ML17261A431
ML17261A431 | |
Person / Time | |
---|---|
Site: | Ginna |
Issue date: | 03/05/1987 |
From: | Curtis A, Henry G, Saporito M ROCHESTER GAS & ELECTRIC CORP. |
To: | |
Shared Package | |
ML17261A430 | List: |
References | |
NUDOCS 8703160084 | |
Download: ML17261A431 (39) | |
Text
ROCHESTER GAS AND ELEC/FR[C CORPORATION 89 EAST AVENUE, ROCHESTER, NY 14649 RESEARCH AND SCIENCES DEPARTMENT MATERIALS ENGINEERING AND INSPECTION SERVICES SECTION
SUMMARY
EXAMINATIONREPORT FOR THE 198? STEAM GENERATOR EDDY CURRENT INSPECTION AT R.E. GINNA NUCLEAR POWER STATION MARCH 5, 1987 PREPARED BY: A G.L. Henry, NDE echnician DATE: Z 5 87 Eddy Current Level III Examiner REVIEWED BY: DATE:
Michael J. Saporito, Supervisor Materials Engineering Laboratories Level III Examiner APPROVED BY: DATE:
A.E. Curtis III, Manager, Materials Engineering and Inspection Services
'Level III Examiner 8703i60084 870309 PDR ADOCN 05000244 PDR
~ ~
1 1
TABLE OF CONTENTS
1.0 INTRODUCTION
PAGE 1 OF 30 2.0 DATA ACQUISITION PROGRAM PAGE 2 OF 30 3.0 DATA ANALYSIS RESULTS'
SUMMARY
PAGE 5 OF 30 4.0 OBSERVATIONS PAGE 16 OF 30 5.0 CORRECTIVE ACTION PAGE 19 OF 30
U'.0 INTRODUCTION The following report is a summary of the results of the multifrequency eddy current examination performed during the February 1987 Annual Refueling and Maintenance Outage at the R.E. Ginna Nuclear Power Station. The examination was performed on both the "A" and "B" recirculating steam generators which are westinghouse Series-44 design, containing 3260 Inconel Grade 600 tubes having an outside diameter of 0.875" and a nominal wall thickness of 0.050".
The examination was performed by Rochester Gas dc Electric (RGdcE) personnel that have been trained and qualified in the eddy current examination method to at least a Level I certification. The initial data analysis review was performed by a team of ZETEC Inc. personnel. An independent data analysis review was performed by RGAE and BRW personnel subsequent to the Zetec analysis. The data analysis was performed, by both teams, utilizing the Zetec DDA-4 Digital Data Analysis System. In addition, Zetec's Automated Data Screening System was utilized as a third review of the data. Final resolutions of all data analysis was performed by RGRE Level III personnel.
The purpose of the eddy current examination was to assess any corrosion or mechanical damage that may have occurred during the operation cycle since March 1986. Particular attention was given to detecting intergranular attack (IGA) and intergranular stress corrosion cracking (IGSCC) in the tubesheet crevice region; pitting and wastage between the tubesheet and first tube support plate; denting at all tube support plate intersections; and wear fretting at the antivibration bar to tube intersections in the U-bend region.
PAGF. 1 OF 30
2.0 DATA AC UISITION PROGRAM The eddy current examination of the "A" and "B" steam generators was performed utilizing the Zetec MIZ-18 Digital Data Acquisition System. The frequencies selected were 400, 200, 100 and 25kHz, all of which were run in the differential and absolute modes. The examination was performed primarily with a standard 0.740" or 0.720" O.D. bobbin coil, with smaller diameter probes used to traverse the smaller radius U-bends.
Prior to examination of the steam generators, an inspection program was established for the inlet sides of both the "A" and "B" steam generators. The philosophy in generating this program is to provide 100% examination coverage of each steam generator tube from the tube sheet up to the first tube support plate, along with 3% of these tubes being selected and examined for their full length. In addition, all previous tubes with indications greater than 20% through wall depth were examined as a minimum to the location of their'egradation. Table 1 is a breakdown, by steam generator, of all tubes examined and to the extent inspected.
PAGE 2 OF 30
STEAM GENERATOR "A" 1987 EDDY CURRENT EXAMINATIONRESULTS PRIOR TO CORRECTIVE ACTION EXTENT INSPECTED NUMBER OF TUBES PERCENTAGE FULL LENGTH 124 3.8%
PART LENGTH FROM INLET HTS 1 < 1%
¹1 TSP H 2907 91.1%
¹2 TSP H 77 2.3%
¹3 TSP H 5 < 1%
¹4 TSP H 0
¹5 TSP H 0
¹6 TSP H 3 < 1%
U-BEND
¹6 TSP C < 1%
¹5 TSP C
¹4 TSP C
¹3 TSP C
¹2 TSP C
¹1 TSP C CTS SLEEVED TUBES 12 .3%
TUBES PERMANENTLY PLUGGED 126 3.8%
TABLE 1 PAGE 3 OF 30
STEAM GENERATOR "B" 1987 EDDY CURRENT EXAMINATIONRESULTS PRIOR TO CORRECTIVE ACTION
. EXTENT INSPECTED NUMBER OF TUBES PERCENTAGE FULL LENGTH 103 3.2%
PART LENGTH FROM INLET HTS 0
¹1 TSP H 2724 83.8%
¹2 TSP H 20 < 1%
¹3 TSP H 5 < 1%
¹4 TSP H 0
¹5 TSP H 0
¹6 TSP H 3 < 1%
U-BEND
¹6 TSP C
¹5 TSP C
¹4 TSP C
¹3 TSP C < 1%
¹2 TSP C < 1%
¹1 TSP C < 1%
CTS < 1%
SLEEVED TUBES 201 6.2%
TUBES PERMANENTLY PLUGGED 201 6.2%
TABLE 1 (CON'T)
PAGE 4 OF 30
0 DATA ANALYSIS RESULTS
SUMMARY
The initial and independent review data analysis was'erformed using the Zetec DDA-4 Digital Data Analysis System. Edition 18.1 Rev. 4.2 of the data analysis software was used to analyze data from the MIZ-18 digital data acquisition system.
This system provides on-line data digitization and storage on to a magnetic data cartridge. All digital data (up to 8 channels) is sent directly to the HP-9836 computer from the data cartridge. A message block is available should any comments be desired during data acquisition.
All data cartridges were reviewed by displaying the 400 kHz data on the CRT along with the vertical component of the differential and absolute mix outputs in strip chart form. Other frequencies and their components were selected as needed for final resolution. All recordable indications were logged into the computer and stored on floppy disk. The final report form summarizing all crevice and >20% through wall dimension (TWD) indications for each steam generator (inlet and outlet) can be found in this section. An explanation of the abbreviations and nomenclature used on these lists has been compiled for ease of interpretation.
Table 2 has been compiled to show a list of the total number of dents at each axial elevation and Table 3 is a breakdown of defects by percent TWD. The dent indications on this table are only those with signal amplitude of 5 volts and greater, which would approximate about a .0025" dent on the diameter of the tube.
PAGE 5 OF 30
'LIST OF )20% INDICATION AND CREVICE INDICATION NOMENCLATURE To of List Information SG- Steam Generator and Leg (ie: 1 = A, 2 = B and 1 = Inlet, 2 = Outlet)
ROW ROW number from the tube identification.
COL Column number from the tube identification.
VOLTS P- amplitude of the measured indication signal response.
%TWD - Percent through wall from O.D. based on measured signal.
CH¹ - Channel from which indication was determined.
LOCATION Location of indication relative to tubesheet or support plate.
Information Under %
<20 - Measurable indication less than 20% through wall.
SQR - Multiple indications interferring with a depth determination (IGA-SCC).
XX The measure percent through wall of the deepest penetration.
IGSCC - Integranular Stress Corrosion Cracking (SCC)
ADS - Absolute Drift Signal Indicative of IGA.
IGA - Intergranular Attack WAS - Wastage Information Under CH¹ 1 - Indication determined and measured with 400 kHz differential for final interpretation.
M2- Indication determined with absolute mix, depth cannot be accurately determined, but based upon amplitude is felt to be above 40% IGA.
PAGE 6 OF 30
LIST OF )20% INDICATION AND CREVICE INDICATION NOMENCLATURE (CON'T)
Information Under LOCATION/ELEVATION HTS SF Secondary face of inlet tubesheet.
TSP - Tube Support Plate CTS SF Secondary face of outlet tubesheet.
AVB - Antivibration Bars
-XX.X Depth below the secondary face of the tubesheet or support plates where the indication is located.
+XX.X - Height above the secondary face of the tubesheet or support plate where indication is located.
