ML16258A150

From kanterella
Jump to navigation Jump to search
Design Analysis QDC-6700-E-2173, Evaluation of Degraded Voltage 5 Minute Timer on Normally Running Safety-Related Loads, Revision 000
ML16258A150
Person / Time
Site: Quad Cities  Constellation icon.png
Issue date: 11/20/2015
From: Kolodziej J
Exelon Generation Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
Shared Package
ML16258A146 List:
References
QDC-6700-E-2173
Download: ML16258A150 (82)


Text

ATTACHMENT 3 Design Analysis QDC-6700-E-2173, "Evaluation of Degraded Voltage 5 Minute Timer on Normally Running Safety-Related Loads," Revision 000

CC-AA-309*1001 Revision 8 ATTACHMENT 1 Design Analysis Cover Sheet p aae 1 0 f 1 Design Analysis I Last Page No.' Attachment D, Page 04----

Analysis No.:' ODC-0700-E-2173 Revision:* 000 Major [8J MlnorD

Title:

  • Evaluation of Degraded Voltage 5 Minute Timer on Normally Ru1ining Safety-Related Loads EC/ECR No.:* 400610 & 400611 Revision:* 000 & 000 Statlon(s):' Quad Cities Component(s):"

Unit No.:* 01 &02 1-5746-A 1-5748-A Discipline:

  • ELDC 1-5746-8 1-5748-B Descrlp. Code/Keyword: 10 E13 2*5746-A 2-5748-A Safety/QA Class: 11 SR 2-5746-8 2-5746-B System Code: 12 867 1-5747 Structure: " NIA 2-5747 CONTROLLED DOCUMENT REFERENCES "

Document No.: From/To Document No.: From/To QDC-6700-E-0939 From QDC-6700-E-1503 From QDC-7800-E-0612 From Is this Design Analysts Safeguards Information? " YesO No l8J If yes, see SY-M-101-106 Does this Design Analysis contain Unvorlfled Assumptions? " YesO No [81 If yes, ATl/AR#:

This Design Analysis SUPERCEDES: " NIA In Its entirety.

Description of Revision (list changed pages when all pages of original analysis were not changed): "

This calculation evaluates the Joss of voltage (LOV) relay setpolnt during a sustained degraded voltage event.

The normal (non-accident) time delay associated with Iha second-level undeivoltage relays (degraded voltage relays) could allow the voltage at the 4.16 kV buses to remain at low levels for an extended period of time (332.3 seconds) before transfer of all safety-related loads to the emergency diesel generators. This calculation

  • evaluates the LOV relay setpoint to ensure that the safety-related motors that may be running during normal conditions will continue to operate during a sustained degraded voltage event.

Preparer:'" J. Kolodziej Pl1J11Natne /I b11.M ~~* s1an1m1hllo (,/

fl* 20* 1.'>

Dalo Method of Review: 21 Detailed Review 181 Alternal& Calculatl~ns ~) D Testing D Reviewer:" S. Saha Printl'lamo ~qf *~'ivnNome II- '2.U-/J -

Oolo Review Notes: " Independent review [8J Peer review D

{l'ar Ex!emol Anolyooo On~)

External Approver: "  ::J. MA\\\,\ 8~.s-- rM.. rrw.J '-" - 1/ lio/zoi~*

~7~

Prin!Nomo Dalu Exelon Reviewer: " (_) C"""'c\) "- -:S-~ ~t.e A 1-z./-i-c/15*

Print Name ~nNftmG Cata Independent 3*d Party Review Reqd?" Yes 0 No 181 Exelon Approver: " *2.S f L J A lZ.. T Prin\Nanto

'-:&iJ c

/ 7

//

/ -

~lnnNamo

~* ,Jz~/_c.

' Dotv

CC-AA-103*1003 Revision 12 Page 1A of 1C ATTACHMENT 2 Owner's Acceptance Review Checklist for External Design Analyses Page 1of3 Design Analysis No.: QDC-6700-E-2173 Rev: 000 Contract #: 00511302 Release #: 00234 No Question Instructions aod Guidance Yes I No I NIA 1 Do assumptions have All Assumptions should be stated in clear terms with enough sufficient documented justification to confirm that the assumption is conservative.

rationale?

For example, 1) the exact value of a particular parameter may not be known or that parameter may be known to vary over the range of conditions covered by the Calculation. It is appropriate to represent or bound the parameter with an assumed value. 2) The predicted performance of a specific piece of equipment in lieu of actual test data. It is appropriate to use the documented opinion/position of a recognized expert on that equipment to represent predicted equipment performance.

Consideration should also be given as to any qualification testing that may be needed to validate the Assumptions. Ask yourself, would you provide more justification if you were performing this analysis? If yes, the rationale is likely incom lete.

Are assumptions Ensure the documentation for source and rationale for the 2 compatible with the assumption supports the way the plant is currently or will be way the plant is operated post change and they are not in conflict with any operated and with the design parameters. If the Analysis purpose is to establish a licensing basis? new licensing basis, this question can be answered yes, if the assum tion su arts that new basis.

3 Do all unverified If there are unverified assumptions without a tracking assumptions have a mechanism indicated, then create the tracking item either tracking and closure through an ATI or a work order attached to the implementing mechanism in place? WO. Due dates for these actions need to support verification prior to the analysis becoming operational or the resultant lant chan e bein o authorized.

4 Do the design inputs The origin of the input, or the source should be identified and have sufficient be readily retrievable within Exelon's documentation system.

rationale? If not, then the source should be attached to the analysis. Ask yourself, would you provide more justification if you were performing this analysis? If yes, the rationale is likely incom lete.

  • 5 Are design inputs The expectation is that an Exelon Engineer should be able to correct and reasonable clearly understand which input parameters are critical to the with critical parameters outcome of the analysis. That is, what is the impact of a identified, if change in the parameter to the results of the analysis? If the a ro riate? im act is lar e, then that arameter is critical.

6 Are design inputs Ensure the documentation for source and rationale for the compatible with the inputs supports the way the plant is currently or will be way the plant is operated post change and they are not in cont lict with any operated and with the design parameters.

licensin basis?

CC*AA-103-1003 Revision 12 Page 8 of 11 ATTACHMENT 2 Owner's Acceptance Review Checklist for External Design Analyses Page2 of 3 Design Analysis No.: QDC-6700-E-2173 Rev: 000 No Question Instructions and Guidance Yes/ No IN/A 7 Are Engineering See Section 2.13 in CC-AA-309 for the attributes that are Judgments clearly sufficient to justify Engineering Judgment. Ask yourself, documented and would you provide more justification if you were performing

  • ustified? this anal sis? If es, the rationale is likel incom lete.

8 Are Engineering Ensure the justification for the engineering judgment Judgments compatible supports the way the plant is currently or will be operated with the way the plant is post change and is not in conflict with any design operated and with the parameters. If the Analysis purpose is to establish a new licensing basis? licensing basis, then this question can be answered yes, if the 'ud ment su orts that new basis.

9 Do the results and Why was the analysis being performed? Does the stated conclusions satisfy the purpose match the expectation from Exelon on the proposed purpose and objective of application of the results? If yes, then the analysis meets the Desi n Anal sis? the needs of the contract.

10 Are the results and Make sure that the results support the UFSAR defined conclusions compatible system design and operating conditions, or they support a with the way the plant is proposed change to those conditions. If the analysis operated and with the supports a change, are all of the other changing documents licensin basis? included on the cover sheet as im acted documents?

11 Have any limitations on Does the analysis support a temporary condition or the use of the results procedure change? Make sure that any other documents been identified and needing to be updated are included and clearly delineated in transmitted to the the design analysis. Make sure that the cover sheet appropriate includes the other documents where the results of this or anizations? anal sis rovide the in ut.

12 Have margin impacts Make sure that the impacts to margin are clearly shown been identified and within the body of the analysis. If the analysis results in documented reduced margins ensure that this has been appropriately appropriately for any dispositioned in the EC being used to issue the analysis.

negative impacts (Reference ER-AA-2007?

13 Does the Design Are there sufficient documents included to support the Analysis include the sources of input, and other reference material that is not applicable design basis readily retrievable in Exelon controlled Documents?

documentation?

14 Have all affected design Determine if sufficient searches have been performed to analyses been identify any related analyses that need to be revised along documented on the with the base analysis. It may be necessary to perform Affected Documents List some basic searches to validate this.

(AOL) for the associated Conti uration Chan e?

15 Do the sources of inputs Compare any referenced codes and standards to the current and analysis design basis and ensure that any differences are reconciled.

methodology used meet If the input sources or analysis methodology are based on committed technical and an out-of-date methodology or code, additional reconciliation regulatory may be required if the site has since committed to a more re uirements? recent code

CC*AA* 103*1003 Revision 12 Page 9 of 11 ATTACHMENT 2 Owner's Acceptance Review Checklist for External Design Analyses Page3 of 3 Design Analysis No.: QDC-6700-E-2173 Rev: ooo No Question Instructions and Guidance Yes I No IN/A 16 Have vendor supporting Based on the risk assessment performed during the pre-job technical documents brief for the analysis (per HU-AA-1212}, ensure that and references sufficient reviews of any supporting documents not provided (including GE DRFs) with the final analysis are performed.

been reviewed when necessar ?

17 Do operational limits Ensure the Tech Specs, Operating Procedures, etc. contain support assumptions operational limits that support the analysis assumptions and and in uts? in uts.

Create an SFMS entry as required by CC-AA-4008. SFMS Number: 52724

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE 2of18 I DESIGN ANALYSIS TABLE OF CONTENTS SUB-PAGE SECTION PAGE NO.

NO.

DESIGN ANALYSIS COVERSHEET 1 OWNER'S ACCEPTANCE REVIEW CHECKLIST FOR EXTERNAL 1A-1C DESIGN ANALYSES DESIGN ANALYSIS TABLE OF CONTENTS 2 1.0 Purpose 3 2.0 Inputs 3 3.0 Assumptions and Engineering Judgments 5 4.0 References 6 5.0 Identification of Computer Programs 8 6.0 Method of Analysis 8 7.0 Acceptance Criteria 11 8.0 Calculations and Results 11 9.0 Conclusions 18 10.0 Attachments 1a Attachment A- ETAP Output Reports A1-A18 Attachment B - References81-821 Attachment C - Passport Data - LOV Relay Settings C1-C17 Attachment D - Selected Pages from Calculations 9390-02-19-1 Rev. 01-04 003, 9390-02-19-2 Rev. 003, and 9390-02-19-3 Rev. 003

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE 3of18 I 1.0 PURPOSE The purpose of this calculation is to evaluate the loss of voltage (LOV) relay setpoint during a sustained degraded voltage event. The normal (non-accident) time delay associated with the second-level undervoltage relays (degraded voltage relays) could allow the voltage at the 4.16 kV buses to remain at low levels for an extended period of time. This low level of voltage could last as long as 332.3 (324+8.3) seconds (Ref. 4.2.1) before transfer of all safety-related loads to the emergency diesel generators. This calculation evaluates the LOV relay setpoint to ensure that the safety-related motors that may be running during normal conditions will continue to operate during the 332.3 second time delay without stalling or being damaged. This calculation will determine new analytical limits for the LOV relay.

