. O. O. S. =. O. O. O. O. C. =. =. C. C. =. C. o. m. =. =. *. =. =. =. O. O. m.

N 00000000000000000033000000MO@@@

l 6 6 e e aa eTe m C. =. =. O. O. O. O. O. . D. O. =. =. O. =. =. C. =. O. O. O. N. =. O. N. N. =. O. . O. O.

N OO 6 O s O O O O O O O O O O O Oe OOO ae a

'J O O O O O O Oe O e OOOO N O. O. m. =. O. O. O. O. O. O. O. O. O.=. =. O. C. O. O. =. O. =. O. =. N. M. =. N. =. =. O.

N ODOCOOOOOOOOOOOOOOOOOOOOOOOCOOO 6 6 e a e e a 6 e a 6 6

= =. =. N. =. =. =. O. . =. =. C. O. . O. O. O.O. O. O. O. O. . . C. O. O. O. O. O. . =.

N OO=OOOOO.

a e a e a OOOOOOOOOOOOOOOOOOOOOOO e a O m. =. =. 4 0. =. O. O.m. =. =. O. O. O. O. O.=. O. O. O. O. O.O. O. =. =. =. O. =. O. O.

N CO=OOOOOOOOOOOOOOOOOOOOOOOOOOOO a e e a e a e e i a e M. O. =. m. =. =. O. O. O. O. =. O. O. O. O. O.O. a. =. =. O. m. =. =.=. =.m. =. =. O. m.

=

OONOOOOOOOOOOOOOOOOOOOOOOOOOOOO n a e 6 e e e a 6 e e e i i

e =. =. 4. =. =. =. O. =. O. O. O. O. m.=. =. =.=. O. =. =. O. =.m. O. =.=. =. =. O. =. O.

=

3O00000000000000000000000000000 6 6 e e a e a e e e 6 aa 6 i e e

= O. =. O. O. . =. O. =. =. O. O. =. C. O. O. O. O. =. O.O. O. O. N. =. M. . =. =. O. O. m.

=

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 6 6 i e 6 e a a e 4 O. . =. m. =. C. O. C. O. O. O. O. O. O. =. =. =. C. C. O. O. O. d. =. =. O. =. C. O. . =.

=

3O0000000000000000000C000000000 4 e a e e e =. =. =. =. O. . o. O. O. O. O. O. =.O. O. O.O. C. =. O. O. M.e. =. N. O. O. N. O. =. =.

COOOOOOOOOOOOOOOOOOOOO=COOOOOOO e e e e e h

e 2 4 =4=e==O-CO-O=CC==CC==m*====M=OO

m Oa 4O O O. # e OOOOOOOOOOOOOOOOOOSCOOOOOOO e t 4 W

z g e =. d. . e. d. =. O.=.=. =.=. C. O. O. . N.O. =. O. =. O. M.e. =. =. =. =. m. O. =. N.

> =

OOOOOOOOOOOOOCCOOOOOOOOOOOOOOOO

< a e e a 6 6 a 5

e g N d. =. N. O. W. N. O. O. O. O. =. O. =. =. C. O. . =. =. O. N. O. e. =. =. N. O. . C. O. =.

M w l > m

=

C=O=OO0000000000000000000000000 e e a e e e e e e

M z W

  • e 4 0 e w p = m = N. h. m. N. d. N. O. =. C. C. =. =. =. O. =. C. C. =. =. O. N. =. N. =. O. N. =. =. C. O. O.

M E g

z =

a

==00=O@c000000000C0000000000000 i e e e e e i

R,

  • U. f = < e. N. . .. .. m. =. O. =. =. O. . C. O. N. O. =. N. O. =. N. =. N. N. N. =. .. O. =. =. =. =.

O g >4 3 O

=

g g

_ =000=@@O000000000000000C0000 i e e i 000 e #

U O b e w. m. c. e. N. C. O.O. O. O.=. =. =.C. =. =. O. =. =. =. O. =.=. =. m.=. N. =. Q. =. O.

m O*CONOOOOOOOOOOOOOOOOOOOOOOOOOO 4 e e a e a 2

4 a e 4@=4==OOOO=

  • * * * * * * * *COO * * * =OOOOOON=ON==NOOm w = COO =COOOOOOOOOOOOOOOOOOOOOOOOO a e 6 e e a e e b

Q

~ @. .@ O. h. N. N. =. O. O. O.O. O. . C. O. N. C. O. O. O. O. =. =. O. =. =. =. =. =. =. =.

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 6 & a e 6 e a 4 e e e e d. 4. C. e. N. =. =. M. O. O.O. O. O. =. =. =. =. =. C.O. O. O. O. O. =.N. N. =. =. =. O.

COOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 6 e s a e a e a e s e 6 4. m. m. =. =. O. M. O. . C. O. O. O. O. O. . C. O. C. O. =. O. N. =. N. N. m. O. O. O. ,

00003@C@C3000000000000000000000 4 e e a e e #

4 N. N. 4. N. C. =. =. 0 0. =. 0. C. 0 0. =. O. =. C. O. O. O. N. =. n. C. O. =. =. N. O. C.

0003@@@@c0000000000000000000000 e e a a a e a I

m =. =. N. O. =. =. O. =. O. e4. =. =. C. O. O. . C. O. O. O. =. =. e. =. =. N. O. O. =. =.

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO a e e t a e a e a e N =. N. O. =. =. N. =. O. O. =e4. =. =e O. O.. O. O. O. O. =. O. N. =. =. O. m. =. C. O. O. =.

O@@@@@Q00330C000000000000000000 e e a a a a e 4

= . O. O. . =. =. C. O. O. =. O. O. O. O. O. O. m. =. C. O. O. O. N. =. =. m. =. =. O. O. =.

( OOQ00000C0000000000000000000000 i i e a e e e l

I

< - N e d e d N e p O -====--===NNNNNNNNNN

= N m d e @ m e m O - N m e c @ m e m A m-O

]

, O. . . O. =. =. C. =. =. O. . M.O. . C. O. . O.O. O. O. . =.

M OCOCOOOOOOOOOOOOOOOOOOO 4 0 4 4 i 4 4 m . O. M. O. O. . O. O. . . D. O. O. N. =. O. . O. O. O. =. =. .

N 0000000000000C000000000 e a e 6 6 e e a m w. C. O. m. m. O. O. m. . m. m. m. O. . D. O. m. O. . O. m. . O. .

I N

D O O O. O. O O O O. O. OOOO. O O O. OOOOOO r

~

O. O. O.O. O. O.O. . . . O. .O. . O. . . .D. O. O. O.O.

C00000000 0 00 00 00 0 0 00000  ;

O . . C. O. . O. . . ~. . . . . ~. O. . O. O. O. O. O. O. O.

H 07COOOOO90007COOOOOOOOO O. O. . O. . D. O. . . . O. O. o. . O. . _. . . . O. _. O.

C O O. O O O O O O. O. O O O. O. O O. O. O O O. O O. O

. O. ,. . C. O. . O. O. . . _. ~. ~. . O. O. O. O. O. . . . O.

- COOOOOOOSOOOOOOOOOOOOOO aa T ae m O. O. . C. O. . . e. N. O. O. m. . O. O. O. O. . . =. . . =.

COOOOOOOyOOOOOOOOOOOOOO 7

e m. _. m. =. ~. n. n. m. o. w. n. n. n. a. m. . O. . m. m. . N. O.

f =

C0000000 0 00000000000000 e i e ~. ~. ~. . . n. c. . . . . n. n. C. O. . O. . n. . n. O. .

= @O000000000000000000000 e i

b e

3 4 N. C. O. m. O. . M. M. . . m. M.4 0. m.O. . .N.N. . . .

= -

00000000000300000000000 e e m

W a t O m N. m. O.O. . .m. e. m. N. N. m. m. m. M. . M. M. . m. . . . '

H -

COOOOOOOOOOOOOOOOOOOOOOe

< 6 6 a 6 s 6 W

b T z W

N

. . O. m. O. . . . m. . m. N. m. O. O. . 4. =. =. =. O. . . ,

- M C, O O O. OOOOO. OOOOOOOOOOOOO. O f M E 5

. < O . L M W E

> - m -

0

. O. . @. <. . O. ~. . . . . m. . O. . m. . C. O. . O. . O.

{

=

E J g

= O@O000000000000000000000 a 4 6 6 N > a = _ '

J f u a a g ><<

b C - *~. ~. O. O. O. . O. . . ~ = . O . . O. n. e. . O. . ~. ~.

I C ~

i C O. O O O O O. OaOOOOOOOOOOOOO. OO

< =

,i b E m

. O.N. .O. . O.c. .~.~.O. O.O.O. . . . O.O.O. O. .O. O. l W COOOOOOOOOOOOOOOOOOOOOOO e s s N

W s

W e ~. O. O. O. O. O. * . . . . O. C.. . C. O. _. O. . . . O. _. _.

w COCOOOOSCOOOOOOOOOOOOOOO a T b e a e e a 5 m .C. O. . . O. . O. =.m.=. O. . O. .=.=. O.O. O. . . . .

. 000000000000000000000000 i e e e 6 a e I e . . N. C. O. . N. . O. . C. O. m. m. e. . . e. m. . . . D. O.

De 6OiO O O O 3e O 6 O O O O O OOO a Oe O O eO eO O O*O.

6 e a a '

e C. O. m.O.O. O. O. O. =.O.=. =. ~.O. O.O. O. 4. . O. C. O. O. .

OOOOOOOOOOOOOOOOOOOOOOOO a a e t

, =. C. M. M. . =. =. =. O. . O. O. O. O. . . O. =. O. . O. . . O. ,

COOOOOOOOOOOOOOOOOOOOOOO 6 a e 6 e a m D. C. =. M. . N. O. O. O. O. N. =. O. C. . . . O. =. . =. C. O. O.  ?

COOOOOOOOOOOOOOOOOOOOOOO 6 e

[

4 6 a 6 6 6 4 n C. O. O. . C. O. C. O. =. . . D. e. . M. O. O. O. M. O. =. O. . O.

@@@C00000000000000000000 4 4 4 I a 4 6

~ O. O. O.O. O. O. =. . O. . . 3. N. C. O. O. O. O. N. O. C. . O. O. <

COOOOOOOCODOOOOOOOOOOOOO 4 ' a

> mMMWe@hWpO-Mode @hemOmMM 4e@%9@ ----~~----""""""""""g f l

l 2

l I

1

o e

0*U l'O I*O O*C I*O l'0- O*O l'O l'O l'0 l'0 I*G I*O O'O 0*0 0*O f

  • 0-l'O 0*O O*O U*O U*U I*O c*U it O'O U*O l'0- 0*O 1*D I*O I*0 Z*O f*O U*0 l*0 I*O l*0 0*O 0*0 0*O l'U l'O l'O 0*O l'u l'U- 0*U l'o- et I
  • n- l'O 00 0*O f*0- l'0- l'8 I*0 l*0 l'O 0*U ' l'O U*U 0*0 0*0 C*o U*U 0*0 o'o 0*o l'O o*U 0*U l'O 6Z l'O l'O l'O I*O 0*O Z"O l'8 l'O l'O l'O l*0 l'O o*o 0*O I*p- l'O 0*U l*0- 0*O l'o- 0*O l'o- 0*O I*o SZ 0*O l'o- 0*O 0*O 0*0 l'0- 0*O Z*o C*o U*U 0*u I*U l'o 0*0 l'8 (*0- l'U l'0- l*0- Z*c- l'o- l'U- l'o- Z*0- lZ l'U- l*0- l*0- O*O l'0 Z"o I*O Z*O l'U 0*O O*O l*0- l'U- l*0- f*0- l'O I*o 0*C U*0 U*o l'0- l'O U*U l'o- 9Z I*0- f*0- 0*O Z*p- l'0- (*0- (*0- Z*0- l'0- 9*0- (*0- f
  • ti- E'U- l'0- l'U-f*0- Z"o- l'U- l'0- l*0- 9'0- 9'o- 9*U- 9'U- %Z Z"0- l'0- (*0- (*o- (*0- I*U- Z*0- o*U O'O 0*U l'O l'o I*o l'O Z*n- (*U l'o- l*0- Z*0- l*0- l*n- l'u- U*U l*0- '9Z l'o- Z*o- l'U- D'O 1*0- l'O I*O 0*o l'8 Z*o l'o I*o 0*U l'8 I*O o*U l'U- l'o- 0*O l'U- l'o- U*O O'o Z*n- IE Z*p- l'o- (*0- Z*0- I*0- o*o I*U Z*o (*o (*U l'o- 9'O Z*U l'o o'o O'O l's l'O- U*O U* ts 00 l'o- 0*o l'o ZZ o'o o'o o'c o*o l'O 0*U Z*o Z*o l'o l'0 l'o l'o 1*o- Z*o- Z*o l'o- 0*o 00 l'o- 00 U*o l'o- D'O I*o il 00 o'o O'o U*o 00 Z*0- 0*o 0"O I*o Z*o Z*o l'o u*o l'o- 1*0 O'o l*U 0*o l'0- 0*o 00 00 l'u- l'o ut u*U c'o f*0- l'o- l*0- 9'o- 9'O l'o- 5'O Z*O I*n o'o o*u Z*o- I'0- l'0- l'o- U
  • ta o'o 0*u l'o- u*o l'0- *0* o 6I o0 o'o U*o l'o- l'o l'0 l'O Z*o Z*o Z*o l'o l'o o*U l*p- I*n- u*o U*0 I*c- o*U l'O- o*o l'u- l'u- l'o- el I*n- l'U- Z'U- f*0- O*o 0*o 0*U Z*0- 9'u f*O (*U l'O Z*o Z*O l'O O'o l'0- D'O l*0- 0*o l'o- U*O c*o Z*n- il l'o- I'0- l*0- 9*0- l'o 0*O l'0 l'c l'c l'c (*U Z*O Z*U l'c I*O 0*0 l'O 0*0 l'o- l'o U*o U*o 0*U o*o 91 o'O o0 0*O l'0- 00 00 o*0 Z*o 00 z'O l'O u*o I*o o*C o*o l'O U*O 0*0 l'o- l'U 0*o 0*o u*U U*o 58 oo o*o l'o- I'0- o*U 00 0*O l'o- 0*o 00 Z*o- l'0- l'o- o*o I*o l'c I*o- o*n 00 I*o- 00 0*o u'O l'o %I l'O- l'0- I*o Z*0- 0*O l'0- I'U- o'o o'o o*0 l'o o'o I*o U*o U*o l'o- o'o Z o- 9'U- 9'n- U+0 l'o Z*U- I'o- El O*o 0*C ,

l'o- l'0- l*0- Z*p- U*O l'O l'o l'O l'o Z*o u*o I*o l'O o'o 0*0 l'0- 0*o O'n l'0- I*0- 0*0 o*o ZI m l'u- o'o t'o- l'o l'0- l'0 00 Z*o (*o (*o (*o Z0 00 9'o- l'O 5'O 9*o Z0 l'c I*u l'O o'o U*O l'o- II -r l'0- l'o- o*U l'O- l*0- l'0- 0*U Z"O l'O  %*O 9'O 9*U (*O ("O l'O 0*O l'O  %*O l'o- 0*C l'U l'u l*c o*U I 08 U* tt o'o O*O l'U- 6*o D'O l'O Z*O Z*O Z'O (*U Z*U (*U l'o l'o- l*G U*U o*O 0*U I*U l'U l'U l'o l'0 6 i l'o f*o- U*o l'0- l'O l'O- ("O Z*o Z*o (*o (*U ("O Z*O l'o (*O l'U- l'O- f*0- l*0- D'O I*o- 0*O l'8 U*o 9 l*0 l'c l'o- 0*O 0*H l'O l'O l'o l'O Z*U Z*o Z*U Z*O (*o l'O l'O l'O U*U U*0 U*0 0*O l'0- O*O l'U-o'o l'o l'o- D'O l'0- l*0- l'0- Z'D- U*o 0*H l'O l'O Z*O Z*o U*o 0*o l'0- l'0- 0*o 0*o l'o- l'o- 0*o U*O t

9 O

  • ll l*0- 0*O U*o l'O- 0*O 0*o I*o l'O C'O l'U l'O I*O l'o O*O 0*0 l'0- Z*0- Z*0- l'0- l'o- l'0- 0*H I*o- 5 0*o o*C o*n l'o- l'U- U*0 l'o- l'o l'O Z*o Z*o l'O (*o I*O (*O 0*o l'8 0*H O*O l'O l'U- 0*H 0*O n*O 9 l'0- l*0- 0*C Z"D- l'O .Z*0- Z*0- Z'0- l*0- 1*D- U*U I*O o'o u*o l'0 l'O l'O l'0 l'O l'O O*O U*O l'O l'O l'U- l'8 l'o- (

I*? I*c- l'0- l'o- u*O oo 0*o I*o o*o I*o 1*o 0*U l'c U*O l*D- 0*o 00 I*o- o'o 0*O o*o Z l'o- Z*p- l'o- Z*0- 0*n 00 1

9Z (Z ZZ lt _ OZ 68 91 Il 95 58 %I (I Z1 II of 6 9 i 9 5 9 1 Z l WilOH AVG

&l6l AVN

( N011Nt41 IV J. NI S3Nn1VH1JH11 NV'4H A'lWanli NI SUN 183341G S-E

  • E TIUV.L

e

  • b W + = w. O. Q. =. =. =. N. O. =. O. =. O. . . =. O. =. =. O. N. O. M. =e N. N. O. m.

N OOOOOOOOOO C30C000003000000000 6 e i e 1 6 e ea a e e M O. O. O. O. O. . O. =. N. M. O. C. =. =. C. O. N. O. . O. N. =. =. =. M. =. =. =. O.

N 0000000000 0003300000000000000 4 e i

1 4 e a e 6 6 e a e a N

N

@M.m.=.=.O..=.=.N.

0. =. O. N. =. =. e. O. O. c.e. O. =. =. N. O. N. O. =. l 00300C0000 @CC0000000000000000 6 6 9 6 6 6 e a e e e e o e a e

= e. M. . C. O. =. O. m. =. *. =. O. O. N. O. N. N. =. N. M. N. =. N. N. =. =. N. =. N.

N 0000000000 OCOOOONCOOOOOOOOOOO 6 6 4 s 4 e 4 e e e i a 4 e e a 6 e a e O M. O. N. =. =. =. O. N. M. O. =. =. =. =.d. e. e. M. N. =. =. 4. N. m. M. =. =. O. m. I N OOOOOOOOOO OOOOOOsOOOOOO=OOOOO ,

n 6 t 6 6 4 e e 6 e e e e Te e e e a e e e e e e i.

d i e W. O. O. O. =. M. O. e. d. d. . e. N. O. N. O. c. e. m. m. e. d. e. m. =. =. N. =. N.

5

=

OOOOOOOOOO e e COCOO==COOOOO=OOOOO 6 6 e e e e t 6 4 6 e e e a e 6 6 I

. e c. =. O. =.=. N. =. =. M. M. q. =. O. . M. N. =. @. =. d. N. N. =. N. N. =. =. M.

= =O00000000 e a e e 000000000000000000 se e e e e e e a 6 m W. O. =. =. N. N. =. N. =. N. =. =. =. N. O. =. N. N. =. =. N.W. N. =. N. =. N. =.

= 0000000000 e 6 i e n 6

@@@000000000000000 s a e s 6 e a e e a e

@ M. O. N. O. =. O. =. =. =. O. C.O. =.=. O. d. O. N. =. O.M.O. N. =. M. . =. O. r

= C000000000 e e e 000000000000000000 ,

a 4 4 4 e e i c =. =. =. N.=. C. O. O. N. @. =. C.O.M#=. M. .N. O.=. @.M. M.O. O.=. O. =.  !

= 0000000000 000000000000000000  ;

e t a a e a 6 e e y

b o

g

=

e N. =. =. =. C. O. O. =. N. =. O. . M. N.=. e.M. =.=. N. h.e.d.M. =.=. =. O.

=

0000000000  !

6 e a 000000000000000000 e e e e e e e e e a e W a w  !

a m M N. N. =. N. O. =. c. N. =. M. =. N. O. N. N. M. N. =. =. h. p.M. M. @. =. O. =. =. F i

H =

C000000000 4 6 00000000000=CO0003 e ea 6 e e a e e a a e f w i.

b P g N =. =. N. =.M. =. C. h. =. N. .d.O.=. e. M. e.=. C.O. M.e.N.e. d.O. O. =. &

@ W =

0000000000 COOOOOOOOmOOOOOOOO I e M e e 4 4 6 e ee e a e i e s E m e M, 4 3 -

g N g O. w. =. N.M. =. =. e. N. @.

M E = m g

=

N. e. O. d. M. N. N. O. M. e. h. d. M. e. d. . O. m.

, E W

=

0000000000 6 e 000000000000000000 '

j > O s g 6 6 e 6 e 6 e e 4 4

=

M J E E 4 a w i, m > > O O. d. c. =. N. O. N. e. N. N. e.@.4.N.=. =. C. O. N.=. e. @.M. O. M. . =.=. '

c g <

  • 5

= C00000000= -OOO=OOOO=COOOOOOO 4 e e e e i i s a n N

E

=

m e =. h. =. O. O. O. c. e. d. e. m. d. e. M. N. O. N. e. M. M. N. 4. e. W. e. =. C. O. O. I W OOOO=OO=O=O 6 6 C00000000000000000 6 4 e U e E

w F a m =. P. . C. O. m. =. @. @. m. =. =. r. e. m. =. =. O. N. =. e. d. d. e. M. O. =. O. O. i W C=OOOOOOOOO h ee ea e C00000000000000000 e e 4 h

~

O

. O. @. C. =. =. C. O. N. e. =. *. e.d.e.=.=. M. . N.N. m. e.d.e. m. O. O. O. O. t OOOOOOOO=OO C00000000000000000 a e ea e a t

e O.d. =. =.=. =.=. =.M. .d. =. d. d.O. O. M. =. N. =. =. @. d. M. N. N. O. O. N. I i

OOOOOOOOOOOe a e e a OOOOOOOOOOOOOOOOOO e e e i e =. 4 0. =. =. O. =. =. =. N. O. N. N. M. O. N. d. M. =. O. =. d. e. d. e. . O. O. O.

0000000000=

t OOOOOOOOOOOOOOOOOO  :

6 n 6 9 i e e i 4 D. N. N. =. =. =. =. =. =. N.=. O. O. =. =. =. 4 4. N. =. =. =. h. M. c. =. C. O. =. t OOOOOOOOOO= C00000000000000000 l F

n 6 6 e 6 i e e e -

M =. =. =.=. O. O. N. =. =. N. e. e. O. .C.O. O.N. . O. =. =. e. N. N. O. =.=. =. I OOOOOOOOOOO t i e 6 i e C00000000000000000 t e a e e a e t

N =. M. O. O. N. =. =. O. m. =.O. =. C. O. N.O. =. O. O. O. O. =. M. =. M. =. N. =. =.

00000000000 COOOOOOOOOOOOOOOOO s e 6 6 6 6 e 6 e o e

= =.=.=.O.=.=.N.O.=.=.=. =. =.O.N.O. =. O.O. O. O. O. . =. N. 0. . N. =.

OOOOOOOOOON O@C000000000000000 6

i e a e t 6 e a 6 6 e l

> =NMWe@me@ O=Nede@%

y ==== = = _ = _e =NNNNNNNNNN ec=NMoe@heeg )

l

. =

+ =. N. m. =. C. =. C. a. 9. C. C. C. =. N. C. C. O. N. =. =. C. m. h. M. C. =. C. C. C. C. =.

N SCCCCCCCCCCCCCCCCCCCOCCCCCC#0@C e e e a e ae e a e 4 a e s e a e m 4. N. N. N. C. N. 4. =. 4. =. =. =.=. N. C.4. =. N.=. =. =.d. e.=. =. C. C. C. C. C.=.

N C sCaCT e Ce Ca eCeC C C Cs C. e e CCCCCCCCCCCCCCCCCCC e e t e s i e e e a e N 4. . N. m. C. 4 4. N.4. . C. N. 4. m. N. e. m.m. =. C. =. 4. m.m. C. C. C. C. C. C.=.

N CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC i n 6 e n e 6 e i a e e i e e ) e - e e

= =. M.4 4. m. N. . 4. =. N. O. N. N. m. N. C. e. m. 4. =. . e. m.e. =. =. C. C. =. O. N.

N CCCCCCCC=CCCCCC=CCCCCC=CCCCCCCC s e e a e 6 e 6 e a e e a e i e e e a e 6 e 6 e e I

C =. C. m. N. =. =. N. e. e. N. M. C. =. N. m. e. N. C. 4. C. C. N. M. C. C. C. C. C. C. =. M.

N C C C C.4 CCCC=CCCCCCNCCCCCC==CCCCCCC e e e e e a e i a e r a e a I 6 e e

=

. . N. =. . . N. m. 4. *. C. =. . N. C. h. =. =.N. =. c. e. m.=. C. C.C. C. C. C. M.

SCCCCCCCCCCCCCCCCC.

T 6 4 e a 6 e 6 e a ee 6 CCCC=CCCCCCCC s e e a e N. N.C. C. C. =. m. M. N. N. C. N. N. C. .4 4. =.=. . N. M. =. d. =. =.C. =. C. =. C.

=

CCCCCCCCCCCC.

e e e e 6CCCCCCCCCCCCCCCCCCC e s 4 a e e m =. C. =. C. a. m. . 4 4. N. =. =. =. =. C. =. N. =. 4 0. =. e e* .=. C. C. =. C. C. . =.

=

CCCCC........CCCCCC e e . s a e a e S

CCCCCCC a a e a e e e T i 4 =. =. =.C. . c.m. *. =. 4. =. N. =. =. N. N. 4.=.m. =. m. N. N. M. C. =. C.=. =. =. C.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC e e e e e n a 6 e a e e e t c . N. =. C. =. C. N. m. M. N. . . N. =. N. d. e. N. C. C. 4. N. =. 4. =. C. C. O. N. =. =.

=

b C e eCeC C C C C C C C C. C 4 e e e e sC. CCCCCCCCCCCCCCCCCC e e a e i 4 e e

2=

C. 4= =. C. . == C. m *

m. m. *M 4. =. =. N. e. e. N
  • C. C 4 *m m. e *N. C. C. =* C. M* =.

4=

m CCCCCCCCCCCCCCCCOCCCCCCCCCCCCCC e a 6 e e e e a e ee ae e a

a 2 m =. N. N. C. C. m. N. d. e. m. M. N. N. C. M. A. N. e. C. N. e. e. m. m. =. =. C. =. e. c.

M

=

CCCCCCC=CCCCCCCC=CCCCCC-e 6 s e s e a e ee a e 3CCCCCC a e a d

a C N C. =.4. =. N. N. .m. e. m. 4 4 4. . =. =. e. h. M. . 4. =. m. M. C.C. =. C. =. M. =.

N I >

d m e

=

C C. CCCCCCC=CCCCC==

e e a 4 e e ecec a T =CCC=CCCC=C e a e M E e e .

. 4 O =

w k M = M. 4 4. =. C. N. 4. N. d. @. =. p . e. N. e. m. C. N. N. =. =. C. N. e.. p . C. C. =. p C.

M & m CCCCCCCCCCCCCCCCCCCC==CCCCCCCCC

= .

2 w E g

= ee i ae

> ^ G -

e a e 6 e e 6 M, J f m

=

3 u

3 C N. =em. H. N. e c. =. e. m =. e N =. C. 4 4 m e. C. =. 4. e. N. C. c. C. C. O. N. =.

e e e e e e c j 4 W C

=

CCCCCCCCC==CCC=C==CC==C=CCCCCCC 4 x e i i a e e 4* =

m p c. e. N. =. c. e.=. =. =. m. h. =.=. =. m. e. . m. %. C. e. d. e. m. =. C. C. C. =. =. =.

W U

CCCCCCCCC====CCC=N OC=CCCCCCCC=C e s 4 e O

w a e W C. 9. e. =. =. M. C. =. m. e. =. @. e. C. C. e. e. %. N. C. @. c. a. e. C. C. =. C. C. m. c.

A h

CC=CCCCCCCCC=CCCCCCCCCCCCCCCC=C 6 s e e i a

~

C

~ =. =. m. m. =. C. . 4 0. m. =. 4. =. C. N. N. 4. C. e. c. c. e. 4 4. =. C. =. =. =. =. =.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCC=C t 4 a e a e e 4 =. =. =. H. =. =. C. e. N. =. N. 4. =. =. =. N.=. N.4. C. 4 4 4 4. N. =. C. C. =. N.4 CCCCCCC=CCCCCCCCCCCCCCCCCCCCCCC e e a ee a e i e a ,4 e C.

. . =. m. =. =. m. M. N. C. e.C. C. N. =. =. N.e. =. 4.m. *. N. =. =. =. =. C. =. =.

CCCCCCC=CCCCCCCCCCCCCCCCCCCCCCC e a ea a ee e i s a e 4 =. =. N. M. C. =.C. =. =. N. O. N.C. =. N. =. =. =. 4. =. =. =. C. C. . =. =.C. =. =.C.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC e a e i e a a 6 e a e e a m =. N. N.C. C. =. N. m. =. =. =. =.C. =. =. =. N. =. 4. =. C. . m. . e. =. =. =. N. =. =.

OCCCCCCCCCCCCCCCCCCCCCCCCC.

e e a ee e i 6 e i e e e a e e C. CCCC a e s N =. =. =. m. . C. =. . =. =. =. N. C. C. =. M. =. =. N. C. C. C. m. . 4. C. C. C. C. C. C.

CCCCCCCCCCCCCCCCCCCCCC"CCCCCCCC e a i e e i e e i a e a e e T

- C. C. =. M. C. =.=. N. N. C. C. =.C. =. =. =. =. C. =. =. =. C. C. C. m. =. C.C. C.C.C.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC s e e a e e s 6 4 e e e e e q -NmdedmeF ==NmdedN eeC=N*We4N ee*

--==-=====NNNNNNNNNNM= m C

l i

I r

I

TABLE 3.5-1 DIH ERENCES IN IR)URLY MEAN TEMPERATURES IN *F BETWEEN MOIIITOR 3 AND MONITOR 7 JANUARY 1979 DAY ik)UR I 2 3 4 5 6 7 8 9 10 Il 12 13 14 15 16 17 18 59 40 21 22 23 24 8 9.2 9.2 9.3 9.5 9.6 9.7 9.6 9.6 9.5 9.5 9.5 9.4 9.5 9.7 9.9 10.1 10.2 10.2 10.2 10.2 9.9 9.5 9.2 8.8 2 8.7 8.7 8.5 8.2 8.3 8.4 8.6 8.8 8.4 7.3 5.2 3.6 2.4 2.1 B.9 1.8 I.7 1.6 f.4 1.2 1.8 1.0 0.9 0.8 3 0.8 0.8 0.8 0.8 0.7 0.6 U.9 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.6 4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.8 0.8 0.9 1.0 1.0 1.1 1.1 1.1 0.9 0.9 0.9 0.9 0.9 0.9 5 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.0 1.0 1.1 8.2 1.3 1.4 1.4 1.4 1.4 1.3 I.) 1.2 1.2 1.2 1.2 1.2 1.2 6 8.2 1.2 1.2 1.2 1.2 8.2 1.2 1.2 1.2 1.2 1.3 1.4 1.5 1.5 1.5 1.5 I.4 I.4 1.3 1.2 1.2 1.2 I.2 1.2 7 1.2 1.2 1.3 1.3 1.3 1.1 1.3 1.3 1.3 1.4 I.4 1.4 1.4 1.4 1.4 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.5 8 1.4 1.3 1.3 I.) 1.4 1.5 1.5 1.5 1.5 1.5 1.5 I.5 1.5 1.4 1.5 1.5 1.5 1.4 1.4 I.3 1.2 1.2 1.3 1.2 9 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.3 8.5 1.5 L.6 1.6 8.6 1.6 1.5 1.5 1.4 1.4 1.4 1.4 1.4 8.4 to I.4 1.3 1.3 1.3 1.4 1.4 1.4 2.3 2.5 8.8 I.7 8.7 1.8 1.8 1.8 1.8 1.7 1.7 1.7 1.6 f.7 8.6 1.7 8.7

, il I.8 2.4 2.3 2.2 2.2 2.0 2.1 3.6 4.9 3.2 2.4 2.1 1.9 8.9 1.9 1.9 1.8 1.8 I.8 1.7 2.0 1.7 1.6 1.7 tn 12 2.0 1.7 1.6 1.5 1.6 1.9 2.7 4.8 4.5 3.1 2.3 2.0 2.0 2.0 2.0 2.0 2.0 1.9 1.8 1.8 8.8 l.8 1.8 1.8 Fd 13 1.8 8.8 1.7 2.2 2.8 3.4 4.0 4.9 5.3 6.5 5.5 3.4 8

4.5 2.4 2.0 I.8 1.7 1.6 l.6 1.6 1.6 I.6 1.7 1.1 14 1.6 1.5 1.4 1.7 2.3 3.0 3.7 4.3 4.9 5.4 5.7 6.2 7.0 6.9 5.6 4.9 4.3 3.6 4.5 3.4 2.6 2.4 2.I 2.0 15 2.5 2.5 2.3 2.8 3.3 3.7 4.2 4.8 5.7 6.9 4.7 3.1 2.5 2.2 2.5 1.9 1.9 1.8 1.8 1.7 1.7 1.7 8.7 1.6 16 1. l.8 2.1 2.5 3.8 3.8 4.4 4.8 5.5 6.8 5.6 4.0 3.1 2.6 2.4 2.4 2.3 2.2 2.0 1.9 1.9 1.9 1.9 1.9 17 1.9 2.0 1.7 1.7 8.7 2.0 3.8 5.0 4.3 3.3 2.6 2.3 2.2 2.I 1.9 2.0 1.9 1.9 1.8 1.9 1.9 f.9 1.9 1.9 18 1.9 8.9 1.9 I.9 1.8 1.9 2.2 3.1 5.1 5.1 3.7 2.7 2.3 2.2 2.1 1.9 I.9 1.8 I.8 1.8 1.7 8.8 1.8 1.8 19 1.8 8.9 1.8 8.8 2.0 2.2 2.4 2.9 4.2 5.8 4.2 3.1 2.5 2.3 2.3 2.2 2.1 2.0 1.9 1.9 1.8 I.8 1.9 1.8 20 1.8 l.7 1.8 l.9 2.3 2.8 3.3 3.7 4.3 5.0 6.3 6.9 5.9 5.0 4.2 3.8 3.6 3.9 4.0 3.2 2.8 2.8 2.8 2.6 28 2.6 2.8 3.2 3.6 4.2 4.2 4.5 4.7 5.0 5.8 6.6 4.8 2.8 2.3 2.3 2.4 2.4 3.8 2.7 2.1 2.0 1.9 f.9 8.8 22 4.9 8.9 8.9 8.9 1.8 2.1 2.6 3.5 5.5 5.1 3.2 2.4 2.2 2.3 2.3 2.3 2.4 4.3 3.2 2.3 2.0 1.9 l.9 1.9 23' l.7 1.9 2.7 1.5 3.8 4.0 4.3 4.4 4.9 3.3 2.4 2.2 2.2 2.4 2.5 2.5 2.3 2.0 1.8 8.8 1.8 2.I 1.7 f.8 24 8.9 2.2 2.3 2.4 2.4 2.9 3.3 3.5 3.5 3.6 2.6 2.1 2.1 2.1 2.0 2.4 3.I 3.5 3.6 2.5 2.0 1.8 1.8 1.8 25 1.8 1.9 1.8 8.9 1.8 1.8 1.7 1.8 1.7 1.8 1.8 1.8 1.8 1.8 2.3 1.8 1.8 1.8 f.8 1.7 1.7 8.8 1.9 1.8 26 l.9 2.8 2.f 3.3 3.9 4.5 5.1 5.4 5.8 6.2 6.5 6.9 5.0 3.5 2.7 2.3 2.1 1.9 1.9 1.9 I.8 1.8 8.8 1.8 27 1.8 1.8 l.7 1.8 l.8 8.8 1.8 1.8 1.8 1.8 1.8 1.9 2.0 2.1 2.1 2.5 3.I 3.3 3.4 2.4 2.5 2.1 2.I 2.0 28 2.I 2.2 2.5 2.9 3.4 3.8 4.2 4.6 4.9 5.6 6.9 7.1 4.9 3.4 2.7 2.3 2.8 2.0 1.9 1.9 1.9 8.1 2.5 2.3 29 2.3 2.4 2.3 2.5 2.5 2.7 3.5 5.9 4.4 2.9 2.4 2.I 2.5 2.1 2.5 2.5 2.1 2.1 2.2 2.0 2.I 2.3 2.3 2.3 30 2.4 2.3 2.2 2.4 2.4 2.6 3.1 4.3 6.1 5.2 3.4 2.7 2.4 2.4 2.3 2.5 2.7 2.5 2.8 1.9 1.9 1.9 1.8 1.8 31 l.9 2.0 2.3 3.0 3.8 5.3 6.0 4.7 3.5 3.0 2.4 2.2 2.5 2.1 2.0 2.0 2.0 2.0 1.9 1.8 f.9 1.9 1.9 1.9 m m_ _ _ m _ m___-m __ma_ -- -_im , . , , . . , _ _ . - . - - .w,-- . .---,e- - - - - --.ma -e -w -- - . - -r--r'w- - -= w --w -.,,,-----w g -. wi.e- e + - -