H- Hot Leg C - Cold Leg PAGE 7 OF 30
ossa ROt C TUIAN<T<<) (VCR 4,0)soeaas Henday War ch 2t 1007 OOI22 AW ~ eaoso OAOCOCK I W1LCOX CO. otoaaa Plant: SINNA Steam cato@- A Ovtage-, RGE-87A QUERY-'LL DEFECTS))}9 % TN))ALL VOLTS>ALL ELEV (ALL TUBES>)ALL-SL CQL OUTAGE ELEVATION INDICATION rw VOLTS 24- 10 RGE-87A HTS SF 17 ~ 30" OD SCC 84 0. 74 10 15 RGE-87A RBE-87A HTS HTS SF SF
- 18. 10<<
j,5. 00<<
OD SCC 80 f. 73 nj OD SCC 74 2. 81 7- 19 20 RGE-87A RGE-87A HTS HTS SF SF +
18 10<< ~
1 ~ 80" OD OD SCC WASTAGE 86 20
- l. 00
- 2. 97 8- RGE-87A HTS SF + 2. 10<< OD WASTAGE 20 2. 84 RSE-87A HTS SF + OD WASTAGE 27 3 76 10- 21 RGE-87A HTB SF + 30 <<<< GD WASTAGE 25
~
- v. 91 11- 21 RSE-87A HTS BF + 9{/ QD WASTAGE 5. 31 fb- 2} RGE-87A HTS SF + 60<< GD WASTAGE 4. 05 17- RBE-87A HTS SF + 1.00" OD WASTAGE 3. 05 j,o- RGE-87A HTS SF + 90<< OD WASTAGE 24 1. 41 11 22 RBE-87A HTS SF + 2. Orl<< OD WASTAGE . 59 16- RBE-87A HTS SF + 1. 40" OD WASTAGE 22
~
- 2. 61 18-21-22 RSE-87A RGE-87A
'HTS HTS SF SF
+ l.
17.80<<
10<< OD NASTABE 21 3. 12 10- OD SCC 1. 56 P3 RGE-87A HTS SF + 1. '90<< GD NASTASE 36 1. 51 1%- RGE-87A HTS SF + 3. 20" OD NABTAGE 21 3 98~
>>, RBE-87A HTS BF + 10<< OD WASTAGE 9. 01 14- RGE-87A HTS SF + 3.10<< GD WASTAGE 4. 59 14- RSE-87A HTS SF + 1. 80" GD NABTABE 24 1. 40 2}- 2>> RSE-87A HTS SF 11 90" OD SCC 80 0. 81 21- 9>>, RSE-87A HTS SF + 1 40<< QD WASTAGE 24 3. Oi 10- l.
~
24 RBE-87A HTS SF + 00 << OD WASTAGE 71 1 1- RSE-87A HTB SF + 2. 80" OD WABTASE 1. 97 12- 24 RGE-87A HTS SF + 2. 90" OD WASTAGE 2}. 4 05 13- RGE-87A HTB SF + 2. 90<< OD WASTAGE
~
- 4. 78 24 RGE-87A HTS SF + OD WASTAGE 22 2. 97 n4 RSE-87A HTB SF + OD WASTAGE 2. 09 23- 24 RSE-87A HTS SF + 1 30" QD NASTAGE g. 07 12- 25 RGE-87A Hrs BF +
~
GD WASTAGE 3. 28 13- RGE-87A HTS SF + 2. BC>" OD WASTAGE 35 4. 81
}4~ RBE-87A HTS SF + 2. 6r>" OD WASTAGE 25 7. 26 17- RGE-87A HTS SF + 2. 30<< OD WASTAGE 25 RGE-87A HTS SF + 1 00<< OD WASTAGE 26 3. 97
?1- RGE-87A HTB BF +
~
40 << OD NASTAGE 2. 86 24-26 26 RGE-87A RGE-87A HTS HTS SF SF
+
+
l.
j 20"
~
90" OD OD WASTAGE WASTAGE n5 1 74
~
- 2. 85 27- RGE-87A HTB SF 17 70" OD SCC 77 8. 85 17- 27 RBE-87A HTS SF + 00 I I OD WASTAGE 32 4 44 17- 27 RGE-87A HTS BF + 2. 10<< OD WASTAGE 28
~
- 2. 72 18- 27 RSE-87A HTS BF + 2. 60"<< OD WASTAGE 6 29
~
27 RGE-87A HTB BF + 60 OD WASTAGE 24 6. 27 22-23 27 27 RGE-87A RGE-87A HTS HTS BF BF
+
+
- l. Gr~" GD WASTAGE n8 4 9}
~
n/ OD WASTAGE 2 55 73 24- PP 7
RBE-87A RGE-87A HTS HTS SF SF
+
+
l.
- 1. >>0<<
40" OD WASTAGE l. ~
6}
P5- OD WASTAGE 27 95 27 RGE-87A HTS SF + 0. 60" OD WASTAGE 3. 26 28 RSE-87A HTB SF + 2 0" QD WASTAGE 2. 91 15- RGE-87A HTS SF + 2. 90" GD NASTAGE a. 11 24- RBE-87A HTS SF + 1. 40" GD WASTAGE 24 3. 31 24-30 RGE-87A RBE-87A HTS SF + }. 50" 40<< OD WASTAGE 29 4. 91 30 HTS SF + 1 . OD NABTASE ,4 2. 70 gC e3- 30 31 RGE-87A RGF-87A HT,S SF +
+
- l. 4v" 9()<<
OD WABTABF 21 6. 87 HTB SF GD WASTAGE rP 9 6. 66 I'p 4 31 RGE-8/A HTS SF + >>0 << OD WASTAGE n4 20- RGE-87A HTS BF + 7~ ) << QD WASTAGE 7 RSE-87A HTS SF GD WASTAGE 8. 25 Vw RBE-87A HTS SF + ~0<< OD WASTAGE 6. 46 24 32 RBE-87A HTS SF + OD WASTAGE 6 42
~ 6- 32 RBE-87A HTS SF +
1'6'y.
80<< OD WASTAGE 23
~
~
%2- 33 RBE-87A HTS SF + 2. 00<< OD WASTAGE nr4 6. 8*
RSE-87A HTS SF + 2. 10<< OD WASTAGE 24 5. 46 PAGE 8 OF 30
vlf Roae<<TU(eAee AH) (ve'R 4 ~ (e) ++++<+ eeeeeed+)<< Re (e)RT ()e)e11 Ae( sseeaso ()eeere(:MV ) (4)( Ql.
e Plant - PINNA Steam Generator- A QUtage RGE-87A QUERY: ALL DEFECTS'>19 / TW ALL VOLTS ALL ELEV (ALL TUBES> ALL-SL RGW- COL ELEVATION INDICATION TN VOLTS RGE-87A HTS SF 60" OD WASTAGE 4. 77 34 RGE-87A HTS SF 2~ 10 ee OD WASTAGE D3 2. 82 34 RGE-87A HTS SF . 2s Qn WASTAGE 31 2. 94 25-15- 35 i4 RGE-87A fiGE-87A HTS HTS SF SF 13.
- 6. 04
- 0. 4~
19- 25 RGE-87A HTS SF 2 ~ 60ee QD WASTAGE .i. 61 35 RGE-87A HTS SF 1 ~ 40 ee OD WASTAGE 21 3. 65 35 RGE-$ 7A AVB4 OD <general ) 0. 40 39-
'76 ~~6 RSE-87A AVB> QD <gener al) 21 1 -1
- 1. 50"
~
RGE-87A HTS SF OD WASTAGE 27 U. 99 21- &7 RGE-87A HTS BF 1. 60" OD WASTAGE 21 5. 44 21- 37 RGE-87A CTS SF 2. 10" QD WASTAGE 2. S5 25 %7 RGE-87A HTB SF + 1 40"
~ OD WASTAGE 26 6. 11 26- &7 RGE-87A HTS SF + f +0ee OD WASTAGE 24 V. 10 8 RGE-87A HTS SF + 1 ~ 40" GD WASTAGE 3. 61 38 RGE-S7A HTB SF + MO ee OD WASTAGE 2Z :5. 17 n7 ~8 RGE-87A HTB BF + 1. 50" GD NASTAGE 28 64 26- 39 RGE-87A HTS SF + 7() ee OD WASTAGE 2f
~
- 6. 34 27- 40 RGE-87A HTS SF + 7() ee QD WASTAGE 5. 56
%8- 41 RGE-87A HTS SF ~(y ee on WASTAGE 22 4. 27 42 RGF-87A f-lTB BF + 1. 60" OD WASTAGE << 'enr
- 4. ~7 28- 4.i 4a RGE-87A RGE-87A HTS SF HTB BF
+
+ n1. 80" 1 0ee OD OD WASTAGE WASTAGE 24 2. 47
- 4. 95 RGE-87A HTS SF + 1. 50" QD WASTAGE 22, 5. 56 45 fisE-87A CTB BF 15 70" ID <general) 7. 44 14- 46 RGE-87A CTB SF 17. 6(.)"