2.0 INPUTS 2.1 Existing Loss of Voltage Relay Settings 2.1.1 EPNs: (Ref. 4.3.4) 1(2)-6703-1 (2)3-127-1 1(2)-6703-1 (2)3-127-2 1(2)-6704-1 (2)4-127-1 1(2)-6704-1 (2)4-127-2

  • 2.1.2 Nominal Setpoint: 83.7V (Ref. 4.3.4)

(The nominal setpoint is based on an overvoltage (OV) tap setting of 93V and an undervoltage (UV) setting of 90% of the OV setting. 93V*90%=83. 7V) 2.1. 3 PT Ratio: 35: 1 (Ref. 4.3.4) 2.1.4 Total Error for the LOV relay: +/- 2.25V (Ref. 4.1.1) 2.2 Loss of Voltage Relay Available Settings 2.2.1 Taps for Overvoltage Setting:

55V, 64V, 70V, 82V, 93V, 105V, 120V, 140V (Ref. 4.4.1) 2.2.2 Undervoltage Setting as a Percent of Overvoltage Setting:

60%, 70%, 80%, 90%, 95% (Ref. 4.4.2) 2.3 The following ECCS room coolers are the only directly connected safety-related motors that may be running during normal operation: (Ref. 4.3.1) 2.3.1 RHRS Emergency Air Handling Units, EPNs: 1(2)-5746-A(B) 2.3.2 HPCI Emergency Air Handling Units, EPNs: 1(2)-5747 2.3.3 CS Emergency Air Handling Units, EPNs: 1(2)-5748-A(B)

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE 4of18 I 2.4 Data for the ECCS Room Coolers Per Passport, the following motors are Siemens type RGZESD motors:

BHP in% of Rated Breakdown Torque Rated HP Rated HP Service EPN Voltage in % of Full Load (Input 2.5 &

(Input 2.5)

(Input 2.5) (Ref. 4.4.3) Assumptions 3.2.1-3.2.2)

RHRS Emera. AHU 1A 1-5746-A 7.5 HP 460V 270% 84% (Assump. 3.2.1)

RHRS Emera. AHU 18 1-5746-8 7.5 HP 460V 270% 84% <lnout 2.5)

RHRS Emera. AHLI 2A 2-5746-A 7.5 HP 460V 270% 84% (Input 2.5)

RHRS Emerg. AHLI 28 2-5746-8 7.5 HP 460V 270% 84% {Input 2.5)

HPCI Emera. AHLI 1 1-5747 3 HP 460V 300% 100% (lnout 2.5)

HPCI Emerg. AHLI 2 2-5747 3 HP 460V 300% 100% {Input 2.5)

CS Emero. AHLI 1A 1-5748-A 5 HP 460V 300% 88% Clnout 2.5)

CS Emerg. AHLI 1B 1-5748-8 5 HP 460V 300% 88% (Assump. 3.2.2)

CS Emern. AHLI 2A 2-5748-A 5 HP 460V 300% 88% {Input 2.5)

CS Emera. AHLI 28 2-5748-8 SHP 460V 300% 88% (Input 2.5) 2.5 ETAP data files transmitted via TOOi QDC-15-006 (Ref. 4.3.1)

QuadCities.lib Dated 12/10/2009 9:22 AM QuadCitiesR008. MOB Dated 09/08/2014 3:49 PM QuadCitiesR008.0TI Dated 09/08/2014 3:49 PM 2.6 Degraded Voltage Relay (DVR) Settings (Ref. 4.2.1) 2.6.1 Voltage allowable value: : : : 3,885 V and s 3,948 V 2.6.2 Time delay allowable value (LOCA): ::::: 5. 7 s and s 8.3 s 2.6.3 Time delay allowable value (no LOCA): ~ 276 s and s 324 s

2. 7 Motor Thermal Overload Data (Refs. 4.1.6 and 4.3.6):

Rated TOL Ultimate TOL Trip TOLSize Service EPN Current Trip Current Zone (Ref. 4.1.6)

(Ref. 4.3.7) (Ref. 4.1.6) (Ref. 4.1.6)

RHRS Emera. AHLis 1(2)-5746-A(8) 9.5A C15.18 15.13A 8 HPCI Emerg. AHLI 1-5747 3.9A C5.26A 5.26A c HPCI Emera. AHLI 2-5747 3.6A C5.26A 5.26 A c CS Emera. AHLis 1(2)-5748-A(B) 6.5A C9.55A 9.56A c

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE5of18 I 3.0 ASSUMPTIONS AND ENGINEERING JUDGMENTS 3.1 Assumptions Requiring Verification 3.1.1 None 3.2 Assumptions NOT Requiring Verification 3.2.1 It is assumed that RHRS Emergency AHU 1A can be modeled as operating at 84% of rated motor horsepower.

Basis: The existing ETAP model (Input 2.5) shows RHRS Emergency AHU 1A operating at rated horsepower (100% loading). The actual load on the RHRS Emergency AHU 1A motor was measured at 6.21 HP per WO 0478721 (Ref. 4.3.2), which is less than 84% of the motor rated 7.5 HP. Additionally, the remaining RHRS Emergency AHU's (18, 2A, and

28) are modeled in the existing ETAP model at 84% of rated horsepower.

All four RHRS Emergency AHU motors have similar fan loads and therefore the loading for RHRS Emergency AHU 1A can be modeled in ETAP at 84% of rated horsepower.

3.2.2 It is assumed that Core Spray Emergency AHU 1B can be modeled as operating at 88% of rated motor horsepower.

Basis: The existing ETAP model (Input 2.5) shows CS Emergency AHU 18 operating at rated horsepower (100% loading). Current readings were taken on CS Emergency AHU 18 per WO 01388989 (Ref. 4.3.3) and the highest measured phase current was 4.8 A, which is 74% of the 6.5 A motor rated current. Conservatively assuming a maximum 110% motor voltage with the measured value of current results in less than 88%

loading (1.1x0.74=81.4%). Additionally, the remaining CS Emergency AHU's (1A, 2A, and 28) are modeled in the existing ETAP model at 88%

of rated horsepower. All four CS Emergency AHU motors have similar fan loads and therefore the loading for CS Emergency AHU 1B can be modeled in ETAP at 88% of rated horsepower.

3.3 Engineering Judgments 3.3.1 The results of the transient EOG voltage dip analyses from diesel loading calculations 9390-02-19-1, 9390-02-19-2, and 9390-02-19-3 are used in this calculation. The Unit 1, Unit 2, and 1/2 diesel loading calculations are not maintained and have been superseded by ETAP calculation QOC-6700-E-1503; however, the ETAP calculation only calculates the steady state EOG loading and does not carry forward the transient EOG voltage dip analyses. The calculated worst case EOG voltage dips were based on the starting of large motors during both LOOP/LOCA and LOOP without LOCA and based on the running load at the time of the motor starts. The results of the transient voltage dip analyses from the diesel loading calculations are used in this calculation as the loading on the EOGs and the sequence of automatic large motor starts seldom change.

Furthermore, an exact value for the transient voltage dip is not needed as

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE6of18 I the results are used to show that margin exists between LOV relay setpoint and the transient voltage dips.

4.0 REFERENCES

4.1 Calculations 4.1.1 Calculation QDC-6700-E-0939 Rev. 000, "Loss of Voltage Relay Setpoint for Buses 13-1, 14-1, 23-1, and 24-1 4.1.2 Calculation QDC-6700-E-1503 Rev. 008, "Analysis of Load Flow, Short Circuit and Motor Starting using ETAP PowerStation" 4.1.3 Calculation 9390-02-19-1 Rev. 003, "Diesel Generator 1 Loading Under Design Bases Accident Condition" (Selected page in Attachment*D) 4.1.4 Calculation 9390-02-19-2 Rev. 003, "Diesel Generator 2 Loading Under Design Bases Accident Condition" (Selected page in Attachment D) 4.1.5 Calculation 9390-02-19-3 Rev. 003, "Diesel Generator 1/2 Loading Under Design Bases Accident Condition" (Selected page in Attachment D) 4.1.6 Calculation QDC-7800-E-0612, Rev. 002, "Reactor Building Overload Heater Selection for Continuous Duty Motors Required During a LOCA" 4.1.7 Calculation 8913-67-19-4, Rev. 002, "Nonsize 2 Motor Control Center (MCC) Control Voltage Contactor Circuit Lengths Fed From Switchgear 18" 4.1.8 Calculation 8913-73-19-6, Rev. 003, "Nonsize 2 Motor Control Center (MCC) Control Voltage Contactor Circuit Lengths Fed From Switchgear 29" 4.1.9 Calculation 8913-69-19-4, Rev. 001, "Justification of the Adequacy of MCC Contactor Circuits fed from Switchgears 19 & 28" 4.2 Technical Specifications 4.2.1 Technical Specifications 3.3.8.1, Table 3.3.8.1-1, "Loss of Power Instrumentation", Amendment No. 199/195 4.3 Station Documents and Standards 4.3.1 TOOi QDC-15-006, "ETAP Data Files" (Attachment 8, Pages B2-83) 4.3.2 WO 00478721, "Replace 1A RHR Room Cooler Motor" 4.3.3 WO 01388989, "Exhaust Fan and Room Cooler Motor lnsp (EQ}"

4.3.4 Passport Database- Loss of Voltage Relay Settings (Attachment C) 4.3.5 NES-EIC-10.02, Rev. 000, "Standard for Thermal Overload Relay

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE7of18 I Element Selection for Motor Operated Valves" 4.3.6 NES-EIC-10.03, Rev. 000, "Standard for Thermal Overload Relay Element Selection for Continuous Duty Motors" 4.3.7 Passport Approved Model List D033 Panel for 1(2)-5746-A(B), 1(2)5747, and 1(2)-5748-A(B); Component M10 4.4 Vendor Documents 4.4.1 General Electric Protection and Control Catalog, Catalog GEZ-7723F, Pages 10-3 to 10-6 (Attachment B, Pages B4-B7) 4.4.2 GEl-9081 OD, "General Electric Instructions for Voltage Relay IAV69A &

IAV69B" (Attachment B, Pages88-815) 4.4.3 Siemens 2007 Low Voltage AC Motors Selection and Pricing Guide (Attachment B, Page 816) 4.4.4 GE Drawing 231 HA165, Sheets 2 and 3 (Attachment 8, Pages 817-818) 4.4.5 GEK-34053G, "IAC51A8/5188/51 R/52A8/5288 Instruction Booklet" (Attachment B, Pages B 19) 4.4.6 GEK-86054C, "IAC66A/66B/66C Instruction Booklet" (Attachment B, Pages B20) 4.4.7 GEH-1790C, "PJC11A/11 B/12A/12B/14B/14D/14F Instruction Booklef' (Attachment B, Pages B21) 4.5 Miscellaneous References 4.5.1 IEEE Std. 141-1993, "IEEE Recommended Practice for Electric Power Distribution for Industrial Plants" 4.6 Station Drawings 4.6.1 4E-1393, Rev. AB, "Schematic Diagram Drywell Blowers, Purge Exh Fans and Air Handling Units" 4.6.2 4E-2393, Rev. AL, "Drywell Cooling and Purge ECCS Air Handling" 4.6.3 4E-1301 Sh. 5, Rev. A, "Bus 13 and Bus 14 Protective Relay Settings" 4.6.4 4E-1301 Sh. 6, Rev. A, "Bus 13-1 and Bus 14-1 Protective Relay Settings" 4.6.5 4E-2301 Sh. 7, Rev. A, "Bus 23 and Bus 24 Protective Relay Settings" 4.6.6 4E-2301 Sh. 8, Rev. A, "Bus 23-1 and Bus 24-1 Protective Relay Settings"

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE 8of18 I 5.0 IDENTIFICATION OF COMPUTER PROGRAMS 5.1 ETAP PowerStation Version 7.0.0N S&L Computer No. ZD9409, Program No.

03.7.696-7.00. (See last page of Attachment A for ETAP Audit Trail Information) 6.0 METHOD OF ANALYSIS This analysis will evaluate the safety-related motors that may be running during normal conditions during a severely degraded voltage condition that lasts for an extended period of time. The maximum normal (non-LOCA) degraded voltage time delay is 324 seconds for the DVR timer following the 8.3 seconds DVR time delay (Ref. 4.2.1 ). Therefore, the 4.16 kV bus voltage may drop below the DVR minimum allowable value but remain above the loss of voltage relay setpoint for as long as 332.3 (8.3+324) seconds. This analysis ensures that the safety-related motors that may be running during an extended degraded voltage event do not stall or trip due to thermal overload relay operation. The motor control circuits are evaluated. Finally the LOV relay settings are evaluated to ensure that

  • the relays due not spuriously operate during expected voltage transients.