TABLE 3.5-2 DIFtENENCES IN IN)URI.Y HEAN TLMPEkATukES IN *F BETWEEN m)NITOR 3 AND m)NITOR 7 FEBRUARY 1979 DAY HOUR I 2 3 4 5 6 7 8 9 11 Il 12 13 14 15 16 17 18 19 20 24 22 23 24 8 1.8 8.6 1.8 2.2 2.7 3.4 4.2 5.2 6.4 4.4 2.9 2.3 2.3 2.1 2.1 2.0 1.9 1.9 1.8 1.8 8.8 8.8 l.7 I.9 2 4.9 8.8 1.7 8.6 1.8 2.2 2.6 1.3 4.3 6.0 3.8 2.7 2.3 2.5 2.1 2.0 2.4 2.5 8.8 8.7 8.7 8.7 8.7 8.8 3 1.7 8.6 3.4 1.5 2.5 2.7 3.5 4.1 5.0 5.9 3.6 2.5 2.2 2.5 2.0 2.2 2.3 2.7 2.2 1.8 8.7 8.6 B.7 1.7 4 1.6 3.4 1.3 1.5 8.8 2.4 2.9 3.4 3.9 4.6 6.2 6.5 5.4 4.7 4.I 4.0 4.1 4.0 3.6' 2.4 2.0 1.7 1.7 8.6 5 1.7 8.6 6.6 I.5 8.3 1.3 I.6 2.8 2.6 3.3 4.6 6.3 4.6 3.4 2.8 2.3 2.1 8.8 8.8 1.8 2.0 1.7 I.7 4.6 6 8.6 1.3 1.5 l.3 8.7 2.3 2.8 4.1 6.2 4.0 2.8 2.4 2.3 2.2 2.4 2.7 2.7 2.8 2.7 2.1 8.9 1.9 1.9 8.9 7 l.7 8.8 8.8 2.0 2.4 2.8 3.4 4.1 5.8 6.0 4.3 3.1 2.7 2.5 2.4 2.2 2.2 2.1 2.0 2.0 2.0 2.0 1.9 2.0 8 2.0 1.9 1.9 8.8 2.1 2.7 3.3 4.1 5.7 5.5 3.6 2.8 2.6 2.4 2.3 2.2 2.1 2.0 1.9 8.9 I.9 1.9 1.8 8.8 9 1.8 8.7 2.2 2.2 2.6 3.4 3.6 4.1 4.9 6.9 5.8 3.6 3.1 2.7 2.5 2.4 2.2 2.u 1.9 l.9 1.9 8.8 8.8  !.8 10 1.7 1.6 1.8 2.3 2.8 3.4 3.9 4.4 5.0 6.4 4.7 2.9 2.2 1.9 8.9 2.8 2.I 2.5 3.4 2.5 2.0 1.9 8.8 8.8

, 11 I.7 8.6 I.8 2.4 2.8 3.1 1.4 3.8 4.2 4.6 4.9 5.8 6.7 6.6 6.4 6.0 5.4 5.1 5.8 5.0 3.8 3.1 2.9 2.6 m 12 2.6 2.7 2.5 2.4 2.6 3.4 3.4 4.8 6.2 5.1 3.3 2.5 2.5 2.0 2.2 2.4 2.4 2.2 1.9 1.7 4.7 1.5 1.6 8.7 tJ 83 8.7 8.9 B.9 2.0 2.0 2.2 2.5 3.4 5.7 4.0 2.5 2.2 1.8 8.7 2.0 2.4 2.7 2.4 5.9 8.6 8.9 2.8 2.3

' 14 2.8 2.2 1.9 2.6 3.3 3.7 4.5 5.8 5.3 2.2 4.2 6.0 3.4 2.5 2.5 l.9 8.8 f.6 8.6 1.6 8.6 8.6 8.6 4.5 1.4 15 I.5 8.8 2.4 3.0 1.5 4.0 4.5 4.9 5.8 6.3 3.7 2.6 2.5 2.0 1.8 1.8 8.7 8.6 1.5 I.5 1.6 1.5 1.6 1.6 16 8.7 1.5 1.3 I.2 8.7 2.5 3.2 3.8 5.4 5.3 3.2 2.4 2.1 2.0 2.0 I.9 1.7 1.7 1.5 1.5 1.6 8.5 1.6 1.5 17 8.3 1.2 I.I 1.3 2.3 2.8 3.3 3.4 3.9 4.9 5.7 4.6 3.7 3.6 3.7 3.5 3.5 4.2 4.7 3.0 2.4 2.0 1.8 1.9 18 8.9 2.0 2.4 2.7 3.6 3.9 4.7 4.7 3.8 3.5 3.4 3.3 3.8 3.3 3.6 4.5 4.9 5.3 5.6 6.6 6.5 5.1 4.5 4.1 19 3.9 3.7 3.6 1.5 3.5 3.6 3.8 4.2 4.8 5.9 6.2 5.3 4.7 4.4 4.0 3.8 3.7 3.0 3.4 2.5 2.3 2.3 2.0 1.8 20 1.8 2.3 2.4 2.6 3.1 3.6 3.8 4.4 5.2 6.1 4.8 3.6 3.0 3.1 3.2 3.3 3.2 3.8 3.3 5.0 5.3 4.5 4.0 3.6 21 3.1 2.8 2.8 3.8 3.4 4.0 4.4 5.1 6.8 7.9 5.6 3.7 2.8 2.6 2.5 2.5 2.6 3.0 4.5 3.0 2.6 2.4 2.2 . 2.2 22 2.2 2.2 2.4 2.8 3.4 3.8 4.3 4.9 5.9 7.7 5.7 3.9 3.2 2.8 2.6 2.4 2.2 2.0 1.9 1.8 I.9 1.8 8.8 1.7 23 1.8 I.9 2.2 3.0 3.7 4.1 4.6 5.I 6.2 7.1 4.8 3.3 2.7 2.3 2.2 2.3 2.5 2.8 2.9 2.7 2.7 2.7 2.7 2.7 24 2.8 2.7 2.7 2.8 2.9 3.2 3.6 4.2 5.3 7.I 4.5 3.1 2.5 2.4 2.4 2.4 3.1 3.1 2.3 2.0 1.9 3.9 8.9 1.9 25 2.0 2.I 2.3 2.7 3.2 3.8 4.3 4.8 5.3 6.0 6.9 7.4 4.7 3.3 2.7 2.4 2.2 2.1 2.2 2.0 2.0 2.0 1.9 2.0 26 2.0 1.9 1.7 2.0 2.5 3.I 4.0 4.8 5.8 6.6 4.1 2.9 2.5 2.4 2.5 2.6 2.6 2.6 2.6 2.4 2.2 2.2 2.2 2.5 27 2.2 2.3 2.2 2.4 2.8 3.5 3.9 4.7 6.3 6.1 3.6 2.6 2.3 2.1 2.1 2.4 2.4 2.6 2.6 2.5 2.5 2.5 2.4 2.4 28 2.4 2.7 2.7 3.8 3.6 4.8 4.6 5.4 6.4 4.2 3.1 2.5 2.4 2.6 2.6 3.1 3.7 3.5 2.9 2.2 1.9 1.9 8.8 I.8 9

8

t TABLE.3.5-3 DIFFERENCES IN HOURLY HEAN TEMI'ERATURES IN *F BETWEEN HONITOR 3 AND MONITOR'1 HARCH 1979 DAY 1500R I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 I l.7 1.8 8.9 2.5 2.6 3.2 3.8 5.4 5.8 4.3 3.1  ?.7 2.6 2.5 2.6 2.6 2.6 2.5 2.2 1.9 1.8 1.8 8.8 1.8 2 1.9 2.0 2.5 2.3 2.7 3.1 3.7 4.3 6.0 6.2 4.5 3.4 2.8 2.4 2.3 2.2 8.9 2.1 2.0 2.0 1.9 2.0 2.0 1.9 1.9 3 1.9 2.1 2.5 2.8 2.8 ' 2.8 2.9 2.9 2.8 2.8 8.9 8.8 8.9 2.0 4 B.8 2.1 2.1 2.5 4.6 3.5 2.3 2.0 1.9 B.9 l.9 1.9 2.1 2.4 2.9 3.6 4.2 5.0 5.4 5.6 4.6 3.7 3.2 2.8 5 1.8 5.9 1.8 3.1 2.8 2.7 2.4 2.0 1.9 1.7 1.8 1.8 I.8 8.9 2.5 2.3 3.4 5.6 4.3 2.9 2.5 2.0 2.0 2.0 2.5 2.0 6 1.7 1.9 2.0 1.9 l.7 1.5 1.6 l.7 8.7 I.6 l.9 2.0 1.9 l.7 l.6 l.6 1.5 1.3 1.1 1.0 0.9 0.8 0.7 7 0.5 0.4 0.4 0.5 0.5 0.4 0.3 0.8 0.7 0.6 0.6 0.5 0.5 0.5 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 8 0.3 0.3 0.2 0.2 0.3 0.3 0.3 0.3 0.3 9

0.5 0.3 0.3 0.3 0.3 0.4 0.5 0.5 0.6 0.5 0.5 0.5 0.6 0.5 0.5 0.5 0.4 0.4 U.4 0.4 0.4 0.4 0.4 0.4 U.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.5 0.5 0.5 0.5 0.4 h to 0.4 0.3 0.4 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.5 0.5 0.5 0.5 0.4 0.3 0.5 La II 0.5 0.9 0.5 0.5 0.5 0.5 0.5 0.6 0.5 0.6 0.5 0.6 0.5 I 12 0.4 0.6 0.5 0.6 0.6 0.6 0.6 0.5 0.4 0.4 0.4 0.4 U.4 0.4 0.5 0.4 0.4 0.4 0.4 U.4 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.5 0.5 13 0.6 0.5 0.6 0.6 0.6 0.5 0.6 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.5 0.6 0.6 0.7 0.6 0.6 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.6 0.6 0.7 14 0.7 0.7 0.7 0.7 0.7 U.8 0.8 0.8 0.8 1.0 1.0 0.9 0.9 0.9 0.9 0.9 0.7 15 0.7 0.7 0.7 0.6 0.6 0.7 0.7 0.9 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.6 0.7 0.7 0.8 0.8 0.9 16 0.6 0.6 0.6 0.6 0.6 0.9 0.9 0.8 0.8 0.7 0.7 0.7 0.7 0.6 0.5 0.6 0.5 0.7 0.7 0.6 0.7 0.7 0.7 0.9 1.0 1.0 IF 0.5 0.2 0.8 0.8 0.9 0.8 0.8 0.8 0.8 0.8 0.7 0.6 0.5 0.4 0.3 0.1 0.1 0.1 0.3 0.3 0.4 U.3 0.4 0.3 0.2 IB 0.1 0.1 0.8 0.1 0.8 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.1 0.1 0.2 0.0 0.3 0.2 0.2 0.1 U.1 0.1 0.1 19 0.8 0.1 0.8 0.1 0.1 0.1 0.1 0.I 0.2 0.2 0.1 0.1 20 0.l 0.2 0.3 0.3 0.3 0.2 0.1 0.0 -0.3 0.0 0.0 -0.1 0.0 0.0 0.1 0.1 0.0 0.0 -0.1 -0.1 -0.1 -0.1 0.0 0.0 0.0 0.1 0.3 0.2 0.1 0.1 0.8 0.1 0.1 21 0.0 0.0 0.0 0.0 -0.1 0.0 0.1 0.0 0.0 0.0 -0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 -0.3 -0.3 22 -0.4 -0.4 -0.3 -0.3 -0.3 -0.2 -0.2 -0.4 0.0

-0.8 0.6 0.6 0.3 0.3 0.3 0.2 0.5 0.3 0.0 -0.1 -0.2 -0.1 0.1 -0.2 -0.4 -0.4 -0.6 -0.6 23 0.1 -0.8 -0.8 -1.0 -0.9 -0.6

-0.4 -0.1 0.3 0.5 0.6 0.3 0.0 -0.3 -0.6 -0.9 -0.7 -0.3 -0.8 1.0 1.2 I.1 1.2 1.2 24 2.1 2.8 l.8 2.0 1.7 1.6 1.6 1.2 1.3 1.5 1.8 2.0 l.6 1.5 1.5 I.6 1.7 1.6 1.5 1.5 1.5 1.5 1.5 1.6 8.6 25 1.4 1.3 1.4 1.6 8.9 2.3 2.6 8.7 1.5 1.5 I.4 2.2 1.9 1.9 1.8 I.8 1.9 1.8 8.6 3.7 1.4 1.2 26 1.8 8.8 1.9 2.0 1.9 5.8 1.8 1.1 1.0 0.9 8.1 1.2 1.4 1.8 2.3 1.5 1.6 1.6 1.7 1.7 1.5 1.6 1.7 1.6 1.5 1.5 1.6 27 1.4 1.7 1.6 0.9 1.8 1.7 1.7 8.7 1.6 1.5 1.6 1.5 1.5 1.6 1.6 1.6 5.6 1.6 1.6 1.5 1.6 1.3 1.3 28 1.7 8.8 5.7 2.0 1.4 1.4 1.5 1.6 I.6 l.8 l.9 1.8 l.9 1.6 l.6 1.4 1.5 I.5 1.4 1.2 1.1 1.2 1.1 29 8.6 1.8 2.0 1.8 I8 1.9 1.8 1.8 1.2 1.4 1.5 1.5 1.7 1.8 1.9 8.8 3.8 1.8 1.8 1.7 1.6 1.5 1.4 1.2 1.4 1.4 30 1.6 1.6 1.5 1.6 1.5 1.5 1.4 1.3 1.5 1.4 l.4 1.5 1.6 1.5 I.5 I.5 1.5 I.5 1.6 1.6 1.4 1.5 1.5 31 1.5 1.4 1.5 1.4 1.4 1.3 1.6 f.4 1.4 1.4 I.4 1.3 1.3 1.3 1.3 1.2 1.3 1.2 1.2 1.3 1.3 1.4 1.3 I.3 8.4 1.3 1.3 1.4

e u 4 @ e N O. e.d eee em e. m. m. M e oN e N .o e ee. M. N Oe p ee. e. m.

N mmMO====NNW = =N=====OOOO e Ae N. e W. 4. e. m. d. M. O.e d e.e Ne Ne O e Ne 4 =. ee m e ee m e e.

N mm=Omme=NN=OmNememOOOOO N Ne a. m. e.m. e. e. d.e d eo m m. N.d. e eh e. ec ee mo ee No Me N ===Om===NN===N===OOOOOO l

= d. a e. e. 4 e4e=. e. d. m N e eme Ne d. e m. e e. O. m. e. d. N. m.

N ===O===mMMm==N===mOOOOO O e. O. me e e m. m. =. m. 4. =. N. e. h. e. m. e. d. =ee. m. m. e. d.

( M m-mOmm==NN===MemamOOOOO '

1 e c. m. e. e. *. N. N N. e. e. C. a. N. N. c h. e m. e. n e. e. ee

=

===Om==mM====NNmm=OOOOOW

=

M e ee -oS. e. N. N. N e em 4 e = e =e eNe O @. O. W. e N OeGeONe e e e 4 m

= ===O====NN==NNN=m= OM O-OW L-I N

m c.e

= = *m e e.N O N N e em e ee m e m e a . eN N O = = e =y=MammMNNm==OmO=Oz e o e e e e e e e c e N e -

e e a e e 4

W W

e e*de S. e. we N. m. e. d. O. e4 d. e e c. =. e. N. m. e. m. e eomcw ew

=

m-No===ONN==MNMm==Ommmm e ee m e oOe O M N o e N e e4 c. e e epe e e 4 eC e e Oe e e N. e Ne N e oNe m m ==Nm===mm===NNNNmmommme b

o

=

x 4

=

emeemmMN e o e e e e o e eeN m-=OmemmMmmmMNNNN--===6 o e eN e. me e eW o e oOO40emde e e o e e M t W

X N 3 m We O pe e em. 4. c. o. me e. cee. e.N. m. . O. @. e. e. ee @

e . - N H 3 -

memo-mmMNmNmMNNNMmOmemm 6 I 4 3 m H W =

b E WWWWWW v z 3 M Ne ee Oa Ne m e ee e. m ee e e -o me e.N. O. m. ee d. de @ . a N e. e e >>>>>>

d z e MON =---NNmMMNNNNNam-mm e =m m mm m I > w>>>>>

0 e <<<<<<

d 3 x N mmmama w

m

= m e ee s. O. 4. m. 4. N. Ne eN o. . . m.m. e. . w. ee e. e. e. e c. e m. Wsm6msmWWWWW M z g M MON ==mmWN=NNMNmMNmemm=N=^

> m - = === ===

M, d O M w

m - 6 g * -3 3 < O we oe me e eN. ee e. N. N. e. m. m. m. e. ee. eOe eO N e e. c. ee. eCWWdWWd ezzzzzz

$ * = =

ONNmmmhNmMNN=mNNmmmMwN=HkwWHH p a f MWWMMM I

= 3 enwwwm W

w W

e ee de e 4. a k. e. Oe N. eeee O e4 e4 e. e e e. e O m e. e. =. O. C e e eA W 3 ===MamMf4NmMNummmN=-mMNNm U H 2 W m e z

W e ee Ne eNe ee e N. OeO. de e eOe 4 ee. N. Oe ee ce h. e. e. =e OO@ o e .

6 memNmmNNNmMNemNmNemmMNNm .

b k G WNN N

em e e do ee ome e O =e d. e. m e e ee e@ e eme e m eeee ee c e ee d o o e mNm-mMNemNmmmmmmmmNume d eeNe @ e ew e em m h. e. ecee c. c ee d. N d Ne d. ee m e ee eNe e e @

==mNmemmM-NNammm======mm e do e e e'M. me ee m. e e e ee m. e e eN e de .@

e e N e O e e N.N e oNe e o de e mem Nemmmmmme=memmMmmmm==

deeNNdNN @eeded@N 4 e e e o e e e e o e e e e e e e e. ee d ee @o eN o eM 4e

===Nemm=====mmmmmmmmm---

e e o e e* C

===N-mm-Me e eO m 4 e e eeee c e. m e.e =e O m e e e e. e d e w e .m e e. m. m.

N====N==mm-W QM =

N e. N. Ne Oe ee d oeed. e. c. e me ee @e m. e m. e. d. 4. =. N. e. c. m.

== NOM -==Nm===N===me=Om

m 4. No N e O m m. ee m. e s e Oe m e ec e e =e e e ee d e doO eO eN.e. me

---NQmemeNNmNmNmememmh@@

> mMM4e@N eoomNmd@ @N eeO=Ned@ @ N eeO

< m --==mm mmmNNNNNNNNNNm Q

t TABLE 3.5-5 DIFFERENCES IN HOURLY MEAN TEMPERATURES IN 'F 8ETWEEN HONITOR 3 AND MUNITOR 7 I

l MAY 1979 DAY HOUR I 2 3 4 5 6 7 8 9 to 12 13 Il 14 15 16 17 18 19 20 21 22 23 24 I

l.2 1.2 1.2 0.9 0.9 0.7 0.7 2 0.7 0.7 0.7 0.7 0.9 1.2 1.2 1.4 1.7 8.8 8.8 1.7 1.5 1.3 1.2 0.1 I.9 l.9 0.9 0.8 0.5 0.5 0.4 0.4 U.4 3 0.2 0.3 0.3 0.5 0.6 0.8 I.0 8.2 1.4 1.7 1.9 2.5 2.0 2.0 1.9 I.9 1.7 1.5 1.4 1.2 1.1 1.0 0.9 4 0.9 0.8 0.7 U.6 0.6 0.6 0.6 0.7 0.8 1.0 1.0 1.2 1.2 1.4 1.3 1.2 1.0 1.3 1.5 I.3 0.9 0.9 0.9 1.0 1.1 l.2 5 1.4 1.4 1.3 1.3 1.2 I.I 1.2 1.2 I.3 1.3 1.4 1.2 1.2 1.1 1.0 0.8 0.7 0.6 6 0.6 0.7 0.7 0.7 0.9 1.0 1.1 1.1 1.2 1.4 1.4 1.4 1.5 1.6 8.7 1.8 2.0 1.8 1.7 1.6 1.2 0.8 0.8 0.7 I.0 0.9 0.9 0.8 1.0 1.0 7 0.8 0.6 0.7 0.7 0.9 1.5 1.2 1.2 1.4 8.4 1.5 1.5 1.6 8.3 1.0 0.9 0.8 0.8 0.8 0.7 0.9 1.1 8 l.2 1.3 1.5 1.5 1.6 1.5 1.4 1.3 1.I 1.I 0.9 1.2 1.5 1.4 1.6 1.4 1.4 1.5 1.2 1.2 0.9 9 0.8 0.7 0.7 0.8 0.8 0.9 1.0 1.1 1.2 1.2 8.1 1.2 1.1 1.2 1.4 1.6 1.7 1.8 1.7 1.5 1.5 1.2 0.7 10 0.6 0.7 l.8 0.8 0.6 0.5 0.5 0.6 0.7 0.5 0.9 1.0 0.9 1.1 1.2 1.3 8.7 I.9 2.4 2.4 2.4 2.3 2.1 8.9 3.7 1.5 1.3 1.0 g 11 0.8 0.7 0.8 0.8 0.9 1.1 1.3 2.0 2.3 2.4 8.8 8.6 1.5 1.5 1.6 3.6 I.7 f.6 1.8 8.7 1.8 1.6 1.6 8.5 in 12 1.4 1.4 1.3 1.2 1.2 1.8 0.9 0.8 0.8 0.8 U.9 1.1 1.3 1.8 2.0 Ln 0.9 I.5 2.1 2.1 2.0 2.8 8.9 1.9 1.6 13 1.5 1.4 I.4 1.5 1.3 4.0 0.8 0.9 0.8 0.7 0.8 0.9 0.9 1.0 1.0 1.1 1.1 1.0 8 0.9 0.9 0.8 1.0 0.9 0.9 14 1.1 1.2 1.1 1.1 l.0 1.2 I.2 1.0 1.1 1.2 1.2 1.1 0.9 0.7 0.6 0.5 0.2 0.3 0.2 0.2 0.1 0.0 0.1 0.8 15 0.2 0.2 0.3 0.5 0.6 0.6 0.7 0.7 0.9 0.9 0.8 0.7 0.6 0.5 0.4 0.2 0.2 0.1 0.0 0.0 -0.8 0.0 0.0 0.0 16 0.1 0.1 0.1 0.1 0.3 0.2 0.2 0.3 0.4 0.5 0.7 0.9 0.6 0.6 0.7 0.7 0.6 0.6 0.6 0.6 0.1 0.0 IF 0.0 0.0 0.0 0.1 0.3 0.3 0.4 0.4 0.5 0.5 0.5 0.7 1.0 1.1 1.0 1.1 1.0 0.1 18 0.9 0.5 0.3 0.1 0.0 -0.3 -0.3 -0.4

-0.4 -0.4 -0.5 -0.4 -0.5 -0.4 0.1 0.3

-0.5 -0.5 -0.5 -0.4 -0.4 -0.1 0.3 0.5 0.9 1.1 1.3 1.5 1.5 1.5 1.5 1.5 19 5.6 1.4 1.4 1.3 I.3 1.3 1.3 1.2 1.8 0.8 0.4 0.3 0.2 0.9 1.1 0.4 0.2 0.4 0.9 0.2 -0.2 0.1 0.2 0.4 20 0.6 0.5 0.6 0.6 0.7 0.6 0.6 0.7 0.7 0.8 0.7 0.7 0.7 0.8 1.0 1.1 1.0 0.1 0.7 0.7 0.5 0.4 0.4 0.5 21 0.5 0.6 0.5 0.5 0.3 0.4 0.4 0.3 0.2 0.3 -0.5 -0.1

-0.1 -0.3 -0.5 -0.4 -0.2 -0.2 -0.2 -0.1 0.0 0.0 0.0 0.1 22 0.2 0.2 0.2 0.2 0.3 0.4 0.3 0.4 0.5 0.7 0.8 U.7 1.0 0.9 1.1 1.8 1.1 1.0 0.9 0.8 0.6 0.3 0.1 -0.1 23 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 0.1

-0.4 -0.5 -0.5 -0.4 -0.I 0.3 0.2 0.4 0.9 1.1 1.2 1.4 1.3 1.2 0.8 0.5 0.3 24 0.1 0.1 -0.4 -0.1 -0.2 -0.4 -0.4 -0.4 0.0 -0.1 0.2 0.5 0.7 0.9 1.1 1.2 1.2 1.0 1.0 0.9 1.2 1.8 2.6 2.6 25 2.2 1.6 1.1 0.9 I.I l.1 1.2 1.2 1.8 1.2 1.5 I.6 8.9 8.7 1.4 1.4 1.4 1.8 0.8 0.7 0.8 0.8 0.8 0.5 26 0.6 0.5 0.6 0.5 0.4 0.4 0.5 0.7 0.9 0.9 0.8 0.7 0.5 0.3 0.1 0.0 -0.1 -0.8 0.3 0.5 0.7 0.8 0.8 0.8 27 0.7 0.8 0.6 0.7 0.6 0.6 0.6 0.7 0.4 0.5 0.5 0.4 0.4 0.8 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.3 0.2 0.2 28 0.3 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.6 0.3 0.3 0.2 0.1 0.1 0.8 -0.2 -0.3 -0.4 -0.4 -0.5 -0.6 -0.5 -0.5 -0.4 29 -0.1 0.0 0.0 0.1 0.3 0.5 0.7 0.8 0.8 0.7 0.7 0.4 0.3 0.3 0.4 0.3 0.3 0.2 0.1 0.0 0.2 0.3 0.4 U.3 30 0.1 0.1 -0.1 -0.1 -0.2 -0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.8 0.1 0.1 0.1 0.0 0.0 0.2 0.2 0.0 0.0 -0.4 il 0.0 0.1 0.2 0.3 0.5 0.6 0.7 0.7 0.8 0.7 0.7 0.6 0.5 0.5 0.4 0.2 0.3 0.2 -0.3 -0.3 -0.3 -0.3 -0.2 -0.3

- . , . ., - - . - - . . _ . _ _ _ , . ___ - , _ .-. ~ . , _ , -

TABLE 3.5-6 Dit tLNENCES IN IH)URI.Y ht AN TDirt.kAl'UNES IN *F BETWEEN PONITOM 3 AND MONITOR 7 NOVLMBLR 1979 iAY lblUR I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 IF 18 19 20 21 22 23 24 1 0.7 0.7 U.6 0.7 0.7 0.8 0.8 0.7 0.7 0.8 0.7 0.8 0.9 1.0 1.0 1.4 2.0 3.7 3.4 3.0 3.6 2.9 2.8 2.6 2 2.5 2.6 2.8 2.9 3.3 3.7 4.3 2.5 1.8 8.4 0.9 0.8 0.7 0.5 0.6 0.6 3.8 0.9 0.9 0.9 0.6 0.7 0.7 0.7 3 0.8 0.8 0.7 0.9 0.9 0.7 0.7 0.8 0.8 0.7 0.6 0.4 0.5 0.4 0.5 0.6 0.6 0.4 0.3 0.0 -0.8 -0.2 -0.1 0.1 4 0.8 0.1 0.3 0.4 0.5 0.7 1.0 1.0 8.1 1.1 1.3 1.4 1.6 1.6 1.5 1.6 1.5 1.5 1.6 1.5 1.5 I.4 1.5 8.6 5 1.6 1.5 1.5 1.6 I.6 I.6 1.5 1.6 2.6 2.7 2.2 1.7 1.6 1.7 1.5 1.4 1.3 I.4 1.4 1.3 I4 1.4 1.5 1.5 6 1.5 1.5 1.6 8.6 I.7 8.7 1.8 1.7 1.8 1.9 1.9 2.0 2.0 1.9 2.0 2.2 2.5 2.1 2.5 2.8 2.2 2.2 2.I 2.1 7 2.0 1.9 1.7 8.6 1.5 1.5 1.5 1.4 1.4 1.6 8.7 1.6 1.6 1.6 1.6 8.7 1.6 8.6 8.7 1.8 8.8 3.8 8.8 2.0 8 2.0 2.0 2.0 1.8 8.8 1.8 B.9 2.6 4.0 4.4 3.6 2.9 2.6 2.7 2.8 2.5 2.2 2.2 1.6 1.4 1.3 8.1 1.0 1.1 9 1.3 8.2 1.2 1.8 1.I I.5 3.3 3.9 3.5 2.8 2.6 2.4 2.5 2.5 2.2 1.9 8.6 1.9 I.4 1.1 0.9 1.0 1.2 1.4 to 1.6 1.7 I.9 2.0 2.2 2.2 2.3 2.9 4.3 5.4 5.9 5.9 6.8 6.2 6.7 6.8 7.0 7.3 7.7 7.7 7.9 8.5 8.3 8.3

, Il 6.2 6.2 5.4 4.4 3.2 2.9 2.6 2.6 2.3 sy3rgy gig 3g.gg47:yg m 12 2.6 2.5 2.6 2.7 2.7 2.6 ch 13 2.5 2.5 3.0 1.0 3.2 3.3 3.6 3.9 4.3 2.3 2.5 2.6 2.6 2.7 3.0 3.2 3.1 2.5 2.0 1.8 1.8 1.9 8.9 1.9 1 14 3.8 8.7 8.8 1.8 2.0 2.4 2.6 3.6 4.1 3.4 2.9 2.5 2.2 2.2 2.3 2.2 2.0 1.9 1.7 1.6 1.7 1.8 1.7 Ii 15 8.8 8.8 8.8 l.9 2.3 2.7 1.2 3.8 3.5 1.1 3.1 3.u 3.1 3.0 3.2 3.4 3.3 3.2 3.I 3.8 3.0 2.9 2.8 2.9 16 2.7 2.4 2.5 2.4 2.4 2.4 2.3 3.0 3.8 3.6 3.2 3.2 5.8 3.0 2.9 1.0 2.9 2.8 2.5 2.2 2.2 2.2 2.2 2.2 I7 2.2 2.3 2.3 2.5 2.8 2.8 2.8 2.7 2.7 3.7 3.4 2.5 2.4 2.7 3.4 3.7 3.7 3.8 4.1 3.6 2.8 2.7 2.7 2.5 18 2.6 2.2 2.5 2.9 3.3 3.7 4.5 4.3 4.5 4.6 4.7 4.8 4.5 5.2 5.5 5.9 6.I 6.2 7.8 6.9 4.6 3.9 3.9 4.0 19 4.8 4.2 4.4 4.9 5.1 5.5 5.6 5.6 6.2 6.1 5.2 4.4 8.6 1.2 3.4 3.4 3.2 3.1 2.6 2.4 2.3 2.3 2.2 2.2 20 2.2 2.2 2.0 1.8 8.8 1.5 1.3 1.0 0.7 0.1 0.7 0.5 0.4 0.5 1.0 8.2 1.3 1.9 2.6 2.4 2.3 2.4 2.3 2.3 28 2.3 2.3 2.3 2.4 2.4 2.4 2.6 2.7 2.8 1.0 3.2 1.2 3.1 2.9 2.9 2.8 2.8 2.7 2.2 2.3 2.0 2.0 2.1 2.0 22 2.8 I.8 2.2 2.0 2.5 2.6 3.3 3.8 4.5 5.6 5.2 4.2 1.5 3.3 1.2 3.2 3.3 3.7 4.7 4.6 3.9 3.4 3.1 3.1 23 3.2 3.2 ,3.8 3.2 3.6 4.2 4.7 5.1 5.5 5.9 6.6 6.1 5.0 4.2 3.4 3.1 2.9 2.6 2.2 1.9 1.8 1.9 2.0 2.2 24 2.4 2.6 3.1 3.8 4.3 4.6 5.0 5.4 5.8 6.3 6.6 5.7 4.4 3.5 3.1 2.8 3.0 3.0 2.6 2.4 2.2 2.8 1.9 1.6 25 8.9 1.9 2.5 2.3 3.0 1.1 3.5 4.0 4.5 4.8 5.1 5.3 5.6 5.9 6.1 6.2 6.2 6.0 4.6 3.0 2.2 1.9 1.7 2.0 26 2.2 2.6 3.0 3.4 3.9 4.1 4.6 4.9 5.4 5.4 5.0 4.5 3.8 3.1 2.7 2.3 2.2 2.1 2.2 8.8 8.6 1.3 1.0 1.0 27 0.8 0.6 0.8 -0.8 -0.4 -0.3 -0.3 0.0 0.2 0.7 1.2 I.7 1.8 1.7 1.7 1.4 1.1 1.0 1.0 1.1 8.2 1.4 1.4 1.3 28 5.3 8.8 I.8 1.2 1.3

