ML17187A805

From kanterella
Jump to navigation Jump to search
Suppl 1 to GENE-770-26-1092, Long Term Containment Response to DBA-LOCA w/65 Fdegrees F Svc Water Temperature,80 Degrees F Initial Pool Temperature & Initiation of Containment Cooling at 1800 Seconds.
ML17187A805
Person / Time
Site: Dresden  Constellation icon.png
Issue date: 01/31/1993
From: Mintz S, Carleen Parker, Torbeck J
GENERAL ELECTRIC CO.
To:
Shared Package
ML17187A798 List:
References
DRF-T23-685, GENE-770-26-109, GENE-770-26-1092-S01, GENE-770-26-1092-S1, NUDOCS 9702240257
Download: ML17187A805 (17)


Text

'

GE Nuclear Energy -

  • General Eiecmc Camoanv
15 Curtner Avenue. San Jose. 1,,--,
. 95125 GENE-770-26-1092 Supplement 1 ORF T23-00685 Class II January 1993

/

DRESDEN NUCLEAR POWER STATION UNITS 2 AND 3 LONG-TERM- CONTAINMENT' RESPONSE TO A DBA-LOCA I ,

MITH 55*f SERVICE-WATER TEMPERATURE, sQ*f INITIAL P60L TEMPERATURE AND INITIATION OF CONTAINMENT COOLING AT 1800 SECONDS

  • PREPARED BY: S. Mintz
c. R. Parker S. K. Rhow APPROVED~~~
  • E. Torbeck
  • Plant Performance Analysh P~ojects

'(

-,.-... l1 ~6022402s7 p R ADOCK 050002371 970217 I

  • --- - ----- ------- _ ---~DR_u_______ ____ _

' .. "J * -*. ~ - *** - - ..

i

GENE-770-26-1092 Supp. 1

  • IMPORTANT NOTICE REGARDING CONTENTS OF THIS REPORT The only undertakings of the General Electric Company (GE} respecting information in this document are contained in the contract between Comm~nwealth Edison Company (CECo} and GE covering this workscope and nothing contained in this document shall be construed as changing the contract *. The use of this information by anyone other than CECo, or for any purpose other than that for which it is intended, is not authorized; and with respect to any unauthorized use, GE makes no representation or warranty, express or implied, and assumes no liability as to the completeness, accuracy, or usefulness of the information contained in this document, or that its use may not infringe privately owned rights. *

/

I .

ii .;.

L 0 '* -~

GENE-770-26-1092 Supp. 1

  • CONTENTS 1.0 STATEMENT OF ISSUE 2 *.0 APPROACH TO RESOLUTION OF ISSUE J.O ,ANALYSIS DESCRIPTION 4.0 RESULTS.
  • 5.0 . REFERENCES

-~-

. - 111

.*';I -

  • "1'7' -,

GENE-770-26-1092 Supp. 1

  • 1.0 STAT~MENT OF ISSUE The purpose of this report is to provide the results of an analysis to demonstrate the containment cooling capability of the Dresden Uni~s 2 and 3 LPCI/Containment Cool.ing System during a LOCA with a ~ervice water temperature of 65.F and an initial suppression pool temperature of ao*F considering initiation of containment cooling at 1800 seconds into the event.

(

  • .*I

' .. -~

    • ~* - -

GENE-770-26-1092 Supp. 1

  • 2.0 APPROACH TO RESOLUTION OF ISSUt Two additional cases of the Dresden containment pressure/temperature response during the design basis loss~of~coolant accident (DBA-LOCA), which supplement the analysis described in Reference 1, were analyzed. These two additional

.cases use the same inputs and assumptions used for analysis of Reference. 1

_except for changes requested by the Commonwealth Edison Company (CECo) to demonstrate adequate containment cooling with a delay in the initiation of containment cooling.

