ML19208B024

From kanterella
Jump to navigation Jump to search
Evaluation of Safety Injection Pump Room Temp Following Loca.
ML19208B024
Person / Time
Site: Fort Calhoun Omaha Public Power District icon.png
Issue date: 09/06/1979
From:
ABB COMBUSTION ENGINEERING NUCLEAR FUEL (FORMERLY
To:
Shared Package
ML19208B023 List:
References
NUDOCS 7909180484
Download: ML19208B024 (15)


Text

. .

Enc 1csure (1)

Evaluation of Fort Calhoun Safety Injectica Pu=p Room Te=perature Folicving a Less of Coolant Accident by Cc=bustion Engineering, Inc.

\AI 7909180 I 8 e( ti

I. Introduction At the request of OPPL, C-E has evaluated the te perature in the safety injectica pu=p room for the 2h hour period fcllowing a LOCA. The double-ended hot leg slot (DEHLS) break was chosen for the analyses for consistency with the Fort Calhoun FSAR.

  • The evaluation uses data for stretch-power ccnditions of 1560 IUt and 2250 psia for conservatis=.

The containment building and pu=p roc = vere analyzed using the CONTRA 3S computer code, an NRC-approved code for predicting pressure and te=perature transients folleving a LOCA. Docu=entation for the code is provided in CE'IPD-lh0.

II. Secuence of Events The reactor coolant system (RCS) is assumed to be operating at steady state stretch power conditicas of 1560 st and 2250 psia. At the start of the analysis , the pu=p room valls are assumed to be at a uniform te=perature, ceneistent with assuming that there are no energy sources in the pump room pricr to the start of the transient.

At time t = o, a double-ended hot leg slot (DEHLS) break is assumed to occur with the subsequent blevdcun of the RCS. Mass /entergy re-lease to the containment during the blevdown phase was modeled by the CEFLASH h ec=puter code, an :iRC-accepted code for pcst-IDCA blevdevn as described in CDPD-133.

During blevdown, both SIAS and CSAS setpoints are reached. The SIAS starts the HPSI, LPSI and containment spray pu=ps. All pu=ps are assumed to start and operate at runout conditions to provide the maximum heat input to the rocm. The CSAS epens the valve to the centainment spray header. Only one valve is assu=ed to open. This minimizes the flow rate through the headers and therefore maximizes the length of time before the recirculation actuation signal (RAS) is initiated. No credit is taken for the centainment building fan coolers until after the RAS, to maximize the containment sump te=per-ature. As an additional conservatism, post-bicvdown mass / energy release to the ecntainment was modeled using the "long ters" capability of the CO?iTPJCIS code which includes a calculation of mass / energy source terms from decay heat and NSSS retal heat.

  • Hote: Surp te=peratures from hot leg breaks are ec= parable to those from cold leg breaks, so that heating of the pu=p roc = by hot su=p water in the piping (after the start of recirculation, is adequately modeled by the hot leg case.

3 ak

At 55 minutes after the event, the inventory in the SIR'.C is assumed to reach the RAS level and . irculation is initiated. The RAS auto-

=aticall;* stops the LPSI p' .ps For conservatism, the containment spray is assumed to be ten .ated by the operator at this point.

After ?.AS, ccatainment spray pumps drav vater from the centainment sump wui pu=p the sump water through the shutdevn ecoling heat ex-changer to the containment sprays. By terminating the containment spra'/s at this point, this normal ecoling path for the water follev-ing RAS is not available. This maximises the containment su=p tecperature. Recirculatien is assured to continue throughout the rc:ainder of the evaluation.

Fcr conservatis=, heat transfer within the pump room is considered only for the six valls in the roem (north, east, south, vest , flecr and ceiling) and for the piping associated with the pumps. The piping carrying the water within the pu=p room is assumed to be at refueling tank water temperature prior to starting recircula-tien, and at su=p water te=perature after recirculation. No credit is taken in the enalysis for any piping heat capacity; this is conservative since energy not stored in the piping metal becomes an input to the pu ~.p room. Credit is not taken for heat transfer to any other heat sinks in the rec =. No air flow in the room is censide re d.

The sequence of events described abose is a realistic and reasen-able sequence of events folleving a EF.HLS break. The events have been chosen in a conservative manr.er to maximize the heat input to the SI purp rocs and minimize the heat removal from the roc =.