  • 1.6 1.8 1.8 8.9 1.9 1.8 8.8 l.7 8.9 1.9 3.9 I.9 1.9 1.7 1.8 1.8 1.7 8.7 1.5 29 1.3 8.2 8.1 1.2 I.) 1.5 1.7 1.9 2.0 2.0 2.0 2.8 2.0 1.9 2.0 1.9 4.7 1.7 8.6 8.7 1.8 I.9 2.0 2.1 10 2.0 1.9 8.8 6.7 1.6 1.5 1.6 8.6 8.7 8.9 2.1 2.2 2.2 2.3 2.4 2.4 2.4 2.2 2.0 2.0 2.0 8.9 2.5 2.5

-- w - - -~

TABI.P. 3.5-7 DIFFERENCES IN IlOURLY MEAN TEHFERATURES IN 'F BETWEEN th)NITUR 3 AND MONI TOR 7 DECEMBER 1979 DAY HOUR I 2 3 4 5 6 7 8 9 to  !! 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2.6 2.5 2.2 2.1 2.2 2.5 2.5 2.2 2.3 2.4 2.6 2.6 2.3 2.6 2.5 2.4 2.3 2.4 2.3 2.1 2.2 2.5 1.7 2.2 2.3 2 2.3 2.2 2.3 2.4 2.5 2.7 3.0 3.6 3.7 3.2 3.3 1.2 2.5 3.0 2.9 3.0 3.2 3.2 3.I 3.1 2.9 2.8 2.8 2.7 3 2.6 2.3 2.0 1.9 1.8 2.2 3.9 4.2 4.5 3.7 3.5 4.1 4 2.3 2.5 2.4 4.2 4.5 4.3 4.0 3.8 3.5 3.1 2.9 2.8 2.8 2.6 2.0 2.6 2.9 2.7 2.6 2.5 2.8 3.8 3.4 3.5 3.5 3.4 3.4 3.1 5 2.3 2.3 2.3 2.6 3.3 3.6 3.1 2.6 2.4 2.3 2.3 2.3 2.8 2.9 2.8 2.8 2.6 2.6 2.8 2.9 2.8 2.7 2.8 6 2.9 3.0 1.5 3.8 3.3 3.2 2.9 2.9 2.8 2.9 2.7 2.7 2.8 2.9 3.2 3.1 4.0 4.5 4.6 4.4 4.0 3.9 3.9 3.9 3.6 3.7 3.6 7 2.0 1.8 1.6 1.5 1.4 1.4 1.4 3.5 3.2 2.7 2.4 2.3 1.5 1.5 2.0 2.3 2.3 2.5 2.5 2.6 2.7 2.6 2.9 2.7 8 2.0 2.2 2.6 2.6 2.3 2.5 2.4 2.8 2.3 2.2 4.5 2.6 2.2 2.I 2.0 1.8 2.6 4.1 4.2 4.1 3.8 3.2 3.0 2.8 9 1.5 1.4 1.3 1.2 1.0 2.6 2.2 2.2 2.0 1.7 0.8 0.8 I.) 2.5 2.8 3.5 4.4 5.2 5.8 6.0 6.2 5.9 6.9 6.6 4.9 10 3.7 3.6 3.5 3.2 2.9 3.0 3.3 4.2 5.4 5.7 4.0 4.0 3.8 3.6 6.6 4.3 4.6 3.6 3.5 3.3 3.0 2.6 2.2 2.0 1.9 1.8 1.9 g Il 2.0 2.0 2.0 2.0 2.0 1.9 1.7 8.6 3.4 4.5 4.1 3.8 3.6 2.0 on 12 2.5 2.3 4.5 3.4 3.2 3.1 3.8 3.0 2.8 2.8 2.7 2.6 2.6 2.2 2.4 3.0 3.5 3.9 4.5 5.5 6.6 5.2 4.4 3.5 3.0 4 13 8.9 1.9 2.8 2.6 2.5 2.4 2.4 2.4 2.2 2.0 1.9 1.9

' l.9 1.9 2.0 l.9 2.0 3.6 4.8 4.6 3.8 3.4 3.2 3.0 2.9 2.9 14 2.5 2.2 2.2 2.9 2.9 2.9 3.0 2.8 2.4 2.2 2.2

{.1 2.2 2.4 2.5 2.6 2.6 2.5 2.7 2.8 2.8 2.8 2.7 2.8 3.0 15 1.5 I.4 I.) 1.0 3.0 3.1 2.9 2.6 2.2 8.9 1.7 0.8 0.8 0.5 0.6 1.3 2.4 2.8 2.9 2.5 2.4 2.2 2.1 2.2 2.3 2.5 8.8 I6 1.5 1.4 1.3 1.2 1.2 1.5 2.5 3.0 3.8 4.4 I.7 1.5 8.5 1.6 IF 5.I 6.2 6.7 7.0 7.4 7.5 7.6 8.1 7.3 4.8 3.8 3.0 3.1 3.1 2.9 2.7 2.6 2.7 3.1 4.0 5.1 6.7 2.5 2.9 6.7 5.l 3.9 3.5 3.3 3.2 3.1 2.6 2.6 2.4 2.0 1.7 1.7 1.9 18 8.9 4.9 8.7 1.6 1.4 1.2 1.2 4.6 5.4 4.7 4.1 I.9 3.5 3.3 3.8 3.1 3.1 2.9 2.8 2.9 2.7 2.5 2.4 2.4 19 2.4 2.6 1.0 3.4 3.9 4.3 4.6 4.4 3.7 1.1 2.9 2.7 20 2.7 2.7 2.7 3.0 3.4 3.5 3.3 2.9 2.5 2.4 2.3 2.2 2.I 2.1 2.0 2I 2.0 2.0 2.0 2.0 2.0 2.0 1.9 2.0 1.7 1.7 2.2 2.2 2.2 2.3 2.3 2.2 2.1 2.0 2.0 1.9 8.8 i

21 1.7 l.8 2.2 2.6 3.1 3.7 5.5 7.3 6.2 4.8 4.0 2.I 22 2.5 3.5 3.2 2.9 2.8 2.6 2.6 2.6 2.5 2.6 2.5 2.5 2.5 2.4 2.5 2.8 3.2 3.7 4.2 4.8 6.2 7.2 7.3 6.9 6.6 23 5.3 5.0 4.7 4.7 6.4 6.2 5.7 5.4 6.2 6.9 6.4 6.0 5.6 5.1 5.0 5.4 5.8 6.1 6.7 7.2 7.4 7.7 8.0 8.4 24 3.2 3.3 3.4 3.4 3.6 8.3 8.6 8.9 9.0 7.2 6.0 4.7 3.9 3.4 3.2 4.0 4.4 4.9 5.8 7.0 7.5 6.8 5.7 4.4 4.1 4.0 4.6 25 2.6 3.2 3.5 1.6 3.7 3.9 4.0 4.0 4.8 4.7 3.7 2.9 2.6 2.5 2.I 4.8 4.1 3.2 2.3 l.9 1.7 8.6 8.6 8.6 1.5 1.5 1.5 26 1.2 1.2 8.1 1.0 0.9 0.8 _0.8 0.8 1.5 1.4 1.3 1.3 0.8 0.8 0.9 0.9 1.0 1.0 1.0 1.1 1.1 1.2 1.2 1.2 1.3 1.3 27 1.2 1.2 1.1 1.0 0.9 0.9 0.9 1.3 1.2 0.9 0.8 0.9 0.9 1.0 1.8 1.1 1.I l.1 1.2 1.2 1.2 1.2 1.2 1.2 28 1.2 1.2 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.0 1.0 1.0 1.1 1.1 1.2 1.2 1.3 1.3 1.3 1.3 1.3 29 1.3 1.3 8.6 l.2 1.2 1.1 1.0 1.1 1.1 1.3 1.3 l.0 1.2 1.3 1.4 1.4 1.6 1.7 8.7 1.7 8.7 1.8 1.8 30 1.8 1.8 B.7 6.6 8.7 3.0 4.3 5.4 5.2 I.7 8.8 1.8 l.9 4.3 3.0 2.4- 2.1 2.0 2.0 2.0 I9 8.9 B8 1.8 1.8 1.9 2.0 11 2.0 2.0 2.0 2.0 1.9 2.3 2.4 2.4 2.5 2.6 *2.6 2.7 2.7 2.8 2.9 2.9 2.8 2.8 2.5 2.2 2.0 I.9 8.8 B.7

ed '

SECTION 4 WATER QUALITY STUDIES 1

I

4. WATER QUALITY STUDIES Four water quality parameters, in addition to temperature, are monitored continuously by the Honeywell W-20 Water Quality Data Collection Systems located on the Verwent shore at Station 7, upstream of Vermont Yankee, and at Station 3, downstream of the plant. Summaries of the data collected in 1979 for the four parameters - dissolved oxygen, conductivity, turbidity, and pH -

are shown in Tables 4.1 through 4.4 at the end of this section of the report. The dissolved oxygen data, reduced to daily means and daily maxina and minima with times of occurrence, and the conductivity data, as daily means are presented in Table 4.1 for Monitor 3 and Table 4.2 for Monitor 7. Turbidity data, as daily means and pH data, as daily maxima, minima and range, are shown in Tables 4.3 and 4.4 for Monitors 3 and 7, respectively.

Those tabulated data are summarized in the graphs of Figures 4.1 through 4.8.

The monthly maximum dissolved oxygen concentrations observed in 1979 at Monitor 3 in thrch and at Fbnitor 7 in April were each 0.1 mg/l greater than maxima observed in those months in prior years. The monthly mean at Monitor 7 (13.9 mg/1) was 0.2 mg/l greater than the previous high observed in 1975. The only record monthly minimum D.O. observed was that of 11.1 mg/l at Station 3 in December, 0.1 mg/l less than the minimum of December 1971.

Low river flows in July and August resulted in slightly greater (%5 pmhos) mean conductivity records at both locations.

Maximum conductivity observed at Station 3 was also greater in those months than in prior years. The Station 3 maximum in May and the minimum in January were new records also.

All turbidity values - maxima, means, and minima - observed in 1979 were within one turbidity unit of those found in earlier years.

No record pH minima were established in 1979 but maxima greater by 0.1-0.2 pH units than found in earlier years were observed at Monitor 3 in February, March, April,and September and at Monitor 7 in February and August.

Grab samples for water quality analysis were collected once each quarter in 1979 at the two monitor stations and from Vermont Yankee's cooling water discharge to the river. These samples were analyzed for sixteen parameters by the procedures of Standard Methods for the Examination of Water and Wastewater, 14th edition (APHA et al. 1976). The analytical results are shown in Table 4.5.

Construction of a fish ladder at Vernon Dam was begun in May 1979. The effects of this work on river water quality are evident in the data of the May sample at Monitor 3. The high solids concentrations and turbidity, relative to the upstream samples, were accompanied by the highest total phosphate concen-tration observed in the river since studies were begun in 1967. ,

The only parameter, other than phosphate, for which higher con-centrations were found in 1979 than had been observed in former years was chloride. The chloride ion concentrations at Station 3 in February and at both stations in August were higher in 1979 than in previous years of study.

On occasion Vermont Yankee adds the following chemicals to its cooling water discharge to the Connecticut River: sodium sulfate, as demineralizer regenerant; sodium hypochlorite, to

( control biological fouling of the condenser cooling system; and sulfuric acid, for pH control. The amounts of these chemicals discharged to the river are relatively small and not likely to  !

significantly alter the river's water quality. However, to provide a quantit0tive basis for assessing the impact of Vermont Yankee's operation en Connecticut River water quality, data on 1

the concentrations of sodium lon, chloride ion, sulfate ion, and alkalinity concentrations were subjected to statistical analysis.

The statistical methods used with these four parameters have been detailed in Reports IV and V of this series (Aquatec 1975, i 1976). Data collected on these four parameters at Stations 3 and ,

7 before Vermont Yankee began operation and during the times of closed cycle operation through 1974 were combined and subjected to '

linear regression analysis. These analyses, using Station 7 concentrations as the independent variable, resulted in the statistics summarized in Table 4.6.

TABLE 4.6 ,

SUMMARY

OF STATISTICS FROM LINEAR PEGRESSION ANALYSIS OF PREOPERATIONAL AND CLOSED CYCLE DATA AT STATIONS 7 AND 3 FOR FOUR PARAMETERS PARAMETER Sodium Sulfate ChlEYide Alkalinity Sample size 70 72 70 80 Intercept 0.23 0.96 1.1 4.9  !

Regression coefficient 0.925 0.927 0.795 0.844 Standard error of  !

i regression coefficient 0.041 0.054 0.053 0.04'.  !

Correlation coefficient 0.941 0.899 0.861 0.890 Standard error of estimate 0.348 0.987 0.841 2.95 '

t The regression lines generated by these analyses are plotted i as solid lines in Figure 4.9 for sodium ion, Figure 4.10 for sul-fate ion, Figure 4.11 for chloride ion, and Figure 4.12 for alka-linity. Each figure also show, as dashed lines, the 95% confidence limits for Station 3 concentrations predicted by the regression equation from new observations at Station 7. These confidence limits were drawn from limits calculated for the minimum, mean, and maximum Station 7 concentrations used for each parameter in the regression analyses. The applicable range of Station 7 concentrations for each regression equation is indicated on the figure by the vertical dashed lines at the minimum and maximum value of Station 7 concentrations used to develop the equation.

On each of the figures, the data collected in May and August, when Vermont Yankee .was operating in the closed cycle mode of con-denser cooling, are plotted as filled circles. The data of Febru-ary and November were collected while Vermont Yankee was operating in the open cycle mode. Data of these dates are plotted in the figures as open circles.

The twelve plotted points on the sodium ion, sulfate ion, and alkalinity figures are all within the range of Station 7 concentra-tions used to calculate the regression equations and within the 95%

confidence limits associated with the regression lines. The Station 7 chloride ion concentration in August (10.8 mg/1) is greater than the maximum concentration (10.2 mg/1) used in the regression analy-sis, but the plotted print for the August data would fall within the 95% confidence limits of an extrapolated regression line.

However, the plotted point for the February chloride concentrations indicates that the observed Monitor 3 concentration is clearly greater than the 95% confidence limit for a Station 3 concentration predicted from that observed at Station 7.

DISSOLVED OXYGEN STATION NO. 3 1979 85 -

%.. " - ----$ \ ,,

l s

/ /l


N sx s /

EO -

\.