The peak suppression pool temperatures from these analyses will be compared to the value of iao*F determined from Figure 5.2.3:3 of _the Dresden SAR and shown for Mode C of *the LPCI/Containment Cooling System Process Diagram.

i

.i*

  • ~ .* J***

-~2-

~

GENE-770-26-1092 Supp. 1

  • 3.0 ANALYSIS DESCRIPTION The analysis of the two cases was performed with the assumptions that one LPCI/Containment Cooling System pump and one Containment Cooling Service Water (CCS~) pump are in operation with the flow rates used for Case 4 and Case 4A of Reference 1*

.3.1 Analytical Model

  • A coupled reactor pressure vessel and containment model, based on the Reference 2 and Reference 3 models, was used to calculate the long-tenn tran.sient response of the containment during the DBA-LOCA through th~ time of peak suppression pool temperature. This model* perforyns fluid mass and e*nergy balances on the primary *system and the suppression pool, and calculates the reactor vessel water level, the reactor vessel pressure, the p*ressure- and
  • *.temperature in the drywell and suppression chamber airspace. and bulk suppression pool temperature~ . The various modes of operation of all important aux111ary systems, such as SRVs and the MsIVs, and ECCS, the RHR system

.(LPCI/Containment Cooling System in the case of Dresden) and feedwater are modeled. -The model can simulate actions based on *system setpoints, automatic actions and. operator-initiated actions.

3.2

  • Input Assumptions The initial conditions* and input parameters used in the analysis are the same.

as *those described in Table 2 of Reference 1. Changes to the values given in Table 2 of Reference I.are indicated in Table 1 of 'this report. The original

  • values used. for Cases 4 and 4A of Reference 1 are .also shown in Table 1.

Key changes to the assumptions of the Reference 1 analysis include:

1) *~Initiation of ,containment cooling at 1800 sec *

.. -* *. r'.* -.--

GENE-770-26-1092 Supp. 1

    • 2) The use of the May-W;'tt decay heat model {for Case 1).
3) The use of an initial stippressiori pool temperature ~f ao*F.
4) The use of a service water temperature of 65.F.

The latter two changes are included~ as requested by CECo, to reflect more*

realistically the current winter ambient cond;tions.

It should be noted that the Case 1 analysis *is-conducted with May-Witt decay-,

heat (Reference 4) and Case 2 is done with"ANSl/ANS-S~~ decay ~eat

-(Reference 5)

  • The meta l-wat~r reaction *assumption :.; s as specified by NRC Reg~ G&1ide 1.7 *. Accord-ing to tMs Reg. Guide, an'. ainount of metal,.:.water .

.reaction of the .fuel Cladding corresponding to oxidation of the claqd1n.g to a depth ofJO .-23 mils is to be* considered for Dresden *.

  • i ';

. -_ -,_3. 3 . Case Descri pt i ans i'**

The tong-term. containment pressure and temperatureresponse was*analyz;ed for*

the .

DBA-LOCA which .

was *described in the SAR as an dnstantaneous double-ended 9uilloifne break of a rec~rculation suction.line. *Case 4 and Case 4A of. -

Reference' 1 were *re~analyzed *for this .. report. Case 4 described .in Referen~~ 1 assumes the ava1lab11 tty *:of one lPCI/Containment Cooling System: pump and one

CCSW pump. - The pump fl.ow rates for Case 4 are consistent with the values
...

reported for Mode Ctn the Process.Diagram. -Case 4A of -Reference i*was perforined with a lower*heai exchanger heat removal rate to account* for.the*

uncertainty in ihe LPCI. and CCSW flow measurements~ . Table 1 summari~es the -

LPCI/Containment Cooling System parameters assumed -for the long-term,heatup

  • ' . 'r analyses of this* report.

1'.,

.  : -~ ~ . .., .. .. :.. .**. *:.*

... ~ -:  :~* *:; - ~ . . .. '. . ' '. ::: . .... .

. GENE-770-26-1092 S~pp. 1

  • 4.0 RESULTS Table 2 sunvnarizes the results of the long-term heatup calculations.