\Y

, a t\

III. Parameters Used '

CO:ITAI:i:G:IT BUI1DI: G DA"A Free Volume 1.05x10 6 ft3 s Passive Heat Sinks Attachment A Initial Conditions 14.7 psia, 805 EH,12007 Spray Data 3 pumps ,1TCO GFM each, 65 second delay time Fan Data 1 high capacity and 1 Icv capacity Start of Recirculation 55 minutes PUMP ROOM DATA Free Volume 27290 f:3, Heat Generated Per Purp 62500.3tu/hr Piping Surface Area '

1. Before Recirculation 1h39 ft2
2. After Recirculation 220 ft

Piping Te=perature -

1. Before Recirculation 950F
2. After Recirculation Contain=ent su=p temper ,

ature Piping Heat ?_ susfer Coefficient 1 7 Btu /ft2hr0F Wall data (all concrete) ,

Wall Thi ckne s s , f t . Area, ft' No rth 3. 0 h21 East 3.0 -

941 South 30 h21 ,

West 30 941 Ceiling 35 1882 Floor ,5., 5 1882 Density 1h5 lbs/ft3 Specific Heat

.156 Etu/lb=0F oc s >h

  • k 's I

s ATTAC!! MENT A .

TABLE 1 Surface Exposed To ',' ,

No. Description Material Thickness Area (Ft )2 Side #1 Side #2

?

1. Containment Paint 3 mil 43,420' Cer tatar.ent Outside Cylindrical Steel 0.25 in Vapor Region E'nvironment llall Concrete - 3.875 ft .
2. Containment Paint 3 mil 6,400 Containment Gatside Dome Steel 0.25 in Vapor Region Concrete 3 ft
3. Foundation Paint 3 mil 8,550 Containment Ground Slab S teel 0.25 in Liquid Region '.

Concrete 12 ft '

4. Misc. Concrete Paint. 6 mil. 53.600 Containment Containmen't Slab Concrete 2 ft Vapor Region Vapor Region Paint 6 mil
5. Misc. Concrete Paint 6 mil 4,560* Containment Containment Concrete 1 ft Vapor Region Vapor Regica Paint 6 mil _
6. Misc. Concrete Paint 6 mil 19,490* Containment Containment Concrete 7.5 ft Vapor Region Vapor Region

' / !; } 'l b Paint _

6 mil

7. Misc. Sttel Paint 3 mil 5,700* Containment Con tainment Steel .125 in Vapor Region Vapor Region n- 3

ATTACitiEilT A .'

TABLE 1 -

Surface Exposed To No. Description fla terial Thickness 2 Area (Ft ) Side #1 Side 42

8. 11isc. Steel Paint 3 mil 10,960* Contair. ment Containment Slab Paint 3 mil Vapor Region NaporRegion
9. Ventilation Galvanized 0.125 in 72,000* Cor.tairaunt Containment Ducts . Steel Vapor Regicn Vapor Region Tabulated surface area includes areas of both sides.

e J

. .J S

-b

TABLE 2 MATERIAL PROPERTIES 11aterial Thermal Conductivity Volumetric Thermal Capacity (B tu/h r-f t-F) (Btu /f t 3_p)

Concrete 0.85 32.0 Steel 26.0 59.0 Paint for Steel Surfaces 1.5 57.6 Paint for Concrete Surfaces 0.3 43.2

Con ductivity 1.05 Stu/hrftoy Heat Transfer Coefficient 2.0 Stu/ft2hrC F Boo: Initial Ccnditicns 14.7 psia, 805 RH, 950F

ISSS DATA Bicvdown :! ass / Energy Releace Rates CEI?D-133 and Supp.

1,2,3 Post-31cvdown Mass /Inerg Rates COIITR/JIS code IV. Fesults Results of the analyses eye presented in Figures 1 through 4. As shown by Figure 2, the maximum pu=p room te=perature occurs at the start of recirculatica and is approximately 1170F. This maximum temperature is based en a conservative anslytical calculation of the te=perature rise within the pump room.

A test was un at the site by OPPD to measure the terperature rise in the pump rocs with all four pu=ps running and actual plant conditicns rather than the censervative ccnditions of the analysis.

The average measured te.::perature rise in the room was only 100F after 55 minutes cc= pared to the calculated average terperature rise of 220F. Therefore, the analysis can be considered to pro-vide a conservative upper limit te=perature for the SI pu=p room during the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> period following a LOCA.

V. Conclusions 3ased on the results shown in Figure 2, it is concluded that, during the 27 hour3.125e-4 days <br />0.0075 hours <br />4.464286e-5 weeks <br />1.02735e-5 months <br /> period following a LOCA, the SI pump room te=perature vill not exceed the 117c? peak reached at 55 minutes. At this time shutdown ecoling is assumed to be available for reducing the con-tain=ent surp water te=pera.ture.

.g .

.y h

e e e

9 9

  • S O

e O

O O

O e-i e

Z m

b

- to O

L&m O O

, O w O "a d C

w Q.

E LAJ H

n.-

sn H

= -

m E Q w

=

z e < OO m t- _ OO S B H LU

u. w w 1 w (D

Z H

- 1--

O e

M

-i s'.

\'d I) %)

v e \

\

e e

" O m -S

c

.i,...