\,

N

'% , ,,a *** ,

/ s-

.  %* -.= ,*a*#

n

j'/',o #,

E a

s.~~~% ~. ~

. J., ,

k 'r,

~~~---. s,,o/'

I m 5-

  • u t

I l

0- , i 1 2 3 4 5 6 7 8 9 10 18 12 MONTH MONTHLY MAXIMUM -----

MONTHLY AVERAGE MONTHLY MIN! MUM - - - - - - - - - -

.J FIGURE 4.1

  • t

s DISSOLVED OXYGEN STATION NO. 7 1979 15

%  % ." "~~ g

  1. \ /

~ N /

~~-s \

s p/

's.\ .%

N .a#

/-

10 - -

N, ,,e # k#,e,#

' 'N s ___, p- ,,

/

k  %.x f, ,,o/

a #

, 'N, ,/

\-

5- /

O 1 2 3 4 5 6 7 8 9 10 11 12 MONTH MONTHLY MAXIMUM -----

MONTitLY AVERAGE MON TitLY MINIMUM - - - - - - - - - -

FIGURE 4.2

l

. e 2

1 ,

<p  % -

' ~

~ -

s ~

~

l

ii!

Il gI -

~ -

~ -

% - ~ -

~ ~

- ~

. 0 -

. lJ t5 1

\ '

- M U GE M U

\ s M

I A

R M

\

I

  • X E N .

A V I

\ -

s 9

M A M _

s' Y Y Y L L L

% s H H H T T T .

N N N A

\- 8 O O O M MM

/#

~ -

Y3 /

  • T O = /s I = 7 .

VN I

s

/

e j H 9

T ..

T / '

N Cb7 j, O 3 U O9 I 1

/ /, M 4

DT

, 6 NA ' #

/'

E OT ** R U

C S /, G s, ','. 5 I

F

/ -

/ ~

/, ~

4

\ #

\ a,

\ ,

\ 3

\'

k

.\

\s\ , 2 e

f _

N -

/o s j t 5 0 5 0 5 O 5 0 2 7 S 2 0 7 5 0 1 I 1

1 2

or2 OE 2 5f

1l!! \

1 .

2 1

~

W  %

., j Il s'

s ~

- - ~

. - ~

.% 1li 0 1

N ,r' M U GE M M U A

N s I

f t M

\ ' X A V E IN I M A M

,lx 9 Y Y Y

- L H HL itL

\'s' T T T N N N O O O

' M MM

. 8

,< Ij Y 7 '

% /, .

T O I

% lp- 7 IVN 9 / /, H T f / T C N7 /

p N O

U O9 I 1

/

, M 4

DT .lI'/# j 6 4

NA E O T C S / /,

fo l

l u

G

/ / 5 I

F

/,

/ -

f 4

\ .

N ,..

3 -

. s\' -

s\'g

\'x 2

si /s -

/

% / ,

  • / ,

, 's i s 0 5 0 5 0 0 5 2 7 2 0 7 5 0 1 51 i 1

2 mg2 o63 iy -

TURBIDITY STATION NO. 3 1979 10 0 l

l l

80 -

m b

b 60 -

tsJ J

e O o3 2 00 4 l U Z

o 40 - ,

l a, \

l f \

20 - 6 /

\ \

/

\ /

\

\ \ l

\ /

\'M ~~~

\l

~

Y \

  • Qs'Y%s p

/ ~l

^~"~~

0- I I I I I i i s s  :

1 2 3 4 5 4 7 8 9 10 16 12 M0rJTH M ONTHLY MAXIMUM -----

MONTHLY AVER AGE FIGURE 4.5 MONTHLY MINIMUM ---------

O J

r .

?

2 1

sN == =

' -,H

/ ~

/ . - -

li ' '

6,o 1t M U G MA E M 2- I RUM I

X E N i.ll l

= 9 A V M A M I

Y Y Y L L L 3= H H H T T T N N N

= . O O O MMM

' iIll

- 8 7 =

Y O .

T N I

D 9 =g=. 7 H

T N

B N7 I

O Rl O 9 l T . M 6 4.

UT \l

% ,. 6 T TA E

- s=-

R S s - U

\ G I

N  ; 5 F

/ -

/ -

/ -

\}l i!\ \ /4- ,

\ \ -

\

\g\ -

\ \ -

\ \ -

0- \I I

'l , 3 I

i;I I

=-

I I .

o= I I I y is I .

2 N

N

\

\

I)h o l

0 o 0 0 0 8 6 4 2 01 n msO5" zoyu4

,mi

.e !

2 1

~

- ~

~

~

~

8 - --

. 1

- 's, --

0 1

. M N ~ U M U M

% ~ I MI

~ X N

\

~

9 A

MM I

Y Y

" ' L L H H

- 's, T T N N OO

, /,  : 8 MM N ~

g ,~

3 .

N ~

~

O.  % '* 7 N /

  • H H 9 s, T N

p N7 /

, O O9 I 1 p

  • M 7
  • 4 T ", s  !

6 A -

E T ,

, - R S .

U

- G I

  1. -- 5 F

- ~

, 4 3

- . # . 2 1

0 0 0 0 O.

9 8 7 6 5 L

n-u6 C ot

,il4 1 .

2 1

- j l

I

~ -- -- -

~ -. = -- ,

~ . =-

m m ~

- M U M

% U

~ M

- XI MI N

~ A I s ~ 9 MM _

% -- Y Y L L _

H H

~ - T T N N

, ., OO MM

, 8 7

~ -

O. - iII, 7 N , -- H H 9 -

T N

. pN7  % - O O9 " - M 8 I

T 1

' - n 6 4 A / - E T s -. R S / U

.. G I

5 F

/, ._

. i 4 i 3

, 2

-l--

- ~

- ~

1 0 0 0 0 0 9 8 7 6 5 N5U xQ lye

COMPARISON OF OBSERVED STATION 3 SODIUM ION CONCENTRATIONS WITH STATION 3 CONCENTRATIONS PREDICTED FROM PREOPERATIONAL / CLOSED CYCLE DATA , STATIONS 7 AND 3,1969 - 74 Y

15 -

14 -

13 -

12 -

]

5 n-

~

s l

2 10 - '

9 yg 9-

  • a:

$2 8-N5 /

55 OM 7 -

/

e' i i z

6-

/

/

)

9 g_ ,f

,/

3 / /

f 4- ,s' ,/

O

  • 3-( /

/

I l/

2- V i -

O , , , , , , , , , , , , , , ,X '

O I 2 3 4 5 6 7 8 9 80 il 12 13 14 15 STATION 7 l SODIUM ION CONCENTRATION ( MG/L) l l R E GRE S SION EQUATION ( y s .23 .+ .925s )

l 95 7 CONFICENCE LIMITS FOR PREDICTED y VALUE S - - - - - - - - - -

VERMONT YANKEE OPEN CYCLE.1979 o VERMONT YANKE E CLOSED CYCLE,1979 e FIGURE 4.9 COMPARISON OF OBSERVED STATION 3 SULFATE lON CONCENTRATIONS WITH STATION 3 CONCENTRATIONS PREDICTED FROM PREOPERATIONAL / CLOSED CYCLE DATA , STATIONS 7 AND 3,1969 - 74

/

/ l 15 - / I i f ,

/ l 14 - / I i

/

13 - / '

~

, i d 12 - / f

$ / ' '

i s

/

/ /

h 10 - / /

5

~

/ p' ro / .O '

f

{9 o

2 6- f 1 /

s' 5j7 -

g e-

/

5- '

u.I f w 4- /

Y m 3_

2-1-

?

4 5 6 4 4 4 4 4 4 4 6 4 4 4 i r 4

O 2 3 5 6 7 8 9 10 11 12 13 I4 15 i

STATION 7 I SULFATE lON CONCENTRATION ( MG/ L)  !

REGRESSION EQUATION ( y s .96 + .92 's )

l 95 '/o CONF,0ENCE LIMITS FOR PREDIC150 y VALUE S - - - - - - - - - -

VERMONT YANKEE OPEN CYCLE, f 979 o VERMONT YAhxE E CLOSED CYCLE,1979 e i

FIGURE 4.10

COMPARISON OF OBSERVED STATION 3 CHLORIDE lON CONCENTRATIONS WITH STATION 3 CONCENTRATIONS PREDICTED FROM PREOPERATIONAL / CLOSED CYCLE DATA , STATIONS 7 AND 3,1967 - 74 Y  ;

15 -

14 -

13 -

~

12 -

k o .

g 11 -

~

/ I 2 10 - / l 9 f I

  • yg 9- ,/ l C / l

&f u;

8 -

)

l g<

u vi 7-

/

/

,/

6-s' * ,'

9 / ,'

y 0~ s' ,/

E 4- / '

O J I ,'

/

l /

2- l /

I-l s' k ,

O i i i i i i i i i . . . . . .X 0 1 2 3 4 5 6 7 8 9 10 11 12 13 I4 15 STATION 7 l CHLORIDE ION CONCENTRATION ( MG/ L)

REGRESSION ECUATION ( y e t.1 + .7953) 95 % CCNFIDENCE LIMITS FOR PREDICTED y VALUES - - - - - - - - - -

VERMONT YANKEE CPEN CYCLE,1979 o i VERMONT YANKE E CLOSED CYCLE,1979 .

l l

FIGURE 4.11 l

t i

COMPARISON OF OBSERVED STATION 3 ALKALINITY CONCENTRATIONS WITH STATION 3 CONCENTRATIONS PREDICTED FROM PREOPERATIONAL / CLOSED CYCLE DATA , STATIONS 7 AND 3,1967 - 74 y ,1' 50 - / l

/ l s I

/ I f

/ o I 40 - / ,

/ /

/ /

/ /

/ /

] / /

D /

o /

3 m M~ / /

,/ /

> b bp /

s' /

/

$ f /

<M l /

x 20 - I

/

4 /

l /

I f

I /

V 10 -

O , , , , ,X 0 10 20 30 40 50 S TATION 7 ALK ALINITY (MG/L)

R EG RE S $10 N EQUATION ( y s 4.9 + 844 s )

95 % CONFIDENCE LIMITS FOR OREDICTED y VALUES - - - - - - - - - -

VERMCNT YANKEE OPEN CYCLE,1979 o VERMONT YANKEE CLOSED CYCLE,1979 .

FIGURE 4.12 l

l

TABLE 4.1-1 VERMONT YANKEE IMICLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUtiTEC, INC.

JANUARY 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 13.1 1200 12.6 1830 12.8 129 2 14.0 2400 12.6 0700 13.5 134 3 14.2 2400 13.7 1330 13.9 103 4 14.4 1900 14.1 02a0 14.3 90 5 14.4 1300 14.1 0930 14.3 80 6 14.3 0000 14.1 1800 14.2 91 7 14.5 1530 13.9 0400 14.3 94 8 14.5 0200 14.1 2400 14.3 92 I 9 14.1 0000 13.7 2400 13.8 90

$ 10 13.7 0000 13.4 0730 13.6 85 8

11 13.8 0000 13.1 0830 13.6 84 12 13.8 0000 12.9 0730 13.5 85 13 13.6 .1600 12.5 1100 13.4 88 14 13.6 2230 12.4 1230 13.1 91 15 13.4 0000 12.4 0930 13.2 94 16 13.3 2330 12.3 0930 13.0 95 17 13.3 1830 12.6 0730 13.2 95 18 13.3 0000 12.4 0830 13.0 95 19 13.0 1930 12.1 0930 12.8 97 20 13.0 0000 12.0 1100 12.6 104 21 12.9 1330 11.9 1030 12.6 100 22 13.0 .2400 11.9 0830 12.5 98 23 13.0 0100 12.3 0830 12.8 101 24 12.9 .2400 12.4 0730 12.7 103 25 13.0 0600 12.8 2400 12.9 105 26 13.0 2330 11.7 1130 12.5 108 27 13.3 0500 12.8 1800 13.1 106 l 106 28 13.3 1800 12.2 1100 13.0

! 29 13.2 0000 12.2 0730 13.0 100 l 30 12.8 0100 12.0 0800 12.5 102

! 31 12.5 0000 11.6 0600 12.2 108

[ '.

  • t

l TABLE 4.1-2 VERMONT YANKEE NUCLEAR POWER CORPORATION

SAMPLE STATION NO. 3 (W-20 MONITOR) i WATER QUALITY DATA BY

! AQUATEC, INC.

FEBRUARY 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 12.8 0000 11.8 0830 12.6 104 2 12.9 2400 12.2 0830 12.6 115 3 13.0 1230 11.9 0900 12.7 115 4 13.0 0100 11.9 1100 12.6 117 5 13.0 0430 12.0 1130 12.8 115 6 13.7 2400 12.1 0830 12.9 112 7 14.1 2000 12.9 . 0900 13.8 110 8 14.1 0100 13.1 0900 13.0 109 9 13.5 0000 12.0 0930 12.9 116 d 10 13.1 0000 12.0 0930 12.7 121 8

11 13.3 0100 12.3 1230 12.8 114 12 13.5 2400 12.6 0830 13.3 111 13 13.3 0000 12.2 0830 13.1 108 14 13.4 1800 12.5 0930 13.2 108 15 13.5 1530 12.4 0900 13.3 110 16 13.4 1600 12.4 0900 13.2 114 17 13.3 0100 12.8 1030 13.1 108 18 13.3 1330 12.9 0630 13.1 106 19 13.2 2000 12.9 1030 13.1 105 20 13.4 1530 12.8 0930 13.1 103 21 13.2 2000 12.5 0930 13.0 105 22 13.1 1400 12.5 0930 12.9 106 23 13.0 1400 12.5 0930 12.8 109 24 12.8 0000 12.2 0930 12.6 114 25 12.7 1600 12.1 1030 12.4 120 26 12.6 0000 12.1 0930 12.4 110 27 12.7 1600 12.2 0900 12.5 110 28 12.9 1400 12.3 0800 12.7 111

. , w. - .--r - --.%-- - - - . p -y - .- w =y.-. t 4 - ,.- e,v.-.y 3 9 y- wa -

TABLE 4.1-3 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION HO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

MARCII 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 12.8 1400 12.4 0800 12.7 110 2 12.8 1530 12.3 0900 12.6 120 3 12.8 1200 12.4 1830 12.7 122 4 12.7 1430 12.3 0830 12.5 121 5 13.0 2200 12.5 0830 12.8 119 6 13.8 1930 12.7 0330 13.3 110 7 No Valid Data 87 8 No Valid Data 73 8 9 No Valid Data 70

$' 10 No Valid Data 71 11 No Valid Data 71 12 No Valid Data 73 13 No Valid Data 73 14 No Valid Data 77 15 No Valid Data 80 16 No Valid Data 80 17 No Valid Data 79 18 No valid Data 81 19 14.8 1400 14.6 2400 14.7 83 20 14.6 0000 14.2 1030 14.4 82 21 14.4 0930 14.2 0430 14.3 84 22 14.5 2330 14.0 2400 14.2 83 23 14.0 0000 13.0 2400 13.5 82 24 14.0 0000 13.4 2230 13.7 77 25 No Valid Data 66 26 No Valid Data 62 27 No Valid Data 60 28 13.6 0900 13.4 2400 13.5 61 29 13.5 0000 13.2 1600 13.3 64 30 13.8 0100 13.3 2330 13.6 68 31 13.8 0030 13.3 1600 13.5 72

s TABLE 4.1-4 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

APRIL 1979 DISSOLVED OXYGEN' CONDUCTIVITY

_ Day Maximum Time Minimum Time Average Observed Daily Average 8

1 13.8 1430 13.4 0200 13.7 73 2 14.2 2300 13.6 1400 14.0 79 3 14.5 0030 13.6 1630 13.9 66 4 14.8 1300 14.5 0000 14.6 67 5 14.7 0000 14.4 2300 14.6 67 6 14.6 0000 14.4 2400 14.5 71 7 14.4 0000 14.3 2330 14.3 75 8 14.3 0000 13.7 2400 14.0 79 9 13.7 0000 13.4 1830 13.5 84 y 10 13.5 0400 13.2 2330 13.4 83 I 11 13.5 2400 13.1 0330 13.3 88 12 13.5 0000 12.9 2400 13.2 94 13 13.3 2400 12.6 1300 13.1 92 14 13.5 2400 13.2 1230 13.3 96 15 13.5 0000 13.1 2330 13.5 91 16 13.2 0530 12.7 1400 13.0 90 17 13.0 0030 12.7 1930 12.9 88 18 13.2 1000 13.0 2030 13.1 90 19 13.2 0930 13.0 2400 13.1 89 20 13.0 0000 12.8 1200 12.9 84 21 13.0 0630 12.8 1330 12.9 78 22 Pump Inoperative Pump Inoperative 23 Pump Inoperative Pump Inoperative 24 Pump Inoperative Pump Inoperative 25 Pump Inoperative Pump Inoperative 26 Pump Inoperative Pump Inoperative 27 Pump Inoperative Pump Inoperative 28 Pump Inoperative Pump Inoperative 29 Pump Inoperative Pump Inoperative 30 Pump Inoperative Pump Inoperative

TAB LE 4 .1 -5 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

MAY 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 Pump Inoperative Pump Inoperative 2 Sensor Inoperative 69 3 11.5 2400 11.1 0900 11.3 63 4 11.5 0000 11.2 1700 11.4 80 5 11.4 0900 11.2 2100 11.3 80 6 11.4 2000 11.2 1330 11.3 84 7 11.4 0300 11.0 2400 11.2 88 8 11.0 0000 10.6 2400 10.8 88

, 9 10.7 0100 10.2 1830 10.4 86 m 10 10.4 0000 9.8 1800 10.1 92

? 11 9.9 0100 9.5 0830 9.7 95 12 9.7 0830 9.5 1530 9.6 98 13 9.7 2400 9.5 0300 9.6 98 14 9.7 0000 9.5 2400 9.6 93 15 9.5 0000 9.3 2330 9.4 95 16 9.4 1000 9.2 2400 9.3 96 17 9.3 1400 9.1 0500 9.2 97 18 9.5 1700 9.3 2400 9.4 96 19 9.5 2000 9.2 0700 9.3 91 20 9.9 2100 9.4 0700 9.6 90 21 9.7 0000 9.6 2400 9.6 93 22 9.8 1730 9.5 0400 9.6 106 23 9.7 1400 9.3 2400 9.5 108 24 10.0 2330 9.2 0630 9.4 114 25 10.4 2030 9.7 0730 10.1 82 26 Sensor Inoperative 72 27 Sensor Inoperative 72 28 Sensor Inoperative 71 29 Sensor Inoperative 74 30 10.2 1100 10.0 1830 10.1 73 31 10.3 0730 10.0 2230 10.1 80

~.

h

TABLE 4.1-6 VERHONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WA"ER QUALITY DATA BY AQUATEC, INC.

JUNE 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 10.2 0130 9.8 2400 10.0 80 2 9.8 0000 9.6 2400 9.7 83 3 9.6 0000 9.3 2400 9.4 80 4 9.3 0000 8.9 1630 9.1 80 5 9.0 0030 8.5 2100 8.8 81 6 8.7 0530 8.2 1130 8.4 87 7 8.4 1900 8.2 0700 8.3 89 8 8.5 2000 8.2 0700 8.4 88

, 9 8.4 0000 8.2 1000 8.3 91 m 10 8.3 0100 8.2 1530 8.3 92 7 11 8.6 1800 8.3 0600 8.4 100 12 8.6 1600 8.2 0600 8.4 101 13 8.7 2000 8.3 0600 8.5 97 14 8.8 1930 8.4 0700 8.6 107 15 9.0 1800 8.7 0800 8.8 100 16 8.9 1800 8.6 0630 8.7 100 17 8.9 1500 8.5 0600 8.7 102 18 8.9 1330 8.6 0700 8.7 101 19 8.9 1830 8.3 0700 8.6 110 20 9.1 1630 8.4 0600 8.8 110 21 9.0 1830 8.5 0700 8.7 106 22 8.8 1200 8.3 2400 8.6 112 23 8.3 0000 8.1 1200 8.2 116 24 8.2 0000 7.9 0900 8.0 120 25 8.8 2100 7.9 0700 8.3 120 26 8.6 0000 8.4 2400 8.5 102 27 8.4 0000 8.2 2400 8.3 103 28 8.6 1730 7.9 0830 8.3 104 29 8.4 0000 8.2 2400 8.3 104 30 8.2 0000 7.8 2400 8.0 104

TAllLE 4.1-7 VERMONT YANKEE tlUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

JULY 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 7.9 1430 7.7 2400 7.8 105 2 8.2 1630 7.8 1700 8.0 110 3 8.3 1730 8.0 0700 8.2 125 4 8.4 1700 8.1 0600 8.2 128 5 8.4 0000 80 2400 8.2 118 6 8.4 1800 8.0 0700 8.2 117 7 8.4 1830 8.0 0700 8.2 119 8 8.5 1600 8.1 0730 8.3 121

, 9 8.6 2130 7.8 0900 8.2 124 m 10 8.7 1930 8.3 0700 8.5 123 7 11 8.4 1100 8.0 2300 8.2 119 12 8.6 1700 7.9 0500 8.3 118 13 8.2 0000 7.6 2400 7.9 124 14 7.6 0000 7.3 2400 7.4 129 15 NO VALID DATA , 132 16 8.2 1800 7.7 1100 8.0 131 17 8.1 1330 7.6 2400 7.9 130 18 7.6 0000 6.8 2400 7.1 133 19 7.3 1830 6.4 0700 6.9 130 20 7.6 1630 6.8 0630 7.3 132 21 7.9 1800 7.2 0730 7.6 132 22 7.7 1500 6.9 2300 7.4 13.

23 7.8 1800 6.8 0400 7.3 130 24 7.2 1330 6.7 2400 6.9 131 25 7.4 1800 6.4 0730 6.9 135 26 6.7 0000 6.3 2100 6.5 137 27 7.2 1800 6.4 0100 6.8 141 28 7.4 1730 7.0 0700 7.2 143 29 7.3 1430 6.9 0800 7.1 146 30 7.8 1730 6.9 0603 7.4 145 31 7.4 0000 6.1 2400 6.9 146

. ~,

TABLE 4.1-8 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATIOt3 NO. 3 (W-20 MOrlITOR)

WATER QUALITY DATA BY AQUATEC, INC.

AUGUST 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 6.8 1930 6.0 0800 6.4 147 2 7.0 1630 6.3 2100 6.6 145 3 7.1 1800 6.2 0700 6.6 142 4 7.4 1830 6.1 0700 6.9 142 5 7.2 1500 6.9 0800 i.1 141 6 7.2 1800 6.6 0630 6.9 142 7 6.9 1330 6.2 2400 6.6 141 8 6.4 1100 6.0 2400 6.7 140 9 6.8 1830 6.0 0000 6.4 138 E 10 6.6 0000 6.3 2400 6.5 137 7 11 6.3 0000 6.0 2400 6.2 135 12 6.4 1600 5.9 0600 6.2 134 13 6.7 1900 6.2 0000 6.4 137 14 7.0 1630 6.5 0700 6.8 140 15 7.3 1500 6.8 0400 7.0 139 16 7.8 1700 7.1 0600 7.5 137 17 3.0 1600 7.5 0800 7.7 134 18 7.9 0100 7.5 2400 7.7 135 19 7.7 1330 7.3 0800 7.4 135 20 7.7 1700 7.4 0930 7.5 137 21 8.0 1730 7.5 0700 7.7 138 22 8.4 1600 7.6 0730 8.0 138 23 8.3 1430 7.9 2400 8.1 137 24 8.3 1430 7.7 0900 8.0 136 25 8.3 1700 8.0 0200 8.1 134 26 8.5 1800 8.0 0500 8.2 135 27 8.4 0000 8.1 2400 8.3 138 28 8.3 1700 7.9 2400 8.1 140 29 7.9 0030 7.6 2400 7.8 140 30 8.0 2300 7.5 0930 7.7 141 31 8.2 1130 7.7 0600 8.0 140

TABLE 4.1-9 VERMONT YAtlKEE NUCLEAR POWER CORPO1". TION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

SEPTEMBER 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 8.3 1630 7.8 0730 8.1 140 2 0.2 1500 7.8 0800 8.0 138 3 8.1 1400 7.6 0700 7.8 137 4 8.3 2000 7.7 0700 8.0 140 5 8.2 0000 7.5 2200 7.8 143 6 7.7 0500 7.4 2400 7.6 141 7 7.7 1830 7.2 0730 7.4 138 8 7.8 2130 7.4 0900 7.6 116 9 8.5 2000 7.6 0630 8.0 123 5 10 8.3 0000 7.7 2400 8.0 124 y 11 3.1 1530 7.6 0730 7.9 117 12 8.3 1800 7.8 0730 8.1 118 13 8.4 1700 7.9 0900 8.1 124 14 8.1 0000 7.8 2400 8.0 130 15 8.4 2l00 7.8 0730 8.1 118 16 8.7 2130 8.2 0730 8.4 116 17 8.8 2100 8.3 0700 8.5 116 18 8.9 1900 8.4 0630 8.7 120 19 9.1 1730 8.5 0700 8.7 122 20 9.2 1630 8.7 0530 8.9 124 21 8.7 0230 8.3 2330 8.5 123 22 8.3 1630 7.9 2300 8.1 115 23 8.5 1800 7.9 0600 8.2 109 24 8.9 1730 3.4 0630 8.6 107 l 109 25 9.1 1730 8.5 0630 8.8 26 9.3 1730 8.8 0600 9.0 112 27 9.5 1700 9.1 0730 9.3 118 28 9.3 1630 3.9 0700 9.1 123 29 9.1 1600 8.8 0800 9.0 122 30 8.8 0000 8.5 2400 8.6 120 e

TABLE 4.1-10 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION 110. 3 (W-20 MotlITOR)

WATER QUALITY DATA BY AQUATEC, INC.

OCTOBER 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 8.6 1230 8.4 2400 8.5 118 2 0.7 1700 8.3 0600 S.5 114 3 8.6 0000 8.4 0530 8.5 108 4 3.7 1400 8.4 2400 8.6 112 5 8.5 0000 8.1 2400 8.3 107 6 8.5 1630 8.1 0130 3.3 111 7 8.6 2403 8.3 0730 8.4 108 8 8.3 1030 8.6 2400 8.7 92 i 9 8.6 1000 8.4 1900 8.5 98 ui 10 8.8 1400 3.4 0300 8.6 102

' 11 9.0 1930 8.5 0600 8.7 103 12 9.2 1630 8.8 0400 9.0 100 13 9.3 1730 8.9 0500 9.1 108 14 9.5 0900 9.2 0100 9.3 110 15 9.5 1500 9.2 0430 9.4 108 16 9.8 2400 9.6 1200 9.7 106 17 10.1 1630 9.9 0600 10.0 112 18 10.2 0900 9.9 2400 10.1 114 19 10.2 1400 9.9 0630 10.1 115 20 10.3 1630 10.1 0530 10.2 115 21 10.4 1430 9.9 0300 10.2 106 22 10.1 0100 9.9 1000 10.0 100 23 10.0 1600 9.8 0800 9.9 102 24 10.0 1100 9.8 0500 9.9 109 25 10.0 1900 9.7 0600 9.9 110 26 9.9 0130 9.6 2330 9.8 106 27 9.8 1600 9.6 0600 9.7 109 28 9.7 0230 9.5 1300 9.6 107 29 9.8 2200 9.5 0530 9.7 111 30 10.1 2030 9.8 0430 9.9 114 31 10.1 2030 10.0 0400 10.0 108

TABLE 4.1-11 VERMO!1T YAt1EEE NUCLEAR POWER CORPORATION SAMPLE STATIO!1 NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

NOVEMBER 1979 l DISSOLVED OXYCEtl CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average i

1 PUMP INOPERATIVE PUMP INOPERATIVE 2 10.9 2230 10.3 1100 10.6 109 3 10.9 1400 10.6 0700 10.7 106 4 11.2 1030 10.5 0500 10.8 103 5 10.8 2400 10.6 0700 10.7 104 6 11.0 1900 10.6 0700 10.8 102 7 11.0 0700 10.8 0000 10.9 98 8 11.1 1500 10.3 0830 11.0 97 9 11.1 1300 10.7 0630 10.9 96 g 10 PUI1P It3 OPERATIVE PUf1P INOPERATIVE 8 11 PUMP INOPERATIVE PUMP ItiOPERATIVE 12 PUf1P INOPERATIVE PUt1P IllOP6RATIVE 13 PUMP IrlOPERATIVE PUMP INOPERATIVE 14 13.1 1400 12.7 0800 13.0 88 15 13.1 2400 12.6 0730 12.9 88 16 13.5 1930 12.9 0730 13.2 92 17 13.4 0000 12.4 1830 12.9 92 18 12.7 0130 11.6 1830 12.2 92 19 12.6 2030 11.0 0830 12.2 94 20 12.6 0930 12.3 1800 12.4 97 21 12.7 2200 11.9 0730 12.3 96 22 12.6 0000 11.9 0930 12.3 98 23 12.4 2100 11.8 1030 12.2 102 24 12.2 1500 11.6 1000 12.0 105 25 11.9 0000 11.1 1700 11.s 108 26 11.4 0030 10.8 0830 11.1 102 27 11.4 2400 10.9 1100 11.1 90 28 11.4 2330 11.0 1230 11.2 Sd 29 11.4 0000 11.1 2400 11.2 103 30 11.3 2400 11.1 1000 11.2 99

~

TABLE 4.1-12 VERMOt1T YANKEE 11UCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

DECEllBER 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 11.5 1630 11.1 0900 11.3 95 2 11.7 2400 11.2 0900 11.4 90 3 11.8 2400 11.4 0800 11.6 81 4 12.1 2400 11.7 0530 11.9 87 5 12.2 0330 11.9 1830 12.1 92 6 12.3 2230 11.8 0900 12.0 90 7 12.4 0500 12.0 0430 12.2 91 8 PUMP It1 OPERATIVE Pt1MP INOPERATIVE

, 9 PUMP INOPERATIVE PUMP INOPERATIVE m 10 PUMP INOPERATIVE PUMP INOPERATIVE Y 11 PUMP INOPERATIVE PUMP INOPERATIVE 12 PUMP INOPERATIVE PUMP INOPERATIVE 13 PUMP INOPERATIVE PUMP INOPERATIVE 14 PUMP INOPERATIVE PUMP INOPERATIVE 15 PUMP INOPERATIVE PUMP INOPERATIVE 16 PUMP INOPERATIVE PUMP INOPERATIVE 17 PUMP INOPERATIVE PUMP INOPERATIVE 18 13.1 2400 12.8 1130 12.9 98 19 13.3 1100 12.8 0600 13.0 96 20 13.4 0900 13.1 1800 13.2 99 21 13.2 0030 12.2 0930 12.7 105 22 12.6 0000 12.1 1030 12.3 112 23 12.6 2130 12.0 1730 12.3 117 24 12.6 2300 12.1 1000 12.4 115 25 12.5 0000 12.2 0930 12.4 104 26 13.1 2400 12.7 1730 12.9 104 27 13.6 0930 13.1 0100 13.4 97 28 14.1 1230 13.4 0100 13.7 87 29 14.0 0700 13.6 2200 13.8 81 30 13.7 0300 13.0 0830 13.5 84 31 13.6 0200 13.0 1700 13.3 87

TABLE 4.2-1 VERMOllT YAt1KEE 11UCLEAR POWER CORPORATION SAMPLE STATION 110. 7 (W-20 MO!1ITOR)

WATER QUALITY DATA BY AQUATEC, INC.

JAt10ARY 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 13.6 2000 13.4 0000 13.5 128 2 13.7 2130 13.1 1130 13.5 112 3 14.1 2230 13.4 0900 13.7 95 .

4 14.3 1530 13.9 0300 14.1 78 5 14.5 1530 14.3 0700 14.4 82 6 14.4 1500 14.2 2400 14.3 97 7 14.3 0500 14.0 2400 14.2 97 8 14.1 0800 14.0 0300 14.0 106

, 9 14.2 2400 13.9 0800 14.0 92 m 10 14.2 0800 14.0 2300 14.1 90 7 11 14.1 0130 13.8 2330 13.9 No Valid Data 12 13.9 2230 13.7 1400 13.8 91 13 13.9 2030 13.7 1300 13.8 93 14 13.8 0000 13.6 1530 13.7 97 15 13.8 0600 13.5 2000 13.6 98 16 13.8 1400 13.5 05u0 13.7 97 17 13.8 0400 13.5 2130 13.7 97 18 13.5 0000 13.2 1300 13.4 97 19 13.4 0400 13.2 2200 13.3 106 20 13.4 0300 13.3 1830 13.4 98 21' 13.4 1630 13.1 1130 13.3 96 22 13.4 1400 13.1 0200 13.3 106 23 13.4 0330 13.0 1900 13.2 104 24 13.2 2200 13.1 0230 13.2 103 25 13.2 0030 13.0 1700 13.1 112 26 13.1 1630 13.0 0300 13.1 110 27 13.3 1630 13.1 0000 13.2 108 28 13.3 0730 13.1 0200 13.2 103 29 13.2 0000 12.9 1830 13.0 103 30 13.2 1930 13.0 0900 13.1 107 31 13.1 0000 12.9 2230 13.0 105 e

TABLE 4. 2-2 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

FEBRUARY 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 13.1 1000 12.9 0030 13.0 120 2 13.0 2400 12.9 1130 12.9 118 3 13.1 2400 13.0 0400 13.0 119 4 13.2 1630 13.0 2330 13.1 119 5 13.2 0900 13.0 2300 13.1 117 6 13.1 2400 12.9 1930 13.0 114 7 13.2 0600 12.9 1800 13.1 114 8 13.0 0130 12.9 1700 13.0 116 9 13.1 2400 13.0 1000 13.0 119 1 10 13.2 2400 13.1 0000 13.1 115 y 11 13.3 0200 13.2 1100 13.2 110 12 13.6 1400 13.1 0830 13.4 110 13 13.7 2030 13.4 0100 13.6 108 14 13.6 0000 13.4 1700 13.5 108 15 13.5 2400 13.4 1500 13.4 113 16 13.6 0530 13.0 2130 13.4 112 17 13.9 0330 13.5 1700 13.7 115 18 13.8 0000 13.0 2400 13.4 113 19 14.0 0000 13.3 2400 13.7 113 20 13.8 0000 13.5 1130 13.7 103 21 13.9 0130 13.6 2400 13.7 105 22 13.6 0000 13.3 2230 13.4 110 23 13.4 0200 12.9 1930 13.2 101 24 13.3 0130 13.0 1330 13.2 121 25 13.3 0000 13.0 2130 13.2 113 26 13.2 0000 13.0 2100 13.1 111 27 13.4 2000 13.1 0100 13.3 110 28 13.3 0000 13.1 1100 13.2 110

TABl.E 4. 2-3 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

MARCl! 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 13.2 0000 13.0 2000 13.1 117 2 13.3 0000 13.1 2000 13.2 122 3 13.5 0100 13.3 1330 13.4 119 4 13.6 0100 13.4 2400 13.5 120 5 13.6 0000 13.5 2400 13.6 118 6 13.7 2400 13.4 1630 13.5 100 7 13.8 0200 13.3 1430 13.6 80 8 14.0 0930 13.6 2400 13.8 72 9 14.2 2230 13.9 0400 14.0 69 1 10 14.5 013R 13.9 2030 14.1 70

? 11 14.3 0400 14.1 1630 14.2 68 12 14.5 0830 14.0 1800 14.3 69 13 14.5 0230 14.0 2400 14.3 68 14 Recorder Inoperative Recorder Ir. operative 15 Recorder Inoperative Recorder Inoperative 16 Recorder Inoperative Recorder Inoperative 17 Recorder Inoperative Recorder Inoperative 18 14.7 0000 14.6 2100 14.7 79

'19 14.7 0000 14.5 2400 14.6 81 20 14.5 1030 14.3 2400 14.4 80 21 14.3 0030 14.2 1900 14.2 83 22 14.4 1530 14.1 0130 14.2 81 23 14.3 0400 13.6 2130 13.9 78 24 No Valid Data 72 25 No Valid Data 58 26 No Valid Data 60 27 14.0 1100 13.8 2030 13.9 57 28 14.0 0830 13.8 2030 13.9 58 29 Pump Inoperative Pump Inoperative 30 Pump Inoperative eump Inoperative 31 Pump Inoperative Pump Inoperative

TABLE 4.2-4 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

APRIL 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 Pump Inoperative Pump Inoperative 2 Pump Inoperative Pump Inoperative 3 Pump Inoperative Pump Inoperative 4 14.5 0830 13.7 2400 14.2 62 5 14.2 0100 14.1 2400 14.2 63 6 14.1 0000 13.5 2230 13.8 68 7 13.9 0800 13.5 2400 13.7 73 8 13.9 0900 13.C 2400 13.7 77 9 13.8 2400 13.7 0400 13.8 79 E 10 13.9 0030 13.6 1800 13.7 78 y 11 13.7 0330 13.4 2400 13.6 85 12 13.6 1000- 12.9 2330 13.3 95 13 13.1 1930 12.9 0630 13.0 93 14 13.2 2000 12.9 0330 13.0 96 15 13.2 0000 12.9 2400 13.1 92 16 12.9 0000 12.7 2400 12.0 89 17 13.0 1930 12.7 0000 12.9 88 18 13.2 0830 12.8 2300 13.0 85 19 13.2 0800 12.8 2400 13.0 85 20 13.0 1200 12.7 2400 12.8 80 21 12.9 1000 12.4 2400 12.7 72 22 12.5 1000 12.2 2400 12.4 69 23 12.3 1000 11.8 2100 12.1 67 24 12.0 0800 11.4 2400 11.7 63 25 No Valid Data 60 26 No Valid Data No Valid Data 27 11.7 0930 11.5 2400 11.6 57 28 11.7 0900 11.4 2400 11.6 58 29 11.5 0900 11.3 2130 11.4 58 30 11.7 0900 11.3 2400 11.5 58

TAlli.E 4 . 2- 5 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY l AQUATEC, INC.

! MAY 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 11.5 0030 11.2 2400 11.4 63 2 11.4 1030 11.1 2400 11.2 69 3 11.2 1200 11.0 0330 11.1 74 4 11.2 0030 10.8 1930 11.0 80 5 11.0 0900 10.7 2400 10.9 79 6 11.1 1000 10.8 0200 11.0 84 7 11.1 0930 10.9 2400 11.0 87 8 10.9 0600 10.6 2400 10.7 90 9 10.6 0000 10.0 2400 10.3 8' 4 10 10.0 0000 9.3 2400 9.6 93 w 11 9.3 0000 8.9 2400 9.1 95

' 12 0000 8.7 2330 8.8 96 8.9 13 9.5 1800 8.7 0000 9.2 95 14 9.6 2400 9.4 0730 9.5 90 15 9.6 0000 9.4 2400 9.5 94 16 9.3 2100 9.2 0930 9.3 94 17 9.2 0000 9.0 1400 9.1 98 18 9.1 0000 8.9 1530 9.0 92 19 9.4 1800 9.1 0100 9.2 90 20 9.7 2000 9.2 1200 9.4 91 21 9.6 1330 9.2 0700 9.3 102 22 9.6 1530 9.4 0930 9.5 93 23 9.5 0000 9.3 1430 9.4 107 24 9.4 0000 9.0 1200 9.2 114 25 10.3 2230 9.4 0000 9.8 70 26 10.6 2400 10.2 0000 10.4 65 27 10.8 0730 10.4 2400 10.6 61 28 10.4 0000 9.6 2230 10.0 64 29 9.8 1030 9.4 1830 9.6 62 30 9.8 1000 9.5 1930 9.7 70 31 10.0 1500 9.5 0130 9.8 75

,_ , -- ,+ .- n. , , , , . . ~ . , . , , - - , - - - - , - , - . . - - -

TABLE 4. 2-6 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

JUNE 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 9.8 1130 9.5 2400 9.7 80 2 9.5 0000 9.4 2400 9.4 3

81 9.4 0000 9.2 2400 9.3 4

78 9.2 0000 8.7 2400 9.0 80 5 8.8 0800 8.4 2400 8.6 82 6 8.4 0000 8.2 2400 8.3 91 7 8.4 1130 8.1 0200 8.3 88 8 8.4 1030 8.2 2400 8.3 88 9 8.2 0000 8.0 0930 8.1 10 91 4

w 8.4 2100 8.0 1330 8.2 99 11 8.3 0930 8.1 2000 8.2

' 101 12 8.5 1900 8.2 0800 8.4 13 97 8.7 1930 8.4 0300 8.6 102 14 8.9 2000 8.6 0000 8.8 15 98 9.1 1900 8.9 0100 9.0 101 16 9.2 1500 8.8 0700 17 9.0 100 9.0 0000 8.6 1500 8.8 18 98 9.0 1430 8.7 0600 8.9 104 19 9.2 2]00 8.6 0600 20 8.9 112 9.2 2230 8.6 1300 8.9 104 21 9.2 0000 8.7 1530 9.0 104 22 9.1 1930 8.6 1200 23 8.8 118 8.9 0000 8.4 1730 8.7 127 24 8.8 0030 8.3 1100 8.6 25 118 9.0 1300 8.4 0700 8.6 106 26 8.7 0000 8.3 2200 8.5 27 105 8.6 2300 8.1 1030 8.4 102 28 8.6 0000 8.0 2330 8.2 102 29 8.2 2300 7.7 1100 30 8.0 103 8.3 0830 8.0 1530 8.1 108

l TABLE 4.2-7 I

f VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION 110. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

JULY 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 8.3 2330 7.9 1200 8.1 122 2 8.5 1530 8.1 0830 H.3 124 3 8.6 1630 8.2 0130 8.4 125 4 8.3 1530 7.9 2100 3.2 115 5 8.4 1930 7.8 0830 8.1 117 6 8.5 1630 8.1 0630 8.3 119 7 PUMP INOPEPATIVE PUMP INOPERATIVE 8 PUMP INOPERATIVE PUMP INOPERATIVE 9 PUMP INOPERATIVE PUMP INOPERATIVE d> 10 PUMP INOPERATIVE PUMP INOPERATIVE i 11 PUMP INOPERATIVE PUMP INOPERATIVE 12 PUMP INOPERATIVE PUMP INOPERATIVE 13 8.5 1700 7.9 1130 J.2 130 14 8.4 0200 7.8 2100 8.0 129 15 8.4 0430 7.8 2400 8.1 131 16 7.7 1830 7.2 1030 7.4 133 17 7.4 0000 6.7 1430 7.1 134 18 7.2 0130 6.8 2400 7.0 130 19 6.9 0100 6.4 1730 6.7 131 20 7.1 2030 6.4 1130 6.8 131 21 7.1 0000 6.4 1900 6.6 131 22 6.8 0100 6.0 2330 6.4 131 23 7.0 2030 6.1 0230 6.6 133 24 6.6 2100 6.1 1600 6.3 138 25 6.5 1430 6.1 0000 6.3 142 26 6.6 0330 5.6 1900 6.1 150 27 6.3 0130 5.6 0900 6.0 148 28 6.4 1100 5.5 2300 6.0 142 29 5.3 0500 5.0 1730 5.4 140 30 5.5 1300 4.8 1730 5.1 142 31 5.4 0230 4.9 1130 5.2 140

  • l

TABLE 4. 2-8 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

AUGUST 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 RECORDER INOPERATIVE RECORDER INOPERATIVE 2 NO VALID DATA 140 3 NO VALID DATA 141 4 NO VALID DATA 141 5 NO VALID DATA 143 6 NO VALID DATA 140 7 NO VALID DATA 134 8 NO VALID DATA 131