Figures 1, lA and 18 show long-term containment pressure and temperature respo~se for Case 1, which has the assumption of nominal LPCI and CCSW flow rates and May-Witt decay heat. Figures 2, 2A and.28 show the containment pressure and tem_perature response for Case 2, obtained with, the reduced heat exchanger K~values which account for flow measurement.uncertainty and the ANSI/ANS-5.1 decay heat model. The results in Table 2 show that the peak pool temperature with the nominal LPCI and CCSW flow rates and May-Witt decay heat is 4*f Mgher than the value obtained with the ANSI/ANS-5.1 decay heat _and reduced LPCI and CCSW flow rates *. This shows that the reduction in t~mperature with the more realistic decay heat model is greater than the

  • increase in .the pool temperature response resulting from the. uncertainty in

/

the pump flow rates.

The results of Table 2 also *demonstrate that the effect of the reduced service water t~mperature and initial suppression pool temperature given in Table l is mor~ $ignificant than the effect of delaying the initiation of containment cooling. Comparhon of Case 2 to Case 4A of Reference J shows a n.et decrease of 2o*f due to these effects. 'As a result, peak suppression pool temperatures are well below the value of iso*f determined from 'SAR Figure*5.2.3:3 and listed in Mode C of t~e LPCI/Containment Cooling System Process Diagram *

. .. ~

GENE-770-26-1092 Supp. 1

5.0 REFERENCES

1. GENE-770-26-1092, "Dresden Nuclear Power Station Units 2 and 3
  • LPCI/Containment Co~ling System Evaluation~" November 1992.
2. NEDM-10320, "The GE Pressure Suppression Containment System Analytical Model," March 1971.
3. NED0-20533, "The General Eiectric Mark III .Press~re*S~ppressicin.

tontainment System A~alytical Model," June 1974. *

4. NED0-10625, "Power Generation in a BWR Following Normal Shutdown or Loss:.of-Coolant Accident Conditions," March 1973:

5,. ANSI/ANS-5.l-197!f, "De.cay Heat Power .in Light Water Reactors," 1979

  • GENE-770-26-1092 Supp. 1
    • TABLE 1 KEY PARAMETERS .OF DBA-LOCA CASES ANALYZED FOR DRESDEN Ref. 1 Cases Case 4 Case 4A Case I Case 2 .

Tsw (*F) 95 95 65 65

  • Initial Tpool (*F) 95 95 80 80

/ -

LPCI Flow Rate (gpm) 5000 3881 1 5000 3881

_i

- CCSW *Flow* Rate (gpm)

-~-value (Btu/sec- 9 F)

. 3500

- 249.6 3071 219.2 3500 249.6

  • 3011

. 219.2

.Containment Cooling Initi~tion Time (sec) 600 600 1800 1800 Decay Heat ModeJ - ANS 5.1 ANS 5*. l May-W;tt ANS 5.1

GENE-770-26-1092 Supp. 1

  • TABLE 2 DRESDEN CONTAINMENT PRESSURE AND TEMPERATURE RESPONSE DURING ADBA-LOCA Ref. 1 Cases Case 4 Case 4A Case 1 Case 2
  • Maximum Tpool (
  • F} 180 186 170 166 Time of Max. Tpool (sec) 26400 32500* 21600 . 22800 I
  • Tpool @ 1800 sec. ( *f) --- 144 142
    • P~o.nt (psia)

(a~ 'time of max.* Tpool) 23.3 . 24~1 21.8 21.2

\ .

.'* l

'I -, .. * -

J 1,* .

i .

/ .. I / - j i:ilNI 111

.-.* *1 LJLI I *

.* *., 1. Drywel l

. ., ' ... 1,'

2 Suppre~sion Cham~ r

'*' ' ~.

  • ,i . ,*:

--1* '-'I

.;. ( J

  • .. -~ . . *r'.

.er

. ._.:.....t (f)

'Q_

., 2 I 20. r---.:.______..--t_ _ ____:__ _ _-,:..~--..,..------*~ ~--*-'_~--_.. -. ..__ ,_=-_:._~-------

_=-*_-=-_::__ .

w *"'-._*

a::::

~

. (f)

(f) w

. a::::

"'. Q_

10 10 3 104 .

