ML16258A150

From kanterella
Jump to navigation Jump to search
Design Analysis QDC-6700-E-2173, Evaluation of Degraded Voltage 5 Minute Timer on Normally Running Safety-Related Loads, Revision 000
ML16258A150
Person / Time
Site: Quad Cities  Constellation icon.png
Issue date: 11/20/2015
From: Kolodziej J
Exelon Generation Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
Shared Package
ML16258A146 List:
References
QDC-6700-E-2173
Download: ML16258A150 (82)


Text

ATTACHMENT 3 Design Analysis QDC-6700-E-2173, "Evaluation of Degraded Voltage 5 Minute Timer on Normally Running Safety-Related Loads," Revision 000

ATTACHMENT 1 Design Analysis Cover Sheet aae 0

p 1 f 1 CC-AA-309*1001 Revision 8 Design Analysis I Last Page No.' Attachment D, Page 04 ----

Analysis No.:'

ODC-0700-E-2173 Revision:*

000 Major [8J MlnorD

Title:

Evaluation of Degraded Voltage 5 Minute Timer on Normally Ru1ining Safety-Related Loads EC/ECR No.:*

400610 & 400611 Revision:*

000 & 000 Statlon(s):'

Quad Cities Component(s):"

Unit No.:*

01 &02 1-5746-A 1-5748-A Discipline:

  • ELDC 1-5746-8 1-5748-B Descrlp. Code/Keyword: 10 E13 2*5746-A 2-5748-A Safety/QA Class: 11 SR 2-5746-8 2-5746-B System Code: 12 867 1-5747 Structure: "

NIA 2-5747 CONTROLLED DOCUMENT REFERENCES "

Document No.:

From/To Document No.:

From/To QDC-6700-E-0939 From QDC-6700-E-1503 From QDC-7800-E-0612 From Is this Design Analysts Safeguards Information? "

YesO No l8J If yes, see SY-M-101-106 Does this Design Analysis contain Unvorlfled Assumptions? "

YesO No [81 If yes, ATl/AR#:

This Design Analysis SUPERCEDES: "

NIA In Its entirety.

Description of Revision (list changed pages when all pages of original analysis were not changed): "

This calculation evaluates the Joss of voltage (LOV) relay setpolnt during a sustained degraded voltage event.

The normal (non-accident) time delay associated with Iha second-level undeivoltage relays (degraded voltage relays) could allow the voltage at the 4.16 kV buses to remain at low levels for an extended period of time (332.3 seconds) before transfer of all safety-related loads to the emergency diesel generators. This calculation

  • evaluates the LOV relay setpoint to ensure that the safety-related motors that may be running during normal conditions will continue to operate during a sustained degraded voltage event.

Preparer:'"

J. Kolodziej b11.M ~~*

fl* 20* 1.'>

Pl1J11Natne

/I s1an1m1hllo (,/

Dalo Method of Review: 21 Detailed Review 181 Alternal& Calculatl~ns ~)

D Testing D Reviewer:"

S. Saha

~qf

  • ~'ivnNome II- '2.U-/J -

Printl'lamo Oolo Review Notes: "

Independent review [8J Peer review D

{l'ar Ex!emol Anolyooo On~)

rM.. rrw.J '-"

1/ lio/zoi~*

External Approver: "

J. MA\\\\\\,\\ 8~.s--

Prin!Nomo

~7~

Dalu Exelon Reviewer: "

(_) C"""'c\\) "--:S-~

~t.e A 1-z./-i-c/15*

Print Name

~nNftmG Cata Independent 3*d Party Review Reqd?"

Yes 0 No 181

,Jz~/_c. -

Exelon Approver: "

  • 2. S f L J A lZ.. T

'-:&iJ c ~*

/

7

/

Prin\\Nanto

//

~lnnNamo Dotv

ATTACHMENT 2 CC-AA-103* 1003 Revision 12 Page 1A of 1C Owner's Acceptance Review Checklist for External Design Analyses Page 1of3 Design Analysis No.: QDC-6700-E-2173 Rev: 000 Contract #: 00511302 Release #: 00234 No Question 1

Do assumptions have sufficient documented rationale?

2 3

4 5

6 Are assumptions compatible with the way the plant is operated and with the licensing basis?

Do all unverified assumptions have a tracking and closure mechanism in place?

Do the design inputs have sufficient rationale?

Are design inputs correct and reasonable with critical parameters identified, if a ro riate?

Are design inputs compatible with the way the plant is operated and with the licensin basis?

Instructions aod Guidance All Assumptions should be stated in clear terms with enough justification to confirm that the assumption is conservative.

For example, 1) the exact value of a particular parameter may not be known or that parameter may be known to vary over the range of conditions covered by the Calculation. It is appropriate to represent or bound the parameter with an assumed value. 2) The predicted performance of a specific piece of equipment in lieu of actual test data. It is appropriate to use the documented opinion/position of a recognized expert on that equipment to represent predicted equipment performance.

Consideration should also be given as to any qualification testing that may be needed to validate the Assumptions. Ask yourself, would you provide more justification if you were performing this analysis? If yes, the rationale is likely incom lete.

Ensure the documentation for source and rationale for the assumption supports the way the plant is currently or will be operated post change and they are not in conflict with any design parameters. If the Analysis purpose is to establish a new licensing basis, this question can be answered yes, if the assum tion su arts that new basis.

If there are unverified assumptions without a tracking mechanism indicated, then create the tracking item either through an ATI or a work order attached to the implementing WO. Due dates for these actions need to support verification prior to the analysis becoming operational or the resultant lant chan e bein o authorized.

The origin of the input, or the source should be identified and be readily retrievable within Exelon's documentation system.

If not, then the source should be attached to the analysis. Ask yourself, would you provide more justification if you were performing this analysis? If yes, the rationale is likely incom lete.

The expectation is that an Exelon Engineer should be able to clearly understand which input parameters are critical to the outcome of the analysis. That is, what is the impact of a change in the parameter to the results of the analysis? If the im act is lar e, then that arameter is critical.

Ensure the documentation for source and rationale for the inputs supports the way the plant is currently or will be operated post change and they are not in cont lict with any design parameters.

Yes I No I NIA

ATTACHMENT 2 CC*AA-103-1003 Revision 12 Page 8 of 11 Owner's Acceptance Review Checklist for External Design Analyses Page2 of 3 Design Analysis No.: QDC-6700-E-2173 Rev: 000 No 7

8 9

10 11 12 13 14 15 Question Are Engineering Judgments clearly documented and

  • ustified?

Are Engineering Judgments compatible with the way the plant is operated and with the licensing basis?

Do the results and conclusions satisfy the purpose and objective of the Desi n Anal sis?

Are the results and conclusions compatible with the way the plant is operated and with the licensin basis?

Have any limitations on the use of the results been identified and transmitted to the appropriate or anizations?

Have margin impacts been identified and documented appropriately for any negative impacts (Reference ER-AA-2007?

Does the Design Analysis include the applicable design basis documentation?

Have all affected design analyses been documented on the Affected Documents List (AOL) for the associated Conti uration Chan e?

Do the sources of inputs and analysis methodology used meet committed technical and regulatory re uirements?

Instructions and Guidance See Section 2.13 in CC-AA-309 for the attributes that are sufficient to justify Engineering Judgment. Ask yourself, would you provide more justification if you were performing this anal sis? If es, the rationale is likel incom lete.

Ensure the justification for the engineering judgment supports the way the plant is currently or will be operated post change and is not in conflict with any design parameters. If the Analysis purpose is to establish a new licensing basis, then this question can be answered yes, if the 'ud ment su orts that new basis.

Why was the analysis being performed? Does the stated purpose match the expectation from Exelon on the proposed application of the results? If yes, then the analysis meets the needs of the contract.

Make sure that the results support the UFSAR defined system design and operating conditions, or they support a proposed change to those conditions. If the analysis supports a change, are all of the other changing documents included on the cover sheet as im acted documents?

Does the analysis support a temporary condition or procedure change? Make sure that any other documents needing to be updated are included and clearly delineated in the design analysis. Make sure that the cover sheet includes the other documents where the results of this anal sis rovide the in ut.

Make sure that the impacts to margin are clearly shown within the body of the analysis. If the analysis results in reduced margins ensure that this has been appropriately dispositioned in the EC being used to issue the analysis.

Are there sufficient documents included to support the sources of input, and other reference material that is not readily retrievable in Exelon controlled Documents?

Determine if sufficient searches have been performed to identify any related analyses that need to be revised along with the base analysis. It may be necessary to perform some basic searches to validate this.

Compare any referenced codes and standards to the current design basis and ensure that any differences are reconciled.

If the input sources or analysis methodology are based on an out-of-date methodology or code, additional reconciliation may be required if the site has since committed to a more recent code Yes/ No IN/A

ATTACHMENT 2 CC*AA* 103*1003 Revision 12 Page 9 of 11 Owner's Acceptance Review Checklist for External Design Analyses Page3 of 3 Design Analysis No.: QDC-6700-E-2173 Rev: ooo No Question 16 Have vendor supporting technical documents and references (including GE DRFs) been reviewed when necessar ?

17 Do operational limits support assumptions and in uts?

Instructions and Guidance Yes I No IN/A Based on the risk assessment performed during the pre-job brief for the analysis (per HU-AA-1212}, ensure that sufficient reviews of any supporting documents not provided with the final analysis are performed.

Ensure the Tech Specs, Operating Procedures, etc. contain operational limits that support the analysis assumptions and in uts.

Create an SFMS entry as required by CC-AA-4008. SFMS Number: 52724

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE 2of18 I DESIGN ANALYSIS TABLE OF CONTENTS SECTION PAGE NO.

SUB-PAGE NO.

DESIGN ANALYSIS COVERSHEET 1

OWNER'S ACCEPTANCE REVIEW CHECKLIST FOR EXTERNAL 1A-1C DESIGN ANALYSES DESIGN ANALYSIS TABLE OF CONTENTS 2

1.0 Purpose 3

2.0 Inputs 3

3.0 Assumptions and Engineering Judgments 5

4.0 References 6

5.0 Identification of Computer Programs 8

6.0 Method of Analysis 8

7.0 Acceptance Criteria 11 8.0 Calculations and Results 11 9.0 Conclusions 18 10.0 Attachments 1a Attachment A-ETAP Output Reports A1-A18 Attachment B - References81-821 Attachment C - Passport Data - LOV Relay Settings C1-C17 Attachment D - Selected Pages from Calculations 9390-02-19-1 Rev.

01-04 003, 9390-02-19-2 Rev. 003, and 9390-02-19-3 Rev. 003

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE 3of18 I 1.0 PURPOSE The purpose of this calculation is to evaluate the loss of voltage (LOV) relay setpoint during a sustained degraded voltage event. The normal (non-accident) time delay associated with the second-level undervoltage relays (degraded voltage relays) could allow the voltage at the 4.16 kV buses to remain at low levels for an extended period of time. This low level of voltage could last as long as 332.3 (324+8.3) seconds (Ref. 4.2.1) before transfer of all safety-related loads to the emergency diesel generators. This calculation evaluates the LOV relay setpoint to ensure that the safety-related motors that may be running during normal conditions will continue to operate during the 332.3 second time delay without stalling or being damaged. This calculation will determine new analytical limits for the LOV relay.

2.0 INPUTS 2.1 Existing Loss of Voltage Relay Settings 2.1.1 EPNs:

1 (2)-6703-1 (2)3-127-1 1 (2)-6703-1 (2)3-127-2 1 (2)-6704-1 (2)4-127-1 1 (2)-6704-1 (2)4-127-2 (Ref. 4.3.4) 2.1.2 Nominal Setpoint: 83.7V (Ref. 4.3.4)

(The nominal setpoint is based on an overvoltage (OV) tap setting of 93V and an undervoltage (UV) setting of 90% of the OV setting. 93V*90%=83. 7V) 2.1. 3 PT Ratio: 35: 1 2.1.4 Total Error for the LOV relay: +/- 2.25V 2.2 Loss of Voltage Relay Available Settings 2.2.1 Taps for Overvoltage Setting:

(Ref. 4.3.4)

(Ref. 4.1.1) 55V, 64V, 70V, 82V, 93V, 105V, 120V, 140V (Ref. 4.4.1) 2.2.2 Undervoltage Setting as a Percent of Overvoltage Setting:

60%, 70%, 80%, 90%, 95%

(Ref. 4.4.2) 2.3 The following ECCS room coolers are the only directly connected safety-related motors that may be running during normal operation: (Ref. 4.3.1) 2.3.1 RHRS Emergency Air Handling Units, EPNs: 1 (2)-5746-A(B) 2.3.2 HPCI Emergency Air Handling Units, EPNs: 1(2)-5747 2.3.3 CS Emergency Air Handling Units, EPNs: 1(2)-5748-A(B)

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE 4of18 I 2.4 Data for the ECCS Room Coolers Per Passport, the following motors are Siemens type RGZESD motors:

BHP in% of Rated HP Rated Breakdown Torque Rated HP Service EPN (Input 2.5)

Voltage in % of Full Load (Input 2.5 &

(Input 2.5)

(Ref. 4.4.3)

Assumptions 3.2.1-3.2.2)

RHRS Emera. AHU 1A 1-5746-A 7.5 HP 460V 270%

84% (Assump. 3.2.1)

RHRS Emera. AHU 18 1-5746-8 7.5 HP 460V 270%

84% <lnout 2.5)

RHRS Emera. AHLI 2A 2-5746-A 7.5 HP 460V 270%

84% (Input 2.5)

RHRS Emerg. AHLI 28 2-5746-8 7.5 HP 460V 270%

84% {Input 2.5)

HPCI Emera. AHLI 1 1-5747 3 HP 460V 300%

100% (lnout 2.5)

HPCI Emerg. AHLI 2 2-5747 3 HP 460V 300%

100% {Input 2.5)

CS Emero. AHLI 1A 1-5748-A 5 HP 460V 300%

88% Clnout 2.5)

CS Emerg. AHLI 1 B 1-5748-8 5 HP 460V 300%

88% (Assump. 3.2.2)

CS Emern. AHLI 2A 2-5748-A 5 HP 460V 300%

CS Emera. AHLI 28 2-5748-8 SHP 460V 300%

2.5 ETAP data files transmitted via TOOi QDC-15-006 (Ref. 4.3.1)

QuadCities.lib QuadCitiesR008. MOB QuadCitiesR008.0TI Dated 12/10/2009 Dated 09/08/2014 Dated 09/08/2014 2.6 Degraded Voltage Relay (DVR) Settings (Ref. 4.2.1) 9:22 AM 3:49 PM 3:49 PM 2.6.1 Voltage allowable value: ::::: 3,885 V and s 3,948 V 2.6.2 Time delay allowable value (LOCA): ::::: 5. 7 s and s 8.3 s 2.6.3 Time delay allowable value (no LOCA): ~ 276 s and s 324 s

2. 7 Motor Thermal Overload Data (Refs. 4.1.6 and 4.3.6):

Rated TOLSize TOL Ultimate Service EPN Current (Ref. 4.1.6)

Trip Current (Ref. 4.3.7)

(Ref. 4.1.6)

RHRS Emera. AHLis 1(2)-5746-A(8) 9.5A C15.18 15.13A HPCI Emerg. AHLI 1-5747 3.9A C5.26A 5.26A HPCI Emera. AHLI 2-5747 3.6A C5.26A 5.26 A CS Emera. AHLis 1(2)-5748-A(B) 6.5A C9.55A 9.56A 88% {Input 2.5) 88% (Input 2.5)

TOL Trip Zone (Ref. 4.1.6) 8 c

c c

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE5of18 I 3.0 ASSUMPTIONS AND ENGINEERING JUDGMENTS 3.1 Assumptions Requiring Verification 3.1.1 None 3.2 Assumptions NOT Requiring Verification 3.2.1 It is assumed that RHRS Emergency AHU 1A can be modeled as operating at 84% of rated motor horsepower.

Basis: The existing ETAP model (Input 2.5) shows RHRS Emergency AHU 1A operating at rated horsepower (100% loading). The actual load on the RHRS Emergency AHU 1A motor was measured at 6.21 HP per WO 0478721 (Ref. 4.3.2), which is less than 84% of the motor rated 7.5 HP. Additionally, the remaining RHRS Emergency AHU's (18, 2A, and

28) are modeled in the existing ETAP model at 84% of rated horsepower.

All four RHRS Emergency AHU motors have similar fan loads and therefore the loading for RHRS Emergency AHU 1A can be modeled in ETAP at 84% of rated horsepower.

3.2.2 It is assumed that Core Spray Emergency AHU 1 B can be modeled as operating at 88% of rated motor horsepower.

Basis: The existing ETAP model (Input 2.5) shows CS Emergency AHU 18 operating at rated horsepower (100% loading). Current readings were taken on CS Emergency AHU 18 per WO 01388989 (Ref. 4.3.3) and the highest measured phase current was 4.8 A, which is 74% of the 6.5 A motor rated current. Conservatively assuming a maximum 110% motor voltage with the measured value of current results in less than 88%

loading (1.1x0.74=81.4%). Additionally, the remaining CS Emergency AHU's (1A, 2A, and 28) are modeled in the existing ETAP model at 88%

of rated horsepower. All four CS Emergency AHU motors have similar fan loads and therefore the loading for CS Emergency AHU 1 B can be modeled in ETAP at 88% of rated horsepower.

3.3 Engineering Judgments 3.3.1 The results of the transient EOG voltage dip analyses from diesel loading calculations 9390-02-19-1, 9390-02-19-2, and 9390-02-19-3 are used in this calculation. The Unit 1, Unit 2, and 1/2 diesel loading calculations are not maintained and have been superseded by ETAP calculation QOC-6700-E-1503; however, the ETAP calculation only calculates the steady state EOG loading and does not carry forward the transient EOG voltage dip analyses. The calculated worst case EOG voltage dips were based on the starting of large motors during both LOOP/LOCA and LOOP without LOCA and based on the running load at the time of the motor starts. The results of the transient voltage dip analyses from the diesel loading calculations are used in this calculation as the loading on the EOGs and the sequence of automatic large motor starts seldom change.

Furthermore, an exact value for the transient voltage dip is not needed as

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE6of18 I 4.0 the results are used to show that margin exists between LOV relay setpoint and the transient voltage dips.

REFERENCES 4.1 4.2 Calculations 4.1.1 Calculation QDC-6700-E-0939 Rev. 000, "Loss of Voltage Relay Setpoint for Buses 13-1, 14-1, 23-1, and 24-1 4.1.2 Calculation QDC-6700-E-1503 Rev. 008, "Analysis of Load Flow, Short Circuit and Motor Starting using ETAP PowerStation" 4.1.3 Calculation 9390-02-19-1 Rev. 003, "Diesel Generator 1 Loading Under Design Bases Accident Condition" (Selected page in Attachment*D) 4.1.4 Calculation 9390-02-19-2 Rev. 003, "Diesel Generator 2 Loading Under Design Bases Accident Condition" (Selected page in Attachment D) 4.1.5 Calculation 9390-02-19-3 Rev. 003, "Diesel Generator 1/2 Loading Under Design Bases Accident Condition" (Selected page in Attachment D) 4.1.6 Calculation QDC-7800-E-0612, Rev. 002, "Reactor Building Overload Heater Selection for Continuous Duty Motors Required During a LOCA" 4.1.7 Calculation 8913-67-19-4, Rev. 002, "Nonsize 2 Motor Control Center (MCC) Control Voltage Contactor Circuit Lengths Fed From Switchgear 18" 4.1.8 Calculation 8913-73-19-6, Rev. 003, "Nonsize 2 Motor Control Center (MCC) Control Voltage Contactor Circuit Lengths Fed From Switchgear 29" 4.1.9 Calculation 8913-69-19-4, Rev. 001, "Justification of the Adequacy of MCC Contactor Circuits fed from Switchgears 19 & 28" Technical Specifications 4.2.1 Technical Specifications 3.3.8.1, Table 3.3.8.1-1, "Loss of Power Instrumentation", Amendment No. 199/195 4.3 Station Documents and Standards 4.3.1 TOOi QDC-15-006, "ETAP Data Files" (Attachment 8, Pages B2-83) 4.3.2 WO 00478721, "Replace 1A RHR Room Cooler Motor" 4.3.3 WO 01388989, "Exhaust Fan and Room Cooler Motor lnsp (EQ}"

4.3.4 Passport Database-Loss of Voltage Relay Settings (Attachment C) 4.3.5 NES-EIC-10.02, Rev. 000, "Standard for Thermal Overload Relay

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE7of18 I Element Selection for Motor Operated Valves" 4.3.6 NES-EIC-10.03, Rev. 000, "Standard for Thermal Overload Relay Element Selection for Continuous Duty Motors" 4.3.7 Passport Approved Model List D033 Panel for 1(2)-5746-A(B), 1(2)5747, and 1(2)-5748-A(B); Component M10 4.4 Vendor Documents 4.4.1 General Electric Protection and Control Catalog, Catalog GEZ-7723F, Pages 10-3 to 10-6 (Attachment B, Pages B4-B7) 4.4.2 GEl-9081 OD, "General Electric Instructions for Voltage Relay IAV69A &

IAV69B" (Attachment B, Pages88-815) 4.4.3 Siemens 2007 Low Voltage AC Motors Selection and Pricing Guide (Attachment B, Page 816) 4.4.4 GE Drawing 231 HA165, Sheets 2 and 3 (Attachment 8, Pages 817-818) 4.4.5 GEK-34053G, "IAC51A8/5188/51 R/52A8/5288 Instruction Booklet" (Attachment B, Pages B 19) 4.4.6 GEK-86054C, "IAC66A/66B/66C Instruction Booklet" (Attachment B, Pages B20) 4.4.7 GEH-1790C, "PJC11A/11 B/12A/12B/14B/14D/14F Instruction Booklef' (Attachment B, Pages B21) 4.5 Miscellaneous References 4.5.1 IEEE Std. 141-1993, "IEEE Recommended Practice for Electric Power Distribution for Industrial Plants" 4.6 Station Drawings 4.6.1 4E-1393, Rev. AB, "Schematic Diagram Drywell Blowers, Purge Exh Fans and Air Handling Units" 4.6.2 4E-2393, Rev. AL, "Drywell Cooling and Purge ECCS Air Handling" 4.6.3 4E-1301 Sh. 5, Rev. A, "Bus 13 and Bus 14 Protective Relay Settings" 4.6.4 4E-1301 Sh. 6, Rev. A, "Bus 13-1 and Bus 14-1 Protective Relay Settings" 4.6.5 4E-2301 Sh. 7, Rev. A, "Bus 23 and Bus 24 Protective Relay Settings" 4.6.6 4E-2301 Sh. 8, Rev. A, "Bus 23-1 and Bus 24-1 Protective Relay Settings"

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE 8of18 I 5.0 IDENTIFICATION OF COMPUTER PROGRAMS 5.1 ETAP PowerStation Version 7.0.0N S&L Computer No. ZD9409, Program No.

03.7.696-7.00. (See last page of Attachment A for ETAP Audit Trail Information) 6.0 METHOD OF ANALYSIS This analysis will evaluate the safety-related motors that may be running during normal conditions during a severely degraded voltage condition that lasts for an extended period of time. The maximum normal (non-LOCA) degraded voltage time delay is 324 seconds for the DVR timer following the 8.3 seconds DVR time delay (Ref. 4.2.1 ). Therefore, the 4.16 kV bus voltage may drop below the DVR minimum allowable value but remain above the loss of voltage relay setpoint for as long as 332.3 (8.3+324) seconds. This analysis ensures that the safety-related motors that may be running during an extended degraded voltage event do not stall or trip due to thermal overload relay operation. The motor control circuits are evaluated. Finally the LOV relay settings are evaluated to ensure that

  • the relays due not spuriously operate during expected voltage transients.

6.1 Motor Stall Voltage Calculation The torque developed by a motor is proportional to the square of the voltage (Ref.

4.5.1 ). Based on this relation, Equation 1 is derived and used to determine the minimum motor voltage to preclude motor stalling:

Vmotor 2

OC Tmotor (Ref. 4.5.1)

(

Vstall )

2 T1oad Vrated = Tbreakdown Vstall =

Ttoad V:

...................._ X rated Tbrealcdown Equation 1 Where:

Vstall =

Minimum motor terminal voltage to preclude motor stalling Vrated =

Rated motor voltage T1oad =

Load torque of the motor (proportional to the motor BHP)

Tbreakdown =

Breakdown torque of the motor 6.2 Motor Terminal Voltage Evaluation The safety-related motors that may be running during normal conditions are first evaluated using the existing LOV relay settings, and then using new settings if necessary. The existing LOV relay setpoint was chosen such that it is bounded by the analytical limits plus the total error (Ref. 4.1.1 ). For the purpose of the motor stalling evaluation, this calculation will also consider time-voltage characteristics of the relay. The LOV relay operating time is not defined at the nominal setpoint.

Therefore, for a given setting, the time-voltage curves are used in order to determine a dropout voltage with a defined operating time.

l Analysis No. QDC-6700-E-2173 Revision 000 PAGE 9of18 l The station ETAP model (Input 2.5) is used to determine the downstream motor terminal voltages (for the motors identified in Input 2.3) with the 4.16 kV ESS buses fixed at the LOV relay setpoint (including the total error and time-voltage characteristics). The ETAP model (Input 2.5) is evaluated with the 4.16 kV ESS Buses (13-1, 14-1, 23-1, and 24-1) fixed at the LOV relay setpoint (including the total error and time-voltage characteristics). An infinite bus is connected to each of the four 4.16 kV ESS Buses in order to model a specific operating voltage. For each of the safety-related motors that may be running during normal conditions, a fictitious bus is added between the motor and its equipment cable in ETAP. These fictitious buses are needed to represent the motor terminals so that the motor terminal voltages appear in the ETAP load flow output reports. The fictitious buses are named using the motor load name with "-T" added to the end. The Unit 1 motor terminal voltages are evaluated using Scenario 1M1 SPLITL TCM, and the Unit 2 motor terminal voltages were evaluated using Scenario 2M1 SPLITL TCM from the ETAP calculation (Ref. 4.1.2). These scenarios model the normal Unit 1 and Unit 2 loading during Mode 1, split bus operation. The scenarios are modified by opening breakers to isolate the non-safety related buses such that only the 4.16 kV ESS busses and connected downstream buses are energized. The motor terminal voltages are compared to the minimum voltages required to preclude motor stalling for acceptability.

6.3 Motor Protective Device Evaluation The thermal overload (TOL) relays for the safety-related 480 V MCC motors that may be running during normal conditions are evaluated. The motors are protected by CR124 thermal overload (TOL) relays with non-ambient compensated CR123 TOL heaters. There are no normally running, safety-related 480 V switchgear motors or 4.16 kV switchgear motors. Calculation QDC-7800-E-0612, Rev. 002 (Ref. 4.1.6) selects the thermal overload heaters for the Reactor Building continuous duty motors required for operation during a LOCA. In order to ensure that safety-related loads are available, this calculation further evaluates the existing 460 V motor TOLs to ensure that they will not trip during a sustained low degraded voltage condition, which would prevent the loads from performing their intended safety functions.

The TOL trip curves are compared to the running motor currents (at tow voltage) to ensure that no TOL relays will trip on overload in less than 332.3 seconds, which is the maximum DVR time delay (Input 2.6). The TOL relay tripping characteristics are shown on GE Drawing 231HA165 (Ref. 4.4.4). On this drawing,

. the trip curves do not extend to less than 150% of the ultimate trip current for the heater, and therefore tripping times for slight overload conditions cannot be determined. by reading the curves directly. Per NES-EIC-10.02, Rev. 000 (Ref.

