ML17187A800

From kanterella
Jump to navigation Jump to search
Rev 0 to Dresden Lpci/Core Spray NPSH Analysis Post-DBA Loca:Long Term Design Basis.
ML17187A800
Person / Time
Site: Dresden  Constellation icon.png
Issue date: 02/11/1997
From: Palas H
COMMONWEALTH EDISON CO.
To:
Shared Package
ML17187A798 List:
References
DRE97-0010, DRE97-0010-R00, DRE97-10, DRE97-10-R, NUDOCS 9702240119
Download: ML17187A800 (37)


Text

Calculation Title Page Calculation No.: DRE97-0010 Page 1 of 14

~ Safety Related 0 Regulatory Related D Non-Safety Related Calculation

Title:

' Dresden LPCl/Core Spray NPSH Analysis Post-OBA LOCA: Long-Term Design Basis Station/Unit: Dresden Units 2 and 3 System Abbreviation: LPCl/CS Equipment No.: 2(3}-1502A/B/C/D Project No.:

2(3}-1401A/B Rev: 0 Status: QA Serial# or CHRON # NA Date:

Prepared by: ~u/ // ~ . fl f) I</<. y PACfiS Date: :i./11 /'17 v

Revision Summary:

Electronic Calculation Data Files:

RING.-PLL 3L_50_25.PLU

, 4L502C45. PLU* 2L502C45.PLU 4L252C45:PLU 2L252C45.PLU 3L502C45. PLU 1L502C45,PLU .

Do any assumptions in this calculation require later verification? DYes ~No

_Reviewed by: J_.w. fJ~ Date: 2/11/

I I 97 Review Method: DETAILED REVIEW Comments (C, NC or Cl): NC,,

Approved b~_ ~~Ai!:~sfi4u: .££/£-./ .

Date: ;;..L13 ll.Z ir 970~240119 970217 u) ~

I PDR ADOCK 05000237 * .j

\~::--::**-*p **. . ___ PDR --=-*-- ** . . \

Calculation Revision Page Calculation No.: DRE97-0010 Page 2 of 14 Rev: Status: QA Serial # or CHRON # NA Date; Prepared by: Date:

Revision Summary:

Electronic Calculation Data Files Revised:

Do any assumptions in this calculation require later verification? .oves DNo Reviewed by: Date:

Review Method: Comments (C, NC or Cl):

Approved by: Date:

Table of Contents Calculation No.: DRE97-0010 Rev. 0 Page 3 of 14 Description Page No. Sub-Page No.

Title Page 1.

Revision Summary 2 Table of Co.ntents* 3 Purpose/Objective *4 Methodology and Acceptance Criteria 4 Assumptions 5 Design Inputs 6 References

  • 7 Calculations 8
  • Summary and Conclusions *a Tables 9 Figures 11 Attachment A: LPCl/Core Spray Suction Friction Losses A1

. FLO-SERIES Model'c23 pages) .

  • ICALCULATION NO.

1.0 PURPOSE DRE97-0010 REV. 0 PAGE The purpose of this calculation is to determine if sufficient Net Positive Sl,lction Head (NPSH) is 4

available to the Dresden LPCI and Core Spray (CS) pumps following_ a DBA-LOCA. This calculation examines NPSH conditions under long-term (> 600 seconds) conditions following the accident. *The results of this calculation will be used to support a Dresden License Amendment request. Upon approval ohhis request, this calculation will represent a Design ~asis Document.

2.0 METHODOLOGY AND ACCEPTANCE CRITERIA The minimum suppression pool pressure required to meet LPCI/CS pump NP.SH requirements will be determined ~nder long-term post-LOCA conditions: The minimum pool pressure r~quired will then be compared to the suppression pool pressure available post-LOCA (Ref 1). If the pr.essure available is greater than the pressure required, then adequate NPSH exists and pump protection is ensured. If the available pressure is less than the pressure requited, then the potential exists for the pumps to cavitate. In these situations, LPCI pump flows will be reduced to below-nominal values and new cases will. be run to establish the ability of the operator to throttle the pumps to an

  • acceptable condition.

, r This acceptable condition is defined by the following criieria:

1) Adequate NPSH to the pumps - minimum suppression pool pressure available is greater than minimum pressure required for the LPCI and .CS pumps.

' ,i

  • 2) Adequate containment cooling - the minimum containment cooling flow analy:zed is SOOO gpm total LPCI flow through a single LPCI heat exchanger.

I '.. .~

Various LPCl/CS pump combinations will be explored to determine the bounding NPSH case for the LPCI and Core Spray pumps. It will be show11 that the 4 LPCI/2 CS pµmp combination is the bounding NPSH case. This calculation is bounding for. NPSH due to use of the following conservative inputs:

  • Maximum suppression pool temperature response - Reference 1 d.etermines *
  • maximum. suppression pool temperatures post-LOCA, thus maximizing the vapor pressure and minimizing NPSH margin.
  • Minimum suppression pool, pressure response - Reference I utilizes inputs that minimize suppression pool pressures post-LOCA, thus minimizing overpressure credit and minimizing NPSH margin.
  • Technical Specifications minimum suppression pool level including drawdown, minimizing elevation head and minimizing NPSH margin
  • increased clean. commercial steel suction piping friction losses by 15% to account for potential aging effects. thus maximizing suction losses
  • ICALCULATION NO.

3.0 ASSUMPTIONS DRE97-0010 REV. 0 PAGE 5

l. It is assumed that at 10 minutes into the accident, operator action will be taken to ensure that the LPCI and CS pumps have been throttled to their rated flows of 5000 and 4500 gpm respectively. This condition will be referred to as the "noininal flow" condition.
2. LPCVCS pump suction piping friction losses (excluding strainer losses) were developed for a single flow case using a FLO-SERIES model of the Dresden ECCS ring header and pump suction piping (Ref 4). This model was then run at the various Ll'CVCS pump combinations and flows as required* to support the cases evaluated in this calculation (Attachment A). The model that .was developed uses clean, commercial steel pipe. In order to compensate for the increased loss du~ to the potential effects of aging, the resulting friction losses from the model were increased by*J.5%. This is consistent with discussions provided in References 14 and 15.
3. To account for strainer plugging, on~ of the four torus strainers is assumed 100% blocked,.

while the remaining three strainers are assumed clean. While the torus strainers

  • are not included in. the FLO-SERIES* model discussed .in Assumption 2, blocking a strainer translates to blocking *a torus-to-nng header entrance leg. This is accomplished in the model by closing one of the torus legs (Torus 1-4). Based on preyious sensitivity analyses, Torus-4 was chosen for maxim.um effect on both LPCI and Core Spray suction losses for all pump combinations.
4. The calculations in Reference l have been performed to minimize the extent of overpressure

. that would exist post-LOCA, and support the conclusion that overpressure would be available and can be employed to demonstrate adequate* LPCVCS NPSH performance. These calculations are more appropriate with respect to the prediction of minimum containment pressure than are the original design basis calculations. While different decay heat standards and heat exchanger perf9rmance predictions are applied in these calculations, the peak containment temperatures being predicted *are consistent with the original design basis temperature predictions. The pressure response is not a function of decay heat models, but is primarily only affected by the pool temperature and heat exchanger performance. The new calculations incorporate analysis ass~mptions to minimize overpressure that are consistent with NRC Information Notice 96-55. The. use of the Reference 1 data is thus conservative with .

respect to overpressure and minimizes NPSH margin.