6.1 Motor Stall Voltage Calculation The torque developed by a motor is proportional to the square of the voltage (Ref.

4.5.1 ). Based on this relation, Equation 1 is derived and used to determine the minimum motor voltage to preclude motor stalling:

2 Vmotor OC Tmotor (Ref. 4.5.1) 2 Vstall ) T1oad

(

Vrated = Tbreakdown V:rated Vstall = , _Ttoad

...................._ X Tbrealcdown Equation 1 Where:

Vstall = Minimum motor terminal voltage to preclude motor stalling Vrated = Rated motor voltage T1oad = Load torque of the motor (proportional to the motor BHP)

Tbreakdown = Breakdown torque of the motor 6.2 Motor Terminal Voltage Evaluation The safety-related motors that may be running during normal conditions are first evaluated using the existing LOV relay settings, and then using new settings if necessary. The existing LOV relay setpoint was chosen such that it is bounded by the analytical limits plus the total error (Ref. 4.1.1 ). For the purpose of the motor stalling evaluation, this calculation will also consider time-voltage characteristics of the relay. The LOV relay operating time is not defined at the nominal setpoint.

Therefore, for a given setting, the time-voltage curves are used in order to determine a dropout voltage with a defined operating time.

l Analysis No. QDC-6700-E-2173 Revision 000 PAGE 9of18 l The station ETAP model (Input 2.5) is used to determine the downstream motor terminal voltages (for the motors identified in Input 2.3) with the 4.16 kV ESS buses fixed at the LOV relay setpoint (including the total error and time-voltage characteristics). The ETAP model (Input 2.5) is evaluated with the 4.16 kV ESS Buses (13-1, 14-1, 23-1, and 24-1) fixed at the LOV relay setpoint (including the total error and time-voltage characteristics). An infinite bus is connected to each of the four 4.16 kV ESS Buses in order to model a specific operating voltage. For each of the safety-related motors that may be running during normal conditions, a fictitious bus is added between the motor and its equipment cable in ETAP. These fictitious buses are needed to represent the motor terminals so that the motor terminal voltages appear in the ETAP load flow output reports. The fictitious buses are named using the motor load name with "-T" added to the end. The Unit 1 motor terminal voltages are evaluated using Scenario 1M1 SPLITLTCM, and the Unit 2 motor terminal voltages were evaluated using Scenario 2M1 SPLITLTCM from the ETAP calculation (Ref. 4.1.2). These scenarios model the normal Unit 1 and Unit 2 loading during Mode 1, split bus operation. The scenarios are modified by opening breakers to isolate the non-safety related buses such that only the 4.16 kV ESS busses and connected downstream buses are energized. The motor terminal voltages are compared to the minimum voltages required to preclude motor stalling for acceptability.

6.3 Motor Protective Device Evaluation The thermal overload (TOL) relays for the safety-related 480 V MCC motors that may be running during normal conditions are evaluated. The motors are protected by CR124 thermal overload (TOL) relays with non-ambient compensated CR123 TOL heaters. There are no normally running, safety-related 480 V switchgear motors or 4.16 kV switchgear motors. Calculation QDC-7800-E-0612, Rev. 002 (Ref. 4.1.6) selects the thermal overload heaters for the Reactor Building continuous duty motors required for operation during a LOCA. In order to ensure that safety-related loads are available, this calculation further evaluates the existing 460 V motor TOLs to ensure that they will not trip during a sustained low degraded voltage condition, which would prevent the loads from performing their intended safety functions.

The TOL trip curves are compared to the running motor currents (at tow voltage) to ensure that no TOL relays will trip on overload in less than 332.3 seconds, which is the maximum DVR time delay (Input 2.6). The TOL relay tripping characteristics are shown on GE Drawing 231HA165 (Ref. 4.4.4). On this drawing,

. the trip curves do not extend to less than 150% of the ultimate trip current for the heater, and therefore tripping times for slight overload conditions cannot be determined. by reading the curves directly. Per NES-EIC-10.02, Rev. 000 (Ref.

4.3.5) and NES-EIC-10.03, Rev. 000 (Ref. 4.3.6), a thermal overload relay operates as a constant 12T device. Therefore, the thermal energy developed during a degraded voltage condition, in terms of t2T, is compared to the 12T of the TOL relay. The TOLs are adequately sized if the following condition is met, shown in Equation 2:

Umotor) 2 X 332.3 seconds < (/ 2T)roi. Equation 2

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE 10of18 I Where, lmotor = motor running current during degraded voltage conditions (A) 332.3 s = maximum DVR time delay (s) 2 2 (l 2 T)roi = 1 T value of the thermal overload heater (A *s)

For low levels of motor overload current that persist for an extended period of time, as is the case during a sustained degraded voltage condition, some of the heat generated in the TOL heater will have time to dissipate to the environment.

As a result, the actual tripping time of a thermal overload relay, at these low levels of overload current, will be longer than what is determined by using the constant 12T value. This adds further conservatism to the results.

The TOL heater 12T values are determined using the methodology in NES-EIC-10.02, Rev. 000 (Ref. 4.3.5). Data points are read from the minimum trip curves, for each tripping zone, to calculate the 12T value of each TOL. There are slight variations in the values calculated for each data point due to inaccuracies in reading the curve and therefore the lowest calculated 12T value is used for conservatism. The TOL relay tripping curves and tripping zones for each TOL heater are shown on GE Drawing 231 HA165, Sheets 2 and 3 (Ref. 4.4.4) and the ultimate trip currents (UTC) are obtained from Calculation QDC-7800-E-0612, Rev. 002 (Ref. 4.1.6). The 12T value for each data point for each TOL heater is calculated using the following equation.

(/

2 Thoi = (lp.u. x UTC) 2 x Time Equation 3 The motor running currents at degraded voltage are calculated by considering the motors as constant kVA devices. As voltage decreases, the current will increase proportionately. Since the product of the motor power factor and efficiency can be closely approximated as a constant value, the motor current will vary in proportion to the loading. Therefore, the motor current is multiplied by the ratio of brake horsepower to rated horsepower. The motor current at degraded voltage is calculated using the following equation.

Vrated J BHP I deg = - - X rated X -- Equation 4 Vdeg HP rated Where, ldeg = motor running current during degraded voltage conditions (A) lrated = motor full load current at rated voltage (A)

Vaeg = motor terminal voltage during degraded voltage conditions (V)

Vrated = motor terminal rated voltage (V)

BHP= motor brake horsepower (HP)

HPrated = motor rated horsepower (HP}

6.4 Motor Control Circuit Evaluation The motor control circuits for the safety-related 480 V MCC motors that may be running during normal conditions are evaluated to ensure that reduced voltages would not cause the motors to drop out due to contactors dropping out or due to blown control circuit fuses.

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE 11of18 I 6.5 Transient Voltage Dip Evaluation As described in Section 6.2, new LOV relay settings may be required to ensure that safety-related motors have adequate voltage during a severe degraded voltage condition. The voltage transient during a LOCA block start for Unit 1 and Unit 2 is evaluated to ensure the LOV relays due not spuriously actuate. Since the LOV relays are active when the 4.16 kV ESS buses are aligned to the emergency diesel generators (EOGs), the relays must not drop out for any expected EOG voltage transient. Therefore, the voltage transients due to large motor starts during a Loss of Offsite Power (LOOP) both with and without a Loss of Cooling Accident (LOCA) event are evaluated.

6.6 Coordination with Protective Devices The timing characteristics of the LOV relays (Ref. 4.4.2) are compared to the timing characteristics of the 4.16 kV ESS bus overcurrent protective relays (Refs.

4.4. 5-4.4. 7). Specifically, the fault clearing times of the protective relays feeding the motors on the 4.16 kV ESS buses and feeding the 480 VESS transformers are evaluated to ensure that a fault will be cleared before the LOV relays dropout on low voltage.

6. 7 Determination of Analytical Limits The existing LOV relay analytical limits are based on the existing nominal setpoint with a plus or minus 5% tolerance. The LOV relay voltage new analytical limits will be based on the nominal setpoint evaluated in this calculation, plus or minus 5%.

7.0 ACCEPTANCE CRITERIA 7 .1 The setpoint for the loss of voltage relays must be high enough to prevent the stalling and tripping (due to thermal overload relay operation) of the safety-related motors that may be running during normal conditions and low enough to prevent spurious operation due to expected voltage transients.

8.0 CALCULATIONS AND RESULTS 8.1 Motor Stall Voltage Calculation The minimum motor terminal voltage to preclude motor stalling is calculated using Equation 1 from Section 6.1 and using the motor data from Input 2.4. Since the motor BHP is proportional to the torque, the BHP (in percent of rated HP) will be used for the load torque (in percent of full load torque).

Example calculation for RHRS Emergency AHU 1A:

T1oad u Vstall = -..;.;;..--x Tbreakdown Yrated Vstatl =*

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE 12of18 I The minimum stall voltages for the safety-related motors that may be running during normal conditions are shown in the following table.

Service EPN Stall VoltaQe RHRS Emer11. AHU 1A 1-5746-A 256.6 v RHRS Emerg. AHU 1B 1-5746-B 256.6 v RHRS Emerg. AHU 2A 2-5746-A 256.6 v RHRS Emerg. AHU 28 2-5746-8 256.6 v HPCI Emera. AHU 1 1-5747 265.6 v HPCI Emerg. AHU 2 2-5747 265.6 v CS Emen:i. AHU 1A 1-5748-A 249.2 v CS Emeri:t. AHU 1B 1-5748-8 249.2 v CS EmerQ. AHU 2A 2-5748-A 249.2 v CS Emera. AHU 28 2-5748-8 249.2 v 8.2 Motor Terminal Voltage Evaluation The existing minimum allowable value for the LOV relay Loss of Voltage Function is 2797 V per Technical Specifications Table 3.3.8.1-1 (Ref. 4.2.1). In order to take into account the timing characteristics of the relay, the vendor time voltage characteristic curves are used for the motor evaluation. The existing GE IAV69 LOV relay nominal setpoint is 90% of the 93V tap (Input. 2.1 ). Based on the IAV69 relay time-voltage curves in the vendor manual (Ref. 4.4.2), the relay operating time is not defined at the nominal setpoint. The time-voltage curves show that the 90% time-voltage curve is defined for voltages between 0% (at 2.1 seconds) of tap value and 86% (at 11 seconds) of tap value (Ref. 4.4.2). The highest defined point on the curve (86% at 11 seconds) is used in order to have a defined operating time associated with the relay operation. The total negative error for the LOV relay is 2.25Vand the PT ratio is 35:1(Input2.1). Therefore, the 4.16 kV ESS bus voltage used in ETAP for the motor evaluation is calculated as follows:

V@ns = ((OViap

  • 86%)- Error] X PT Ratio V@us = [(93V x 86%) - 2.25V] x 35 = 2720V (Note that the value above is conservatively rounded down to the nearest volt.)

The ETAP model (Input 2.5) is evaluated with the 4.16 kV ESS Buses (13-1, 14-1, 23-1, and 24-1) fixed at a voltage of 2720 V. The ETAP Load Flow Output Reports are included in Attachment A. A review of the motor voltages in the load flow reports shows that the motors have either marginal voltage or insufficient voltage to preclude stalling with the 4.16 kV ESS at 2720V. The results are shown in the following table on the next page.