4.3.5) and NES-EIC-10.03, Rev. 000 (Ref. 4.3.6), a thermal overload relay operates as a constant 12T device. Therefore, the thermal energy developed during a degraded voltage condition, in terms of t2T, is compared to the 12T of the TOL relay. The TOLs are adequately sized if the following condition is met, shown in Equation 2:

Umotor)2 X 332.3 seconds < (/ 2T)roi.

Equation 2

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE 10of18 I

Where, lmotor =

332.3 s =

(l2T)roi =

motor running current during degraded voltage conditions (A) maximum DVR time delay (s) 12T value of the thermal overload heater (A2*s)

For low levels of motor overload current that persist for an extended period of time, as is the case during a sustained degraded voltage condition, some of the heat generated in the TOL heater will have time to dissipate to the environment.

As a result, the actual tripping time of a thermal overload relay, at these low levels of overload current, will be longer than what is determined by using the constant 12T value. This adds further conservatism to the results.

The TOL heater 12T values are determined using the methodology in NES-EIC-10.02, Rev. 000 (Ref. 4.3.5). Data points are read from the minimum trip curves, for each tripping zone, to calculate the 12T value of each TOL. There are slight variations in the values calculated for each data point due to inaccuracies in reading the curve and therefore the lowest calculated 12T value is used for conservatism. The TOL relay tripping curves and tripping zones for each TOL heater are shown on GE Drawing 231 HA165, Sheets 2 and 3 (Ref. 4.4.4) and the ultimate trip currents (UTC) are obtained from Calculation QDC-7800-E-0612, Rev. 002 (Ref. 4.1.6). The 12T value for each data point for each TOL heater is calculated using the following equation.

(/ 2Thoi = (lp.u. x UTC) 2 x Time Equation 3 The motor running currents at degraded voltage are calculated by considering the motors as constant kVA devices. As voltage decreases, the current will increase proportionately. Since the product of the motor power factor and efficiency can be closely approximated as a constant value, the motor current will vary in proportion to the loading. Therefore, the motor current is multiplied by the ratio of brake horsepower to rated horsepower. The motor current at degraded voltage is calculated using the following equation.

I Vrated J

BHP deg = -- X rated X --

V deg HP rated Equation 4

Where, ldeg =

lrated =

Vaeg =

Vrated =

BHP=

HPrated =

motor running current during degraded voltage conditions (A) motor full load current at rated voltage (A) motor terminal voltage during degraded voltage conditions (V) motor terminal rated voltage (V) motor brake horsepower (HP) motor rated horsepower (HP}

6.4 Motor Control Circuit Evaluation The motor control circuits for the safety-related 480 V MCC motors that may be running during normal conditions are evaluated to ensure that reduced voltages would not cause the motors to drop out due to contactors dropping out or due to blown control circuit fuses.

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE 11of18 I 6.5 Transient Voltage Dip Evaluation As described in Section 6.2, new LOV relay settings may be required to ensure that safety-related motors have adequate voltage during a severe degraded voltage condition. The voltage transient during a LOCA block start for Unit 1 and Unit 2 is evaluated to ensure the LOV relays due not spuriously actuate. Since the LOV relays are active when the 4.16 kV ESS buses are aligned to the emergency diesel generators (EOGs), the relays must not drop out for any expected EOG voltage transient. Therefore, the voltage transients due to large motor starts during a Loss of Offsite Power (LOOP) both with and without a Loss of Cooling Accident (LOCA) event are evaluated.

6.6 Coordination with Protective Devices The timing characteristics of the LOV relays (Ref. 4.4.2) are compared to the timing characteristics of the 4.16 kV ESS bus overcurrent protective relays (Refs.

4.4. 5-4.4. 7). Specifically, the fault clearing times of the protective relays feeding the motors on the 4.16 kV ESS buses and feeding the 480 VESS transformers are evaluated to ensure that a fault will be cleared before the LOV relays dropout on low voltage.

6. 7 Determination of Analytical Limits The existing LOV relay analytical limits are based on the existing nominal setpoint with a plus or minus 5% tolerance. The LOV relay voltage new analytical limits will be based on the nominal setpoint evaluated in this calculation, plus or minus 5%.

7.0 ACCEPTANCE CRITERIA 7.1 The setpoint for the loss of voltage relays must be high enough to prevent the stalling and tripping (due to thermal overload relay operation) of the safety-related motors that may be running during normal conditions and low enough to prevent spurious operation due to expected voltage transients.

8.0 CALCULATIONS AND RESULTS 8.1 Motor Stall Voltage Calculation The minimum motor terminal voltage to preclude motor stalling is calculated using Equation 1 from Section 6.1 and using the motor data from Input 2.4. Since the motor BHP is proportional to the torque, the BHP (in percent of rated HP) will be used for the load torque (in percent of full load torque).

Example calculation for RHRS Emergency AHU 1A:

Vstall =

Vstatl =

  • T1oad u

-..;.;;..--x Yrated Tbreakdown

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE 12of18 I The minimum stall voltages for the safety-related motors that may be running during normal conditions are shown in the following table.

Service EPN Stall VoltaQe RHRS Emer11. AHU 1A 1-5746-A 256.6 v RHRS Emerg. AHU 1 B 1-5746-B 256.6 v RHRS Emerg. AHU 2A 2-5746-A 256.6 v RHRS Emerg. AHU 28 2-5746-8 256.6 v HPCI Emera. AHU 1 1-5747 265.6 v HPCI Emerg. AHU 2 2-5747 265.6 v CS Emen:i. AHU 1A 1-5748-A 249.2 v CS Emeri:t. AHU 1 B 1-5748-8 249.2 v CS EmerQ. AHU 2A 2-5748-A 249.2 v CS Emera. AHU 28 2-5748-8 249.2 v 8.2 Motor Terminal Voltage Evaluation The existing minimum allowable value for the LOV relay Loss of Voltage Function is 2797 V per Technical Specifications Table 3.3.8.1-1 (Ref. 4.2.1). In order to take into account the timing characteristics of the relay, the vendor time voltage characteristic curves are used for the motor evaluation. The existing GE IAV69 LOV relay nominal setpoint is 90% of the 93V tap (Input. 2.1 ). Based on the IAV69 relay time-voltage curves in the vendor manual (Ref. 4.4.2), the relay operating time is not defined at the nominal setpoint. The time-voltage curves show that the 90% time-voltage curve is defined for voltages between 0% (at 2.1 seconds) of tap value and 86% (at 11 seconds) of tap value (Ref. 4.4.2). The highest defined point on the curve (86% at 11 seconds) is used in order to have a defined operating time associated with the relay operation. The total negative error for the LOV relay is 2.25Vand the PT ratio is 35:1(Input2.1). Therefore, the 4.16 kV ESS bus voltage used in ETAP for the motor evaluation is calculated as follows:

V@ns = ((OViap

  • 86%)- Error] X PT Ratio V@us = [(93V x 86%) - 2.25V] x 35 = 2720V (Note that the value above is conservatively rounded down to the nearest volt.)

The ETAP model (Input 2.5) is evaluated with the 4.16 kV ESS Buses (13-1, 14-1, 23-1, and 24-1) fixed at a voltage of 2720 V. The ETAP Load Flow Output Reports are included in Attachment A. A review of the motor voltages in the load flow reports shows that the motors have either marginal voltage or insufficient voltage to preclude stalling with the 4.16 kV ESS at 2720V. The results are shown in the following table on the next page.

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE 13of18 I Load Motor Stall Voltage Reference for Scenario Terminal Terminal (ETAP Bus Name)

Voltage (Ref. Section 8.1)

Voltaae RHRS Emera AHU 1A -T 1M1 SPLITL TCM 253 256.6 v Att. A, Page A4 RHRS Emerg AHU 1 B - T 1M1 SPLITL TCM 261 256.6 v Att. A, Pai:ie A4 RHRS Emeri:i AHU 2A -T 2M1 SPLITL TCM 251 256.6 v Att. A Page AS RHRS Emera AHU 28 - T 2M1 SPUTL TCM 25S 256.6 v Att. A, Pai:ie AS HPCI Emera AHU #1 -T 1M1SPLITLTCM 267 265.6 v Att. A, Page A4 HPCI Emera AHU #2 - T 2M 1 SPLITL TCM 267 265.6 v Att. A, Page AS CS Emerg AHU 1A-T 1M1 SPLITL TCM 252 249.2 v Att. A Pai:ie A4 CS Emera AHU 18 - T 1 M1 SPLITL TCM 264 249.2 v Att. A, Page A4 CS Emerg. AHU 2A -T 2M 1 SPLITL TCM 251 249.2 v Att. A, Page AB CS Emerg. AHU 28 -T 2M1SPLITLTCM 259 249.2 v Att. A Paae AS In order to increase the motor terminal voltage, the next {higher} available relay setting is examined. Per the IAV69 relay vendor manual {Ref. 4.4.2} the next available setting, utilizing the same 93V tap, is 95% of 93V (93V*95% = 88.35V setpoint}. The 95% time-voltage curve is defined for voltages between 0% {at 1.1 seconds} of tap value and 90% (at 7 seconds) of tap value. The highest defined point on the curve {90% at 7 seconds) is used for the evaluation. The total negative error for the LOV relay is 2.25V and the PT ratio is 35:1 (Input 2.1 }.

Therefore, the 4.1'6 kV ESS bus voltage used in ETAP for the motor evaluation is calculated as follows:

V@1s = [(OVtap

  • 90%)- t'rror] x PT Ratio V@1s = [(93V x 90%) - 2.2SV) x 35 = 28SOV The ETAP Load Flow Output Reports are included in Attachment A. The following table lists the motor terminal voltages with the 4.16 kV ESS Buses fixed at 2850 V.

As shown in the following table, all motors have terminal voltages greater than their respective stall voltages.

Load Motor Stall Voltage Reference for Scenario Terminal Terminal (ETAP Bus Name)

Voltage (Ref. Section 8.1)

Voltage RHRS Emera AHU 1A -T 1M1SPLITLTCM 273V 256.6 v Att. A, Paae A12 RHRS Emera AHU 1 B - T 1M1 SPLITL TCM 280V 256.6 v Att. A, Pa!le A 12 RHRS Emera AHU 2A -T 2M1SPLITLTCM 271 v 256.6 v Att. A, Paae A 16 RHRS Emera AHU 28 -T 2M1 SPLITL TCM 277V 256.6 v Att. A, Paae A 16 HPCI EmerQ AHU #1 -T 1M1SPLITLTCM 286V 265.6 v Att. A, Page A12 HPCI Emera AHU #2-T 2M1 SPLITL TCM 286V 265.6 v Att. A, Paae A 16 CS Emera AHU 1A-T 1M1SPLITLTCM 272V 249.2 v Att. A, Paae A12 CS Emerg AHU 18 - T 1M1SPLITLTCM 283V 249.2 v Att. A Page A12 CS Emerg. AHU 2A - T 2M1 SPLITL TCM 271 v 249.2 v Att. A, Page A 16 CS Emerg. AHU 28 - T 2M1 SPLITL TCM 279V 249.2 v Att. A Pai:ie A16

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE 14 of 18 I 8.3 Motor Protective Device Evaluation Section 8.2 of this calculation determined that none of the safety-related motors that may be running during normal conditions will stall with a 4.16 kV ESS bus voltage of 2850 V. Per Input 2.6, the maximum normal (non-LOCA) degraded voltage time delay is 8.3 seconds for the DVR time delay plus 324 seconds for the external DVR timer, for a total time of 332.3 seconds. Therefore, the TOL trip curves are compared to the running motor currents {with the 4.16 kV ESS buses operating at 2850V) to ensure that no TOL relays will trip on overload in less than 332.3 seconds, which is the maximum DVR time delay.

The 12T value for each data point for.each TOL heater is calculated using the methodology in Section 6.3, and the results are shown in the following tables.

Trip Zone B (Input 2.7)

Size CIS.I B 'IOL (Input 2.7)

Minimum Trip Curve Volues (RHR Fmerg. AH Us)

Ul11mnte ir1p Current (A) 1lme (s)

Current (p.u.)

(Input 2.7) 12T(A2*s *IO')

I I.I 600%

91.48 15.5 500%

88.71 23 400%

15.13 84.24 41 300%

84.47 100 200%

91.57 Trip Zone C (Input 2.7)

Size C9.55A 'IOL (Input 2.7)

Minimum Trip Curve Values (CS F.merg. AH Us)

Ulhmote 1r1p C.:urrent (A) 1lme (s)

Current (p.u.)

(Input 2.7) 12T(A2*s *IO')

16.5 600%

54.29 23 500%

52.55 33.5 400%

9.56 48.99 57 300%

46.88 127 200%

46.43 Trip Zone C (Input 2.7)

Size C5.26A lOL (Input 2.7)

Minimum Trip Curve Values (HPCI Fm erg. AH Us)

Ultimate 1r1p t.:urrent (A) 1lme (s)

Current (p.u.)

(Input 2.7) 12T(A2'S *IO')

16.5 600%

16.43 23 500%

15.91 33.5 400%

5.26 14.83 57 300%

14.19 127 200%

14.06 The lowest calculated 12T value for each heater, from the tables above, is conservatively rounded down and used as the constant 12T value for that heater.

'IOL 12T(A2*s *IO')

Cl5.IB 84 C9.55A 46 C5.26A 14

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE 15of18 I Load RHR Emerg AHU I A RHR Emerg AHU I B RHR Emerg AHU 2A RHR Emerg AHU 26 CS Emerg AHU I A CS Emerg AHU I B CS Emerg AHU 2A CS Emerg AHU 26 HPCI Emerg AHU I HPCI Emerg AHU 2 The motor running currents at degraded voltage are calculated using Equation 4 from Section 6.3. The motor terminal voltages are obtained from Section 8.2 with the 4.16 kV ESS buses operating at 2850 V. The motor rated current, TOL heater sizes, and TOL heater ultimate trip current are obtained from Input 2.7. The thermal energy developed during a degraded voltage condition, in terms of 12T, is calculated using the square of the motor running current times the total DVR time delay of 332.3 seconds. This motor 12T is compared to the 12T of the TOL relay using Equation 2 from Section 6.3. As shown in the table below, the thermal overload relays, for the safety-related motors that may be running during normal conditions, will not trip.

Rnted Terminal

'Jl) L Current Voltage Calculated Ultimate

'Jl)L BHP/

  • ,,....i "d*g Running

'Jl) L Trip Tl'ip HP (A)

(V)

Current Siu Cul'l'ent Zone Cnlculated Input Input Section ld<g(A)

Input (A)

Input Motor PT

'Jl) L PT EPN 2.4 2.7 8.3 F.qn. 4 2.7 Input 2.7 2.7 (A1*s*IOJ)

(A2*s*I OJ) 1-5746-A 84%

9.5 273 13.45 C15.IB 15.13 B

60.080 84 1-5746-B 84%

9.5 280 13.11 Cl5.IB 15.13 B

57.113 84 2-5746-A 84%

9.5 271 13.55 Cl5.IB 15.13 B

60.970 84 2-5746-B 84%

9.5 277 13.25 CIS.lB 15.13 B

58.357 84 1-5748-A 88%

6.5 272 9.67 C9.55A 9.56 c

31.096 46 1-5748*6 88%

6.5 283 9.30 C9.SSA 9.56 c

28.725 46 2-5748-A 88%

6.5 271 9.71 C9.55A 9.56 c

31.326 46 2-5748-B 88%

6.5 279 9.43 C9.55A 9.56 c

29.555 46 1-5747 100%

3.9 286 6.27 C5.26A 5.26 c

13.075 14 2-5747 100%

3.6 286 5.79 C5.26A 5.26 c

11.141 14 The above table shows that the motor TOL relays will not trip before the DVRs dropout.

During a loss of voltage event that does cause the LOV relays to dropout, the running motors may briefly stall before the degraded voltage source is disconnected from the buses. The time delay associated with the LOV relay is dependent on the level of undervoltage. It was shown above that no motors will stall and that the TOLs will not trip when the 4. 16kV ESS buses were at voltages above 2850V. The time-voltage curve of the LOV relay was evaluated in Section 8.2 and a voltage of 2850 V was derived in order to evaluate a voltage that had a defined relay operating time associated with it. The value of 2850V corresponded to relay operating time of approximately 7 seconds. In order to provide margin for any timing tolerances, which are not published by the vendor, a time of 1 O seconds is assumed where the motors may stall before the LOV relays dropout.

The motors would be available to restart once the buses were repowered by the EDGs as long as no TOL relays tripped on overcurrent. Therefore, the TOL trip curves are compared to the motor locked-rotor current to ensure that no TOL relays will trip in less than 10 seconds. This is conservative because the motor current during a stall at reduced voltages will be lower than locked-rotor current at rated voltage. Based on GE Drawing 231 HA165, Sheet 2 (Ref. 4.4.4), the minimum trip current for Zone B TOL heaters, at 1 O seconds, is 635% of the ultimate trip current. The minimum trip current for Zone C TOL heaters, at 10 seconds, is 785% of the ultimate trip current. The TOL heaters are evaluated in

'Jl)L Relny Trip?

No No No No No No No No No No

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE 16of18 I Lond the following table. As shown in the table on the next page, the minimum trip current for all TOL heaters is greater than 1000% of motor full load current. This is greater than the motor locked-rotor current at reduced voltages and is acceptable.

Calculated Trip Current Rated Motor TOL TOLUltimnte Trip (A)

Current Size Trip Current TOLTrip Current at (UTC* Trip Trip Current (A)

Input (A)

Zone 10 seconds Current@

(%of Motor Full Input. 2.7 2.7 Input 2.7 lnput2.7 (%orUTC)

I Os)

Load C11rre1tt)

RHR EmergAHUs 9.5 CIS.18 15.13 B

635%

96.08 1011%

CS Emerg AH Us 6.5 C9.55A 9.56 c

785%

75.05 1155%

HPCI Emerg AHU I 3.9 C5.26A 5.26 c

785%

41.29 1059%

'!PC! Emerg AHU 2 3.6 C5.26A 5.26 c

785%

41.29 1147%

8.4 Motor Control Circuit Evaluation The motor control circuits, for the safety-related 480 V MCC motors that may be running during normal conditions, are powered from control power transformers (CPTs) off the MCCs. Therefore, the degraded voltage at each MCC will result in a corresponding reduction in control power voltage. For the GE 100 line starters (Size 1) used in the MCCs for the motors being evaluated, the pick-up voltage is 85% and drop out is 63% of the 11 SV coil rated voltage (Refs. 4.1. 7-4.1.9). The turns-ratio of the control power transformer in each circuit is approximately 3.8.

The affected motors are fed from MCCs 18-1A, 19-1, 28-1A and 29-1. As seen from the ETAP analysis (see Attachment A), the lowest voltage at MCCs 18-1A, 19-1, 28-1A and 29-1 is 280 V. Neglecting the voltage drop through the CPT and control cables, the minimum required MCC voltage to prevent contactor dropout would be approximately 276 V (63% x 115V x 3.8 = 276V). This leaves I 1 V1t1cc-Vmin 280V-276V f

. fo approximate y V (

. =

= 1.0SV) o margin r voltage drop CPT Turns Ratio 3.8 within the control circuit. Since the power requirement of the contactor during holding is small compared to the power requirement during energization, it is expected that the control circuit voltage drop will be small, but this would need to be further evaluated due to the available voltage margin. However, without further evaluating the control circuit, if decreased voltage at the MCCs did cause the contactors to dropout, all motors would be automatically available for restart once voltage was restored. Therefore, no further evaluation is performed.

The contactor coils would not be damaged due to decreased voltage. The control circuit for each motor includes a contactor in series with a temperature switch, and in some cases, an interposing auxiliary relay, which provides alarm functionality only {Refs. 4.6.1-4.6.2). The MCC voltages are below the pick-up voltage for the contactor coils, which may prevent a motor from starting, but the contactor coil would not be damaged during a low degraded voltage condition. Since the contactor would not pick-up, the associated load would not energize and not see a starting transient. None of the control circuits contain fuses, and therefore there is no risk of motors being unavailable due to blown fuses.

8.5 Transient Voltage Dip Evaluation Section 8.2 determined a new LOV relay setpoint required to ensure that safety-related motors do not stall. This new setpoint is further evaluated to ensure that

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE 17of18 I the LOV relays will not spuriously dropout for any expected voltage transient.

The LOV relays must not dropout for any expected EOG voltage transients. Diesel generator loading calculations 9390-02-19-1, 9390-02-19-2, and 9390-02-19-3 (Refs. 4.1.3-4.1.5) determined the largest expected voltage transients due to large motor starts on the EDGs. The calculations analyzed both LOOP/LOCA and LOOP without LOCA scenarios. The calculation results, for each EOG during the LOOP/LOCA scenario, show that the voltage recovers to more than 84% of 4.16 kV within one second following the start of any large 4 kV motor (Refs. 4.1.3-4.1.5). For LOOP without LOCA, the results of each calculation show that voltage recovers to more than 84% of 4.16 kV within one second following the start of the RHR service water pump motor (Refs. 4.1.3-4.1.5). Therefore, the 4.16 kV ESS bus voltage will recover above 3494 V (84% of 4.16 kV) within one second following the largest expected EOG voltage transient. This EOG recovery voltage value is greater than the maximum dropout voltage of the recommended LOV relay setpoint as shown below.

'Vrecovery = 3494V Vmax.dropout = [(OVtap

  • 95%) + 2.25V] X 35 = 3171 V The initial EOG transient voltage dip due to large motor starts, before one second has elapsed, will be less than 3494V. This dip is acceptable since it will be of a short duration (less than one second) and below the time-voltage characteristic curve of the LOV relay (Ref. 4.4.2) with the relay set at 95% of 93V.

The Unit 1, Unit 2, and 1/2 diesel loading calculations have been superseded by ETAP calculation QDC-6700-E-1503 (Ref. 4.1.2); however, the ETAP calculation does not maintain the transient voltage dip analysis. Per Engineering Judgment 3.3.1, the transient voltage dip analysis from the diesel loading calculations can be used for this evaluation. Furthermore, there is margin between the expected EOG voltage transient and the dropout voltage of the LOV relay.

Calculation QDC-6700-E-1503, Rev. 008 (Ref. 4.1.2) evaluates the voltage drop on the 4.16 kV ESS buses during LOCA block starts to ensure that the voltage at those buses recovers before the degraded voltage relays separate the buses from the degraded grid condition. The ETAP output reports from Calculation QDC-6700-E-1503, for the block start analyses, were reviewed. These reports include the ~OCA block start analyses for Unit 1 and Unit 2 with the reserve auxiliary transformer load tap changers in both automatic and manual mode. The voltage drop on the 4.16 kV ESS buses during the evaluated LOCA block starts remained above the maximum dropout voltage of the LOV relays.

8.6 Coordination with Protective Devices The phase protective relays feeding the motors on the 4.16 kV ESS buses and feeding the 480 V ESS transformers are GE IAC-51 and GE IAC-66 relays (Refs.

4.6.3-4.6.6). Based on the instantaneous time-current curves for these relays, the operating time is less than 0.02 seconds for any pickup setting (Refs. 4.4.5-4.4.6).

I Analysis No. QDC*6700*E*2173 Revision 000 PAGE 18of18 I The ground protective relays feeding the motors on the 4.16 kV ESS buses and feeding the 480 VESS transformers are GE PJC-11 relays (Refs. 4.6.3-4.6.6).

Based on the instantaneous time-current curve for this relay, the operating time is less than 0.05 seconds for any pickup setting (Refs. 4.4. 7). The LOV relay dropout time is greater than 1 second for all operating voltages. Therefore, the instantaneous units for the protective relays feeding the motors on the 4.16 kV ESS buses and feeding the 480 V ESS transformers will clear faults faster than the LOV relays will dropout on low voltage.

8.7 Analytical Limits Consistent with the existing LOV relay settings, the upper and lower analytical limits for the LOV relay are selected as +/-5% of the recommended LOV relay nominal setpoint as shown below:

ALii = 93V x 95%

  • 35 * (100% - 5%) = 2938V ALui = 93V x 95%
  • 35 * (100% + 5%) = 3246V The safety-related motors that may be running during normal conditions were evaluated in Section 8.2 and shown not to stall with the 4. 16 kV ESS buses (i.e.

13-1, 14-1, 23-1, and 24-1) fixed at a voltage of 2850 V. The worst case expected EOG transient voltage dip was shown to recover above 3494 V in one second in Section 8.5. These voltage values are bounded by the selected lower and upper analytical limits for the LOV relay.

9.0 CONCLUSION

S 9.1 This calculation evaluated the LOV relay setpoint to ensure that the safety-related motors that may be running during normal conditions will continue to operate during the maximum 332.3 second degraded voltage time delay without stalling or tripping due to thermal overload relay operation. A setpoint of 88.35 V (93V OV tap, 95% UV setting) with +/-5% tolerance for the LOV relays was found to be high enough to prevent the stalling and tripping of safety-related motors that may be running during normal conditions and low enough to prevent spurious operation due to expected voltage transients. This satisfies the acceptance criteria. New upper and lower analytical limits for the LOV relay were calculated as 3246 V and 2938 V, respectively.

10.0 ATTACHMENTS A) ETAP Output Reports B) References C) Passport Data - LOV Relay Settings D) Selected Pages from Calculations 9390-02-19-1 Rev. 003, 9390-02-19-2 Rev. 003, and 9390-02-19-3 Rev. 003

I Analysis No. QDC-6700-E-2173 Revision 000 Attachment A PAGEA1 ofA18 J Attachment A ETAP Output Reports Load Flow Report Page 4.16 kV Bus Voltage 1M1SPLITLTCM (Unit 1 Mode 1)

A2 2720V 2M1SPLITLTCM (Unit 2 Mode 1)

A6 2720 v 1M1SPLITLTCM (Unit 1Mode1)

A10 2850V 2M1SPLITLTCM (Unit2Mode1)

A14 2850V

Project:

QundCities Location:

Cordova, IL Contract:

Engineer:

Filename:

QUADCITIESR008 LOV ETAP 7.0.0N Study Case: JM I Split M Calculation QDC-6700-E-2173 Revision 000 Attachment A Page A2 Of A18 Page:

Date:

SN:

05-08-2015 SARGENTLDY Revision: Base Contig.:

UIMl_U2sdwnL IMISPLITLTCM, 4.16 kV ESS Buses at 2720V, Ul Ml, Split loading, Unit 2 shutdown LOAD FLOW REPORT Bus Voltage Generation Lond Load Flow XFMR ID kV kV Ang.