5. NPSH Required (NI>SHR) curves are provided for the LPCI and Core Spray pump on the respec.tive vendor* pump curves (Refs. 12, 13). The NPSHR curves are provided from 3000 gpm to 6000 gpm pump flow. It is assumed that the NPSHR at 2500 gpm is the same as the NPSHR given at 3000 gpm. While it is recognized that the NPSHR may rise slightly at lower flows, 2500 gpm represents a mid-rang~ flow point for this pump and the NPSHR is expected to remain constant in this flow region.

ICALCULATION NO. DRE97-0010 REV. 0 PAGE 6 4.0 DESIGN INPUTS

1. Initial suppression pool temperature is 95°F (Ref 3). This is .the maximum allowable
  • suppression pool temperature under normal operating conditions. This value is used as the initial pool temperature in Reference 1 to maximize suppression pool peak temperature, and is used as a minimum temperature during the LOCA in Reference 4 to maximize piping friction losses (maximum viscosity).
2. Numerous long-term suppression pool temperature and pressure responses were generated in Reference 1 based on a containment model developed by GE. The intent of these cases was to determine the maximum pool* temperatures expected* post-LOCA, and to vary the inputs in ,

such a way as to produce a coupled minimum pool pressure response. In this manner, the temperature-pressure combination that is bounding for NPSH was determined to be Case 2Al-

. 20% mixing. A tabular representation of the suppression pool temperature/pressure responses for this case is provided in Reference 2 and is summarized in Tables I and 2 of this calculation.

3. LPCI and CS pump suction piping friction losses (excluding strainer losses) from the torus strainers to the pumps were developed in Reference 4 using a FLO-SERIES model of the ECCS ring header and* s.uction piping. This piping model was then utilized for the various LPCl/CS pump combinations and flows as required to support the cases evaluated in this ca!Culation (Attachme~t A) .
  • 4. The minimum torus level elevation with a maximum drawdown of 2.1 ft. is 491 '5", or 491.4 ft.
  • (Ref 5). At the. time of peak suppression pool temperature, a recovery of I. I ft. occurs, resulting in a net drawdown of 1 ft (Ref. 6). This ~epresents a.torus level elevation of 492.5'.
5. The torus strainers have a head loss of S.8 ft.@ 10,000 gpm clean (Ref. 7).
6. LPCI and Core Spray pump centerline elevation is 478.1 ft. (Refs. 8, 9).
7. NPSH Available (NPSHA) is calculated using the following equation:

NPSHA = 144 V (Pi - Pv) + Z - hL - h,train (based on Ref. 10, p. 2.216) where: Pi - suppression pool pressure in psia Pv = saturation pressure in psia V = specific volume in ft 3/lb h1. = suction friction losses in feet h,1rain = head loss across strainer In feet Z . = static. head of water above pump inlet in.feet I

8. Saturation pressures and specific volumes at various temperatures are taken from Reference I I and are included in Tables 1 and 2.
9. LPCI pump NPSHR.is 30 ft. at 5000 gpm. 25 ft. at 2500 gpm (Ref. 12, Assumption 5):
10. Core Spray pump NPSHR is.27 ft. at 4500 gpm (Ref. 13).

ICALCULATION NO. DRE97-0010 REV. 0 PAGE 7

5.0 REFERENCES

1. "Dresden Units 2 and 3 Containment Analyses of the DBA-LOCA Based on Long-Term LPCI/Containment Cooling System Configuration of One LPCI/Containment Cooling System Pump and 2 CCSW Pumps", GE report GE-NE-T2300740-2, December 1996
2. "Transmittal of Digitized Suppression Pool Temperature and Suppression Chamber Pressure Time Histories, GE letter from S. Mintz to J. Nash dated January 28, 1997
3. Dresden Unit 2 Technical Specifications, DPR-19, Section 3.7_.A. l.c. L
4. "ECCS Suction Hydraulic Analysis without the Strainers", Duke Engineering & Services Calculation Number DRE96-024 l dated December 20, 1996
5. "Submergence of LPCI Discharge Line Post LOCA - Dresden Units 2 & 3", letter from S.

Eldridge to C. Schroeder"da~ed September 29, 1992, CHRON# 0115532

6. "Dresden LPCI/Containment Cooling System," GE Nuclear Energy letter from S. Mintz to:T.
  • L. Chapman dated January 25, 1993 *
7. "Supporting <;:alculation.s for the ECCS Suction Strainer Modification", Nutech File* No.

64.313.3119 Rev. 1., dated June 22, 1983

8. Sargent & Lundy Drawing M-54~, LPCI pump suction
9. Sargent & Lundy Drawing M-549, Core Spray pump suction IO. "Pump Handoook",.. 2nd Edition, ?Karassik, Igor et al., i 986
11. ASME Steam Tables, 1967
12. Bingham Pump Curve N_os. 25355-}, 27367.;.8, 27383, 25384-5 for Model 12xl4xl4.5 CVDS, Dresden Station LPCI pumps *
13. Bingham Pump Curve Nos. 25213 (2A), 25243 (2B), 25231 (3A) and 25242 (3B) for Model l 2x l 6x 14. 5 CVDS, Dresden Station Core Spray pumps.
14. Hydraulic Institute Engineering Data Book, Second Edition, 1990
15. Cameron Hydraulic Data, 17th Edition, Ingersoll-Rand Company, 1988
  • ICALCULATION NO.

6.0 CALCULATIONS DRE97-0010 REV. O The equation presented in Design Input 7 can be rewritten to solve for the minimum suppression PAGE 8 pool pressure required to meet pump NPSH requirements by setting the NPSHA equal to the NPSHR as follows:

Pt.., min = z CNPSHR- + h1ou1} + Pv ( l) 144 v where htobl = friction (hL) + strainer (hstrain) loss (Attachment A) hstrain = 5:8 ft.@ 10,000 gpm clean (Design Input 5) z = 492.5 ft. - 478. l ft. = 14.4 ft. (Design_ Inputs 4, 6)

NPSHR = 30 ft.@ 5000 gpm for LPCI (Design Input 9) 27 .ft. @ 4500 gpm for CS (Design Input l 0)

Solving Equ.ation l, the minimum suppression pool pressure required to meet LPCI and CS pump NPSH requirements under a spectrum of pump combinations is calculated and the, results presented in Tables l and 2. These results are plotted in Figures l and 2 along with the*available suppressi~n pool pressure (Ref 2). All the combinations evaluated involve* 2 CS p~mps. Thes~

cases bound the respective single CS pump scenarios due to the higher ring header/strainer losses of the 2-pump cases and no pool temperature benefit (c~oling) from the added Core Spray pump.

It can be seen that adequate NPSH is available to meet cs* pump requireme11ts post-LOCA for all pµmp combinations (Figure -2). However, the potential exists for the LPCI pumps to cavitate in the 4/2 and 3/2 pump nominal flow scenarios (Figure l ). For these latter cases, throttling of the LPCI pumps may be required. to ensure NPSH requirements are met. Addition.al cases are provided to establish. the ability of the operator to throttle the LPCI pumps to an acceptable condition as defined in Section *2.0 (Table 2). *These results, plotted in Figures 3 (LPCI) and 4 (CS), indicate that for all pump combinations, the LPCI pumps can be throttled to ensure pump.

protection and adequate containment . . cooling.

7.0

SUMMARY

AND CONCLUSIONS An NPSH analysis was performed for the LPCI/CS pumps under long-term post-LOCA conditions as outlined in Reference l. Selecting inputs to* minimize NPSH margin, it was determined that adequate NPSH exists to meet CS pump requirements for all pump combinations.

However, the potential exists for the LPCI pumps to cavitate in the 4/2 and 3/2 pump scenarios.