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE 13of18 I Motor Reference for Load Stall Voltage Scenario Terminal Terminal (ETAP Bus Name) (Ref. Section 8.1)

Voltage Voltaae RHRS Emera AHU 1A -T 1M1 SPLITLTCM 253 256.6 v Att. A, Page A4 RHRS Emerg AHU 1B - T 1M1 SPLITLTCM 261 256.6 v Att. A, Pai:ie A4 RHRS Emeri:i AHU 2A -T 2M1 SPLITLTCM 251 256.6 v Att. A Page AS RHRS Emera AHU 28 - T 2M1 SPUTLTCM 25S 256.6 v Att. A, Pai:ie AS HPCI Emera AHU #1 -T 1M1SPLITLTCM 267 265.6 v Att. A, Page A4 HPCI Emera AHU #2 - T 2M 1SPLITLTCM 267 265.6 v Att. A, Page AS CS Emerg AHU 1A-T 1M1 SPLITLTCM 252 249.2 v Att. A Pai:ie A4 CS Emera AHU 18 - T 1M1 SPLITLTCM 264 249.2 v Att. A, Page A4 CS Emerg. AHU 2A -T 2M 1SPLITLTCM 251 249.2 v Att. A, Page AB CS Emerg. AHU 28 -T 2M1SPLITLTCM 259 249.2 v Att. A Paae AS In order to increase the motor terminal voltage, the next {higher} available relay setting is examined. Per the IAV69 relay vendor manual {Ref. 4.4.2} the next available setting, utilizing the same 93V tap, is 95% of 93V (93V*95% = 88.35V setpoint}. The 95% time-voltage curve is defined for voltages between 0% {at 1.1 seconds} of tap value and 90% (at 7 seconds) of tap value. The highest defined point on the curve {90% at 7 seconds) is used for the evaluation. The total negative error for the LOV relay is 2.25V and the PT ratio is 35:1 (Input 2.1 }.

Therefore, the 4.1'6 kV ESS bus voltage used in ETAP for the motor evaluation is calculated as follows:

V@ 1 s = [(OVtap

  • 90%)- t'rror] x PT Ratio V@ 1 s = [(93V x 90%) - 2.2SV) x 35 = 28SOV The ETAP Load Flow Output Reports are included in Attachment A. The following table lists the motor terminal voltages with the 4.16 kV ESS Buses fixed at 2850 V.

As shown in the following table, all motors have terminal voltages greater than their respective stall voltages.

Motor Reference for Load Stall Voltage Scenario Terminal Terminal (ETAP Bus Name) (Ref. Section 8.1)

Voltage Voltage RHRS Emera AHU 1A -T 1M1SPLITLTCM 273V 256.6 v Att. A, Paae A12 RHRS Emera AHU 1B - T 1M1 SPLITLTCM 280V 256.6 v Att. A, Pa!le A 12 RHRS Emera AHU 2A -T 2M1SPLITLTCM 271 v 256.6 v Att. A, Paae A 16 RHRS Emera AHU 28 -T 2M1 SPLITLTCM 277V 256.6 v Att. A, Paae A 16 HPCI EmerQ AHU #1 -T 1M1SPLITLTCM 286V 265.6 v Att. A, Page A12 HPCI Emera AHU #2-T 2M1 SPLITLTCM 286V 265.6 v Att. A, Paae A 16 CS Emera AHU 1A-T 1M1SPLITLTCM 272V 249.2 v Att. A, Paae A12 CS Emerg AHU 18 - T 1M1SPLITLTCM 283V 249.2 v Att. A Page A12 CS Emerg. AHU 2A - T 2M1 SPLITLTCM 271 v 249.2 v Att. A, Page A 16 CS Emerg. AHU 28 - T 2M1 SPLITLTCM 279V 249.2 v Att. A Pai:ie A16

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE 14 of 18 I 8.3 Motor Protective Device Evaluation Section 8.2 of this calculation determined that none of the safety-related motors that may be running during normal conditions will stall with a 4.16 kV ESS bus voltage of 2850 V. Per Input 2.6, the maximum normal (non-LOCA) degraded voltage time delay is 8.3 seconds for the DVR time delay plus 324 seconds for the external DVR timer, for a total time of 332.3 seconds. Therefore, the TOL trip curves are compared to the running motor currents {with the 4.16 kV ESS buses operating at 2850V) to ensure that no TOL relays will trip on overload in less than 332.3 seconds, which is the maximum DVR time delay.

2 The 1 T value for each data point for.each TOL heater is calculated using the methodology in Section 6.3, and the results are shown in the following tables.

Trip Zone B (Input 2.7) Size CIS.I B 'IOL (Input 2.7)

Minimum Trip Curve Volues (RHR Fmerg. AH Us)

Ul11mnte ir1p Current (A) 1lme (s) Current (p.u.) (Input 2.7) 12 T(A 2 *s *IO')

I I.I 600% 91.48 15.5 500% 88.71 23 400% 15.13 84.24 41 300% 84.47 100 200% 91.57 Trip Zone C (Input 2.7) Size C9.55A 'IOL (Input 2.7)

Minimum Trip Curve Values (CS F.merg. AH Us)

Ulhmote 1r1p C.:urrent (A) 1lme (s) Current (p.u.) (Input 2.7) 12T(A2 *s *IO')

16.5 600% 54.29 23 500% 52.55 33.5 400% 9.56 48.99 57 300% 46.88 127 200% 46.43 Trip Zone C (Input 2.7) Size C5.26A lOL (Input 2.7)

Minimum Trip Curve Values (HPCI Fm erg. AH Us)

Ultimate 1r1p t.:urrent (A) 1lme (s) Current (p.u.) (Input 2.7) 12T(A 2 'S *IO')

16.5 600% 16.43 23 500% 15.91 33.5 400% 5.26 14.83 57 300% 14.19 127 200% 14.06 The lowest calculated 12T value for each heater, from the tables above, is 2

conservatively rounded down and used as the constant 1 T value for that heater.

'IOL 12T(A 2 *s *IO')

Cl5.IB 84 C9.55A 46 C5.26A 14

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE 15of18 I The motor running currents at degraded voltage are calculated using Equation 4 from Section 6.3. The motor terminal voltages are obtained from Section 8.2 with the 4.16 kV ESS buses operating at 2850 V. The motor rated current, TOL heater sizes, and TOL heater ultimate trip current are obtained from Input 2.7. The thermal energy developed during a degraded voltage condition, in terms of 12T, is calculated using the square of the motor running current times the total DVR time delay of 332.3 seconds. This motor 12T is compared to the 12T of the TOL relay using Equation 2 from Section 6.3. As shown in the table below, the thermal overload relays, for the safety-related motors that may be running during normal conditions, will not trip.

Rnted Terminal 'Jl) L Current Voltage Calculated Ultimate 'Jl)L BHP/

HP

  • ,,....i (A)

"d*g (V)

Running Current

'Jl) L Siu Trip Cul'l'ent Tl'ip Zone Cnlculated 'Jl)L Input Input Section ld<g(A) Input (A) Input Motor PT 'Jl) L PT Relny Load EPN 2.4 2.7 8.3 F.qn. 4 2.7 Input 2.7 2.7 (A 1 *s*IOJ) (A 2 *s*I OJ) Trip?

RHR Emerg AHU I A 1-5746-A 84% 9.5 273 13.45 C15.IB 15.13 B 60.080 84 No RHR Emerg AHU I B 1-5746-B 84% 9.5 280 13.11 Cl5.IB 15.13 B 57.113 84 No RHR Emerg AHU 2A 2-5746-A 84% 9.5 271 13.55 Cl5.IB 15.13 B 60.970 84 No RHR Emerg AHU 26 2-5746-B 84% 9.5 277 13.25 CIS.lB 15.13 B 58.357 84 No CS Emerg AHU I A 1-5748-A 88% 6.5 272 9.67 C9.55A 9.56 c 31.096 46 No CS Emerg AHU I B 1-5748*6 88% 6.5 283 9.30 C9.SSA 9.56 c 28.725 46 No CS Emerg AHU 2A 2-5748-A 88% 6.5 271 9.71 C9.55A 9.56 c 31.326 46 No CS Emerg AHU 26 2-5748-B 88% 6.5 279 9.43 C9.55A 9.56 c 29.555 46 No HPCI Emerg AHU I 1-5747 100% 3.9 286 6.27 C5.26A 5.26 c 13.075 14 No HPCI Emerg AHU 2 2-5747 100% 3.6 286 5.79 C5.26A 5.26 c 11.141 14 No The above table shows that the motor TOL relays will not trip before the DVRs dropout.

During a loss of voltage event that does cause the LOV relays to dropout, the running motors may briefly stall before the degraded voltage source is disconnected from the buses. The time delay associated with the LOV relay is dependent on the level of undervoltage. It was shown above that no motors will stall and that the TOLs will not trip when the 4. 16kV ESS buses were at voltages above 2850V. The time-voltage curve of the LOV relay was evaluated in Section 8.2 and a voltage of 2850 V was derived in order to evaluate a voltage that had a defined relay operating time associated with it. The value of 2850V corresponded to relay operating time of approximately 7 seconds. In order to provide margin for any timing tolerances, which are not published by the vendor, a time of 1O seconds is assumed where the motors may stall before the LOV relays dropout.

The motors would be available to restart once the buses were repowered by the EDGs as long as no TOL relays tripped on overcurrent. Therefore, the TOL trip curves are compared to the motor locked-rotor current to ensure that no TOL relays will trip in less than 10 seconds. This is conservative because the motor current during a stall at reduced voltages will be lower than locked-rotor current at rated voltage. Based on GE Drawing 231 HA165, Sheet 2 (Ref. 4.4.4), the minimum trip current for Zone B TOL heaters, at 1O seconds, is 635% of the ultimate trip current. The minimum trip current for Zone C TOL heaters, at 10 seconds, is 785% of the ultimate trip current. The TOL heaters are evaluated in

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE 16of18 I the following table. As shown in the table on the next page, the minimum trip current for all TOL heaters is greater than 1000% of motor full load current. This is greater than the motor locked-rotor current at reduced voltages and is acceptable.

Calculated Trip Current Rated Motor TOL TOLUltimnte Trip (A)

Current Size Trip Current TOLTrip Current at (UTC* Trip Trip Current (A) Input (A) Zone 10 seconds Current@ (%of Motor Full Lond Input. 2.7 2.7 Input 2.7 lnput2.7 (%orUTC) I Os) Load C11rre1tt)

RHR EmergAHUs 9.5 CIS.18 15.13 B 635% 96.08 1011%

CS Emerg AH Us 6.5 C9.55A 9.56 c 785% 75.05 1155%

HPCI Emerg AHU I 3.9 C5.26A 5.26 c 785% 41.29 1059%

'!PC! Emerg AHU 2 3.6 C5.26A 5.26 c 785% 41.29 1147%

8.4 Motor Control Circuit Evaluation The motor control circuits, for the safety-related 480 V MCC motors that may be running during normal conditions, are powered from control power transformers (CPTs) off the MCCs. Therefore, the degraded voltage at each MCC will result in a corresponding reduction in control power voltage. For the GE 100 line starters (Size 1) used in the MCCs for the motors being evaluated, the pick-up voltage is 85% and drop out is 63% of the 11 SV coil rated voltage (Refs. 4.1. 7-4.1.9). The turns-ratio of the control power transformer in each circuit is approximately 3.8.

The affected motors are fed from MCCs 18-1A, 19-1, 28-1A and 29-1. As seen from the ETAP analysis (see Attachment A), the lowest voltage at MCCs 18-1A, 19-1, 28-1A and 29-1 is 280 V. Neglecting the voltage drop through the CPT and control cables, the minimum required MCC voltage to prevent contactor dropout would be approximately 276 V (63% x 115V x 3.8 = 276V). This leaves approximate Iy 1V ( V1t1cc-Vmin . = 280V-276V = 1.0SV) of margin . fo r voltage drop CPT Turns Ratio 3.8 within the control circuit. Since the power requirement of the contactor during holding is small compared to the power requirement during energization, it is expected that the control circuit voltage drop will be small, but this would need to be further evaluated due to the available voltage margin. However, without further evaluating the control circuit, if decreased voltage at the MCCs did cause the contactors to dropout, all motors would be automatically available for restart once voltage was restored. Therefore, no further evaluation is performed.

