ML19308D706

From kanterella
Jump to navigation Jump to search
Evaluation & Comparison of Calculated Steam Head Losses & Reactor Bldg Sump Test Sys Head Losses
ML19308D706
Person / Time
Site: Crystal River Duke Energy icon.png
Issue date: 10/15/1976
From:
GILBERT/COMMONWEALTH, INC. (FORMERLY GILBERT ASSOCIAT
To:
References
GAI-1924, NUDOCS 8003120849
Download: ML19308D706 (30)


Text

-

EVALUATION AND COMPARISON L;.

OF CALCULATED SYSTEM HEAD LOSSES AND REACTOR BUILDING SUMP TEST SYSTEM HEAD LOSSES RELATIVE TO CRYSTAL RIVER UNIT NO. 3 w

l, i

ll sa>

e eiaeo,o,

FLORIDA a

POWER CORPORATION CRYSTAL RIVER UNIT 3 i

8003120 ff 2.'I.!.2'.! '"'" f..",7.".'.$

A

r-

.,o g..

October 1976 GAI Report No. 1924 FLORIDA POWER CORPORATION 9 *

(.!.

EVALUATION AND COMPARISON OF CALCULATED STEAM HEAD LOSSES i

.(

-AND REACTOR BUILDING SUMP TEST SYSTEM HEAD LOSSES RELATIVE TO l

1 CRYSTAL RIVER UNIT No. 3

'/

s

./

l i.

J i

. /.

t i

.o t

4 Prepared By:

Gilbert Associates, Inc.

i..

j i.

\\

TABLE OF CONTENTS Section P_ age _

a

1.0 INTRODUCTION

1 5

~

2.0 CALCULATION METHODS AND ASSUMPTIONS 2

~

3.0 DEFINITIONS 4

4.0 UNCOMPENSATED, COMPENSATED AND EXPANDED HEAD

f LOSS (g) CALCULATIONS 5

4.1 BABCOCK AND WILCOX (JUNE 11, 1973 CdLCULATIONS REFERENCE 3) 5

i 4.1.1 Reactor Building Spray Pump A (RBSP-A) 5

-(,

4.1.1.1

@ 1000 gpm 7

Reduced Sump Flow Test Data ((R3SP-B) 4.1.2 Reactor Building Spray Pump B 8

4.1.2.1 Reduced Sump Flow Test Data h @ 1000 gpm 9

.l 4.1.3 Decay Heat Removal Pump A (DHF-A) 10 y

'I 4.1.3.1

-Reduced Sump Flow Test Data ht @ 2000 gpm 11 4.1.4 Decay Heat Removal Pump B (DHF-B' 12 ll-4.1.4.1 Reduced Sump Flow Test Data ( @ 1000 gpm 13 FIGURE 1 DECAY HEAT PUMP (DHP-A) 15 FIGURE 2 DECAY HEAT PUMP (DHP-B) 16

[(.

FIGURE 3 REACTOR BUILDING SPRAY PUMP (RBSP-A) 17 FIGURE 4 REACTOR BUILDING SPRAY PUMP (RBSP-B) 18 FIGURE 5 SUCTION PIPING FOR REACTOR BUILDING SUMP TO D.H.-A/B.S.-A PUMPS 19 "k-FIGURE 6 SUCTION PIPING FOR REACTOR BUILDING SUMP TO D.H.-B/B.S.-B PUMPS 20

+

l[

FIGURE 7 CALCULATED VS. EXPANDED ( FOR DECAY HEAT PUMP 3

(DHP-A) 21 FIGURE 8 CALCULATED VS. EXPANDED ( FOR DECAY HEAT PUMP (DHP-B) 22 I

i(

FIGURE 9 CALCULATED VS. EXPANDED ( FOR REACTOR BUILDING

!L SPRAY PUMP (RBSP-A) 23 FIGURE 10 CALCULATED VS. EXPANDED H FOR REACTOR BUILDING g

!/

SPRAY PUMP (RBSP-B) 24 Ii 5.0

SUMMARY

25 REFERENCES 26

.\\

[

G. mort /Commenneesta

! l..