For these cases. throttling of the LPCI pumps may be required to ensure NPSH requirements are met. Specific cases involving throttled LPCI pumps were evaluated to establish the ability of the operator to throttle the pumps to an acceptable condition. Under all post-LOCA pump combinations, positive NPSH margin could be obtained by throttling. the available LPCI pumps.

ICALCULATION NO. DRE97-0010 REV. O PAGE 9 CASE 2A 1 - 20% MIXING 4/2 - Nominal Pump Flows 4/2 .: Throttled Pump Flows 5000 gpm/LPCI - 4500 gpm/CS 2500 gpm/LPCI - 4500 gpm/CS Time Pool Pool Specific Pv Static LPCI LPCI LPCI LPCI cs cs ..' cs cs LPCI LPCI LPCI LPCI cs cs cs CS NPSH (sec) Press Temp Volume (psia) Hea~ NPSHR Total Preqd* NPSH NPSHR Total Preqd NPSH NPSHR Total Preqd NPSH NPSHR Total Preqd Margin (psig) (F) (ft3/lbi (feet) *(feet). Loss * (psig) Margin (feet) Loss (psig) Margin (feet) Loss (psig) Margin (feet) Loss (psig) (feet)

.. (feet) (feet) (feet) (feet) (feet) . (feet) (feet) 699 4.03 149.9 0.016342 3709 14.4 30. 16.09 2.48 3.7 27 13.33 0.03 9.4 25 5.71 -4.06 19.0 27 7.69 -2.37 15.1 991 2.48 152.4 0.016355. 3.945 14.4 30 16.09 2.70 .0.5 27 13.33 0.26 5.2 25 5.71 -3.83 14.9 27 7.69 ~2.14 10.9 1858 2.70 156.5 0.016376 4.359 14.4 30 16.09 3.10 .0.9 27 13.33 0.65 4.!I 25 5.71 -3.42 14.4 27 7.69 -1.74 10.5 3056 2.47 160.5 0.016398 4.798 14.4 30 16.09 3.52 -2.5 27 13.33 1.08 3.3 25 5.71 -2.99 12.9 27 7.69 -1.31 8.9 4010 2.34 162.9 0.016411 5.079 14.4 30 16.09 3.79 -3.4 27 13.33 us 2.3 25 5.71 -2.72 12.0 27 7.69 -1.04 8.0 5026 2.43 164.6 0.016421 5.286 14.4 30 16.09 3.99 -3.7 27 13.33 1.55 2.1 25 5.71 -2.52 11.7 27 7.69 -0.83. 1.7 9989 2.78 169.8 0.016450 5.965 14.4 30 16.09 4.64 -4'.4 27 13.33 2.21 1.3 25 5.71 -1.85 11.0 27 7.69 -0.17 7.0 11994 2.85 171.0 0.016457 6.132 14.4 30 16.09 4.80 -4.6 27 13.33 2._37, 1.1 25 5.71 -1.69 10.7 27 7.69 -0.01 6.8 15020 2.95 171.9 0.016462 6.259 14.4 30 16.09 4.93 -4.7 27 13.33 2.50 1.1 25 5.71 -1.56 10.7 27 7.69 0.12 6.7 18813 2.94 1721 0.016463 6.288 14.4 30 16.09 '4.96 -4.8 27 13.33 2.53 1.0 25 5.71 -1.53 10.6 27 7.69 0.15 6.6 25129 2.89 171.2 0.016458 6.160 14.4 30 . *16.09 4.~3 -4.6 27 13.33 2.40 1.2 25 . 5.71 -1.66 10.8 27 7.69 0.02 6.8 28174 2.85 170.5 0.016454 6.062 14.4 30 16.09 4.74 -4.5 27 13.33 2.31 1.3 25 5.71 -1.75 10.9 27 7.69 -0.07 6.9 3/2 - Nominal Pump Flows 3/2 - Throttled Pump Flows 5000* gpm/LPCI - 4500 gpm/CS 2500 gpm/LPCI (5000 gpm for single LPCI)

Time Pool Pool *.Specific Pv Static LPCI LPCI LPCI LPCI cs cs cs cs LPCI LPCI LPCI LPCI cs cs cs CS NPSH (sec) Press Temp Volume (psia) Head NPSHR Total . Preqd NPSH NPSHR Total Preqd NPSH NPSHR Total Preqd NPSH NPSHR Total Preqd Margin (psig) (F) (ft3/lb) (feet) (feet) Loss (psig) Margin (feet) Loss (psig) Margin (feet) Loss (psig) Margin (feet) Loss (psig) (feet)

(feet) (feet) (feet) (feet) (feet) (feet) (feet) 699 403 149.9 0.016342 3.709 14.4 30 13.02 1.17 6.7 27 10.14 -1.33 12.6 30 9.29 -0.41 10.5 27 7.69 -2.37 15.1 991 2.48 152.4 0.016355 3.945 14.4 30 13.02 1.40 2.5 ' 27 10.14 -1.10 8.4 30 9.29 -0.19 6.3 27 7.69 -2.14 10.9 1858 2.70 156.5 0.016376 4.359 14.4 30 13.02 1.80 2.1 *27 . 10.14 -0.70 8.0 30 9.29 0.21 5.9 27 7.69 -1.74 10.5 3056 2.47 160.5 0.016398 4.798 14.4 30 13.02 2.22 0.6 27 10.14 -0.27 6.5 30 9.29 0.64 4.3 27 7.69 -1.31 8.9 4010 2.34 162.9 0:016411 5.079 14.4 30 13.02 2.49 .0.4 27 10.14 0.00 5.5 30 9.29 0.91 3.4 27 7.69 -1.04 8.0 5026 2.43 164.6 0.016421 5.286 14.4 30 13.02 *2.69 .0.6 27 10.14 0.20 5.3 30 9.29 1.11 3.1 27 7.69 -0.83 7.7 9989 2.78 169.8. 0.016450 5.965 14.4 . 30 13.02 3.35 -1.3 27 10.14 0.86 . 4.5 30 9.29 1.77 2.4 27 7.69 -0.17 7.0 11994 2.85 171.0 0.016457 6.132 14.4 30 13.02 3.51 -1.6 27 10.14 1.03 4.3 30 9.29 1.93 2.2 27 7.69 -0.01 6.8 15020 2.95 171.9 0.016462 6.259 14.4 30 13.02 3.63 -1.6 27 10.14 1.15 4.3 30 9.29 2.06 2.1 27 7.69 0.12 6.7 18813 2.94 172.1 0.016463 6.288 14.4 30 13.02 3.66 -1.7 *27 10.14 1.18 4.2 30 9.29 2.09 2.0 27 7.69 0.15 6.6 25129 2.89 171.2 0.016458 6.160 14.4 30 13.02 3.54 -1.5 27 10.14 1.06 4.3 30 9.29 1.96 2.2 27 . 7.69 0.02 6.8 28174 2.85 170.5 0.016454 6.062 14.4 30. 13.02 3.44 -1.4 27 10.14 0.96 4.5 30 9.29 1.87 2.3 27 7.69 -0.07 6.9 TABLE 1

!CALCULATION NO. - DRE97-0010 REV. 0 PAGE 10 CASE 2A 1 - 20% MIXING 2/2. - Nominal Pump Flows 2/2 - Throttled* Pump Flows

' 5000 gpm/LPCI - 4500 gpm/CS 2500 gpm/LPCI - _4500 gpm/CS Time Pool Pool Specific Pv Static LPCI LPCI LPCI LPCI cs cs cs cs LPCI LPCI LPCI LPCI cs cs cs cs*