_... __.g__._.._.._. Df W rD gymt, g_gy u , 010M e.

a i _ .. . . _ . _ . _ . _ . . . _ .

,_/

p _.

t

-_. . s , , , , s 4 .. . _ .i - I -

I '

s.... __ i i .

- i .

r

.i.___..._.

! i i .

y s . . . ....t_..

. . . . . .. . . . . . , . . . . _ , _ . . . -l . . . . .a. ._ . . s.

t. . . . . _.

7 ,

_...f.. . . . i . . . ... . .

s .  ;

).

. _. _ .... ... t i

. e

- - - i. i  : i I i .

n

_s... . . . . ....

O(y m_.. ... .- .._.i._... .r_._...... ...

t _.. __.. .. . ....

- . . ...._..r....

.. r . _. . . ... ....... ..._.

. _ . a ...._ ..

. . . . ..___. .;. c, i.,... _....: . . .

.. vi . . . . . . .._ ..__.i.._.

._.._'...>.., . . . _ . . . . _ _ . . . 1,

... , i e i . i y... a ^ , . ,

_. u,_. - .

.)  ; e a

s 6.. f c &  :  : I

  • 1

.- t ,

t

i *-- -

g.. I .e.

l . j- .

.- i

. ........ . - . 1. ~ .. , .

4... .. C: ' '

3

_._D._.

... .s. , . . , . _ _ . . , . ... s......_.

- j. ,

I r

.s g 3_... s.

_e s -

g

- -n f y - .

,,.e n -

r - l m . t. _ .c , s. .

l :. ' -

A ~~ ~ -?-.- E l . ~ E .l! M g.... . .

.. y~

.t...... . . . _. .... _.. .

.--L

.. .... _~. _.... ,... .....

9

..- . ...p _ . .. . . _ . _ . _ . .. . . _ . . . _ .

t ..

LG .,. . . . . ... , ......,

. . . . . . . C ..

9.._...

.. w a ._-I......._.__;.....i.... ._ __ t 3... .

9.. _

c. .

.,__4____

F-  %

s. .W. '

g

1. - C '

i- .

' \

_. i

i 6.. i  ; g 1

_-t- ,

S. .- ,,_ . ,,,

1- * ..-.'  ; -.t ......~~--*.;. ~

--  : i:.,w t

.g .. ,

a-.. _,_..g o . . - .

I l_ _ ,

.W

- i c- .

l _. I * '

I g a c: . , . . . . .

I Ob p ._ g u_ l -- \.

1

i .

t (

.......u_c .- .. .;

..a-e. u .. t

~3 21 .

e g _

- ..- .. ......t.- . . . _ . . . . . . 4 .-.a........s.--..-..=....:.

-; .:_ : z.: ..:

~ . . . .

.. . . . . _ . _ ... _. .._.. ...__. ._... _ . . . . . . . . . . . . _ . . . _ . -_ _-_- .. .. .- .. _.-. ... ; . u. ; r !

. . ,. =.. . . . _ .

2 . - .. -

o

.........T.....

y . . . . . . . . . . . . . . . . . .

g o . ...... .._ . .. . . _ . . . _ . ,

_ . . . ; . ._ ....___; 4-

- _-.._-..\

    • t . . . . . . . .

f*~ . ..t..

x s .__. s __ __

,' o 8

w t-- . , , . g c.

w. .  ; , .

, N

.s * .

uf 2 . .

>. 6 I 8 ' ' ~

  • i u; i  % 8 I~ * *
I * ~i s . t *: -

e* l. -; -

.; '. ,c - . . - t -~~ w ?.  : m : t :. - -

u. o a .I * * *---l--- '

- - - - - ~

.:s

(

A- --i. - "- - 4. - ~ .-- I.N e

s -- ' * '

i

~- -

3 1

-.i

s. ., ] a 2 . . .
e. e

.A i

,= .6 . 2 ,..: . . 2.

[' ,. .

. i. .

.t. . . . .

.r a... u.. . . , : .2.. .: .:. . . i. . .-: ; .r. ._ .1,

, .,, a. . .. .. . . . ._. .. . . . . . . . . .. . .

.. .. .. .. .... . . . . .r.._......_.._...._._.....

4 . . .-

.. - . . . = .. .-. - . - - ......c

3. 3 . . .......... .._ _ . , . , . . . - ,

.I...__ _4...._._.._-.._...!__..._

. 1 eb 6

. . . . . .5.. . . . . 6.

. . . . .... . 5. _ ... ,,... . . . _ . _ . . _.. . . . . . . . .. .

_. ... . ,. .. .. . ..3.... . . . . . . . . . .

.............l.._.4..._.

4.*

.. . . ...g......,..............

. A .. . _ . . .. ..

. . . . . . ~ . . .