, 9 NO VALID DATA 131 e 10 NO VALID DATA 132 Y 11 NO VALID DATA 137 12 NO VALID DATA 141 13 PUMP INOPERATIVE PUMP INOPERATIVE r 14 PUMP INOPERATIVE PUMP INOPERATIVE 15 7.3 0030 6.9 1600 7.] 132 16 7.7 1630 7.0 0500 7.3 133 17 7.7 1830 7.2 0630 7.4 135 18 7.8 1600 7.2 0730 7.6 139 19 7.9 2030 7.6 0600 7.7 139 20 8.0 1830 7.6 1100 7.8 138 21 8.1 1730 7.5 1030 7.8 138 22 8.1 1600 7.5 1030 7.7 137 23 8.3 1930 7.3 0530 7.8 134 24 8.4 2100 8.0 0400 8.2 135 25 8.5 1600 8.1 2400 8.3 140 26 8.3 0000 7.8 0800 8.0 141 27 8.2 1900 7.8 1330 8.0 139 28 8.3 1630 7.8 0800 8.0 140 29 8.2 0000 7.8 1100 8.0 140 30 8.5 1800 7.9 1000 8.2 142 31 8.0 0300 7.5 2400 7.8 135

_ . _ . . ~ . _ - - - . _ _ _ . . . . _ _ _ _ __. _ . _________ . - -

TABLE 4.2-9 VERMOllT YA!!KEE NUCLEAR POWER CORPORATION SAMPLE STATIO!! NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

SEPTEMBER 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 7.8 1800 7.3 0800 7.6 133 2 7.5 2130 7.2 0900 7.4 137 3 7.7 1630 7.3 0730 7.5 139 4 8.2 1530 7.0 0830 7.6 142 5 7.9 1900 7.3 0300 7.6 144 6 7.7 0000 7.3 1800 7.5 140 7 8.0 1900 7.2 1000 7.6 118 8 7.9 1900 7.5 0600 7.7 125 9 7.7 0000 7.1 1830 7.4 128 10 7.9 1630 7.3 0830 7.6 115 y 11 8.0 1800 7.5 1200 7.8 125 8

12 7.9 1930 7.4 1110 7.7 130 13 7.8 1500 7.5 0600 7.7 135 14 7.9 2200 7.6 0100 7.7 122 15 8.1 1830 7.8 0700 7.9 119 16 8.1 2230 7.6 1200 7.8 122 17 8.0 1900 7.7 0230 7.9 124 18 8.2 1830 7.7 0700 8.0 126 19 8.2 1800 8.0 0900 8.1 127 20 8.4 1830 8.0 1300 8.2 122 21 8.5 2030 8.1 0630 8.3 110 22 8.6 1730 8.4 1000 8.5 108 23 8.6 1430 8.4 0500 8.5 110 24 9.0 1300 8.4 0730 8.7 114 25 9.1 ~ 1700 8.8 0630 8.9 118 26 9.2 1530 8.9 2400 9.1 127 27 9.0 0200 8.8 2400 8.9 125 28 NO VALID DATA 120 29 NO VALID DATA 118 30 9.2 0600 8.8 1830 9.0 117 l

l -

l 1

TABLE 4. 2-10 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

OCTOBER 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 8.8 0100 3.5 1300 8.7 115 2 9.3 1730 8.5 0630 8.9 110 3 9.2 0000 8.5 2130 8.8 114 4 8.6 1730 0.3 0330 8.5 104 5 8.3 0000 3.1 1430 8.2 108 6 8.5 2000 8.1 0630 8.3 106 7 8.7 1900 8.1 0600 8.4 92 8 8.5 1600 3.1 2400 8.3 97 9 8.8 1630 8.0 0130 8.4 100 4 10 9.1 1630 8.4 0730 8.7 99

-a 11 9.2 1730 8.4 0900 8.7 100

' 12 9.3 1730 8.6 0830 3.8 104 13 9.8 1800 8.9 0430 9.3 109 14 9.6 2100 8.1 0030 9.4 108 15 9.8 1500 9.4 0100 9.6 105 16 9.9 1130 9.5 0000 9.7 109 17 10.0 0600 9.5 2400 9.8 111 18 9.9 1700 9.7 0130 9.8 113 19 10.4 1330 10.1 0200 10.2 112 20 10.3 1330 10.0 2400 10.2 106 21 10.0 1930 9.8 1030 9.9 101 22 10.0 2400 9.9 1630 10.0 104 23 10.0 0000 9.7 1900 9.9 112 24 9.7 0900 9.4 2300 9.6 115 25 9.6 2300 9.3 1630 9.5 110 26 9.8 2000 9.6 1030 9.7 112 27 9.e 1500 9.6 2300 9.7 113 28 9.9 2400 9.6 0000 9.8 113 29 10.2 1700 9.9 -

0800 10.0 119 30 10.1 1800 9.9 0000 10.0 112 31 10.3 1700 10.1 0000 10.2 110

TAllLE 4. 2-11 VERMONT YANKEE 110 CLEAR POWER CORPORATION SAMPLE STATIOri110. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

IlOVEMBER 1979 l DISSOLVED OXYGEN CONDUCTIVITY l

Day Maximum Time Minimum Time Average Observed Daily Average 1 10.7 1900 10.1 0000 10.4 110 2 10.6 0000 10.2 1600 10.4 110 3 10.4 0100 10.2 2300 10.3 108 4 10.5 2400 10.2 0800 10.3 106 5 10.6 1530 10.4 0200 10.5 106 6 11.2 2400 10.5 0000 10.9 102 7 11.4 1030 11.2 1630 11.3 107 8 11.3 0000 10.9 2300 11.1 98 9 11.0 1700 10.8 2400 10.9 98 1 10 10.9 1100 10.7 2400 10.8 97 7 11 10.7 2400 10.5 0800 10.6 88 12 10.8 2400 10.6 1100 10.7 89 13 10.8 1530 10.5 2400 10.7 87 14 10.6 0000 10.4 0930 10.5 86 15 11.0 2400 10.6 1000 10.7 90 16 11.3 1500 11.0 1100 11.2 94 17 11.8 1600 11.3 0000 11.5 93 18 11.5 2400 11.2 1930 11.4 97 19 11.7 0630 11.4 2000 11.5 94 20 11.5 0000 11.2 1300 11.4 96 21 11.6 2330 11.4 2000 11.5 97 22 11.6 0000 11.5 1200 11.5 101 23 11.6 0800 11.4 1730 11.5 105 24 11.5 0000 11.1 2400 11.3 107 25 11.1 0000 10.7 2230 10.9 101 26 11.1 0830 10.6 2400 10.9 101 27 10.9 0000 10.4 0600 10.6 80 28 11.6 2330 10.6 0000 11.3 83 29 11.6 2400 11.4 0400 11.5 84 30 11.5 1000 11.4 1800 11.5 86

TABLE 4.2-12 VERMONT YANKEE NUC> EAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

DECEMBER 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 11.6 1830 11.4 0000 11.5 88 2 11.9 2330 11.5 0800 11.7 80 3 12.1 1530 11.7 0500 11.9 83 4 12.3 2230 12.0 0800 12.1 84 5 12.4 2400 12.2 1000 12.3 89 6 12.6 2030 12.4 0000 12.5 93 7 12.5 0000 12.1 1600 12.3 86 8 12.5 2400 12.2 0600 12.3 88

, 9 12.9 2400 12.5 0130 12.6 89 u) 10 12.9 0100 12.6 1400 12.7 84 7 11 13.0 1700 12.8 1000 12.9 87 12 12.9 0000 12.6 2400 12.7 92 13 12.7 1300 12.5 0700 12.6 102 14 12.8 1430 12.7 0000 12.8 103 15 12.7 2400 12.5 1230 12.6 96 16 12.9 0500 12.7 2030 12.8 100 17 13.0 1730 12.8 1130 12.9 96 18 13.2 1830 13.0 0430 13.1 98 19 13.4 2400 13.2 0200 13.3 95 20 13.7 2200 13.4 0000 13.6 100 21 13.7 0000 13.6 1500 13.6 113 22 13.7 0030 13.6 2200 13.6 119 23 13.6 0000 13.4 2030 13.5 114 24 13.5 0000 13.4 1700 13.5 106 25 NO VALID DATA NO VALID DATA 26 13.7 1930 13.3 0200 13.5 86 27 13.8 0500 13.6 1130 13.7 89 28 14.0 2100 13.8 1200 13.9 81 29 13.9 0200 13.7 2400 13.8 81 30 13.7 0030 13.2 2400 13.4 85 31 13.3 0000 13.1 2400 13.2 86

TABLE 4.3-1 VERMO!1T YANKEE 11UCLEAR POWER CORPORATION SAMPLE STATION 110. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

JA!1UARY 1979 TURBIDITY pH Day Observed Daily Average Maximum Minimum Range 1

1 1 7.5 7.4 0.1 2 2 7.5 7.3 0.2 3 20 7.5 7.3 0.2 4 16 7.5 7.2 0.3 5 11 7.4 7.2 0.2 6 3 7.5 7.3 0.2 7 1 7.5 7.3 0.2 8 3 7.4 7.3 0.1 I 9 2 7.4 7.2 0.2 o 10 1 7.4 7.1 0.3

? 11 1 7.3 7.1 0.2 12 1 7.2 7.0 0.2 13 1 7.2 7.0 0.2 14 1 7.2 7.0 0.2 15 1 7.2 7.0 0.2 16 1 7.2 7.0 0.2 17 1 7.2 7.1 0.1 18 1 7.2 6.9 0.3 19 0 7.2 6.9 0.3 20 0 7.2 7.0 0.2 21 0 7.2 7.0 0.2 22 1 7.1 6.9 0.2 23 1 7.1 6.8 0.3 4 24 0 7.1 7.0 0.1 25 0 7.1 7.0 0.1 26 1 7.2 7.0 0.2 27 1 7.1 7.0 0.1 28 1 7.1 7.0 0.1 29 1 7.1 6.9 0.2 30 1 7.1 6.9 0.2 31 1 7.1 6.9 0.2

TABLE 4.3-2 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

FEBRUARY 1979 TURBIDITY p_H Day Observed Daily Average Maximum Minimum Range 1 1 7.1 7.0 0.1 2 1 7.1 6.9 . 0.2 3 1 7.2 6.9 0.3 4 1 7.3 6.9 0.4 5 1 7.2 7.0 0.2 6 1 7.2 6.9 0.3 7 1 7.3 7.0 0.3 8 1 7.2 6.9 0.3 i 9 1 7.5 7.0 0.5

$ 10 1 7.5 7.2 0.3

';' 11 1 7.5 7.1 0.4 12 1 7.5 7.1 0.4 13 1 7.4 7.2 0.2 14 1 7.5 7.1 0.4 15 1 7.5 7.2 0.3 16 1 7.3 7.2 0.1 17 1 7.3 7.1 0.2 18 1 7.3 7.0 0.3 19 2 7.3 7.1 0.2 20 1 7.3 7.0 0.3 21 1 7.2 7.0 0.2 22 1 7.2 7.0 0.2 23 1 7.2 7.1 0.1 24 1 7.3 7.1 0.2 25 1 7.2 7.1 0.1 26 1 7.2 7.1 0.1 27 1 7.3 7.1 0.2 28 1 7.3 7.0 0.3

TAllI.E 4. 3-3 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

MARCil 1979 TURBIDITY @

Day Observed Daily Average Maximum Minimum Range 1 1 7.2 7.0 0.2 2 1 7.3 7.1 0.2 3 1 7.3 7.2 0.1 4 1 7.3 7.2 0.1 5 1 7.3 7.2 0.1 6 2 7.3 7.2 0.1 7 2 7.3 7.0 0.3 8 4 No Valid Data

, 9 40 No Valid Data F* 10 20 No Valid Data O 11 8 No Valid Data

' 12 4 No Valid Data 13 4 7.3 7.0 0.3 14 30 7.3 7.1 0.2 15 22 7.4 7.2 0.2 16 6 7.4 7.2 0.2 17 4 7.4 7.1 0.3 18 2 7.5 7.2 0.3 19 1 7.4 7.1 0.3 20 Sensor Inoperative 7.5 7.2 0.3 21 8 7.5 7.3 0.2 22 9 7.5 7.2 0.3 23 6 7.5 7.3 0.2 24 4 7.5 7.1 0.4 25 4 7.4 7.0 0.4 26 5 7.4 7.0 0.4 27 3 7.5 7.3 0.2 28 3 7.6 7.4 0.2 29 8 7.6 7.5 0.1 30 6 7.6 7.5 0.1 31 4 7.6 7.5 0.1

. e

TABLE 4. 3-4 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

APRIL 1979 TURBIDITY plH Day Observed Daily Average Maximum Minimum Range 1 3 7.7 7.5 0.2 2 3 7.7 7.4 0.3 3 No Valid Data 7.5 7.4 0.1 4 2 7 5 7.1 0.4 5 4 7.3 7.1 0.2 6 4 7.3 7.0 0.3 7 2 7.3 7.1 0.2 8 3 7.3 7.1 0.2 i 9 2 7.3 7.2 0.1

$ 10 2 7.3 7.1 0.2 w 11 1 7.4 7.1 0.3 12 2 7.4 7.1 0.3 13 2 7.3 7.1 0.2 14 3 7.4 7.2 0.2 15 3 7.4 7.3 0.1 16 3 7.4 7.2 0.2 17 4 7.4 7.2 0.2 18 3 7.4 7.3 0.1 19 2 7.6 7.4 0.2 20 1 7.7 7.4 0.3 21 1 7.7 7.4 0.3 22 Pump Inoperative Pump Inoperative 23 Pump Inoperative Pump Inoperative 24 Pump Inoperative Pump Inoperative 25 Pump Inoperative Pump Inoperative 26 Pump Inoperative Pump Inoperative 27 Pump Inoperative Pump Inoperative 28 Pump Inoperative Pump Inoperative 29 Pump Inoperative Pump Inoperative 30 Pump Inoperative Pump Inoperative

TABLE 4. 3-5 VERMONT YANKEE IIUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

MAY 1979 I

TURBIDITY M Day Observed Daily Average Maximum Minimum Range 1 Pump Inoperative Pump Inoperative 2 2 7.1 7.0 0.1 3 2 7.1 6.9 0.2 4 2 7.2 7.0 0.2 5 3 7.2 7.0 0.2 6 3 7.2 7.0 0.2 7 2 7.4 7.0 0.4 8 2 7.4 7.0 0.4 9 1 7.4 7.0 0.4 10 2 7.3 7.0 0.3

[* 7.0 0.4 a- 11 1 7.4

' 12 1 7.2 7.0 0.2 13 1 7.3 7.0 0.3 14 2 7.3 7.1 0.2 15 2 7.4 7.1 0.3 16 1 7.7 7.4 0.3 17 2 7.7 7.3 0.4 18 3 7.6 7.4 0.2 19 2 7.6 7.3 0.3 20 3 7.5 7.3 0.2 21 3 7.5 7.3 0.2 22 3 7.5 7.0 0.5 23 5 7.5 7.3 0.2 24 6 7.5 7.3 0.2 25 7 7.5 7.2 0.3 l 26 9 7.2 7.0 0.2 l 27 8 7.3 7.0 0.3 28 6 7.4 7.3 0.1 l 0.2 29 5 7.5 7.3 i 30 5 7.3 7.0 0.3 i 31 4 7.2 7.0 0.2 l .

I

  • j

TABLE 4.3-6 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 . MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

JUNE 1979 TURBIDITY M Day Observed Daily Average Maximum Minimum Range 1 2 7.3 6.9 0.4 2 1 7.4 7.0 0.4 3 1 7.3 7.0 0.3 4 1 7.2 7.0 0.2 5 1 7.2 6.9 0.3 6 1 7.2 6.9 0.3 7 1 7.3 6.9 0.4 8 1 7.4 7.1 0.3 c) 9 1 7.4 7.1 0.3 10 1 7.4 7.1 0.3 T 11 1 7.5 7.2 0.3 12 1 7.3 7.1 0.2 13 1 7.4 7.0 0.4 14 1 7.5 7.2 0.3 15 1 7.7 7.1 0.6 16 1 7.7 7.2 0.5 17 1 7.7 7.3 0.4 18 1 7.6 7.2 0.4 19 1 7.7 7.2 0.5 20 1 7.9 7.2 0.7 21 1 7.8 7.2 0.6 22 1 7.7 7.3 0.4 23 1 7.6 7.3 0.3 24 1 7.6 7.3 0.3 25 1 7.7 7.3 0.4 26 1 7.6 7.3 0.3 27 1 7.7 7.3 0.4 28 1 7.6 7.4 0.2 29 2 7.6 7.3 0.3 30 2 7.4 7.2 0.2

TABLE 4.3-7 VERMONT YANKEE 110 CLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

JULY 1979 TURBIDITY P_Il Day Observed Daily Average Maximum Minimum Range 1 ,

1 7.5 7.3 0.2 2 2 7.4 7.1 0.3 3 1 7.5 7.2 0.3 4 1 7.5 7.2 0.3 5 1 7.5 7.2 0.3 6 1 7.6 7.2 0.4 7 0 7.7 7.3 0.4 8 0 7.8 7.4 0.4 9 1 7.6 7.3 0.3 g 10 2 SENSOR INOPERATIVE m 11 2 8.0 7.7 0.3

' 12 2 8.2 7.7 0.5 13 2 8.0 7.8 0.2 14 2 8.0 7.6 0.4 15 2 7.9 7.6 0.3 16 2 7.8 7.5 0.3 17 1 7.8 7.6 0.2 18 2 7.6 7.3 0.3 19 3 7.5 7.2 0.3 20 2 7.6 7.2 0.4 21 2 7.7 7.4 0.3 22 2 7.6 7.3 0.3 23 2 7.7 7.3 0.4 24 2 7.5 7.3 0.2 25 1 7.6 7.2 0.4 26 2 7.4 7.2 0.2 27 3 7.5 7.3 0.2 28 2 7.7 7.4 0.3 29 2 7.5 7.4 0.1 30 2 7.7 7.3 0.4 31 2 7.5 7.2 0.3 e .. . - , . - . - , + , - - . . .w ~- , - - - . _- ,. -, ,y __ , ._

TABLE 4. 3-8 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

AUGUST 1979 TURBIDITY EH Day Observed Daily Average Maximum Minimum Range 1 1 7.2 7.0 0.2 2 4 7.2 7.0 0.2 3 2 7.2 6.9 0.3 4 2 7.3 6.9 0.4 5 2 7.2 7.0 0.2 6 2 7.2 7.0 0.2 7 2 7.1 6.9 0.2 8 2 7.3 7.0 0.3 s 9 3 7.4 7.1 0.3

$ 10 3 7.3 7.1 0.2 4

' 11 3 7.2 7.0 0.2 12 3 7.1 7.0 0.1 13 2 7.4 7.1 0.3 14 4 7.3 7.1 0.2 15 3 7.3 7.2 0.1 16 4 7.5 7.2 0.3 17 4 7.6 7.2 0.4 18 5 7.4 7.3 0.1 19 4 7.4 7.2 0.2 20 2 7.5 7.3 0.2 21 1 7.6 7.4 0.2 22 1 7.6 7.3 0.3 23 2 7.6 7.3 0.3 24 2 7.5 7.3 0.2 25 3 7.6 7.4 0.2 26 3 7.7 7.3 0.4 27 3 7.7 7.4 0.3 28 6 7.8 7.5 0.3 29 2 7.6 7.5 0.1 30 2 7.5 7.3 0.2 31 3 7.5 7.3 0.2

TAB LE 4 ,' 3 -9 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

SEPTEMBER 1979 TURDIDITY M Day Observed Daily Average Maximum Minimum Range 1 2 7.6 7.3 0.3 2 2 7.7 7.3 0.4 3 1 7.6 7.4 0.2 4 1 7.8 7.4 0.4 5 2 7.9 7.5 0.4 6 2 7.6 7.5 0.1 7 2 7.6 7.4 0.2 8 1 7.5 7.2 0.3 i 9 2 7.7 7.2 0.5 g 10 2 7.8 7.4 0.4 m 11 1 7.7 7.4 0.3

' 12 1 7.8 7.4 0.4 13 1 7.7 7.5 0.2 14 1 7.7 7.5 0.2 15 1 7.6 7.4 0.2 16 1 7.6 7.4 0.2 17 1 7.7 7.4 0.3 18 1 7.8 7.4 0.4 19 2 7.8 7.5 0.3 20 2 7.8 7.6 0.2 21 2 7.7 7.5 0.2 22 2 7.6 7.4 0.2 23 2 7.6 7.3 0.3 24 2 7.7 7.4 0.3 25 2 7.7 7.4 0.3 26 2 7.8 7.4 0.4 27 1 -

7.8 7.5 0.3 28 1 7.7 7.5 0.2 29 1 7.8 7.6 0.2 30 1 7.6 7.4 0.2 O

TABLE 4.3-10 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

OCTOBER 1979 TURBIDITY EH Day Observed Daily Averaue Maximum Minimum Range 1 2 7.5 7.4 0.1 2 2 7.5 7.3 0.2 3 1 7.4 7.3 0.1 4 2 7.5 7.2 0.3 5 2 7.4 7.2 0.2 6 2 7.3 7.1 0.2 7 2 7.3 7.0 0.3 8 1 7.3 7.0 0.3 4

o 9 1 7.2 7.1 0.1 10 1 7.2 7.1 0.1 7 11 1 7.4 7.1 0.3 12 1 7.4 7.2 0.2 13 1 7.4 7.2 0.2 14 2 7.5 7.2 0.3 15 1 7.5 7.3 0.2 16 1 7.5 7.2 0.3 17 1 7.5 7.3 0.2 1 18 1 7.5 7.3 0.2 19 1 7.5 7.3 0.2 20 2 7.4 7.2 0.2 21 2 7.4 7.2 0.2 22 2 7.3 7.0 0.3 23 1 7.3 7.0 0.3 24 2 7.3 7.1 0.2 25 1 7.4 7.1 0.3 26 1 7.3 7.2 0.1 27 1 7.3 7.2 0.1 28 1 7.4 7.2 0.2 29 1 7.3 7.2 0.1 30 1 7.4 7.2 0.2 31 1 7.4 7.2 0.2

TABLE 4.3-11 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATIOtl NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

NOVEMBER 1979 TURBIDITY P_II Day Observed Daily Average Maximum Minimum Range 1 PUMP INOPERATIVE PUtiP IllOPERATIVE 2 1 7.4 7.3 0.1 3 1 7.4 7.3 0.1 4 1 7.4 7.3 0.1 5 1 7.5 7.3 0.2 6 l 7.5 7.3 0.2 7 1 7.5 7.4 0.1 8 1 7.5 7.4 0.1 5 9 2 7.4 7.3 0.1 g 10 PUMP INOPERATIVE PUMP INOPERATIVE 11 PUMP IllOPERATIVE PUMP INOPERATIVE 12 PUMP INOPERATIVE PUf1P INOPERATIVE 13 PUt1P IllOPERATIVE PullP INOPERATIVE 14 1 7.4 7.2 0.2 15 1 7.4 7.2 0.2 16 1 7.5 7.3 0.2 17 1 7.5 7.3 0.2 18 1 7.4 7.3 0.1 19 1 7.5 7.3 0.2 20 1 7.5 7.3 0.2 21 1 7.5 7.3 0.2 22 1 7.5 7.3 0.2 23 2 7.4 7.3 0.1 24 1 7.5 7.3 0.2 25 1 7.5 7.4 0.1 26 1 7.5 7.3 0.2 27 8 7.4 7.2 0.2 28 9 7.4 7.3 0.1 29 8 7.4 7.3 0.1 30 6 7.5 7.3 0.2

,-.r- ~ m -- , - - --. ,,

TABLE 4. 3-12 VERMONT YANKEE 13UCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

DECEMBER 1979 TURBIDITY P_Il Day Observed Daily Average Maximum Minimum Range 1 3 7.5 7.3 0.2 2 3 7.5 7.3 0.2 3 3 7.4 7.1 0.3 4 2 7.4 7.3 0.1 5 2 7.5 7.4 0.1 6 2 7.5 7.3 0.2 7 2 7.5 7.3 0.2 8 PUMP INOPERATIVE PUMP INOPERATIVE E 9 PUMP INOPERATIVE PUt1P INOPERATIVE

[I 10 PUMP INOPERATIVE PUMP INOPERATIVE 11 PUMP INOPERATIVE PUMP INOPERATIVE 12 PUMP INOPERATIVE PUMP INOPERATIVE 13 PUMP INOPERATIVE PUMP INOPERATIVE 14 PUMP INOPERATIVE PUMP INOPERATIVE 15 PUMP INOPERATIVE PUMP INOPERATIVE 16 PUMP INOPERATIVE PUMP INOPERATIVE 17 PUMP INOPERATIVE PUMP INOPERATIVE 18 1 7.5 7.4 0.1 19 1 7.5 7.4 0.1 20 2 7.6 7.3 0.3 21 1 7.6 7.4 0.2 22 1 7.6 7.5 0.1 23 1 7.6 7.5 0.1 24 1 7.6 7.5 0.1 25 2 7.5 7.4 0.1 26 6 l

7.5 7.3 0.2 27 5 7.6 7.4 0.2 28 6 7.6 7.5 0.1 29 7 . 7.5 7.2 0.3 30 5 7.6 7.3 0.3 31 3 7.6 7.2 0.4

TABLE 4.4-1 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

JA;1UARY 1979 TURBIDITY @

Day Observed Daily Average Maximum Minimum Range 1 1 7.2 7.0 0.2 e 7 7.2 6.9 0.3 3 20 7.1 6.9 0.2 4 20 7.2 7.0 0.2 5 8 7.2 7.0 0.2 5 3 7.2 7.1 0.1 7 2 7.2 7.1 0.1 8 3 7.1 7.0 0.1

, 9 2 7.1 6.9 0.2 r 10 1 7.0 6.9 0.1 U 11 No Valid Data 7.0 6.9 0.1 8

12 1 7.0 6.9 0.1 13 1 7.0 6.9 0.1 14 1 7.0 6.9 0.1 15 1 7.0 6.9 0.1 16 1 7.1 7.0 0.1 17 0 7.1 7.0 0.1 18 1 7.0 6.9 0.1 19 1 7.1 7.0 0.1 20 1 7.1 7.0 0.1 21 1 7.1 6.9 0.2 22 1 ,

7.0 6.9 0.1 23 1 7.0 6.9 0.1 24 1 7.0 6.9 0.1 25 1 7.1 7.0 0.1 26 1 7.1 7.0 0.1 27 1 7.1 7.0 0.1 28 1 7.1 7.0 0.1 29 1 7.0 6.9 0.1 30 1 7.0 6.9 0.1 31 1 7.1 7.0 0.1 o

l *

.~

TABLE 4.4-2 VERMONT YAiEEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

FEBRUARY 1979 TURBIDITY M Day Observed Daily Averaga Maximum Minimum Range 1 1 7.1 7.0 0.1 2 1 7.1 7.0 0.1 3 1 7.1 7.0 0.1 4 1 7.1 7.0 0.1 5 1 7.1 7.0 0.1 6 1 7.1 7.0 0.1 7 1 7.1 7.0 0.1 8 1 7.0 6.9 0.1

, 9 1 7.1 7.0 0.1 P 10 1 7.2 7.0 0.2 U 11 1 7.1 7.0 0.1 8

12 2 7.1 7.0 0.1 13 2 7.0 7.0 0.0 14 2 7.1 7.0 0.1 15 2 7.1 7.0 0.1 16 1 7.1 6.9 0.2 17 1 7.1 7.0 0.1 18 0 7.0 7.0 0.0 19 1 7.0 6.9 0.1 20 1 7.0 6.9 0.1 21 -

1 7.0 6.9 0.1 22 1 7.0 6.9 0.1 23 2 7.0 6.9 0.1 24 2 7.0 6.9 0.1 25 3 7.0 6.9 0.1 26 2 7.0 6.9 0.1 27 2 7.0 6.9 0.1 28 3 7.0 6.9 0.1

TAB LE 4 . 4 -3 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

MARCII 1979 TURBIDITY @

Day Observed Daily Average Maximum Minimum Range 1 2 7.1 6.9 0.2 2 2 7.1 7.0 0.1 3 1 7.1 7.0 0.1 4 1 7.2 7.1 0.1 5 2 7.1 7.0 0.1 6 16 7.0 7.0 0.0 7 14 7.0 6.8 0.2 8 50 7.0 6.8 0.2 e 9 8 (- 6.9 6.8 0.1 5 10 34 6.9 6.8 0.1

? 11 6 6.9 6.8 0.1 12 4 6.9 6.9 0.0 13 5 7.0 6.9 0.1 14 Recorder Inoperative Recorder Inoperative 15 Recorder Inoperative Recorder Inoperative 16 Recorder Inoperative Recorder Inoperative 17 Recorder Inoperative Recorder Inoperative 18 4 7.0 7.0 0.0 19 4 7.0 6.9 0.1 20 4 7.0 6.9 0.1 21 5 7.0 6.9 0.1 22 8 7.0 6.9 0.1 23 14 7.0 6.9 0.1 24 30 7.0 6.9 0.1 25 No Valid Data 7.0 6.8 0.2 26 No Valid Data No Valid Data 27 40 7.0 6.9 0.1 28 28 7.0 6.9 0.1 29 Pump Inoperative Pump Inoperative 30 Pump Inoperative Pump Inoperative 31 Pump Inoperative Pump Inoperative

TABLE 4. 4-4 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

APRIL 1979

-l TURBIDITY @

Day Observed Daily Average Maximum Minimum Range 1 Pump Inoperative Pump Inoperative 2 Pump Inoperative Pump Inoperative 3 Pump Inoperative '

Pump Inoperative 4 4 7.0 6.8 0.2 5 3 7.0 6.9 0.1 6 4 7.0 6.9 0.1 7 4 7.1 7.0 0.1 8 3 7.1 7.0 0.1 8 9 3 7.1 7.0 0.1 U 10 2 7.2 7.1 0.1 T 11 2 7.2 7.1 0.1 12 3 7.2 7.0 0.2 13 2 7.2 7.0 0.2 14 2 7.2 7.1 0.1 15 2 7.2 7.1 0.1 16 1 7.2 7.1 0.1 17 1 7.2 7.1 0.1 18 2 7.2 7.1 0.1 19 1 7.2 7.1 0.1 20 1 7.2 7.0 0.2 21 1 7.1 7.0 0.1 22 1 7.1 7.0 0.1

23. 1 7.0 7.0 0.0 24 2 7.0 7.0 0.0 25 2 7.2 7.0 0.2 26 No Valid Data No Valid Data 27 5 7.0 6.9 0.1 28 6 7.0 6.9 0.1 29 3 7.0 6.8 0.2 30 4 7.0 6.8 0.2

. . . . ._ - , , ~ . ,_ _ , _m_ - . - . - , . - - , . . _ _ . _ _ , . _

TABLE 4.4-5 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

MAY 1979 TURBIDITY M Day Observed Daily Average Maximum Minimum Range 1 4 7.0 6.9 0.1 2 2 7.0 6.9 0.1 3 2 7.1 7.0 0.1 4 1 7.1 7.0 0.1 5 1 7.1 7.0 0.1 6 1 7.1 7.0 0.1 7 1 7.1 7.1 0.0 8 1 7.1 7.1 0.0 4

e 9 1 7.2 7.0 0.2 10 1 7.2 7.0 0.2 i 11 0 7.2 7.1 0.1 12 0 7.2 7.1 0.1 13 1 7.2 7.1 0.1 14 1 7.2 7.0 0.2 15 1 7.2 7.1 0.1 16 1 7.2 7.0 0.2 17 1 7.3 7.1 0.2 18 1 7.2 7.1 0.1 19 1 7.3 7.1 0.2 20 1 7.3 7.1 0.2 21 1 7.4 7.2 0.2 22 1 7.4 7.2 0.2 23 1 7.4 7.3 0.1 24 2 7.4 7.1 0.3 25 15 7.1 6.9 0.2 26 13 7.0 6.8 0.2 27 8 7.0 6.9 0.1 28 4 7.1 7.0 0.1 29 8 7.1 6.9 0.2 30 5 7.1 6.9 0.2 31 2 7.1 7.0 0.1 6

, e + - __-a - ___w -- , - - , . , , - , - . . - - , . . -  % m- - .- + y -, . . - . - - - - .

TABLE 4.4-6 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION HO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

JUNE 1979 TURBIDITY p_lH Day Observed Daily Average Maximum Minimum Range ,

1 4 7.1 7.0 0.1 2 1 7.1 7.0 0.1 3 1 7.1 7.0 0.1 4 1 7.0 6.9 0.1 5 1 7.0 6.9 0.1 6 1 7.0 6.9 0.1 7 1 7.1 7.0 0.1 8 1 7.1 7.1 0.0 e 9 1 7.2 7.0 0.2

[ 10 1 7.3 7.1 0.2 y 11 1 7.3 7.1 0.2

-12 1 7.3 7.0 0.3 13 0 7.4 7.2 0.2 14 1 7.3 7.2 0.1 15 1 7.4 7.2 0.2 16 0 Sensor Inoperative 17 0 Sensor Inoperative 18 1 7.5 7.4 0.1 19 1 7.6 7.4 0.2 20 1 7.6 7.3 0.3 21 1 7.7 7.5 0.2 22 1 7.8 7.5 0.3 23 1 7.7 7.5 0.2 24 1 7.7 7.5 0.2 25 Sensor Inoperative 7.5 7.3 0.2 26 Sensor Inoperative 7.3 7.2 0.1 27 Sensor Inoperative 7.4 7.2 0.2 28 1 7.4 7.2 0.2 29 1 7.3 7.1 0.2 30 1 7.3 7.1 0.2

e g

n 122222 2331211211311221111 a 000000 0000000000000000000 R

EEEEEE VVVVVV IIIIII m TTTTTT u AAAAAA m RRRRRR HI i 223333 EEEEEE 5432121000911000099 p n . . . . . .PPPPPP . . . . . . . . . . . . . . . . . .

i 777777 OOOOOO 7777777777677777766 ,

M NNNNNN IIIIII N -

O PPPPPP I MMMMl M l T) UUUUUU AR PPPPPP RO -

OT PI RN OO m .

CMY u B m 345555 7763332211222221100 R0 i . . . . . . . . . . . . . . . . . . . . . . .

E2A x 777777 7777777777777777777 WT . a 7 OWAC M 4

- P( DN9 I 7

. R7Y 9 4 A T ,1 E .IC E LOLEY L CNATL .

B U UAU A

T NNQU O Q J

EIRA ETE e KAT g NTA a ASW r .

Y e EEEEEE E v VVVVVV TL A IIIIII NP Y TTTTTT OM T y AAAAAA MA I l RRRRRR RS D i EEEEEE E I a 111111 PPPPPP 1111111000000110101 V B D OOOOOO R NNNNNM U d IIIIII T e v PPPPPP r MMMMMM e UUUUUU s PPPPPP b

O y -

a 1234567890123456789012345678901 -

_ D 1111111111222222222233

[m'

e g 21213122111 11111221211122121 n . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a 00000000000 00000000000000000 R

E V

I EE T VV A II R TT m E AA u P

)

RR .

m '90998000111EE12222233355545555 -

H i 't . . . . . . . . .PP . . . . . . . . . . . . . . .

En I67666777777OO77777777777777777 i NN .

M R II N E O D PP I R MM T) O UU AR C PP .

RO E OT R .

PI _

R3 t OO m CMY u B m 11101122222 23333454566667676 R0 i . . . . . . . . . . . . . . . . . . . . .

E2A x 77777777777 77777777777777777 .

WT . a 8- OWAC 9 M P( DN 7 4 I 9 R7Y 1 .

4 A T ,

E .IC T E LOLE S L CNAT U B U UA G A

T NNQU U O Q A EIRA .

ETE e .

KAT g NTA a E -

ASW r V .

Y e I EE v T AAAAAAAAVV E

TL A AR TTTTTTTTII NP Y AAAAAAAATT .

OM T y E DDDDDDDDAA MA I l P RR RS D i O DDDDDDDDEE E I a N122IIIIIIIIPPLLLLLLLLOO 11111111111111111 V B D I R AAAAAAAANN U d R VVVVVVVVII T e E D OOOOOOOOPP v NNNNNNNNMM r R e O UU .

s C PP b E O R y

a 1234567890123456789012345678901 1111111111222222222233 D

iH5' _

r e

g -

n 011122422222211222222112211212 a 000000000000000000000000000000 . -

R m

u m 5 44333022122222223332222354332 gin i

777777777777777777777777777777 M

N O

I T)

AR .

RO OT PI RN -

OO m CMY u B m 555455444344433445554334565544 R0 i . . . . . . . . . .. . ... .. . ..

E2A 9 x 777777777777777777777777777777 WT .

7 a 9- P;DN OWAC1 9 M -

4 I - .

R7Y R 4 A T , E -

E .IC B r E LOLE M L CNAT E B U A NNQU P UA T -

T O Q E EIRA ETE S e KAT g NTA a ASW r Y e E v TL A NP Y OM T y MA I l RS D i .

E I a 111111212233333222222111111111 V B D S R

U d T e v

r e

s b

O ,

m y 123456789012345678901234567890 n a 111131111122222222223

_ D o'

,F

TABLE 4.4-10 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

OCTOBER 1979 TURBIDITY g Day Observed Daily Average Maximum Minimum Range 1 2 7.3 7.2 0.1 3 2 7.3 7.1 0.2 3 1 7.3 7.2 0.1 4 2 7.2 7.0 0.2 5 2 7.1 7.0 0.1 6 1 7.1 7.0 0.1 7 1 7.1 6.9 0.2 8 1 7.1 7.0 0.1 4

w 10 9 1 7.1 6.9 0.2 0 7.1 7.0 0.1 7 11 0 7.2 7.1 b.I 12 1 7.2 7.1 0.1 13 1 7.2 7.1 0.1 14 1 7.2 7.2 0.0 15 1 7.2 7.2 0.0

, 16 1 7.3 7.2 0.1 17 1 7.3 7.2 0.1 18 1 7.4 7.2 0.2 19 1 7.4 7.3 0.1 20 2 7.3 7.2 0.1 21 2 7.2 7.1 0.1 22 1 7.2 7.1 0.1 23 2 7.3 7.2 0.1 24 2 7.3 7.2 0.1 25 2 7.2 7.2 0.0 26 1 7.2 7.1 0.1 27 1 7.3 7.2 0.1 28 1 7.3 7.1 0.2 29 1 7.3 7.2 0.1 30 1 7.2 7.1 0.1 31 2 7.2 7.2 0.0

TABLE 4.4-11 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

NOVEMBER 1979 TURBIDITY pII Day Observed Daily Average Maximum Minimum Range 1 2 7.2 7.1 0.1 2 1 7.2 7.1 0.1 3 2 7.2 7.1 0.1 4 1 7.2 7.1 0.1 5 1 7.2 7.1 0.1 6 1 7.2 7.1 0.1 7 2 7.2 7.2 0.0

, 8 2 7.2 7.1 0.1 e 9 1 7.2 7.1 0.1 U 10 1 7.2 7.1 0.1 8

11 1 7.2 7.0 0.2 12 1 7.2 7.1 0.1 13 1 7.2 7.1 0.1 14 1 7.2 7.1 0.1 15 1 , 7.2 7.1 0.1 16 1 7.3 7.2 0.1 17 1 7.3 7.2 0.1 18 1 7.3 7.2 0.1 19 2 7.3 7.2 0.1 20 3 7.3 7.2 0.1 21 4 7.3 7.2 0.1 22 3 7.3 7.2 0.1 23 3 7.3 7.2 0.1 24 1 7.3 7.2 0.1 25 1 7.2 7.1 0.1 26 2 7.3 7.1 0.2 27 11 7.2 7.0 0.2 28 7 7.2 7.1 0.1 29 5 7.2 7.1 0.1 30 4 7.2 7.2 0.0 m

y , ,..,%.,, + _ . . , . . . , - ,g4 ,.w.4 m yy, y. . - _ w q _ ,

TABLE 4.4-12 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

DECEMBER 1979 TURBIDITY @

Day Observed Daily Average Maximum Minimum Range 1 3 7.3 7.2 0.1 2 3 7.2 7.1 0.1 3 2 7.2 7.1 0.1 4 2 7.2 7.1 0.1 5 2 7.2 7.1 0.1 6 2 7.3 7.2 0.1 7 2 7.2 7.1 0.1 8 2 7.3 7.2 0.1 e 9 1 7.3 7.2 0.1

[ 10 2 7.3 7.2 0.1 y 11 2 7.3 7.2 0.1 12 2 7.3 7.2 0.1 13 2 7.4 7.2 0.2 14 1 7.4 7.3 0.1 15 1 7.4 7.3 0.1 16 1 7.4 7.3 0.1 17 1 7.4 7.3 0.1 18 2 7.4 7.2 0.2 19 1 7.3 7.2 0.1 20 1 7.3 7.2 0.1 21 1 7.3 7.2 0.1 22 1 7.3 7.3 0.0 23 1 7.3 7.2 0.1 24 1 7.3 7.2 0.1 25 NO VALID DATA 7.2 7.1 0.1 26 5 7.2 7.1 0.1 27 4 7.3 7.2 0.1 28 6 7.2 7.0 0.2 29 4 7.2 7.1 0.1 30 4 7.2 7.1 0.1 31 3 7.2 7.1 0.1

TABLE 4. 5-1 t VERMONT YANKEE ECOLOGICAL STUDIES CONNECTICUT RIVER, VERNON, VERMONT WATER QUALITY ANALYSIS f

Ptont SAMPLE LOCATION Monitor 3 Monitor 7 Discharge Date 2/12/79 2/12/79 2/12/79 Dissolved Oxygen 13.25 13.35 11.90 Turbidity (Formazin Units) 1,9 1,0 1.0 pH (pH Units) '7.17 7.23 7.03

~ '

Alkalinity (as Ca CO3 ) 30.7 32.3 29.9 Total Hardness (as Ca CO3 ) 38.7 38.0 39.7 Calcium Hardness (as Ca CO3 ) 32.0 31.2 32.9 Chloride 12.3 9.3 12.9 Sulfate 13.6 12.8 13.1 Total Phosphate (as P) 0.030 0.025 0.025 Total Solids 90 83 81 Suspended Solids 11 2 2 Chromium (Total) <0.002 <0.002 <0.002 Copper <0.02 <0.02 <0.02 1ron (Total) 0.20 0.14 0.14 Sodium 5.6 5.9 5.8 Zinc <0.02 0.02 0.02 All Results in mg/l Unless otherwise Noted j I

-124-

t TABLE 4. 5-2 VERMONT YANKEE ECOLOGICAL STUDIES CONNECTICUT RIVER, VERNON, VERMONT ,

WATER QUALITY ANALYSIS SAMPLE LOCATION Monitor 3 Monitor 7 Disc 0er'ge Date 5/13/79 5/13/79 5/13/79 Dissolved Oxygen 9.20 9.35 9.70  !

Turbidity (Formazin Units) 8.2 1.6 1.1 6

pH (pH Units) 7.20 7.40 7.60 Alkalinity (as Ca CO3 )

32.0 30.0 35.5 Total Hardness (as Co CO3 ) 36.3 34.5 40.2 i Calcium Hardness (as Ca CO3 ) 31.2 29.7 34.5 i

Chloride 6.1 5.6 7.7 Sulfate 9.1 8.8 10.8  ?

Total Phosphate (as P) 0.175 0.060 0.035 Total Solids 368 72 87  ;

Suspended Solids 156 19 14 Chromium (Total) 0.008 <0.002 L

<0.002 Copper 0.06 <0.02 0.03 Iron (Total) 0.18 0.20 0.34 Sodium 4.0 3.8 4.8 Zinc 0.02 <0.02 <0.02 All Results in mg/l Unless otherwise Noted i

-125-

TABLE 4. 5-3

. VERMONT YANKEE ECOLOGICAL STUDIES CONNECTICUT RIVER, VERNON, VERMONT WATER QUALITY ANALYSIS t

P! ant SAMPLE LOCATION Monitor 3 Monitor 7 Disenorge Date 8/24/79 8/24/79 8/24/79 Dissolved Oxygen 7,7o g,1o 7,u i

Turbidity (Forma:in Units) 0.63 0.65 1.4 pH (pH Units) 7,54 7.76 7.71 I

Alkalinity (as Ca CO3) 42.2 40.2 24.1 Total Hardness (as Ca CO3 ) 52.3 49.8 93.5 -

Calcium Hardness (as Ca CO3 ) 44.9 42.4 79.9  !

Chloride 11.2 10.8 19.4 Sulfate 8.7 8.6 59 .

Total Phosphate (as P) <0.005 <0.005 0.010 Total Solids 50 69 195 Suspended Solids 2 2 4 Chromium (Total) <0.002 <0.002 <0.002 Copper <0.02 <0.02 0.14 Iron (Total) 0.10 0.08 0.20 Sodium 6.4 6.4 11.6 Zinc <0.02 0.02 0.07 All Results in mg/l Unless otherwise Noted

-126-4

l l l

i TABLE 4.5-4 VERMONT YANKEE ECOLOGICAL STUDIES CONNECTICUT RIVER, VERNON, VERMONT WATER QUALITY ANALYSIS r

Pi '

SAMPLE LOC ATION Monitor 3 Monitor 7 ciscncrge Date 11/16/79 11/16/79 11/16/79 Dissolved Oxygen 10.95 11.10 10.55 Turbidity (Formazin Units) 0.68 1.1 2.0 ,

pH (pH Units) 7.28 7.24 7.28 ,

Alkalinity (as Co CO3 ) 31.4 30.5 29.9 i

Total Hardness (as Co CO3 ) 32.6 33.3 33.8  ;

Calcium Hardness (as Ca CO3 ) 26.7 27.2 27.5 Chloride 6.0 G.0 6.2 Sulfate 8.8 9.2 9.2 Total Pnosphate (as P) 0.010 0.010 0.030 Total Solids 63 60 80 i Suspended Solids 3 4 20 Chromium (Totol) <0.002 <0.002 <0.002 Copper <0.02 <0.02 <0.02 Iron (Total) 0.23 0.22 0.53 Sodium 4.6 4.6 4.6  !

Zinc <0.02 <0.02 <0.02 AII Results in mg/l Unless otherwise Noted t

-127-

  1. 8 6

e SECTION 5 PLANKTON STUDIES

5. PLANKTON STUDIES Plankton samples were collected by pump once each month in 1979 at the downstream and upstream water quality monitors, Stations 3 and 7 (Figure 5.1). In addition, samples of river plankton were collected on twenty dates in the 1979 entrainment studies. These latter collections were made by bucket from the river at Vermont Yankee's condenser cooling water intake structure.

Samples were collected with a No. 20 mesh Wisconsin plankton net and preserved in 5% formalin. Subsequently an aliquot of the sample was examined in a Sedgewick-Rafter counting cell. Plankton were identified to the lowest feasible taxonomic level and were counted as their normally occurring unit, i.e., phytoplankters as cells, colonies, or filaments and zooplankters as individuals or colonies. The results of these analyses are presented below.

i 5.1 Phytoplankton Studies I ,