18.30" ID (general) ~C 6. 13 15- 46 RGE-87A CTS BF ID (qenera 1 ) <<(.) x 40
~
RGE-87A HTS SF ~. 10" QD SCC 94 6. 39 20- 46 RGE-87A CTS SF 15. 30" ID <gener al) 25 10. 10 46 RGE-87A CTS BF 15. 50" ID (genera)) ~0 7. 56 25- 46 46 RGE-87A RGE-87A HTB SF HTS SF
- i. 20"
- 1. 40" OD WASTAGE QD WASTAGE 28
- 5. 10
- 4. 6Z 47 RGE-87A CTS SF 17. 70" ID <general) 27 4. 87 21 47 RGE-87A CTS SF 14.90" ID (general) >0 9 70 1*- 48 RGE-87A RGE-87A HTB BF 1. 40"
- 11. 00" OD WASTAGE 27 i, 14
~
5(.) HTS SF OD SCC 85 7. 81 6- 51 RGE-87A MTB BF 17.00" OD SCC 90 i. 54 fZ- RGE-87A HTS SF 1 . 80" OD WASTAGE 21 2 61
~
15- 52 fisE-87A HTS SF ~n" OD NASTAGF 24 1. 12
'JS- 52 RGE-87A HTS SF 10. 3(.) ee GD (general 27 2. Sw ji 17- 5& RGE-87A HTS SF Z. 50" OD W(-")STAGE c9 1.7" 31- 53 RGE-87A HTS SF, 18 60" QD SCC 86 17- 54 RGE-87A HTS SF 9. 70" OD SCC 84 0 55 30- 54 RGE-87A HTS SF 14. =10" OD IGA 7*
~
0 ~ 71
~~0- 56 RGE-87A HTS Sf= 0, 60" QD WASTAGE 2 ~ 78 58 58 RGE-87A RGE-87A HTS SF HTB BF
- i. 90"
- 1. 50" on QD WASTAGE WASTAGE 22
- 1. 73
- 1 61 RGE-87A RGE-87A HTS SF HTS BF
- l. 40"
- i. ~0" OD GD WASTAGE WASTAGE "8 1 40
~
~~ ~ t.) 8 21- 61 RGE-87A HTS SF f ~<<,0ee OD WASTAGE 2 61
~
19- 65 RGE-87A HTB BF 1.60" OD NASTAGE 21 4. 2:"
16- 64 RGE-87A HTS SF 1. 40" QD WASTAGE 2] ~. 21 19- 64 RGE-87A HTS SF 1,. 60" OD WASTAGE 5 95
~
15- 65 RGE-87A HTS SF 1. 40" OD NASTAGE 27 ~. 67 17- 65 RGE-87A HTS SF 1. 40" QD WASTAGE 22 2. 68 8- 66 RGE-87A HTS SF 18 ~ 40" OD SCC 0. 89 66 RGE-87A HTB SF 1. 40" OD WASTAGE 22 15- 66 RGE-87A HTS SF 4(>" OD WASTAGE e= ()n 18- 66 fisE-S7A HTB SF 1 ~ 60" OD WASTAGE 22 3. 26 67 RGE-87A HTS SF 0. 90" OD WASTAGE 22 4. 69 6'9 RGE-87A HTS SF 1. 10" OD WASTAGE 28 n1. 99 5- 71 RGE-87A HTS SF 17 ~ 10" c()ee OD IGA 21
I as<<s RALE TUQAN<PHl (VCR. 4.0)toenail Honday 2y lOPT ooslb AH twsooo QAlcMK oK cQ ooeoeo Page Plant: 'GINNA Steam Genec atoc: A Outage- RGE-87A QUERY: ALL DEFECTS> <<19 I TWi > ALL VOLTS> ALL ELEV <ALL TUE<ES) g ALL-SL RO(J- COL "OUTAGE ELEVATION I ND I CAT I ON / TW VOLTS 12- 73 RGE-87A HTS SF + 1.2O" OD WASTAGE 8- 7n RGE-87A HTS SF ~ 1. 1O" OD WASTAGE PAGE 10 OF 30
aaaaaa RCLC TURAM<TW) IVCR 4.0)aaaaaa C r CabvL)any 27'007 OJ)50 RH aaaaaa QA . L WILCOX CO, aaaaaa Pa.ge 1
P 1 an t- G I NNA Steam Gener atar' Outage: RGE-87B QUERY: ALL DEFECTS) > 1 '9 / TWT I ALL VOLTS) ALL ELEV (ALL TUBES) 7 ALL-SL RQW- COL OUTAGE ELEVATION INDICATION TN VOLTS RGE-87B HTS SF 18. wO" OD SCC 5c'7 0. 99 4 RGE-87B HTS SF 18. 30" OD SCC 1. 49 18- .5 RGE-87B Ci OD <gener al) 1. ~~2 18-18-6 RGE-87B Cl OD (general > a4 i. 37 v9 ll-18-6 ,RGE-87B 7 RGE-87B C2 HTS SF 18. ZO"
- 18. 20" OD OD
<gener.al SCC C') 1.
f.7.58 1 ..>"
li- 8 RGE-87B 15 RGE-87B 21- 15 RGE-87B Ci HTS KTS SF SF 17 10"
~
<gener al>
SCC SCC 27 67 47
- 2. 99 4 27 9- 20 HTS SF 1. 40" OD WASTAGE 22
~
5 96
~
12- 20 RGE-87B 1. 00" lf-28- 24 RGE-87B RGE-87B HTS HTS HTS SF SF SF f 10" 18.60" QD OD QD WASTAGE WASTAGE SCC 22 74 1 ~ 95
- 1. 95 RGE-87B MTS SF 1 20"
~ QD WASTAGE 22 17- 25 RGE-87B HTS SF OD NASTAGE 26 5. 09 20- 25 RGE-87B HTS SF II QD WASTAGE 2~ V ~iO
~
p
'78 25 RGE-87B RGE-87B HTS SF Q()ll OD WASTAGE v6 7. 06 HTS SF 18.20" QD SCC 81 0. 61
~f- RGE-87B HTS SF f7 70" OD SCC 65 0. 72
~,8 25 RGE-87B HTS SF 17. 90" OD SCC 76 1 46
~
19- 26 RGE-87B HTS SF OD WASTAGE 6. 7a 20- 26 RGE-87B HTS SF 1. 40" OD WASTAGE 4. y6 24- 26 RGE-87B HTS SF 1. 50" OD WASTAGE 28 7. 00 28-29- 26 RGE-87B RGE-87B HTS HTS SF SF 15.
1 g 50"II W()
- i. y2
- 0. Z7 iZ- 27 RGE-87B HTS SF 1. 20" OD NASTAGE 2 '99
~
28 RGE-87B HTS SF 14. 60" OD SCC 67 0. 69
>1- Zi RGE-87B RGE-87B CTS SF 1 5. ~0" OD (gener al ) ~i 2. 03 HTS SF 8. 40" OD SCC 85 1 46
~
>6- RGE-87B HTS SF 18. 50" OD SCC 9n 0. 58 RGE-87B HTS SF 7. 60"II QD SCC BB 0 75
~
a4 RGE-87B MTS SF 5 70 II OD SCC 80 2. 55 Zf-40-a4 RGE-87B HTS SF c
()
~
40 RGE-87B HTS SF 1. 50" OD WASTAGE 3 55
~
39- 40 RGE-87B HTS SF 18. 20" OD SCC 81 1. 6a 41 RGE-87B HTS SF 1. 50" OD NASTAGE 2w'1 ~i. 21 Q4 41 RGE-S?B HTS SF OD WASTAGE Z. 62 6- RGE-8?B MTS SF 0. 70" OD WASTAGE v. 16 42 RGE-87B HTS SF i5.30" OD SCC 97 0. 38 20- 42 RGE-87B HTS SF 12. 80" OD SCC 77 0. 45 RGE-87B HTS SF 5. 70" OD SCC 50 0. 51 42 RGE-87B HTS SF 18. 50" OD SCC 96 2. 03 44 RGE-87B HTS SF 14.90" QD SCC 84 2. 57 i4- 44 RGE-87B HTS SF 19 10" OD SCC 77 <a. 90 Z6-'- 44 RGE-87B HTS SF 17.70" QD SCC 78 2. 59 45 RGE-87B HTS SF 17.20" OD SCC 94 4. 56 46 RGE-87B HTS SF 16 90"
~
- 16. 20" 0. 40 ll-
&1 46 RGE-87B 47 RGE-87B 1- 48 RGE-87B HTS HTS HTS SF SF SF
- 0. 90 1 74 16- 48 RGE-87B 19- 48 RGE-87B HTS HTS SF SF ia.wO"
$6 85 l.~
2 74
~
On U9- 49 RGE-87B li- 50 RGE-87B 50 RGE-87B HTS HTS HTS SF SF SF
r) 5 2 45
~
- 3. 04 51 RGE-87B HTS SF ."". 60" OD WASTAGE '72 0. 60
%7 RGE-8?B HTS SF R. 10" OD WASTAGE 0. 94 52 RGE-87B HTS SF OD WASTAGE 22 1. 04 11- 54 RGE-87B HTS SF 16. 90" OD SCC 0. 61
>6- 55 RGE-87B HTS SF 16. 90"II OD SCC 96 1. 25 iO- 56 RGE-87B 42- 57 HTS SF 18.10"
~~0 OD WASTAGE 50 l.