. l 1

i 6

1.0 INTRODUCTION

This report presents the results of a design review and evaluation performed to compare the calculated fluid frictional losses with the f~

reactor building sump flow test data, relative to Decay Heat Removal and Reactor Building Spray Pumps suction systems from the reactor building sump, for Crystal River Nuclear Power Station Unit No. 3.

.f-1

(.

.I,

/.

t f.

i i

!(

t e

i
/

?

S

-t.

j l

Lj..

.t Geert/Commonsene

L,

.I

I 2

(.

1 2.0 CALCULATION METHODS AND ASSUMPTIONS

(

The purpose of this report is to determine the margin that exists between calculated fluid friction system losses and tested fluid

.i friction system losses. Gilbert Associates, Inc. (Reference GAI head loss calculations dated 12/3/75) and Babcock & Wilcox (Reference NPSH Calculations dated 6/11/73) L/D's were appropriately modified to

.a

(

comply with actual test instrumentation locations. GAI calculations,

)

referenced above, indicated calculated system suction head losses from the reactor building sump to the pump suction. However, due to present

]{

system design the actual instrumentation test locations were not

.t.

feasible at the pumps suction (Refer to figures 5 and 6).

Although

]l test locations were not practicable at the pumps suction, proper modifications to_the L/D's and other pertinent data provide a

.i;(

conservative comparison and evaluation of calculated system head 3 -

losses vs. actual sump test data.

b-

!I.

Figures 1, 2, 3 and 4 give a comparison of Babcock and Wilcox and Gilbert Associates, Inc., calculated values vs. actual test datn s

y values for the Reactor Building Sump Reduced Flow Test.

{

q Figures 5 and 6 show isometrically the systems and piping arrangements l

i tested.

l j,

Figures 7, 8, 9 and 10 indicate the margin between Babcock and Wilcox compensated head loss calculction and the expanded test head losses, relative to- ' tat portion of the appropriate system tested.

1.

i._

,_~

' f:

'I 3

The flow rate utilized for the reduced sump flow test was a constant

+

flow of a 1000 and 1900 gpm, depending on the system tested, refer to table 1 of this report.

The actual tested head losses, as recorded,

-1 i

therefore were expanded to encompass various flows in order to create a curve for the purpose of comparing the calculated head losses (h )

t co the expected actual h 's.

The calculated h curves were derived t

g

(

by the applicabl'e L/D's, velocities, Reynolds Numbers, friction

'f factors etc.

The expanded test data h curves were derived by taking g

(

the actual ht @ the tested flow rate and applying the ht formula, as defined below; solving for K, and utilizing K for various flows to determine the expected a 's @ these various flow conditions, ie.

~/

2 2

(h )(2g) y y

t

= f L/D g = K h

.K=

2 t

i

'(

Note:

Although the value of K decreases minimally as flow f

increases, K was conservatively assumed to remain constant I'

for the various flows calculated.

l

!s k

.I

\\

l:l

_..e

4 3.0 DEFINITIONS I

~

a.

Compensated L/D - Is the L/D equivalency for that portion of the system which was actually tested (governed by the test t.ap locations).

?

g b.

Uncompensated L/D - Is the total L/D equivalency for the entire system from Reactor Building Sump to Pump suction with no f

consideration given to the test tap' location.

7-

!(.

Expanded Reduced Sump Flow Test Data - Is the actual recorded c.

testheadloss(()at the test flow rate, expanded to encompass various flows, hence providing a comparison curve for the

/

compensated head loss (h ) calculations.

L d.

Test Data Points (TDP) - The actual test head loss (h ) values 4

t

-(

vs test time varification frequency (( vs time Figures 1

- I through 4).

-(

e.

Test Data Average (TDA) - The average of the test data points (values) vs test time varification frequency (h vs time g

Figures 1 through 4).

c.

I L

.i j

\\

i.

l

!; L' I

Gdbers/Comon=esan

d:

he 5

v 4.0 UNCOMPENSATED, COMPENSATED AND EXPANDED HEAD LOSS (ht) CALCULATIONS' 4.1 BABCOCK AND WILCOX (JUNE 11, 1973 CALCULATIONS REFERENCE 3)

<~

' COMPENSATED AND UNCOMPENSATED L/D's AT REDUCED FLOW FOR COMPARISON TO SUMP TEST DATA:

t Note 1 - Refer to Reference 3 for original ah, calculations for i

~

friction factors and velocities.