MW Mvar MW Mvar ID MW Mvar Amp

%PF

%T;1p

  • 4.16kV SWOR 13-1
  • 4.J6kV SWOR 23*1
  • 4.16kV SWGR 24-1 4.16kV SWOR 31 125VDC Chgr I Term 125V DC Chgr2 T*-nn 250V DC Chge I Term 250V DC Chgr 2 T L'll11 4KOV Die.id 131dg MCC 480V Oaichou1c MCC 480V MCC I 0-1 480V MCC 18119*5 480V MCC 18*1A 480V MCC 18* Ill 4BOV MCC 18*2 48UV MCC 18*3 480V MCC I B*4 4KOV MCC 19-1 480V MCC 19-2 4.160 2.720 4.160 2.720 4.160 2.720 4.160 2,720 4.160 2.719 0,480 0.27K 0.480 0.273 0.480 0.277 0.480 0.273 0.480 0.305 0.480 0.306 0.0 0.0 0.0 o.o 0.0
  • K.J

-8.6

-8.5

-8.K

-2.8

-2.8 0.480 0.314

-0.8 0.480 0.281

  • 8.3 OA80 0.261
  • I 1.6 0.480 0.256
  • I 1.9 0.480 0.263
  • I 1.4 0.480 0.258
  • 12.1 0.480 0.266
  • 11.4 0.480 0.280
  • 8.4 0.480 0.280
  • 8.5 1.268 J.205 0.738 0.845 0

0 0

0 (I

(I 0

0 0

0 0

0 0

0 0

0 1.150 0.!128 0.605 0.736 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0.029 (J.029 0.070 0.070 0.033 0.249

(),()')2 ll.026 0.085 0.186 0.088 0, 135 0.003 0.046 0.029 0 XFMR 18 llV XFMR I llV XFMR IOHV N.EDGl/2 Term 0 XFMR 19HV XFMR Gnlch(IUSc llV 4.16kV SWGR 31 0 XFMR28 HV XFMR 2lJ llV 0 XFMR29HV 0 XFMR3011V 4.16kV SWOR 14-1 0.015 4KOV MCC 19*2 0.014 480V MCC 29*2 0.037 480V MCC 19-2 0.036 480V MCC 29--2 0.026 480V Gatchollo;e MCC 0.154 480V Dic.o;el Bldg MCC 480VTSCMCC Xl'!.iR Gatehouse II V 0.088 Xl'MR 10 UV 0,016 480 V SWGR 19 0.052 480 V SWOR 18 RllRS EmcrgAllU IA *T 1.063 0.113 0.093 0.000 0.834 0.343 0.029 0.738 0,000 0.845 0.029 0,985 0.073 0.092 o.ooo 0.670 0,239 0.019 0.605 0.000 0.736 0.019

  • 0.029

-0.019

  • 0,029

..(),OJ 5

-0.029

..(1,014

-0.070

..(J,037

-0,070

-0.036

-0.033

-0.026 0.033 0.026 0.054 U.031

  • 0.336

-0.211

-0.092

-0.088

-0.026

  • 0.016

-0.095

  • 0.058 0.005 0.004 CorcSpry Emerg Al IU I A *T 0.004 0.003 0.103 480 V SWOR 18
  • 0.186

.O.I03 0.062 480 V SWOR 18

  • 0.088

-0.062 U.076 480VSWGRl8

  • 0.137

-0,078

!l.002 11.002 N.EDG112Luh<.'<)il 0.ll03 480 V SWOR 18 0.029 480 V SWGR 19

-0.003

-11.003

  • 0.059

-11.(137 CurcSpry Emerg AllU 111 -T 0.004 lll'CI Emerg AlllJ #I -T 11.1!03 RJJRS Emcrg AlllJ JB Term 0.006 11.0l 7 250V DC Chgr I Tenn 125 V DC Ch gr I Tenn 0.071 11.()29 0,003 O.<Kl2 11.()[14 0.1138 O.OIS 307.6 73.3 28.5 83.8 27.7 71.2 0.0 0.0 227.0 77.9 88.7 82.0 7,3 83.4 202.6 77.3 0,0 0.0 237.8 75.4 7.3 83.3 7.3 83.3 67.7 89.4 68.6 89.9 165.4 88.4 167.2 88.8 79.7 78.3 79.7 78.3 117.8 86.6 749.S 84.7 234.2 72.2 62.6 85.6 245.8 85.4 14.4 84.0 11.0 86.0 478.9 87.5 235.1 81.9 351.9 86.8 5,6 67.2 10.0 75,0 143.6 84.8 10.5 86.8 6.7 83.8 14.0 85.4 165.4 88.4 67.7 89.6

Project:

Quad Cities Location:

Cordova, IL Contract:

Engineer:

Filename:

QUADCITIESROOS LOV ETAP 7.0.0N Study Cnse: IM I Split M Calculation QDC-6700-E-2173 Revision 000 Attachment A Page A3 of A18 Page:

Dare:

SN:

2 05-08-2015 SARGENTLDY Revision: Base Config.:

UIMl_U2sdwnL IMISPLITLTCM, 4.16 kV ESS Buses at 2720V, UI Ml, Split loading, Unit 2 shutdown Bus Vollnge Generntion Load Lond Flow XFMR ID kV kV Ang.

MW Mvar MW Mvar ID MW Mvar Amp

%1'1'

%Tap

~~~~~~~~~~

~~

~~

~~-

-~~~~-

-~~

~~~~~~~~~~-

-~~

~~-

-~-

-~~-

480V MCC t9-3 480V MCC 19-4 480V MCC t9*6 480V MCC 20*1 480V MCC 28129-5 480V MCC 28-1 A 480V MCC 28* IB 4ROV MCC 28-2 480V MCC 28-3 480V MCC 29*1 480V MCC 29-2 480V MCC 29-3 480V MCC 29-4 480V MCC 29-6 480V MCC30 480V Pn12251-100 480V Pump House Dist 4ROV Relay I louse Dist 480VSWGR 18 480 V SWOR 19 0.480 0.277 0.480 0.275 0.480 0.274 0.480 0.322 0.480 0.279 0.480 0.285 0.480 0.283 0.480 0.285 0.480 0.285 0.480 0.279 0.480 0.275

-8.2

-8.3

-8.4 0.0

-8.5

-7.4

-7.4

-7.3

-7.4

-8.5

-8.8 0.480 0.275

-8.4 0.480 0.275

-8.4 0.480 0.272

-8.6 0.480 0.318

-0.3 0.480 0.266

-11.4 0.480 0.286 0.1 0.480 0.286 0.1 0.480 0.266

-11.4 0.480 0.283

-8.3 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 II 0

0 0

0

[}

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0.056 0.090 0.131 0

0 0.073 0.135 0.044 0.053 0.041 0.026 0.062 0.060 0.124 0.028 0

O.D83 0.020 0.362 0.3119 480 V SWGR 19 0.035 480 V SWGR 19 0.049 480V SWGR 19 O.o78 480 V SWGR 19 O XFMR20HV 0 480 V SWOR 29

-0.129

-0.069

-0.056

-0.035

-0.090

-0.049

-0.131

-0.078 0.000 0.000 0.000 0.000 0.045 RHRS Hmerg AHU 2A Term 0.006 0.004 480 V SWGR 28

-0.079

-0.049 0.081 480VSWOR28

-0.135

-0.081 0.033 480 V SWGR 28

  • 0.044

-0.033 0.034 480 V SWGR 28

-0.053

-0.034 0.028 480 V SWOR 29

-0.041

-0.028 0.015 250V DC Chgr2 Tenn 0.071 0.037 125V DCChgr2 Tenn 0.029 0.014 480V SWGR 29 0.039 480 V SWOR 29 0.037 480 V SWGR 29 0.077 480 V SWOR i9 0.019 XFMR 30 llV O 480VSWGR18 O.Cl49 480V Relay House Dist XFMR I LV O.OI 8 480V Pump l!OlL~C Disc 0.263 480V MCC 18-2

-0.126

-0. 066

  • 0.062

-0.039

  • 0.060
  • 0.037

-0.124

-<l.077

-0.028

-0.019 0.000 0.000 0.020 0.018

-0.102

-0.067

.tJ.020

-ll.018 ll.089 0.1162 302.1 88.3 137. l 85.0 214.8 87.9 321.4 85.8 0.0 0.0 0.0

-93.0 13.8 85.4 187.5 85.0 321.4 85.7 110.8 110.0 127.7 84.0 103.6 82.9 167.2 88.8 68.6 90.0 298.4 88.6 153.6 85.0 148.5 85.0 310.3 85.0 61.6 83.7 0.0

().()

53.7 74.7 247.2 83.8 53.7 74.7 235.l Kl.II 480V MCC 18*3 0.140 0.082 351.9 86.2 480V MCC IH-4 480V MCC 18-113 480V MCC 18-IA 480V Pnl 2251-JIJO XFMR 1811V ESS UPS 90!-63 Tenn N.lnst AirCompr 112 0.187 480V MCC 19-4 480V MCC 19-3 480V MCC 19*6 480V MCC 19*2 48UV MCC 19-1 480V MCC 18119-5 0.003 0.003 I 0.0 75.0 0.192 0.108 478.9 87.I 11.097 0.059 245.8 85.2 0.()(Xl IJ.0110 0.0 0.0

-1.021

  • 0.625 2599.1 85.3 0.050 t).(105 I 09.4 99.5 0.089 0.042 213.6 90,4 11.093 0.057 0.135 0.131 11.060 0.026 0.050 11.035 0.081 11.070 0.037 0.016 214.8 87.9 137.l 85.1 321.4 85.7 302.l 88.2 143.6 84.7 62.6 85.6 I.

Project:

Quad Cities Location:

Cordova, IL Contract:

Engineer:

Filename:

QUADCITIESROOS_LOV ETAP 7.0.0N Study Case: I Ml Split M Calculation QDC-6700-E-2173 Revision 000 Attachment A Page A4 of A18 Page:

Date:

SN:

3 05-08-2015 SARGENTLDY Revision: Base Config.:

UIMI_U2sdwnL IMISPLITLTCM, 4.16 kV ESS Buses at 2720V, Ul Ml, Split loading, Unit 2 shutdown Bus Volloge Generntion Lood Load Flow XFMR

,_o ____ ~

~

Ang. ~

~

~

~

1_0 ______

M_w __

M_v:_ir ___

Am_P __

'Vc_.1_*F ___

'Vc_*1_*~_P_

4RO V SWGR 28 0.480 0.286

-7.3 4HOV SWGR29 0.480 0.279

-8.S 480V TSCMCC 0.480 0.306

-2.8 Con:Spl)' Emcrg AlllJ I A *T 0.480 0.252

  • I 0.5 Con:Spry Emerg AllU IB *'I' 0.480 0.264

-6.5 ESS IJ PS 901-63 Tenn ESS UPS 902-63 Term l'PClgWul'mp2B JIPCI Emerg AHU #I -T N.EDGl/21.ubcOil N. EOG 112 Term N.Inst Air Compr 112 RI IRS Emcrg AflU I A -'I' IUI RS Emcrg AHU 113

  • T 0.480 0.266

-11.4 0.480 0.286

-7.3 0.480 0.276

-8.4 0.480 0.267

  • 6.6 0.480 0.258
  • 12.1 4.160 2.720 0.0 0.460 0.266
  • 11.4 0.4RO 0.253
  • 10.5 0.480 0.261

-5.9 RllRS Emcrg AHU IB Tenn 0.460 0.266

-6.6 Rl!RS Emcrg AllU 2A -T 0.480 0.265

-4.9 Rll RS Emerg AllU 2A Term 0.480 0.277

-6.5 XFMR 1 llV 4.160 2.708 0.1 Xl'MR 11.V 0.480 0.309

  • 0.2 XFMR IOllV 4.160 2.717 0.0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

()

Cl 0

0 0

()

0 0

0 0

0 0

0 0

0 0

0 0

0 0

()

()

0.351 0.341 0.054 0.004 0.004 0.050 0.050 0.057 0.003 0.002

()

0.089 0.005 0.005 0

0.005 0

0 Cl 0

XFMR 19 HY 0.244 480V MCC 28-2 480V MCC 28-1 B 480V MCC 28-3 480V MCC 28* I A XFMR281!V ESS UPS 902-63 Tenn 0.236 480V MCC 28/29*5 480V MCC 29.4 480V MCC 29*3 480V MCC 29*6 FPClgWtrl'mp211 480V MCC 29*2 480V MCC 29-1 Xl'MR29HV 0.031 480V Gatehouse MCC 0.003 480V MCC 18-IA 0.003 480V MCC 19* I

-0.811 0,044

-0.477 1918.4 86.2 0.033 110.H 80.0 0.136 0.082 321.4 85.6 0.053 0.034 127. 7 84.0 0.079 0.049 187.5 84.9

  • 0.720

-0.450 1712.2 84.8 0.050 0.007 I 02.2 98.9 0.000 0.000 0.0

  • 93.0 0.061 0.038 148.5 85.1 0.063 0.039 I 53.6 85.1 0.128 0.079 310.3 84.9 0.058 0.036 140. 7 85.3 0.128 0.068 298.4 88.3 0.042 0.028 103.6 82.9
  • 0.820

-0.524 2009.K 84.3

-0.054

.(1,031 117.8 86,6

  • 0.004

-0.()()3 11.0 85.0

.(l,004

-0.003 I0.5 85.0 0.005 480 V SWGR 18

-0.050

  • 0.005 109.4 99.5 0,007 480 V SWGR 28
  • 0.050

-0.007 0.035 480 V SWOR 29

.IJ.057

-0.035 0.002 480V MCC 19* I

-O.<I03

  • Cl.002 0.002 480V MCC I R-3

-O.<I02

-O.Cl02 0 4.16kVSWGR 13-1 0.000 0.000 0.042 480 V SWGR 18

  • 0.089

-0.042 0.004 480V MCC 18-1 A

-0.005

  • 0.004 0.004 RllRS Emerg AHU 113 Term

-0.005

  • 0.004 0 RllRS Emerg AllU IB *T 480V MCC 19* I 0.005 0.004

-0.005

-0.004 0.004 RllRS Emcrg AHU 2A Term

  • Cl.005
  • Cl.004 0 4HOV MCC 28*1 A RllRS Emerg AllU 2/\\

4ROV Ptunp House Dist XFMR 1 llV 0 4,16kV SWGR 13*1 4BOV MCC 10-1

-0. 006

  • O.ll04 0,006 0.0Cl4

-0.112

-0.073 0,112 O.tll

-0.111 0.073 O.Cl72

  • 0.072

-0.093

  • 0.092 0,093 Cl.!192 102.2 98.9 140.7 85.2 6.7 82.0 5.6 67.2 0.0 0.0 213.6 90.4 14.4 83.0 14.0 83.0 14.0 83.7 14.0 83.7 13.8 83.0 13.H 84.5 13.8 84.5 28.5 83.K 211.5 83.ll 247.2 84.1 247.2 84.1 27.7 71.2 27.7 71.2
  • 2.51Xl

Project:

Quad Ci1ies Location:

Cordova, IL Comract:

Engineer:

Filename:

QUADCITIESROOB_LOV ETAP 7.0.0N Study Case: IM I Split M IMISPLITLTCM, 4.16 kV ESS Buses at 2720V, Ul Ml, Split loading, Unit 2 shutdown Bus Voltage Generation Loud Calculation QDC-6700-E-2173 Revision 000 Attachment A Page AS of A18 Page:

4 Date:

05-08-2015 SN:

SARGENTLDY Revision: Base Config.:

UIMI U2sdwnL Loud Flow XFMR 10 ____ ~

~

Ang. ~

~

~

Mv:1r u_J ______

M_w __

M_vi_*r ___

11_m_P __

  • ._,r_F _*;._,,_*up_

XFMR 18 HV 4.160 2.718 0.0 0

0 XFMR 19JIV 4.160 2.716 0.0 0

0 0

XFMR20HV 4.160 2.720 0,0 0

0 0

XFMR28HV 4.160 2.717 0.0 0

0 0

Xl'MR29JIV 4.160 2.719 0.0 0

0 0

XFMR30HV 4.160 2.719 0.0 0

0 XfMR Gntcholl<e llV 4.160 2.714 0.0 0

0 0

  • lndiculcs a vollagc regulaled hIB ( vollngc conlrolled or swing lype machine conncc1cd 10 ii)
  1. Indicates a bus wilh a loud misma1cb of more than 0.1 MVA Cl 4.16kV SWOR 13*1 480V SWOR 18 0 4.16kV SWOR 14-1 480 V SWGR 19 0 4.16kV SWOR 23-1 480V MCC 20-1 n 4. I 6kV SWGR 23* I 480V SWGR 28 o 4.16kV SWOR 24-1 4HOV SWGR 29 0 4.16kV SWGR 31 480V MCCJO O 4.16kVSWGR 14-1 480V Outchouse MCC

-1.062

-0. 984 1.062 0.984

-0.833

-0.669 0.833 0.000 0.000 0,669 0.000 0.000

-0. 737

-0.605 0.737 0.605

-0.844

-0. 736 0.844 0.736

-0.029

-0.019 0.029 0.019

  • 0.342
  • O. 239 0.342 0.239 307.6 73.4 307,6 73.4 227.0 78.0 227.0 78.0 0.0 0.0 0.0 0.0 202.6 77.3 202.6 77.3 237.R 75.4 237.9 75.4 7.3 83.3 7.3 83.3 88.7 82.0 88.7 82.0
  • 2.SOO
  • 2.SOO

-2.500

  • 2.500

-2.500

  • 2.500

-2.500

Project:

Quad Cities Location:

Cordova, IL Contract:

Engineer:

Filename:

QUADCITIESR008 _ LOV ETAP 7.0.0N Study Case: 2M!Split M Calculation QDC-6700-E-2173 Revision 000 Attachment A Page AG of A18 Page:

Date:

SN:

05-08-2015 SARGENTLDY Revision: Bnse Contig.:

U2Ml_UlsdwnL 2MISPLITLTCM, 4.16 kV ESS Buses at 2720V, U2 Ml, Split loading, Unit I shutdown LOAD FLOW REPORT Bus Voltage Generation Lond Load Flow XFMR ID kV kV Ang.

MW Mvar MW Mvar II)

MW Mvar Amp

%PF

%Tap

~~~~~~~~~~

~~

~~

~~-

-~~

~~--~~

~~~~~~~~

~~-

-~~

~~-

-~-

-~~-

  • 4.16kV SWGR 24*1 4.16kV SWOR JI t 25VDC Chgr t Tenn I 25V DC Chgr 2 Tenn 250V DC Chgr t Tenn 250\\1 DC Chgr 2 Tenn 480\\1 Diesel Bldg MCC 480V Gatehouse MCC 480V MCC 10-1 480V MCC 18119*5 480V MCC 18-IA 480V MCC 18*1B 480\\1MCC18*2 480\\1MCC18-3 4HOV MCC 18*4 480V MCC 19*1 480\\1 MCC 19-2 4HOV MCC 19*3 48UV MCC 19*4 4XUV MCC 19-6 480V MCC 20-1 4.160 2.720 4.160 2.720 4.160 2.720 4.160 2.720 4.160 2.719 0.480 0.275 0,480 0.276 0.480 0.274 0.480 0.276 0.480 0.310 0.480 0,311 0.480 0.322 0.480 0.278 0.480 0.278 0,0 0.0 0.0 0.0 0,0
  • 8.8
  • 8.1

-9.0

  • 8.2

-1.9

-1.9 0.0

-8.8

-8.0 0.480 0.276

-8.1 0.480 0.281

-7.9 0.480 0.280

-8. I 0.480 0.282

-7. 9 0.480 0.277

  • 9.0 0.480 0.277

-9.0 0.480 0,274

-8. 7 0.480 0,274

  • 8. 7 0.480 0.271

-8.!l 0.48CJ 0.3 14

-0.8 0.892 1.137 1.047 0.798 0

0 0

0 0

0 0

0 0

0 0

0 0

Cl 0

0 (J

()

Cl 0

0.744 0.909 0.934 0.684 0

0 0

0 0

0 0

0 0

0 0

0 0

()

(J 0

0 0

0 0

0 0

0 0

0 0.029 0.029 0.070 0.070 0.034 0.158 0

0.026 0.087 0.124 0.053 0.060 0.004 0.072 0.029 0.056 0.062 0.131 0.(193 O Xl'MR 18 HV XFMR I HV XFMR IOHV 0 XFMR 19HV Xl'MR Gatehouse II V 4.16kV SWGR 31 0 XFMR 28 llV XFMR20HV N.EDG 112 Tenn 0 XFMR2911V 0 XFMR30HV 4.16kV SWOR 14-1 0.014 480V MCC 19*2 0.014 480V MCC 29-2 0.037 480V MCC 19-2 0.037 480V MCC 29-2 0.027 480V GatchO!l~e MCC

0. !02 4ROV Dic.~cl IJldg MCC 480V TSCMCC XFMR Gatchou.w HV 0 XFMR IOllV 0.016 480 V SWGR 19 0.053 480 V SWGR 18 RllRSEmergAllU IA-1' 0.077 480 V !IWGR 18 O.<J41 480 V SWGR IK 0.035 480 V SWGR 18 0.003 480 V SWOR 18 CUl45 480 V SWGR 19 0.017 250V DC Chgr I Tenn 125\\IDC Chgr I Tenn 480 V SWGR 19 O.o35 480 V SWOR 1\\1 0.039 4HO V SWlill 19 U.o7H 4HO \\I SWOR 19 0.08\\1 XFMR 20 llV 0.777 0.115 0.000 0.877 0.231 0.029 0.953 0.094 0.000 0.798 0.029 0.669 0,075 0.000 0.727 0.162 0.0!9 0,842 0.092 0.000 0.684 0.019

-0.029

-0.019

-0.029

-0.014

-0.029

-0.0l 4

-0.070

-(J.03 7

-0.070

  • 0.03 7

-0.034

-0.027 0.034 0.027 0.037 0.020

-0.228

-0.150 0,000 0.000

-0.026

-Cl.Cll 6

-0.092

-0.056 0,005 0.004

-0.124

-0.077

-0.053

-0.041

-0.060

  • 0.035

-0.004

-0.003

-0.072

-0.045 (l,(l7J 0.037 0.029 0.014

-0.129

-0.(lll8

-0.056

-0.035

-0.062

  • 0.039

-0.13 I

-Cl.078

-0.093

  • O.OK\\I 217.7 75,8 29.1 83.9 0.0 0.0 241.9 77.0 60.0 81.8 7.3 83.4 270.0 74.9 27.9 71.3 0.0 0.0 223.1 15.9 7.3 83.3 7.3 83.3 68.3 89.7 611.1 89.6 166.7 K8.7 166.0 88.5 80.6 78,3 80.6 78.3 77.9 87.4 506.8 83,7 Cl.Cl 0.0 63.3 85.6 223.8 85.4 13.5 83.9 305.5 85.0 137.7 19.5 144.0 86.5 10.6 75.0 178.2 84.8 166.7 88.7 68.3 8\\1.8 304.3 H8.5 138.6 85.0 153,\\1 85.0 325.1 K5.8 236.2 72.3

Project:

Quad Cities Location:

Cordova, IL Contract:

Engineer.

Filename:

QUADCITIESROOS_LOV ETAP 7.0.0N Study Case: 2M I Split M Calculation QDC-6700-E-2173 Revision 000 Attachment A Page A7 of A18 Page:

Date:

SN:

2 05-08-2015 SARGENTLDY Revision: Base Config.:

U2Ml_UJsdwnL 2MJSPLITLTCM, 4.16 kV ESS Buses at 2720V, U2 Ml, Split loading, Unit I shutdown Bus Voltnge Generation Load Load Flow XFMR ID kV kV Ang.

MW Mvar MW Mvar JD MW MV'Jr Amp

%1'1'

%Tap 480V MCC 28129-5 4KOV MCC 28-IA 480V MCC 28-1 B 480V MCC 28*2 480V MCC 28-3 480V MCC 29-1 480V MCC 29*2 480V MCC 29-3 4KOV MCC 29-4 480V M!.:C 29-6 480V MCCJO 480V Pnl 2251-100 480V Ptonp Hl11LW Dist 4KOV Relay llousc Dist 480V SWGR 18

~KO V SWGR 19 480V SWGR 28 0.480 0.282 0.480 0.272

  • 8.0
  • 9.9 0.480 0.270

-10.0 0.480 0.272

  • 9.9 0.480 0.271
  • 9.9 0.480 0.281

-8.0 0.480 0.278 0.480 0.278 0.480 0.278 0.480 0.275 0.480 0.318 0.480 0.274 0.480 0.285 0.480 0.285 0.480 0.283 0.480 0.280 11.480 0.274

-8.2

-7.9

-7.9

  • 8.0
  • 0.3
  • 9.8 0.1 0.1

-7.9

-8.8

.'J.8 0

0 0

0 0

0 0

0 0

()

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

(I 0

0 0

0 (I

0 0.072 0.170 0.074 0.116 0.042 0.026 0.062 O.<l60 0.124 Cl028 0

0.082 0.022 0.368 0.308 0.424 0 480 V SWGR 29 0.045 RHRS llmerg AHU 2A Tenn 0.000 0.006 0.000 0.004 0.0 0.0 14.5 85.6 480 V SWGR 28

  • O.ll82
  • 0.051 205.3 HS.I CoreSpry llmeig AllU 2A *T 0.005 0.003 I I.I 87.3 0.1113 480 V SWGR 28 0.051 480 V SWOR 28 Cl.073 480 V SWOR 28 0.029 480 V SWGR 29 CoreSpry fimcrg AllU 2B *T llPC! Emerg AHU #2 -T RllRS limcrg AllU 2B Tenn 0.015 250V DC Chgr 2 Tenn 125V DC Chgr2 Tenn 480VSWGR29 0.039 480 V SWGR 29 0.037 480 V SWGR 29 0.011 480 v swan 29 0.019 Xl'MR 30 HV 0 480 V SWOR 28 0.049 480V Relay House Di~l XFMR l LV 0.019 480V Pump Ho11ore Dl~t 0.265 480V MCC 18-2 480V MCC 18-3 480V MCC 18-4 480V MCC 18-IB 480V MCC 18*1A XFMR !81!V ESS UPS 901-63 T*=
0. I H7 4SOV MCC 19*4 4ROV MCC 19*3 480\\1MCC19*6 l'PClgWtrl'mpl H 4HOV MCC 19-2 480V MCC 19* I 480V MCC 18119.5 XFMR llJllV 0.279 480V MCC 28-2
  • 0.170

-0.103

  • 0.074
  • 0.051

-0.l l 6

  • 0.073

-0. 055

.o. 036 0.005 0.003 0.006 0.071 0.003 0.002 0.004 ll.037 0.029 0.014

-0.126

-0.067

-0.062

-0.039

-0.060

-<l.037

-0.124

-0.077

-0.028

-<>.019 0.000

!>.CIOO 0.022 0.019

-0.104

-0.068

-ll.022

-0.019 0.054 0.041 426.0 85.5 190.9 82.3 291.7 84.6 135.9

83. 7 IO. 7 87.4 6.2 86.5 14.2 85.9 166.0 88.5 68.I 89.7 296.3 88.4 152.1 RS.O 147.0 85.0 307.I 85.0 61.6 83.7 0.0 0.0 58.9 75.8 252.4 83.8 58.9 75.8 137.7 79.5 0.061 0.036 144.0 H6.3 0.004 0.(mJ 10.6 75.0
0. I 27 0.079 305.S 84.8 0.093 0.057 223.8 85.2

-0.756

-0.489 1839.S 84.0 0.050 C>.007 I 03.4

99. I 0.064 0.039 153.9 HS.I 0.057 Cl.DJS 138.6 HS. I 0.135 (J.081 325.1 85.7 0.057 O.D35 137.6 85.3
0. I 30 0.069 304.3 RH.4 ll.073 0.1>46 I 78.2 84.6 C>.026 0.016 63.3 85.6
  • O.H5 I
  • 0.508 21>44.0 HS. 9 0.074 0.051 190.9 82.2

Project Quad Cities Location:

Cordova, IL Contract:

Engineer:

Filename:

QUADCITIESROOS_LOV ETAP 7.0.0N Study Case: 2M I Split M Calculation QDC-6700-E-2173 Revision ODO Attachment A Page AB of A18 Page:

Date:

SN:

3 05-08-2015 SARGENTLDY Revision: Base Config.:

U2Ml_UlsdwnL 2MISPLITLTCM. 4.16 kV ESS Buses at 2720V, U2 Ml, Split loading, Unit I shutdown Bus Voltage Generntion Land Land Flow XFMR n_J ______

kv __

kv __

A_n_g_. _~_1w __

M_var __

M_w __

M_v,_ir ______

10 ____ ~

Mv~r ~

%1'1'