1.95 42 HTS SF OD SCC PAGE ll OF 30
ttltol ROLC TUQAH(TH> <VCR, O,O)ttttto Fr I dky Fobruary 27 '097 04 F 00 PH ~ ttttt QAQCOCK L WILCOX CO. tttttt P 1 an t:
QutacIe:
G INNA RGE-878 Steam Gener ator '-
8 QUERY 'LL DEFECTS y )1 P / TN y y ALL VOLTS y ALI ELEV ( ALL TUBES ) y ALLSL ROW- CQL OUTAGE ELEVATION INDICATION TN VOLTS 1- 58 RGE-878 HTS BF 17.60" QD SCC 1.40 35- 58 RGE-878 HTS SF 17 c (}II OD SCC 75 i.'O, 36- 58 RGE-878 HTS SF 18.40H OD BCC 85 0. 83 8- 59 RGE-878 HTS SF 16.30" OD SCC 97 0. 60 Z
61 RGE-878 RGE-878 HTS HTS BF SF 18 70H
~
0.50" QD OD SCC WASTAGE 90 i. 19
~
- 0. 66 63 RGE-878 HTB BF OOH OD WASTAGE 5. 38 28- 63 64 RGE-878 RGE-878 HTS HTS SF SF
- l. 70" 1 500 OD OD WASTAGE WASTAGE 22 3 36
~
~
2 22
~
65 RGE-878 HTS SF 17 OD SCC 70 4. 84 36- 65 RGE-878 MTS SF 18. 30" OD SCC Vf 1. 51 67 RGE-878 HTS SF 17. 40" QD SCC 59 I t03 ll 69 RGE-878 HTB SF 15. 90" 17.40" OD SCC 73 1. 16 72 RGE-878 HTS SF OD SCC 94 2. 57 75 RGE-878 HTS SF OD BCC 66 10. 96 27 75 RGE-878 HTB SF 16.80" OD BCC 89 1. 07 Cg
'77- 77 75 RGE-878 HTS BF 17.40" QD BCC 87 1. 0'7 RGE-878 HTS SF 17.70" OD SCC 92 3. 45
~8 RGE-878 17 50" 8- 77 78 RGE-878 HTS HTS SF SF 16 10"
~
~
7'7 RGE-878 HTS SF 16 40" OD SCC 84 1. 19
'97- 80 RGE-878 HTS SF 18.fo" OD SCC 97 1.80 8- 82 4 84 RGE-878 RGE-878 HTS HTS SF SF
- i. 14
- 4. 49 17- 84 RGE-878 HTS SF 18 ao" OD SCC 47 j t2 14- 85 RGE-878 HTB SF 18.20" OD SCC 47 5. 23 86 RGE-878 HTS SF 19.00" OD SCC 75 V. 10 86 RGE-878 HTS SF 18. 80" OD SCC 4. 83 86 RGE-878 HTS SF f 8 WOII QD SCC 73 3 37 9- 89 RGE-878 HTS SF 18 90" OD SCC
~
- 6. 82 PAGE 12 OF 30
DENT TABLE FEBRUARY 1987 INSPECTION STEAM GENERATOR "A" ELEVATION DENT (VOLTS)
<10 10-<20 20-<30 >=30 TOTAL
- 1. HTS PF 0 0 0 0 0
- 2. HTS MID 5 2 0 0 7
- 3. HTS SF 190 88 6 0 284 4, HTS-Hl 3 3 0 0 6
- 5. Hl 95 85 40 28 248
- 6. Hl-H2 3 0 0 3
- 7. H2 2 8 1 16
- 8. H2-H3 0 0 0 0
- 9. H3 0 0 0 0
- 10. H3-H4 0 0 0 0
- 11. H4 0 0 0 0
- 12. H4-H5 0 0 0 0
- 13. HS 0 1 3 4
- 14. H5-H6 0 0 0 0
- 15. H6 1 3 4 11
- 16. >H6 0 0 0
- 17. AVB1 0 0 0
- 18. >AVB1 0 0 0
- 19. AVB2 0 0 0
- 20. >AVB2 0 0 0
- 21. >AVB3 0 0 0
- 22. AVB3 0 0 0
- 23. >AVB4 0 0 0
- 24. AVB4 0 0 0
- 25. >C6 0 0 0
- 26. C6 4 4 9
- 27. C6-C5 0 0 0
- 28. CS 0 0 0
- 29. C5-C4 0 0 0
- 30. C4 1 1 0 2
- 31. C4-C3 0 0 0 0
- 32. C3 0 1 0 1
- 33. "C3-C2 0 0 0 0
- 34. C2 1 2 1 4
- 35. C2-Cl 0 0 0 0
- 36. Cl 1 1 0 2.
- 37. Cl-CTS 0 0 0 0
- 38. CTS SF 2 0 0 2
- 40. CTS PF 0 0 0 0
- 41. OTHER 0 0 0 0 TOTALS: 308 199 55 37 599 PERCENT: 51.4 33.2 9.2 6.2 TABLE 2 PAGE 13 OF 30
DENT TABLE FEBRUARY 1987 INSPECTION STEAM GENERATOR "B" ELEVATION DENT (VOLTS)
<10 10-<20 20-<30 >=30 TOTAL 1~ HTS PF 0 0 0 0 0
- 2. HTS MID 0 2 0 0 2
- 3. HTS SF 204 111 12 3 330
- 4. HTS-H1 4 0 0 0 4
- 5. H1 4 7 7 12 30
- 6. H1-H2 0 0 0 0
- 7. H2 0 0 0 0
- 8. H2-H3 0 0 0 0
- 9. H3 0 0 0 0
- 10. H3-H4 0 0 0 0
- 11. H4 0 0 0 0
- 12. H4-HS 0 0 0 0
- 13. H5 0 0 0 0
- 14. H5-H6 0. 0 0 0
- 15. H6 5 0 0 0
- 16. >H6 3 0 0 0
.17 A VB1 0 0 0 0
- 18. >AVB1 0 0 0 0 1'9. A VB2 0 0 0 0
- 20. >A VB2 0 0 0 0
- 21. >AVB3 0 0 0 0
- 22. AVB3, 0 0 0 0.
- 23. >A VB4 0 0 0 ,0
- 24. AVB4 0 0 0 0
- 25. >C6 0 0 0 0
- 26. C6 0 0 1 1
- 27. C6-CS 1 0 0 0
- 28. CS 0 0 0 0
- 29. C5-C4 0 0 0 0
- 30. C4 0 0 0 0
- 31. C4-C3 0 0 0 0
- 32. C3 0 1 0 0
- 33. C3-C2 0 0 0 0
- 34. C2 0 0 0 0
- 35. C2-C1 0 0 0 0
- 36. C1 0 0 0 0
- 37. C1-CTS 0 0 0 0
- 38. CTS SF 0 0 0 0
- 40. CTS PF 0 0 0 0
- 41. OTHER 0 0 0 0 TOTALS: 221 120 21 378 PERCENT: 58.5 31.7 5.6 4.2 TABLE 2 (CON'T)
DEFECT TABLE FEBRUARY 1987 INSPECTION STEAM GENERATOR A Defects (Inlet) Defects (Outlet) 0 - 19% TW 325 0-19% TW 4 20- 39% TW 98 20- 39% TW 8 40- 49% TW 0 40- 49% TW 0 50 - 100% TW 15 50 - 100% TW 0 SQR ADS 17 U Bend 0-19% TW 0 20- 39% TW 2 40-49% TW 0 50 100% TW 0 STEAM GENERATOR B Defects (Inlet) Defects (Outlet) 0-19% TW 160 0-19% TW 3 20- 39% TW 27 20- 39% TW 5 40- 49% TW 4 40- 49% TW 0 50 - 100% TW 64 50 - 100% TW 0 SQR 10 ADS 72 PAGE 15 OF 30
4.0 i OBSERVATIONS The results of the examination indicates that intergranular attack (IGA) and intergranular stress corrosion cracking (IGSCC) is still active within the tubesheet crevice regions on the inlet side of each steam generator. The IGA/IGSCC is primarily located in the "B" steam generator with 153 total indications detected.
In the "A" steam generator 34 indications were detected. Table 4 shows the steam generator IGA history.
GINNA'S STEAM GENERATORS CREVICE CORROSION INDICATION HISTORY B-Steam Generator (A-Steam Generator)
Not A-S/G B-S/G Sizeable 0-25% 26-50% 51-75% 76-100% TOTAL TOTAL March 1979 0 (0)
December 1979 0 (0)
April 1980 19 (0) 31 November 1980 2 (0)
April 1981 0 (0) 14 February 1982 1 (0) 13 October 1982 27 7(1) 16 59 April 1983 11(3) 3(1) 15 15 (4) 51 March 198'4 5 0(1)
March 1985 23 9(1) 27(1) (2) 69 February 1986 3(2) 9(2) 14(1) 25 (5) 52 February 1987 82(17) s(1) 16(3) 46(13) (34) 153 TOTALS 173(22) 27(3) 4s(2) 80(6) 138(14) (47) 466 TABLE 4 PAGE 16 OF 30
<J The cause of the inlet tubesheet crevice corrosion indications is intergranular attack and intergranular stress corrosion cracking of the mil-annealed Inconel 600 tube material. This form of corrosion is the result of the tubesheet crevices forming an alkaline environment. This crevice environment has developed over the years as deposits and active species like sodium and phosphate, have reacted, changing a neutral or inhibited crevice into the aggressive environment that presently exist.