A summary of the counting results of the analysis of the 1979 phytoplankton samples is given in Table 5.1. This table shows for l each sample the dominant species observed, when one taxon was found in greater numbers than any other one, the concentration in units per liter of that dominant organism, and the total count in units per liter of all algae in the sample.

The concentrations of phytoplankters found in the 1979 monitor l samples are also shown graphically in Figures 5.2 and 5.3. To permit ready comparison of the 1979 monitor sample data with that of earlier years, Figures 5.2 and 5.3 also carry plots of the monthly mean phytoplankton counts observed in the years 1970-1974, excluding data collected in 1974 during Vermont Yankee's open cycle testing. Variability of algal concentrations about these means is indicated on the graphs by points which are two standard deviations greater than each monthly mean.

-129-

i' 7

h. ' l PLANKTON SAMPLE STATION i LOCATIONS  :

h ,

0 1/2 l l SCALE IN MILES l

9 .

NEW H AM PSHIR E VERMONT k c ,.

4 s s% .,

)

1 Vermont Yankee 5 D

EIGURE 5.1

/

-130-

Algal concentrations observed in the Monitor 7 samples of  !

January, February, and May were greater than the 1970-1974 means; that of February was more than two standard deviations greater.

At Monitor 3, phytoplankton counts greater than the 1970-1974 means there were found in the samples of January through April, l in June and July, and in December. All Monitor 3 counts, however, were within two standard deviations of the 1970-1974 means.

Concentrations of phytoplankters in the late summer and early fall samples at both monitor stations were low relative to the mean counts observed in 1970-1974.

An exceptionally high concentration of algal units was found in the entrainment intake sample of 12 July 1979. This sample had a total count of 94,492 units per liter. Eighty-five percent of the organisms present were two diatom species - Asterionella formosa and Tabellaria fenestrata. .

In earlier reports of this series (Aquatec 1975, 1976), a statistical analysis of the phytoplankton data collected prior to Vermont Yankee's operation and during closed cycle operation at the two monitor stations was presented. This analysis developed linear regression equations which predicted Monitor 3 counts from I three ranges of observed Monitor 7 counts. All Monitor 7 counts observed in 1979, except the 1349 found in June, lie within the low range, 0-772 units per liter, for which the regression equation has an intercept of 29.3, a regression coefficient of 0.802, and ,

a standard error of estimate of 193. A comparison of the phyto-  ;

plankton counts observed at Monitor 3 in 1979 with counts predicted j by this regression equation from counts observed at Monitor 7 is

' l' shown in Table 5.2.

The data of Table 5.2, except that of the July sample, are -

shown graphically in Figure 5.4, in which the regression equation is plotted as a solid line and the 95% confidence limits for Monitor 3 counts predicted by this equation are shown as dashed lines. These confidence limits were calculated for minimum, mean, and maximum Monitor 7 counts used in the regression analysis.

-131-

TABLE 5.1-1 DOMINANT PHYTOPLANKTON SPECIES (Dominant Species Count / Total Count in Units Per Liter) 1979 SAMPLE LOCATION River at Date Monitor 7 VY Intake Monitor 3 1/11 Asterionella formosa (20/112) 1/15 Asterionella Fragilaria formosa capucina (10/96) (14/92) 1/26 Fragilaria capucina (3/24) 2/12 Fragilaria capucina (14/63) 2/21 Fragilaria Fragilaria  ;

capucina capucina (6/108)~ (12/120) -

2/26 Oscillatoria sp. i (17/540) 3/13 Melosira spp.

(4/238) 3/20 Melosira spp. Melosira spp.

(14/304) (55/600) 4/12 Asterionella -

formosa (9/105) 4/20 Fragilaria Meridion capucina circulare (6/180) (12/374) 4/25 Melosira italica r (19/171) 5/11 Asterionella formosa (33/1302) 5/16 Melosira Melosira italica italica  ;

(46/392) (52/220)

j. 5/29 Melosira italica (18/157)

-132-

TABLE 5.1-2 SAMPLE LOCATION i

River at Date Monitor 7 VY Intake Monitor 3 6/14 Asterionella formosa 6/25 Tabellaria (41/563) Tabellaria fenestrata fenestrata 6/27 (376/1349) Tabellaria (297/818) fenestrata (312/1039) '

7/12 Asterionella formosa 7/17 Tabellaria (50712/94492) Tabellaria fenestrata fenestrata 7/27 (180/446) Tabellaria (2142/4514) fenestrata (160/1051) ,

8/16 Melosira ,

italica 8/20 Pediastrum (91/386) Melosira simplex italica 8/30 (61/215) Asterionella (145/267) 7 formosa '

(128/632) 9/13 Rhizosolenia eriensis 9/19 Pediastrum (248/1330) Asterionella simplex formosa (336/658) (145/1009) ,

10/26 Melosira Melosira italica italica (70/249) (67/244) l l 11/10 Melosira ,

italica (76/250) 11/21 Melosira Asterionella Asterionella italica formosa formosa (102/232) (87/274) (36/142) 12/8 Asterionella formosa 12/19 Tabellaria (37/165) Melosira '

fenestrata italica 12/22 (12/66) None I14/94I

(-/139)

-133-

4 SEASONAL PHYTOPLANKTON DISTRIBUTION STATION NO. 7 - MONITOR 50 40 -

30 -

f'N i

,~~.

/ 's 20 - f \

/ '.

to

/ r, i 50 ,

o i '{s '

I I \ \

5,_ . _ _ _ _ _ I ' \\ .I \  !

t- 1 i \

i a a i e I \

  • 1 I \ \

I . - l 1 \ g I

i \

m g \

l i

s , , \

m I \ \

e \ \

- l l t ,

o E l \ g g6 - l l \ g I \ \

I I 8 I f g 1

s - , . s

\

m '

l I \

Q l I \ \

(

Q l I \ \

w a - t g \ \

m i , t i 9 f I \ I I \ '

3 - I

\t I

i i ~~~! \'

\\

l l I \'

2 -

I \e I

i I \\

,% I i .

,\ l i /\ gg i

/ \ t f I\

I

/ \ l f. g\

i l *~~ s' I e \

~..,

,i D' ' - - '~

4 2 3 4 5 l

6 l

7 l8 l 9 l10 l Is l 12 MONTHS .; 9 7, 1970 - 74 VEA?J l ME AN + 2 STD DEV -------

! FIGURE 5. 2

-134-

l SEASONAL PHYTOPLANKTON DISTRIBUTION l l

STATION NO.3 - MONITOR '

50 ,

'n 11

/l 40 - l 1

/ )

I g 30 -

/ I f

i

\

l I

/ I 20 - p 1 1 1

,#* \

', ' I 10 10 l si e 8 l I i

= ,i li, le s -

l 1 3 g i \ <',

1

$8 o-

- - 1 I 1 I

I / i i I

m I I 2 7 _

i  ; i i

$2 I I I I

= s s t i

< 1 1 Ii e ,l i 85 -

! i i

L I l \

  • l s _ I \

m ,u / s o . i i r, 5 y' / \

I

\

m 4 - # t a l i 1

\ ,

o I \

= I I t 3 -

g ,! \ s

! \ \

l s . I g i i g 2 - *

,, j '

1

\

I

/\ /

s i

\

  1. \ / /

g

.s I

' \ l lI' \ \

/ s ,. .' \ \

j i

N

\. . j '..,

's y

\

N 5. .

.s'A;n x

, = :.&. . .

  • 2 4 I 3 5 l

6 l

7 l8 l 9 l IO l II l 12 MONTHS i979 l 1970 -74 MEAN ----~~~

l MEAN + 2 STD. DEV. -------

l FIGURE 5. 3

-135-e

TABLE 5.2 COMPARISON OF OBSERVED MONITOR 3 PHYTOPLANKTON COUNT WITH MONITOR 3 COUNT PREDICTED BY REGRESSION ANALYSIS OF LOW RANGE PREOPERATIONAL/ CLOSED CYCLE MONITOR DATA, 1970-1974 Monitor 7 Count Monitor 3 Count Date Observed Observed-Predicted = Difference 1/15/79 96 92 106 -14  ;

2/21/79 108 120 116 +4 3/20/79 304 600 273 +327 4/20/79 180 374 174 +200 l 5/16/79 392 220 344 -124 7/17/79 446 4514 387 +4127 8/20/79 215 267 202 +65 9/19/79 558 1009 557 +452 10/26/79 249 244 229 +15 11/21/79 232 142 215 -73 12/19/79 66 94 82 +12  ;

l I

Vermont Yankee was utilizing closed cycle cooling at the time of '

collection of the May through September samples and was not i operating when the March and October samples were collected. The data for these dates are plotted in Figure 5.4 as filled circles; that of the other dates, when Vermont Yankee was operating in the open cycle cooling mode, are plotted as open circles.

All points in Figure 5.4 fall within the 95% confidence limits.

l The point for the data of 17 July was not plotted because it is so far above the upper 95% confidence limit that it is off the scale used in the figure. This sample was collected just 5 days after ,

the intake entrainment sample that showed the very high concentra- '

tions of Asterionella formosa and Tabelleria fenestrata. These  :

i' same two diatoms constituted 76% of the Monitor 3 sample.

The phytoplankton concentration observed at Monitor 7 in June fell within the middle range of counts used in the statisti- f cal analysis of_preoperational and closed cycle data. The linear regression equation developed for this middle range, Monitor 7  !

counts of 772-7283, has an intercept of -483 and a regression

-136- .

r

COMPARISON OF OBSERVED MONITOR 3 PHYTOPLANKTON COUNT WITH MONITOR 3 COUNT PREDICTED FROM PREOPERATIONAL / CLOSED CYCLE MONITOR DATA OF 1970-74 y i I200 -

/

1100 - /

. /

/

/

1000 - /*

/

/

900 - /

/

/

/

800 - /

$ /

m 700 - /

3 C m /

W o /

b 600 - # e

$b ro s '

/

E 500 - ,/

o /

8 400 -

o 300 -

r 200 - PHYTOPLANKTON RANGE AT MONITOR 7 0

p

/ 0-772 ORGANISMS / LITER

]

100 - ,

/

f

/'

/

0 , , , , , ', , , , , , ,X 0 10 0 200 300 400 500 600 700 800 900 1000 180 0 I200 MONITOR 7 ORGANISMS PER LiiER i

l R EGRE S SION EOUATION ( y

  • 29.3 + .802 a ) '

I 95% CONFIDENCE LIMITS FOR PREDICTED y VALUES ---------

l VERMONT YANKEC OPEN CYCLE,1979 o  !

VERMONT YANNEE CLOSED CYCLE OR NOT OPERATING 1979 .

FIGURE 5.4 '

-137-

l coefficient of 0.912. For 'che Monitor 7 count of 1349 observed on June 25, the Monitor 3 concentration calculated from this equation is 747; the cbserved concentration was 818. The differ-ence between the predicted and observed concentrations is much less than the standard error of estimate (2443) for the regression equation.

Forty-six species of phytoplankton were identified in the I samples collected in 1979 at the two monitor sampling stations.

Thirty-one additional taxa were observed in small numbers in the samples of river water collected at Vermont Yankee's intake structure during entrainment studies. A checklist of these seventy-seven phytoplankters is shown in Table 5.3 at the end of this section. Following the name of each taxon in the list are three numbers in parenthesis. The first is the number of Monitor 3 samples in which the alga was observed; the second is the number of Monitor 7 samples in which it was found; the third is the number of entrainment sample dates on which the taxon was found in a river intake sample.

Three species listed in Table 5.3 have not been observed in i prior years of Vermon: Yankee studies. Single units of Gymnodinium sp. and Arthrodesmui sp. were found in entrainment intake samples.

The green alga, Ng rium digitug was found in the Monitor 7 sample of 19 September.

The average number of species found in the twelve upstream monitor samples was 10.5. The minimum number, 6, was observed in the December sample; a maximum of 14 was found in the March and May samples. The minimum number observed in the Monitor 3 sample was also 6, in February and December; the maximum of 19 was found in the September sample. The mean number in the twelve samples at this downstream location was 11.1 species.

In all prior years of Vermont Yankee phytoplankton studies, diatoms have been found to be the predominant type of organisms.

This was the case in 1979 also. The most commonly observed species were Tabellaria fenestrata, Fragilaria capucina, Asterionella

-138-

formosa, and Melosira italica. The latter two were present in all twenty entrainment intake samples. More than fifty percent of the algal counts in all 20 entrainment intake samples and in 11 of  !

each of the 12 monitor samples were diatoms.

The most commonly observed flagellates were again Dinobrvon spp., the most frequently observed green algae were Pediastrum spp., particularly P_. simplex, and the most common blue-greens were oscillatoria spp. i A summary of the percentages of diatoms, flagellates, green and blue-green algae found in the 1979 phytoplankton samples is given in Table 5.4.

TABLE 5.4 MEAN PERCENTAGES AND PERCENTAGE RANGES DIATOMS, FLAGELLATES, GREEN AND BLUE-GREEN ALGAE 1979 Sample Diatoms Flagellates , Greens i Blue-Greens l Location Percentage Percentage Percentaae Percentage Range Mean Range Mean Range Mean Range Mean .

Monitor 7 41-100 83 0-5.2 0.7 0-52 13 0-3.3 0.9 VY Intake 54-97 86 0-18 2.9 0-15 3.9 0-15 2.2 Monitor 3 41-98 85 0-6.4 1.2 0-22 5.5 0-2.4 0.9 I

i

-139-

TABLE 5 3-1 CHECKLIST OF TT.E PHYTOPLANKTON '

OF THE CONFECTICUT RIVER NEAR VER'.40N, VERMONT 1979 A listing by genus only that follows named species of the same genus represents species other than the pre- -

ceding ones. The numbers in parenthesis after each listed '

taxon are: (the number of Monitor 3 samples of 12 - the number of Monitor 7 samples of 12/the number of entrainment intake sample sets of 20 in which the taxon was observed).

BACILLARIOPHYCEAE Asterionella formosa (10-10/20)

Attheya zachariasi (1-0/3)

Cyclotella spp. (5-7/14)

Diatoma vulgare (3-2/2)

Diatoma spp. (2-4/7)

Fragilaria capucina (10-10/18)

Fragilaria crotonensis (5-6/13)

Fragilaria spp. (1-1/3) '

Melosira granulata (3-2/2) .

Melosira granulata var. angustissima (0-0/7)

Melosira italica (11-11/20)

Melosira varians (8-8/19)

Melosira sp. (0-0/1)

Meridion circulare (1-1/3) -

Nitzschia sp. (0-0/l)

Rhizosolenia eriensis (2-1/7)

Rhizosolenia longiseta (0-0/3)

Surirella spp. (1-3/10)

Synedra acus (3-2/5)

Synedra spp. (7-5/18)

Tabellaria fenestrata (8-10/17)

Tabellaria flocculosa (1-0/2)

CHRYSOPHYCEAE t Dinobryon bavaricum (0-0/1) l Dinobryon spp. (5-3/13)

Mallomonas sp. -(0-0/5)

Synura sp. (1-0/4) l

-140-

i TABLE 5.3-2 ,

PYRRHOPHYCEAE Ceratium hirundinella (3-2/5) ,

Gymnodinium sp. (0-0/1) i CRYPTOPHYCEAE Cryptomonas sp. (0-0/5)

CHLORO *iHYCEAE Acanthosphacra sp. (0-0/3)

Ankistrodccmus sp. (2-1/8)  ;

Arthrodesmus sp. (0-0/1) '

Chlamydomonas sp. t0-0/1)

Closterium acerosum (0-0/1)

Closterium acutum (0-0/1)

Closteri'.m gracile (1-0/0)

Closter.ium spp. (2-1/1)

Crucigedia sp. (0-0/2)

Dictycaphaerium ehrenbergianum (1-0/2)

Elaka:othrix sp. (0-0/1)

Eudozina sp. (0-0/1)

Ge_maTIT6ystis sp. (0-0/1)

Gotenkinia sp. (1-0/1)

Gonium sp. (0-0/1) l Micractinium sp. (2-0/6) i Mougeotia sp. (0-0/1)

Netrium digitus (0-1/0)

Oedogonium sp. (1-0/0)

Paulsenulzia sp. (0-0/3)

Pediastrum boryanum (1-1/2)

Pediastrum duplex (3-2/6)

Pediastrum duplex var. gracilimum (0-0/1)

Pediastrum simplex (7-12/14)

Pedlastrum tetras (0-0/2)

Quadrigula closteriodes (1 >/0)

Scenedesmus quadricauda (0-1;GJ Scenedesmus spp. (2-1/7)

Schroederia sp. (1-2/1)

Selenastrum sp. (0-0/1)

Sphaerocystis sp. (0-0/1)

Spirogyra sp. (1-3/4)

Spondylosium sp. (0-0/1)

Staurastrum sp. (1-1/5)

Staurodesmus sp. (1-0/2)

Stigeoclonium sp. (0-0/1)

Treubaria sp. (0-0/1)

Ulothrix zonata (1-2/5)

Ulothrix spp. (0-0/2)

-141-

TABLE 5.3-3 RHODOPHYCEAE Audouinella sp. (2-2/5)

CYANOPHYCEAE Anabaena flos-aquae (0-0/2)

Anabaena solitaria (1-2/2)

Anabaena spp. (0-1/3)

Gomphosphaeria naegeliana (2-2/5)

Lyngbya spp. (3-2/6)

Merismopedia sp. (1-0/2)

Microcystis wesenbergii (0-0/1)

Oscillatoria spp. (3-1/16)

-142-

5.2 Zooplankton Studies The counting results of the analysis of zooplankton samples in 1979 are summarized in Table 5.5 and in Figures 5.5 and 5.6.

Table 5.5 shows the concentration, in units per liter, of zoo-plankters observed in each sample and the name and concentration ,

of the predominant taxon in the sample, when one taxon was observed in greater concentration than any other. In the figures, total zooplankton counts observed in 1979 at the two monitor stations are plotted, along with monthly mean counts observed at these stations in the years 1970-1974, excluding times of open cycle '

testing. To show variability about the means, the figures also carry plots of the means plus two standard deviations.

Zooplankton concentrations observed in the summer samples of 1979 were generally low relative to counts in that season in earlier years. Zooplankton counts greater than the corresponding 1970-1974 monthly means were observed, however, in March, May,  !

and October at Monitor 7 and in February, March, and October at Monitor 3. The October concentrations at both locations were within two standard deviations of the 1970-1974 means, but the other four counts were more than two standard deviations greater than the 1970-1974 means. Only the March Monitor 3 count was greatly in excess of the 1970-1974 mean. The count there in 1979 was 283 organisms per liter; the mean count observed in the years 1970-1974 was 6.6 with a standard deviation of 1.7.

Statistical analysis of zooplankton data collected at the two monitor stations in the years 1970-1974, prior to Vermont Yankee's operation and during closed cycle operation, has provided a basis for comparison of zooplankton counts observed at Monitor 3, downstream of Vermont Yankee, with counts predicted from the zooplankton concentrations observed at Monitor 7 upstream. This analysis, analogous to that used for phytoplankton, resulted in a linear regression equation relating Monitor 3 count, as dependent variable, to the observed Monitor 7 count. For Monitor 7 counts ranging from 0.5 to 418.5, the equation has a regression coeffi-cient of 0.918, an intercept of 15.7, and a standard error of

-143-

TABLE 5.5-1 DOMINANT ZOOPLANKTON SPECIES (Dominant Species Count / Total Count in Units Per Liter) 1979 SAMPLE LOCATION Date Monitor 7

    1. ]e Monitor 3 1/11 Polyarthra sp.

(1.0/3.5) 1/15 Vorticella sp. Philodina sp.

(7 . 0/13 . 5) (4.0/11.0) 1/26 Kellicottia bestoniensis (0.5/0.5) .

2/12 Vortice11a sp.

(1.2/2.5) 2/21 Vorticella sp. Philodina sp.

(6.5/8.0) (15.5/27.5) 2/26 Copepoda Nauplii (0.5/1.8) 3/13 Nematoda (1.0/3.2) 3/20 Philodina sp. Philodina sp.

(14.5/20.0) (273.0/283.0) 4/12 None [

(-/0.8) 4/20 None Philodina sp.

(-/1.0) (1.0/2.5) 4/25 None

(-/1.5) 5/11 Vorticella sp. l l (0.5/2.2) 5/16 Vorticella sp. None '

( 3 . 0/12. 5) (-/4 . 5 )

5/29 Copepoda Nauplii (0.8/2.0)

-144-

,. ?

1 TABLE 5.5-2 i SAMPLE LOCATION Date "D Monitor 7 3 ,

Monitor 3 6/14 Philodina sp. j (0.5/2.2) 6/25 Philodina sp. Philodina sp.  !

( 4 . 5/19. 0 ) (26.0/72.0) 6/27 Synchaeta sp. 1 (12.2/23.8) 7/12 Polyarthra sp.  !

(164.4/363.0) 7/17 Keratella Keratella cochlearis cochlearis '

(8.0/28.5) (35.5/111.0) 7/27 Scapholeberis sp. ,

(9.2/37.0)  !

8/16 Bosmina coregoni

( 5. 0/12. 5) 8/20 Bosmina sp. Keratella (3.5/9.0) cochlearis (2.0/8.5) 8/30 Synchaeta sp.

( 3 . 2/15. 8 )  :

9/13 Polyarthra sp. 5 (2.8/11.0) 9/19 Philodina sp. Philodina sp.

( 3 . 5/13 . 0) (8.5/23.5) 10/26 Vorticella sp. Philodina sp.

(27.5/49,0) (9.0/19.0) 11/10 None

(-/0.8) l 11/21 Vorticella sp. Vorticella sp. Polyarthra sp. l (4. 5/8. 5) (0.5/0.8) (1. 5/4 . 5) l 12/8 None

(-/1.8)  !

12/19 Zoothamnium sp. Copepoda [

(1. 5/ 6 . 0) Nauplii (1.0/2.5) 12/22 Campanella sp. .

(0.8/2.0)  !

s

-145-

SEASONAL ZOOPL ANKTON DISTRIBUTION STATION NO. 7 - MONITOR 8

7 -

t j '

8 s'i 6- ,'

II I '

f I g  : I y a l H I I

] f e 5 - 3 i C i I W l i A f i m g I

l 2 '

m ,1 1 E f i y 4 -

,8 I, Z f I l 0 I n w ' i l

o l \

m I t c 8 i

W 3- ,' I i o i l I Z  ! I i

2 I

a I

g I

,i i

1 2 -  : 7, g i Is t 8

i \ s I l \ l I \ '

,s \ ' .

. I I

\ ' /\

/ \ l i s f

  1. \ l / s g - s' p' \ \ s' \

s' l / \

s' I 's '\!

\

\

o o'

/

e' \* s r a*,* ** ,

.. \, j:_ ::. = .-

-:x:.x # m, -

I l

2 l

3 4 l

5 l

6 l

7 l 8 l 9 l 10 l 11 l 12 MONTHS ig79 1970 - 74 MEAN M E AN + 2 S TO. O EV.

FIGURE 5. 5

-146-

SEASONAL ZOOPL ANKTON DISTRIBUTION STATION NO. 3 - MONITOR e , ,

e i i 1 1 I i 1 i N I i $  !

I - t 7 -

g I I I

i 8

I I I I e

, i ti t is 6- I si I e i Ig

' I i i

I I I i e

u I

i i l i i

I I l

/

J l l I 1 5 - g i g i, g

w 1 1I i C. I li i t m Il 'i

.I I, m

j 4 -

,8 3, e , i O a i g i l l

m ,i i C i l W 3_ i i C l l 9

  • a 1 3 l l l ,\ l, i\
  • s 8

i \ rs R 2- l i g l \

\ /

/  %,

e \ t t l  % \

,! ,! \

\ <e' \

\

'e' ',

n' l \

I l ~

e i . \ \

n' s= \

e t

,e,

,' 1 ef * \g \i e

/ 's I  %

N,

,/ f

,i s

s ' -q f'

,- y ,~~

~~. . , -

O

. '*d '*2 n **" ~~~",, ,~*

e / o_ '*--* M'* '--

l 9 l 10 l is 2 3 4 6 7 1

l l l l 5

l l l 8 l 12 MONTHS ig79 19 70 - 74 MEl.N MEAN + 2 STO CEV - - - - - - -

FIGURE 5.6

-147-

I, estimate of 83.8. A comparison of the zooplankton concentrations l observed in 1979 at Monitor 3 with those predicted by this equa-  !

tion is given in Table 5.6. i TABLE 5.6 COMPARISON OF OBSERVED MONITOR 3 ZOOPLANKTON COUNT WITH MONITOR 3 COUNT PREDICTED BY REGRESSION ANALYSIS OF PREOPERATIONAL/ CLOSED CYCLE MONITOR DATA, 1970-1974 i

Monitor 7 Count Monitor 3 Count Date Observed Observed-Predicted = Difference 1/15/79 13.5 11.0 28.1 -17.1  :

2/21/79 8.0 27.5 23.0 +4.5 3/20/79 20.0 283.0 34.1 +248.9 4/20/79 1.0 2.5 16.6 -14.1 5/16/79 12.5 4.5 27.2 -22.7 6/25/79 19.0 72.0 33.1 +38.9 7/17/79 28.5 111.0 41.9 +69.1 8/20/79 9.0 8.5 24.0 -15.5 ,

9/19/79 13.0 23.5 27.6 -4.1 10/26/79 49.0 19.0 60.7 -41.7 11/21/79 8.5 4.5 23.5 -19.0 12/19/79 6.0 2.5 21.2 -18.7 This comparison is shown graphically in Figure 5.7, in which the regression equation is shown as a solid line and 95%

confidence limits are shown as dashed lines. Zooplankton monitor data collected during open cycle operation of Vermont Yankee, in January, February, April, November and December, are plotted as '

open circles; that collected in other months are shown as filled circles. All plotted points fall within the 95% confidence limits except that of the 20 March samples, collected during a period of shutdown at Vermont Yankee.

A checklist of the zooplankton observed in 1979 is given in Table 5.7 at the end of this section of the report. Organisms

! observed in entrainment samples collected from the river at 1

l Vermont Yankee's intake structure are included in the list. The three numbers in parenthsis following the name of each taxon in

-148- l

COMPARISON OF OBSERVED MONITOR 3 ZOOPLANKTON COUNT WITH MONITOR 3 COUNT PREDICTED FROM PREOPERATIONAL / CLOSED CYCLE MONITOR DATA OF 1970- 74 y /

600 - s'

/

/

_ /

/

/

/

500 - /

/

/

/

~

/

/

/

400 - ,'

f '

/

5, -

/

2

" C /

O /

300 = '

a s O e

/

/

D /

g -

/

O '

C /

200 - ,' ,

/

/

- /

10 0 - / J" OOPL ANKTON RANGE

/ AT MONITOR 7 e '

j O-418 ORGANISMS / LITER

,/

/

e '

n A i x

4 e e i i a i i e i i O 10 0 200 300 400 500 600 MONITOR 7 ORGANISMS PER LITER REGRESSION EQUATION ( y 15. 7 + .9:8 m )

95'/o CONFICENCE LIMITS FOR PREDICTED y VALUES - - - - - - - - - -

VERMONT YANxEE OPEN CYCLE,1979 o VERMONT YANKEE CLOSED CYCLE OR NOT OPERATING,1979 .

FIGURE 5.7

-149-

the list are: the number of Moniter 3 samples, of 12; the number of Monitor 7 samples, of 12; and the number of entrainment in-take samples, of 20, in which the taxon was observed.

All taxa listed in Table 5.7 have been observed in earlier years except the cladoceran, Moina sp. A single organism was found in an entrainment intake sample in July. Of the 52 taxa in the list, 13 were found only in entrainment intake samples.

The number of taxa observed in a sample averaged 7.8 in the Monitor 7 samples and 7.3 in the Monitor 3 samples. The minimum number of taxa observed in a Monitor 7 sample was 2 in April, the maximum number of 14 was found in May. A minimum of 4 taxa per sample was found in the April, May, and December samples at Monitor 3; the maximum of 13 was observed in June and July. .

Rotifers constituted at least fif ty percent of the zooplankters found in 9 of the 20 entrainment intake samples, in 5 of the 12 Monitor 7 samples, and in 9 of the 12 Monitor 3 samples. The most commonly observed rotifers were Polyarthra sp., Synchaeta sp.,

Keratella cochlearis, and Philodina sp. The latter two were found in at least half of the samples collected at each location.

Protozca, particularly Vorticella sp., constituted relatively large percentages of the samples collected in winter and f".11 months, especially the samples at Monitor 7. Erotozor..s predominated in the samples there in January and February and An October through December.

Copepod nauplii were present in 82% of the samples collected in 1979. They were observed in some samples all twelve months of the year. Adult copepods were found in all months except May and October. .

A summary of the percentages of protozoa, copepoda, cladocera, and rotatoria observed in the 1979 zooplankton samples is given in Table 5.8. '

-150-

TABLE 5.8 MEAN PERCENTAGES AND PERCENTAGE RANGES PROTOZOA, COPEPODA, CLADOCERA, AND ROTATORIA 1979 33,p) , Protozoa Copepoda Clacocera Rotatoria Percentages Percentages Percentages Percentages Location Range Mean Range Mean Range Mean Range Mean Monitor 7 0- 81 31 0-50 15 0-39 8.2 6.2-80 44 VY Intake 0-67 13 0-67 23 0-70 10 0-100 45 Monitor 3 0-37 14 0-40 12 0-12 2.8 20-97 65 1

-151-

TABLE 5.7-1 CHECKLIST OF THE ZOOPLANKTON OF THE CONNECTICUT RIVER NEAR VERNON, VERMONT 1979 Zooplankters are listed in the lowest taxonomic level to which identification was made. A listing by genus only that follows named species of the same genus '

represents species other than those previously listed.

The numbers in parenthesis after each listed taxon are:

(the number of Monitor 3 samples of 12 - the number of Monitor 7 samples of 12/the number of entrainment intake sample sets of 20 in which the taxon was observed).

PROTOZOA Acineta sp. (1-0/0)

Campanella sp. (3-3/2)  :

Carchesium sp. (2-1/2)

Vorticella sp. (6-7/9)

Zoothamnium sp. (0-2/0)

PORIFERA Indet. (0-0/1)

GASTROTRICHA Indet. (1-0/0)

NEMATODA Indet. (3-3/9)

ROTATORIA I Asplanchna sp. (1-1/2)

Brachionus calyciflorus (0-1/0)

Brachionus quadridentata (1-0/1)

Brachionus sp. (1-3/2)

Cephalodella sp. (1-2/1)

Conochilus unicornis (2-2/4)

Fillnia sp. (1-0/6T-Kellicottia bostoniensis (3-2/5)

Kellicottia longispina (2-4/4)

Keratella cochlearis (9-6/10)

Keratella quadrata (1-0/2)

Lecane sp. (0-1/0)

Lepadella sp. (0-0/1)

{

l 1

l

-152-l

TABLE 5.7-2 ROTATORIA (cont'd)

Monostyla sp. (0-0/1)

Notholca striata (0-0/1)

Philodina sp. (9-10/11)

Ploesoma sp. (2-1/5)

Polyarthra sp. (5-5/7)

Synchaeta sp. (4-6/9)

Tetramastix opoliensis (0-0/1)

Trichocerca sp. (0-0/3)

Trichotria sp. (2-2/0)

TARDIGRADA Indet. (2-0/4)

ANNELIDA Aeolosoma sp. (4 -2/1)

ARTHROPODA Crustacea Cladocera '

Alona sp. (1-0/1)

Alonella sp. (0-1/1)

Bosmina coregoni (2-2/4)

Bosmina longirostris (0-0/3)

Bosmina sp. (2-3/0)

Chydorus sphaericus (2-2/3)

Chydorus sp. (1-2/0)

Daphnia sp. (0-0/2)

Leptodora kindti (0-1/2)

Leptodora sp. (1-1/0)

Moina sp. (0-0/1) 15oIyjihemus pediculus (1-0/3)

Scapholeberis sp. (0-0/2)

Sida crystallina (0-0/2)

Ostracoda Indet. (1-1/3)

Copepoda Cyclops sp. (1-1/3)

Indet. Adults (3-6/11)

Indet. Nauplii (7-10/19)

Arachnoidea Hydracarina Indet. (0-0/2)

Insecta Diptera Chironomidae Indet. (0-0/2) i

-153-

I SECTION 6 ENTRAINMENT STUDIES l

6. ENTRAINMENT STUDIES l 6.1 Phytoplankton and Zooplankton Entrainment On 20 dates in 1979, samples of Connecticut River water at Vermont Yankee's cooling water intake structure and of the plant's r

cooling water discharge to the river were taken to assess the impact on phytoplankton and zooplankton due to entrainment. Dupli-cate samples were collected at approximately two week intervals during times when Vermont Yankee was operating.

i For each sample, 40 liters of water, collected by bucket, were poured through a No. 20 mesh plankton net. A portion of the fresh sample concentrate was examined within the hour to determine the j identity and relative numbers of living and dead organisms. Zoo-plankters were tabulated as living if they were observed to move or showed internal movement within one minute. Phytoplankters were listed as living if they had normal pigmentation and no signs of plasmolysis. The remaining portion of each sample was preserved  !