%Tup 480 V SWGR 29 0.480 0.282 480V TSCMCC 0.480 0.311 Con:Spry Emcrg AHU 2A -T 0.480 0.251 Con:Spry Emcrg AlllJ 2B -T 0.4~0 0.259 ESS IJPS 901-63 Tenn ESS UPS 902-63 Tenn FPClgWtrl'mplB lll'CI Emerg Al!U #2 *T N.EDGl/2 Tenn RllRS llmcrg AHU I A.'f IUIRS Emcrg AHU 2A *T 0.480 0.283 0.480 0.274 0.480 0.278 0.480 0.267 4.160 2.720 0.480 0.271 0.480 0.251 RI IRS Emcrg Al IU 2A Tenn 0.480 0.264 RllRS Emcrg AHU 2B *T 0.4KO 0.258 Rims Emerg AlllJ 213 Tenn 0.460 0.263 XFMR 1 llV 4.160 2.707 XFMR I LV 0.480 0.309 XFMR IOllV 4.160 2.720 XFMR 18 llV 4.160 2.718 XFMR 1911V 4.160 2.716

-8.0

-1.9

-7.3

-5.4

-7,9

-9.K

-8.8

-6,3 0.0

-7.1

-7.1

-8.9

-4.9

-5.7 0,1

-0.2 0.0 0.0 0,0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

(J 0

0 0

0 0

0 0

0 0

0

()

{)

0 0

0 0.341 0.037 0.0Cl4 0.004 0.050 0.050 0.056 0.002 0

0.005 0.005 0

0.005 0

0 0

0

()

0 480V MCC 28-1 B 480V MCC 28*3 4SOV MCC 28-1 A 480V l'nl 2251*100 XFMR 28 llV ESS UPS 902-63 Tenn 0,236 480V MCC 28129*5 480V MCC 29-4 480V MCC 29-3 480V MCC 29-6 480V MCC 29*2 480V MCC 29-1 XFMR 29 llV CJ. 020 480V Galehlluse MCC 0.003 480V MCC 28* I A 0.003 480V MCC 29-1 0.172 0.105 426.0 R5.4 0.117 0,074 291.7 84.5 0.083 0.051 205.3 85.0 o.ooo a.mo o.o o.o

-0.921

-0.567 2281.3 85.1 0.050 0.006 I 06.5 99,3 0.000 0.000 o.o 0.0 0.061 0,038 147.0 85.1 0.063 0.039 152.1 85.1 0.128 (J.079 307.1 84.9 0.128 U.068 296.3 88.2 0.056 0.036 135.9 83.7

-0. 776

-0.497 I HHS. I 84.2

-0.037

-0.020 77.9 87.4

-0.004

  • 0.ll03 I I.I ll5.0

-0.0(14

-0.003 10.7 85.0 0.007 480 V SWGR 18

-0.050

-0.007 103.4 99.1 O.IJ06 480 V SWGR 28

-0.050

-0.006 O.o35 480 V SWGR 19

-0.056

-O.o35 0.002 480V MCC 29* 1

-0.002

-0.002 O 4.16kV SWOR 23-1 0.000 0.000 0.004 4ROV MCC 18*1A

-0.005

..(J.004 0.004 IUIRS Emerg AllU 2A Tenn

-(l.005

-0.004 0 4KOV MCC 28-I A

  • O. 006

-0. lJ04 RllRS Emcrg AllU 2A -T 0.(1(16 0.004 0.004 ltHRS Emerg 1\\HU 211 Tenn

  • 0.005

-0.004 0 RllRS l~ncrg MIU 2B -T 480V MCC 29*1 O 4.16kVSWGR 13-1 XFMR 1 LV O 4KOV Piunp 11 nusc Di<t XFMR 1 llV 0 4.!6kV SWOR 13-1 480V MCC Ill-I 0 4.16kV SWOR 13-1 480 V SWGR 18 O 4.16kV SWtill 14-1 4KO V SWGR llJ 0.005 O.ll04

-0.005

-0.004

-0.114

-0,075 0.114 0.114 0.()75 0.073

-0.114

-0.073 0,000 0,000

  • 0.777 0,777 0.000 0.000

-0.669 0.669

  • ll.K76

-0.726 0.K76 0.726 1()6.5 99.3 137.6 85.3 6.2 85.0 0.0 0.0 13.5 83.0 14.5 83.0 14.5

84. 7 14.S 84.7 14.2 83.0 14.2 KJ.8 14.2 K3.K 29.I 83.8 29.1 83.8 252.4 K4. I 252.4 84.1 0.0 0.0 0.0 0.0 217.7 75.K 217.7 75.K 241.9 77.0 241.\\1 77.0
  • 2.500
  • 2.500
  • 2.5110

Project:

Location:

Contract:

Engineer:

Filename:

Quad Cities Cordova, IL QUADCITIESROOS_LOV ETAP 7.0.0N Study Case: 2M 1 Split M 2MISPLITLTCM, 4.16 kV ESS Buses at 2720V, U2 Ml, Split loading, Unit l shutdown Bus Voltage Generation Load Calculation QDC-6700-E-2173 Revision 000 Attachment A Page AS of A18 Page:

4 Date:

05-08-2015 SN:

SARGENTLDY Revision: Base Conlig.:

U2MI _UlsdwnL Load Flow XFM.R l_D ____ ~

~

Ang. ~~~~

II_) ____ ~~~

%1'1'

%Tup XFMR20HV 4.160 2.717 0.0 0

()

0 XFMR2811V 4.160 2.716 0.0 0

0 0

XFMR29f!V 4.160 2.719 0.0

()

0 0

XFMRJOHV 4.160 2.719 0.0 0

0 0

XFMR Gatehouse !IV 4,160 2.716 0.0

()

0 0

  • Indicates a volUlge regulated b11* ( voltage controlled or swing type machine connected lo ill

~ Indicates a bus with a load mismatch of more than 0.1 M VA 0 4.16kV SWOR 23*1 480V MCC 20* 1 0 4.16kV SWOR 23*1 480VSWGR28 o 4.16kV SWGR 24*1 480VSWGR 29 0 4.16kV SWGR 31 480V MCC30 O 4.16kV SWGR 14*1 480V Gatehouse MCC

-0.094

  • 0.092 0.094 0,092

-0.952

  • 0.841 0.952 0.841

-0. 797

-0.684 0.797 0.684

-0.029

  • O.Ol 9 0.029

-0.231 0.231 0.019

-0.162 0,162 27.9 71.3 27.9 71.3

  • 2.500 270.0 75.0 270,0 75.0

-2.500 223.1 75.9 223.J 75.9

  • 2.500 7.3 83.3 7.3 83.J
  • 2.500 60.0 Kl.8 60,0 81.8
  • 2.500

Project:

Quad Cities Location:

Cordova, IL Contract:

Engineer:

Filename:

QUADCITIESR008 LOV ETAP 7.0.0N Study Case: JM I Split M Calculation QDC-6700-E-2173 Revision 000 Attachment A Page A10 of A18 Page:

Date:

SN:

I 05-08-2015 SARGEN11..DY Revision: Base Config.:

UIMl_U2sdwnL IMISPLITLTCM, 4.16 kV ESS Buses at 2850V, Ul Ml, Split loading, Unit 2 shutdown LOAD FLOW REPORT Bus Voltage Generation Load Load Flow XFMR ID kV kV Ang.

MW Mvar MW Mvar ID MW Mvar Amp

%1'1'

%Tap

.. l.16kV SWOR 13-1

  • 4.16kV SWOR 23-1
?50V DC Chgr I Tenn 250V DC Chgr 2 Tenn 480V Diesel Bldg MCC 480V Gatehouse MCC 480V MCC 10-1 480V MCC t8119-5 480V MCC 18-IA 480V MCC 18-IB 480V MCC 18-2 480V MCC 18-3 480V MCC 18-4 480V MCC 19-1 480V MCC 19-2 4.160 2.850 4.160 2.850 4.160 2.850 4.160 2.850 4.160 2.849 0.480 0.295 0.480 0.291 0.480 0.295 0.480 0.291 0.480 0.320 0.480 0.321 0.0 0.0 0.0 0.0 0.0

-1.S

  • 7.7

-7.6

  • 7.8

-2.7

-2.7 0.480 0.330

  • O. 7 0.480 0.298

-1.S 0.480 0.280

-I 0.5 0.480 0.276

-10. 7 0.4KO 0.282

-10.3 0.480 0.:?78

-10.\\1 0.480 0.:?84

-10.3 0.480 0.298

  • 7.6 0.480 0.:?98
  • 1.1 1.283 1.227 0.746 ll.844 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 1.125 0.928 0.598 0.718 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0.029 0,029 0.070 0.070 0.036 0.261 0.093 0.026 0.087 Cl.189 0.!192 0.137 (l.004 0.(J47 0.030 0 XFMR 18 HV XFMR I flV XFMR 10 HV N.EDGl/2 Tenn 0

X~"MR 19HV XFMR GmcholL<e llV 4.16kV SWGR 31 0 Xl'MR28HV XFMR20llV 0 XFMR29HV 0 XFMR30HV 4.16kV SWGR 14-1 0.016 480V MCC 19-2 0.015 480V MCC 29-2 CJ.040 480V MCC 19-2 0.040 480V MCC 29-2 0.028 480V Gatehouse MCC o.161 480V Diesel 131dg MCC 4KOVTSCMCC XFMR Gatehouse llV 0,089 XFMR 10 llV Cl.016 480 V SW(iR 19 0.053 480 V SWGR 18 RHRS Emcrg AHU IA-T CorcSpry Emcrg AHU I A -T Ci.103 480 V SWGR 18 0.065 480 V SWGR 18

!Hl77 480V SWGR 18 N.EDGl/21.ubcOil 0,003 480 V SWG R 18

o. 029 480 V SW<JR 19 CorcSpry Emerg Al llJ I B :r lll'CI Emcrg AllU #I *T RllRSEmcrgAllU IBTcm1 O.Ol 7 J5CIV DC Chgr I Tenn I 25VIX: Chgr I Tenn 1.074 0.115 0.094 0.000 0.838 0.360 0.029 0.746 0.000 0.844 0.029 0.958 0,015 0.092 0.000 0.659 0.250 0.019 0.598 0.000 0.718 0.019
  • 0.029
  • 0.019
  • 0.029

-<l.016

-0.029

.().015

.(1.070

-0.040

  • 0.070
  • 0.040

-0.036

-0. 028 0.036 0.029 0.057 0.033

  • 0.354

-0.222

-0.093

  • 0.089
  • 0.026
  • O.Ol 6
  • 0.096
  • 0.059 O.CI05 Cl.004 0.004 0.003
  • 0.189

-O. I03

-0.092

  • 0.065
  • 0.138
  • 0.079 0.002 0.002

-0.004

.().003

..fl.060

.(),(137 0.004 0.003 Cl.006 0.071 0.029 0,003 0.002 0.004 0.(141 Cl.016 291.6 74.6 27.8 83.7 26.7 71.3 0.0 0.0 215.9 78.6 88.8 82.1 7.1 83.3 193.8 78.0 0.0 0.0 224.5 76.2 7.1 83.3 7.1 83.3 64.8 87.9 65.4 88.3 15K.5 86.8 159.8 87.1 82.4 7K.3 82.4 78.3 117.3 86.7 750.6 84.7 225.5 72.2 58.4 85.4 232.4 85.4 13.4 83.9 10.2 85.9 451.0 87.9

~29.5 81.6 331.1 86.9 5.2 67.2 J<J.7 75.0 136.4

84. 7 9.8 86.5 6.3 83.5 13.1 KS.I ISK.5 86.8 64.K KM.I

Project:

Quad Cities Location:

Cordova, IL Contract:

Engineer:

Filename:

QUADCIT!ESROOS_LOV ETAP 7.0.0N Study Case: IM I Split M Calculation QDC-6700-E-2173 Revision 000 Attachment A Page A 11 of A 18 Page:

Date:

SN:

2 05-08-2015 SARGENTLDY Revision: Base Config.:

UIMl_U2sdwnL IMISPLITLTCM, 4.16 kV ESS Buses at 2850V, Ul Ml, Split loading, Unit 2 shutdown Bus Voltage Generation Load Load Flow XFMR ID kV kV Ang.

MW Mvar MW Mv11r ID MW Mvur Amp

%PF

~'aTnp 480V MCC 19*3 480V MCC 19-4 480V MCC 19-6 480V MCC 20-1 4ROV MCC 28/29-5 480V MCC 28* I A 480V MCC28-IB 480V MCC 28*2 480V MCC 28-3 480V MCC29*1 480V MCC 29-2 4KOV MCC 29-J 4HOV MCC 29-4 4ROV MCC 29-6 480V MCC30 480V Pnl 2251-100 480V Pump Hm1..: Dist 480V Relay House Dist 480 V SWOR 18 48DVSWOR 19 0.480 0.295

-7.4 0.480 0.293

-7.5 0.480 0.292

-7.6 0.480 0.337 0.0 0.480 0.297

-7.6 0.480 0.302

-6. 7 0.480 0.30 I

-6.8 0.480 0.302

-6. 7 0.480 0.302

-6. 7 0.480 0.297

  • 7. 7 0.480 0.293
  • 7.9 0.4KO 0.293

-7.6 0.480 0.294

-7.6 0.480 0.290

  • 7. 7 0.480 0.333

-0.3 0.480 0.285

  • 10.3 0.480 0.301 0.1 0.480 0.301 0.1 0.480 0.285
  • I 0.3 0.480 0.301

-7.5 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

()

0 0

0 0

0 0

0 0

0 0

0 0.056 0.091 0.131 0

0 0.074 0.135 0.047 0.054 0.042 0.027 0.062 0.(160 0.124 0.029 0

0.083 0.(122 0.368 0.31_4 480V SWGR 19

  • 0.131

-0.074 0.035 480 V SWOR 19

-0.056

-O.Q35 0.049 480 V SWGR 19

-0.091

-0.049 O.D78 480 V SWGR 19

  • 0.131

-0.078 0 XFMR 20 HV 0.000 0.000 0 480 V SWGR 29 0.000 0.000 0.046 Rims Emcrg AllU 2A Tenn o.006 0.004 480 V SWGR 28

  • 0.080
  • 0.050 0.081 480 V SWGR 28
  • 0.135

-0.081 0.035 480 V SWGR 28

  • 0.047
  • 0.035 0.035 480 V SWGR 28

-0.054

-0.035 0.028 480 V SWGR 29

-0.042

  • 0.028 0.016 250V DC Chgr 2 Tenn 0.071 0.040 125V DC Chgr 2 Tenn 4ROV SWGR29 0.039 480 V SWOR 29 CU>37 480 V SWOR 29 0.077 480 V SWGR 29 0.019 XFMR 30 HV 0 480 V SWOR 18 0.049 480V Relay HmL'C Di*t Xl'MR I LV 0.019 480V Pump House Disl 0.266 480V MCC 18*2 0.029 0.016
  • 0.127

-0.071

-0.062

  • 0.039

-0.060

-0.037

-0.124

  • 0. 077

-0.029

-0.019 0.000 0.000 0.022 0.019

-0.105

-0.069

-0.022

-0.019 0.092 0.066 290.9 87.1 128.8 85.0 20J.6 88.1 JOl.6 85.8 0.0 0.0 0.0 0.0 12.9 85.1 179.7 84.9 302.5 85.7 111.4 79.7 123.2 8J.9 98.8 82.9 159.8 87.1 65.4 88.4 Z85.9 87.3 144.0 85.0 139.3 85.0 290.6 85.0 60.2 83.6 0.0 0.0 56.4 75.I 240.7 83.6 56.4

75. I 229.5 81.S 480V MCC 18-3 0.141 0.082 331.1 86.3 480V MCC 18-4 480V MCC 18-IB 480V MCC 18-IA 480V l'nl 2251-100 XFMR 1811V l!SS UPS 901-63 T~nn N.lnsl Air Compr 112 0.190 480V MCC 19*4 480V MCC 19-3 480V MCC 19*6 480V MCC 19-2 4HOV MCC 19-1 4HOV MCC 18119-5 0.004 0.003 10.7 75.0 0.195 0.108 451.0 K7.5 U.098 (l.!160 232.4 KS.2

().000 0.000 0.0 0.0

  • 1.037
  • 0.634 2464.3 85.3 0.050 0.007 102.7 99.0 0.(189 0.042 199.4 90.4 0.093 0.057 0.135 0.132 0.060 0.026 0.050 0.035 0.081 0.(175 0.(138 0.016 W3.6 K8.I 128.8 85.1 30l.6 85.7
!~Xl.9 87.0 136.4 84.7 58.4 85.4

Project:

Quad Cilies Locarion:

Cordova, IL Conlract:

Engineer:

Filename:

QUADCITfESR008 LOV ETAP 7.0.0N Study Case: IM I Split M Calculation QDC-6700-E-2173 Revision 000 Attachment A Page A12 of A18 Page:

Date:

SN:

3 05-08-2015 SARGENTLDY Revision: Bnse Config.:

UIMl_U2sdwnL IMISPLITLTCM, 4,16 kV ESS Buses at 2850V, UI Ml, Split loading, Unit 2 shutdown Bus Vollnge Generntioo Load Lond Flow XFMR 1_0 ____ ~

~

~

~

~

~

~

II_) ______

M_w __

M_v:_ir ___

A_m_P __

cv._.l'F_* _%_Tn_p_

480 V SWGR 28 0.480 0.303

-6.7 480 V SWGR29 0.480 0.297

-7.6 480VTSCMCC 0.480 0.321

-2.7 CoreSJll}' Emcrg Al IlJ I A *T 0.480 0.272

-9.5 CoreS(ll)' Emcrg AllU lB *T 0.480 0,283

-5.9 ESS UPS 901*63 Term IJSS UPS 902-63 Term FPClgWlrPmp2B llPCI llmcrg AHU #1 *1' N.EDGI/21.ubcOil N.E!Xil/2 Tenn N.lnsl AirCompr I/2 RllRS Emcrg AHU IA *'I' RllRS Emcrg AHU lB -T 0.480 0.285

  • 10.3 0.480 0,303

-6. 7 0.480 0.295

-7.6 0.4RO 0.286

°6.0 0.480 0.278

  • 10.9
4. I 60 2.850 0.0 0.460 0.285
  • 10.3 0.480 0.273

-9.6 0.480 0.280

-5.4 RllRS Emcrg AllU lB Tenn 0.460 0.285

  • 6.0 RJIRS Emcrg MIU 2A -T 0.480 0.284 RllRS Emcrg AllU 2A Term 0.480 0.295 XJIMR I llV 4.160 2.H38 XFMR I LV 0.480 0.324 XFMR IOJJV 4,160 2.847

-4.S

  • 5.9 0,1

-0.2 0.0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

()

0

()

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

()

()

0.362 0.342 0.057 0.004 0.004 o.oso o.oso 0.057 0.003 0.002 0

0.089 0.005 0.005 0

O,!Kl5

()

()

0 0

XFMR 19HV 0.244 480V MCC 28-2 480V MCC 28* I B 480V MCC 28-3 480V MCC 28* I A XFMR 28 HV ESS UPS 902-63 Term 0.237 480V MCC 28/29-5 480V MCC 29-4 480V MCC 29-3 480V MCC 29-6 fPClgWIJ'l'mp2B 480V MCC 29-2 480V MCC 29* I XFMR2911V 0.033 480V GnlclunLo;e MCC 0.(){13 480V MCC 18-IA 0.003 480V MCC 19-1

-0.8 I 7

-0.484 1824.6 86.0 0.047 0.035 111.4 79.7 0.136 0.082 302.5 85.6 0.054 0.035 123.2 83.9 0.080 0.050 179.7 84.9

..0.730

  • 0.457 1637.5 84.8 o.oso 0.009 97.1 98.3 0.000 0.000 0.0 0,0 0.061 0.038 139.3 RS.I 0.063 0.039 144.0 85.1
0. I 27 0.079 290.6 84.9 0,058 0,035 131.6 RS.3 0.128 0.072 28S.9
87. I 0.042 0.028 98.8 82.9

..0.822

-0.528 I 896. 7 84, I

-0.057

-0.033 117.3 86.7

-0.004

-0.003 10.2 85.0

-0.004

-0.003 9.8 85.0 0.007 480 V SWGR 18

-0.050

-0.007 ID2.7 99.0 0.009 480 V SWGR 28

-0.050

-0.009 0.035 480 V SWGR 29

-0.057

-0.035 0.002 480V MCC 19-1

-0.003

-0.002 0.002 480V MCC 18-3

  • 0.002

-O.!Xl2 0 4.16kV SWOR 13-1 0.000 0,000 0.042 480 V SWGR 18

-0.089

-0,042 O.Oll4 480V MCC 18* I A

-0.005

  • 0.004 0.004 RJJRS Emcrg AHU 113 Tenn

-0.005

-0.004 o IUIRS Hm~-rg AllU 113 -T 480V MCC 19-1 0,005 0.004

-0.005

-0.004 0.004 RllRS Emcrg AllU 2A Tenn

  • 11.005

-0.004 0 4HOV MCC 28* 1 A RllRS Emcrg AIIU 2A -T 0 4.16kV SWGR 13-1 XFMR I 1.V 0 480V P1nnp I lmL~c Dist XFMR I !IV 0 4.16kV SWGR 13*1 480V MCC I 0* 1

  • 0,006

-0.(Xl4 0,006 0.004

  • 0.114

-0.075 0.114 0.113

  • 0.113 0.075 0.074

-0,074

  • O.O'l4

-tl.092 0.(194

(),(192 97.1 98.3 131.6 85.2 6.3 82.0 5.2 67.2 0.0 0.0 199.4 90.4 13.4

!13.0 13.1 83.0 13.1 K3.6 13.1 83.6 12.9 83.0 12.9 84.3 12.9 84.3 27.8 83.6 27.8 83.6 240.7 83.9 240.7 83.9 26.7 71.3 26.7 71.3

-2.SllO

Project:

Quad Cities Location:

Cordova, IL Contract:

Engineer.

Filename:

QUADCITIESROOS _LOV ETAP 7.0.0N Study Cose: I Ml Split M lMlSPLITLTCM, 4.16 kV ESS Buses at 2850V, Ul Ml, Split loading, Unit 2 shutdown Bus Voltage Generntion Lond Calculation QDC-6700-E-2173 Revision 000 Attachment A Page A13 of A18 Page:

4 Date:

05-08-2015 SN:

SARGENTLDY Revision: Base Config.:

UIMI _U2sdwnL Lond Flow XFMR II) kV kV Ang.

MW Mvar MW Mvar ID MW M..-Jr Amp

%PF

'loTnp XFMR 18HV

4. 160 2.848 0.0 0

0 0

XFMR 1911V 4.160 2.846 0,0 0

0

.'<l'MR 20 HV 4.160 2.850 0.0 0

0 0

XFMR2811V 4.160

?.847 0.0 0

0 0

Xl'MR29HV 4.160 2.849 o.o 0

0

()

XFMRJOHV 4, 160 2.849 0.0 0

0 0

XFMR Gatehouse HV 4, 160 2.844 0.0 0

0 0

  • Indicates a vol~1gc regulated bus ( voluigc conlrollcd or swing lypc machine connected to ii)

~ lndic.1tcs a bus with a load mismalch of more than 0.1 MVA 0 4.16kV SWOR 13-1 480 V SWOR 18 0 4.16kV SWOR 14-1 480VSWOR 19 0 4.16kVSWOR23-1 480V MCC 20-1 U 4.16kVSWGR23-I 480VSWGR28 0 4.16kV SWOR 24-1 480V SWGR29 0 4,16kVSWGRJI 480V MCC 30 O 4.16kVSWGR 14-1 480V Gaiehollie MCC

-1.074 1.074

-0.957 0,957

-0.837

-0.658 0.837 0.000 (J.000 0.65H 0.000 0.000

  • Cl. 746

-0.598 0.746 0.598

-0,844

-0.718 Cl.844 0,718

-0.029

-0.Ul 9 Cl.029 0.019

  • 0.359

-0.250 0.359 0.250 291.6 74.6 291.6 74,6 215.9 78.6 215.9 78.6 0.0 0.0

(),()

0.0 193.8 78.0 193.8 78.0 224.5 76.2 224.5 76.2 7.1 83.3 7,1 83.3 88.8 82.I 88.8

82. I
  • 2.500

-2.500

-2.500

-2.500

-2.500

-2.500

-2.500

Project:

Quad Cities Location:

Cordova, IL Contract:

Engineer:

Filename:

QUADCITIESR008_LOV ETAP 7.0.0N Study Case: 2M 1 Split M Calculation QDC-6700-E-2173 Revision 000 Attachment A Page A14 of A18 Page:

Date:

SN:

OS-08-2015 SARGENTLDY Revision: Base Config.:

U2Ml_UlsdwnL 2MlSPLITLTCM, 4.16 kV ESS Buses at 2850V, U2 Ml, Split loading, Unit I shutdown LOAD FLOW REPORT Bus Voltage Generation Land Land Flow XFMR ID kV kV Ang.

MW Mvar MW Mvar ID MW Mvar Amp

%Pl'

%Tap

  • 4.16kV swcm 23-1
  • 4.16kV SWGR 24-1 4.16kV SWGR 31 12SVDC Chgr I Tenn 125V DC Chgr2 TL"llll 250V DC Chgr I Tenn 25CJV DC Chgr 2 Term 480V Diesel Bldg MCC 480\\' Ga1ehoLL~e MCC 480V MCC 10-1 480V MCC I 8119-5 480\\' MCC 18-IA 480V MCC 18-113 480V MCC 18-2 480V MCC 18-3 480V MCC 18-4 480V MCC 19-1 4l!OV MCC 19-2 480V MCC 19-3 480V MCC 19-4 480\\' MCC 19-6 480V MCC 211-1 4.160 2.850 4.160 2.850 4.160 2.850 4.160 2.850 4.160 2.849 0.0 0.0 0.0 0.0 0.0 0.480 0.293

-7.9 0.480 11.294

-7.2 0.480 0.292

-8.1 0.480 0.294

-7.4 0.480 0.325

-1.8 0.480 O.J26

-1.8 ll.480 0,337 0,0 0,480 0.296

-7.9 0.480 0.295

-7.4 0.480 0.294 0.480 ll.298 0,480 0.297 0.480 0.299 0.480 0,294 0.480 0.295

<l.480 fl.292 0.480 0.292 0.480 0.289 0.480 0.330

-7.4

-7.2

-7.4

-7.2

-K.I

-8.I

-7.9

-7.9

-8.1

.(1.7

!l.905 1.156 1.054 0.798 0

0 0

0 0

0 0

()

(I 0

()

0 0

0 0

0 0

()

0 0

0.742 0.905 0.913 0.669 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

(I

()

0 0

0 0

0 0

0 0

0.029 0.029 0.070 D.070 0,037 0.166 0

0.026 0.088 0.124 0.057 0,062 O.Oll4 0.073 0.030 11.056 0,062 O.IJI 0.(l94 O Xl'MR 1811V XFMR 1 llV XFMR !OHV 0 XFMR 19 HV XFMR GatehOlL~e HV 4.16kV SWGR 31 o XFMR 28 HV XFMR20HV N.EDGl/2 Tenn o XFMR29 llV 0 XFMR30 llV 4.16kV SWGR 14-1 0.016 480V MCC 19-2 0.016 480V MCC 29-2 0.040 480V MCC 19-2 0.040 480V MCC 29-2 0.029 480V G.ncl!OLL~e MCC 0.108 480V Diesel Bldg MCC 480VTSCMCC XFMR Gatehouse !IV 0 XFMR IOHV 0.016 480 V SWGR 19 0.053 480 V SWGR I 8 RJIRS EmergAllU IA-T 0.077 480 V SWGR 18 0.044 4llOVSWGR 18 0.036 4HO V SWGR 18 O.Oll4 480 V SWGR 18 0.046 480 V SWGR 19 0,017 2SOV DC Chgr I Tenn I 25VDC Chgr I Tenn 480 V SWOR l 9 0,035 480 V SWGR 19 0.039 480 V SWGR 19 0.078 480 V SWOH 19 0.090 XF~IR 2ll llV 0,788 0.117 0.000 0.881 0.245 0.029 0.960 0.095 0.000 0.798 0.029 0,665 0.077 0.000 0.714 0.172 0.019 0.820 0.093 0.000 0.669 0.019

-0.029

-0.019

-0.029

-0.016

-0.029

-0.016

-(J.070

-0.(140

-0.070

-0.040

-0.037

-0.029 0.037 0.029 (J.039 0.022

-0.242

-0.159 ll.000 0.000

-0.026

-0.016

-0.093

-0.057 0.(I05 0.004

-0.124

-0.077

-0.057

-0.1144

-0.062

-0.036

  • 0.004

-0.(}()4

-0.073

-0.046 0.071 O.Cl40 0.029 0.016

-0.130

-0.073

  • 0. 056

-IJ.CJ35

-0.062

-0.039

-0.131

-0.078

-0.094

-0.()90 208.9 76.4 28.4 83.7 0.0 0.0 229.7 77.7 60.6 81.9 7.1 83.3 255.7 76.0 26.9 71.4 0.0 0.0 210.9 76.6 7.1 83.J 7.1 83.3 65.2 88.2 65.1 88.1 159.S 87.0 158.9 86.9 83.3 78.3 83.3 78.2 79.4 87.6 512.1 83.6 o.o 0.0 59.0 8S.4 213.4 85.3 12.6 83.8 287.2 85.0 139.2 79.2 139.0 86.7 11.3 75.0 16H.9 84.7 159,S 87.1 65.2 88.3 292.6 87.3 130.1 85.0 144.4 HS.O 304.6 HS.8

!27.4 12.3

Project:

Quad Cities Location:

Cordova, IL Contract:

Engineer:

Filename:

QUADCITIESROOS_LOV ETAP 7.0.0N Study Case: 2M I Split M Calculation QDC-6700-E-2173 Revision 000 Attachment A Page A15 of A18 Page:

Date:

SN:

2 05-08-2015 SARGENTLDY Revision: Base Config.:

U2Ml_UlsdwnL 2MISPLITLTCM, 4.16 kV ESS Buses at 2850V, U2 Ml, Split loading, Unit I shutdown Bus Voltnge Generation Lond Load Flow XFMR ID kV kV Ang.