1 4.1.' 1 Reactor Building Spray Pump A (RBSP-A)

{

a.

Uncompensated L/D:

( @ 1000 gpm 14 inch pipe L/D v

f d

388.68 2.37 fps 0.0162 13.124" h = f L/D (Reference 1) t

(

}g (2

h = 0.0162 (388.68)

=.55 ft H O t

2_

2 f

4

[h 10 inch pipe L/D v

f d

453.88 4.1 fps 0.0161 10.02"

't

( {

2'

~

{

h = 0. 0161 (453.88)

= 1.91 ft H O t

6 2

System Total g = 2.46 ft H O 2

c 29.52 in H O 2

b.

Compensated L/D:

h @ 1000 gpm l-14 inch pipe: Same as calculated above for Uncompensated as l.

14" portion was included in the test in its l

entirety.

-t h =.55 ft.H O 2

ti L.

, M.

Gibert/Commonseesh

L
r

-l, 6

i.

10 inch pipe:

L/D v

f d

(F-396.88 4.1 0.0161 10.02" f

)

h = 0.0161 (396.88)

= 1.67 ft H O g

4 2

.1 2.22 ft H O System Total h

=

g 2

26.64 in F 0 3

c.

Compensated L/D @ 1500 gpm:

14 inch pipe L/D v

f d

f 388.68 3.55 0.0155 13.124" q

h = 1.18 ft H O L

2 ll' 10 inch pipe L/D v

f d

396.88 6.1 0.0155 10.02" g

( = 3.55 ft H O 2

System Total ( = 4.73 ft H O 2

f d.

Compensated L/D @ 2000 gpm:

.t 14 inch pipe L/D v

f d

388.68 4.74 0.015 13.124" g = 2.03 ft H O 2

/

10 inch pipe L/D v

f d

396.88 8.13 01015 10.02"

.c

( = 6.11 ft H O 2

System Total h = 8.14 ft H 0 g

3 4 a 0

' b e' ua' I

Gdbart/Commoneesen

..,sa

.i 7

4.1.1.1 Reduced Sump Flow Test Data ht @ 1000 gpm (Reference Table 1) RESP-A

'f h = 7.23 in. H O = 6.03 ft H O t

2 2

,~

Note 2:

For expansion of the actual test data, to create a curve the average pipe sizes and velocities were used.

\\

Solving for K:

2 2

(h )(2 )

8

( = f L/D y =Ky

.K=

t 28 2g.

2 y

\\

Utilizing the above recorded h tha appropriate K for RBSP-A System

7, g
b is determined.

I; a.

1000 gpm flow rate:

K = (.603)(64.4) = 4.17

'(

(3 05)2

1 l(

Hence, calculating additional various flows, conservatively assuming that K remains constant the following expected expanded 3

h are determined.

t

(
(

b.

1500 gpm flow rate:

'/~

~(4 57)2' I

h = 4.17 6k.4

= 1.35 ft H O t

2 f

c.

2000 gpm flow rate:

(6 h = 4.17

= 2.41 ft H O j,.

L 2

I l

l!.

ls i-k l L.4 t

1 camica m

t.

8

('

4.1.2 ~

Reactor Building Spray Pump B (RBSP-B) 7 a.

_U_ncompensated L/D: ht @ 1000 gpm 14 inch pipe L/D v

f d

'~

319.88 2.37 fps 0.0162 13.124" (2 37)2'

~

=fL/Df=0.0162(319.88)

=.45 ft H O h

2 t

10 inch pipe L/D v

f d

I 448.24 4.1 fps 0.0161 10.02"

(

}

h = 0.0161 (448.24)

= 1.88 ft H O 6

2 2.33 ft H O System Total h

=

t 2

27.96 in H O 2

b.