TIME - SEC Figure 1 .- l9ng- Term OQA~LOCA, Ory~e 11 and Suppresston. Chamber Pressure Res pons~ for Case 1

  • J-t *<* *..... *. .

. ..' ..* . . ..:!.*.~-. '

J .* ,,.

  • ~: *, 1 J

I* JI *ii". ~ )I H. I .J I I

,. I

. ~ ' LllHl Ill '...il"IJi--J';j I 11

.: ~; .  :: ,'. '~- . ., ' . . .. .
  • *1 111. i I .

-~

  • ... i : . *;;* . .

LjQQ. *~.---- .... - - - - - ----'----- -=--~----:: ______ . . .;___ ---*-**----:

..  :~  : ', .

  • , *, 'I

' 'I  :~ ,' .;,  :.! ' ' -

. *.-. *u_

.0 w

0

  • .. w er::

~ 200. t-~-------:.-_.,....:.;..-_, _ _ _ ____;__ _-.J._ _ ,

IT a=

w -----.

o_

L w

100. L-.;_..._--.,....,..----L--___.:_.:_'----'---*------------ - * - - - - * * * --*-- -

. 10 10 3 10 4 TIME - SEC Figure* IA - Long-Term ._OBA- LOCA. Orywel *1. Temperature Respons~ *for Case 1 *

. l I  :

' ~ ' *' ..

I JI H. ~:) I l f j-,J . I/ . ;

um 1 111. '.Jl'1.nr.1 111 I. 0111 LL L'J ----*-*--***

w 0

w a=

~

100. ' - - - - , . - - - - - - t - - - ' - - - - - - - - + - - - - - ' - - * - - - - - - ----***----*** --** . *-*

r-IT a=

w Q_

L w

r-

0. ,___ _ ____.__ _ _...,.__ _ _ _ __; __ _i____;___ _ _ - - - - * -

10 10 3 10 4 TIME - SEC*

I.

. i: _,. . (

~  ; .. '

I***

-I 11 iI ~ ii 11 II I ..

111111 lil'.il'llll'd Ii.I I I II I I

. -GO. ~-------*-----,----~--..-:__ __

I Drywel l

-2 Suppression Chambe

())

(L I .

    • w

. er

~

())

())

w rr::

(L

0. '-----:---:-----_J__-:---_ _-,-:-__ ___;_~ ___:__---,-_:____ .___ - - -

10 - 102 ** 103 TIME~ SEC -

  • f;gure 2 * - Long-Term* OBA 7 LOCA Orywell _and Suppr.ession *Chamber Pressure Response for Case 2

. ~ .

  • 1,*

. -1) I )I : ~)I H t l . I/ ;

CllMI Ill '.)l'IJl*J:d 111 l.lX.:11

  • .*. 300. i--~~-----=--1_:_-~--~- ------

LL.

"*t_j

  • w_

0

. I *.

w . - .

. tr: .

.::J

  • er 200. 1.--:~-----,-_..;-t-------~~-I--\.-:.-------*- * - - * -------*-**--

(L ..

  • ---t----

w Q_

2:

w

  • 100 . ..__~_ ____;___;__,.__~--,--.,.---~~*'-'-.__:_:__ _:11__:__ _____:;'--_ ---* ------- - - -- - -

10 ..*.- _... 10 3..

TIME.- SEC Finure 2A - t*onq--lem. OBA-tOCA Orywel I Tem_perature Response for Case 2

. *~* .

I / ,*

".I . J

CUM r Ill. SPUN~I 11 I 1 ULI I LL D
w. ------*-***.

0 I--~~

. --l---' .

w a:

) - - - - - * * - - * * -**
  • -ercc w

(L L

w I-

o. .__~-'-~-'--~~-:--"~~-,-~-'--'----L~~~~--- -~*-*------ -*-*- -* .

10 . 10 3 TIME -- SEC t:;nu~~ ?R - I ntin--TP.rm OBA-tOCA Simoressiori Pool Temperat.ure Response for Case *2