MW Mvar MW Mvar

!I)

MW Mv-dr

/\\mp

%1'1'

%Tap 480V MCC 28'29*5 480V MCC 28* I A 480V MCC 28-113 480V MCC 28*2 480V MCC 28*3 480V MCC 29*1 480V MCC 29*2 480V MCC 29*3 480V MCC 29-4 480V MCC 29-6 4KOV MCC30 480V Pnl 2251-100 480V Pump I louse Dist 480V Relay House Dist 480 V SWGR 18 4KOVSWGR 19 480 V SWGR28 0.480 0.300

-7.2 0.480 0.290

-8. 9 0.480 0.288

  • 9.0 0.480 0.290
  • 8.9 0.480 0.289
  • 9.0 0.480 0.299
  • 7.2 0.480 0.296

-7.4 0.480 0.2%

-7.1 0.480 0.296

  • 7.1 0.480 0.293

. 7.2 0.480 0.333

-0.3 0.480 0.292

-8.9 0.480 0.301 0.1 0.480 0.301 0.480 0.300 0.480 0.298 0.480 0.292 0.1

-7.2

  • 8.0

-8.9 0

0 0

0 0

0 0

0 0

0

(}

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

()

0 0

0 0

0

(}

()

0 0.073 0.170 0.077 0.117 0.043 0.027 0.062 0.060 0.124 0.029 0

0.083 O.Cl24 0.374 0.314 0.429 0 480 V SWOR 29 0.000 0.000 0.0 o.o 0.045 RH RS Emcrg AHU 2A Term 0.006 0.004 13.5 85.3 480 V SWOR 28

  • 0.083
  • 0.052 195.1 85.1 CorcSpry Emerg AflU 2A *T 0.004 0.003 10.3 87.0 0.103 480 V SWGR 28

-0.170

  • 0.103 398.4 85.S 0.054 480 V SWOR 28
  • 0.077
  • 0.054 186.2 82.0 0.074 480 V SWGR 28

-0.117

  • 0.074 276.0 84.6 0.Cl29 480 V SWOR 29
  • 0.056
  • 0.037 129.0 83.7 CoreSpry Emerg AllU 28 :r 0.005 0.003 0.002 0.004 0.040 10.0 87.I I IPCI Emerg MIU "2 *T 0.003 5.8 86.4 IUIRS IJmerg AHU 213 Tcm1 O.Ol 6 250V DC Chgr 2 Term 125V DCChgr2Term 480V SWGR29 0.039 480 V SWGR 29 tl.037 480 V SWGR 29 0.077 480 V SWGR 29 Cl.019 XFMR 30 HV 0 480 V SWGR 28 0.050 480V Relay lioll~C Dist XFMR I l.V O.o2 I 480V Pump House Dist 0.269 480V MCC 18-2 480V MCC 18*3 480V MCC 18-4 480V MCC 18-IB 480V MCC IR-IA XFMR 18HV ESS UPS 901 *63 Term 0.189 480V MCC 19-4 4KOV MCC 19*3 4ROV MCC 19*6 FPClgWtrl'mpl D 4KOV MCC 19*2 4KOV MCC I !I* I 4KOV MCC 18119-5 XFMR 1911V 0.280 4HOV MCC 28*2 0.006 0.071 0.029 0.016

-0.127

-0.072

-0.062

-0.039

  • 0.060
  • 0.037

-0.124

  • 0.077

-0.029

-0.0l 9 0.000 0.000 0.024 0.021 00.I 07

  • 0.070
  • 0.024

..().Q2 I 0.057 0.044 13.2 85.5 158.9 86.9 65.1 88.2 284.3 87.1 142.8 85.0 13H.I 85.0 288.1 HS.O 60.2 83.6 0.0 0.0 61.1 76.1 245.7 83.6 61.1 76.1 139.2 79.2 0.062 ll.036 139.0 86.4 0.004 0.004 11.3 75.0 0.126 0.079 287.2 84.8 0.094 0.058 213.4 85.1

  • II. 769
  • 0.499 1765.3 83.!I 11.050 CJ.009 98.2

'18.4 0.063 0.039 144.-4 85.1 0.057 0.035 130.1 85.1 0.135 Cl.081 304.6 85.7 0.058 0.035 131.5 85.3 0.131 Cl.074 292.6 87.2 0.074 0.046 168.9 84.6 0.026 0.016 59.0 85.5

  • Cl.858
  • 0.516 I 941.1
85. 7 Cl.077 CJ.(154 IK<>.2 82.0

Project:

Quad Cities Location:

Cordova, IL Contract Engineer:

Filename:

QUADCITIESR008_LOV ETAP 7.0.0N Study Case: 2M I Split M Calculation QDC-6700-E-2173 Revision 000 Attachment A Page A16 of A18 Page:

Date:

SN:

3 05-08-2015 SARGENTLDY Revision: Base Config.:

U2Ml_UlsdwnL 2MISPL!TLTCM, 4.16 kV ESS Buses al 2850V, U2 Ml, Split loading, Unit l shutdown Bus Voltnge Generntion Lond Lond Flow XFMR ID kV kV Ang.

MW Mvar MW Mvnr ID MW Mvnr Amp

%1'1'

%Tap 480V SWGR29 0.4HO 0.300 480VTSCMCC 0.480 0.326 CorcSpry Emcrg Al IU 2A -T 0.480 0.271 CorcSpry Em*-rg Al JU 28 -T 0.480 0.279 ESS UPS 901-63 Term ESS UPS 902-63 Term Fl'ClgW!rPmpl B llPCI Emcrg AHU #2 -T N.EnGJ/2 Term RIIRS EmcrgAHU IA-T l!HRS Emcrg AIIU 2A-T 0.480 0.300 0.480 0.292 0.480 0.296 0.480 0.286 4.160 2.850 0.480 0.289 0.480 0.271 RllRS Emcrg AIIU 2A Term 0.480 0.283 RHRS Emcrg AllU 2B -T 0.480 0.277 RHRS Emcrg AllU 2B Tenn 0.460 0.282 XFMR I !IV 4.160 2.838 XFMR I LV 0.480 0.324 XFMR IOllV 4.160 2.850 XFMR IKllV 4.160 2.848 XFMR 19JJV 4.160 2.846

-7.2

-1.8

-6.7

-4.9

-7.2

-8.9

-7.9

-5.7 0.0

-6.S

-6.6

-8.1

  • 4.S

-5.2 0.1

-0.2 0.0 n.o

().()

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Cl 0

0 0

0

()

0 0

Cl 0

0 0

0 0

0 0

0 0

0 0

0.343 0.039 0.004 0.(I04 0.050 0.050 0.057 0.002 0

0.005 0.005 0

0.005 0

()

0 (l

0 480V MCC 28* I B 480V MCC 28-3 480V MCC 28-IA 480V Pnl 225 I -I Oil XFMR2KHV ESS UPS 902-63 Term 0.237 480V MCC 28129-5 480V MCC 29-4 480V MCC 29-3 480V MCC 29-6 480V MCC 29-2 480V MCC 29-1 XFMR29HV 0.022 480V Gncchonsc MCC O.Cl03 480V MCC 28-1 A ll.CKl3 480V MCC 29-1 0.172 0.105 398.4 85.4 0.1 I 8 O.o75 276.0 84.5 0.084 0.052 195.J 85.0 0.000 ll.000 0.0 0.0

-0.930

-0.573 2160.8

85. I 0.050 0.008 100.S 98.7 0.000 0,000 0.0 0.0 0.061 0.038 138.J KS.I 0.063 0.039 142.8 85.1 0.127 0.079 288.1 84.9 0.128 0.073 284.3 86.9 0.056 0.037 129.0 83.6

-0. 778

-0.502 I 782.5 84.0

  • 0.039

-0.022 79.4 87.6

  • 0.11()4

-0.003 10.3 85.0

-0.0(14

-0.CKIJ J0.0 85.0 0.009 480 V SWOR 18

-0.050

-0.009 98.2 98.4 0.008 480 V SWOR 28

-0.050

-0.008 0.035 480 V SWOR 19

-0.057

-0.035 0.002 480V MCC 29*1

-0.002

-0.002 0 4.16kV SWGR 23-1 0.000 0.000 0.004 480V MCC I S-1 A

-0.005

  • 0.004 0.004 RJJRS Emcrg AHU 2A Term

-0.005

  • 0.004 0 4KOV MCC 28* I A
  • 0.006

-0.004 RJJRS Emcrg AHU 2A -T O.OCJ6 0.004 0.004 RllRS Emcrg AHU 2B Term

-0.005

-0.004 0 RllRSF.mcrgAllU2B*T 480V MCC 29-1 0 4.16kV SWUR 13*1 XFMR I LV o 480V Pump House Di~c XFMR I JJV 0 4.16kV SWGR 13-1 480V MCC 10-1 0 4.16kVSWGRl3*1 480 V SWGlt 18 0 4.16kV SWGR 14-1 480 V SWGR 1\\1 0.005 I

O.CKJ4

-0.005

-0.004

-0. I 17

  • 0.076 0.117 0.116 0.076 0.075

-0.116

-0.()75 0.000 0.000 0.000 0.<KlO

-0. 788

-0.665 0.788 0.665

-0.880

-0.712 0.880 0.712 100.5 98.7 131.S 85.2 S.K 85.0 0.0 0.0 12.6 83.0 13.5 83.0 13.5 114.4 13.5 84.4 13.2 83.0 13.2 83.7 13.2 83.7 2K.4 83.6 28.4 83.6 245.7 83.9 245.7 83.9 Cl.O 0.0 0.0 0,0 208.9 76.4 208.<I 76.4 229.7 77.7 229.7 77.7

-2.500

-2.500

  • 2.50()

Project Quad Cities Location:

Cordova, IL Contract:

Engineer:

Filename:

QUADCITIESR008_LOV ETAP 7.0.0N Study Case: 2MISplit M 2MISPLITLTCM, 4.16 kV ESS Buses at 2850V, U2 Ml, Split loading, Unit I shutdown Bus Voltage Generntioo Lond Calculation QDC-6700-E-2173 Revision 000 Attachment A Page A17 of A18 Page:

4 Date:

05-08-2015 SN:

SARGENTLDY Revision: Base Config.:

U2Ml_UlsdwnL Lond Flow XFMR 1_0 ____ ~

~

Ang. ~

Mvar ~

~

lf_) ______

M_w __

M_v:_ir ___

A_m_p __

%_Pr_* _%_'1_*np_

XFMR2011V 4.160 2.847 0.0 0

0 0

XFMR 28 HV 4.160 2.847 0.0 0

{)

0 XFMR29HV 4.160 2.849 0.0 0

0 0

Xl'MRJOHV 4.160 2.849 0.0 0

0 0

XFMR Oatchow;e H V 4.160 2.846 0.0 0

0 0

  • Indicates a volmgc regulated bu* ( vollagc c1111trollcd or swing type machine connected to it)
  1. Indicate.* a bus with a load mismmch of more than O. l MVA 0 4.16kV SWGR 23*1 480V MCC 20-1 0 4. I 6kV SWGR 23-1 480V SWGR28 0 4.16kV SWGR 24-1 480VSWGR29 0 4.16kVSWGR31 480V MCC 30 0 4.16kV SWGR l.J-1 480V Gatcho11*c MCC

-0.095 0.095

  • 0.093 0.093
  • 0.959
  • 0.819 0.959
  • 0.797 0.797 0.819
  • 0.669 0.669

-0,029

-0.019 0.029 0.019

-0.245

-0.172 0.245 0.172 26.9 71.4 26.9 71.4

  • 2.500 255.7 76.0 255.7 76.0
  • 2.500 210.9 76.6 211.0 76.6

-2,500 7.1 83.J 7.1 83.3

  • 2.500 60.6 81.9 60.6 81.9

-2.500

Controlled File Sununary -

ETAP (S&L Program No. 03.7.696-7.00)

Type: 2 Status: P Effective Date: 08-12-2013 Executed 05-08-2015 14:47 Controlled File Path: D:\\ETAP700\\

Calculation QDC-6700-E-2173 Revision 000 Attachment A Page A18 of A18

I Analysis No. QDC-6700-E-2173 Revision 000 Attachment B PAGE 81 of 821 I Attachment B References

Calculation QDC-6700-E-2173 Revision ooo Page 82 of 821 EXELON TRANSMITTAL OF DESIGN INFORMATION (TOOi)

!Z1 SAFETY RLATED Originating Organization TODI No.: QDC-15-006 0 NON-SAFETY RELATED 181 Exelon Nuclear Revision: 000 0 REGULATORY Page: 1of2 RELATED D Other (specify)

TODI Addressed To:

Jim Kolodziej Sergeant and Lundy Warrenville, IL Station: Quad Cities Unit(s): 1 and 2 and O System Designation(s): Auxiliary Power System, 867

Subject:

ETAP data files Prepared By: Brandon Janssen I ~<6=-

Date Iii & / 1.5' P~41 1

Sign 1/_t. i /, !/

Approved By: Rick Swart I

.. <, (.,...-0----*

Date Print/ Sign Status of Information:

IZ1 Approved for Use D Unverified Method and Schedule of Verification for Unverified TOOis: NIA Description of Information: This TODI transmits the current ETAP data files for ODC-6700-E-1_503 Revision 008 and the scope of normally running, Safety-Related, low voltage induction motors.

Purpose of Issuance: The purpose of the issuance of this TOOi is to provide the current ET AP files and normally running motors to support the performance of Loss of Voltage Relay setpoint change Limitations: None Distribution: Velma White, Quad Cities records management

CalcutaHon QDC-6700-E-2173 Revision 000 Page 83 of 821 EXELON TRANSMITTAL OF DESIGN INFORMATION (TOOi) l8J SAFETY ALA TED Originating Organization TOOi No.: QDC-15-006 0 NON-SAFETY RELATED

!ZI Exelon Nuclear Revision: 000 0 REGULA TORY Page: 2 of 2 RELATED D Other (specify)

The ETAP model has been uploaded to the S&L FTP. The files uploaded are described below with their subject modified dates:

QuadCities.lib QuadCitiesR008.MDB QuadCitiesR008.0TI Dated 12/10/2009 9:22 AM Dated 9/8/2014 3:49 PM Dated 9/8/2014 3:49 PM ETAP Scenarios 1 M1 SPLITL TCM, 2M1 SPLITL TCM, 1 Sdwnl TCM, and 2Sdwnl TCM as well as EC Eval 384241 were reviewed to determine the population of normally running,.

safety-related, low voltage induction motors. These motors shall be evaluated for a low voltage scenario within the 5-minute Degraded Voltage timer. The ECCS room cooler fan motors are the only directly connected safety-related loads that may run during normal operation. The motors identified are as follows:

AHU AHU AHU AHU AHU AHU AHU AHU The following Safety-Related low voltage motors were also identified as running in the reviewed ETAP scenarios, but review of station drawings and discussion with Operations has determined they are not considered a normally running load or do not perform an active safety function:

ETAPID Discussion Cont Rm Rtn Air Fn 1/2 Does not perform an active Safety-Related function.

RHR SWP 1 A Cir Fan C Not a normalfv runnina load.

SBGT Fan B Not a normally runnina load.

Calculation QDC-6700-E-2173 Revision 000 BE /ltot11t:tlv11 RB/ays DESCRIPTION The Type IA V relays are single phase induction disk ~lays designed to respond, with time delay, to either an increasing or a decreasing voltage, or both. Some models are frequency compensated, and some in-clude an instantaneous unit (hinged arma*

ture type). Most models listed in the Selection Guide include a target seal-in unit on all contacts.

The basic mechanism of all models is an induction-disk unit with either a tapped coil or a tapped resistor for setting pickup.

[In the overvoltage models, the relay is calibrated on increasing voltage to close the normally open contact at tap setting. The time dial adjusts the angle through which the disk rotates and, hence, the time delay.]

In the undervoltage models, the relay is calibrated on decreasing voltage to close the nonnally closed contact at tap setting. The time dial adjusts the angle through which the disk rotates at voltages above tap setting.

In the combined overvoltage and under-voltage models, the relay is calibrated on increasing voltages to close the normally open contacts at tap setting and on decreas-ing voltages to close the normally closed contacts at various percentages of tap set.

ting.

For the undervoltage and combined un-dervoltage and ovcrvoltage. relays, the two connecting plug S2 case is use.d to prevent false tripping when the relay is removed or replaced. Either plug completes the coil cir*

cuit and thus opens the normally closed contact used with undervoltage operation.

Both plugs are needed to complete the con-tact circuits.

APPLICATION OVERVOLTAGE RELAYS Type IA V overvoltage relays are used for protection against simple overvoltage, but other applications are also common. They are applied to ground detection, both on feeders and on ac generators, and they are also used in timed switching arrangements, where their dependability and accuracy make them preferable to purely mechanical timing relays.

Data subject to change without notice Attachments Page 84 of 821 IAV Time Delay Voltage Relays For protection against overvoltage in a three-phase system, psethe IAVSIA relay' (Fig. 2). For instantaneous protect.ion as well as time delay, use the IAV71B.

For the detection of grounds on un-grounded three-phase systems, two methods are in general use. One measures the zero sequence potential (Fig. 4), and the other measures the actual voltage between the sys-tem neutral and ground (Fig. 6).

. For the circuit of Figure 4, use Type IA VS ID, a low pickup relay which has its operating circuit tuned to the rated frequen-cy. The potential transformers used in this circuit are connected grounded*Y primary, broken-delta secondary. The* primaries should have ratings equal to the line-to-line voltage of the system, and the secondaries can have ratings of either 67 or 11 S volts.

Select a relay model with a continuous rating of three times the potential trans-former secondary voltage. This is necessary because, when a ground occurs, the zero sequence voltage may be up to three times the normal transformer secondary voltage.

Thus, with a potential transformer second-ary rated 67 volts, use a 199-volt relay coil.

For ground fault protection of ac rotating machines, use a circiiit similar to that shown in Figure 6 applying Type IA VS ID or IAVSIK relays. These are low-pickup relays whose coil circuits are tuned by capacitors to their rated frequencies. The circuits arc thus rendered only one-eighth as sensitive to the third harmonic as they are to the rated frequency.

In Figure 6, a distnl>ution transformer is connected between the machine neutral of the generator and ground. Normally there is no voltage on the transformer but during a fault, there is a voltage with a worst-case magnitude equal to the phase-to-ground value.

Greater sensitivity can be obtained by choosing a distribution transformer with higher secondary voltage. In such a case, the relay will not carry the fault voltage con-tinuously, and provision must be made to de-energize the operating coil using an aux-(Photo 8043218) fig. I. Type IAV71A U¥Drvoltage relay (aut of caso) iliary relay. The short-time rating for both IAVSlD and IAVSIK is 360 volts for 10 seconds.

The IAVSIM relay may be used for a definite time delay and the time is adjustable from 3 to 30 seconds by means ofa time dial.

Operating time is defined as the time to close the contacts with voltage suddenly raised from zero to the rated value.

UNDERVOLTAGE RELAYS For simple undervoltage protection, se-lect the IA V relay according to the time voltage characteristic required.

In.a typical automatic-preferred emer-gency throwovcr scheme, the undervoltage

  • co!ltacts of the IA VS4E relay are used to trip lhe circuit breaker in the normal.source circuit, and the auxiliary switch (52b) of this normal source breaker permits the voltage closing contacts of an IAVS lA relay i!I the emergency source to close its circuit break-er.

COMBINED UNDERVOLTAGE AND OVERVOLTAGE RELAYS Types IA VS3, IA V69, IA V70, and IAV73 relays are time-delay, over-and un-dervoltage relays having lwo 1=onlacts, one of which closes on overvoltage and the other on undervoltage.

REFERENCES:

Dimensions................. Section 16 How to Order...............Section I Instruction Books...........* Section 17 Target and Contact Data....... Section 16 Relay Standards.............. Section 16 Voltage and Frequency Relays Page 10-3

Calculation QDC-6700-E-2173 Revision 000 BE Protect/1111 Relays FREQUENCY COMPENSATION The following Type IA V relays are fre-quency comll!!nsated:

Overvoltage relays-IAV7 l, iA V72 Undervoltage relays-IA V74A Undervoltage anc~ Ov4:~ollilge relays-IA V73A, IA V738 These rel*ays have uniform characteristics over a frequency range of 30.90 Hertz. A typical application is on systems supplied by hydro.-generators, where the frequency tends to'increase when faults occur. Fre-querii:y c~mpi:'!satiori is provided.by an* R-C circuit across the wound shading ~oils of the induction disk operating coil and core unit.

CHARACTERISTICS Type IA V relays will continuously with-stand rated voltage on all taps, and tap volt-age on all taps above rated voltage. For the SELEC"l'.ION GUIDE-Type IAV Attachments Pa9: 85 of 621

. 1AV Time Delay Voltage Relays minimum and maximum taps shown in the list below, the following intermediate taps are available:

Tap Range S.4-20 10-40 16-64 28-112 55-140 110-280 220-560 Taps Available 5.4, 1.s, 12.s, 20 10, 15, 25, 40 16, 24, 40, 64 28, 42, 70, 112 SS, 64, 70, 82, 93, 105, 120, 140 110, 128, 140, 164, 186, 210, 240, 280 220, 256,.280, 328, 372, 420, 480, *560 The ov~rvoltage relays and the under-voltage relays are provided with time dials for adjustment of time delay.

The combined under-and overvoltage relays are made both "with and without time-delay adjustment. -Models IA V53, *69, and

-73 have time delays which are functions of the setting of the undervoltage contacts.

Model I~ V70 has a time dial which permits adjustment of time delay independently of the voltage settings.

TRIPPING CIRCUITS AND CONTACT RATINGS The current carrying rating of the con-tact circuit is determined by whether the.

relay has a seal-in unit and by the tap used on the seal-in coil. Without a seal*in unit the relay contacts will close and carry 30 amperes for tripping duty and 2 amperes continuously at control voltages of 250 volts de or less. Refer to Section 16 for data on target seal-in units.*

General De1cription Rared Voll*

Ac Top Rongo Vall*

Tara**

Seiil-ln Madel Number1 Caso Slzo Approx WI, lb (kg)

Min MCIX Conlact* t----:-:60'""'H,,.o-,rl-* -..--...,50:--:--:-He-:rl,.-z --;

Nat Ship OVERVOLTAGE (DEVICE No. $9)

General dury, avervalra;e and canlrol 115 55 140 121AV51A1A 121AV51A4A 1wlrchlng. Time delay 1 la 10 208 10 140 0.2/2 J.N.O.

A7A A9A 10<onds at 1.6 llmn 230 110 280 A2A MA lap selflng.

460 220 560 A3A AllA Sl 12 15 SlllM 01 IAV51A 115 55 140 121AV.52AIA 121AV.52A.CA (5 *.C)

(6.8) except 2*N.O. Can!Oelt 199 70 140 0.2/2 2*N.O.

A7A A9A 1-Target SoaJ.ln.

230 110 280

. (1)

A2A A.5A Ground detadlan an 3-phme 115<!>

10 40 121AV51D2A 121AV51D5A 199© 16 D1'i D.CA 51 12 15

=nd on ~r 11atar 345© 28 112 l*N.O.

D9A OlOA (5 *.C)

(6.8) r""" ~

0.75 1a 1~

ot 200%

~

selling, 67© 5.4 20 0.2/2 121AV511C1A 121AV511C2A St@

13 16 ar.s secondo on N.O. 0 TQ.S.

(5.9)

(7.3)

Sarne en IAV51D or IA,V51K uc:apt 199<D 16 2-N.O.

121AV52D1A 51 12(5.AI 15(6.8) 2 N.O. Conhxll 67(1) 5.4 20 12tAV521C1 A 121A V521C2A SICZ 13 16 (5.91 (7.3)

Timing AppRcatlo111 55 121AV51M2A 115 208 230 100 Q.2/2 l*N.O.

121AV51MIA MU..

M3A 51 12 (5.41 15 (6.B) 110 Frequen*cy Comp*111atetl Freque~.. nslllve applicallOJIS. Otherwlsa same t1*

V51A compemarad 30*90 Hort.I 115 55 140 F~uen~amponlClled; lnstanloneolls unit

additd, f~lllC)' compensotwd, for hydro 115 55 I.CO genoratar app8callon11 ;eneral du17 for ac 230 110 280 gonarotor ov....,oltage prolecllon aiid voltaga 230 110 280

"'1!Vlatar backup. I IO 10 mond time delay.

Similar la IA V7 I A except 2 N.O. Contods 115 55 uo Slmaor IO IAV72A 115 55 1.CO excopl Includes Intl.

unit with 1 N.O. Canracr 230 110 280

~;';.aoJ.I:' ~~~~~~.~~t~.\\i:,d**

115 55 1.CO CD IAVSID, 51K, 520, and 52K-10 Second Rating at 360 volts.

Includes external capacitor.

@Inst. unit adjustable 120-200 volts.

©Inst. unit adjustable 18(}.300 volts.

Voltage and Frequency Relays Page 10-4 121AV71AIA 121AV71A3A 1-N.O.

121AV7182A.Cll 121AV7183ACll B5A:Cll 86Afd) 0.2/2 SI 13 16 (5.91 (7.3) 121AV72AIA 121AV7281A(3) 121AV72BQ(3) 2*N.O.

B3AIJ).

121AV72C3A<:!)

Data subject to change without notice

Calculation QDC-6700-E-2173 Revision 000 Attachment B Page 86 of 821 IAV Time Delay Voltage Relays SE Pratecthte Relays SELECTION GUIDE-Type IAV General Da1cripllon UNDERVOLTAGE (Dovlre No. 27) 5 Soc Tmt0 Delay 01 zero vol11 If tel on No. 10 TD Time Rongo 1 lo 13 soc at 80% of top.