Compensated L/D:

@ 1000 gpm 14 inch pipe: Same as calculated above for Uncompensated, as 14" portion was included in the test in its s

entirety.

h =.45 ft H O t

2

(

10 inch pipe L/D v

f d

391.24 4.1 fps 0.0161 10.02" i

(

h = 0.0161 (391.24) _ 6j

= 1.64 ft H O t

2 4

System Total h = 2.1 ft H O L

2

+

^

Ghert/Cammemseann i

k 9

. g..

i c.

Compensated L/D @ 1500 gpm:

14 inch pipe L/D v

f d

319.88 3.55 0.0155

. 13.124" (3 55 h = 0.0155 (319.88)

_6k

=.97 ft H O 3

2 j

i' 10 inch pipe L/D v

f d

391.24 6.1 0.0155 10.02"

/)

2 (6

h = 0.0155 (391.24)

= 3.5 ft H O 3

6 2

{

(

System Total h = 4.5 ft H O 7

2

(

d.

Compensated L/D @ 2000 gpm:

[i-14 inch pipe L/D v_

f d

(

319.88 4.74 0.015 13.124" i

~(j

.i h = 0.015 (319.88)

= 1.6 ft H O 6

2 i

10 inch pipe L/D v

f d

(

391.24 8.13 0.015 10.02"

} 2'

~

(*f4 h = 0.015 (391.24)

= 6.0 ft H O 2

t System Total h = 7.62 ft H O L

2 4.1.2.1 Reduced Sump Flow Test Data ( @ 1000 gpm (Reference Table 1) RBSP-B a.

1000 gpm flow rate:

( =.242 ft H O = 2.9 in. H O 2

2 (See Note 2 of page )

l ',

Solving for K:

g,b

(.242)(64;4)

= 1.68 l-7 (3.05)'

' +

- M/ColflplefloseRJI

.;~-

r 10

(.

4 b.

1500 ginn flow rate:

~!

f 2

2

.57 h

=K

= 1.68

=.55 ft H O 2

l.

c.

2000 gpm flow rate:

J

~

~

2 2

I*

h

=K

= 1.68

=.97 ft H O t

2

.I 4.1.3 Decay Heat Removal Purp A (DHP-A)'

a.

Uncompensated L/D:- @ 2000 gpm i

14 inch pipe L/D v

f d

367.44 4.74 0.015 13.124"

( = 0.015 (367.44)

('k4

)

= 1.92 ft H O 2

b..

Compensated L/D:

@ 2000 gpm j

14 inch pipe L/D v

f d

211 4.74 0.015 13.124"

~

2'

(*

.)

h = 0.015 (211)

= 1.104 ft H O t

4 2

J c.

Compensated L/D:

@ 3000 gpm

~(

14 inch pipe L/D v

f d

211 7.1 0.0142 13.124" i

( = 0.0142 (211)

(k

= 2.35 ft H O 6

2 d.

Compensated L/D:

@ 4000 gpm f

14 inch pipe L/D v

f d

211 9.47 0.0135 13.124"

~

2'

('

( = 0.0135 (211) 6k4.

= 3.97 ft H 0 3

a

'i..

Geers/Commonssum 4_

t t

11 4.1.3.1 Reduced Sump Flow Test Data ( @ 2000 gpm (Reference Table 1) DHP-A

( =.705 ft H O = 8.46 in. H O

~

2 2

See Note 2 page J

Solving for K:

2 2

(h )(2g) v y

t

f L/D g = K g.*. K

.t h

2 Utilizing the above recorded h the appropriate K for DHP-A System is t

(

determined.

1(

a.

@ 2000 gpm flow rate:

l

t K = (.705)(64.4)

,g (4.5)2 b.

@ 2500 gpm flow rate:

(

21

~

(5

( = 2.24 6

2

= 1.22 ft H O c.

@ 3000 gpm flow rate:

~

II"

) 2' g = 2.24

= 1.76 ft H O 2

it d.

@ 3500 gpm flow rate:

I

)

g = 2.24

= 2.39 ft H O 2

e.

@ 4000 gpm flow rate:

~

~

i

(

}2 t

h = 2.24

= 3.12 fe H O g

4 2

l i..

Geert/Commanuseth i(

If 12

+

4.1.4~

- Decay Heae Remova1 Pump B (DHP-B) a.