9 .... _ _ - i

, i I i i

.. 8 L e t . t i

s. . i. .

r- a 1 - *

  • i 4 i. .  : . _....l.- - ' _;_ ...._-.p-- '

t.

i ,

.l,.._._.v..... . . . . .

. -. .a .{ _ J. - -

i, . . --- ., , _ _ .

Q..,. , t

_ ,- . ..... l. -

s t ~

O.. m .,

. t s

.s ,. ,

  • - j

_ .. ...- .-.. .. . ..i y

s.

.4 . .

.&.. l ,,

g

t. . . . . . . 6_ .. . . . . . . . . *
  • N N ,

D k h .M N h

Figure 3:

PU:!P ROOM E lEP.GY BALAiCE AT START OF RECIRCULATIO1 0 seconds 3300 seconds Mass of steam (ibm) 47 47 Mass of sump (lbm) 62 62 Energy of steam (Bta) 49233 49582 Energy of sump (Btu) 3907 3907 Energy of air (Btu) 20314 27350 Total heat in (Btu) O. 229167 Total heat removal (Btu) 0. 221782 Sum of mass at 0 sec = 47 + 62 = 109 lbm Sum of mass at 3300 sec = 47 + 62 = 109 lbr.

Energy at 3300 sec = (Total Energy at 0 se:) + (total heat in at 3300 sec) -

(total heat removal at 3300 sec) = (49233 + 3907 + 20314) + (229167) - 221782) =

80839 Btu or Energy at 3300 sec = 49582 + 3907 + 27350 = 80839 Btu jn

.,et -

Figure h:

5

, PUMP R00:4 ENERGY BALA::CE AT EN0 0F 10 SEC0:105 0 Seconds 105Seconds Mass of steam (lbm) 47 47 Mass of sump (lbm) 62 62 Energy of steam (Btu) 49233 49496 Energy of sump (Btu) 3907 3907 Energy of air (Btu) 20314 25616 Total heat in (Btu) 0. 1908404 Total heat removal (Btu) 0. 1902839 Sum of mass at 0 sec = 47 + 62 = 109 lbm Sum of mass at 105 sec = 47 + 62 = 109 lbm 5 5 Energy at 10 sec = (total energy at 0 sec) + (total heat in at 10 sec)-

5 (total heat removal at 10 sec) = (49233 + 3907 + 20314) + (1908404 -

1902839) = 79019 Btu -

or Energy at 105sec = 49496 + 3907 + 25616 = 79019 Btu q i ,,,

List o*r ACrony~.s uggg

~ 0*[et7 InJeeti:n Acuta:Lon g3gnaI

- Contai"-~*",,.

"

  • 6. pray Actuation Signal ec.:ca13tica Act ugg

.. d w

c

Enclosure (2)

Steady State Temperature of SI Purp Room 6 .

R*E UAi i (TE00M - I"i) + U PIPEA PIPE (IR00:I - PIPE) + U CpA (TRCOM - VEIIT i=1 U,(FLOOR) =

= .17 Stu/hr-ft2 _op 1 1

2. 0 + 7 51.05 + 10.0 A1 = 1882 ft 2 T-1 = 55 F U2 (CEI;l:iG) = "
  • 1

+ 35 +

1 2.0 1.05 2.0 A2 = 1862 T.2

  • 95 1

U3(W. WALL) = U;(E. WALL) = = .26 1

+30 + 1 2.0 1.05 2.0 A3 = 951 T-3

  • 95 1

US (S. WALL) = = .28 1+ 1.0_ 1 2.0 1.05 5.0 A5 = h21 T-5 = 80

^

Ug(:I. WALL) - .29 1

1 + 3. 0

2. 0 1. 05 + 10. 0 Af = L21 T-6
  • 55 Up;p; = 1 7 I!ACp = (.0715)(60)(.2h)(cfm) = (1.03)(cfm)

APIpg = 220 ft 2 Tys:;7 = 95

~

Tpip3 = 1650F q = 62,500 Stu/hr (PUMP MOTOR) c's' s' \

..t

\

62,500 = ( .17)(1582)(T300.; - 55) + (.23)(1882)(Tacon - 95) + (2)(.26)(941)

(T (1E00M - 95) -+165) 7)(220)(T3003 (.28)(k21)(Tacon)-(cfm)(Tacon

+ (1.03 - 95)80) + (.29 62,500 = 320 TROCM - 17,597 + h33 Tacca - 41,122 + L89 Taoon h6,485 +

118 Tacon - 9h30 + 122 Tacon - 6715 + 374 Tacon - 61,710 +

(1.03)(cfm) Tar

= Ogoog(LS56 + (og - (98)(cfm)1.03)(cfm)3 - 183,059 - (98)(cfm)

, _ 2h5,559 + (98)(efn)

-ECCM ~ '"i6 + (1.03)(cfm) cfm TR00M 0 1320F 1500 115 3000 109 5500 104

., t

.; \