30 Sec Time Dolor at ze10 volts if 1ot on No. 10 TD 75 Se& Time Dela,.i:

al zero *alts on

q. 1 O TO Somo a* IAV54E OJtCOpl no SeoMn S Soc Time Del~

samo os IAV54E

.. cop! 2 N.C.

  • SO Sac Time Delay 75 Sec Time Doloy Frequency Compensoted Rated Volta Ac 6'1 115 208 230 460 115 230 "60 115 460 115 230 460 115 230 460 115 230 115 5 Soc Time Delay al 1ero vo111 11 on No. I 0 TDS. Compensated 30-90 H&

5 Min Mox 32 BO 55 140 110 280 110 280 220 560 55 140 110 280 220 460

.55 140 220 560 55 140 110 280 220 560 55 140 110 280 220 560 SS 140 110 280 55 140 55 140 OVER-AND UNDERVOLTAGE (Device No. 27/59)

Gonorol duty; eloctrlcolly separate con-tach with large! seoMn unit l&rlo*

115 SS 140 wllh each contad; UV adlu>tabte from 50 230 110 280 ir i9~: ~~~~1::~2-.!~" delay 460 220 560 al 2

  • tap. sellfng.

Auromoric control scheme" 1ame o* IAVS31C 115 SS 140 except target 1eal-in uni!' ore omitted 230 110 280 460 220 560 Sinu1ar to IAV53K e~

target 115 55 140 seal*!n unit. ure oml Tlmfi delCI)'

460 220 560 O.S sec. at zoro volt1.

  • GonaiaT d~ camman connection between 120 SS 140 contocls; 0...utJ! b Ind~

ol UV

~wmenl; UV us!Uble rom 60 lo 95116 208 110 280 of V tap ~large! and IOOl.fn unit In 18rlet wllh e contad.

240 110 280 AulOmalk conrrol IChemnr 1omo as IAV69A 120 SS 140 excepl target soal-ln unl11 ore omitted 240 110 280 General du~1 comnlOl'I connection between C"'1tacts; U 1ettlng fi.ud al 95% or mO<G 120 55 140 of OV :r.J: 1t1Nn91 target 1eol-in unit in 240 110 280 1erie1 wll each contad1 adjustable ~me dolay 30 111COncb mall. on complete lou of V.

Automa11c control ltllemes1 uuno a* IAV70A 120 55 140 except target seal-In unil1 are omillod 240 110 280 frequency Co111pensatlld General du~; same as iAV53K except Frequency ompenaaled. 30-90 Hz 115 SS 140 Automatic control Khametr """'° m IAV53l except fruquency Componaoted. 30.90 Hz Data subject to change without notice Torger Se<1I-C"'1tact1 in 0.2/2 1 N.C.

Nono 0.212 2 N.C.

0.2/2 I N.C.

0.2/2 (2)

Nono 1 N.C.

I N.0.

0.2/2 (2)

N"'10 0.2/2

{2)

Non*

0.2/2 (2) 1 N.C.

None 1 N.O.

Model Number 60 Hertz 50 Hetti 121AV54E14A 121Av54e4A ElA E13A

... i:5;..

E2A E3A E6A 121AV54FIA 121Av54i:4A F2A F3A 121AV54H1A H2A 121AV54JIA J2A 121AV54J4i.

J3A 121AV55C1A 121AV55C4A C2A CSA C3A C9A 121AV55F1A F2A 121AV55H1A 121AV7.CAIA 121AV53KIA 121AV53K4A K2A KSA K3A KllA 121AV.S3L1A 121AV53L4A L2A LSA l3A 121AV53N1A N3A 121AV69A1A 121AV69A3A A.CA A2A 121AV6981A 121AV6983A B2A 121AV70AIA A2A 121AV7081A 121AV7083A B2A 121AV73A1A 121AV7381A Co**

Si1:e 52 52 52 52 llpprox wr, lb (kg)

Ner Ship 12 (5.4) 13 (5.9) 13 (5.9) 13 (5.9) 16 (7.3) 17 (7.7) 17 (7.7) 17 (7.7)

Voltage and Frequency Relays Page 10-5

Calculation QDC-6700-E-2173 Revision 000 Attachment B Pa~e 87 of 821

  • 1AV e

Time Delay Voltage Relays SE Protective Relays DIAGRAMS AND CHARACTERISTICS H--U::Il-.J cu 59 Potentiol t ran stormer Generator Fig. 2. Typical external far Type IAV51A used far avervaltage pratedlan.

~-...... ~-A~c-b_u_a..__...... ~--I


2 Generator Poreo'.:~: T'k

~'"'"'m" ~I;..

~. ~r

(-)

Fig. 4. Typical exhlmal far ground fault pratedlan 3ph.

Ungraunded ay1tem Type IAV51D

~

~~*l~~:

tW 15 59j pz 59

~..__ -------l 2

19 r-tAY.51.K..-,

I> '~5 I

Trip

!6 or 59 3-_1 alarm I

R

.:591 I

-1 15 4C I l ________ J 86 *,...,.--, 'When used

~io.§i 1 for alarm D~

___ J

- I ransformer Fig. 6. Typical external far ground fault pratedlan of an ac rotating machine Type IAV51D or 51K Voltage and Frequency Relays Page 10-6 8

7

"'6 "Q c: g 5

~ "

.E 4

~3 j::

2 Flp. 3. Typical Time Voltage curve far Type$ IAV51A, 71 and 72

,,\\

I\\

, 1 I'\\

\\I\\."

r-.

\\. '

~

,~...

r-r--...

~...

-po.,

~-

\\I"'\\

r-i--

r-.. -

10 9 a 76 54 32 I

Time dial setting OO 200 400 600800 IOOOl2001400IEDO

  • Per cent of tap value II)

~,

8....

.s.. e 6

4 2,

e_

6 i= 4

~

I..'

2-~-

I

'I

~

Fig. 5. Typical Time Voltage curve for Types IAV51D and 51K I,-......,......,.....

when wltoge is reduced to the Indicated value from left I

contact pickup voltage CX'abov9 r............ *~*-

j when voltage Is suddenly I

'm'"

Increased tram zero to the

  • mr, Indicated pickup multiple J

I.ill,\\'

,1 \\' ~

I I I I I I

1

RIS:t l

\\

°"'

... I con ct II'"

I closure

,r

\\I' I'....... "~

I In 'Yf

,r teg. ~

70 of let I~ cfinta:,

c"Diiil p ckup 0o 20 40 60 80 100 120 140 160 180 200 220 240260 Per cent of tap value Fig, 7. Typical Time Voltage curve far Typu IAV53K, 53L, 73A and 738 Data subject to change without notice

Calculation QDC-6700-E-2173 Revision 000 Attachments Page 88 of 821 INSTRUCTIONS VOLTAGE RELAY TYPE IAV69A and IAV69B GENERAL f) ELECTRIC GEI-908100

CalculaUon QDC-6700-E-2173 Revision 000 GEI-90810 Voltage Relay Type IAV69A And B TAP 8LOCK TOP PIVOT OVEFIVCUAGE TARGET ANO SEAL-IN Fig. 1 (8031861)

Front View of Relay Type

~V69A Withdrawn From Case.

3 DISK AND SHAFT LOWER JEWEt.

SCREW Attachment B Page BS of B21

~~,_ TAP PLUG TIME DIAL STATIONARY UNOER-VOL'Wif CONTACI' ASM saTIONARY OVER-va..TAGE CONlJIGT ASM UtelERVOLTAGE '!MG£T

& SEAL-IM

~*;;:;;;~r-- MAIN MOVING COOT.ACT

& CARRIER SPRING ADJUSTING RING DRAG MAGNET Fig. 1A (8031862)

Back View of Relay Type IAV69A Withdrawn From Caee.

.Calculation QDC~6700-E-2173 Revision 000 AttachmentB Page 810 of B21 VOLTAGE RELAY TYPE IAV69A & B DESCRIPTION The IA V69 relay is a time delay undervoltage and overvoltage relay designed to be used wherever protection against an abnormal voltage condttlon is required.

The relay consists of an induction disk operating element which closes its left hand con-tacts when the voltage increases to a predetermined value and Us right hand contacts when the voltages decreased to another predetermined value.

The undervoltage adjustment ts independent of the over-voltage setting. A ttme dial is provided to permit easy adjustment of the operating time or the under-voltage setting which are interdependent.

The IAV69A relay has two target and seal-in devices, as indicated in Fig. 2, while the IA V69B relay has none; otherwise these two models are identical.

The lAV69 relay components are housed in an 82 double ended case with each contact connected between the upper and lower blocks while the op-erating coil ls connected to both blocks.

This permits the connection plugs to be removed or inserted with the operating coll always energized before the contacts are connected into their cir-cuits.

The normally open and normally closed contacts have a common point due to the use of a stngle control spring. The number of relays re-quired to protect a circuit is determined by the application.

APPLICATION These relays are used for protection and/or control of a-c circuits in reeponse to over and undervoltage condlttons.

A typical wiring diagram is shown in Fig. 7.

RATING The IA V69 relays covered by these instructions are available with 120 and 240 volt operating coils 50 or 60 cycles. The relay pickup and dropout can be adjusted to operate between 45 and 115 percent of rated voltage.

The coll will stand rated voltage continuously on any tap and tap voltage on taps above rated voltage.

The current closing rating of the contacts is 30 amperes at 250 volts or below.

The current carrying rating of the contacts ls limited by the target and seal-in unit where used as indicated in Table A.

When not limited by the target and seal-in untt, the contacts of the IA V69 relay will continuously carry and interrupt 0.3 non-inductive amps at 125 volts DC and 0.15 non-inductive amperes at 250 volts DC.

TABLE "A" TARGET AND SEAL-IN UNIT 2 AMP TAP 0.2 AMP TAP DC Resistance 0,13 Ohms

'l Ohms Minimum Operating 2.0 Amps 0.2 Amps Carry Continuously 3.0 Amps 0.30 Amps Carry 30 Amps For 4 Secs.

Carry 10 Amps For 30 Secs.

0.2 Secs.

CHARACTERISTICS Operating Principles The induction disk operating unit consists of an aluminum dtsk which rotates between the pole faces of an electromagnet usuallycalleda U-magneL The operating coil produces the u-magnet's nux which tends to rotate the disk with a force pro-portional to the connected voltage.

The disk ts restrained by a spiral spring whose setttng deter-mines the relay pick up.

The d~s!t's motion ts restrained by a permanent magnet drag magnet whose restraint is proportional to the disk speed. The disk is fastened to a shaft to which the contacts are connected, The time delay is adjusted by changtng the distance the disk must travel to close lts contacts and the time-voltage relay character-istics are shown tn Ftg. 4. Adjustment of the tlme delay is made by rotating the ttme dial upon which the normally closed voltage stationar7 contact ls mounted.

Fig. 4A shows the percent o tap value to close the undervoltage contact at the different time dial settings. The overvoltage contact ts calibrated to close at tap value and its adjustment ls independent of the undervolta.ge adjustment. The normally closed undervoltage contact can be adjusted to close from 60 to 90% of tap voltage by varying the dial setting.

When operating coil voltage ls between pickup and dropout values both contacts are open.

These inst*ructions do not purport to cover all deta.ils or variations In equipment nor to provide for every possible C()IJLingency to be met in oonnect:ion wit./1 installation, operation or maintenance, Should further inforllldtion be desired or should particul<Jr problems arise which are not covered su££ic1ently for:

the purchaser's pu1poses, the matter should be referred to the General P.Jectr:ic Company.

  • ro Lhe elftent required tha pn><lucts desc:ribetl herein meet applicable ANSI, ff:E:E and NEH/l standards; hut no such assurance is yiven *dth respect to local codes illld ordinilnccs because they vary greatly.

3

.. Calculation.QDC'6700-E-2:173 Revision 000 Attachment B Page 811 of 821 GEI-90810 Voltage Relay Type IA V69A AND B 11 1

Sl OVERVOLTAGE ILEFTI 15 r ~

l 1 8

  • SHOAT FINGER 20 l

rig. "

0165A75{0-l)

Inte:-nal Connections For Rela~* Type IAV69A (Fror.t View)

Burden The burden imposed on a potential transformer by a 120 volt IA V69 relay operating at rated voltage and frequency ls given in Table B.

Burdens are essentially the same for the 240 volt relay.

TABLE "B" TAP 60 CYCLE 50 CYCLE RATING WATTS VULT WATTS v'ULT AMP.

AMP~

55

11. l 28.9 7.3 22.0 64 7.3
20. l 5.3 16,0 70 5.8 16.8 4.2 13.1 82 3.9 12.2 2.9 9.3 93 2.9 9.4 2,2 7.2 105 2.1 7.2 1.6 5.6 120 1.6 5.3 1.2, 4.3 140 L.3 4.0 o.9 3,1 CONSTRUCTION The components of the IA V69 relay are mounted in a 82 case whose outline and drtllingplan is shown in Flg. 8.

The relay components are mounted in a cradle assembly which ts latched into a drawout case when

.he relay ls ln operation but it can be easily re-moved when desired.

To do this, the relay is first disconnected by removing the connection plug which 4

11

1.

OVERVOLTAGE (LEFT) 16 ! ~

UNDERVOLTAGE IRIGHTI

  • .,SHORT FINGER 20
1.

F,ig. 3 (Ol65A7559-l)

Internal Connections For Relay Type IAV69B (Fro~t View) completes the electrical connections between the case block and the cradle block. To test the relay ln its case this connection blc:>ck can be replaced by a test plug.

The cover, which ls attached to the front of the relay casei contains the target reset mechanism and an inter ock arm whlch prevents the cover from being replaced until the connection plugs have been lnseryed.

The relay case is suitable for either seml-flush or surface mounting on all panels up to 2 inches thtck and appropriate hardware is available.

However, panel thickness must be indicated on the relay order to insure that proper hardware will be included.

Every circuit ln the drawout case has an auxi-liary brush as shown in Ftg. 5 to provide adequate overlap when the connecting plug ls withdrawn or inserted. It ls important that the awclliary brush makes contact as indicated in Fig. 5 wtth adequate pressure.

RECEIVING, HANDLING AND STORAGE These relays, when not included as part of a control panel, will be shipped in cartons designed to protect them a1!t9-inst damage. Immediately upon receipt of a relay, examine it for any damage sus-tained in transit.

If injury or damage resulting from rough handling is evident, me a damage clalm at once with the transportation companyandprompt-ly notify the nearest General Electric Apparatus Sales Office.

. 'Calculation"QDC.:6700,E.2173 Revision 000 BEST COPY AVAILABLE 1\\ttachment 8 Page 812 of 821 Voltage Relay Type IAY69A And B GEI-90810

..,*-'*w'"i*.:*::*; ~.~:.:

L;~o:*£:*'.t::;:-.::::I.
  • 1
  • ._*;-t.,.,p H

'-'1*'- H*' *1*,.._,

    • . ; ~**:1****
    • 1":**...f.l:.......... jo-
  • tf*L,.........,.,..i.
  • t-~L **:*i

~**;1

-1*

.~

?ig. !L (o.1.65A7566-2)

Time Voltage Cha,*~cterfatics For Relay 'l'ype IAv69 Tn"TT1'T.U1 CO.

TI::::::~~

-ti*.

r1:1 *

.:1 *so*

w t... r*~.

~

...J

<(

0.

<(

~

111 60 Ht 0

0 1

  • i.

.. : J 2 :r.*-*: 3 j_

-l

. ~..

.~

I
    • I
    • i*

~ **.J,.

- +*:.

4 5

.. 6 7,.

  • Ttt.
~lll~~

.1ttt:.

  • j~c-Fig. 4A (016'5A"(')b7-l}
  • tH*

.. +!-+ ~ *

-I+*.

-I+

-*+*

+H~

ji:!:I TIME DIAL SETI ING 1*1--

lllL

.,.. ~

Percent Of *1*ap Value To Close Right Hand Contact vs Time Dl1!.l Setting Relay Type IAV69B 5

  • '.Calculation*.aoC-6700..E-2173 Revision 000

" "Attachment B Page 813 of 821 GEI-90810 Voltage Relay Type JAV89A And B Reasonable care should be exercised In un-packing the relay. If the relays are not to be in-stalled immediately, they should be stored tn their original cartons in a place that ts free from mois-ture, dust and metallic chips.

Foreign matter collected on the outside of the case may ftnd lts way inside when the cover ts removed and cause trouble in the operation of the relay.

ACCEPTANCE TEST Immediately upon receipt of the relay, an inspection and acceptance test should be made to insure that no damage has been sustained in ship-ment and that the relay calibrations have not been disturbed.

Visual Inspection Check the nameplate stamping to insure that the model number, rating and calibration range of the relay received agree with the requisition.

Remove the relay from lts case and check by visual inspection that there are no broken or cracke<l molded parts or other signs of physical damage.

and that all screws are tight.

The drag magnet should be fastened securely in posttlon on Its mount-ing shelf. There must not be any metalllc particles or other foreign matter in the alr gap of either the drive magnet or the drag magnet.

Mechanical Tests

1.

Manually operate the relay and check that both contacts have approximately 1/32 inch wipe.

CONNECTING PLUG MAIN BRUSH TERMINAL BLOCK SHORTING BAR

'40TE. AFTER ENGAGING AUXILIARY BRUSH, CONNECTING PLUG rRAVEL.S 1/4 INCH BEFORE ENGAGING THE MAIN BRUSH ON rHE TERMINAL BLOC!<.

Fig, 5 (8025039)

Cross Section Of Drawout Case Showing Position Of Aux.iHe.ry Brush And Shorting Dar the pickup and dropout times agree approximately with times given tn Fig. 4 for the settings used.

Relay pickup settings between tap voltages can be made by control spring adjustment if desired by moving the spring adjusting ring. Check that the relay operates with one test plug removed.

When testing an IA V69A relay connect a DC source of power as shown in Ftg. d and check that the target seal-in units operate at or below the tap rating used.

2.

If adjustments are necessary, check the section Rotate the time dial to the No. 7 setting and on SERVICING.

check that disk rotates without binding or

3.

touching the drag magnet or U-magnet.

Operate the target seal-in units and check that they operate without binding.

Electrical Tests Connect a variable source of power at rated frequency to studs 5 and 6 or 15 and 16, and check that the relay picks up at tap value +/-5% on at least two taps.

INSTALLATION PROCEDURE PERIODIC CHECKS AND ROUTINE MAINTENANCE In view of the vital role of protective relays in the operation of a power system lt is important that a periodic test program be followed. It ts recognized that the lr.terval between periodic checks will vary upon environment, type of relay, and the user's experience with periodic testing. Untu the user has accumulated enough experience to select the test interval best suited to his individual requirements lt is suggested that the following points be checked at an interval of from one to two years.

If after the acceptance tests the relay is held in storage before shipment to the job site, it is 1.

recommended that the visual and mechanical in-spection described under the section on ACCEPT-Repeat the visual and mechanical inspection described under section on ACCEPTANCE TESTS.

ANCE TESTS be repeated before installation.

2.

Electrical Tests The relay should be mounted in its final loca-

3.

lion if possible and should be allowed to warm up for 15 minutes with rated voltage connected to the operating coil.

Repeat the electrical tests described under the section on INSTALLATION PROCEDURE.

Check that the contacts are untarnished and tn good condition.

SERVICING Connect the relay as shown in Fig. 6 and set the relay to pick up at the desired voltage. Set the If it is found that the relay calibrations are dropout voltage at the desired value and check that out of adjustment then proceed as follows:-

6

  • .. catoolalion.. aoc-6700-E-2173 Revision 000

' *Attachment B Page 814 of 821

1.
2.

Set the tap plug ln the 93 volt tap for the 120 volt relay or 186 volt t.ap for the 240 volt relay.

Set the time dtal at zero and check that the relay ptcks up at tap voltage +/-5 percent, Rotate the control sprtng adjuster until correct pick up is obtained.

The relay operating ttme can be adjusted by moving the drag magnet on lts mounting shelf ln towards the back of the case to decrease the time and out to increase tt. The outer edge of the drag magnet must always be at least 1/8" from the edge of the disk. If relay time ls out of adjustment by a considerable amount, check for friction causes such as particles tn the air gaps or cracked jewel bearings.

3.

To change target seal-in tap settings, proceed as follows: -

The tap plug is the screw holding the rtght-hand stationary contact of the seal-tn unit.

To change the tap setting, first remove the connecting plug.

Then, take a screw from the left-hand stationary contact and place tt in the desired tap.

Next remove the screw from the other tap, and place it tn the left-hand contact. Thts procedure ts necessary to pre-vent the rtght-hand stationary contact from getttng out of adjustment. Screws should not 11.C. +

aJN1All l'OW(R VAiii ABLE

~ A.C. SOORCE RATED

.+-------~v r~ooEHCY NOTE: USC 1HfSE CONN.

!MEN TESTIKG IAV69) REl./>Y OHLY Fig. 6 (0165A6714-0)

Field Test Connections For Relay Type IAv69 Voltage Relay Type IAV69A And B GEl-90810 be in both taps at the same ttme as pickup for d-c will be the higher tap value and a-c picl<

up will be increased,

4.

For cleaning fine silver contacts a flexible burnishing tool should be used. This consists of an etched roughened strtp of flexible metal resembling a superfine flle which removes corroded material quickly without scratching the surface. The flexlbtllty of the tool insures the cleaning of the actual points of contact.

Never use knives, files, abrasive paper or cloth to clean fine silver contacts. A burnlshtng tool as described above c~n be obtained from the factory.

RENEWAL PARTS*

It ts recommended that sufftctent quantities of renewal parts be carried in stock to enable the

  • prompt replacement of any that are worn, broken or damaged.

When ordering renewal parts, address the nearest Sales Office of the General Electi:tc Company,,

specify quantity required, name of the part wanted, and give complete nameplate data.

If possible, gtve the General Electric requlsltlon number on, which the relay was furnished.

A-C BUS OR LI NE 15 11 POTENTIAL r TRANS

  • CLOSES OVEllVO~NlE

~

CLOSES OH UllDERVOLT

! 7* Si-UlfDER AHO OVERVOLT AGE RELAY T'IPE IAV 20

~~ILIAifl' REL)YS OR INDICATING DEVICE Fig. 7 (Ol65A7639-2)

Typical Elcternal CcMections Dill8ram. For Relay Type 1:A.V69

  • Cafcu1ation,QDC-6700-E-2173 Revision 000
  • *Attachment B Page 815 of 821 GEl-90810 Voltage Relay Type IA V89A And B r

0.312 261MM

~

r 1/4 DRILL 4 HOLES GMM~

2.781 71MM 5.562T

!42MM 6.625 168MM

,c GLASS I

I I

l I

- -ct- - -

CUTbUT I

I

.218 I

SMM -.-j I

I

_._2.843

. 172MM 5.687 144MM PANEL DRILLING PANEL LOCATION SEMI-FLUSH SURFACE I-MTG.

MTG~I (4) 10-32 x 3/8 MTG. SCREIJS I

. 15 1-6. 1 87 I ~iMM

3. 0 t57MM - ~76MMI--

-. -*1-*-

5 l

.000 27MM j_

10.000 254MM

~l-_l 1--.218 l -

5MM I I PANEL_/J I

.718 18MM 3/4 DRILL 20 HOLES l9MM FOR SEM[-FLUSH MOUNTING FRONT VIE\\J TYP[CAL DIM.

CNCHES MM CA (2) 5/16-18 STUDS FOR SURFACE MTG.

1917151311 00000 00000

9. 875 20 18 16 l 4 12 250MM STUD NUMBERCNG 9

7 5 3 l

00000 00000.

10 8 6

4 2 BACK VIEW CUTOUTS MAY REPLACE DRILLED HOLES 4.875 123MM

l. 7s. I (46MM f

PANEL DRILLING FOR SURFACE MOUNTING FRONT VIEIJ F1g. 8 (K6209272(7]_ Outline and Panel Drilling for Relay Type IAV69A and IAV698

  • Indicates revision (Sf.9/931 111001 GENERAL ELECTRIC METER AND CONTROL BUSINESS DEPT., MALVERN, PA 19355
  • Calculation QDC-6700~E-2173 Revision ooo
  • .. Attachment 8 Page 816 of 821

.~.~-~* ~.. :**,

.. f.f: *,

.'"\\..

.., ~*{.:..

.~'.[if!}. :

.. *~* *..

RGZESD I RGZZESD I RGZESDB HIGH EFFICIENT "*~J... :*-

Severe & Hazardous Duty Motors 460 Volts, NEMA Design B <except as noted), 40°C Ambient

,.. *:*' 1 >;i. **. ~***". :..... "--~" :: "Cilrrent:[AJ.::~*: *,:"* *, ;,_Nomlnill!Effii!lency-G\\i)>* **:r.POwer*Fai:totl%)"*.:*;,.. *.: * *.-<To'r'que.1~'.,.,... ;;.*.. 1. l:RStill ~me" * *"'*.: -1~* :;;~*-~ :* i.

.. :;j;j~:.~t:*~ :.(;:... ;;:.~~2

.**:.. ~ui;~*~*Lci:*:~~~i';.;;:,*;*'.,::;~ ::::~~ '..:'~'.;.j~~;~'<.;:"-:.h:'.;'.~ j*d:~~~i1\\: ~*~t:~; ':::;:;:i::~~:;~*.. ~~~{'.:~~t~~*:~:~~j [~-~:*:*;

.}Ip ~"RP.fl.ii:* RPM1 :Frariii 'toad'.*L.Oiiii Rot0i 1tod~ *.. ;n *:.::** 3t4'c 't.oad<. ::112: *:.. 3,4*;*.. :,.i..oaa*.; (lb-ft)

  • ;<%)._,.' ;;--.. (%)'**.,. csec)** '(sec)*".. *tion:.3.. >, *t: :

. 1.. 18~0";;4S 143T. ~--1. *1.S '"11 K.. " 78.7.. ~1:8 '. 8~.S.. S2. 66

. 76,. 3

, 290.

.320.

14.

30.. ~ye

r-::~: ::..

1 1200 1140 14ST 1.3 1.8 9

J 76.4 78.8 80 42 S6 6S 4.6 230 290 19 40 wye

._~.-*.::..~'

l~S 3:~~ 3::~ ~:~~ ~:!

~-

9 1:

~

~:*

6

~~*

9

~~:: :!

~: ::

~:~

~~~

~~~

~~

~
: './?ft 1.S 1800 1740 14ST 1.4 2.2 17 K

80.7 83.S 84 54

'67 76 4.5 290 320 13 29 wye

.,. 1** *.

1.5 1200 1160 182T 1.S 2.3 16 K

81.6 84.2 8S.5 50 63 71 6.8 280 320 22 33 wye

~'.:.,,: '.; ::

1-1_.5--+-_9_0_0+-8_60-+-1_84_T-+-_1._8+-2-.6-+-_1_3-+--H--+_78_-+-8_o_.4 __ 8_o_+-4_S--1-_s_a __

68_+-_9_.2-+-_2_20_+-_27_0--+_1a __

3_o-+-_w,_v1e-i; *.:. :,_:.'.

2 3600 349S 14ST 1.1 2.5 22 K

79.9 83.2 84 73 83 89 3

270 320 lS 33 wye 2

1800 173S 14ST 1.9 2.9 21 K

80.7 83.6 84 52 67 77 6.1 290 310 12 2S wye

'-~---

~ 1 !~~ 1 ~:~ ~~:~ ~:~ :.3

~~

~

~-5
~
~::

!~

~ :!