Uncompensated L/D: @ 1000 gpm

~

i' 14 inch pipe L/D v

f d

407 2.37 0.0162 13.124"

~

(2.

) 2'

( = 0.0161 (407)

=.58 ft H O 2

t b.

Compensated L/D:

0 1000 gpm 14 inch pipe L/D v

f d

279.88 2.37 0.0162 13.124"

?,

1..

2' (2.37 h = 0.0162 (279. 88)

=.395 ft H O g

4 2

d c.

Compensated L/D:

0 1500 gpm 14 inch pipe L/D v

f d

279.88 3.55 0.0155 13.124"

~

2' (3*

I h = 0.0155 (279.88)

=.85 ft H O g

6 2

d.

Compensated L/D:

@ 2000 gpm 14 inch pipe L/D v

f d

279.88 4.74 0.015 13.124"

} 2'

~

( = 0.015 (279.88) (k4j = 1.46 ft H O 6

2 e.

Compensated L/D:

@ 3000 gpm h

14 inch pipe L/D v

f d

279.88 7.12 0.0142 13.124" g

(

( = 0.0142 (279.88) 6 2

= 3.12 ft H O f.

Compensated L/D:

0 4000 gpm 14 inch pipe L/D v

f d

279.88 9.47 0.0135 13.124"

('

} 2'

~

h = 0.0135 (279.88) 6{

= 5.3 ft H O a

t 2

I-

[famimaammeSh e

i.

l i

13 4.1.4.1 Reduced Sump Flow Test Data ( @ 1000 gpm (Reference Table 1) DHP-B g =. 232 f t H O = 2. 78 in. H O 2

2 See Note 2 page Solving for K:

(h )(2g) i 2

t g = f vo y = K g K -

2 y

Utilizing the above recorded h the appropriate K for DHP-B System is L

determined:

I a.

@ 1000 gpm flow rate:

K = (*

(

= 2.66 (2.37)2 b.

@ 1500 gpm flow rate:

~

(3

} 2' h = 2.66

=.52 ft H O t

6 2

c.

@ 2000 gpm flow rate:

~

('

} 2' h = 2.66

=.93 ft H O g

6 4 2

d.

@ 3000 gpm flow rate:

(f.f2) h = 2.66

= 2.09 ft H O 2

L i

e.

@ 4000 gpm flow rate:

~

I9

} 2'

( = 2.66 6 4 2

= 3.17 ft H O 1

'i m

I GeertICammenessNR t i.

14 f'

TABLE 1 1<

DHP-1A DHP-1B RBSP-1A RBSP-1B

@ 1900 gpm

@ 1000 gpm

@ 1000 gpm

@ 1000 gpm B&W h

13.25" H O 4.75" B 0 26.64" H O 25.08" H O t

2 7

2 2

GAI h

12" H O 4.32" H O 19.34" H O 21.12" H O 2

2 2

2 A

h 1.25" H O

.43" H O 7.30" H O 3.96" H O 2

2 2

2 Sump Test ( ave.

8.46" H O 2.78" H O 7.23".H 0 2.9" H O 2

2 2

2 i

' Existing Margin 4.79" H O 1.97" H O 19.41" H O 22.18" H O 2

2 2

2 between B&W modified

'I Calculated ( and Tested ht 6

I k

+

L Gibert/Commanuseth L.

I

.f 15

(

FIGURE 1 DECAY HEAT PUMP (DHP-A)

{

t

\\

25 i

i.

,,. i i,.

i..

i,,

i

.. 6 i

.i.

, i e

r

, i,

i 6

6

\\

i l

.... i l

i i

(

i i

20 l

i i i i i i

i i

, i i

r I

6 i

i i

i i,

i i

i i

i i

i 6

i i

.i i

i '

i i i

t i e i

6 i

6 15 g

I W

i i

4 l

>=

i i

i 1

i 4

i

.=

i.

i I

e i

I.

., i i,

I, I

i i

i i

i ws uJ

. i 6.

4.

e i. 6 y

Z l

m.

i t

4..

.. i..

i 6

(

10

  1. \\

.I x

A, %.

i i

f.