with formalin for subsequent identification and enumeration of the organisms present, i The taxa of phytoplankton and zooplankton found in the entrain-ment intake samples are indicated in the two checklists, Tables 5.3 and 5.7, of the previous section of this report. In those lists, l

the third number in parenthesis after each taxon is the number of l sample dates, of a total of 20, on which the taxon was observed in i an intake sample. In general, the same taxa were observed in dis-l charge samples as were found in river intake samples. However, I

five species of phytoplankton were found in 1979 discharge samples that were not observed in plankton samples or entrainment samples collected from the river. Four of these were green algae -

Coelastrum mircroporum, Cosmarium sp., Crucigenia tetrapedia, and

-155-

1 .,

(

Tetraedron sp.- that were observed in small numbers on one. occasion

! each. The fifth, calothrix sp. - a filamentous blue-green - was found in three samples of late summer. Lecane luna, a rotifer, was the only zooplankter found only in discharge samples in 1979.

A single organism was found in a sample of 13 September.

The counting results of the analysis of the fresh and the preserved entrainment samples are summarized in Table 6.1. The data of Table 6.1 have been used to calculate the percent changes in live plankton concentrations between intake and discharge samples shown in Table 6.2. Greater concentrations of live organ-isms in discharge samples than in intake samples were observed for phytoplankton on 10 of the 20 sample dates; for zooplankton on 3 dates.

Increases in living and in total plankton concentrations in discharge samples over those in river intake samples have been observed in all years of entrainment studies at Vermont Yankee.

They are greater, on a percentage basis, at times when the river temperature is low and ambient plankton concentrations are small.

During open cycle operation when river temperature is below 50*F, Vermont Yankee often recirculates a portion of its cooling water to optimize the efficiency of electrical generation. The warmer recirculated water promotes algal growth on the walls of the cooling water system and this attached growth supports a community of microinvertebrates. This aufwuchs often sloughs off into the circulating water system and becomes planktonic.

The impact of Vermont Yankee's entrainment of plankton on the river's concentration of live plankton is dependent upon the pro-portion of river flow, O , which is utilized as condenser cooling r

water. Calculations of the percent changes in river plankton con-centrations due to entrainment on the 20 study dates of 1979 are shown in Table 6.3. These claculations assume uniform diatribu- .

i tion of river plankton at the intake structure and complete mixing of plant discharge into the river.  ;

l l

l

-156-l l

i

I During open cycle operation, plant discharge flow rate, 0 '

0 equals the rate of intake from the river, thus percent change of plankton concentration in the mixed river is the percent change through the plant, Table 6.2, multiplied by the ratio of Q D to Q.

R During closed cycle operation, some water withdrawn from the river is lost by evhporation in the cooling towers. The closed cycle calculations in Table 6.3 have assumed a concentration factor of 2 due to evaporation, which would reduce river flow by an amount equal to plant blowdown discharge, estimated conserva-tively at 15 cfs. Percent change in river plankton concentration is calculated, then, by multiplying percent change through plant by the ratio of 15 cfs to (Q -15 cfs).

R The largest calculated decrease in live plankton concentra-tion in the river is -6.9% for phytoplankton and -8.9% for zoo-plankton, both based on the data of the 22 December samples. The river concentrations (the intake samples) on that date were low - t 128 algc1 v.its per liter and 2.0 zooplankters per. liter. The calculated percentage decreases would reduce river concentrations to 119 and 1.8 units per liter respectively. This is not a signi-ficant impact on river plankton concentrations.

In general, river plankton concentrations are so small in the colder months of the year, when Vermont Yankee is operating in open cycle, that the plant's impact on river biota is not signifi-cant, regardless of the effects of entrainment on viability of phytoplankton and zooplankton. In the warmer months, when plankton populations are greater, the impact of Vermont Yankee's closed cycle operation is minimal because such a small portion of total river flow is used as condenser cooling water.

-157-

TABLE 6.1-1

SUMMARY

OF RESULTS VERH0NT YANKEE ENTRAINMENT STUDIES 1979 Power Percent Living Organisms Number Organisms / Liter Level Condenser Sample Sample (Fresh Sample) (Preserved Sample)

Date (%) AT (*F) Location Temp.( F) Phytoplankton Zooplankton Phytoplankton Zooplankton 1/11 99.8 27.0 Intake 32.0 70 50 112 3.5 Discharge 71.6 62 67 138 2.5 1/26 99.8 26.8 Intake 32.0 50 62 24 0.5 Discharge 68.2 69 43 41 2.0 2/12 99.8 27.3 Intake 32.0 42 88 63 2.5 Discharge 68.9 83 50 1025 1.5 g 2/26 99.5 27.0 Intake 32.9 66 100 540 1.8 Discharge 70.2 62 33 1699 2.2 3/13 89.3 24.0 Intake 32.2 33 100 238 3.2 Discharge 71.4 46 64 2758 1.2 4/12 99.7 27.1 Intake 41.9 63 67 105 0.8

. Discharge 73.4 54 0 228 1.2 4/25 99.7 27.3 Intake 46.8 75 100 171 1.5 Discharge 73.9 63 100 620 1.8 5/11 99.6 21.1 Intake 59.4 84 33 1302 2.2 Discharge 80.2 80 33 254 1.2 5/29 99.5 21.9 Intake 58.1 83 100 157 2.0 Discharge 72.5 20 50 345 4.0 6/14 97.7 21.7 Intake 67.3 97 42 563 2.2 Discharge 73.2 34 14 495 2.2 t

TABLE 6.1-2

SUMMARY

OF RESULTS VERMONT YANKEE ENTRAINMENT STUDIES 1979 Power Percent Living Organisms Number Organisns/ Liter Level Condenser Sample Sample (Fresh Sample) (Preserved Sample)

Date (%) AT (*F) Location Temp.] F) Phytoplankton Zooplankton Phytoplankton Zooplankton 6/27 97.2 21.8 Intake 71.1 93 92 1039 23.8 Discharge 72.7 31 44 1114 9.2 7/12 96.2 21.5 Intake 76.6 89 63 94492 363.0 Discharge 80.6 57 5 1715 74.5 7/27 97.0 21.7 Intake 81.3 86 76 1051 37.0 Discharge 85.5 38 7 3039 43.8 0} 8/16 78.3 16.9 Intake 71.2 98 100 386 12.5 8

Discharge 68.4 18 21 871 6.0 8/ 30 89.2 19.6 Intake 74.7 -

83 84 632 15.8

, Discharge 84.0 18 11 2336 10.5 9/13 86.4 19.0 Intake 70.9 85 72 1330 11.0 Discharge 72.7 31 20 1375 7.0 11/10 98.9 27.0 Intake 46.4 92 100 250 0.8 Discharge 75.9 78 50 407 1.5 11/21 90.8 24.6 Intake 47.3 93 100 274 0.8 Discharge 77.0 89 60 220 1.2 12/8 99.6 27.2 Intake 37.3 92 86 165 1.8 Discharge 74.3 95 100 398 2.0 12/22 99.6 27.3 Intake 32.7 92 100 139 2.0 Discharge 68.9 67 100 80 0.5

. e ,

t en ga nl 06 00 04 01 05 60 00 13 70 97 aP 1 30 06 06 07 80 02 84 4 66 h +5 12 2 - 2 - 5 - +1 2+ - - - - -

C u r - ++ 3 + 1 - +

+ +

%h t

8 w

e c

n e 81 r +

66 54 71 04 75 33 13 10 86 -

1 2 9 9 5 6 9 6 7 e 0 +0 81 61 12 +0 20 80 - 30 -

f - + + - + - 1 - - +1 - - - -

SS f + -

NE ri OL eD I P t TM i ,

AA L

RS T r=

NE e EG p CR NAl se e Oi mk 88 23 62 68 92 65 85 47 00 69 CC sa 7 1 2 5 7 6 2 9 3 4 S it 1 0 2 31 3 0 11 00 12 50 NI nn 1 r OD aI T g 1 KD r O

NN 2, AA g-L 6 PE n -

K i E EA v L VT i e B I N Lg A LI r 67 89 1 8 37 48 30 1 8 34 90 83 T a 8 2 5 5 6 2 9 0 6 6 NT h 1 0 80 00 20 1 31 20 2 10 I N c 1 1 E s SH i EN D GI NA e

AR l

iT e CN 4 E

T NN EE CE n n n n n n n n n n e RW o o o o o o o o o o n ET r t n t n t n t n t n t n t n t n t n t n & -

PE e k o k o k o k o k o k o ko k o k o k o -

8 t nt nt nt nt nt nt nt nt nt nt ,

e ak ak ak ak ak ak ak ak ak ak m l n pa l n l n l n l n l n l n l n l n l n a pa pa pa pa pa pa pa pa pa r ol ol ol ol ol ol ol ol ol ol a t p t p t p t p t p t p t p t p t p t p m P yo yo yo yo yo yo yo yo yo yo ho ho ho ho ho ho ho ho ho ho PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ e

w 9 9 9 9 9 9 9 9 9 9 t

e 7 7 7 7 7 7 7 7 7 7

/ / / / / / / / / /

a 1 6 2 6 3 2 5 1 9 4 D 1 2 1 2 1 1 2 1 2 1

/ / / / / / / / / /

1 1 2 , 2 3 4 4 5 5 6

- u

,g -

TABLE 6.2-2 PERCENT CilANGES IN LIVE PLANKTON CONCENTRATIONS 8ETWEEN ENTRAINMENT INTAKE AND DISCilARGE SAMPLES Living Organisms per Liter  % Change Date Parameter Discharge -

Intake = Dif ference thru Plant 6/27/79 Phytoplankton 345 966 -621 -64 Zooplankton 4,0 21.9 -17.9 -82 7/12/79 Phytoplankton 978 84098 -83120 -99 Zooplankton 3.7 228.7 -225,0 -98 7/27/79 Phytoplankton 1155 904 +251 +28 Zooplankton 3.1 28.1 -25.0 -89 8/16/79 Phytoplankton 157 378 -221 -58

/, Zooplankton 1.3 12.5 -11.2 -90 8/30/79 Phytoplankton 420 525 -105 -20 Zooplankton 1.2 13.3 -12.1 -91 9/13/79 Phytoplankton 426 1130 -704 -62 Zooplankton 1.4 7.9 -6.5 -82 11/10/79 Phytoplankton 317 230 487 +38 Zooplankton 0.8 0.8 0 0 11/21/79 Phytoplankton 196 255 -59 -23 Zooplankton 0.7 0.8 -0.1 -12 12/8/79 Phytoplankton 378 152 +226 +150 Zooplankton 2.0 1.5 +0.5 +33 12/22/79 Phytoplankton 54 128 -74 -58 Zooplankton 0.5 2.0 -1.5 -75

I l j! \1 n

o n t r o k e t nv ai lR k

n a

61 21

+22 9 7.83 2 5.469008628320729 2

1119227 6.2 8 -

P l 0 - 0 0 - 0000000 0+ -

d p - - + - - - - - - - -

ee o vx ii Z o

LM nn ii

  • en go n -

o ni t at k .

ha n Cr t l a 6 4618+245 7265.011121304698557389 9.40 7.1 . . . . .

051

+196 t n p 0+++ ++ - 00000000 - + -

ne o + - - - - + - - -

ec t y

cn T

N ro h .

eC P NE P OM TN KI NA .

AR )

LT s ..

PN rwf 00000000000000000000 E

E eoc vl(

51864221229567620026 VY iF 50433581 329148873259 9909575170691 4511773 IB R R 1 312121 L Q D

NE IT C .

_ 3 SE EF e) gs 6 GF .

NE t rf * *******

E A nac 61681508555555550028 L i R l

ah( 38709495111111119096 B CE l c 44443457 5444 A V Ps0 T TI NR E

i 9_

D CF RO E

PS N n 0O o EI i TT tt AA na * *******

LR el 60914400888888880260 -

UT cu 221332 99999999 312 -

CN rc .

LE er AC Pi CN c O e .

C R g

ne dddddddd il eeeeeeee l c nnnnnnnnssssssssnnnn oy oC eeeeeeeeooooooooeeee pppppppplll lllll pppp _

_ C OOOOOOOOCCCCCCCCOOOO .

d e

99 9 t 99999999999999997797 a e 7777777777777777//7/ m t ////////////////01/2 i a 16263251 947276031 282 t D 121211 2121212131//// s

////////////////1122 E 11223445566714891111 *

,gw *

, l 6.2 Ichthyoplankton Entrainment Studies on the entrainment of larval fishes conducted in 1977 and 1978 hcve been reported earlier (Aquatec 1977b, 1979b). Such studies were conducted in 1979 also. Samples were collected daily behind the trash racks in Vermont Yankee's intake bay from 3 April ,

through the last date of open cycle operation, 12 May. Sampling was continued in the river near Vermont Yankee's intake structure through the end of June.

The samples were collected with a 0.5 meter diameter plankton net with a T.S.K. flowmeter positioned in the net's mouth. The net was mounted in an aluminum frame and lowered by ropes to collect intake bef samples; the net was towed by boat to collect the river samples.

The results of the studies in the intake bay are summarized in Table 6.4; those of the tows in the river are shown in Table 6.5. Intake bay data have been reduced to show the number of larvae entrained per hour and the intake flow expressed as a percentage of the river flow (measured as discharge at Vernon Dam).

Ichthyoplankters were first observed in the sample of 5 May and were found in all subsequent open cycle samples except that of 9 May. The first ichthyoplankter was observed on an earlier date, 2 May, in 1977, but more organisms were collected before 15 May in the samples of 1979. This is probably attributable to the more rapid warming of the river in 1979 than in 1977. Mean daily temperature observed at Monitor 7 on 15 May in 1977 was 54.8*F, in 1979 was 60.1*F. In the colder spring of 1978, the average temperature at Monitor 7 on 15 May was 51.6*F. No ichthyoplankters were collected until that date in 1978.

-163-

TABLE 6.4-1 VERMONT YANKEE ICillilY0 PLANKTON ENTRAINHENT STUDIES River Temperature Nunber Sample VY Intake Rate of River Intake Flow 1979 Station 7 of Larvae Volume Larvae Flow Rate Entrainment Flow Rate as % of Date Time ( F) Collected (m3) per m3 (cfs) Larvae /Ilour (cfs) River Flow 4/3 1420 37.5 0 47.8 0 306 0 40,500 0.8 .

4/4 1420 37.3 0 60.8 0 220 , 0 37,800 0.6 4/5 1405 37.1 0 61.2 0 260 0 34,300 0.8 4/6 1307 37.1 G 48.6 0 329 0 29,400 1.1 4/7 0925 36.6 0 48.7 0 406 0 23,700 1.7 4 4/8 0755 36.5 0 61.9 0 284 0 19,900 1.4 I 4/9 1530 36.7 0 46.1 0 411 0 17,100 2.4 4/10 1725 38.8 0 44.9 0 452 0 18,900 2.4 4/11 1130 37.0 0 51.2 0 427 0 18,400 2.3 4/12 1220 38.6 0 49.0 0 441 0 17,000 2.6 4/13 1045 40.8 0 49.7 0 462 0 17,000 2.7 4/14 0920 40.9 0 53.7 0 487 0 18,100 2.7 4/15 1430 40.1 0 50.2 0 4 31 0 18,600 2.3 4/16 1545 40.7 0 51.2 0 476 0 17,000 2.8 4/17 1547 41.5 0 56.3 0 488 0 19,500 2.5 4/18 1300 41.7 0 52.4 0 480 0 22,000 2.2 4/19 1310 42.5 0 52.1 0 516 0 23,500 2.2 4/20 1320 42.8 0 51.5 0 511 0 22,000 2.3 4/21 1225 42.9 0 53.1 0 509 0 21,500 2.4 4/22 1425 43.8 0 51.0 0 512 0 22,000 2.3 s

e e e

-_ ., _ ,- , _ - - , - _ _ _ m-_ ___ _

TABLE 6.4-2 VERMONT YANKEE ICllTilYOPLANKTON ENTRAINMENT STUDIES River l Temperature Nunber Sample VY Intake Rate of River Intake Flow 1979 Station 7 of Larvae Volume La rvae Flow Rate Entrainment flow Rate as % of Date Time (*F) Collected (m3) per m3 (cfs) Larvae /llour (cfs) River Flow 4/23 1255 44.7 0 71.3 0 549 0 20,300 2.7 4/24 1455 46.7 0 55.3 0 559 0 26,900 2.1 4/25 1020 46.1 0 62.5 0 581 0 25,800 2.3 4/26 1410 47.8 0 61.5 0 565 0 23,500 2.4 4/27 1355 49.1 0 53.6 0 587 0 27,500 2.1 4 4/28 1255 49.6 0 53.4 0 601 0 43,100 1.4

$ 4/29 1100 50.9 0 44.4 0 605 0 40,000 1.3 4/30 1255 50.8 0 31.2 0 605 0 40,000 1.5 5/1 1140 50.8 0 38.4 0 608 0 24,500 2.5 5/2 1300 50.8 0 47.9 0 592 0 20,400 2.9 5/3 1335 51.3 0 41.9 0 561 0 18,500 3.0 5/4 1330 51.9 0 72.7 0 794 0 17,000 4.7 3

5/5 0750 51.2 5 86.9 0.058 788 4.6 x 10 17,300 4.6 51.2 3 5/6 0820 17 86.6 0.20 790 16 x 10 16,500 4.8 3

5/7 1315 52.1 3 85.1 0.035 768 2.8 x 10 15,900 4.8 5/8 0925 53.0 3 90.6 0.033 776 2.6 x 10 3 12,900 6.0 5/9 1000 55.4 0 108.6 0 779 0 14,800 5.3 3

5/10 1003 57.7 13 70.0 0.19 729 14 x 10 10,900 6.7 3

5/11 0815 59.5 3 59.3 0.51 758 3.9 x 10 9,200 8.2

~5/12 0945 61.5 18 86.8 0.21 765 16 x 10 3 9,300 8.2 i

_ _ _ _ ,__ - _ . - _ -, . . _ -. . _ _ . . __.,m .- - _ - - - . . . . _ - , --

TABLE 6.5 VERMONT YANKEE ICHTHYOPLANKTON STUDIES Larval Concentrations in Connecticut River Near Vermont Yankee Intake Structure River Temperature Number Sample River 1979 Station 7 of Larvae Volyme Larvag Flow Rate Date Time (*F) Coll.ected (m3) per m3 (cfs )

5/13 1225 60.3 2 88.0 0.023 9.300 5/14 1145 59.7 7 67.0 0.10 9,200 5/15 1340 60.0 9 78.6 0.11 9,100 5/16 1300 60.9 61 87.6 0.70 8,800 5/17 1430 61.2 28 74.8 0.37 8,100 5/18 1300 61.4 9 68.8 0.13 8,100 ,

5/19 1430 61.6 23 63.3 0.36 8,300 5/20 1400 61.4 74 86.4 0.86 1,300 5/22 1600 63.3 33 57.7 0.57 8,400 5/23 1300 63.2 61 61.0 1.00 8,100 5/24 1600 62.1 12 53.2 0.23 9,700 5/25 1300 56.2 6 92.2 0.065 28,800 5/26 1000 54.9 2 25.7 0.078 49,800 5/27 1105 54.2 7 81.6 0.086 40,500 5/29 1025 55.5 0 72.8 0 27,800 5/31 1007 57.0 2 92.6 0.022 23,600 6/1 1245 59.0 0 91.6 0 22,600 6/3 0930 61.5 24 86.1 0.28 19,000 6/5 1320 62.9 34 90.7 0.37 11,900 6/7 1030 65.2 22 71.0 0 .31 9,400 6/9 0800 66.1 9 65.0 0.14 9,000 6/11 1207 68.2 94 71.3 1.32 7,400 1 6/13 1340 65.6 151 81.4 1.86 9,600 6/15 1035 64.4 42 78.6 0.53 8,900 6/17 0840 68.2 172 67.5 2.55 1,300 6/19 1340 69.7 145 92.8 1.56 9,300 6/21 0920 70.4 26 76.4 0.34 1,300 6/23 0940 71.2 25 62.6 0.40 1,300 6/25 1735 69.0 26 72.6 0.36 7,400 6/27 0955 68.2 27 61.8 0.44 1,300 l 6/29 1215 68.8 18 70.6 0.25 5,700

-166-

g

  • 4 b P SECTION 7 l

f BENTHIC FAUNA STUDIES ,

F i

7. BENTHIC FAUNA STUDIES Thirty-eight samples of Connecticut River benthos were collected at the four Vermont Yankee sample station locations shown in Figure 7.1. Twenty-eight samples, in seven sample sets, were collected with a 9" Ekman dredge and ten were collected by use of Henson traps, wire cages filled with 2 to 3 inch diameter rocks that were left on the river bottom for 6 to 10 weeks before re-trieval. The Ekman dredge samples of the May set consisted of the organisms collected in 5 dredge hauls at each river quarter point.

The remainder of the collections were made by 10 dredge hauls at each quarter point in the river. Henson traps set at Stations 2 and 5 in September were vandalized before the November retrieval date.

The material collected by either sample method was washed through a set of standard sieves and organisms retained by a No.

25 mesh sieve were preserved in 70% alcohol for subsequent analy-sis. Identification was made to the lowest practicable taxonomic level, usually to genus.

Seventy-eight taxa of bottom fauna were identified in the 1979 samples. A checklist of these macroinvertebrates, Table 7.1, appears at the end of this section of the report. The number of samples in which a listed taxon was found is shown in the table for each sampling technique at each sample station.

The number of genera observed in the 1979 samples was 71, of which 35 were found only in Ekman dredge samples, 11 were fo'Ind only in Henson trap samples, and 25 were collected by both sample ,

methods. The number of samples collected by Ekman dredge in 1979 was comparable to the numbers collected at Stations 2 through 5 in the years 1969, 1977, and 1978. A comparison of the numbers of genera collected by Ekman dredge at these stations in these years with the results of the 1979 collections is shown in Table 7.2

-167-l l

BENTHIC FAUNA I

i i SAMPLE STATION i LOCATIONS h

O i 2 SCALE IN MILES l e

Vermont Yankee 8 e NEW HAMPSHIRE VERMONT 3 '

4 2

- GES M ASS ACHUSETTS FIGURE 7.1

-168-

TABLE 7.2 COMPARISON OF NUMBER OF SAMPLES AND NUMBER OF GENERA OF BENTHOS COLLECTED BY EKMAN DREDGE Station Number of Samples / Number of Genera Number 1969 1977 1978 1979 2 6/33 8/20 8/22 7/27 3 6/24 8/25 8/13 7/26 4 7/16 8/19 8/17 7/26 5 8/18 8/20 6/14 7/28 More dredge hauls were used in the collection of most of the 1979 samples than were used in the previous years, but this increased sampling effort was not unproductive. More genera were found in 1979 at Stations 3, 4, and 5 than in earlier years, and the number observed at Station 3 wa s exceeded only by the number found in the 1969 collections.

  • The results of the analysis of the 1979 benthic fauna samples are summarized in Table 7.3. The summary shows for each sample the number of organisms and taxa observed and lists the predominant type of benthos in the sample and the percentage of that form in the sample. A diversity index is also tabulated for each sample.

The index was calculated with the following equation:  !

d=h(Nlog 10 -

n g log 10 i}  !

where C is a constant which converts logarithms from base 10 to base 2; N is the number of organisms; and n g is the number of organisms in the 12- *h taxon.

Caddis fly and chironomid larvae were present in the largest numbers in most of the spring and summer samples; planarians were the dominant type of organisms in some fall samples. These three forms have been observed to constitute the major portion of samples in past years. Tubificids, which have been the predomi-nant organisms in some samples of earlier '; ears, were not observed, however, to be the major constituent of any 1979 sample.

-169-

TABLE 7.3-1

SUMMARY

OP RESULTS OF ANALYSIS BENTIIIC FAUNA SAMPLES 1979 Sample Method Number of Number Diversity Predominant Form IIT (e Days) Sample Benthic of Index  % of Date ED (V Ilauls) S ta tion Organisms Taxa d Name Total 5/10 ED (15 hauls) 2 8 5 2.0 Amnicolid snails 50 ED (15 hauls) 3 4 2 0.8 Caddis flies 100 5/11 ED (15 hauls) 4 6 6 2.6 Chironomids 50 ED (15 hauls) 5 53 16 2.8 Chironomids 85 6/22 ED (30 hauls) 2 40 14 2.9 Caddis flies 42 6/21 ED (30 hauls) 3 29 10 2.6 Caddis flies 52

ED (30 hauls) 4 35 11 2.8 Chironomids 49

[ ED (30 hauls) 5 18 9 2.9 Chironomids 39 7/11 ED (30 hauls) 2 50 15 2.5 Caddis flies 68 ED (30 hauls) 3 47 13 2.5 Caddis flies 62 7/13 ED (30 hauls) 4 33 14 3.2 Chironomids 36 ED (30 hauls) 5 45 11 2.8 Chironomids 62 8/l IIT (40 days) 2 221 11 2.1 Caddis flies 66 7/11 IIT (53 days) 3 237 10 1.8 Caddis flies 69 7/13 IIT (56 days) 4 85 8 1.1 Chironomids 89 7/13 IIT (56 days) 5 51 17 3.1 Chironomids 59 8/15 ED (30 hauls) 2 45 15 3.4 Fingernail clams 27 ED (30 hauls) 3 129 12 2.7 Chironomids 40 8/17 ED (30 hauls) 4 47 12 3.1 Chironomids 32 8/15 ED (30 hauls) 5 81 17 3.1 Chironomids 65 e- , - - w +- - - , - -r-*,= -- w -e - -wv- v- w w w -,w--w -- e v user -w -i%-'- - - y w - -

TABLE 7.3-2

SUMMARY

OF RESULTS OF ANALYSIS BENTIIIC FAUNA SAMPLES 1979 Sample Method Number of Number Diversity Predominant Form IIT (# Days) Sample Benthic of Index  % of Date ED 0F liauls) Station Organisms Taxa d Name Total 9/19 ED (30 hauls) 2 119 10 2.4 Planarians 39 ED (30 hauls) 3 31 10 2.9 Planarians 32 9/18 ED (30 hauls) 4 33 12 2.6 Chironomids 33 ED (30 hauls) 5 40 9 3.0 Chironomids 42 9/19 IIT (70 days) 2 674 10 0.7 Caddis flies 90 llT (70 days) 3 64 5 1.9 Caddis flies 50 i 9/18 IIT (67 days) 4 61 8 2.1 Planarians 49

[ llT (67 days) 5 55 8 2.2 Chironomids 44 10/30 ED (30 hauls) 2 111 11 2.5 Caddis flies 39 ED (30 hauls) 3 100 9 2.1 Planarians 38 10/29 ED (30 hauls) 4 85 14 3.1 Chironomids 76 ED (30 hauls) 5 39 8 2.6 Chironomids 72 11/15 ED (30 hauls) 2 80 9 2.2 Planarians 42 ED (30 hauls) 3 20 3 1.3 Caddis flies 55 11/14 ED (30 hauls) 4 38 11 3.0 Chironomids 53 ED (30 hauls) 5 24 12 3.2 Chironomids 62 11/15 IIT (57 days) 3 236 12 1.5 Amnicolid snails 66 11/14 IIT (57 days) 4 57 4 1.4 Planarians 54

TABLE 7.1-1 CilECKLIST OF Tile BENTilIC FAUNA 0F Tile CONNECTICUT RIVER NEAR VERN0'. VERMONT 1979 Nunber of samples in which a taxon was observed at each sample location in collections made by lienson trap and Ekman dredge Sample Station Number Collection Method (No. Samples Collected) 2 3 4 5 IIT(2)~ED(7) IIT(3)-'ED(7) IIT(3) ED(7) IIT(2) ED(71 PLATYllELMINTHES Turbe11 aria (Flatworms)

Dugesia sp. 2 6 2 6 2 0 4 1 1 U BRY0ZOA % ss Animalcules)

Paludicella articulata 0 0 0 2 0 0 0 0

~Pectinatella magnifica 0 3 0 2 0 0 1 0 ANNELIDA Oligochaeta (Aquatic Earthworms)

Branchiura sowerbyl 0 0 0 0 0 3 0 3 LimnodrITus sp. 0 6 0 1 1 6 1 6 Ilirudinea (Leeches)

Erpobdella punctata 0 0 0 0 0 0 1 0 lielobdella stagnalis 0 0 0 1 0 1 0 0 ARTilROPODA Crustacea Cladocera (Water Fleas)

Daphnia pulex 1 0 1 0 0 0 0 0 Daphnia sp. 0 0 0 1 0 0 0 0 e

  • s i

i e

i N

w CC C CC C CC-OmCveNCCCCC C

^ W T

e ml-  !

M N  ?

U w mC C em O CCCCCC-CCCCCem  !

@ W '

=

O U ^

t N I b e w Cw Q CC C CQmCCOMFCCCCmc c c c i 4S C TlW r i

l J E ^

E m O f m w CC C wN O CCCCCCwCCCCCCC C H i O + Z

  • O W Z m w e W N D T w CC e CC C wCCCCeCwCCwCNC O C 0 4 eiw WG MlW m

EZ m m w CC C CC N CCCCCCCCCCCCeC l DC H w

C =

a U ^

W N

- w CC C QC C CmCmCNCCCmC-NC

- C Ce W Ul Nlm ,

N w CC C NC C CCCCCCCCCCCCCC N H

  • B =

w '

N W ,

J C

4 W l i

^

m

& ^ E r 3 ^ m 3 C m W W

^ Q m 9 4 5 mm w e m & M Om Q3 -  % & m m U

  • i D* Em  % > m M >
  • m b C 1 m

b ^

mQ O 4 m *

  • 3 Um m *=
  • C *E 3 1C 14 3 11

^ w& T be 1 OEw & MO 1m U * *me *m 7 de 3

  • h- M wm
  • M a me C 11 b aQ

= mm *U 1m M ma 34 3 - b M mm W mT M 3- 1M M LM m we be

  • W- Q 4 3 O C 7Emw Um m - W 1 - -* m m e Cfr g er O < www w mb wm m4 0 C * - - O w s E w U we m. m 3l U U b3 13 L b C Q C C C W C W W h w 2 3 T b4 W Q C0 0M m g O m C O W O C C b mm- - O N[T C C uC be
  • m I b e m e m- E C O O

<@Te m ag OO O 10 Qm C @ @ C 4 m m m V Q 4 mm a x X X'U O C C U C000 W e m 1U UL mob mW d W W

  • C4 1m m mm ob wU U Om m 1 111 0 C Q CtW O w w b LW O<<1CUCCUCCE(WWWW33=MZ1MWH 1 QmM E D D-m3= 4 C mL W Zb C HU =  !

K '

1

-173-

w

)

7

( 01 0101 3 010020300 0

000 10115 -

)

d e

5~E

)

t 2 c ( 001100 2 000000012 010 01000 e T l H -

l o

C )

7 r s ( 000200 3 000000101 000 00105 e e D bu lp 4- E u m )

N a 3 S ( 000100 1 110000101 000 00000 n T o . H i o t N -

a ( )

t 7 S d ( 000000 0 375001000 1 00 00000 o D e

l p

h t

e 3E) mM 3 a ( 100000 0 130001000 000 01 000 S n T i

o H t

c )

e 7

( 000000 0 365200101 w l

l D 001 01000 o

2E n

C

)

2

( 00001 0 0 021201000 3 T 000 00000 I

- I 1

7 E )

L s >

B e A i T l f

h s

i f

s

)

e )

s i s e

l f

e g

i n d l

f o i s M l b e o ,

s D ) s m s e a ,

e o D s i t e l i i F u s l . . ) i q s e f s p p .s k s n l

i f

p s

.pe psd

. r i d

dpe

.s p p

s

. spe s

sl t

c o iM r , p

. t a

n p .

) n . s l ash sp u se . r s . e d o s p s A C c s s p ep e s pt s t

g a ph

. u s .a u ( . ( s pi h y

e ps e

h m

.i ps pr o u p

o(

_B s p

.h e .a s i pr ss

- n rsp a sl p apad c u sp st r s ss l st s u u o D m gm u m rsro o y m i n t au uF c u m m c ( a o s d o e g a u r gt s es t s e p n a l s e n rp s n ( a e r o o e

( i t p a n c i c e ee u e i s o n n ar o ll hp o io pi pi m or r a e o n t o c t o n h al pb o o A t e m c ol or u r e lyl y pl i p rl o o r i r Daay o a m o h l a hh e d c l u c ol r e ei l a i Ot no r n o e p at cth ly a o e e h o ey y s t r a h h h w

P c o BD E G ND gS i AC IMh ND PPl C G P pB CC C C Oed e r o i RsO M T C D Hn TI R

A

,r 2 8

l l

)

7

(

D 061 211340001 31 2000 0000 014 .

) .

e 5~E d

)

t 2 c ( 000021 00101 0000000 0000 000 _

e T I

l I l

o C )

7 r s ( 0604431000301 03001 1000 016 e e D bn pl E .

u m 4-) -

N a 3 S ( 00003000000000001 0 0000 000 .

n T o .

I I

i o .

t N -

a ( )

t 7

_ S d ( 01 003000001 0000100 3101 014 -

o D e

l p

h t

e 3E) mM 3 a ( 000021000020000000 3102 01 0 S n T i

o H t

c )

e 7 l

l

(

D 1000000001 30001000 7321 246 .

o -

C 2E) 2 4

(

T 010020000010000000 2100 000 l

- l 1 .

7 E

L B

A .

T .

)

s e

g d

i M

s ) .

e p

. s )

o t s t s e l i

u p

. p e -

q a m s s . . .l i s .

s pp pl . L u o .s ss . se p M Mpu p i s .- , .

) ,smo l a s p.s e .

s n u r pa spp

. p . .

l s

s

, p s

d ss n p ss pm o sr ss . . i m eu o .l e i u so b t m p p a a a .

't i p r pi d a m n r ac u a's s .s n ... l . r p n l yi sr n i e ao e r e l ii i p Sppp Cpe s o F n h e e h n ir t u s i tI m ss ( sss ( sf c ( a c af t c c yi u e pd s-d u o . i m _

( t o s f o s o m h a n o e aa i aT aa u s a pao t u -

ao t e e tp i i o c l a n ph T l l e dl m sdi i i A rl p m i n r p a a t e yt c u uE oo l o ot r r Daee y a k y r t l r r n a l t o m t pc u s a pp a e Ott o r i u l a e a a a e h o5 r i ir Aoi a i s yi g a -

P c pC Oei C D E U H M P P P P P P P P S TJT Crn St m rl ye h y cl el r

a p h

R sD UsAGl l PlEM S l

i n La e -

TI LG P .

R O A M -

hg .

, 4 a b

SECTION 8 FISH STUDIES

/

l l

8. FISH STUDIES ,

8.1 Fish Impingement Studies During all five phases of the special open cycle testing conducted in the years 1974-1978, fish impinged on Vermont Yankee's traveling screens at the intake structure were collected each day and identified, counted, weighed, and measured. The results of these studies, summarized in the Phase V report (Aquatec 1979b),