1 ~.1

~~~

~~~

229~

~
~
~>. /

I i--:--+-~-:-~-~+-~-~-:~-+-~-:2-2~-+--~:-~+-:-::--+--:-~-+--~--+-:~-::--:-:-.2-+-:-~-::--1--~-:--1--~-:--:~-+--:-:~---~-~o-o--1--!~-~--1--~:-1--:-;--+---wyw-y:1-iJ~.~'. ::':;'

3 1200 116S 213T 2.3 4

32 K

85.8 87.6 87.S S8 73 80 14 210 300 17 3S wye

!q;~:'.<.*;

1--3--+-_9_0_0+-8_6s-+-2_1_sr-+-_3._1+-4-.7-+-_2_6-+-_H __ 8_2_.s __

8_4_.2--1-_8_4_+-4_8-+-_6_2--r_11_+-1_8__,1--1_90_+-_28_0--1--1s_1--3-2-+---'-wy1e-i,-*~;.....

5 3600 3490 184T 1.8 5.8 46 J

86.S 87.8 87.S 82 89 92 8

260 320 12 26 wye I

5 1800 1730 184T 3.2 6.5 46 J

87.S 88.2 87.5 63 7S 82 1S 260 300 17 36 wve S 1200 1160 21ST 3.3 6.8 46 J

89 89.7 88.5 59 71 78 23 210 300 14 29 wye S

900 86S 2S4T 4.1 7.S 40 H

86 87 86.5 53 66 72 30 180 260 13 25 wve 7.S 3600 3S15 213T 3.4 8.8 64 H

87 88 88.S 77 86 90 11 190 280 11 25 wye I 7.S 1800 17SO 213T 4.2 9.S 64 H

89 90 89.5 66 77 83 23 210 270 14 29 wye 7.S 1200 1170 254T 4.S 9.8 60 H

90.6 90.9 90.2 59 72 78 34 180 250 18 3S wye 7.S 900 86S 2S6T 6.6 12 64 H

87 88 87.S 49 61 69 46 190 260 1S 30 wye 10 3600 3SOS 215T 4

12 81 H

89 89.8 89.5 80 89 87 1S 190 260 14 29 wye

_-,;~ *..

10 1800 17SO 21ST S.4 13 81 H

89.S 90 89.5 68 79 84 30 210 270 1S 30 wye

.. ~;. *..

10 1200 116S 2S6T S

13 7S G

91.7 91.S 90.2 6S 7S 80 4S 170 2SO 18 3S wye

'*!£.'

1--10..__9_o_o-t--8_7S-+-2_8_4T-+-_9._1_15 __

8_1-+-_H-_89_.4 __ 9_o_.9 __ 9_1_+-s_o __

6_1 __

69_+-6_0__,1--1_s_o--1--22_0 __

1s_1--3~0--1-_d_e_lt_a-i; *,g.:\\/

1S 3600 3S30 2S4T S

17 116 G. 88.S 90 90.2 84 90 92 22 190 260 17 31 wye 15 1800 1760 254T 7.3 19 116 G

91.7 92.1 91.7 68 78 82 45 190 260 18 3S wye

..-.~ _:_.::.

lS 1200 117S 284T 10 20 116 G

91 91.7 91 S7 71 77 67 160 270 20 4S delta 15 900 87S 286T 14 23 116 G

90.1 91.4 91 SO 60 67 90 1SO 220 18 35 delta 20 3600 3S25 2S6T 7.4 23 14S G

88.3 89.9 90.2 82 86 90 30 180 260 17 2S wye 20 1800 17SS 2S6T 9.1 26 14S G

92.1 92.4 91.7 67 76 80 60 190 270 18 3S wye 20 1200 117S 286T 12 26 14S G

92.1 92.4 91.7 62 73 79 89 160 2SO 19 43 delta 20 900 880 324T 18 31 14S G

90 91.2 91 so 61 67 119 140 200 1S 3S delta 2S 3600 3S2S 284TS 8 29 183 G

92 92.2 91.7 80 8S 88 37 160 2SO 16 30 delta 2S 1800 176S 284T 13 29 183 G

93.3 93.(;

93 72 82 87 74 220 280 19 40 delta 2S 1200 1180 324T 1S 33 183 G

92.2 92.7 92.4 S7 69 77 111 170 240 25 SO delta 25 900 880 326T 22 38 183 G

89.2 90.S 90.2 SO 61 68 149 1 SO 200 22 40 delta 30 3600 3S2S 286TS 9.S 34 218 G

92 92.2 91.7 84 89 90 4S 160 2SO 16 30 delta 30 1800 176S 286T lS 3S 218 G

93.2 93.6 93 71 82 86 89 220 280 19 40 delta 30 1200 1180 326T 19 39 218 G

92.6 92.9 92.4 58 70 78 134 170 240 2S 50 delta 30 900 88S 364T 26 47 218 G

89.9 91.3 91 50 62 66 178 lSO 200 22 40 delta DOE#CC032A 2007 Low Voltage AC Motors Selection and Pricing Guide MM

  • calculaHcin QDC-6700-E-2173 Revision 000 Revision O Page 817 of 821 NES-EIC-10.03

. t; ~o *-z ti:.$~,tGf/./ /f;'e r,,,.

1 1

I ~~.__:;;~

J I

y 1*

I :1.

}:_. *... - :...

I.. ~ !

I.

~-

I

  • I

'" : :* I :::.I

'. r.-.

I Exelon.

Nudea1 Nuclear Generation Group Nuclear Engineering Standards Standard for Thermal Overload Relay Element Selection For Continuous Duty Motors STANDARD NES-EIC-10.03 Sheet 20 of21 Revision O

. '.Calculation ODC..S700-E*2173 Revision 000 Revision 0 I

  • *Attachment 8 Page 818 of 821 l=t.4!.' NA\\~

r..1n **. :---------1Tiy1TirL;-E --m'"'llll'ZJI,-lf'llll HKLA.l'A'1rr-----""11ao*r o* aNur,.#'.

_.. 8ENERAL fl) ELECTRIC l

i..:N~o*---------4 HEATER TRIPPING ZONE'S (Fai OPKN BILAI..OPl!K STARTBR CR BllCLOSID STARTB8S I

"""'011 SMEE*

SH NO.

F'IRST MADE F'DR

  • HEATER

!2fi!

~

12!!

123 C0.36A A

12) C4.l9A c

C0.39A B

C/+.66A c

C0.43A A

C5.26A c

C0.48A A

  • C5.92A c

C0.54A 8

C6.)0A c

C0.60A A

c6.95A c

C0.66A B

C7.78A c

C0.7l.A 8

C8"MA c

C0.78A B

C9.55A c

co.s?A c

Cl0.48 c

OJ.'rlA B

Cll.38 c

Cl.09A B

Cl2.SB c

Cl.18A 8

Cl.3.?B 8

C1 *.31A c

Gl.S.18 B

Cl.48A B'

Cl6.)8 B

Cl.631.

B CJ.S.OB B

Cl.84A B

Cl9.8B c

Cl.96A B

C2l.48 e*

C2.20A B.

022.88 B

C2o.39A B

c2.s.oe B

C2.68A c

C27 *.3B c

C3.0l.A c

C'.J0.3~

B C3.26A c

C,3).0B c

C).56A A

C36.6B c

C.3.79A c

040.0B' c

cb4.CJ3

e Fat TRIP?IOO RANGES AT 150% TO 8007. OF NOMDlAL HEATER RATI~

SEE SHEEl'S 1 or 2 AS FOLLOWS:

OPEN R!IAY CRl.24C cR12l&D SHEET l OPEN STARTER CR106A CRl~

SHEE1' l CRl06B CRlo6D CR106G ENCL~ED STARTm CR106Al00 SHm 2 CRJ.CIEBloo ClU~ClOO CRlo6DlOO CR106Cl00 Exelon.

Nuclear Nuclear Generation Group Nuclear Engineering Standards Standard for Thermal Overload Relay Element Selection For Continuous Duty Motors STANDARD NES-EIC-10.03 Sheet 21 of21 Revision 0

. Calct:1latioh QDC-6700-E-2173 Revision 000 Attacl:\\ment8 Page 819 of 821

  • :J25

.* 020 a

l#

!:.OI

~

Q. 8 GEK-34053 ttt SEl911C RATED INST#liTAHEOlJS UNIT OPERATING TIME I

I I

I


~ -l I -~* -. I I

. -~ -+- **~ **-**r* _,.J.. *1*- r

+-: I I -~ - :.

~.

_.... -.!... +.

~-. I. --~..

  • ~ ----~- *--1*

-f. **t 4-r: -**t- -t*-**t-,;.... t'.... *:.~. --

I i

. I. I

-i t-... !

I I

-. J I -.

I : :

I ii:

  • 010 +--t--1..

. -* -'. -+ *--i.-.

-RANG"'-E-FO..._R -ANY_.__, -*--+--.

... i-- ----t-

'.-l-- -1 * *l.., -; *--+1 -**

1

  • t I

1.5 2

3 5

6 7

e tJIJLTI Pl ES OF PIClCUP Figure 8 (0208A8695-l)

Time/Current Characteristics of the Instantaneous Unit 26 I

I

~--~-

g 10

Calculation QDC-6700-E~2173 Revision 000 LO OI IO Cll GO

--=

0 C\\I 0

  • *Attachment 8 Page 820 of 821 GEK-86054

~~~

~ 0: ~

~ ~

... ~ 0..

ffi ~ ~

@ij 1:11: a:

l I

II v

v

./

y I

~~

0

~'ON003S NI 3Wll dn>IOld I -

J I

I I

I j

I I

tn 8 Figure 7 (0208A8695-l) Operating Time Versus Current for the Standard Instantaneous Unit 28 0

m in.

Galculation.QDC,6700-E"2173 Revision 000

.* *Attachment B Page 821 of 821 GEH-1'190 Type PlC Instantaneous Current Relays eesr COPY AVAILABLE Figure 1. (8014170) Type PJC11A Relay Disusembled (Cover Nol Shown)

-. Figure 2. (418A711-1) Time-Current Curves tor Type PJC Relays, 4

  • Denotes change since supc:-seded 11:1sue.

I Analysis No. QDC-6700-E-2173 Revision 000 Attachment C PAGE C1 of C17 I Attachment C Passport Data - LOV Relay Settings

t g!J TIM003ll

  • EQUIPMENT/COMPONENT HEADER* [ NuclearProduction(PN4P) I Fe~lllya~

Unlfcl!!t:_;_~ *. ***;'

Op Syutemat....:..:::_:;_~.:J Divi:si111*r:.*. * ** '_.. "./ :*. * :. '*:.:'. *.,]

Syatam=ll!liZ '.,:", _ *.:J Equipment-I~.~.. '"1!!703"-:

-."'"*13-:""'*~:-.*. """:;.""":_'"'* *"""*.-*-""*:**""':!'

£quip Rev:~

RevTrk: Rl EqulpTsgali~~il;.~~=-t statua:te-~:-W:..~.81.tli!!~q~,5!§!

Op Status:jO~IJATIH :: * ::£) bQ/1!!m.!0~.]§ 1~;!9i]

RV status:jlS!i_l$'!~'~._~.. :(fil l!Mf1.~qJtt'.'.i!l Are.,.L_*_~;.,*_*_:__;.J ci..~I.. :.... ~.. -1u camponent*I!!,~.'.::...' '.:J '"ll-?r--*J""';'.:"'".:."'"'.*.,.,

~""'r;-_;_-. :..""**:""'".~.""""'.J

  • Locatlonalj I

..,:*. *' L*... _.:.:... *.. ::.... ::-... :.. -:.1

  • I
1.

I I

t 1 1 1 ",tf I

I f

I I

I I

1 I

0:

1 I

1 *,

Calculallon QDC-6700-E-2173 Revision 000 AttachmentC Page C2 Of C17

'gjJ TIM0071-EQUlPMENT/COMPONENTl\\ITC PARAMETERS - [ Nud*arProduction(PN4P) I

  • ~i~~~~_j~~.. ;;~ iJp:cJ..1lf.P.Ul!:_e_i{~itl.*.

.. **~*

l Enter parameter name anel value data.

i Faclllly:~

  • Unll:IJIJ~ ::.J lfl'C:k.....::....,~::__j_: J

.st.ius:l!<9-1Y.E:.'...:.::....:;8 op.SylliDIY/Area:I:_.,.-:=:..: *_jf] 1.* :...:_.'._:_:.c._**~..:'..'_- _.~.,j~I t*: ~*,.. ~*.

~cl Sya1C1s:I~--- ~~J.-i_-,-.. -_,-'.]~l].;

  • equrpmen~l~...:.:..J 1§7~1.(, __ i:..'.'..::...:..i\\ hnL ::...:~ b~!+/-.:.- *~~*..::.-.~;,:.:.iJ Equip Rev:t9!1).~*~:J
  • Template:L:.!.....:_: *_:::... :~-:.'.*.... :,_._.::.:_:.::...:-~:.*:.:.:.:...::J ADMN:UMITS'*

+1--1:83V'.'

.*. :.n:ir>

['T. -11i11712DOO'. -.,; ~

.* f~:ZOljE, r

  • \\.

.

  • iiliStEft:ANEous ~. *
    • :*i:
  • si>EcF.x::DM:f.TY.iif * * *-':. :......

. :, * *

  • 1o::ACr.:orfii¢:ilRQ£<;

1f.,. '

..'.... f;; o4!1&iio0{ ~

~~!1A.*

  • ... '. J'f,.04'1W0.1 ; * ~;
    • ~

I ',

  • I

~

  • ~,.

... *,.*"... : l".i.

. x,* *::.:**.*;

.... *, : Pl

,_.i.

. l?.i*.. _,..

".
:. :i Calculation QDC-6700-E-2173 Revision 000 AttachmentC Page C3 of C17
    • 1*

'*'1111t111m

  • ~'-

-~... -~!!

!J TIM0030 - EQUIPMENT/COMPONENT HEADER - [ NuclearProductian(PN4P)]

-~,.'Ed,it*, lia'~at.e*'*9Pt1onal. viev-.:~~P*: _:;:-...:,

, I !use More De 0

tall to ~ew addltlonal equl;;-ent data.

II

~... ;

Calculation QDC-6700-E-2173 Revision 000 AttachmentC Page C4 Of c 17 Facllly~~

Una=l!!f * :~:......'.:

Slatua:I@_;._:__:,@ h<!!i!laJ!!!.O,~j

  • +9n+I Op Statua:l~tti( ;.@ b!!l!DB.i!Oil;@'i ll!Q;qji,,;*I Op Syu111m-f\\_:::.:...:.~.!

RV Stutua:l~f..~ :: ;__;([j IJ!Y.1~11.i!J:i§j Olvlsinn-i_...

.., *. :. *-** * **. :.. :J Area-I.,. *.... ;. ~:-.... :..: J System=f8'7.i:'..:.* L' Cl*-1....:...,:,:..,.]

Equlp11111nt*I~ *:,*: ; '"'(~---.

"'"')3-'.:°°"::,...:. -., """:-.....

~.-,-.'.~"'*::,....~'.:

eomponant*l.R.10..::..*. ~:J "'1 m-.. "':~""";_""* :-.. -.

.:.""~--~-.. :""::.-..:"""."...,:!"

EqulpRllv:~

RmrTri: Ri Locat1o.SllJ l I

EqulpTall"(!~~"'!~W.~......... : * *.. _-.:*.

~.:. (.

Neme:l.i!.u~ 1}.11-;~~ QF:*~Q~IJ.l!'IS,i>RPro;!l!ltt~ '!:..c. -.:*..::. * :-:::':-.-*. :.:: '.:: *:: ' '.: : >: -.-:.::. :::-*:::*.-:.:: :: '* ~i lac.DBsc:I.."~*~...:.._*. __ ::..' _ ::. __ *,~,.:.:-!..',.~.:*/..::-~*~:.. :~ *.: ..'!.. :::: *** ~.~.".!_

0 r~."./,_ ----**-*.:~*.::~n'.*t.. ~:, __ _:

PEGa~

11.~.£1!1.*~ru., <<.; * *<>.j eqsu~rype-L_ * ;_;

CllantD-1 fl..-.-.

.:-:._...,...'""'.=-::_,-__

""':._-_:"'":-_:._=-~,........_.,.,**.-........,**"..,....-,.,...:_-_,,-._.....,._:_.-,.'""'J I *., **--.........

1 l

  • -;I
  • I II I

I*

1 I

I I

I

  • ' 0

'f!J 11MD071

  • EQUIPMENT/COMPONENTNTC PARAMETERS* ( NuclearProduction(PN4P) I

_f;t,1.e:* tdii:*B~a_:e**,JP.t-~f~*.v1eii: i~lP. :'."

~: '.:.. *~

I Enter parameter name and value data.

  • ~

.... i

.:*~*.,*

Facillt'r.l@D un11:J9.(,i;L_,;J urc:l.:.'...'.:_,_*_:_:::~* *.J Stllf!IS!l~~-... :. *_:@

opSyullliv/Araa:i:...,;____:.:,*1l I...,:..:_;_~*~: **L;_::,_;_,__~ :.::..:l,_ :. -'"~:.:J Sy111C1s:i~ -... JL

... -. *---*-.. *""'m Equlpmen~I~....::*.; 1~~13';;;,L.'.,i :.:.;.':_; IR'!E"~) h:rr~:~-..::.. *::.:.:~.. ::..LI fqulpRov:jQ~t. :..J T~mpllllef.,_,*_,_.~_::*._ ~ :.,,.:_:_:_, *:.* :_;*:_'_.. ;.* :.j.

.. '" *aiCDM:e'tl1'E.. *:* *. :-,.-. '.. :'.*.: 1'*,'. Pilcna:rftlE;iifl.Av"'.-. '." '. :. * '"'*. "'iElff**:****. ~- :: WJ.1otf7l:z000: ~:::.,*

f'*

~~.SETTINGir:oL(iNs'JR;~)" *. '.":-, *< *: iQ7.0p.1fa.: ':.....-

-TElCI' '.

". : ~ 1ai1:7~;..:1:;

i~*otli!f~:ORDEC:....

.... "i>EC*. *..

.....,:,. *; ** * '; ".ti:icr::... ***: l'l.i 1:or.i9riaoo* *5' l'~F... : *... ::..-.....

. f I\\

  • I
  • ' **. fl' :.. : :: :. *..
  • '*.. ~'
      • f1,'.

I'll,*

,'*... *, ; re

.. ff,.. '*

  • ~

Calculation QDC-6700-E-2173 Revision ooo AttachmentC Page C5 Of C17

... -.*~.*-***!:*

... *..... ~111*

... ;.!l~

E!J TIMD030 - EQUIPMENT/COMPONENT HEADER - [ Nuclearllroduction(PN4P))

File,_:*Mit:: li~~a;e. '9P.tiai\\~: y~e.i1!!'ii$' * * :~:.

I I use More Detail to view addlUonal equipment data.

Facmiy.fiW:3' UntnlP1', *.'....:.:i Op ~tern-('..:: L:U DM!lllln*h..*... "..'.'. '. _.,,,__ ~j SyatenPl~'..*..' ~.:_* !

status:JA'"'" *:.:..,Ji! l~iit10i2ooo"=

MMMI

  • ~!'J.~":'........ -.14,'U....__.._ -

.... ).=:I

-=====-=-~'

opstetus:l!J~'Q!!. :~-~.] l1!!/t11Ri!i!i1J§i l~~;.J RVStu1us:I~: ~* *.* ::11lJ (1W-1tiP.Q!!fJS Area-I.. \\ * *.:~ ~- *~ :* J Cla11&oj :.:... ~,~~!f:l

  • Equ_,me*H~ L' ""1§7o4.:-

.. """. ""'"1:1-,""'..!,...'.:*.-.* :"";:"'";:-,: ""';..,....,:.£ Cumpananl*l!li~;.i:*~~~:J,..b-"?J--,~..,.;:._.,..:_-.,..,.._._,....

...-~.-__..,.: __

-~""":.; l EqulpRev:(.D\\11;_.*J

  • RevTrlc: ~

1.11ca11a~r--f] I.

I EqutpTao-l.1~!4::f~*m:L : ;,,_,_._... *

  • .: :* ~~,.. ' :.- *.. ~* -*

.*..,:*-.. *.. *.*-.... M.. :*-J nam.:(BU$_1f.1 ~~~Qf.;\\[Qli:~:PJ!O~!;T!Ql!~Y~.. *.... :.* '... : _..,. _,: __.___.:.. -* '_~;.::* 1 LucDesc:(,. ~ :_.. : ~ ~ *.... '..* __ _.: ~-.-.._ ::'.- * *. *~*-~c;_._._:::.~;.. _.':.* :.:.: ** ~"-* *.* :*'_:_._:'..:_ :-~.=.*....:..: ~*~ J PEGa~ L '.-.. :._* _.. __..... ~. "_'.*.. *'.'.}

Eq.Sull-l'fpe-L'.*..J cg,,1110.1 I

1,...,:,-* ::.-_-_-, --~... -._..,.,_-..,..,_;_:..... "'"'.: =_"".-~""~:_.,...

.. --~-"""~,....i._-,.,..... -*.:...""".*'""~,...,*_j I *...*., *.. -.*.

  • l
  • :t
  • I 11 I

I It I

t Calculation QDC-6700-E-2173 Revision 000 Attachment C Page CG of C17

. __...i:...._......

Calculation ODC-6700-E-2173 Revision 000 Attachment C Page C7 of C17

'g!J TIMD071

  • EQUIPMENT/COMPONENT/UTC PARAMETERS - ( NlldearProduction(PN4P)]

[*1p+ISl-jllillijjl'

  • iue.*F.dit fi;,..;:1.ga'te*:1l'~*~:rs;o vii:v' ;Hf:i:p*.::
'.... ":~~-

-~;ij

. I TE,;rpa;~;~e-rna~u-:;';;ata....... =.

~-

fiii=151 Ir t~:; "'1ti!flii;~,*~A-~Clf;[j,~~~:~!~.1~~§1 fl~*~t4(!&Jii!t~:~;j/Qf~~~I~. ~:~ *::

1~~,,:{~~~:~:~. ';\\

1 ~f*.~.. ;i~*;*~~~\\*~*;::.,~~- 'c:.r:~ *~:r~*

1

i; 1

~:--; ~,'~~t,. :.;r>:: ~'.,*'..;,.. :. :~~:'i :.. *.,...-~~~* v.*:*\\r* ~t.~.~~'.""'.1,.... _~*.:.,-~*:iit.: ;*

"'"':~

FacJ!l'Y:~

un1t.[gr :..,,,.:.....J urc:f,.:.*.. :: _::: ::.:.~.* i Statua:I~::*,_,_ *. :-~

opSya1Dtv/Ar**:L.. *_-__ *.:iJl.:*i..... :. __._,:

~--~- ; __. __ :t*o.'... C'"... !

Sys1c1s:le11.tJ_jL-'--'-~:.::.: ttl' ECiUfllmon~f~!l'l:l..:'...! l@7.Qf.::1.L.::.,*:.:~~!:.:.~* hu~~-r~*.. d lm-:1L*'.:::.O..:;,,:.::. :.J E~ul?Rev:ID!!!i,..:.JJ Template: I.~~~.~- --~-.:.'. ;_.. J...._: ~*,:".. ~:-.: **.' "'.:)

i.rniflpASsWE*-

. *, Acl)Ve*.*..

" ' (:.

fl. O.tiiit.zaii:f *i=<,i:

  • ADr.i1N:1..mits**. :

<1-*1.s3v.

  • mer.- *

. w. ioi29J2ooa

  • ,..~:. ~

. APPENODqi'..

rL.

~ 04f.t!ll;2oor. '{

E:licrii<<:Ai:. ct.Ass* : * "

. <1°£:

  • 17.i 11<1118t200;:,.. :~

I

. "' l'J*:... **:" *

"I*** Wi :* :: :.*.',* ' :

. *.:I'?:'*. : "-~:*,....

'. '/**

'iiJ TIMD030 - EQUIPMENT/COMPONENT HEADER - [ NuclearProduction(PN4P))

~~~~.*f.dii;~**~ilyigaiL~~'~*v~elit* '.~~P~~;-.

i !Use More Detail to view addlHonal equipment data.

11 1~):*~rij\\.~'iWitt!f!l*.mH:;o!rg*oo:;~1 Facf(lly*f9Ql:;j.

!>!*wa:IAm:.:..:.. ~lfl l!cv.i.~l!!lfi!iil Miii!MI Unit-~

Op Syatemat~~,'... :'..:i J Oivislon-t"

_*... -:_

  • _:.:>....,*'.~.. J Syatemo(~:~ *,*_j Equlpment-l~....J.. :::. l"'t1t"'.941,.,,...1;4-;*-.* ""'.".-.
..""':.:""~-.
  • .-:.:""~~"':;i EqupRev:l.~i:....-i RevTr1c: j;ij op staws:l~w.. ~ i!J liqM@oo.@ IJK!;qG.::. l

!tV Stlllus:I~:.:.~:~ *~El l~~o?t '.§j Anos-I.::~*-.... ~!

C!aaPL.. *:.l.. JiJ

  • campanent*f,lij~:.: *.::.~J '""b21.,.._.-~-:""'::,,...:~*-.:"":~""*:.-:.....-* _-.-.:.:.,""'

LDcaUo~I l

EqulpTao-b§'!!~1+.17f'L.:

.. ~ ".* *.. *\\* *.~ *..:I...........:*.. :.. _.*.,

..i N11mr::[B.U$.1,.t_1.. ~Q~!Jf.*'{Q~i:"-~:~~~~J!t~Y.... : :.... _::.:.. :... *~-~*~ :..~* -*~~*.. *_.. :_'. *-*. :: ~-~:*...J lcicOosc:I...-..

_,; * _...,, '..*._.__*... :....... :.. *. '*.<'... *:..,..,...:.~L'.'..;;1.... i~*-* *-'-~ *. :.. :.:**...:* _ _.:..."'i PEG*~L*....:. :*.. :;

..~... 'J Eq51!t1-TyJie<>l.... ~.'.:~

Cll8ntD=J I

.....,._-__,...., -,_-... -_-.!~---.-.

""'~::'"".. -""'.'""'.:*,.... __

-.~'"'*:_.,...., -_.,..,.!.. -.. -_.;""'::*,....

__ -*....:J"""".'

  • 1.:1 I

I

  • 1
  • I I

It I

II I

I I

I I

Calculation QDC-6700-E-2173 Revision 000 Attachment C PageCBofC17

m 11MD071-EQUIPMENT/COMPONENT/UTC PARAMETERS - ( NuclearProduction(PN4P)]

. File.*'~~** Hii~~i~~e

'Jp,t~~. *View,'. ~lP~ *.,

  • _;_.
  • *.. _r*. :*. *-~-

I !Enter parameter name and value data.

Facllly.~

  • Unl!:l!t1.. J:::.:.:'...l urc:L_,;,_ ~.,_;]

Stalus:IA_C!l_ll!;c:;__..;_;._:]'

Op Sy~lv/Aroa:( _ * -~-~ : _._:if(. __. ~- ;*_.-i_::~~ _ *. :':_: '.*'.::__; ( ;, :..*~* *:.::. *:J Systets:I~~<.'.".. _'l '"l. __..,.~"":c'".-~---_ill-.,

  • EQuipmen~I~_;_ ::._: l~tl!fi.f. :.:...:: *.2.-:i _;:J '(R1!.l;.:._'.,..J !;~~~-..':. :--_;;..:_~:..J Equip Rev:(.@L~:;j Templolll:[. ~-*~*~:. ', ~:~,'.:.. **...: *.. ___ *.::.'. **-'"*--*,~J AD/!IN:l:IlllTS'"

.,:,_,1.83V;.

rexi:*

l'1. 1Dt.'712Dob. :';'.*,. ~

  • F.IRE'z!iri(*

.. ~ ** '"*

." ~-U~...\\, _:,.....

-* -*:., 1'1,.04t1~f.-

  • t-: *
    • .MISW1ANEoiis1-'. '*'.......

=;1'bil'~Sd:.i*'sff '.