(sec) Press Temp* Volume (psia) Head NPSHR Total Preqd NPSH NPSHR Total Preqd NPSH NPSHR Total Preqd NPSH NPSHR Total Preqd NPSH (psig) (F) (ft3/lb) (feet) (feet) Loss (psig) Margin (feet) Loss (psig) Margin (feet) Loss (psig) Margin (feet) Loss (psig) Margin (feet) (feet) (feet) (feet) (feet) (feet) (feet) (feet) 699 4 03 149.9 0.016342 3.709 14.4 30 .10.64 0.16 . 9.1 27 7.55 .-2.43 15.2 25 3.85 -4.85 20.9 27 5.72 -3.21 17.0 991 2.48 152.4 0.016355 3.945 14.4 30 10.64 0.39 4.9 *21 7.55 -2.20 11.0 25 3.85 -4.62 16.7 27 5.72 -2.98 12.9 1858 270 156.5 0.016376 4.359 14.4 30 10.64 0.79 4.5 27 7.55 -1.80 10.6 25 3.85 -4.22 16.3 27 5.72 -2.57 12.4 3056 2 47 160.5 0.016398 4.798 14.4 30 10.64 1.21 3.0 27 7.55 -1.37 9.1 25 3.85 -3.78 14.8 27 5.72 -2.15 10.9 4010 2 34 162.9 0.016411 5.079 14.4 30 10.64 1.48 2.0 . 27 7.55 -1.09 8.1 25 3.85 -3.51 13.8 27 5.72 -1.87 10.0 5026 2.43 '164.6 0.016421 5.286 14.4 30 10.64 1.68 1.8 27 7.55 -0.89 7.9 25 3.85 -3.30 13.6 27 5.72 -1.67 9.7 9989 2.78 169.8 0.016450* 5.965 14.4 30 10.64 2.34 1.0 27 7.55 -0.23 7.1 25; 3.85 -2.64 12.8 27 5.72 -1.00 9.0 11994 2 85 171.0 0.016457 6.132 14.4 30 10.64 2.50 0.8 27 7.55 -0.07 6.9 25 3.85 -2.47 12.6 27 5.72 -0.84 8.7 15020 2.95 171.9 0.016462 6.259 14.4 30 10.64 2.63 0.8 27 7.55 0.06 6.9 25 3.85 -2.35 12.6 27 5.72 -0.71 8.7 18813 2.94 172.1 0.016463 6.288 14.4 30 10.64 2.66 0.7 27 7.55 0.09 6.8 25 3.85 -2.32 12.5 27 5.72 -0.69 8.6 25129 2.89 171.2 0 016458 6.160 14.4 30 10.64 2.53 0.8 27 7.55 -0.04 6.9 25 -3.85 -2.45 12.6 27 5.72 -0.81 8.8 28174 2.85 170.5 0.016454 6.062 14.4 30 10.64 2.44 1.0 27 7.55 -0.13 7.1 25 3.85 -2.54. 12.8 27 5.72 -0.91 8.9 112 - Nominal Pump Flows 1/2 - Throttled Pump Flows 5000 gpm/LPCI - 4500 gpm/CS Time Pool Pool Specific Pv Static LPCI LPCI LPCI LPCI cs cs cs cs For the single LPCI pump case, LPCI flow cannot be (sec) Press Temp Volume (psia) Head NPSHR Total Pre~d NPSH NPSHR Total Preqd NPSH throttled below 5000 gpm. Therefore, the nominal and (psig) (F) (ft3/lb) (feel) (feel) Loss (psig) Margin (feet) Loss (psig) Margin throttled pump cases for the 1/2 scenario are identical (feel) (feet) (feet) (feet) 699 4.03 149.9 0.016342 3.709 14.4 30 7.43 -1.20 12.3* 27 5]2 -3.21 17.0 991 2.48 152.4 0.016355 3.945 14.4 30 7.43 -0.98 8.1 27 5.72 -2.98 12.8 1858 2.70 156.5 0.016376 4.359 14.4 30 7.43 -0.57 7,7* 27 5.72 -2.57 12.4 3056 2.47 160.5 0.016398 4.798 14.4 30 7.43 -0.15 6.2 27 5.72 -2.14 10.9 4010 2.34 162.9 0.016411 5.079 14.4 30 7.43 . 0.12 5.2 27 5.72 -1.87 9.9 5026 2.43 164.6 0.016421 5.286 14.4 30 7.43 0.33 5.0 27 5.72 -1.67 9.7 9989 2.78 169.8 0.016450* 5.965 14.4 30 7.43 0.99 4:2 27 5.72 -1:00 9.0 11994 2.85 171.0 0.016457 6.132 14.4 30 7.43 1.15 4.0 27 5.72 -0.84 8.7 15020 2.95 171.9 0.016462 6.259 14.4 30 7.43 1.27 4.0 27 5.72 -0.71 8.7 18813 2.94 172.1 0.016463 6.288 14.4 30 7.43 1.30 3.9 27 5.72 -0.68 8.6 -

25129 2.89 171.2 0.016458 6.160 14.4 30 7.43 . 1.18 4.1 27 5.72 -0.81 8.8 .,

28174 2.85 170.5 0.016454 6.062 14.4 30 7.43 1.08 4.2 27 5.72 -0.91 8.9 TABLE 2

IC..\LCULATION NO. DRE97-0010 REV. 0 PAGE. 11 Long Term Post-LOCA LPCI P*ump Pressure Requirements - Nominal Flows 5.00

-Pressure Available

-4LPCl-2CS 4.00 - - *

-+-- 3 LPCI - 2 CS

-.--2 LPCI -2 CS

_.,__, LPCI -2 CS

~ 3.00 -*---*---*** . **-- --- - - ---*-'------'----'--

Ill

~

QI

s
2.00 QI Cl.

c QI

~ 100

!c 0

(.)

000

-1.00 Time (sec)

  • FIGURE l

I~c_.A_l_~C_L_JL_A_T_1o~N_N_o_._o_R_E_9_7_-o_o_1o~~~~~~~~~R"'--Ev_.~o~~~~~~~~~~-P-A_G_E~*-2~~__JI .

Long Tenn Post-LOCA CS Pump Pressure Requirements - Nominal Flows

___ .. i __ I _

4.00 .. -* *----- ***-----* *- I-  !---*--*----- - * - -- *- - --*- **----*---* -*-*-**-*- -- - -------** ----** *-- --** ----- '--

-Pressure Available 3.00 - - ..

-4LPCl-2CS .........

-- ,,.. ~

J.J .....--

~

~ir "'"'

1-

--+- 3 LPCI - 2 CS

_\, ---

~v

~

2.00 - ***-

- . - 2 LPCI - 2 CS -- - t.,...-

.9' I/)

--e-1 LPCI - 2 CS

~ ....... ....

~

Cl> 1.00 --***---.

~  !.-' r

  • ~ ~

~~

J I/) v """ ..

.. v t.,...-

I/)

Cl>

1r-: :....-

,__ *~ . ...

~

c Cl>

0.00 .. -***------*** - -

  • v v """'

~

E c

-~ ...v t.,...- !-' """.. - -- --~

~ -1.00 ...... *-*--**---* - - - --- --  :,....l-'llr'" ... vr L.-" !-'

i.,..-....

~

  • . --*~i L-0 . ~~

u

' ~

~"'I ~0-tt

-2.00 .. .. --- -*- --** ----

-3 ..00 --** .... ----- --**--

..... -- I

-4 00 11 I 100 1000 10000 100000

  • Time (sec)
  • FIGURE 2

!CALCULATION NO. DRE97-0010

  • REV .. O PAGE 13 Long Term Post-LOCA LPCI Pump Pressure Requirements - Throttled Flows 4.00 ---- **- ---*--- ----

3.00 ... --*----------- .