+.

.f i

i i

=-p-.---.--.

j

-]

'l i

% i

.e 2

f, v

.f.

i f

/- i i

i 4

l t

g 5

,f fr i

i 4

p.

4

. i i.. i.

.... i,

i

.f i,

i i

f f

i i

I i

i O'

t 0

5 10 15 MINUTES

+

LEGEND B&W TDA gal TDP

16 I

I FIGURE 2 DECAY HEAT PUMP (DHP-B)

.(

.f' I

6 i

. i i

i i i l

i 6.

6 i

6 i.

.., i

}

i e

i i

i i.

.i 8

6 l.

i 5

I i

t i

I I

i i i 1

i 6

1 i

b l

me.am

.e j

k J\\

t i

It X i

i i.

il

\\

4 I

X.

i

.\\,

J 1t 4

6

.(

i

. i e

l i

.l t.

i

  1. i i1 gi t

.. i.

E-g f

t ua i.

L.

H

/\\.

.. i if l

./.\\

i i f

-1 i

5 I

l 3

'fi

/

k

\\ i I-it Y

  • I

\\

e r

i

\\'

I

\\

O

.I

\\-

I

\\.

.I i

1

. : r i..

e

. f

.\\

i, t

i z

~

.I f

\\1-t s - \\

I.

s

\\!

/ e I

\\

I, N

./

i 6

1 i..

\\/

1 1

I.

n I

i i.

1.,

f-i l'

2 6.

I i

I i

i s

i

. i g

i l-i i

x t:

i.

I t.

1 i

~j i

g

.I t

i I

a I

j i

t i

i 1 3 g

I i

t 6

l 1

I e

f i

I.

i I

O' 0

5 10 15 MINUTES LEGEND 1

B&W TDA gal TDP

't-

I 17 i~

FIGURE 3 REACTOR BUILDING SPRAY PUMP (RBSP-A) i i

u

/.

30

- n

. i s

t i

. i j i i.

6 i

e i i.

. i I

1 l

I g

i,

i i

i i

4 i

i 1

i i

i i

e 25 i.

i

+

.. i i

6 3

i 3

. i l

l t

f

.i

.I i

i.

I i

i 1

i i e

1 i i t

l J

i 1

20 c----

w- - - -

-.r---

i e

i i

j i,a

+ i i

.i

' I t

i.

8 gg i

i e i i

i 6

i e

ug p.

i t, i i

i I

i i

I 6

i e

l o 15 d

4 i

i i,

c

. i

""g i.

i t

.e t

i i

I i

(

t 8

f

?

f 1

J i e i

_.i i

/

i l

A i

/

i I

. i e

e i

i i

f ax i

f 10 f

.g f

i,

I i

t i

/.

i N

i. /

I i

/

N i

/

  • t i

__ _ A f.

'I A

! I 1 i

+

- 1.

"./

i e

N f e

a.

f- - -.-

.w-e Y

f.

.i e

r

  1. 1 i

X/

4 i

/

i

.V f.

i i

5 y

i f

I t

6 i

/

1 i

i

/

i i i

/

e r

i sr f

r i

O 5

10 15 MINUTES LEGEND t

B&W TDA gal TDP i_

V i

18 t,

FIGURE 4 REACTOR BUILDING SPRAY PUMP (RBSP-B) 19 s

?

4 30 4

i i

e i i.

i,

i i

i i

i. #

. i i I

e s

e a

f 6

i e

i i

e s

+

1 e

e,,

9 i e

i l e

i

. s e e

I

.I

i..

e s {

.... 9 i, p e i

. t i e

6 s

e e 4 e i

l 3

g

,, e

, t e s 9 e e e s e e

i t

, e e t 25 6

I j

i e

i i

e l

i l

I f

i t

i t f

I

?

t i

9 e

i e t i

i I

j i

i i

i e i

l

}

e t

, I i

i e l

e t

l

-.=

==

e l

l 4

+

9

(

i i

s i

e i

I 8

8 i

e i i 4

I 1

l l

8 i

i i i

QC f

i 1

t t

W i

4 i i,,

N i

I t

t i

F i.

i i

i i

a 15 4

m i

i i.

i i

LJ i

i e

i 4 i.