The contactor coils would not be damaged due to decreased voltage. The control circuit for each motor includes a contactor in series with a temperature switch, and in some cases, an interposing auxiliary relay, which provides alarm functionality only {Refs. 4.6.1-4.6.2). The MCC voltages are below the pick-up voltage for the contactor coils, which may prevent a motor from starting, but the contactor coil would not be damaged during a low degraded voltage condition. Since the contactor would not pick-up, the associated load would not energize and not see a starting transient. None of the control circuits contain fuses, and therefore there is no risk of motors being unavailable due to blown fuses.

  • 8.5 Transient Voltage Dip Evaluation Section 8.2 determined a new LOV relay setpoint required to ensure that safety-related motors do not stall. This new setpoint is further evaluated to ensure that

I Analysis No. QDC-6700-E-2173 Revision 000 PAGE 17of18 I the LOV relays will not spuriously dropout for any expected voltage transient.

The LOV relays must not dropout for any expected EOG voltage transients. Diesel generator loading calculations 9390-02-19-1, 9390-02-19-2, and 9390-02-19-3 (Refs. 4.1.3-4.1.5) determined the largest expected voltage transients due to large motor starts on the EDGs. The calculations analyzed both LOOP/LOCA and LOOP without LOCA scenarios. The calculation results, for each EOG during the LOOP/LOCA scenario, show that the voltage recovers to more than 84% of 4.16 kV within one second following the start of any large 4 kV motor (Refs. 4.1.3-4.1.5). For LOOP without LOCA, the results of each calculation show that voltage recovers to more than 84% of 4.16 kV within one second following the start of the RHR service water pump motor (Refs. 4.1.3-4.1.5). Therefore, the 4.16 kV ESS bus voltage will recover above 3494 V (84% of 4.16 kV) within one second following the largest expected EOG voltage transient. This EOG recovery voltage value is greater than the maximum dropout voltage of the recommended LOV relay setpoint as shown below.

'Vrecovery = 3494V Vmax.dropout = [(OVtap

  • 95%) + 2.25V] X 35 = 3171 V The initial EOG transient voltage dip due to large motor starts, before one second has elapsed, will be less than 3494V. This dip is acceptable since it will be of a short duration (less than one second) and below the time-voltage characteristic curve of the LOV relay (Ref. 4.4.2) with the relay set at 95% of 93V.

The Unit 1, Unit 2, and 1/2 diesel loading calculations have been superseded by ETAP calculation QDC-6700-E-1503 (Ref. 4.1.2); however, the ETAP calculation does not maintain the transient voltage dip analysis. Per Engineering Judgment 3.3.1, the transient voltage dip analysis from the diesel loading calculations can be used for this evaluation. Furthermore, there is margin between the expected EOG voltage transient and the dropout voltage of the LOV relay.

Calculation QDC-6700-E-1503, Rev. 008 (Ref. 4.1.2) evaluates the voltage drop on the 4.16 kV ESS buses during LOCA block starts to ensure that the voltage at those buses recovers before the degraded voltage relays separate the buses from the degraded grid condition. The ETAP output reports from Calculation QDC-6700-E-1503, for the block start analyses, were reviewed. These reports include the ~OCA block start analyses for Unit 1 and Unit 2 with the reserve auxiliary transformer load tap changers in both automatic and manual mode. The voltage drop on the 4.16 kV ESS buses during the evaluated LOCA block starts remained above the maximum dropout voltage of the LOV relays.

8.6 Coordination with Protective Devices The phase protective relays feeding the motors on the 4.16 kV ESS buses and feeding the 480 V ESS transformers are GE IAC-51 and GE IAC-66 relays (Refs.

4.6.3-4.6.6). Based on the instantaneous time-current curves for these relays, the operating time is less than 0.02 seconds for any pickup setting (Refs. 4.4.5-4.4.6).

I Analysis No. QDC*6700*E*2173 Revision 000 PAGE 18of18 I The ground protective relays feeding the motors on the 4.16 kV ESS buses and feeding the 480 VESS transformers are GE PJC-11 relays (Refs. 4.6.3-4.6.6).

Based on the instantaneous time-current curve for this relay, the operating time is less than 0.05 seconds for any pickup setting (Refs. 4.4. 7). The LOV relay dropout time is greater than 1 second for all operating voltages. Therefore, the instantaneous units for the protective relays feeding the motors on the 4.16 kV ESS buses and feeding the 480 V ESS transformers will clear faults faster than the LOV relays will dropout on low voltage.

8.7 Analytical Limits Consistent with the existing LOV relay settings, the upper and lower analytical limits for the LOV relay are selected as +/-5% of the recommended LOV relay nominal setpoint as shown below:

ALii = 93V x 95%

  • 35 * (100% - 5%) = 2938V ALui = 93V x 95%
  • 35 * (100% + 5%) = 3246V The safety-related motors that may be running during normal conditions were evaluated in Section 8.2 and shown not to stall with the 4. 16 kV ESS buses (i.e.

13-1, 14-1, 23-1, and 24-1) fixed at a voltage of 2850 V. The worst case expected EOG transient voltage dip was shown to recover above 3494 V in one second in Section 8.5. These voltage values are bounded by the selected lower and upper analytical limits for the LOV relay.

9.0 CONCLUSION

S 9.1 This calculation evaluated the LOV relay setpoint to ensure that the safety-related motors that may be running during normal conditions will continue to operate during the maximum 332.3 second degraded voltage time delay without stalling or tripping due to thermal overload relay operation. A setpoint of 88.35 V (93V OV tap, 95% UV setting) with +/-5% tolerance for the LOV relays was found to be high enough to prevent the stalling and tripping of safety-related motors that may be running during normal conditions and low enough to prevent spurious operation due to expected voltage transients. This satisfies the acceptance criteria. New upper and lower analytical limits for the LOV relay were calculated as 3246 V and 2938 V, respectively.

10.0 ATTACHMENTS A) ETAP Output Reports B) References C) Passport Data - LOV Relay Settings D) Selected Pages from Calculations 9390-02-19-1 Rev. 003, 9390-02-19-2 Rev. 003, and 9390-02-19-3 Rev. 003

I Analysis No. QDC-6700-E-2173 Revision 000 Attachment A PAGEA1 ofA18 J Attachment A ETAP Output Reports Load Flow Report Page 4.16 kV Bus Voltage 1M1SPLITLTCM (Unit 1 Mode 1) A2 2720V 2M1SPLITLTCM (Unit 2 Mode 1) A6 2720 v 1M1SPLITLTCM (Unit 1Mode1) A10 2850V 2M1SPLITLTCM (Unit2Mode1) A14 2850V

Calculation QDC-6700-E-2173 Revision 000 Attachment A Page A2 Of A18 Project: QundCities ETAP Page:

7.0.0N Location: Cordova, IL Date: 05-08-2015 Contract: SN: SARGENTLDY Engineer: Revision: Base Study Case: JM I Split M Filename: QUADCITIESR008 LOV Contig.: UIMl_U2sdwnL IMISPLITLTCM, 4.16 kV ESS Buses at 2720V, Ul Ml, Split loading, Unit 2 shutdown LOAD FLOW REPORT Bus Voltage Generation Lond Load Flow XFMR ID


- - -2.720

  • 4.16kV SWOR 13-1 kV 4.160 kV

- -- Ang.

0.0 MW 1.268 Mvar MW

--- ---0 ---0 --------

1.150 Mvar XFMR 18 llV ID MW 1.063 Mvar 0,985 Amp 307.6

%PF 73.3

%T;1p XFMR I llV 0.113 0.073 28.5 83.8 XFMR IOHV 0.093 0.092 27.7 71.2 N.EDGl/2 Term 0.000 o.ooo 0.0 0.0

  • 4.16kV SWGR 14-1 4.160 2.720 0.0 J.205 0.!128 0 0 XFMR 19HV 0.834 0.670 227.0 77.9 XFMR Gnlch(IUSc llV 0.343 0,239 88.7 82.0 4.16kV SWGR 31 0.029 0.019 7,3 83.4
  • 4.J6kV SWOR 23*1 4.160 2.720 0.0 0.738 0.605 0 0 XFMR28 HV 0.738 0.605 202.6 77.3 XFMR 2lJ llV 0,000 0.000 0,0 0.0
  • 4.16kV SWGR 24-1 4.160 2,720 o.o 0.845 0.736 0 0 XFMR29HV 0.845 0.736 237.8 75.4 4.16kV SWOR 31 4.160 2.719 0.0 0 0 0 0 XFMR3011V 0.029 0.019 7.3 83.3 4.16kV SWOR 14-1 *0.029 -0.019 7.3 83.3 125VDC Chgr I Term 0,480 0.27K *K.J 0 0 0.029 0.015 4KOV MCC 19*2 *0,029 ..(),OJ 5 67.7 89.4 125V DC Chgr2 T*-nn 0.480 0.273 -8.6 0 0 (J.029 0.014 480V MCC 29*2 -0.029 ..(1,014 68.6 89.9 250V DC Chge I Term 0.480 0.277 -8.5 0 0 0.070 0.037 480V MCC 19-2 -0.070 ..(J,037 165.4 88.4 250V DC Chgr 2 TL'll11 0.480 0.273 -8.K (I 0 0.070 0.036 480V MCC 29--2 -0,070 -0.036 167.2 88.8 4KOV Die.id 131dg MCC 0.480 0.305 -2.8 (I 0 0.033 0.026 480V Gatchollo;e MCC -0.033 -0.026 79.7 78.3 480V Oaichou1c MCC 0.480 0.306 -2.8 0 0 0.249 0.154 480V Dic.o;el Bldg MCC 0.033 0.026 79.7 78.3 480VTSCMCC 0.054 U.031 117.8 86.6 Xl'!.iR Gatehouse II V *0.336 -0.211 749.S 84.7 480V MCC I 0-1 0.480 0.314 -0.8 0 0 (),()')2 0.088 Xl'MR 10 UV -0.092 -0.088 234.2 72.2 480V MCC 18119*5 0.480 0.281 *8.3 0 0 ll.026 0,016 480 V SWGR 19 -0.026 *0.016 62.6 85.6 480V MCC 18*1A OA80 0.261 *I 1.6 0 0 0.085 0.052 480 V SWOR 18 -0.095 *0.058 245.8 85.4 RllRS EmcrgAllU IA *T 0.005 0.004 14.4 84.0 CorcSpry Emerg Al IU I A *T 0.004 0.003 11.0 86.0 480V MCC 18* Ill 0.480 0.256 *I 1.9 0 0 0.186 0.103 480 V SWOR 18 *0.186 .O.I03 478.9 87.5 4BOV MCC 18*2 0.480 0.263 *I 1.4 0 0 0.088 0.062 480 V SWOR 18 *0.088 -0.062 235.1 81.9 48UV MCC 18*3 0.480 0.258 *12.1 0 0 0, 135 U.076 480VSWGRl8 *0.137 -0,078 351.9 86.8 N.EDG112Luh<.'<)il !l.002 11.002 5,6 67.2 480V MCC I B*4 0.480 0.266
  • 11.4 0 0 0.003 0.ll03 480 V SWOR 18 -0.003 -11.003 10.0 75,0 4KOV MCC 19-1 0.480 0.280 *8.4 0 0 0.046 0.029 480 V SWGR 19 *0.059 -11.(137 143.6 84.8 CurcSpry Emerg AllU 111 -T 0.004 0,003 10.5 86.8 lll'CI Emerg AlllJ #I -T 11.1!03 O.<Kl2 6.7 83.8 RJJRS Emcrg AlllJ JB Term 0.006 11.()[14 14.0 85.4 480V MCC 19-2 0.480 0.280 *8.5 0 0 0.029 11.0l 7 250V DC Chgr I Tenn 0.071 0.1138 165.4 88.4 125 V DC Chgr I Tenn 11.()29 O.OIS 67.7 89.6

Calculation QDC-6700-E-2173 Revision 000 Attachment A Page A3 of A18 Project: Quad Cities ETAP 2 Page:

7.0.0N Location: Cordova, IL Dare: 05-08-2015 Contract: SN: SARGENTLDY Engineer: Revision: Base Study Cnse: IM I Split M Filename: QUADCITIESROOS LOV Config.: UIMl_U2sdwnL IMISPLITLTCM, 4.16 kV ESS Buses at 2720V, UI Ml, Split loading, Unit 2 shutdown I.