-* ......... - .-. ~ ....

~

-Pressure Available

\-/- "r - .....

2.00 ----- -4LPCl-2CS

,..Ar--

~

~

-+-3 LPCI -2 CS

,,,.. ~ 1--"

~

Ill

.E: 1.00

__._. 2 LPCI - 2 CS

..... Ir""'

,,,..i.-- 1--".

~

~

GI

~~

i Ill

_.J Ill 0.00 ----**

GI

~ ......

-e Cl.

c

' o*- ~

-1.00 o- ..-

c sc u0 -2 .00 *-----*

u ~-

L_...I ~

IA

~-

-3.00

~

Ir'

....... -- ~

~

-4.00

~ ~ ~ __,,,... ~

~~,--* .

I ~

r"'- I

-5.00 '

100 1000 10000 100000 Time (sec)

FIGURE 3

IC..\LCULATION NO. DRE97-0010 REV. 0- PAGE 14 (FINAL)

Long Tenn Post-LOCA CS Pump Pressure Requirements - Throttled Flows 4.00

-~ ___ _J_**

i

-Pressure Available rr**

- -----*--'-----'---'--l---+-l---l--+-1---*-- - - - * - - - - - -

3 *00 **- ~4~Cl-2CS --Jl~~il-~~-~-~~~-~-~~~~-~~,~~~~~~~~~~-~-~~~~~~

-0:-3 LPCI - 2 CS \ /l'f' --.................... -~

-&-2 LPCI - 2 CS 1 2.00 *- -. - ~ 1 LPCI - 2 CS .* --1------1--~---1----+---i--+-1--4-l--

!2i Ill Q.

~ 1.00 ...... *---- *******-*. ----- ***-* *--- ---* ---- ~- - -*- --- -* -- ------*-*---- ~*-------- *--- --*

I Ill Ill QI

~ 0.00 -*--*--*--'-*** -----~-+--+-W-l-+~-__jf--.:...+--+-+--HW-J~a-d~~a.J---i-t-+-W - -

c i..--i---l.J.....- -

QI E

c ~1-'l...- ~ -*

c -1.00 0 v*

. -*-* ****-**** -*-**-* -------- - --- ---- -- ---t---l-+-f-----+----+--Jll"'"'-+-t-+-1--baf!=C-.c__._ _

~~ .. - ~~.___,__.__..__"--'--'-'

(.) */, vl...-

l~--L~__......aj=----~ ~1--1--1-.

-2.00 .. ***-*---*- -*-**--* ----* ... -**----+-*--+--l.--+- .....!--

1 -l-+--l----+---l--+-l---1--1--1-+--I

-3.00 .---------------ll~l ----**-+-- ~--~ ---- * ----~1---* *---*-*'---*-*--'----*

-4.00 1*1 L -_ _ _,:___....;___.;__....;.__;.........;__~.....;.----_;.....-__:._

I _.:___._~__._--L.......L-+--.,.----J--...1---J-..i--...l-.J.......1~

100 1000 10000 100000 Time (sec)

.FIGURE 4

  • ICALCULATION NO. DRE97-0010 ATTACHMENT A REV. 0 PAGE Al LPCl/Core Spray Suction Friction Losses FLO-SERIES Model Dresden LPCI/Core Spray pump suction friction losses were developed using a FLO-SERIES model of the Dresden ECCS ring header and pump suction piping (Ref 4). The nodal diagram of the piping model is included as Figure Al. This model was run at the various LPCI and Core Spray pump combinations and flows listed below as required to support the cases evaluated in this calculation. The FLO-SERIES runs are included in this Attachment.
  • LPCI Total cs Total LPCI/CS Strainer LPCI Loss LPCI cs Loss cs Flow per Loss# . Friction +15% Loss* Friction +15% Loss* FLO-SERIES .

LPCI cs Pump hstnaiD Loss hL h1otal Loss hL h101al. Linc-up Pumps' Pumps (gom) . (fl) (fl) (ft) (ft) (ft) (ft) (ft) Filename 4 . 2 500014500 5.42 9.28. 10.67 16.09 6.87 7.91 13:33 4L502C45.PLU 4 2 2500/4500 2.33 2.95 3.39 5.71 . 4.67 5.37 7.69 4L252C45.PLU 3 2 500()/4500 3.71 8.09 9.30 13.02 5.59 6.43 10.14 3L502C45.PLU 3 2 var./4500 2.33 6.06 6.96 9.29 4.67 5.37 7.69 3L_50_25.PLU 2 2 5000i4500 2.33 7.23 8.32 10.64 4.55 5.23 7.55 2L502C45.PLU 2 2 2500/4500 l.26 2.i5 2.59 3.85 3.88 . 4.46 5.72 2Li52C45. PLU I 2 Strnml'r Los*=

5000/4500 l.26 (l<low per s'rnlner/10,000 2pm) 1 5.36 5.8 ft.

6.16 7.43* 3.88 4.46 5.72 1L502C45.PLU

  • Total Loss= (Loss+l5%) + Strninl'r Loss Table A. . J

ICALCULATION NO. DRE97-0010 REV. 0 PAGEA2 u~~~~~~~--

C::CRE SPRAY SUCTION 38 RINGHEM&

TO tf'O SUCTION JCJO p l TO lPCI SUCTION lA R a . TO CORE SPRAY SUCTION JA N

.. s

. IJ'CI SUCTION 18 Figure Al: ECCS SuctioQ Nodal Diagram including the Ring He.:ider

t'ornpany: ~~@" ~v .. v v Project: 02/07/97 by: palas LINEUP REPORT rev: 02/07 /97

  • LINELIST: .RING dated: 01/08/97 4 LPCI @5000 and 2 CS @4500 Injecting. Nearest torus leg blocked.

Volumetric flow rates require constant fluid properties in all pipelines.

DEVIATION: 0.0157 ~

Fluid properties in the first specification were used .

after: 5 iterations

.NODE DEMAND NODE DEMAND gprn gprn N >>> 4500 0 >>> 0.0001 p >>> 10000 R >>> 5000 s >>> 5000 u >>> 4500 FLOWS IN: 0 gpm FLOWS OUT: 29000 gpm NET FLOWS OUT: 29000 gpm PIPELINE FLOW PRESSURE SET gpm ,

SOURCE psig Torus-1 <<< 9433 <<< A 0 Torus-2 <<< 9552 <<< B 0 Torus-3 <<< 100.15 <<< c 0 FLOWS IN: 29000' gpm FLOWS OUT: 0 gpm NET FLOWS IN: 29000 gpm Calculation No. DRE97 -001 o Revision o Page A 3

  • ? : ? :: - :* : ...: ~* (~ '.' .; . l. l

"11...,~'{.."f~

02/07/97 NODE ELEVATION DEMAND PRESSURE H GRADE ft gprn psi g ft

  • A B

c E

0 0

0 0

p p

p 0

0 0

-1.403 0

0 0

-3.258 F 0 * -1.439 -3.341 G 0 * -1. 582 -3.672 H *O * -1.669 -3.874 I 0 * -1. 444 -3.351*

J 0 * -1.596 -3.705 K 0 * -1.591 -3.693 L 0 * -1.684 -3.909 M o. * -1. 662 -3.858 N 0 > 4500 * '-1. 694 -3.933 0 0 > 0.0001 * -1.591 -3.693 p 0 > 10000 * -1. 948 -4.523 Q 0 * -2.208 -5.125 R 0 > 5000 * -2. 75 -6.384 s