A large volume, typically <20% TWD (Through Wall Dimension) wastage type condition exists just above the tubesheet secondary face. A small percentage of the tubes, generally toward the center of the bundle, have this condition. Several of these tubes did have penetrations >20% TWD. These tubes were affected by the original water chemistry conditions when phosphate was used as a buffering medium and have not seen further degradation since 1975.
Small indications of probable copper deposits were also found in the tubesheet crevice region randomly located throughout each steam generator. Based on studies performed with copper plated on Inconel tubing and the phase relationships of these signal responses at the different inspection frequencies the indications can be attributed to copper deposits and not a defect condition.
Minor denting has been detected at the tubesheet secondary side face for many years in both steam generators, primarily on the inlet side. Denting was also detected at the 1st, 2nd and 6th tube support plates randomly throughout the generator, and in most cases was of greater magnitude in size. No tubes were found which obstructed the passage of a 0.720" O.D: probe. In general, minor distortions of most of the tube support plate signals were seen.
PAGE 17 OF 30
4.0 OBSERVATIONS (CON'T)
The denting phenomenon and minor distortions at the tubesheet and support plates can be attributed to secondary side corrosion product build-up in the annular region between the tube outside surface and the carbon steel support member.
Comparisons with previous data does not indicate any change in the extent or magnitude of denting from what has been detected by previous inspections.
Several indications were detected in the cold legs of the "A" * "B" steam generators in and around tube R23-C46. A review of previous years data revealed these indications to be present. They appear as a shallow ID indication <20% which were confirmed visually to be an expansion of diameter within the tubesheet.
This was caused by a cam-lock expansion device which was used in earlier years to suspend lead blankets from the tubesheet primary face.
In summary, the "A" Steam Generator had thirty four (34) tubes that were found to have tubesheet crevice indications. The "B" Steam Generator had one hundred fifty three (153) tubesheet crevice indications.
One tube in the "A" Steam Generator had two (2) indications at the third and fourth anti-vibration bar intersections. These indications are greater than 20% but less than the repair limit, and have not changed since the 1986 Inspection. This tube will be re-examined at the next inspection to determine if there is an active fretting wear damage mechanism going on. In light of the fact that only this tube exhibits these indications, AVB fretting wear is not a major concern.
PAGE 18 OF 30
5.0 CORRECTIVE ACTION Table 5 has been generated to identify the tubes with crevice indications or with indications which exceed the repair criteria. This table also shows the location and axial extent of the indication and what corrective action was taken on these tubes. All tubes requiring repair had hot leg tubesheet crevice indications which were identified by an absolute drift signal of the Mix-2 Channel and/or quantifiable intergranular stress corrosion cracking (IGSCC) indications by the 400 kHz data.
Several squirrel type (SQR) indications, multiple IGSCC, were also identified and have been placed on the list of tubes requiring corrective action. A total of 24 sleeves and 10 plugs were installed into the "A" steam generator. The "B" steam generator required a total of 80 sleeves and 73 plugs to be installed. One plug is attributed to a sleeve installed this outage which had to be removed from service due to unacceptable ultrasonic examination results of the upper weld.
As part of the Inspection Program for the "B" steam generator, a 750 PSI Hydrostatic Pressure Test was performed from the secondary side to locate any tubes, sleeves or plugs which were leaking. The results of the visual examination of the "B'ot leg tubesheet during the hydro indicated that 2 tubes, 2 1980 Test Sleeves, 11 Westinghouse Explosive Plugs, and one CE .Mechanical plug in the cold leg were identified as leaking. The 2 tubes identified were confirmed by eddy current testing to have high percent through wall indications ()80% TWD) in the midspan of the hot leg tubesheet which are probable intergranular stress corrosion cracks (IGSCC). Five of the explosive plugs were drilled out and replaced with a welded "Top Hat" plug. The remaining six explosive plugs were left in service as their leakage rate was extremely small. The CE Mechanical Plug in the cold leg was removed and replaced with another CE Mechanical Plug.
PAGE 19 OF 30
~
CORRECTIVE ACTION (CON'T)
'he 2 sleeves identified as leaking were B*W 36" Brazed Sleeves which were installed in 1980 as part of a test program. An eddy current inspection using annular differential magnetic bias probe was performed on these sleeves and the 3 other test sleeves installed in 1980, in addition to the 20% random inspection of all sleeves installed. The results of data analysis for the sleeves of the braze/expansion regions as well as the lower roll transitions revealed no detectable degradation or deviation from the eddy current signature seen in the other sleeves or from the 1986 Inspection Data. An ultrasonic inspection of the braze regions, performed in 1983, showed that the brazed bonding of the sleeve to the parent tube marginally met the acceptance criteria. At that time it was resolved that these sleeves would be considered leak limiting, not hermetically sealed, and be left in service until leakage was detected.
The analysis for the parent tube showed that Tube 21-47 has a deep IGSCC indication (estimated at 94% TWD) and Tube 24-47 has three deep IGSCC indications (deepest estimated at 97% TWD) located in the midspan of the tubesheet region.
A review of the 1986 Data for these parent tubes also revealed the existence of these deep flaws. An increase in the volume (based on the amplitude of the signals) was noted when comparing the 1987 to the 1986 data.
Based on the detection of a through wall defect in the parent tube and the braze condition of the sleeve, existence of the primary to secondary boundary leak has been confirmed. These 2 sleeves have been removed from service using a B*W explosive plug.
PAGE 20 OF 30
RO),g l TUQAN<TH) (VCR
\
l.0)semess Tueaday uawy 21) J OQ7 04) lo p)) sooooo EIARccc)r. I 00x 00 oaoaso Pa8e Plant: GINNA "Steam Benevatav- A REPORT- TUBES REQUIRINB CORRECTIVE ACTION ROW COL VOLTS DEG IND CHN LOCATION COMMENTS EXTENT TAPE PRB il 11 24, 10 10 1 . 73 66
- 0. 72 60 80 84 M
M 1
1 HTB HTS 18.
- 17. 3 1 PLG SCC BCC
¹1 TSP
¹1 TBP M
H 8
8 740 74C) 11 13 1 08 1$ 6
~ ADS M HTS 18. 2 PLG IBA ¹1 TSP H 8 740 2 Si il 1 i.
11 21 20 15 19 20
~
- 1. 00 58
- 1. 73 41 51 74 86 ADS M
M M
HTS 1 HTS 2 HTS 15.
18.
15.
0 PLG 1
¹1 TBP
¹1 TSP
¹1 TSP H
H H
8 8
8 740 740 740 3 22 57 li 11 il 2127 21 20 ~
1 . 56
- 0. 8 1 81 ADS 92 M
M 2 HTS 1 HTS 14.
17 ~
¹1 TSP
¹1 TSP H 8 1
740 740 ii ii 8 26 28
- 8. 85 53 1 70 47 80 77 M 1 HTB HTS 17.
17.?
9 SLV SLV SCC SCC
¹1 TSP
¹1 TSP
¹1 TSP H
H 1
1 740 740 11 li ~
.55 43 35 ADS I'I ADS M 90 2 HTS MTS 17 16.
13.
~ 1 7
¹1 TSP H
H 700 740 il 391518 11 11 34 35
- 1. 25 129
- 0. 43 61 ADS 90 M
M 1
1 HTS HTS HTS iS.
13.
7 2
2 SLV PLG SLV BCC IGA SCC
¹1 TSP
¹1 TSP H
H H
2 2
740 740 11 36 3 8'9 35
~ ADS I'I 2 HTS 18 ~ 0 PLG IGA ¹1 TBP H 740 11 36 0. 79 266 ADS M 2 HTB 11. 1 PLG IGA TSP H 740 37 a. Oi 87 ¹1 TSP li 11 21 15 38 46 3.21 6.39 30 SQR M 2 ADS 94 M
HTS HTS 17.
18 3
~
9 2
¹1 TSP H
H 740 740 740 ii 11 1*
2 50 7. Si 40 2 25 51 85 M
M HTS HTS 11
~
~
1 0
¹1 TBP H
H 4
4 740 740 ll 11 ll 31 6
51 51 53
~
- 3. 54
- 2. 86 76 ADS 90 7<<>
M M
M 1 HTS HTS HTS 1$ .
17.
18.