Bus Vollnge Generntion Load Lond Flow XFMR ID kV kV Ang. MW Mvar MW Mvar ID MW Mvar Amp %1'1' %Tap

~~~~~~~~~~ ~~ ~~ ~~- -~~~~- -~~ ~~~~~~~~~~- -~~ ~~- -~- -~~-

480 V SWGR 19 -0.129 -0.069 302.1 88.3 480V MCC t9-3 0.480 0.277 -8.2 0 0 0.056 0.035 480 V SWGR 19 -0.056 -0.035 137. l 85.0 480V MCC 19-4 0.480 0.275 -8.3 0 0 0.090 0.049 480V SWGR 19 -0.090 -0.049 214.8 87.9 480V MCC t9*6 0.480 0.274 -8.4 0 0 0.131 O.o78 480 V SWGR 19 -0.131 -0.078 321.4 85.8 480V MCC 20*1 0.480 0.322 0.0 0 [} 0 O XFMR20HV 0.000 0.000 0.0 0.0 480V MCC 28129-5 0.480 0.279 -8.5 0 0 0 0 480 V SWOR 29 0.000 0.000 0.0 -93.0 480V MCC 28-1 A 0.480 0.285 -7.4 0 0 0.073 0.045 RHRS Hmerg AHU 2A Term 0.006 0.004 13.8 85.4 480 V SWGR 28 -0.079 -0.049 187.5 85.0 480V MCC 28* IB 0.480 0.283 -7.4 0 0 0.135 0.081 480VSWOR28 -0.135 -0.081 321.4 85.7 4ROV MCC 28-2 0.480 0.285 -7.3 0 0 0.044 0.033 480 V SWGR 28 *0.044 -0.033 110.8 110.0 480V MCC 28-3 0.480 0.285 -7.4 0 0 0.053 0.034 480 V SWGR 28 -0.053 -0.034 127.7 84.0 480V MCC 29*1 0.480 0.279 -8.5 0 0 0.041 0.028 480 V SWOR 29 -0.041 -0.028 103.6 82.9 480V MCC 29-2 0.480 0.275 -8.8 0 0 0.026 0.015 250V DC Chgr2 Tenn 0.071 0.037 167.2 88.8 125V DCChgr2 Tenn 0.029 0.014 68.6 90.0 480V SWGR 29 -0.126 -0. 066 298.4 88.6 480V MCC 29-3 0.480 0.275 -8.4 0 0 0.062 0.039 480 V SWOR 29 *0.062 -0.039 153.6 85.0 480V MCC 29-4 0.480 0.275 -8.4 0 0 0.060 0.037 480 V SWGR 29 *0.060 *0.037 148.5 85.0 480V MCC 29-6 0.480 0.272 -8.6 0 0 0.124 0.077 480 V SWOR i9 -0.124 -<l.077 310.3 85.0 480V MCC30 0.480 0.318 -0.3 0 0 0.028 0.019 XFMR 30 llV -0.028 -0.019 61.6 83.7 480V Pn12251-100 0.480 0.266 -11.4 0 0 0 O 480VSWGR18 0.000 0.000 0.0 ().()

480V Pump House Dist 0.480 0.286 0.1 0 0 O.D83 O.Cl49 480V Relay House Dist 0.020 0.018 53.7 74.7 XFMR I LV -0.102 -0.067 247.2 83.8 4ROV Relay Ilouse Dist 0.480 0.286 0.1 0 0 0.020 O.OI 8 480V Pump l!OlL~C Disc .tJ.020 -ll.018 53.7 74.7 480VSWGR 18 0.480 0.266 -11.4 II 0 0.362 0.263 480V MCC 18-2 ll.089 0.1162 235.l Kl.II 480V MCC 18*3 0.140 0.082 351.9 86.2 480V MCC IH-4 0.003 0.003 I0.0 75.0 480V MCC 18-113 0.192 0.108 478.9 87.I 480V MCC 18-IA 11.097 0.059 245.8 85.2 480V Pnl 2251-JIJO 0.()(Xl IJ.0110 0.0 0.0 XFMR 1811V -1.021 *0.625 2599.1 85.3 ESS UPS 90!-63 Tenn 0.050 t).(105 I 09.4 99.5 N.lnst AirCompr 112 0.089 0.042 213.6 90,4 480 V SWOR 19 0.480 0.283 -8.3 0 0 0.3119 0.187 480V MCC 19-4 11.093 0.050 214.8 87.9 480V MCC 19-3 0.057 11.035 137.l 85.1 480V MCC 19*6 0.135 0.081 321.4 85.7 480V MCC 19*2 0.131 11.070 302.l 88.2 48UV MCC 19-1 11.060 0.037 143.6 84.7 480V MCC 18119-5 0.026 0.016 62.6 85.6

Calculation QDC-6700-E-2173 Revision 000 Attachment A Page A4 of A18 ETAP Project: Quad Cities Page: 3 Location: Cordova, IL 7.0.0N Date: 05-08-2015 Contract: SN: SARGENTLDY Engineer: Revision: Base Study Case: I Ml Split M Filename: QUADCITIESROOS_LOV Config.: UIMI_U2sdwnL IMISPLITLTCM, 4.16 kV ESS Buses at 2720V, Ul Ml, Split loading, Unit 2 shutdown Bus Volloge Generntion Lood Load Flow XFMR

____,_o____ ~ ~ Ang. ~ ~ ~ ~ _ _ _ _1_0______M_w __ M_v:_ir___Am_P__'Vc_.1_*F___'Vc_*1_*~_P_

XFMR 19 HY -0.811 -0.477 1918.4 86.2 4RO V SWGR 28 0.480 0.286 -7.3 0 0 0.351 0.244 480V MCC 28-2 0,044 0.033 110.H 80.0 480V MCC 28-1 B 0.136 0.082 321.4 85.6 480V MCC 28-3 0.053 0.034 127. 7 84.0 480V MCC 28* I A 0.079 0.049 187.5 84.9 XFMR281!V *0.720 -0.450 1712.2 84.8 ESS UPS 902-63 Tenn 0.050 0.007 I 02.2 98.9 4HOV SWGR29 0.480 0.279 -8.S 0 0 0.341 0.236 480V MCC 28/29*5 0.000 0.000 0.0 *93.0 480V MCC 29.4 0.061 0.038 148.5 85.1 480V MCC 29*3 0.063 0.039 I 53.6 85.1 480V MCC 29*6 0.128 0.079 310.3 84.9 FPClgWtrl'mp211 0.058 0.036 140. 7 85.3 480V MCC 29*2 0.128 0.068 298.4 88.3 480V MCC 29-1 0.042 0.028 103.6 82.9 Xl'MR29HV *0.820 -0.524 2009.K 84.3 480V TSCMCC 0.480 0.306 -2.8 0 0 0.054 0.031 480V Gatehouse MCC -0.054 .(1,031 117.8 86,6 Con:Spl)' Emcrg AlllJ I A *T 0.480 0.252 *I 0.5 0 () 0.004 0.003 480V MCC 18-IA *0.004 -0.()()3 11.0 85.0 Con:Spry Emerg AllU IB *'I' 0.480 0.264 -6.5 0 0 0.004 0.003 480V MCC 19* I .(l,004 -0.003 I0.5 85.0 ESS IJ PS 901-63 Tenn 0.480 0.266 -11.4 0 0 0.050 0.005 480 V SWGR 18 -0.050 *0.005 109.4 99.5 ESS UPS 902-63 Term 0.480 0.286 -7.3 0 0 0.050 0,007 480 V SWGR 28 *0.050 -0.007 102.2 98.9 l'PClgWul'mp2B 0.480 0.276 -8.4 0 0 0.057 0.035 480 V SWOR 29 .IJ.057 -0.035 140.7 85.2 JIPCI Emerg AHU #I -T 0.480 0.267 *6.6 0 0 0.003 0.002 480V MCC 19* I -O.<I03 *Cl.002 6.7 82.0 N.EDGl/21.ubcOil 0.480 0.258 *12.1 0 0 0.002 0.002 480V MCC I R-3 -O.<I02 -O.Cl02 5.6 67.2 N. EOG 112 Term 4.160 2.720 0.0 0 0 () 0 4.16kVSWGR 13-1 0.000 0.000 0.0 0.0 N .Inst Air Compr 112 0.460 0.266

  • 11.4 0 0 0.089 0.042 480 V SWGR 18 *0.089 -0.042 213.6 90.4 RI IRS Emcrg AflU I A -'I' 0.4RO 0.253 *10.5 0 0 0.005 0.004 480V MCC 18-1 A -0.005 *0.004 14.4 83.0 IUI RS Emcrg AHU 113 *T 0.480 0.261 -5.9 0 0 0.005 0.004 RllRS Emerg AHU 113 Term -0.005 *0.004 14.0 83.0 RllRS Emcrg AHU IB Tenn 0.460 0.266 -6.6 0 0 0 0 RllRS Emerg AllU IB *T 0.005 0.004 14.0 83.7 480V MCC 19* I -0.005 -0.004 14.0 83.7 Rl!RS Emcrg AllU 2A -T 0.480 0.265 -4.9 0 0 0.005 0.004 RllRS Emcrg AHU 2A Term *Cl.005 *Cl.004 13.8 83.0 Rll RS Emerg AllU 2A Term 0.480 0.277 -6.5 0 0 0 0 4HOV MCC 28*1 A -0. 006 *O.ll04 13.H 84.5 RllRS Emerg AllU 2/\ *T 0,006 0.0Cl4 13.8 84.5 XFMR 1 llV 4.160 2.708 0.1 0 0 0 0 4.16kV SWGR 13*1 -0.112 -0.073 28.5 83.K XFMR 11.V 0,112 0.073 211.5 83.ll Xl'MR 11.V 0.480 0.309 *0.2 () () Cl 0 4ROV Ptunp House Dist O.tll O.Cl72 247.2 84.1 XFMR 1 llV -0.111 *0.072 247.2 84.1 XFMR IOllV 4.160 2.717 0.0 Cl () 0 0 4,16kV SWGR 13*1 -0.093 *0.092 27.7 71.2 4BOV MCC 10-1 0,093 Cl.!192 27.7 71.2 *2.51Xl

Calculation QDC-6700-E-2173 Revision 000 Attachment A Page AS of A18 Project: Quad Ci1ies ETAP Page: 4 Location: Cordova, IL 7.0.0N Date: 05-08-2015 Comract: SN: SARGENTLDY Engineer: Revision: Base Study Case: IM ISplit M Filename: QUADCITIESROOB_LOV Config.: UIMI - U2sdwnL IMISPLITLTCM, 4.16 kV ESS Buses at 2720V, Ul Ml, Split loading, Unit 2 shutdown Bus Voltage Generation Loud Loud Flow XFMR

_ _ _ _10 ____ ~ ~ Ang. ~ ~ ~ Mv:1r _ _ _ _u_J______M_w __ M_vi_*r___ 11_m_P__*;._,r_F _*;._,,_*up_

XFMR 18 HV 4.160 2.718 0.0 0 0 Cl 4.16kV SWOR 13*1 -1.062 -0. 984 307.6 73.4 480V SWOR 18 1.062 0.984 307,6 73.4 *2.SOO XFMR 19JIV 4.160 2.716 0.0 0 0 0 0 4.16kV SWOR 14-1 -0.833 -0.669 227.0 78.0 480 V SWGR 19 0.833 0,669 227.0 78.0 *2.SOO XFMR20HV 4.160 2.720 0,0 0 0 0 0 4.16kV SWOR 23-1 0.000 0.000 0.0 0.0 480V MCC 20-1 0.000 0.000 0.0 0.0 -2.500 XFMR28HV 4.160 2.717 0.0 0 0 0 n 4. I6kV SWGR 23* I -0. 737 -0.605 202.6 77.3 480V SWGR 28 0.737 0.605 202.6 77.3 *2.500 Xl'MR29JIV 4.160 2.719 0.0 0 0 0 o 4.16kV SWOR 24-1 -0.844 -0. 736 237.R 75.4 4HOV SWGR 29 0.844 0.736 237.9 75.4 -2.500 XFMR30HV 4.160 2.719 0.0 0 0 0 4.16kV SWGR 31 -0.029 -0.019 7.3 83.3 480V MCCJO 0.029 0.019 7.3 83.3 *2.500 XfMR Gntcholl<e llV 4.160 2.714 0.0 0 0 0 O 4.16kVSWGR 14-1 *0.342 *O. 239 88.7 82.0 480V Outchouse MCC 0.342 0.239 88.7 82.0 -2.500

  • lndiculcs a vollagc regulaled hIB ( vollngc conlrolled or swing lype machine conncc1cd 10 ii)
  1. Indicates a bus wilh a loud misma1cb of more than 0.1 MVA

Calculation QDC-6700-E-2173 Revision 000 Attachment A Page AG of A18 Project: Quad Cities ETAP Page:

Location: Cordova, IL 7.0.0N Date: 05-08-2015 Contract: SN: SARGENTLDY Engineer: Revision: Bnse Study Case: 2M!Split M Filename: QUADCITIESR008_LOV Contig.: U2Ml_UlsdwnL 2MISPLITLTCM, 4.16 kV ESS Buses at 2720V, U2 Ml, Split loading, Unit I shutdown LOAD FLOW REPORT Bus Voltage Generation Lond Load Flow XFMR ID kV kV Ang. MW Mvar MW Mvar II) MW Mvar Amp %PF %Tap