I t

l i

I z

i,

,, i i,,

4 i,,

. i e. !

1 i i,

i,

i i

, i e

10 s

6

., i,

t 6 4

i

. e e

g i

i i

i i

6

. i i

i.

A' 5

I \\

i i

i i

A I

'\\

t

{

_I i \\

i i7

\\

I

.X-N i

1 x

s

~

x-I_

i I

/

i e

e I

i i

i

/

4 I

i O'

O 5

10 15 MINUTES LEGEND B&W TDA gal TDP L

e

_ __~

14" 150s W.H. F LG.

FIGUR

( EL. 86'-3' SUCTION PIPING FOR REACTOR Bull

\\

. E ACTM $ UMP l

<i W

l E3 W.P. EL.85'-S 3/8"

{

V 16.3854' 10.4479' fraso 1.7500 W

g

  1. 02, 4

~.

/

,0 h

~Bg

'0,0

' g1 00 2

s*# 1 I

s

/

b i < To c.

G- ?

d.i in su 8

I l14" E

e O3p*/

I fl s

'D,

/p

% = ACTUAL MANOMETER 1

TEST LOCATIONS l

t i

k.

J I

1 T

{pGSUMP3oon-A/B5" 5

s POMPI t

f g

8

  1. c4'

..k

+$,0

'<e

  • ',S ef

\\

\\

  1. h

+,.

8 9

/

i, d

p d',e

.s

?s

,/**/

' ~,,

a ey*

K"4,,'4 w,

/p

.,,c.,,,

/IQ.

\\ \\

\\

k. gz 8 3

N

%e.

4

% e e.

).

a

\\

gn

14" 150s tr.N. F LG.

8

( E L. 86'-3 FIGU SUCTION PIPlHG FOR REAC 4

STok CUILDING SyMP i

4 h

4

'0,#

4 E

40 i

  • Edn, f

I i

l NV

}{p, p

i 4.T 6 g%,

I 9

'#E3g, dpl g*

=.s O

s

?s-

4. -

1 E9$ ),

Q 1

4I}gt.

q t

E I

BSY-83 2s,

n Sg~20g lf

+

8" X 10'.300# EXPANDER g%p5

. F LG.E L.78 '-8" E

m 4

0 5 ;"

9 >#'

eEE 6*00o,

% : ACTUAL MANOMETER TEST LOCATIONS 4

I I*

E6 DlHG SUMP TO DH-B/BS-B PUMP 5 1

9 k

1

> *g%*

S'@4 4

\\

'3'00o I

C sI

/

d'g S.+'

4

+9

  • ?

s

  1. [d 4>Y 1

s 'ic o

J' R

.s-y.

8 W

G N

,D s

.+<

i 4

, 3 h

9

- Q, (

{,

o 1,

DECAY HEAT PUMP B 2,

~

% ' ':' 'u ui

r ~~

1 ~

t LEGEND *

- - - Gt.CULATED Hg

- EXPAH9ED TEST DATA HL 5

t L

/

d

/

,p O>

,p e

p y

. /

/j m,,.

m 3

. j 4 -4 m

p A

- /

Zo3

/

m O

- p n

s

/

m<ca

> ys x

a y

H*

n

/

A e >< y

.g m m m

/

. s

. 4 E "9 M

/.

m>

1 2 f

m 2

r-

.. /

. /p 0 0 r

s gm

/

/

m o t

f-....

I Z p

- s W

?

f s

3

,s s

d p

f s

a dT

/?