1 0
6 PLG SLV SLV IGA SCC SCC
¹1 TSP
¹1 TSP H,
H H
7 7
4 740 740 11 17 54 3 55 47
~ ADS M HTB 16. 4 SLV IGA ¹1 TSP H 4 740 54 0 55 60 84 9.7 ¹1 TSP 740 li 11 ll 17 19 30 54 54
~
5.40
- 0. 71 49 7 SQR 76 M
M M
1 2
2 HTS HTS HTS
]4~ 2r
- 14. 3 SLV SLV SCC SCC IGA
¹1 TSP
¹1 TSP H
H H
4 4
4 740 740 11 <<> ~r 55 1. 74 27 ADS M I-ITS 13 0 ~ SLV IGA ¹1 TSP H 4 740 11 8 61 1 94
~ 45 ADB M 2 HTS lb. 4 SLV IGA ¹1 TBP H 8 740 11 65 1. 69 PP 9 ADS M HTB 17. 0 PLG IGA ¹1 TBP H 5 740 11 8 66 .89 72 1 HTS 18 4 ~ SLV SCC ¹1 TBP H 5 740 8 67 2 98 15. 5 ¹1 TSfi 740 il 11 ll 21 68 69
~
4 93
~
M M
2 HTS 2 HTS HTS
- 18. 1 SLV 16 8 SLV
~
SLV IGA IGA IBA F/L
¹1 TSP H
H 5
6 700 740 11 5 71 2 27 79
~ 27 M HTS 17 1 SLV
~ IGA ¹1 TSP H 6 740 TABLE 5 PAGE 21 OF 30
STEAM GENERATOR "A" TUBES RECEIVING CORRECTIVE ACTION FEBRUARY f987 PLANT'INNA GENERATOR A TOTAL TUBES: 3260 S ~ CE ET'LEEYES (24) P ~ CE PLUSS (io)
TOTAL TlSES ASSISNHL 34 rp h
-es l o
K
- Ro
- jo I I I I I I I I I I I I I I I I I I R
3 I 8 I R )' I RL INLET (Hot Leg) Pt iaery Fece COLSSS NANfAY
~ <<t ROLE I
Plant:i TUSAN(VN) <VCR
'SINNA
<< O)tt<<<<tt Hond<<y ~ 2i (OQt OQs2B At1 <<ttttt ()AQcoQK ( o)(
Steam Genevata(--
co, tttttt Page B
REPORT- TUBES REQUIRING CORRECTIVE ACTION SG VOLTS DEG IND CHN LOCATION COC'IMENTS E X TENT PRB 21 0. 99 19 55 N 1 HTS 18. > PLG SCC Nl TSP H 10 ?r)0 7
1.49
- 1. 85 16 47 ra a HTS ls. ~ PLS BCC Na SCC Ni Tsp H 1 r) 7VO 21 11 1 HTB 18 ~ 3 PLG TBP H 1 740 18 7 1. 58 74 83 1 HTS 18. 2 PLS SCC Ni TSP H 1 74r) al 8 1. 72 45 97 HTS 17. 3 PLG SCC Na TSP H 1 740 21 5 13 2 ~ 47 178 ADS t'I 2 HTS lb. 8 SLV IGA N j. TSP H 740 13 1 32 128 ADS t'I 2 HTS 17. 7 SLV IGA Nl TSP H 740 21 1 r) 13 1 49 134 ADS
~ t'I HTS j.*. 9 SLV IGA Nl TSP H 740 21 8 14 1. 84 146 ADB CC 2 KTB 17. 2 SLV ISA N1 H 740 1.80 62 ADS 16. 9 ISA 740 TSF'i 21 14 N 2 HTS BLV H 2 740 TSF'i 21 15 14 1 . 99 138 ADS rc 2 HTS 17 7~ PLS IGA TSP H 2 21 15 67 N 2 HTS 17. j. SLV SCC Nl TSP H 740 21 15 4, 27 61 47 t"I 2 HTS a?a 3 PLS SCC Ni TSP H 74V 21 2 16 204 ADS t'I 2 HTS 17. 6 PLG IGA Nl TSP H 2 740 21 nj 11 1.6 4. 48 101 ADB M 2 HTB 17. 6 SLV IGA Ni TBP H 740 16 1. 61 110 ADS N 2 HTB 17. 5 PLS IGA Ni ISP H 2 740 2a 24 1* 2. 50 115 ADS M 2 HTS 17. 5 PLG IGA Na Tsp H 74r) 9J 16 57 17 BQR M 2 HTS 17. 8 PLG BCC Nl TSP H 740 2a 18 1..1 69 ADS M 2 HTS 13. 4 SLV IGA F/L 700 21 18 18 4 62 174 ADS
~ 2 HTS 17. 7 SLV IGA Nf TSP H 2 740 21 18 1. 83 143 ADB N HTS 1.8 ~ 5 PLG IGA F/L 2 740 18 20 3. 11 *7 SQR N 2 HTS 17 0~ SLV SCC Nj TSP H 74r) 2j. 18 2. 86 113 ADS M 2 HTS 17. 7 BLV IGA Na TSP H 2 7 4(.)
21 2 33 n9 ADS N 2 HTS j.b. (.) PLG ISA Nl TSP H 740 21 '4t 5o SQR t'1 2 HTS 16. 3 BLV BCC Nl TSP H P 740 21 14 4. 73 19 ADS
- 3. 48 28 ADS N 2 HTS lb. 9 SLV IGA Nl TBP H 740 8 24 t'I 2 HTS 16. 5 SLV ISA Nl TSP H 740 21 28 ns 24 1. 95 65 75 N HTS 18. 6 PLG BCC Ni TSP H 740 2f 25 0. 61 66 81 1 HTS 18. 2 PLG SCC Na TBP H 740 25 0 7 ~ 77 65 M 1 HTS 17.7 PLG BCC Ni TSP H 740 21 38 25 1. 46 87 76 1 HTS 17. 9 PLG SCC Nf TBP H 740 28 1.0 ~
43 90 t"I 1 HTB 15 5 PLG BCC Nl
~ TSP H 74(.)
21 0. 37 85 57 N 1 HTB PLG SCC It:a Tsp H 740 21 0. 69 86 67 N 1 HTS 14.
- SLV SCC F/L 70(.)
21 21 1. 46 51 85 t'I 1 HTB 8.4 SLV BCC Ni TBP H 74(b 21 36 0 58 58
~ 1 HTS 18. 5 PLG SCC F/L 700 21 21 0. 75 +3 88 M 1 HTS 7.6 SLV SCC Nl TSP H 3 74V 21 34 2 55~ so t"I 2 HTS 5.7 SLV SCC Nl TSP H 740 31 34 1. 29 lub 1 HTS 18. 5 SLV SCC Na TBP H 4 74(:)
21 p7 r). 51 156 SQR 1 HTS 16. u SLV SCC Ni TBP H 74(.)
37 2. 3r) 5 Q ADS N HTB 16 SLV IGA Ni TSP H 740
~a 38 5, 2(.) 20 ADS N 2 HTS 16. 6 PLG IGA Nf TSP H 4 740 12 1 .34 50 ADS N HTS 15. 2 BLV IGA Ni TSP H 4 740 21 ot 33 166 6 1 HTS BLV SCC Na TBp H 740 21 40 u'9 37 79 N 2 HTS 18. = PLG SCC Nl TSP H jr) 700 21 ,9 1 63
~
- 0. 38 57 81 f1 1 HTS is. = PLG SCC Ni TSF H 4 740 21 9 97 N 1 HTB SLV SCC N1 TSP H 700 21 4n 0. 45 85 77 1 HTS 12. 8 SLV SCC Nl TSP H 5 740 26 42 0. 51 87 50 t'I 1 HTS 5<<7 SLV SCC N a'BF'l H 5 740 21 32 42 2. Ou 48 96 1 HTB 18. 5 SLV SCC TSP H 5 740 3 44 2- 5? 40 84 N 2 HTS 14. 9 PLG SCC Nl TSP H 5 740 44 0. 90 86 77 1 HTB 19. 1 PLG SCC Nl TBP H 5 740 2f 36 44 84 78 1 HTB 17. 7 PLS SCC Nl TBP H 5 740 21 45 z9 ADS N HTB 17. 1 SLV IGA Nl TBP H 700 34 45 .'. 3(.)
~ 30 ADS M 2 HTS 17. 6 F'LG IGA Nl TSP H 700 n21j 45 4. 56 8 94 N 2 HTB 17. 2 PLS BCC Na TBP K 700 6 46 .58 C'I 1 HTB 16. 9 SLV SCC Ni TSP H 5 740 21 3a 4* (.l 40 ul 7? HTS 16. 2 SLV SCC N1 TSP H 5 740 11 47 0. 90 46 88 M 1 HTB 17. 7 SLV SCC Nl TBP H 5 740 1 48 1. 74 85 M 2 HTB 14. 4 PLG SCC Nl TBP H fJ 740 16 4s 1. 04 50 86 M HTS 13. 3 SLV BCC N 1 H 5 740
- 2. 74 17 85 TBI='i 21 1'9 48 N 2 HTS 9 5
5 M HTS SLV SCC N 1 H 5 740
- 18. j. SLV 700 TBF'i 11 50 80 71 t1 1 HTS BCC TBP H 10 21 51 8. 27 SQR N 2 HTS 15. 0 SLV SCC Nl TSP H 5 740 21 6 52 r). ..9 10 SQR t'I 1 HTS 18. 1 SLV SCC Nl TSP H 10 700 i9 1. 40 .60 ADS 9.0 SLV 21 21 21 ll ns 54 54 O. 61
- 2. 56 30 ADB 45 94 t'I M
I 2
1 2
HTS HTS HTS 16 9 BLV
~
16.4 SLV IGA Nl SCC IGA Ni 1
TBP TSP TBP H
H H
10 5
6 740 700 74(.)
n j 36 54 5. 77 46 ADS C
C'I 2 HTB 16. 7 PLG ISA TSP H 6 740 PAGE 23 OF 3I)
TABLE 5 (CON'T)
,I CO
RQI,C TUQ(H(TH> (VCR l
1 altttttt Hondty Qs (QQT oatM AH tttttt QAQeaev I eax eo. tAtttt PBBe P I ant - GINNA Gener ato(:
REPORT<< TUE(ES REQUIRING CORRECTIVE ACTION ROM COL VOLTS DEG IND CHN LOCATION COMNENTS EXTENT TAPE PRE(
21 22 55 1. 64 57 ADS N 2 HTS 14 6 SLV
~ IGA ¹1 TSP H 6 740 21 55 3. 46 31 ADS M HTS 13. 4 PLG IGA ¹1 TSP H 6 740 21 2}
7 55 55
- l. 91 3 9} 38 ADS
~
ADS M M
HTB HTS
- 16. 2 SLV
H 6
6 740 74(3 21 35 55 2 39 40 SQR N HTS 16. 5 PLG SCC ¹1 TSP H 6 740 21 21
.:"6 55 56 j.