0 >. 5000 * -3.996 -9.276 T 0 * -1. 918  :..4. 451

u. 0  :> 4500 * -2.961 *-6. 87.,4 Calculation No. DRE97-0010 Revision 0 Page A '1

02/07/97 PIPELINE FROM TO FLOW VEL dP Hl gpm; ft/sec psi g ft S-3A I N 4500 6.~74 0.251 0.582 T u 4500 7.911 1. 044 2.423 CS3B-18 M T 4500 6.274 0.255 0.593 HPCI K 0 0 0 0 0 LPCI3A Q R 5000 11. 64 0.543 1. 259 LPCI3A/B . J Q 10000 7.563 0.612 1. 42 LPCI3B Q s. '.5000 . 11. 64 1.789 4.152 LPCI3C/D L p 10000 7.563 0.264 0.614 Ring-1 E I 2609 1. 973 0.040 0.093 Ring-2 F I 1891 1. 43 0.004 0.010 Ring-3 F J 7661 5.794 0.157 0.365 Ring-4 K J 2339 1. 769 0.005 0.012 Ring-5 G K. 2339 1. 769 0.009 0.021 Ririg-6 G L .7676 5.805 0.102. 0. 23*7 Ring-7 H L 2324 1. 758 0.015 0~035 Ring-8 M <-> H ,2324 L 758 *O. 007 0 .. 015 Ring-9 E M 6824 , ~. 161 0.259 0,601 To.rus-1 A E 9433 11. 42 1. 403 "3.258 Torus-2 B F 9552 11. 57 1. 439 3.341 Torus-3 c G . 10015 12.12 1. 582 3.672 Torus-4 D H closed 0 0 0 Calculation No. DRE97-001 o Revision 0 Page A 5

  • :~ <l

Company: corned 'h;t. ....~"<..'llf.:t Project: 02/07/97 by: palas LINEUP REPORT rev: 12/21/96 LINELIST: RING DEVIATION: 0.0111 %

dated: 12/18/96 after: 6 iterations 4 LPCI @2500 and 2 cs @4~00 Injecting~ Nearest torus leg blocked.

Volumetric flow rates require constant fluid properties in all pipelines.

Fluid properties in the first specification were used.

NODE DEMAND NODE DEMAND gpm gpm N >>> 4500 0 >>> 0.0001 p >>> 5000 R >>> 2500 s >>> 2500 u >>> 4500 FLOWS IN: 0 gpm FLOWS OUT: 19000 gpm NET FLOws-oUT: 1900Q gpm PIPELINE FLOW_ PRESSURE SET gpm SOURCE psig Torus-1 <<< 6218 <<< A 0 Torus.;.2 <<< 6392 <<< B 0 Torus-3 <<< 6480 <<< c Q FLOWS IN: 19000 gpm FLOWS OUT: 0 gpm N:ET FLOWS. IN: 19000 gpm Calculation.No. DRE97-00-1 o Revision 0 Page A 6

... ::-::-_:.~":" . ::~'."
  • t *

. I

'l.fr..z"Z-0-... y ..)'

02/07/97 NODE ELEVATION DEMAND PRESSURE H GRADE ft gprn psi g ft A 0 p 0 0 B 0 p 0 0 c 0 p 0 0 E 0 * -0.610 -1.416 F 0 * -0. 626 -1.454 G 0 * -0.662 -1. 538 H 0 * -o. 712 -1. 652 I 0 * -0.634 -1. 4 72 J 0 * -0.666 -1.547 K 0 * -0. 665 -1. 544 L 0 ... -0. 711 -1. 651 M 0 * -0. 712 -1.652

.N 0 ... -0.885

> 4500 -2.054 0 0 -> 0.0001 ... -0.665 -1. 544 p .0 > 5000 ... -0.778 -1. 805 Q 0 ... -0.820 -1.903 R 0 > 2500 .... -0.956

-2.219 s 0 > 2500 ... -1. 269 -2.945 T* 0. ... -0.967 -2.245 u 0 > 4500 ... -2. 011 -4.668 Calculation No.-.DRE97-001 0 Revision o

  • Page A
  • 7

.....  : :1**

  • t * * -

~.,,-L'O'-

02/07/97 PIPELINE FROM TO FLOW VEL dP Hl gpm ft/sec psi g ft

-3A I N 4500 *6.274 0.251 0.582 T u 4500 7. 911 1. 044 2.423 CS3B-18 M T 4500 6.274 0.255 0.593 HPCI K 0 0 0 0 0 LPCI3A Q R 2500 5.822 0.136 0.315 LPCI3A/B J Q 5000 3.781 0.154 0.357 LPCI3B Q s 2500 5.822 0.449 1. 0*41 LPCI3C/D L p 5000 3.781 0.066 0.154 Ring-1 E I 1999 1. 512 0.024 o*. 056 Ring-2 F I 2501 1. 892 0.008 0.018 Rihg-3 F J 3800 2.874 0.040 0.093 Ring-4 K J 1200 0.907 0.001 0.003 Ring-5 G K 1200 -0.907 0.002 0.006 Ring-6 G L 5280 3.993 0.049 0 .113 Ring-7 L - <-> H 280.3 0.212 0 0 Ring-8 H M 280.3 0.212 0 0 Ring-9 E M 4220 3.191 0 .102* 0.236 Torus...:1 A E 6218 7.529 0.610 1. 416 Torus-2. *B F 6302 7.629 0.626 1. 454 Torus-3 c G 6480 7.845 .o.. 662 1. 538 Tqrus-4 D H closed 0 0 0 Calculation No. DRE97-001 o .

Revision O Page A~

Company: corned 3!.~'lf.Y Project: 02/07/97 by: palas LINEUP REPORT rev: 12/21/96 LINELIST: RING DEVIATION: 1.37 %

date<;i: 12/18/96 after: 3 iterations 3 LPCI @5000 and 2 CS @4500 Injecting. Nearest torus blocked.

Volumetric flow rates require constant fluid properties in all pipelines.

Fluid properties in the first specification were used.

NODE DEMAND NODE DEMAND gprn gpm N >>> 4500 p >>> 5000 R >>> 5000 s >>> 5000 u >>> 4"500 FLOWS IN: 0 gpm FLOWS. OUT: .24000 gpm NET FLOWS OUT: 24000 gpm PIP;:LINE FLOW PRESSURE SET gpm SOURCE psig Torus-1 <<< 7825 <<< A 0 Torus-2. <<< ; 7891 . <<< B 0 Torus-3 <<< 8284 <<< c 0 FLOWS IN: 24000 gpm

.. FLOWS OUT: 0 gpm NET FLOWS IN: 24000 gpm Calculation No. DRE97-0010

  • Revision O Page A "t

........ ~-

  • ' t . ' I Ao.;..

LINEUP NODES ~t. ~Z:<t..'<t .Y 02/07/97 NODE ELEVATION DEMAND PRESSURE H GRADE ft gpm psi g ft A 0 p 0 0 B *O p 0 0 c 0 p 0 0 E 0 * -0.966 -2.242 F 0 * -0.982 -2.28 G 0 * -1. 082 -2.513 H 0 * -1.109 -2.574 I 0 * -1.012 -2.349 J 0 * -1.086 -2.52 K 0 * -1.106 -2.568 L 0 * -1. 118 . -2. 595

.M 0 * -1.108 -2.573 N 0 > 4500 * -1. 263 -2.931 p 0 > 5000 ** -1.184 -2 .. 748 Q 0 * -1.697 -3.939 R 0 > .5.000 * -2.24 -5.199*

s 0 > 5000 * -3*. 48 6 -8.091

    • T 0 * -1.364 -3.166 u 0 > 4500 * -2.408 -5. 59'9 Calculation No. DRE97 -001 o Revision 0 Page A 10

' I I

't * - .1.