~~~~~~~~~~ ~~ ~~ ~~- -~~ ~~--~~ ~~~~~~~~ ~~- -~~ ~~- -~- -~~-

  • 4.16kV SWGR 13-1 4.160 2.720 0,0 0.892 0.744 0 O Xl'MR 18 HV 0.777 0.669 217.7 75,8 XFMR I HV 0.115 0,075 29.1 83.9 XFMR IOHV 0.000 0.000 0.0 0.0
  • 4.16kV SWGR 14-1 4.160 2.720 0.0 1.137 0.909 0 0 XFMR 19HV 0.877 0.727 241.9 77.0 Xl'MR Gatehouse II V 0.231 0.162 60.0 81.8 4.16kV SWGR 31 0.029 0.0!9 7.3 83.4
  • 4.16kV SWGR 23-1 4.160 2.720 0.0 1.047 0.934 0 0 XFMR 28 llV 0.953 0,842 270.0 74.9 XFMR20HV 0.094 0.092 27.9 71.3 N.EDG 112 Tenn 0.000 0.000 0.0 0.0
  • 4.16kV SWGR 24*1 4.160 2.720 0.0 0.798 0.684 0 0 XFMR2911V 0.798 0.684 223.1 15.9 4.16kV SWOR JI 4.160 2.719 0,0 0 0 0 0 XFMR30HV 0.029 0.019 7.3 83.3 4.16kV SWOR 14-1 -0.029 -0.019 7.3 83.3 t 25VDC Chgr t Tenn 0.480 0.275 *8.8 0 0 0.029 0.014 480V MCC 19*2 -0.029 -0.014 68.3 89.7 I 25V DC Chgr 2 Tenn 0,480 0.276 *8.1 0 0 0.029 0.014 480V MCC 29-2 -0.029 -0.0l 4 611.1 89.6 250V DC Chgr t Tenn 0.480 0.274 -9.0 0 0 0.070 0.037 480V MCC 19-2 -0.070 -(J.03 7 166.7 K8.7 250\1 DC Chgr 2 Tenn 0.480 0.276 *8.2 0 0 0.070 0.037 480V MCC 29-2 -0.070 *0.03 7 166.0 88.5 480\1 Diesel Bldg MCC 0.480 0.310 -1.9 0 0 0.034 0.027 480V GatchO!l~e MCC -0.034 -0.027 80.6 78,3 480V Gatehouse MCC 0.480 0,311 -1.9 0 0 0.158 0. !02 4ROV Dic.~cl IJldg MCC 0.034 0.027 80.6 78.3 480V TSCMCC 0.037 0.020 77.9 87.4 XFMR Gatchou.w HV -0.228 -0.150 506.8 83,7 480V MCC 10-1 0.480 0.322 0.0 0 0 0 0 XFMR IOllV 0,000 0.000 Cl.Cl 0.0 480V MCC 18119*5 0.480 0.278 -8.8 0 0 0.026 0.016 480 V SWGR 19 -0.026 -Cl.Cll 6 63.3 85.6 480V MCC 18-IA 0.480 0.278 -8.0 0 0 0.087 0.053 480 V SWGR 18 -0.092 -0.056 223.8 85.4 RllRSEmergAllU IA-1' 0,005 0.004 13.5 83.9 480V MCC 18*1B 0.480 0.276 -8.1 0 0 0.124 0.077 480 V !IWGR 18 -0.124 -0.077 305.5 85.0 480\1MCC18*2 0.480 0.281 -7.9 0 0 0.053 O.<J41 480 V SWGR IK -0.053 -0.041 137.7 19.5 480\1MCC18-3 0.480 0.280 -8. I 0 0 0.060 0.035 480 V SWGR 18 -0.060 *0.035 144.0 86.5 4HOV MCC 18*4 0.480 0.282 -7. 9 Cl () 0.004 0.003 480 V SWOR 18 -0.004 -0.003 10.6 75.0 480V MCC 19*1 0.480 0.277 *9.0 0 (J 0.072 CUl45 480 V SWGR 19 -0.072 -0.045 178.2 84.8 480\1 MCC 19-2 0.480 0.277 -9.0 0 0 0.029 0.017 250V DC Chgr I Tenn (l,(l7J 0.037 166.7 88.7 125\IDC Chgr I Tenn 0.029 0.014 68.3 8\1.8 480 V SWGR 19 -0.129 -0.(lll8 304.3 H8.5 4HOV MCC 19*3 0.480 0,274 -8. 7 (J 0 0.056 O.o35 480 V SWOR 1\1 -0.056 -0.035 138.6 85.0 48UV MCC 19*4 0.480 0,274 *8. 7 () 0 0.062 0.039 4HO V SWlill 19 -0.062 *0.039 153,\1 85.0 4XUV MCC 19-6 0.480 0.271 -8.!l Cl 0 0.131 U.o7H 4HO \I SWOR 19 -0.13 I -Cl.078 325.1 K5.8 480V MCC 20-1 0.48CJ 0.3 14 -0.8 0 0 0.(193 0.08\1 XFMR 20 llV -0.093 *O.OK\I 236.2 72.3

Calculation QDC-6700-E-2173 Revision 000 Attachment A Page A7 of A18 ETAP Page:

Project: Quad Cities 2 7.0.0N Date: 05-08-2015 Location: Cordova, IL Contract: SN: SARGENTLDY Engineer. Revision: Base Study Case: 2M ISplit M Filename: QUADCITIESROOS_LOV Config.: U2Ml_UJsdwnL 2MJSPLITLTCM, 4.16 kV ESS Buses at 2720V, U2 Ml, Split loading, Unit I shutdown Bus Voltnge Generation Load Load Flow XFMR ID kV kV Ang. MW Mvar MW Mvar JD MW MV'Jr Amp %1'1' %Tap 480V MCC 28129-5 0.480 0.282

-- *8.0

--- 0 0 0 0 480 SWGR 29 V 0.000 0.000 0.0 0.0 4KOV MCC 28-IA 0.480 0.272 *9.9 0 0 0.072 0.045 RHRS llmerg AHU 2A Tenn 0.006 0.004 14.5 85.6 480 V SWGR 28 *O.ll82 *0.051 205.3 HS.I CoreSpry llmeig AllU 2A *T 0.005 0.003 I I.I 87.3 480V MCC 28-1 B 0.480 0.270 -10.0 0 0 0.170 0.1113 480 V SWGR 28 *0.170 -0.103 426.0 85.5 480V MCC 28*2 0.480 0.272 *9.9 0 0 0.074 0.051 480 V SWOR 28 *0.074 *0.051 190.9 82.3 480V MCC 28-3 0.480 0.271 *9.9 0 0 0.116 Cl.073 480 V SWOR 28 -0.l l 6 *0.073 291.7 84.6 480V MCC 29-1 0.480 0.281 -8.0 0 0 0.042 0.029 480 V SWGR 29 -0. 055 .o. 036 135.9 83. 7 CoreSpry fimcrg AllU 2B *T 0.005 0.003 IO. 7 87.4 llPC! Emerg AHU #2 -T 0.003 0.002 6.2 86.5 RllRS limcrg AllU 2B Tenn 0.006 0.004 14.2 85.9 480V MCC 29*2 0.480 0.278 -8.2 0 0 0.026 0.015 250V DC Chgr 2 Tenn 0.071 ll.037 166.0 88.5 125V DC Chgr2 Tenn 0.029 0.014 68.I 89.7 480VSWGR29 -0.126 -0.067 296.3 88.4 480V MCC 29-3 0.480 0.278 -7.9 0 0 0.062 0.039 480 V SWGR 29 -0.062 -0.039 152.1 RS.O 4KOV MCC 29-4 0.480 0.278 -7.9 0 0 O.<l60 0.037 480 V SWGR 29 -0.060 -<l.037 147.0 85.0 480V M!.:C 29-6 0.480 0.275 *8.0 () 0 0.124 0.011 480 v swan 29 -0.124 -0.077 307.I 85.0 480V MCCJO 0.480 0.318 *0.3 0 0 Cl028 0.019 Xl'MR 30 HV -0.028 -<>.019 61.6 83.7 480V Pnl 2251-100 0.480 0.274 *9.8 0 (I 0 0 480 V SWOR 28 0.000  !>.CIOO 0.0 0.0 480V Ptonp Hl11LW Dist 0.480 0.285 0.1 0 0 0.082 0.049 480V Relay House Di~l 0.022 0.019 58.9 75.8 XFMR l LV -0.104 -0.068 252.4 83.8 4KOV Relay llousc Dist 0.480 0.285 0.1 0 0 0.022 0.019 480V Pump Ho11ore Dl~t -ll.022 -0.019 58.9 75.8 480V SWGR 18 0.480 0.283 -7.9 0 0 0.368 0.265 480V MCC 18-2 0.054 0.041 137.7 79.5 480V MCC 18-3 0.061 0.036 144.0 H6.3 480V MCC 18-4 0.004 0.(mJ 10.6 75.0 480V MCC 18-IB 0. I 27 0.079 305.S 84.8 480V MCC 18*1A 0.093 0.057 223.8 85.2 XFMR !81!V -0.756 -0.489 1839.S 84.0 ESS UPS 901-63 T*= 0.050 C>.007 I03.4 99. I

~KO V SWGR 19 0.480 0.280 -8.8 0 0 0.308 0. IH7 4SOV MCC 19*4 0.064 0.039 153.9 HS.I 4ROV MCC 19*3 0.057 Cl.DJS 138.6 HS. I 480\1MCC19*6 0.135 (J.081 325.1 85.7 l'PClgWtrl'mpl H 0.057 O.D35 137.6 85.3 4HOV MCC 19-2 0. I 30 0.069 304.3 RH.4 480V MCC 19* I ll.073 0.1>46 I 78.2 84.6 480V MCC 18119.5 C>.026 0.016 63.3 85.6 XFMR llJllV *O.H5 I *0.508 21>44.0 HS. 9 480V SWGR 28 11.480 0.274 .'J.8 0 (I 0.424 0.279 480V MCC 28-2 0.074 0.051 190.9 82.2