1.
~
25 126 ADS 96 N 1 HTS 2 HTS
- 16. '9 PLG
M 6
6 740 740 27 57 13 80 ADS IGA Ql TSP" 99'.
21 M HTS 6 0 SLV
~ H 6 740 2f 42 57 1. 95 20 50 1 HTS 18. 1 PLG SCC Qi rsp H 6 740 2f 58 1. 40 1 HTS 17.
~ IGA Ql TSP H 6 740 21 34 58 3. 97 44 ADS M 2 HTB 17 6 PLG IGA ¹1 TSP 6 74(j 58 58
- l. 00
- 0. 83 47 75 M 51 85 M 1 HTS HTS
~
- 17. 5 PLG
- 18. 4 PLG SCC SCC
¹1 lSP
¹1 TSP H
H 6
6 740 740 21 8 5'9 0. 60 97 M 1 HTS 16. 3 SLV SCC Qi TSP H fO 700 21 ~I ~ 59 2. 15 22 ADS N Hrs 17. 3 SLV IGA ¹1 TSP H 6 740 2f 60 3. 79 56 SQR N 2 HTS 17. 5 SLV SCC ¹1 TSP H 6 740 21 bv 1. 19
- 4. 07 44 90 M 1 Hls 18 7 PLG
- 740 4 61 ADS M 2 HTS 17 0 SLV
~ IGA ¹1 TSP 6 740
?1 8 61 1. 26 37 ADS M 2 HTS 16. 1 SLV IGA ¹1 TSP H 6 740 2} 31 61 2. 44 47 ADB M 2 Mrs 17. 2 SI V IGA ¹1 TSP H 6 74v 2} 32 61 >. 19 25 SQR M HTB 17. 2 PLG SCC ¹1 TSP H 6 740 21 *2 3. 71 18 ADS I"I 2 HTS 15. 2 SLV IGA ¹1 TBP K 6 740 2f 24 3. 01 11 ADS I"I 2 HTS fB. 1 BLV IGA Qi lBP 6 740 2f 38 .66 41 '96 I"I 1 HTS 17 9 PLG
~ BCC Qi TSP H 10 700
}4 63 4. 19 39 ADS M 2 HTS f6. 1 SLV IGA ¹1 TSP H 6 740 21 28 64 1. 04 56 SQR M 1 HTS 15. 8 SLV SCC ¹1 TSP H 10 70(3 3* 64 2. 22 42 91 M 1 HTS 18. 3 PLG SCC ¹1 TSP H 6 740 65 4. 21 29 ADB M HTS lb. 3 SLV IGA TSP H 7 74(.)
2} 17 65 3. 36 23 ADB N HTB lb. 4 SLV IGA ¹6 TSP 7 740 21 65 1. 89 58 ADS N HTS 14 9 SLV
~ IGA TSP 7 740 65 ADS N HTS }3 0 PLG
~ IGA Ql TBP 7 740 21 65 4 84 46 70 M 2 HTS 17 ~ 5 PLG SCC ¹1 TSP H 7 740 21 2!
36 65 66 l.~
2 71
~
51 42 17 91 N ADS N 1
2 HTS HTS
- 18. 3 PLG
- 13. 7 SLV SCC IGA
¹1 Ql TSP TSP M
H 6
7 740 740 21 4 66 4. 11 39 ADS 2 HTS 12. 3 SLV IGA ¹2 TSP H . 7 740 21 5 66 3. 34 28 ADS N 2 HTS 14. 3 BLV IGA ¹2 TSP H 7 74'>
2 67 4 34
~ 26 ADS M HTS 16 1 PLG
~ IGA ¹f. TSP H 7 74(3 2} 67 4 ~ 25 53 ADS M 2 HTS 15. 9 SLV IGA Qi TSP H 7 74C>
2} 5 67 3. 84 28 ADS M 2 HTB 15. 9 SLV IGA ¹1 TSP H 7 740 21 8 67 5 41
~ ADS N HTS lb. 7 SLV IGA ¹1 TSP H 7 740 11 67 4. 76 ADS M 2 HTS }5. 0 SLV IGA ¹1 TSP H 7 740 21 m'3 4
67 68 f,. 03
- 3. 52 l}2 3} ADS 59 M
HTS HTS
- 17. 4 PLG 15 6 SLV SCC IGA
¹2
¹1 TSP TSP C
H 7
7 740 740 lb. v BLV
~
21 68 2. 68 ADS M 2 HTS IGA ¹1 TSP H 7 740 21 13 68 3. 72 32 ADS N 2 HTS lb. 1 SLV IGA ¹1 TBP H 7 740 21 35 68 2 ~ 30 31 ADS M HTS lb. 1 PLG IGA Ql TSP H 7 740 21 69 1. 74 53 ADS M HTS 16. 7 SLV IGA Qf TSP H 7 740 11 69 1. }6 73 1 HTS 15 9 SLV
~ BCC ¹1 TBP H 7 740 24 69 2. 04 5(j ADS M HTB 16. 7 SLV IGA ¹1 TSP 7 740 21 69 6. 07 27 ADS M HTB lb. 3 PLG IGA Qi TSP 7 740 1 70 4. 39 ADS M 2 HTS 16 5 PLG
~ IGA ¹1 rsp M 7 740 2} 8 70 2 89
~ 28 ADS M Hrs 16. 1 SLV IGA Qi TSP H 7 740 2f 24 70 1 69
~ 56 ADS M 2 HTS 17. 6 SLV IGA ¹1 TSP H 7 740 14 71 4. 87 34 ADS M 2 HTS 15. 7 SLV IGA Qi TSP H 7 740 22 2}
1 27 71 71
- i. 76
- 17. 4 PLG IGA IGA
¹1 TSP
¹2 TSP H
H 7
7 740 740 21 9 72 3. 98 27 ADS N HTS 16. 6 SLV IGA TBP H 7 740 21 24 72 2. 67 ADS M 2 HTS 15. 6 PLG IGA Qi TSP H 7 740 2} 26 72 2 57 ~ 3i 94 M 2 HTS 17. 4 PLG SCC ¹1 TSP H 7 740 2f 2 75 10 96~ 48 66 M HTS 16. 2 PLG SCC ¹1 TSP H 7 740 21 75 1. 28 75 ADS N HTS 16. S BLV IGA ¹1 TSP H 7 740 2f 27 75 1. (j7 63 89 1 HTS 16 8 PLG
~ SCC ¹1 TSP H 7 740 21 &2 75 35 87 2 HTS 17. 4 PLG SCC ¹1 TBP H 7 740 76 0. 83 112 ADS M 1 HTS lb. 1 BLV IGA ¹1 TSP H 7 740 22 27 77 3. 45 49 M 1 HTS 17. 7 PLG SCC Ql TSP H 7 740 n} 28 77 l. 09 70 86 1 HTS 17. 5 PLG SCC ¹1 TSP H 7 740 21 ng 8 78 2. 57 38 83 I"I Hrs lb. 1 SLV SCC ¹1 TSP H 7 740 21 C J 78 1. 84 74 83 1 HTS 17. 2 PLG SCC ¹1 TSP H 7 740 21 79 227 ADS N HTS 17 0 PLG
~ IGA ¹1 TSP H 8 740 PAGE 24 nF 3tI TABLE 5 (CON'T)
~oi Roc c TUB4N <vLR. 4,0looeoee pkeday h 2y !Oily cosmic m ~ nauccmc a~cox co. Page Plant;-GINNA Steam Guet atat - B REPORT- TUBES REQUIRING CORRECTIVE ACTION COL VOLTS DEG IND CHN LOCATION COMMENTS EXTENT PRB 21 79 0 88 41 99 1 HTS 17 6 SLV SCC Qi TSP H 8 740 4,
3 7'P 80 l.~
19
- 1. 80 54 ADB 84 M 1 HTS HTS 16.