LINEUP PIPELINES )t. j-crt.'C. yV 02/07/97 PIPELINE FROM TO FLOW VEL dP Hl gprn ft/sec psi g ft S-3A I N 4500 6.274 0.251 0.582 CS3B-16 T u 4500 7. 911 1. 044 2.423 CS3B-18 M T 4500 6. 274. 0.255 0.593 HPCI K 0 closed 0 0 0 LPCI3A Q R 5000 11. 64 0.543 1. 259 LPCI3A/B J Q 10000 7.563 0.612 1. 42 LPCI3B Q S. 5000 11. 64 1.789 4.152 LPCI3C/D L *p 5000 3.781 0.066 0.154 Ring-1 E I 2801 2.119 0.046 0.107 Ring-2 F I 1699 1. 285 0.004 0.008 R,ing-3 F J 6192 4.683 0 .103 0.240 Ring-4 K J 3808 2.00* 0.014 0.032 Ring-5 G K 3808 2.88 0.024 0.056 Ring-6 G L .. 4476 3.385 0.035 0.082 Ring-7 H L 523.9 0.396 0 0.002 Ring-8 M <-> H 523. 9 0. 3,96 0 0 Ring-9 E M 5024 3.8 0.143 0 .. 331 Torus-1 A E 7825 9.474 0.966 2.242

  • Torus-2 B F 78Ql 9.553r 0.982 . 2. 28 Torus-3 c G 828'4 10.03 1. 082 2. 513 Torus-4 D. H closed 0 0 0 Calculation No. DRE97-0010 Revision 0
  • Page A 11

~-.. ~

_* *""? ,_. *~ ... l

Company: corned ~L .:rd ~\I Project: 02/07/97 by: palas LINEUP REPORT rev: 12/21/96 LINELIST: RING DEVIATION: 0.0106 %

dat:ed: 12/18/96 after: 6 iterations 2 LPCI @2500, 1 LPCI @5000 and 2 CS @4500 Injecting. Nearest torus blocked.

Volumetric flow rates require constant fluid properties in all pipelines.

Fluid properties in the first specification were used~

NODE DEMAND NODE DEMAND gpm gpm N >>> 4500 p >>> 5000 s >>> 5000 u ">>> 4500 FLOWS IN: 0 gpm FLOWS OUT: 19000 gpm NET FLOWS OUT: 190.0() gpm PIPELINE FLOW PRESSURE SET gpm SOURCE psig Torus-1 <<< 6218 <<< A 0 Torus-2 <<< 6302 <<< B 0 Torus-3 <<< 6480 <<< c 0 FLOWS IN: 19000 gpm FLOWS OUT: 0 gpm NET FLOWS IN: 190.00 gpm Calculation No. DRE97-0010 Revision 0

  • Page A / ~

.n. jd ttl 02/07/97 NODE ELEVATION DEMAND PRESSURE H GRADE ft gpm psi g ft A 0 p 0 0 B 0 p 0 0 c 0 p 0 0 E 0 * -0.610 -1.416 F 0 * -0.626 -1.454 G 0 * -0.662 -1.538 H 0 * -0.712 -1.652 I 0 * -0.634 -1. 4 72 J 0 * -0.666 -1.547 K 0 * -0.665 -1.544 L 0 * -0. 7ll -1. 651 M 0 *. -0. 712 -1.652 N 0 > 45.00 * -0.885 -2.054 p 0 > 5000 * -0.778 -1. 805 Q 0 * -0.820 -1. 90 3 R 0 * -0.820 -l. 903*

s O* > 5000 * -2.609 -6.055

  • -o. 967.

T 0 * -2.245 u 0 > 4500 .... -2. Oll -4.668 Calculation No. DRE97-00 10 Revision O Page A 13

=- :* :. - - :.- . :: t-3 ,_. .; * ~ l

02/07/97 PIPELINE FROM TO FLOW VEL dP Hl gpm ft/sec psi g ft

-3A I N 4500 6. 274 0.251 0.582 T* u 4500 7. 911 1. 044 2.423 CS3B-18 M '.l' . 4500 6.274 0.255 0.593 HPCI K 0 closed 0 0 0 LPCI3A Q R 0 0. 0 0 LPCI3A/B J Q 5000 3.781 0.154 0.357 LPCI3B Q s 5000 11. 64 1.789 4.152 LPCI3C/D L p 5000 3.781 0.066 0.154 Ring-1 E I 1999 1. 512 0.024 o .*o56 Ring-2 F I 2501 1. 892 0.008 0.018 Ring-3 F J 3800 2.874 0.040 0.093 Ring-4 K J 1200 0.907 0.001 0.003 Ring-5 G K 1200 0.907 0.002 0; 0.06 Ring-6 G. L 5280 3.993 0.049 0 .113 Ring-7 L <-> H 280.3 0.212 0 .o Ring-a* H. M 280.3 0.212 0 0 Ring-9 E M 4220 3.191 *0.102 0.236 Torus-1 A E . 6218 7.529 0.610 1. 416 *:

B F 6302 7.629 0. 626 1. 454 orus-3 c G 6480 7.845 0.662 1. 5~8 Torus-4;. D H closed 0 0 0 Calculation No. DRE97-0010 * *

  • Revision O Page A J ~

X..'dmp!hry. 'C.."Omt..<ct VvV Project: 02/07/97 by:. palas LINEUP REPORT rev: 12/21/96 LINELIST: RING DEVIATION: 1.47 %

dated: 12/18/96 after: 4 iterations 2 LPCI' @5000 and 2 CS @4500 Injecting. Nearest torus leg blocked.

Volumetric flqw rates require constant fluid properties in all pipelines.*

Fluid properties in the first specification were used.

NODE DEMAND NODE DEMAND gpm gpm N >>> 4500 R >>> 5000 s >>> 5000 u >>> 4500 FLOWS IN: 0 gpm FLOWS OUT: 19000 gpm NET FLOWS OUT: 19000 gpi:n PIPELINE FLOW PRESSURE SET gpm SOURCE psig Torus-1 <<< 6169 <<< A 0

  • Torus-2 <<< 6419 <<< B 0
  • Torus-3 <<< 6412 <<< c 0 FLOWS IN: 19000 gpm FLOWS OUT: 0 *gpm NET FLOWS IN: 19000 gpm Calculation No. DRE97-0010 Revision 0 Page A 15

Calculation No; DRE97-0010 Revision 0 Page A/{;,

~""d"t *~" ...,...,,..., ~1!11' -..v -

02/07/97 PIPELINE FROM TO FLOW VEL dP Hl gpm ft/sec psi g ft S-:3A I N 4500 6.274 0.251 0.582 S3B-16 T u 4500 7.911 1. 044 2.423 CS3B-18 M T 4500 6.274 0.255 0.593 HPCI K 0 closed 0 0 0 LPCI3A Q R 5000 . 11. 64 0.543 1. 259 LPCI3A/B J Q 10000 7. 563 0.612 1. 42 LPCI3B Q s 5000 11. 64 1.789 4.152 LPCI3C/D L p closed 0 0 0 Ring-1 E I 2991 2.262 0.052 0.121 Ring-2 F I 1509 1. 141 0.003 0.007 Ring-3 F J 4910 3.714 0.066 0.153 Ring-4 K J 5090 3.849 0.025 0.057 Ring-5 G K 5090 3.849 0.042 0.098 Ring-6 G 'L 1322 1. 000 0.003 0.008.