d p

~~~

~

~~

-~

~

~~

~

~~--

a#'-

  • ?

d

,,e

,e p

H 0

0 1000 2000 3000 4000 GALLONS PER MINUTE

4w 6

I 22 i

9 FIGURE 8

'J CALCULATED V5. EXPANDED HL FOR DECAY HEAT PUMP (DHP-B)

I b

OO A

f

\\ t i

i O

'.l l

.\\l l

, i T

e i

1. i 4

l g.

.X4 l

N I \\

i

. i 4

f I

\\

i t

d N,.

I N

i

{

i i.

i X

i 1.A iX I

i i i 6

i i

+

, i X,

1 i

e t

.g

,A i

l A

i i

A, A.

. t t

l A.

6 i

,6 i, i.

.. g.

1i.

X i

. i Y

Ni i

X-4 i,

i

..i i Y

.\\.

.l t

.g O

O

\\

t

\\

. I O

'(

i I

t

\\

4 1

i.

]

\\

l

,\\

\\

4 I

i 5

6

(

iX.

\\e i

i i

i t'

\\?

I l

.h.

X 1

i 6

.x 8

\\

\\

I

. i i

t \\

i i

'(.

4

\\

I i

a i

.\\

UJ f

i i

t 6

.i i

.X g.

>=

i f

?

  • \\

i

.4

(

A i

\\

O i

i

.-. I g

2 I *

' +\\

'k' g

i i

g O uJ t.

t 4

!\\

g i

. i 5

g a e t

Z y

O e

i i

i

\\

g g

g a

i !

i i

.\\

't

.f i,

a 1:.

o i

+

.. i s.

.g.

,. +

i i\\

.g i i

j i

g.

l 1

g!

.g i

\\

g.

i i

g.

i i

\\rg s.

g Q

e.

.f g

i 6.

I i

i gig a

1 e

i,

i

.i

=

_ g 4

.g 3

O 4

i e

t t '

n-O F

?

t t

i I

. g g

~

6 f

g g O

t g

Js

+

gg

~^

n 4

\\ \\

Q%

i uJ

.t_

r gF

>Q i

<m m

aa

?

tl

.. 3z i

n QU<

t t

z.J m t

w<x CUW g

4 6

tu.

a5 b

l-l N

l 1

i f

8 i

O e

c w

n n

O l6...

FEET OF WATER H L l\\

. h..

I ~ '

~'-

-~'

~ '

- ~ - ' ' ' '

  • " - ~

0 b

s LEGEND:

- - - CALCULATED H g EXPANDED TEST DATA li t 10 g.,

e n.

.-m e

e

-+

M

.e

.-huit

--e e

.e..

an e

e.ieme e--

Mbei.

.s---

-m.

he huummum.

= = -

--helmi-

+

e

+-

e.

e g

8 o

y s

/

m N

e

>n

~

~

~

/

~

~

n>

~

~

~

~

1.

1..

-i r-p On Nc y

E'

~

- -4 c>

q

. j p,

o O

vi

/

g Og re g

g g

y y

y

.)

m mm

,x y =q 1 4 4y r-M O

=x

~.

Cm t

ED M

.. A.

Q q.1 e

y T

=q m

s

-TT-#

l g

fL

~

oT a

ae?

d.

p p

d p

p s

af' gm

~'

~

~

p

,,e*

e tu 0

0 500 1000 1500 2000 GALLONS PER MINUTE

.. ~

7...

_~

_m 3

. _..]

LEGEND:

- - - CALCULATED H L EXPANDED TEST DATA HL 10

~

8 o

. g a

m p

m s

>n n>

r.

. p,.

ap yg m

Cg e

- d r m yi s

oo

~

n s,.

Z<c gy

/

m m

m o

x y

, 4 4

F

~

~

~

/

~

~

mo Cm

/

2r g

e y

m j

g f

W

~

a s

a g

p

?

0

~~

0 500 1000 1500 2000 GALLOr45 PER MINUTE

<~

4

-l-25 5.0

SUMMARY

In conclusion, the foregoing evaluation indicates that a sufficient margin exists between the calculated head losses and the sump test head losses. This in turn indicates that the NPSH calculations provide the required conservatism to preclude pump runout, relative to the DH and RBS pumps.

i

'l

'l 1

-k 1

L Gatet/Commoissesth

.u

26 e

==s-

REFERENCES:

l' i

1.

Formulae per " Crane Technical Paper No. 410, Flow of Fluids".

2.

Gilbert Associates-Reactor Building Sump Test Head Loss Calculations dated 12/3/75.

3.

Babcock & Wilcox NPSH Calculations dated June 11, 1973.

t o

}.

t

.\\

i.

4 I

Gdbert/Commenneenn Iw