  • : mfr..:
    • !?.: 10/JQ.liooo iJ.

PrRAllO:.... *.

... :'35i.1:::.-.

':.... ~:.'.. !'IJ 1°'2arioQ9.:~

  • ... ;-;:: *: Rif1_;97:~r.::*:-. *"".. : ~*..... '...:1.. *... ~~~:::... 11'.. ~- *N*t... -.~ *.:.~:/**/1.*.J _:_,*... ~1 ;;_;:; :*.. ::~:.-. : ~"!" 1
~,..,.':.~_,.;_. ~ ~... :. ~
  • ~pa_Dof>~-.~

-~

siiEi:FiC DEVl:l:::Mie* *:. : ".

  • _.;,,.. * '-*.. '*": '.' iiRoiECTM:;Ra..AY;..... *' :.'". : ::: ',: :: 'fu!:rf.

~-

.~ ' It,citi712boO. ~:

~e-SiiP.rs$"mdiren;(fisiR;fr *. *, * *

""* 8;!;7~.1!7:V::** * :..... ;* *. '. *::. :. *:".", ti,Xr***.-:.... 17! 1oh.1lioo0i.....,.,_

  • iD:Ac;i;q~IHl:oitllf4':*
  • . *0ce*..
  • ..-,*.** *.. :_:/ :. "*,::.mer,"";.. "

l'?.~_or.i!iiiollo.-:f-.t

.. "*;**'*.::It:*:*... :... :- ::

'I*.

'.*.:. ' l'1: *'" ~ ' "'......,

...... ~-. *,

°':.. '. f1,... * :* *, *.,:

  • .-. PF,

... ':? *.. I';;'

Calculation QDC-6700-E-2173 Revision 000 Attachment C Page C9 Of c 17

,i.-11111::

....... "" 1!11!1 Mimi?

'm TIMD030 - EQUIPMENT/COMPONENT HEADER* [ NuclearProduction(PN4P) )

F:ilf!" *:Edit -~~~a;~... *:~~_81 ~Vie~ =~ip * *. *. *.. *:. * * *.. * * * **

I IUse More Detail to view addlttonal equipment data.

~-,,,**:

Facli!ys~

Uni!oJ~.:. : __.j OpSyatem=t.::. ~-:' J Olvision*L.' *. * *.. *... :... _ *~~*: *..".:.;J Syatem=I~::...... ~.i Equ!p11111ntal~. :.--~l!i7-_r.;;-.-.~-~-.,:-*~-,*:.-'.~-**~-i:-~:._-,*:....-*l' Equ!pRtiv:~

RevTricR:

Equ!pTau-IW.~1~:1...*

51atus:~.; *. ~.. JI b!!l(o@J!9;@1

  • HMM Op Status:jQ~ll!('...: ;\\!'I lrtg1g11Jj l!l9~92J RVstatue:J~v!:Q:.:,* ~i: jj j~~~q11.1:id Areo*I.-. _*._,::_'._.:..:..::

Clssaal:.. :*.** *.' ::.1J

  • Compon*nt*lfilt..:::.~ l -b21-..

-41.-.-.-~ --~-..J-*:::_-: ::...-*. -*

  • .-::*~--j_

Loca~I I

r.... * : -: _....

.... j I..*.

    • ~**.*.

I' t

I I

I I

I Calculation QDC-6700-E-2173 Revision 000 Attachment C PageC10ofC17

  • .:. ::.:*.. *.'.. :.. 2~!r

rm T1M0071 - EQUIPMENT/COMPONENT/UTC PARAMETERS - ( NuclearProduction(PN4P) I

~i~ : Edi~*, *lifV#i11't_~*' '?;it;i,1lti.~, *-v~""***.:ljiiiti":. *.*.

1 I enter parameter name and value data.

FacJi!Y:!'AALl

  • Un11:l~L.::'.j urc:j;,.;__:.;.,. : *. ~ __....;..'.;;2J Stiltus:!A~::..:.:..-~*ffi OpSya/D!v/Ateo:(.

'.~-._.J] j_-_,:._.:.. '..:,*_::_.. ~:~_i.. u ** :::*:d: -.'. -'*.".... :.)

Sya/Cf:>:(~..:_;*~_;_)L_

,,..,..._ -;*~"".:-:..:_""',fil'"';

~n~l.~.U

!W..P.~::.:...:.'~_*:..:.:::.. '.,~: IR1~. :..'..::::J bit~ _

_:_.L: ~ :. *.; i Equip Rev:l~l:.. L,;i

  • Temp1ote:I, ~ -~*c~ __.:*..:.:......~.. :.:::....__:., *. __,..:.J Aciliicn>ASSIVE-. ',-.

-:~crilli::-.:.".

(?; ~eii001.:*.. ~,; ~

-~

ADMlll"UMITS 0. '. *

.+i-:1.83V... *:

TEXT"

";.:._. ('1,.1fl08/2liob;. t/ ~

~ocR

, N:.

.".. ~ 04i18i2w"f: "-:

  • '41SCB;~u!l1~ *
  • 'mliruEi;='.i.4.s-;;;; *._

.. *.:."JJir.- '.

l'J'j11~oo' - *~*:

i--t----1. _Rl'..RA110 '

iiii':!*."

... : '. mrr*

. f1.l.1.f"mst'iDOo'.....,.~.

~'1.!17.'i:J\\T *

  • <* : It
  • '_ *., l"J 0:111_!112l!DI*\\ :~,.

. r.* *.-

S~tc;pEVJCE.il,Yp.E'....,. ~:.t.:,::*~*-.. ::,: **, P.RDTE~!~Y.~-~;_... ;'.f_. 1 i1£XT~'*,;1.*.:* *_: ~ ~1JtiiVIoOiJi~~~*.::"1f.

.1~~t~~1)

.... *:, ~*:'*;.* 83!7~y1~7V~~,:. *.:.

~.. :'* :.. * *,.i~.. '.-':TE;<<~t** :.:.-~.'.'~.. ft :1'1~.: ~~~~

...... /;'.

l... *.

  • 1 Wt....

l

,1.. '*

' fl,.

. 11.
  • ** !. * *.. I'}.

_:1,:.. -*

  • . *~ '. '

ff,;*'.. :*...

1; ; *:

I I

"'.'0 ',,' '*."

Calculation QDC-6700-E-2173 Revision 000 Attachment C Page C11 Of C17

J TIMD030 - EQUIPMENT/COMPONENT HEADER - ( Nucl..arProduction(PN4P))
  • F:l.:i.e:. £die*, *Narigin:e' "!!Ptii;,i,;'-
  • Vieii:" :lll!if".. * *:

~. '.

F"aclllyo~.

Unl=I~::.".: '... !

statua:fe:gj)IJ, ~

.. :....ill l:!.1i!1~1!Jl:iS i+!M Op Slatus:fO~TI[.. ~:~.. :!J '191\\<<!.@i!Oj§j I~~,~~

Op Sylllllm-1'.:..:...::.:: ! J Divi:iion-I *. *-...... *.~: ~--.:._:_..:..!..:.'"Ll SyalerrPI llQt::, __,J Equ,ment-I~.::; :~ l..-!i10'J-;-_-, -~-.:~-~."'"*:*~--....

~:"'"::.-~-.-*

"'*~!...,*:'

Equip Rav:l!!iJL... :J RevTrle l"i J

riY stW1ua:[~s11at:.:~~; jfl l.!M!1~1J..01 iii Arn-L_ """::.. ""~

ciassoL_:.._. ill

  • eomponent*IR.11!'... :.:~] ""j:m-_ -.~...
  • ~~-<,....*

.. ~.,.:~,,..*."'":"""_:._""*._-_..,,,]*

i.ocalfo~.

Nome:le.il~~1:\\,~9.E.V!J~~il5~~!t~.'* ~-."-*-

...,,:*.:.:...... ~-' *.;._ *... :;*..,.:.!

locOasc:L.."..:.. -*...,: ::.".. ~-;_,;;..::,... *._~;:,. __,__:.__ _; __.... :...;....: *... *.;.._.. ~*-' : _ _,__.:'..'~:..-::_._._ ~~"..... *._

'-~*I PEG-~f:..:..... :*_.',:~_..:*.:~,."~::.'.:'.- ::J Eq.SUb-Type=C':'."?:J aontD=

L: __ -+.::.... :!..:...:~--.:.:...:.::_::.:_*_,*_:-_,~L-,...:::1.

  • .. t I*

o I

t 1,

1 "/tl I

I 1

  • I I

t I

I I

I I

1 o

Calculation QDC-6700-E-2173 Revision 000 Attachment C PageC12ofC17

'm TIMD071

  • EQU!PMENT/COMPONENTNTC PARAMETERS - [ Nucl!arProduction(PN4P)]

Facfl!Y:~.

una:l!i?;~,::;,.;,.J urc:L __ :1 *** ~--*.!

sta1~:l!1~;,",;-~i!

Op Sya/Div/Area:L. \\_ *.. :ill L ~--~ *..:,_:.,;:. _ *,,.:'.*. ~:.':.'... : I:** : ~_-_:_.~)

Sy&IC1s:l!1W~~; _ j -1,_-._:-.,!-** ;-_.-_]J-i; Eqillpman~I~;*;:'...! I~~;~:'..:..~.'..* ~ :'..>:: l!\\1L _'__;;: i b.~":'l':.: '.... ~-- ".L.:*: :.J Equip Rev:i!Jll'.k.LJ Tempmb:L.. ;_.*_.. ~ ::.._,.-:._ '.:.:. _.::-".: ** "..:. _*

..... ;J

  • ~.

..* * *.., *~ * : -ACTM:

.:. Fl. iw.im1:~,::.... 1:

~'tf.. *_..

N*:.

. r1J ~411alio()1: *:7~

._ FiREzoNE;-

8.,2:8;.Ei..,... :..

=*: *.. l'1j.04i.11_112901: -:"'"'

  • FIJNC'tidif1<. ~-

. '*.*.. - ACtUA~~-:<i_F,Eccs** *"..

-. :rfxt.l --"-' l'ii 11~00::..;"

.-.;*, 'i.fiSci:'Ll.ANw'us1

"'roR:RESff.... 2..S+>--:.-

. li:Xi:'. ". "F?L11rost2000:.. 'i).:

'I *-

f't:AA.'fP:..

  • . *'~" ~.1. '-*

. *-. TEin\\~........ :" !'1.11~: :'"*:*

.:.J

. ~--~-=:;

R&:fs7:;cAi:~.:t *:-~*~:*-... ~***--~~~~-

~ <*-.,..-/*_; N*-* r*.*! *.. ~ *.'j.:".... *._..... *:*. ~*. __,:~ :*.. *,-

-~--iJ:.

1.:~;--, f'ifQ~i:ufiiG01! *.~.r;.:.'.

sftci:!CbE\\ix:i:~.: :.* 1,.... :'-.;"~ *. ~;i!ELAV'*.. :.'/':.' *:' * *" :*':rExi"". * ;":* ~ 11iilili2o'iM!':*~~-r

r.
  • ** i

~

  • f1,; ',-:

'~I

\\'. '

  • ~ l.. *
  • fij.

,.,, *:.*;m.. :.*

. " ""*"L'::,",.," p;,;.,,..,

  • 1 Calculation QDC-6700-E-2173 Revision 000 AttachmentC Page C13 of C17

,; *... *.:~ii

'i!J TIMD030

  • EQUIPMENT/COMPONENT HEADER * ( NuclearProduction{PN4P)]

Faclllly*~

una=I~.:. *: __ ~ ::

status:ll.\\!IDV! _:;.i.:_@ l.ti!ti~l!!ll@

i§M Opsta~:(Ci~TYC.:*""'ill l1~1~qoj§i j!J:.q,o~.. :

Op System-(! _***::..._ ::..J*

Dlv~ri*l **.* ~: _: >.-~:

RV sta!"a:l~11B?:..:.::~:.. ~w l'!#i~fllii A,.,aal__::_..1.:-~1 svate11FI~:...-~i ClasaoLA:.'.'.°...;fl Equlprnnnt-I~:. ~_;:.: ""l.!J71W.24-~.-

'--~-:*-

... _"""':~--_.-!~--'"'*! ~,....-£ campanant-IR.1r~-~ :..J '"(,-~---~....,;*"'1.'""*

'"-*.:...'"':~"'* ~"":_-* *-.::_-.. _~J

  • lacsllan*.i---:tJ Equip Rev:fi!\\11:_ ".i RllY Trlc PJ
.-.:r Cllant~

11.*.**.

I'*

11**

I I

";o,;

    • 11

'I t1 I

I" I

I I

I

~

I Calculation QDC-6700-E-2173 Revision 000 Attachment C PageC14ofC17

ff5 11MD071-EQUIPMENT/COMPONENTNTC PARAMETERS* ( Nude*rProduction(PN4P)]

Calculation QDC-6700-E-2173 Revision 000 AttachmentC Page C15 Of C17

  • r1:~;~:~~:~:*a~P~~;:~a~~....... :

.J;_; ***..

~,,.

  • :~!i II 1*(~ ::ff.. *;&Ji~:.'~... '~I,*,:lil1~¢(~.~~J~.11iSm.C9fliJ~'.:_~~@.~:_'.

1

~~~*.~DttatU~n~~;*::Y\\;:!:*~ "~'f;~~.. ~-':~:~~6~:.~.. ~:;,.;~~":**~-1 *. ~ '1; J~~*

_;'.-~i~!'~*{*~.,~,\\,~~...,.~{ *. :'(::**:~:.:-:1j:,*!.... i(~: :~

0

',J 1:~:

1

~t**:t*.*~*~**~.1 **:

Faclily:~

Un1t:IQ?.L'..:.~J urc:JL~'~.::..:::.:.~-*~j

. Stat~le.~:~~: ~ Jil Op.Sy&llliv/Area:I,-'-* _:_ -*- Jfil I.'::~:~,*_ ~ :'. _.. "..:.. :*~::_.) J~, -'-*.; ___

  • J Sys/Cts:Jllil:i'~:,_;.;.J,....(_-_.:--.--.~-,.:...,ill EqillpmentJ~.i_:'.j l!f.!@J: _-__,_~;:._L ::~"t..:' J~Jg:': _:,_,_:j h:zt:'!L.!:._~~'.;: *::,:;j EQU!i! Rev:lo9'.fr ~J; Tampla!e:J. : *~~ *.... *:_...:__;_: ::_: __ ~.:'.!.* *:.... -~-
  • .\\

. -*-:..J APPENODCR* *. : :"

.., N:." ' '..

.. **. *:*... '.. *, It 11411!!/2.oli~;.*,,,:

. el.B:lRi:A1:.ct..Ass"

. :,£....

. *.* :.. -*.:*;*...

  • l'i.i 04ti'ai2adf J::j'

~HJT.*CAT.*.

!I.* *. :;*.'*..*. '":: *::.... _ I...* :.::-** ** f'j li1{.:1_iji;zop1"*"".. ~'

. *_;. '.. -: : sPECF.1t:bfvK$;T,vp.c:.. _. ~ *.. * :.. *~.1-.,~-.. * ~ '.*-=":/ ;, PROTI;~:~Y,t'.~:;4 :.~~ *

-~,,,.. -.~";*.. ;.***.. ~~*:Ji":<< * !*-.; ~ ~

  • ,_;_ro&QpoO~ ~.:,r;f..'.'

. ": ; 1S:Saiir~t~1)::,::*::*..... :'

  • a3:1":i/.:;1;1,\\/:-..*,.. * '"~:. **.' **~.. ;.1 ~:r:.":~*: PT. i1iu8i2oilo; ;i:Y

... :. 11~'.~_Cr!)~'lC:tiR.~;*.

>~*'...

tifci". *:...... '-'..:'.. ::.. :". "... ~-.:,} :,:. f'1j 1~iaal2000~.~*

0

  • "" '~ f
  • ....,.. :,.:~' :- **.*. '~.

..: I":.~,.,'., f1j *' : '* '

-~~ *... ' 'f I.

~**,.

....,.,:....

  • 1'1.!;.*

I',

    • .**:.. *.. *.. --~.~* -~** :~: '
  • * **.\\.'.. 'j
  • = *
  • I ~
  • .-.~.* ***: *._.,... PL. ~; *.,... ** *-*~

I,*,

.;, ~...

.. i

~-

ii..,.

'* 1,\\

......... *.,........ *f',i '. "-. *'.* ~

!5 TIMD030 - EQUIPMENT/COMPONENT HEADER - [ Nuclearl'roducticm(PN4P) I
!1-1.:~ :*wi;,; 11eytgai:~. *:oiitiiiru;i: :v~~v* * *aei:P. * *.,

I !use More Delall to vtew addlUonal equipment data.

II Feclmya~

UnU*t~.:_:__:..'..".J Op Syalem-L::: :L:'* i Slalus*.r.....,;, ',.. :

r *!!1,11cif.ionooo,1d Mijfiii!MI

~~.!.,-~.. t,.;,.J:.,1,,.~

    • -~ -.. ~--=

m::i::::ll a:m:i *immm.

Olvislnnal.. *.*~,_"*: ;: ~~-~ ::~-'---'~.:-*. 1 **... ;J Syalem:ll!&?

-~:J Eq~mant-I~.:::.*

  • f,..!F!-.~...,

.. **"':,~"".:*"":__"'

"":*.""'~

Equip Rev:~

Rev'l'rlc r.!i Equip Teo-IUJ~!.n'--2. _.: __... : * :. ;.,:~. *: :.....'.. :J.

OpSlalus:(gm:rl(IL~-t '.1 l1!1i1~tiJ§i l91!;4!!~}

RV Status:(i?$..!ii=l),':.l.:_,::.~'ffi l~99-t"'.j Area*I..* :~,*..

c1m=L :.. ::.~ Jfl Companent~f R.i~*~._.: :JI

,..m_,..~..,._. _

.... -~-~."":;_*,....

..,-.~-.-~-.~-,.""'.\\

LDt11tmner--1) I I

......:.i Nmill:JJ:!!!.~~f~*P.f-i\\lQ~Y..il!;'PRQ.i!:qiqt(~~Y.'.*.:.:...* *'.... !

... : *.*. ::..* :. **....: *_... '.;.::..,* +/-J Locllesc:I._: '- '.*".:*.* *:-.:.. :. -~:.. '.'.. :'.:....'.'.:_1.. _ *. -.. : _;_; ~..

~:.....-.'. _._..... ::.'.. :_ :.":,.. ~'."..:-'*...'*-.-..J PEGa~ I :;.... :*.;._:;.:~ ", __ ~-..:_,_.:_:

EqSub-l'jp.,.I_._ :...~:~~

Cllant1PI I

_,....:...:.-=-:,._'"""::.,.,..~~-:-:

-=-.:~,,..

.. :-_:""":.:."""':*,....:._...,,_~--:-.,,-_;_...,-:*,-. -._-.::.'.J.,.,;.

...... *1* 1*" *1* **1*

  • I I

I a *

~ t I f

I I I

l I

I 1

I I

I L

I 0,:

I

    • I Calculation QDC-6700-E-2173 Revision 000 AttachmentC PageC16ofC17

===--.._.*.. i

m 11MD071

  • EQUIPMENT/COMPONENTNTC PARAMETERS* { NudearProduction(PN4P))

Fsci!fy:~

  • Una:lmt.:...::... J urc:k.:.~_,__L..:~,_J sto!us!l~~;~-~-*~.::il OpSyslDiv/Arao:l **.: ___ ' ]

!.:~*'**'"** ~.... *~:: :~ ".... :~.:;._. '..:~~,'J.; *. * '.-.. *:... ]

Sys/t:ts:l!!~'*: '..wl.-L-, -: _,.. __

....,:_*""'. fil"";

E<!Ulpmentl~,,; *~.: l!!?M:~*: *. ~~"- ~-:+/--:_,_;_:: tg1~,:.:, G.: b:z.t~l...:;.: -~ ~~::

... U. Equip Rev:j.!J!lj;*.:.:::J Template:L.1 _;_:_:/,... :...'./: -~*.'::.

'....:-~ '.':,_c.'.*.::l AcmiEIPASSiYE. * * ", *

. '. ~mjvf

. A'PPENiil1cR*._

tl.,'..:.

... *. ' *.,. If. 0018.'.iOOi: *:.; :

  • Misc:fi:viNeous.i._ *
  • *.* : :. : ** *:ro~*RE$-.2.i's+.. *..

'.. met' **, :-, ffi i'iitiar.iiloo

  • .y-~
  • . *.!'.... sPJ;ci:C~rii'E* *..-. ***"* * ** *. * ": ;; ~tjM;llfCAv** <:*:.....* *.:.! 'f:iExf/:.:::**: l'1.i *1111iiiQoOO'* :;;;.:

~.. ~.

  • * *** '* *~*.

..1 * :

.. ". *... *. ;17.

..... ;~:

.j., * 'I ' '

  • * *, ".,* ' I I

\\

fi.'1

~ :'",* *, * ~ I ** * : '

/,...-"1----1----------------1-----~-~~-,.,.-'--,---J-....,,~-

fl. :.....

-""'"7'

... :./... /*,I'!

1* **

. ;. *. \\,:... *. f1,.

Calculation QDC-6700-E-2173 Revision 000 AttachmentC Page C17 of C17

I Analysis No. QDC-6700-E-2173 Revision 000 Attachment D PAGE 01 of 04 I Attachment D Selected Pages from Calculations 9390-02-19-1 Rev. 003, 9390-02-19-2 Rev. 003, and 9390-02-19-3 Rev. 003

Calculation For Diesel Generator 1 loading Under Cale. No. 9390-02-1g..1 Design Bases Accident Condition Rav.2

!Data x

I.safety-Related I !Non-Safety-Related Page,,,_,,_,

Of~"-

Client ComEd Prepared by Data Project Qua*d Cities Station Reviewed by Date Proj. No. 9390-002 Equip. No. 6601 Approved by Date XI.

CONCLUSION The results of the calculation show that the maximum continuous running load under the maximum loading scenario ls below the nameplate (2000 hrs/year) raUng of the DG.

Also, the worst voltage recovery after one second following the start of large 4kv motor (Core Spray Pump motor during LOOP / LOCA) is above 85% of DG terminal rated voltage for LOOP I LOCA and more than 84% of Bus rated voltage when the Service Water Pump Motor is started during LOOP without LOCA. This voltage recovery Is above the minimum voltage recovery of 80% per the DG specification K-2183 requirement.

Also, the analysis in Table 2 and e shows, and the detailed explanation under the Calculation and Results section shows that while some of the control circuits may dropout during the lowest portion of the voltage dip, no adverse effects are Identified and no protective devices are expected to oper~te. The calculation also shows that momentary voltage dip will not cause the travel time of any MOV to Increase any longer than allowable.

The calculation also shows that the starting time of automatically started 4-kv RHR pump motors Is under 4 seconds ~nd the sta~ing time for the. Cora Spray pump motor Is under 5 seconds. Starting times for all these pump motors are within the time setting requirements, which incl\\,ide the 5 second interval +/- 10% as required by Reference 72.

Calculation QDC*6700*E*2173 Revision 000 Attachment D Page D2of 04

(

Calculation For Diesel Generator 2 Loading Under Design Cale. No. 9390-02-19.2 -

Barge Design Bases Accident Condition Rev.2 joate x I Safety-Related II I Non-Safety-Related Page //.O-/

of,.,......

Client ComEd Preoared bv Date Project Quad Cities Station Reviewed by Date ProJ. No. 9390-002 Equip. No.6601 Aooroved by Date

'!t'Ull.0o't'*'.. NUUNHNo"NU,f,U.'Nt','U-"NU..,...... UflllUNIHINt'llUtl',fh'N,ft'Nt'IUNt'~IU/#(lfllfNllllllNUNlllll'llllNNl'l"lt'.'Jo'Uo'l'N,.",'V.Nlo"INN... 'UNN.NN..... 'M"......,_.,,_.,1,-H,\\'NIN,/,"/'*'tl'o'INllNll.-N.'."o'.INN-">rl',/'ll"/'Nlo..........,,.,.,,,,,,....\\."N\\'IN(','l1'UNt'l'h'l'ltN~oWd, l XI.

CONCLUSION I

~

1 The results of the calculation show that the maximum continuous running load under the maximum ~

~

loading scenario is below the nameplate rating of the DG. Also, the worst voltage recovery after

~

one second following the start of large 4kv motor (Core Spray Pump motor during LOOP I LOCA) is ~

above 85% of DG terminal rated voltage for LOOP I LOCA and more than 84% of Bus rated voltage l when the Service Water Pump Motor is started during LOOP without LOCA. This voltage recovery i is above the minimum voltage recovery of 80% per the DG specification K-2183 requirement.

i

~,

Also, the analysis in Table 2 and 6 shows, and the detailed explanation under the Calculation and !

Results section show that while some of the control circuits may dropout during the lowest portion o~ '

the voltage dip, no adverse effects are identified and no protective devices are expected to operate. ~

The calculation also shows that momentary voltage dip will not cause the travel time of any MOV to ~

increase any longer than allowable.

~

~

The calculation also show that the starting time of automatically started 4-kv RHR Pump motors 2C ~

& 20 are less than 4 Seconds and the starting time for Core Spray Pump motor is under 5 seconds. ~

Starting time of all these pump motors are within the time setting requrements, even with a +/-10% to) erance (Ref. 68) in the time setting interval.

~

~

~

~

~

~

~

~

~ '

~

~

I

~

~ !

~

~

~ j

< I I I I

~ l

~ i Calculation QDC-6700-E-2173

~

Revision 000

~

~-...............................................................,..................,.-...........,..........,.....,,..............*.........*...*.,...............,.,.................... *******'**"*"*'"*********'"***********.-......*. 1:\\ttachmaol.D............,."*****w***'*"'J Page 03 of04

ffe ;

1*

Calculation For Diesel Generator 112 Loading Under Cale. No. 9390-02-19-3 Design Basis Accident Condition Rev. 3 Date x I Safety-Related II I Non-Safety-Related Page IJ.0-1 of~.;.

Client ComEd Preoared bv Date Project Quad Cities Station Reviewed by Date Proj. No. 9390-002 XI.

Equip. No.0-6601 Aooroved by Date CONCLUSION The results of the calculation show that the maximum continuous running load under the maximum loading scenario is above the nameplate rating of the DG, but is less than the 2000 hour0.0231 days <br />0.556 hours <br />0.00331 weeks <br />7.61e-4 months <br /> per year rating of the Diesel Generator. Also, the worst voltage recovery after one second following the start of large 4kv motor (Core Spray Pump motor during LOOP I LOCA) is above 88% (for Unit 1 Division 1) and 84% (for Unit 2 Division 1) of DG terminal rated voltage for LOOP I LOCA and more than 84% of Bus rated voltage when the Service Water Pump Motor is started during LOOP without LOCA. This voltage recovery is above the minimum voltage recovery of 80% per the DG specification K-2183 requirement.

Also, the analysis in Table 2 and 6 shows, and the detailed explanation under the Calculation and Results section show that while some of the control circuits may dropout during the lowest portion of the voltage dip, no adverse effects are identified and no protective devices are expected to operate. The calculation also shows that momentary voltage dip will not cause the travel time of any MOV to increase any longer than allowable.

The calculation also shows that the starting time of automatically started 4-kv motors (i.e.

RHRs and Core Spray) are under 4 seconds which are within the time setting requrements. This includes allowing for tolerance of +/-10% (+/-0.5 seconds) in the timer setting interval.

L.,....,..,,,...,_,.....................,,.....,,...,... **"'""...........__.,.......,

...,..,.......,.....,............,....,:***'******'****w******'**"-*'**************"**'**-**.. W"*'......... --~**catcUlatiil"i'f'QOC*:57oo~E~t173**'***.......,.......__..........,............

Revision 000 Attachment o Page 04 of 04