~
4 BLV SCC 01 TSP H IGA 8 740 p
~7 M PLG Q1 TSP H 8 740 21 80 1. BC) 43 97 1 HTB 18. 1 PLG BCC 41 TSP H 8 740 21 8 82 1. 14 80 Bi 1 HTB 17. 8 PLG BCC Cl TSP H 8 740 21 84 4. 49 38 8" M 2 HTB 17. 4 PLG SCC Ol TSP H 8 740 17 84 1. 32 19 47 HTS 18. 3 PLG SCC 41 TBP H 8 740 21 '1 l 85 5 1'P 47 1 HTB 18. ~
PLG SCC 01 TBP H 8 740
'1 86 9. 10 21 li 1"
86 Bb 4.8" 3 37
~
54 75 40 cjl2 24 73 M
M M
2 2
2 HTS HTS HTB 19.
18.
18.
0 PLG 8 PLG
~
PLG SCC Ni TBP H BCC Ql TSP H BCC Cl TBP H 700 700 700 2 87 1. 53 74 ADS M 2 HTS 18. 3 PLG IGA 41 TSP H 700 87 82 40 M 2 HTS 18. 9 PLG SCC Ql TSP H 700 PAGE 25 OF 30
STEAM GENERATOR "B" TUBES RECEIVING CORRECTIVE ACTION FEBRUARY f987 PLANT: GINNA GENERATOR B TOTAL TUBES'260 P ~ PLU66EO 7lSES f987 P5) S ~ CE 27'LEEVE (80)
TOTAL TUBES ASSISHED: 155 P
P P P
P 3 P
P P h
-25 C4 o 8
20 I
V
- ca PP
- 10
~ P P 33$
3 P
I I I I I I I I I I I I I I I I I 8 I R Q 'Q R Q I )3 R R 8 S 8 Q ZHLET SOL'dg) PPfddPQ FdCd COLWHS HAtlfAV
TABLE 6 STEAM GENERATOR TUBE INSPECTION AND CORRECTIVE ACTION HISTORY TOTAL TUBES PRIMARY TO REQUIRING NO. DEFECTS SECONDARY CORRECTIVE TYPE OF REQU )RING NO.TUBES NO. TUBES NO.TUBES DATE NO. TUBES INSPECTED ~LEAKAEE. ACTION DEGRADATION REPAIR >40% PLUGGED SLEEVED PULLEE COMMENT A 8 A 8 A 8 A 8 A 8 A 8 Hot Cold Hot Cold IN FACTORY I APRIL 1972 1050 0 0 0 0 0 MARCH 1974 3259 516 1098 516 19 0 WASTAGE 19 0 19 0 NOV. 1974 1701 430 672 39 2 0 WASTAGE 0 2 0 MARCH 1975 2174 442 1931 442 0.005 A 8/G 46 ll CRACKINO/WASTAGE 11 46 11 JAN. 1976 53 0.091 8 S/0 2 WASTAGE 2 0 2 FEB. 1976 3192 3192 3247 3247 39 2 WASTAGE 2 39 2 APRIL 1976 100 1025 75 0.099 8 S/0 15 CRACK INO IS 0 15 APRIL 1977 2003 268 1525 268 13 I WASTAGE 13 I Q 13 I JULY 1977 300 0.012 8 8/0 IO CRACKINO 5 JAN. 1978 0.060 B 8/0 CRACKINO/WASTAGE 8 APRIL 1978 2049 325 1714 375 15 IO CRACKING 15 FEB. 1979 2049 325 1714 375 CRACKINO/WASTAGE 6 2-IOA DEC. 1979 0.007 8 S/0 13 I I-IOA, 2-WASTAGE 13 13 APRIL 1980 3139 325 3182 375 31 "A" PITTINO/ 13 I 31 "8" IOA NOV. 1980 3138 325 3151 375 IOA 2 0 5 MAY 1981 3138 325 3141 400 15 IOA. WASTAGE 6 7 -- 16 I3)
FEB. 1982 3137 526 3140 526 700 8 8/0 IGA. MECH. OAM 16 19 (4)
SEP. 1982 3138 382 3129 893 I 32 IOA 28 I 33 APRIL 1983 3137 633 3096 832 78 IOA. SCC 23 34 4 74 (5)
MARCH 1984 3137 717 3093 963 10 IGA. SCC I -- 9 MARCH 1985 3135 3135 3087 3087 IOA. SCC. WASTAGE 70 2 4 2 87 (6)
FEB. 1986 3134 623 3083 770 Sff IOA. SCC, WASTAGE 49 27 6 30 (7)
FEB. 1987 3128 2884 34 153 IOA. SCC '17 78 10 73 24 80 18)
TOTALS 171 537 145 368 136 274 36 281 5.2 16 4 4~4 11 3 4~ I 8~4 1 I 8~6 ~ 3
STEAM GENERATOR TUBE INSPECTION AND CORRECTIVE ACTION HISTORY COMMENTS FROM TABLE 6 (1) Pulled R15 C55 and R17 C41 from the hot leg and R17 C40 from the cold leg to determine IGA conditions in the "B" steam generator. R17 C41 and ECT indications at all frequencies, R15 C44 had just 100 kHz Absolute ECT indication and R17 C40 had no ECT indication. Both hot leg tubes had approximately 5096 IGA, R17 C41 had a 60% SCC indication associated with the IGA.
(2) Manually sleeved five (5) tubes with nickel plated - Inconel 600 thermally treated sleeves. Three tubes had IGA indications, two others were preventatively sleeved.
(3) Sleeved 16 tubes with co-extruded sleeves, 13 with defects with 3 preventatively.
Pulled R21 C46 with a 100 kHz ECT indications, R7 C45 and R28 C45 which were clean. All tubes pulled were from the hot leg.
(4) Recovery from the January 25, 1982 Tube Rupture Event included removing 26 tube sections by EDM and ID Cutters along with the one tube pulled from the secondary side.
(5) The four tubes identified with IGA in the "A" steam generator were sleeved with 22" tubesheet sleeves. The 78 tubes identified in the "B" steam generator with IGA and/or SCC in the crevice were repaired as follows:
41 tubes were sleeved with 36" brazed sleeves 9 tubes were sleeved with 28" brazed sleeves 24 tubes were sleeved with 22" tubesheet sleeves 1 tube and 2 sleeves were plugged 1 tube R34 C54 was pulled for metallurgical analysis TABLE 6 (CONST)
PAGE 28 OF 30
STEAM GENERATOR TUBE INSPECTION AND CORRECTIVE ACTION HISTORY COMMENTS FROM TABLE 6 (6) The two tubes identified with IGA in the crevice in the "A" steam generator inlet were sleeved with 20" tubesheet sleeves. One indication >40% TWD in
'the U-bend was permanently plugged. The 70 tubes identified in the "B" steam generator were repaired as follows:
56 tubes were sleeved with 20" tubesheet sleeves 10 tubes were sleeved with 36" brazed sleeves 3 tubes were mechanically plugged (CE removable) 1 tube was explosively plugged 1 tube was sleeved with a 36" brazed sleeve due to the domino effect.
(7) The five tubes identified with crevice indications in the "A" steam generator inlet were sleeved with 27" Combustion Engineering Sleeves (CE). One tube identified with general O.D. indication above the secondary side tubesheet was also sleeved with a CE 27" sleeve. The 57 tubes identified in the "B" steam I
generator were repaired as follows:
27 tubes were sleeved with CE 27" Sleeves 27 tubes were mechanically plugged (CE removable) 3 CE Mechanical Plugs installed in 1985 were removed and sleeved with 27" sleeves The present sleeve installation status is 83 brazed sleeves, 88 tube sheet sleeves, 30 welded CE sleeves in the "B" steam generator with 6 tubesheet sleeves and 6 welded CE sleeves in the "A" steam generator.
TABLE 6 (CON'T), ~
PAGE 29 OF 30
STEAM GENERATOR TUBE INSPECTION AND CORRECTIVE ACTION HISTORY COMMENTS FROM TABLE 6 (8) The 34 tubes identified with crevice indications in the "A" steam generator inlet were repaired as follows:
10 tubes were mechanically plugged (CE Removable) 24 tubes were sleeved with CE 27" welded sleeves The 153 tubes identified with crevice indications in the "B'team generator inlet were repaired as follows:
72 tubes were mechanically plugged (CE Removable) 80 tubes were sleeved with CE 27" welded sleeves 1 CE welded sleeve (installed in 1987) was plugged with a CE welded sleeve plug due to rejection of the upper weld.
Other repairs required in the "B" steam generator are as follows:
2 BRW test brazed sleeves (installed in 1980) were plugged due to the loss of the primary to secondary pressure boundary as detected by Hydro Test.
5 Westinghouse explosive plugs installed prior to 1987 were removed due to leakage and replaced with CE welded plugs.
1 CE Mechanical plug on the cold leg was removed and replaced with a CE Mechanical plug 4 CE welded sleeves (installed in 1987), are considered leak limiters due to the marginal acceptance of the upper welds.
TABLE 6 (CONST)
PAGE 30 OF 30
(4