provided the basis for the schedule of impingement studies, set forth in Vermont Yankee's amended NPDES permit, to be conducted during open cycle operation. However, the Technical Specifications of the operating license, which require that all fish impinged be collected, have not been amended. Therefore, all fish impinged during open cycle operation in 1979 were collected.

A summary of the weight extremes and the extremes in total length of the fish species impinged in 1279 is given in Table 8.1.

In Table 8.2, the numbers and total weight in grams of each impinged species are shown for each month of open cycle operation.

The fish species are listed in order of the decre& sing number of the species collected throughout open cycle operation in 1979.

The table also shows, for each month and for the year, the mean number and mean weight of fish impinged per day of open cycle l operation in 1979. At the bottom of the table are listed the daily means and standard deviations, for both number and weight of fish impinged, that were observed for those months in the five phase open cycle test program.

All daily means, both number and weight, observed in each open cycle month of 1979 were within the two standard deviations of the Phases I-V daily means for the corresponding months. In fact, only the mean number of fish impinged in February, 3.1 per day, exceeded

-177-

TABLE 8.1

SUMMARY

OF WEIGHT AND TOTAL LENGTH EXTREMES OF FISH SPECIES IMPINGED DURING OPEN CYCLE OPERATION 1979 Extremes Total Species Weight (g) Length (mm)

Catostomus commersoni (Lac 6pede)

White Sucker 1.7-17 59-123 Catostomus catastomus (Forster)

Longnose Sucker 54 182 Cyprinus carpio Linnaeus Carp 23-28 114-122 Semotilus corporalis (Mitchill)

Fali fish 51 173 Semotilus atromaculatus (Mitchill)

Creek Chub 1.4-3.7 56-72 Notemigonus crysoleucas (Mitchill)

Golden Shiner 2.3-87 63-202 Notropis hudsonius (Clinton)

Spottail Shiner 1.0-14 51-115 Hybognathus nuchalis Agassiz Silvery Minnow 2.2-15 61-114 .

Juvenile Cyprinidae 0.1-2.2 25-61 Ictalurus nebulosus (LeSueur)

Brown Bullhead 2.0-24 55-132 Ictalurus natalis (LeSueur)

Yellow Bullhead  ?.2-21 70-130 Anguilla rostrata (LeSueur)

American Eel 4 72 670 Fundulus diaphanus (LeSueur)

Banded Killifish 0.8-9.0 49-97 Morone americana (Gmelin)

White Perch 2.5-45 60-155 Perca flavescens (Mitchill)

Yellow Perch 2.2-158 60-253 Etheostoma olmstedi Storer Tessellated Darter 0.6-4.0 46-75 Micropterus dolomieuf Lac 6pede 2.0-357 53-300 Smallmouth Bass Micropterus salmoides (LacepEde)

Largemouth Bass 3.8-308 67-279 Lepomis gibbosus (Linnaeus)

Pumpkinseed 1.7-67 51-145 Lepomis macrochirus Rafinesque Bluegill 1.4-218 51-207 Juvenile Lepomis 0.1-8.4 25-75 Ambloplites rupestris (Rafinesque)

Rock Bass 0.5-134 32-192 i

-178-

TABLE 8.2 SitHARY BY MONiil 0F NUM8ER AND WEIGitT OF FI511 SPECIES IMPINGED DURING OPEN CYELE OPERAll0N 1979 JAN ((8 MAR APR MAY NOV DEC TOTAL Species No.-Wgt.(3[ No.-Wgt. (gl No.-Wgt_._(g{ No.-Wgt.(gl Pumpkinseed No.-Wgt.(gl No.-Wat.(gl No.-Wgk(gl No.-Wgtjgl 12-89.0 18-178.I 84-473.6 424-2147.8 17-70.8 68-739.4 Spottall Shiner 1-2.2 2-6.5 22-105.2 645-3803.9 22-81.8 551-2611.6 16-75.3 2-5.2 6-43.5 602-2826.1 Rock Bass 1-1.0 17-40.0 387-1334.2 114-299.7 10-92.3 6-49.4 535-1816.6 Yellow Perch 3-27.5 19-578.0 413-2961.6 Juvenile Lepomis 6-197.1 2-14.3 2-18.0 445-3796.5 33-121.6 48-188.5 48-89.7 73-110.8 5-8.7 70-100.7 White Perch I6-100.4 16-23.2 293-643.2 9-63.0 25-187.0 83-623.8 17-109.4 7-45.5 1-7.4 Golden Shiner 1-3.0 158-1136.5 Silvery Minnow 98-681.9 6-18.8 105-703.7 100-711.6 3-19.1 103-730.7 81ue9111 2-14.7 15-60.0 29-465.2 4-12.4 Smallmouth Bass36-354.6 6-15.0 92-921.9

1-28.0 4-238.0 20-497.5 9-47.4 23-721.4 P Tessellated Darter 3-109.3 60-1641.6 3-5.3 2-2.8 16-37.7 10-19.9 j Largemouth Bass 1-15.0 4-87.6 3-587.0 31-65.7 s Brown Bullhead 17-775.3 2-47.0 27-1511.9

. 1-6.0 12-140.3 12-113.5 25-259.8 Banded Killifish 21-92.0 2-6.4 White Sucker 23-98.4 17-134.3 1-17.0 18-151.3 Juvenile Cyprinidae 7-6.8 Creek Chub l-0.1 8-6.9 Carp 3-6.9 3-6.9 1-28.0 1-23.0 2-51.0 Yellow Bullhead 2-27.2 American Eel 2-27.2 Longnose Sucker 1-478.0 1-478.0 Falifish I-54.0 1-54.0 1-51.0 1-51.0 TOTALS63-341.2 88-507.6 2427 872.5 2267-1 3733.2 222-1060.2 237-2855.1 66-418.0 3180-20782.8 ho. Days of Open _

Cycle Operation 31 28 17 28 Daily Means 13 29 31 177 2.0-11.0 3.1-18.0 14.2-110.1 80.8-490.5 17.1-81.6 8.2-98.4 2.1-13.5 18.0-117.4 OallyMeans(Phases 1-V) 1.0-66.3 1.2-15.3 23.6-248.0 71.9-692.3 8.9-113.5 Stpd. Dev. IPhases I-V) 1.6-432.9 7.7-140.8 2.3-46.0 19.3-212.7 1.8-42.0 112.4-710.1 102.8-959.0 10.1-215.7 15.7-542.5 5.7-109.6 68.9-605.6 we g em

I

the corresponding Phases I-V mean plus one standard deviation, 3.0 l per day. Both the daily mean number and weight of fish impinged

! during 177 days of open cycle operation in 1979 were below the Phases I-V daily means for corresponding months.

8.2 Resident Finfish Studies In 1979, 1232 fish were collected at Vermont Yankee Sample Sta-  :

tions 2 and 3, downstream of Vernon Dam, and 1229 fish were collected at Stations 4, 5, and 8, upstream of the dam. The locations of the l

sample stations are shown in Figure 8.1. The fish were taken in 66 collections by three capture mathods - trap net, gill net, and seine haul. A summary by sample station and capture method of the fishing effort made and the numbers and weight of fish collected is shown in Table 8.3.

All fish collected were identified and their weight and total length were measured and recorded. Of the seventeen species observed in 1979 collections, eleven were collected both upstream and down-stream of Vernon Dam. Five species - carp, spottail shiner, silvery minnow, American eel, and largemouth bass - were observed only in collections north of the dam; chain pickerel was found only in the collections downstream of Vernon Dam. No species were collected in 1979 that had not been captured in surveys of previous years.

The data of the 1979 fish collections are summarized by species in Tables 8.4, 8.5, and 8.6. Table 8.4 shows for all collections the number, the total weight, and the extremes in weight and total length observed for each species. Tables 8.5 and 8.6 summarize the number and total weights of the species captured north and south of Vernon Dam. In addition, frequency distribu-tions by total length are shown in Table 8.7 for nine of the species.

The species compositions, by weight and by number, of the 1979 collections are graphed in Figures 8.2 and 8.3. These compositions are reduced to a percentage basis and shown in Figures 8.4 and 8.5, along with percentage compositions of earlier surveys to permit comparison with previous studies.

-180-l

% FI S H f /8 g SAMPLE STATIONS

\, '/ / CONN RIVER i CMESTERr.EL3 n

ut ove s ev I i

o i t...E .v.cs

'~ ,

~,

==

EAA*TLESORO h

, ' l 7)

~ g/., -

\

GUILFORD ge[M 9

o e .f

  1. [ }r '

i\.*a:\

[c2'/

' o" NE N H AMPSHIRE

, \', f*- .s Y-  : n.

%E4 C p ,s,-

' *'350 ALE 4 , ,

(

' VERMONT YANKEE , , .gg[g?g NUCLEAR PLANT

\g 3 ,{[d

";r g O

VERMONT /

/ \\

3  !!

n.

[(.. / '2 s'/

s$

NSc.,4, g N*r hM,k}- k:cLc7;----. .. g X, ..

. . . . - n ,.

m. .*. . . .c's.m ,

CC7.-lk W MASSACHUSETTS /

FIGURE 8.1

-181- 0 A*D P D 'TH 9 r J] .

j

. 4 t 7 1 8 4 0 9 3 1 h 8 7 5 0 2 0 3 9

9) 1 7 9 2 5 5 2 1 ig 1 0 5 S e(

1 1 4 1 3 1 6 7 8 5 1 5 2 L W 1 2 A

T O -

T .h 4 8 2 8 2 9 9 1 os 2 0 3 8 8 5 2 6 Ni 2 2 0 2 4 F 1 1 1 1 2 es -

. nl -

oiu 0 4 - 4 5 0 0 5 9 Nea Sl l L -

U A t 0 9 . 9 9 0 0 9 8 5 .-

l i h 5 3 3 9 g) 1 1 6 6 7 E ig -

5 5 5 N e(

I W E

S

. h 0 6 6 9 0 0 9 5 os 7 7 0 0 8 Ni 9 9 8 8 7 F 1 S

T -

L s -

U D .t r 8 S 0 oeu 0 8 -1 1 0

4 9 1 0 1 3

9 4

E NS lo l

i 1 1 1 3 1 4 R T l E

D M - .

N -

A E s T

R R

Uf

.tt oee 0 5 _- 5 6 8 0 4 1 1 9

3 0 TiNNS PN -

f -

A 8 f9 C L -

E7 L t 0 2 2 3 E 9 I h -

1 0 4 6 L G1 G g) 4 4 7 9 6 0 3 3 1 5 7 B N ig 1 - 1 6 0 6 1

A I e( . 8 1 1 3 5 8 9 W

l T i S

I F

F os

. h 0 3 .- 3 0 0 0 0 3 O ;i 2 . 2 0 8 8 0 i 1 F

1 2 Y

R A -

M s M .t r 7 8 - 5 1 7 1 9 4 U oeu 1 8 -

0 7 4 6 7 S NSo 1 3 - 5 8

1 1 3 8 H -

s -

.tt 5 7 2 7 2 7 6 oee 1 _. 2 8

T NNS .

1 3 E .

N -

P t 7 0 7 2 9 9 0 7 A h 8 7 - 5 9 2 0 3 8 R g) 1 2 4 3 9 5 8 T i g 2 1

9 - 0 3 4 8 9 y

e( 1 4 - 6 4 1 5 1 W 1

.h 4 9 3 9 2 9 0 3 1

0s 2 0 3 7 5 4 7 l i 2 2 1 2 4 F - y m m EN S 2 3 - f a 4 5 8 f a s LO PI n

o n-o-

oD hn n n n o o o oD hn li n

o MT i i t o i i i t o l t AA t t un t t t rn Aa SC O t a at or a a a or c S e t t t Ne o L S S V S S S V L ieO8

The. percentages by weight in the 1979 study were all within the ranges that had been observed in earlier surveys, including the weight percentage of white sucker. But the number of white sucker taken in the 1979 collections represented a much greater percentage of the year's catch than in prior studies. This is attributable to the capture in seine hauls on 22 June 1979 of 1030 juvenile white suckers; 969 near Stebbin Island, south of '

Vernon Dam, and 61 along the New Hampshire shore of the river at Station 4. This great increase in the relative numbers of white sucker captured resulted in a smaller percentage by number for ,

smallmouth bass and rock bass than had been found in earlier sur-veys.

Scale samples for age determination were taken from all white 5

perch, yellow perch, walleye, and smallmouth bass collected in 1979 that had a total length more than 50 millimeters. The results of the reading of these scales, along with the age-growth data l collected in years prior to Vermont Yankee's operation with open t cycle cooling, are shown in Tables 8.8 through 8.11. The data i on number of annuli and mean total length from these tables are shown graphically in Figures 8.6 through 8.9.

The points of difference that are found between the 1979 and the 1969-1973 age-growth curves for white perch, yellow perch, and smallmouth bass occur when few specimens in an annulus class were captured. For walleye, however, the age-growth data of 1979 again indicate, as did the data of 1977 and 1978, an enhanced growth rate compared to the statistics of the years 1969-1973.

The number of walleye, though, in the sample of each of the three years has been small - 28 in 1977, 39 in 1978, and 23 in this year, s

-183-

1 TABLE 8.4 FISHES OF THE CON'4ECTICUT RIVER IN THE VICINITY OF VERNON, VERMONT ALL C01.tECTIONS 1979 Total Total Weight Length Number Weight Extremes Extremes In Species Captured In Grams In Grams Millimeters Catostomus commersoni (Lac 6pBde)

White Sucker 1112 57637 <0.1-1308 12-499 Cyprinus carpio Linnaeus Carp 15 58622 2270-5560 535-685 Notemigonus crysoleucas (Mitchill)

Gv;ien Shiner 299 3809 2.9-152 69-255 Notropis hudsonius (Clinton)

Spottail Shiner 46 309 3.1-16 67-120 Hybognathus nuchalis Agassiz Silvery Minnow 30 212 3.8-14 71-115 Juvenile Cyprinidae 125 74 0.1-0.7 28-47 Ictalurus nebulosus (LeSueur)

Brown Bullhead 8 1868 10-442 86-320 Esox niger LeSueur Chain Pickerel 2 641 285-356 360-402 Anguilla rostrata (LeSueur)

American Eel 1 1362 1362 800 Fundulus diaphanus (LeSueur)

Banded Killifish 40 124 0.7-7.3 41-82 Morone americana (Gmelin)

White Perch 196 42056 17-407 110-297 Perca flavescens (Mitchill)

Yellow Perch 246 14714 5-252 91-275 Stizostedion vitreum (Mitchill)

Walleye 23 12715 149-1560 272-550 Micropterus dolomieuf Lac 6pide Smallmouth Bass 36 8629 9-860 86-404 Micropterus salmoides (LacfpEde)

Largemouth Bass 1 705 705 345 Lepomis gibbosus (Linnaeus)

Pumpkinseed 177 4957 3.5-195 58-207 Lepomis macrochirus Rafinesque Bluegill 34 6595 113-392 175-240 Ambloplites rupestris (Rafinesque)

Rock Bass 70 8162 1.5-256 45-239 TOTALS 2461 223191

-185-t

TABLE 8.5 FISHES OF THE CONNECTICUT RIVER IN THE VICINITY OF VERNON, VERMONT ALL COLLECTIONS NORTH OF VERNON DAM 1979 Total Total i Number Weight I Species Captured In Grams Catostomus commersoni (Lac 6pdde)

White Sucker 107 30970 Cyprinus carpio Linnaeus Carp 15 58622 Notemigonus crysoleucas (Mitchill)

Golden Shiner 295 3302 Notropis hudsonius (Clinton)

Spottail Shiner 46 309 Hybogna:hus nuchalis Agassiz Silvery Minnow 30 212 Juvenile Cyprinidae 125 74 Ictalurus nebulosus (LeSueur)

Brown Bullhead 3 35 Anguilla rostrata (LeSueur)

American Eel 1 1362 Fundulus diaphanus (LeSueur)

Banded Killifish 33 114 Morone americana (Gmelin)

White Perch 127 23284 Perca flavescens (Mitchill)

Yellow Perch 235 14168 Stizostedian vitreum (Mitchill)

Walleye 13 8512 Micropterus dolomieui Lac 6pBde Smallmouth Bass 16 3938 Micropterus salmoides (Lac 6pede)

Largemouth Bass 1 705 Lepomis gibbosus (Linnaeus)

Pumpkinseed 160 3488 l

Lepomis macrochirus Rafinesque

! Bluegill -

2 307 l Ambloplites rupestris (Rafinesque) l Rock Bass 20 1831 TOTALS 1229 151233

-186-

TABLE 8.6 FISHES OF THE CONNECTICUT RIVER IN i THE VICINITY OF VERNON, VERMONT ALL COLLECTIONS SOUTH OF VERNON DAM 1979 Total Total Number Weight Species Captured In Grams Catostomus commersoni (Lacfpede)

White Sucker 1005 26667 Notemigonus crysoleucas (Mitchill)

Golden Shiner 4 507 Ictalurus nebulosus (Lesueur)

Brown Bullhead 5 1833 Esox niger LeSueur  ;

Chain Pickerel 2 641 Fundulus diaphanus (LeSueur)

Banded Killifish 7 10 Morone americana (Gmelin)

White Perch 69 18772 Perca flavescens (Mitchill)

Yellow Perch 11 546 Stizostedion vitreum (Mitchill)

Walleye 10 4203 Micropterus dolomieui Lac 6pede Smallmouth Bass 20 4691 Lepomis gibbosus (Linnaeus) '

Pumpkinseed

~

17 1469 Lepomis macrochirus Rafinesque Bluegill 32 6288 Ambloplites rupestris (Rafinesque)

Rock Bass 50 6331 '

TOTALS 1232 71958

-187-

TABLE 8.7-1 FREQUENCY DISTRIBUTION OF FISil SPECIES BY TOTAL LENGTil 1979 l otal SHALLM00Til Length WillTE PERCil YELLOW PERCil BASS PUMPKINSEED BLUEGILL ROCK 8 ASS (mm) No. Wgt.(g) No. Ngt. (gT No. Wgt.(gL No. Wgt.(g) No. Wgt.(g) No. Wgt.(g)_

0-20 21-40 41-60 1 4 3 8 61-80 133 1035 2 10 81-100 16 138 3 31 4 50 1 20

, 'fDIT12~0-~ 6 193 110 1434 4 67 2 Sb 5 143 e 121-140 3 80 1 14 10 515 3 127

$ 141-160 1 68 20 834 5 207 9 696 5 367 8

161-180 13 1032 9 460 5 299 9 1105 3 357 18 1915 181-200 17 1902 21 2089 2 164 8 1302 14 2278 23 3444

~20T 72D - 26 4U4- 39 $696- 1 195 13 2619 7 1383 221-240 49 9988 16 2495 1 168 4 1341 3 745 241-260 44 11203 11 1966 2 432 261-280 32 10504 1 122 281-300 8 3052 1 317

~51-320 3 3 1265 321-340 2 983 341-360 4 2384 361-380 2 1438 381-400

~4 Dl-420 1 860 TOTALS 196 42056 246 14714 36 8629 177 4957 34 6595 70 8162 I -

TABLE 8.7-2 FREQUENCY DISTRIBUTION OF FISH SPECIES BY TOTAL LENGTH 1979 WHITE SUCKER CARP WALLEYE Length l (mm) No. Wgt.(g) No. Wgt.(g) i No. Wgt.(g) 0-20 3 <0.1 21-40 1027 169 41-60 61-80 81-100 101-120 121-140 141-160 161-180 181-200 201-220 221-240 6 868 241-260 261-280 1 212 2 313 281-300 2 512 2 430 l 301-320 4 1435 1 258 321-340 6 2468 341-360 4 1771 1 693 1 342 361-380 6 3504 5 2157 381-400 6 4011 4 1983 401-420 13 9856 2 1126 421-440 19 16535 2 1315 441-460 8 7977 1 754 461-480 5 5794 481-500 2 2525 1 972 501-520 521-540 1 2270 1 1505 .

541-560 1 2665 1 1560  !

561-580 1 3460 581-600 i

601-620 1 3064 621-640 1 4170 641-660 3 13040  !

661-680 5 23700 681-700 1 5560 t

TOTALS 1112 57637 15 58622 23 12715 l

h l

l

-189-l

GRAMS LBS (,, coo; 350 - #60

,, o _ RESIDENT FISH SPECIES COMPOSITION BY WEIGHT 120 -

, 1979 SURVEY 100 -

@ 200 -

w A 80 -

N ISO -

$ 60 -

4o _ ,

"~ "-

0- O AA ba-

  • a fi or =

ga  :

. s 1. E . .

:: .  ; v si  !!
5

!! is ti i ;5 3 3

w5., t. '

. 9. . Ei.

m .i .l v m 8' t

a it

.. ." "h FIGURE 8.2 1200 i,oo -.-

RESIDENT FISH SPECIES

,000 _

/

[ COMPOSITION 1979 SURVEY BY NUMBER 900 -/ ,

/ '

800 -

(M .

e 700 -

E 800 ~ f 1

$ 500 --

S /  : l 400 -'

]

300 - //

. '69',9 /V/,G),k

+ .

}t e

I< $ i5 5 T' i v . . . -

t-

  • c: '-

$f 52 [

[, v f. e

?. 5 F.? 5 'T '

1

.. 5 1:

un 9. .. >. i .t s

es ma i.

1 n

, ~ ~

l FIGURE 8.3 I

p pg t/ A M. O d _ 0 de0 -zst-PEHOEl.T C Y '.'&lGt;T

, sJ  %

i I I i  ! I I I I 4 1@" '? h '973 ,,,, ,*,, ,, n

.' 2 *. '.* L 4 $ J'. ,979 tg7e CitA49!

CariP;0 T

m t *.C'G E t:OuS CYFMfM

  • E f

3 m, W

--i N

> U)

O -

O m N f.t 0 R C f. E m

t.MI R :C A '. ". -, O I, O O, C * "

7.)

M T" 'l

~

s O U) w PERCA -

CD

-v A -

--i F La'. f S C E !.S -< -

O to Z T m

CD O

' -< ~

f.81C R C PT E RUS -4 m DOLOf/iC UI th

" g$

O I

-3 A

LEP0ftS SPP. m i

~

3, A f/L LO ALITES Q PUDES T RIS Q

i

_M_

M(( #.If1( R ,

SLEC'E S E 1

l I

l d

. l

R E S' dei:T .Fl'all S:J ECIE S .

PERCENTAGE COMPOSITION BY NUMBER v: -

a. .. t 70 -

x uJ G} e**,- ,

5 .

E %

>- y, _ - -

5  :

~

e l.

w t.. .

w u, -2 0 - e i o ,

e  :

us -

u. 3 ., -

.l

, o S 2.,

5 n

l

'M i l g o- 1 6 o il[ nn-o. [  !! II I i 'l - {f l{f}l L._

EE'EO , , _ . ,- .c n- .,

"* a -*

p :. s .* a ar.

w

r s .' ,

a

,a s_ ,,

a

. , .-: o. .. .. .

w. ....,. a .

e" >,

FM

6: 'l- .ie, :.f.

.: ,; 3 .i ' ,

" i. s: - L,'  : ' d,

'.. t. '

p' ..

. .. .= <.  : .,

. _ :m U

FIGURE 8.5

o. .

TABLE 8.8 AGE-GROWTH DATA - WHITE PERCH l ALL COLLECTIONS l

Number 1969 - 1973 1979 of Number Total Length (mm) Number Total Length (mm)

Annuli Specimens Average Extremes Specimens Average Extremes 0 47 91 62-130 1 116 -

1 8 178 169-194 31 174 113-206 2 94 202 155-245 30 222 178-257 3 253 231 175-2 6 57 236 165-270 4 112 244 204 J03 44 252 216-297 5 18. 267 2~,9-311 16 256 218-295 6 5 284 270-308 9 267 238-293 I 7 0 - -

3 264 251-287 COLLECTIONS NORTH OF VERNON DAM ,

Number 1969 - 1973 1979 of Nummer Total Length (mm) Number Total Length (mm)

Annuli Specimens Average Extremes Specimens Average Extremes 0 43 90 62-130 1 116 -

1 7 176 169-180 29 173 113-206 2 64 198 155-235 19 216 178-234 3 118 224 175-276 30 230 165-262 4 48 239 204-285 25 244 221-297 [

5 12 269 247-311 9 248 218-270 6 4 278 270-296 6 259 238-283 7 0 - -

3 264 251-287 COLLECTIONS SOUTH OF VERNON DAM Number 1969 - 1973 1979 l

of Number Total Length (mm) Nummer Total Length (mm)

Annuli Specimens Average Extremes Specimens Average Extremes 0 4 92 68-110 0 - -

1 1 194 -

2 186 184-188 -

2 30 210 178-245 11 232 207-257 l 3 135 235 186-270 27 242 200-270 4 64 247 213-303 19 263 216-290 5 6 263 239-285 7 267 240-295 6 1 308 -

3 283 272-293 7 0 - -

0 - -

-194-t

AGE-GROWTH GRAPHS - WHITE PERCH mm. in.

350 -

- 13 300 - - 12 g.*.....

250 -- 10  ;-/

_9 z 200 --8 e .

7..-i o -7 z ,

w J 150 --6 ,

f

-5 ,'

10 0 --4 '

1969-1973 r

_3 8979 ~~~~~~~

50 ---2

-l 0 -- O , , , , , , ,

0 1 2 3 4 5 6 7 NUMBER OF ANNULI NORTH AND SOUTH OF VERNON DAM m m. in. m m. in.

350 - 350 -

- 13 - 13 300 - - 12 300 - - 12

- fl

,f. - 11 ,,

  • 250 - - 10 [ ,,
  • ~

250 -- 10 / *,

-9

-9 , (

r 200 - -8 e 200 --8 o

-7 f. -7 l

d 150 --6 , 150 --6

/

-5 / -5 l

10 0 --4 80 0 --4

-3 -3 50 --2 50 --2

-l -l 0 -- O , , , , , , ,

0--O , , , , , , ,

O I 2 3 4 5 6 7 0 1 2 3 4 5 6 7 NUMBER OF ANNULt NUMBER OF ANNULI NORTH OF VERNON DAM SOUTH OF VERNON DAM FIGURE 8.6

-195-

l TABLE 8.9 AGE-GROWTH DATA - YELLOW PERCH ALL COLLECTIONS i

l Number 1969 - 1973 1979 of Number Total Length (mm) Number Total Length (mm)

Annuli Specimens Average Extremes Specimens Average Extremes 0 45 81 45-118 9 99 91-113 1 44 122 67-183 30 135 93-175 2 80 192 156-235 35 196 160-220 3 71 216 158-249 23 219 192-252 4 74 234 208-266 19 233 205-255 5 50 251 217-280 5 235 219-256 6 23 270 225-295 0 - -

7 9 281 265-302 0 - -

8 2 285 -

0 - -

9 0 - -

0 - -

10 1 305 -

0 - -

COLLECTIONS NORTH OF VERNON DAM f

Number 1969 - 1973 1979 of Numcer Total Length (mm) Number Total Length (mm)

Annuli Specimens Average Extremes Specimene Average Extremes 0 22 83 45-118 6 96 91-105 1 30 126 67-183 27 135 93-175 i 2 73 190 156-235 32 196 160-220 3 49 218 170-249 23 219 192-252 4 37 232 208-266 18 233 205-255 5 22 251 217-271 5 235 219-256  ;

6 4 271 261-282 0 - - +

7 2 269 265-272 0 - -

l 8 2 285 -

0 - -

9 0 - -

0 - -

10 1 305 -

0 - -

COLLECTIONS SOUTH OF VERNON DAM Number 1969 - 1973 1979 of Number Total Length (.Tm) Number Total Length (mm)

Annuli Specimens Average Extremes Specimens Average Extremes 0 23 80 47-101 3 105 97-113 1 14 115 101-156 3 129 106-145  ;

2 7 209 174-230 3 192 175-203  :

3 22 212 158-241 0 - -

4 37 237 211-262 1 247 -

5 28 250 230-280 0 - -

6 19 270 225-295 0 - -

7 7 285 267-302 0 - -

8 0 - -

0 - -

9 0 - -

0 - -

10 0 - -

0 - -

-196-

AGE-GROWTH GRAPHS - YELLOW PERCH m m. in.

350 -

~ 13 300 -- 12 .

-n .-.

250 - 10

s. . /.. /,

I 200 --8

,[

en

@ -7 -

/

w '

l 150 --6 /

-5 j. <

10 0 --4

-3 i

50 --2 3979 ~ - - - - - '

-1 0--O g g , g , , , , , ,

O I 2 3 4 5 6 7 8 9 10

, NUMBER OF AtJNULl NORTH AND SOUTH OF VERNON DAM m m. in. mm. in. '

350 -> 350 - 6

- 13 - 13 ,

300 -- 12 p. 3co .- 12

- II 250 -- 30 j.--./' - 11

,./

,/.-

250 -- 10

, t

= 200 --8

/*

200 --e g -7 l -r ' .

'_! ISO --6 j 150 --6

-5 4 -5 ,'

10 0 --4 / 100 --4

-3 -3 "

50 --2 50 --2 ,

-1 -l 0--O , , , , , , , , , , 0--O , , , , , , , , , i O I 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 NUMBER OF ANNULI NUMBER OF At NUL1 NORTH OF VERNON DAM SOUTH OF VERNON DAM FIGURE 8.7

-197-

TABLE 8.10 AGE-GROWTH DATA - WALLEYE ALL COLLECTIONS Number 1969 - 1973 l 1979 of Number Total Length (mm) Number Total Length (mm)

Annuli Specimens Average Extremes Specimens Average Extremes 0 4 136 119-151 0 - -

1 6 188 163-211 4 281 272-295 2 13 286 242-337 2 360 355-365 3 18 337 275-380 7 369 306-390 4 22 344 291-381 6 420 380-485 5 32 375 303-407 1 427 -

6 8 396 321-435 1 437 -

7 6 473 425-527 2 544 538-550 COLLECTIONS NORTH OF VERNON DAM Number 1969 - 1973 1979 of Numcer Total Length (mm) Number Total Length (mm)

Annuli Specimens Average Extremes Specimens Average Extremes 0 3 134 119-151 0 - -

1 5 190 163-211 2 288 282-295 2 6 274 246-320 0 - -

3 12 331 275-377 5 363 306-390 4 12 344 291-381 4 438 405-485 5 22 375 337-407 0 - -

6 8 396 321-435 0 - -

7 4 478 433-527 2 544 538-550 COLLECTIONS SOUTH OF VERNON DAM Number 1969 - 1973 1979

?f Number Total Length (mm) Number Total Length (mm)

. Annuli Specimens Average Extremes Specimens Average Extremes 0 1 141 -

0 - -

1 1 180 -

2 274 272-276 2 7 296 242-337 2 360 355-365 3 6 350 318-380 2 384 380-387 4 10 345 313-360 2 384 380-387 5 10 373 303-402 1 427 -

6 0 - -

1 437 -

7 2 463 425-501 0 - -

-198-

AGE-GROWTH GRAPHS - WALLEYE m m. in.

600 -

_ - 22

[ 500 -- 20 ,'

j .

--le ,

400 -- 16 y --l* j ~~ .'. ./ -

$ 300 -- 12 ,r ./

m - .

J - - 10 .

200 --8 ,

150 --6 - .

/ 1969-1973 10 0 --4 1979 - - - ~ ~ - -

50 --2 0--O 4 g g g g g , ,

O I 2 3 ,4 5 6 7 8 NUMBER OF AN NULI NORTH AND SOUTH OF VERNON DAM m m. in, mm. in.

600 _ 600 -

_- 22

_- 22 500 -- 20 500 -- 20

-- 18 - 18

=e

,e , ..

4CO -- 16 ,

400 -- 16 ,,'

=

- 14

  • s /e/, -

-- 14 w- ./.

w

@ 300 -- 12

[. 300 -- 12

//

,/ .

.J - - 10 -- 10 200 --8 200 --8

- -6

/. - -6 [e 10 0 --4 10 0 --4

--2 --2 l O 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 l NUMBER OF ANNULl NUMBER OF ANNULI l NORTH OF VERNON DAM SOUTH OF VERNON D AM FIGURE 8.8

-199-

TABLE 8.11 1

AGE-GROWTH DATA - SMALLMOUTH BASS ALL COLLECTIONS ,

Number 1969 - 1973 1979 of Number Total Length (mm) Number Total Length (mm) r Annuli Specimens Average Extremes Specimens Average Extremes 0 16 68 45-102 8 118 86-153 1 25 1.64 108-213 8 160 102-184 ,

2 31 206 161-255 2 180 172-188 '

3 59 239 197-293 3 254 225-294 4 50 275 220-315 4 306 246-337 5 36 305 262-350 4 342 310-360 6 16 346 305-376 3 366 356-378  ;

7 4 370 343-406 1 404 -

8 1 357 -

0 - -

9 2 412 398-425 0 - -

10 0 - -

0 - -

11 1 411 -

0 - -

COLLECTIONS NORTH OF VERNON DAM Number 1969 - 1973 1979 <

Nummer' Total Length (mm) of Number Total Length (mm)

Annuli Specimens Average Extremes Specimens Average Extremes 0 5 50 45-57 3 -

128 86-153 1 21 161 108-213 4 152 102-184 l 2 29 205 161-255 1 188 -

3 44 235 197-293 1 244 -

4 23 272 220-315 0 - -

5 23 300 262-339 4 342 310-360 6 12 339 305-362 1 364 -

7 2 386 365-406 0 - -

8 0 - -

0 - -

9 1 398 -

0 - -

10 0 - -

0 - -

11 0 - -

0 - -

COLLECTIONS SOUTH OF VERNON DAM Number 1969 - 1973 1979 1 of Number Total Lengtn (mm) Number Total Length (mm)  ;

Annuli- Specimens Average Extremes Specimens Average Extremes 0 11 76 91-102 5 111 96-133  ;

1 4 173 150-207 4 166 154-171 2 2 225 211-238 1 172 -  !

3 15 252 232-274 2 260 225-294 4 27 279 245-305 4 306 246-337 5 13 312 290-350 0 - -

6 4 346 352-376 2 367 356-378 7 2 354 343-364 1 404 -

l 8 1 357 -

0 - -

9 1 425 -

0 - -

10 0 - -

0 - -

11 1 411 -

0 - -

-200-l

,~ ,

AGE-GROWTH GRAPHS - SM ALLMOllTH P ASS me in.

4n 400 -- 16 ,.

- ,o 350 -- 34 e'

' '/ *

- ,o 300 -- l2

_ ,/ .

5 250 -- 10 ,e[

o _

Z 3 200 --8 '

/ ,'

j 150 --6 I ,.

- s'

[00 --4 1969-1973

<. 1979 -------

50 --2 0--O i i i i i i 6 a l i 'l O I 2 3 4 5 6 7 8 9 10 ll NUMBER OF ANNULl

  • i NORTH AND SOUTH OF VERNON DAM i m m. in, m m. in.

450 - 450 -

400 -- 16 4co _- 16

  • N.

p, ,.

14

  • 350 -- 14 350 -

,o#

300 -- 12 300 -- 12 ,l

./. -

C 250 -- 10 c

= -

[ 250 -- 10 i

d 200 --8

  • 200 --8 /

/, -

. .l

-6 ,' 150 --6 ,

150 L ,

- /

10 0 --4 10 0 '- 4 o ,

50 --2 e 50 --2 0--O , , , , , , , , , , , 0--O , , , , , , , , , , ,

O I 2 3 4 5 6 7 8 9 10 11 O I 2 3 4 5 6 7 8 9 10 11 NUMBER OF ANNULI NUMBER OF ANNULI l NORTH OF VERNON DAM SOUTH OF VERNON DAM FIGURE G.9

-201-

i LITERATURE CITED APHA et al. 1976. Standard methods for the examination of water and wastewater. 14th edition. Published jointly by American Public Health Associatien, American Water Works Association and Water Pollution Control Federation; Washington, D.C.

Aquatec, Incorporated. 1973. Ecological studies of the Connecticut River, Vernon, Vermont. Report II, June 1971-December 1972.

Report prepared for Vermont Yankee Nuclear Power Corporation.

1974. Ecole . cal studies of the Connecticut River, Vernon, Vermont. Report III, January-December 1973. Report prepared for Vermont Yankee Nuclear Power Corporation.

1975. Ecological studies of the Connecticut River, Vernon, Vermont. Report IV, January-December 1974. Report prepared for Vermont Yankee Nuclear Power Corporation.

1976. Ecological studies of the Connecticut River, Vernon, Vermont. Report V, January-December 1975. Report prepared for Vermont Yankee Nuclear Power Corporation.

1977a. Ecological studies of the Connecticut River, Vernon, Verr.ont . Report VI, January-December 1976. Report prepared i for Vermont Yankee Nuclear Power Corporation.

l 1977b. Hydrothermal and biological studies, Connecticut '

River, Vernon, Vermont. Phase IV September 1976-May 1977.

Report prepared for Vermont Yankee Nuclear Power Corporation.

1978. Ecological studies of the Connecticut River, Vernon, Vermont. Report VII, January-December 1977. Report prepared for Vermont Yankee Nuclear Power Corporation.  ;

1979a. Ecological studies of the Connecticut River, Vernon,  !

Vermont. Report VIII, January-December 1978. Report prepared for Vermont Yankee Nuclear Power Corporation.

1979b. Hydrothermal and biological studies, Connecticut River, Vernon, Vermont. Phase V October 1977-May 1978. Report prepared for Vermont Yankee Nuclear Power Corporation.

Webster-Martin, Incorporated. 1971. Ecological studies of the Connecticut River, Vernon, Vermont. Preoperational report.

Report prepared for Vermont Yankee Nuclear Power Corporation.

-203-I