Ring-7 L <-> H 1322 1.000 0.005 0.012

. Ring-8 H M 1322 1.000 0.002 0.005

>Ring-9 E M 3178 2.403 0.059 0.136

.orus-2 Torus-1 orus-3 A

B c G E

F 6169 6419 6412 7 ..469 7.772 7.763 0.600

' 0. 650 0.649 L 394

1. 509
r. 506 Torus-4 0 H closed 0 .. 0 0 Calculation No. DRE97-0010 Revision 0 Page A 17

"'1 * -

.L pn

Company: corned Z."t..t.JZ.Y-'l.:t Project: 02/07/97 by: palas LINEUP REPORT rev: 02/04/97 LINELIST: RING DEVIATION: 0.019 %

dated: 01/08/97 after: 5 iterations 2 LPCI @2500 and 2 cs @4500 Injecting. Nearest torus leg blocked.

Volumetric flow rates require constant fluid properties in all pipelines.

Fluid properties in the first specification were used.

NODE DEMAND NODE DEMAND gpm gpm N >>> 4500 R >>> 2500 s >>> 2500 u >>> 4500 FLOWS IN: 0 gpm FLOWS OUT: 14000 gpm NET FLOWS OUT: 14000 gpm PIPELINE

  • FLOW PRESSURE SET gpm SOURCE psig Torus-1 <<< 4592 <<< A 0 Torus-2 <<< ' 4719 <<< B 0 Torus-3 <<< 4690 <<< c 0 FLOWS IN: 14001 gpm FLOWS OUT:. 0 gpm NET FLOWS; IN: 14001 gpm Calculation No. DRE97-001 o Revision O Page At 8
  • ptl

......., "9111" -. '

  • 02/07/97 NODE ELEVATION DEMAND PRESSURE H GRADE ft gpm psi g ft
  • A B

c E

0 0

0 0

p p

p 0

0 0

  • -0.333 0

0 0

-0.772 F 0 * -0.351 -0.816 G 0 '* -0.347 -0.806 H 0 * -0.365 -0.848 I 0 * -0.359 -0.833 J 0 * -0.366 -0.850 K 0 * -0.359 -0.834 L 0 * -0.354 -0.822 M 0 * -0.370 -0.860 N 0 "> 4500. * -0.610 .* -1. 415 Q o* * -o.52o -1.207 R 0 > 2500 * -o. 656 . -1.522 s 0 > 2500 * -0.969 -2.248 T 0 * -0. 626 -l. 4 52 u 0 > 4500 * -1. 669 -3.875

  • Calculation No. DRE97-0010 -

Revision 0 Page Al't * *

?!PE-FLO rev 4.11 po -

02/07/97 PIPELINE FROM TO FLOW VEL dP Hl gpm ft/sec psi g ft I N 4500 6.274 0.251 0.582 S3B-16 T u 4500 7. 911 1. 044 2.423 CS3B-18 M T 4500 6.274 0.255 0.593 HPCI K 0 closed 0 0 0 LPCI3A Q R 2500 5.822 0.136 0.315 LPCI3A/B J Q 5000 3.781 0.154 0. 357 ..

LPCI3B Q s 2500 5.822 0.449 1. 041 LPCI3C/D L p* closed 0 0 0 Ring-1 E I 2074 1. 569 0.026 o*. 060 Ring-2 . F I 2426 1. 835 0.007 o. 017 Ring-3 F J 2293 1.734 0.015 0.035 Ring-4 K J 2707 2.047 0.007 0.016 Ring-5 G K *2707 2.047 0.012 0.028 Ring-6 G L 1983 1. 499 0.007 0.017 Ring~7 L <-> H 1983 1. 499 o. 011 0.026 Ring-8 H M 1983 1. 499 0.005 0.011 Ring-9 E M 2517 1. 904 0.038 0.087 Torus-1 A *E 4592 5.559 0.333 0.772 ..'

Torus-2 B F ' 4719 5. 713 0.351 0.816

.orus*-3 c G 4690 5.. 678 0 .347. 0.806 orus-_4 D H closed 0 0 0 Calculation No. DRE97 -001 O Revision 0 Page A'lD

?I?E-~LO re*; -l. 11 pri

Project: 02/07/97 by: palas LINEUP REPORT rev: 12/21/96 LINELIST: RING DEVIATION: 0.0179 %

dated: 12/18/96 after: 5 iterations 1 LPCI @5000 and 2 CS @~500 Injecting. Nearest torus leg blocked.

Volumetric flow rates require constant fluid properties in all pipelines.

Fluid properties in the first specification were used .

. NODE DEMAND NODE DEMAND gpm gpm N >>> 4500 s >>> 5000 u >>> 4500 FLOWS IN: 0 gpm FLOWS OUT: 14000 gpm NET FLOWS OUT: 14000 gpm PIPELINE FLOW PRESSURE SET gpm . SOURCE psig Torus-1 <<< 4592 <<< A 0 Torus-2 <<< 4719 <<< B 0 Torus-3 <<< 4'690 <<< c 0 FLOWS IN: 14001 gpm FLOWS OUT: 0 gpm NET FLOWS IN: 14001 gpm Calculation No. DRE97 -001 o Revision O Page A .21 P!PE-~LO cev 4.11 pCl

.... ~JUUU 02/07/97 NODE ELEVATION DEMAND* PRESSURE H GRADE ft gpm psi q ft

  • A B

c E

0 0

0 0

p p

p 0

0 0

  • -0.333 0

0 0

-o. 772 F 0 * -0.351 -0.816 G 0 * -0.347 -0.806 H 0 * -0.365 -0.848 I 0 * -0.359 -0.833 J 0 **-0.366 -0.850 K 0 * -0.359 -0.834 L 0 * -0.354 -0.822 M 0 * -0.370 -0.860 N 0 > 4500 ** -0. 610 -1:415 Q 0 * -0.520 -1.207 s 0 > 5000 * -2.309 -5.359 T 0 * -o. 626 -1. 452 u 0 > 4500 * -1. 669 . "'"3.875 Calculation No. DRE97-0010 Revision 0

  • Page A'J.?-.
  • PIPE-FLO rev 4.11 pq -

t:i:m-ov nnttm!'  !:!cl9"'1e;1-02/07/97 PIPELINE FROM TO FLOW VEL dP Hl gpm ft/sec *psi g ft CS-3A I N 4500 6.274 0.251 0.582 CS3B-16 T u 4500 7.911 1. 044 2. 4*23 CS3B-18 M T 4500 6.274 0.255 0."593 HPCI K 0 closed 0 0 0 LPCI3A Q R closed 0 0 0 LPCI3A/B J Q 5000 3.781 0.154 0.357 LPCI3B Q s 5000 11. 64 1. 789 4.152 LPCI3C/D. L p closed 0 0 0 Ring-1 E I 2074 1. 569 0.026 0.060 Ring-2 F I 2426 1. 835 0.007 0.017 Ring-.3 F J 2293 1. 734 0.015 0.035 Ring-4 K J 2707 2. 047' 0.007 0.016 Ring-5 G K 2707 2.047 0.012 0.028 Ripg-? G L 1983 1. 499. 0.007 0.017 Ring-7 L <-> H 1983 1. 499 0. 011 0.026 Ring-8 H M 1983 1.499 0.005 0. 011 Ring-9 E M 2517 1. 904 0.038 0.087 Torus-1 A E 4592 5.559 0. 333* 0. 77?.

Toru!?-2 B F 4719 s*. 113 0.351 0.816 Torus-3 c G '4690 5. 678. 0.347 0.806 Torus-4 o, H clqsed 0 Q 0 Calculation No. DRE97-0010 Revision O Page A).3

!JO l