Calculation QDC-6700-E-2173 Revision ODO Attachment A Page AB of A18 ETAP Page:

Project Quad Cities 3 Location: Cordova, IL 7.0.0N Date: 05-08-2015 Contract: SN: SARGENTLDY Engineer: Revision: Base Study Case: 2M ISplit M Filename: QUADCITIESROOS_LOV Config.: U2Ml_UlsdwnL 2MISPLITLTCM. 4.16 kV ESS Buses at 2720V, U2 Ml, Split loading, Unit I shutdown Bus Voltage Generntion Land Land Flow XFMR

_ _ _ _n_J_ _ _ _ _ _ kv__ _ _A_n_g_.

kv _ _M_var

_~_1w _ _M_w __ M_v,_ir______10 ____ ~ Mv~r ~ %1'1' %Tup 480V MCC 28-1 B 0.172 0.105 426.0 R5.4 480V MCC 28*3 0.117 0,074 291.7 84.5 4SOV MCC 28-1 A 0.083 0.051 205.3 85.0 480V l'nl 2251*100 o.ooo a.mo o.o o.o XFMR 28 llV -0.921 -0.567 2281.3 85.1 ESS UPS 902-63 Tenn 0.050 0.006 I06.5 99,3 480 V SWGR 29 0.480 0.282 -8.0 0 0 0.341 0,236 480V MCC 28129*5 0.000 0.000 o.o 0.0 480V MCC 29-4 0.061 0,038 147.0 85.1 480V MCC 29-3 0.063 0.039 152.1 85.1 480V MCC 29-6 0.128 (J.079 307.1 84.9 480V MCC 29*2 0.128 U.068 296.3 88.2 480V MCC 29-1 0.056 0.036 135.9 83.7 XFMR 29 llV -0. 776 -0.497 I HHS. I 84.2 480V TSCMCC 0.480 0.311 -1.9 0 0 0.037 CJ. 020 480V Galehlluse MCC -0.037 -0.020 77.9 87.4 Con:Spry Emcrg AHU 2A -T 0.480 0.251 -7.3 0 0 0.0Cl4 0.003 480V MCC 28* I A -0.004 *0.ll03 I I.I ll5.0 Con:Spry Emcrg AlllJ 2B -T 0.4~0 0.259 -5.4 0 (J 0.004 0.003 480V MCC 29-1 -0.0(14 -0.003 10.7 85.0 ESS IJPS 901-63 Tenn 0.480 0.283 -7,9 0 0 0.050 0.007 480 V SWGR 18 -0.050 -0.007 103.4 99.1 ESS UPS 902-63 Tenn 0.480 0.274 -9.K 0 0 0.050 O.IJ06 480 V SWGR 28 -0.050 -0.006 1()6.5 99.3 FPClgWtrl'mplB 0.480 0.278 -8.8 0 0 0.056 O.o35 480 V SWGR 19 -0.056 -O.o35 137.6 85.3 lll'CI Emerg Al!U #2 *T 0.480 0.267 -6,3 0 0 0.002 0.002 480V MCC 29* 1 -0.002 -0.002 6.2 85.0 N.EDGl/2 Tenn 4.160 2.720 0.0 0 0 0 O 4.16kV SWOR 23-1 0.000 0.000 0.0 0.0 RllRS llmcrg AHU I A .'f 0.480 0.271 -7.1 0 0 0.005 0.004 4ROV MCC 18*1A -0.005 ..(J.004 13.5 83.0 IUIRS Emcrg AHU 2A *T 0.480 0.251 -7.1 0 0 0.005 0.004 IUIRS Emerg AllU 2A Tenn -(l.005 -0.004 14.5 83.0 RI IRS Emcrg Al IU 2A Tenn 0.480 0.264 -8.9 0 0 0 0 4KOV MCC 28- IA *O. 006 -0. lJ04 14.5 84. 7 RllRS Emcrg AllU 2A -T 0.(1(16 0.004 14.S 84.7 RllRS Emcrg AHU 2B *T 0.4KO 0.258 -4.9 0 0 0.005 0.004 ltHRS Emerg 1\HU 211 Tenn *0.005 -0.004 14.2 83.0 Rims Emerg AlllJ 213 Tenn 0.460 0.263 -5.7 0 0 0 0 RllRS l~ncrg MIU 2B -T 0.005 O.ll04 14.2 KJ.8 480V MCC 29*1 -0.005 -0.004 14.2 K3.K XFMR 1 llV 4.160 2.707 0,1 0 () 0 O 4.16kVSWGR 13-1 -0.114 -0,075 29.I 83.8 XFMR 1 LV 0.114 0.()75 29.1 83.8 XFMR I LV 0.480 0.309 -0.2 0 {) 0 O 4KOV Piunp 11 nusc Di<t 0.114 0.073 252.4 K4. I XFMR 1 llV -0.114 -0.073 252.4 84.1 XFMR IOllV 4.160 2.720 0.0 0 0 0 0 4.!6kV SWOR 13-1 0,000 0.000 0.0 0.0 480V MCC Ill-I 0,000 0.000 0.0 0.0 *2.500 XFMR 18 llV 4.160 2.718 0.0 0 0 () 0 4.16kV SWOR 13-1 *0.777 -0.669 217.7 75.K 480 V SWGR 18 0,777 0.669 217.7 75.K *2.500 XFMR 1911V 4.160 2.716 0,0 0 0 O 4.16kV SWtill 14-1 *ll.K76 -0.726 241.9 77.0 4KO V SWGR llJ 0.K76 0.726 241.\1 77.0 *2.5110

Calculation QDC-6700-E-2173 Revision 000 Attachment A Page AS of A18 Project: Quad Cities ETAP Page: 4 Location: Cordova, IL 7.0.0N Date: 05-08-2015 Contract: SN: SARGENTLDY Engineer: Revision: Base Study Case: 2M 1Split M Filename: QUADCITIESROOS_LOV Conlig.: U2MI _UlsdwnL 2MISPLITLTCM, 4.16 kV ESS Buses at 2720V, U2 Ml, Split loading, Unit l shutdown Bus Voltage Generation Load Load Flow XFM.R

_ _ _ _l_D_ _ _ _ ~ ~ Ang. ~~~~ _ _ _ _II_)_ _ _ _ ~~~ %1'1' %Tup XFMR20HV 4.160 2.717 0.0 0 () 0 0 4.16kV SWOR 23*1 -0.094 *0.092 27.9 71.3 480V MCC 20* 1 0.094 0,092 27.9 71.3 *2.500 XFMR2811V 4.160 2.716 0.0 0 0 0 0 4.16kV SWOR 23*1 -0.952 *0.841 270.0 75.0 480VSWGR28 0.952 0.841 270,0 75.0 -2.500 XFMR29f!V 4.160 2.719 0.0 () 0 0 o 4.16kV SWGR 24*1 -0. 797 -0.684 223.1 75.9 480VSWGR 29 0.797 0.684 223.J 75.9 *2.500 XFMRJOHV 4.160 2.719 0.0 0 0 0 0 4.16kV SWGR 31 -0.029 *O.Ol 9 7.3 83.3 480V MCC30 0.029 0.019 7.3 83.J *2.500 XFMR Gatehouse !IV 4,160 2.716 0.0 () 0 0 O 4.16kV SWGR 14*1 -0.231 -0.162 60.0 Kl.8 480V Gatehouse MCC 0.231 0,162 60,0 81.8 *2.500

  • Indicates a volUlge regulated b11* ( voltage controlled or swing type machine connected lo ill

~ Indicates a bus with a load mismatch of more than 0.1 MVA

Calculation QDC-6700-E-2173 Revision 000 Attachment A Page A10 of A18 Project: Quad Cities ETAP Page: I 7.0.0N Location: Cordova, IL Date: 05-08-2015 Contract: SN: SARGEN11..DY Engineer: Revision: Base Study Case: JM I Split M Filename: QUADCITIESR008 LOV Config.: UIMl_U2sdwnL IMISPLITLTCM, 4.16 kV ESS Buses at 2850V, Ul Ml, Split loading, Unit 2 shutdown LOAD FLOW REPORT Bus Voltage Generation Load Load Flow XFMR ID

..l.16kV SWOR 13-1 kV 4.160 kV 2.850 Ang.

0.0 MW 1.283 Mvar 1.125 MW 0

Mvar 0 XFMR 18 HV ID MW 1.074 Mvar 0.958 Amp 291.6

%1'1' 74.6

%Tap XFMR I flV 0.115 0,015 27.8 83.7 XFMR 10 HV 0.094 0.092 26.7 71.3 N.EDGl/2 Tenn 0.000 0.000 0.0 0.0

  • 4.16kV SWGR 14-1 4.160 2.850 0.0 1.227 0.928 0 0 X~"MR 19HV 0.838 0.659 215.9 78.6 XFMR GmcholL<e llV 0.360 0.250 88.8 82.1 4.16kV SWGR 31 0.029 0.019 7.1 83.3
  • 4.16kV SWOR 23-1 4.160 2.850 0.0 0.746 0.598 0 0 Xl'MR28HV 0.746 0.598 193.8 78.0 XFMR20llV 0.000 0.000 0.0 0.0
  • 4.16kV SWGR 24-1 4.160 2.850 0.0 ll.844 0.718 0 0 XFMR29HV 0.844 0.718 224.5 76.2 4.16kV SWGR 31 4.160 2.849 0.0 0 0 0 0 XFMR30HV 0.029 0.019 7.1 83.3 4.16kV SWGR 14-1 *0.029 *0.019 7.1 83.3 I 25VDC Chgr I Tenn 0.480 0.295 -1.S 0 0 0.029 0.016 480V MCC 19-2 *0.029 -<l.016 64.8 87.9 I25V DC Chgr 2 Tenn 0.480 0.291 *7.7 0 0 0,029 0.015 480V MCC 29-2 -0.029 .().015 65.4 88.3
?50V DC Chgr I Tenn 0.480 0.295 -7.6 0 0 0.070 CJ.040 480V MCC 19-2 .(1.070 -0.040 15K.5 86.8 250V DC Chgr 2 Tenn 0.480 0.291 *7.8 0 0 0.070 0.040 480V MCC 29-2 *0.070 *0.040 159.8 87.1 480V Diesel Bldg MCC 0.480 0.320 -2.7 0 0 0.036 0.028 480V Gatehouse MCC -0.036 -0. 028 82.4 7K.3 480V Gatehouse MCC 0.480 0.321 -2.7 0 0 0.261 o.161 480V Diesel 131dg MCC 0.036 0.029 82.4 78.3 4KOVTSCMCC 0.057 0.033 117.3 86.7 XFMR Gatehouse llV *0.354 -0.222 750.6 84.7 480V MCC 10-1 0.480 0.330 *O. 7 0 0 0.093 0,089 XFMR 10 llV -0.093 *0.089 225.5 72.2 480V MCC t8119-5 0.480 0.298 - 1.S 0 0 0.026 Cl.016 480 V SW(iR 19 *0.026 *O.Ol 6 58.4 85.4 480V MCC 18-IA 0.480 0.280 -I 0.5 0 0 0.087 0.053 480 V SWGR 18 *0.096 *0.059 232.4 85.4 RHRS Emcrg AHU IA-T O.CI05 0.004 13.4 83.9 CorcSpry Emcrg AHU IA -T Cl.004 0.003 10.2 85.9 480V MCC 18-IB 0.480 0.276 -10. 7 0 0 Cl.189 Ci.103 480 V SWGR 18 *0.189 -O. I03 451.0 87.9 480V MCC 18-2 0.4KO 0.282 -10.3 0 0 0.!192 0.065 480 V SWGR 18 -0.092 *0.065 ~29.5 81.6 480V MCC 18-3 0.480 0.:?78 -10.\1 0 0 0.137 !Hl77 480V SWGR 18 *0.138 *0.079 331.1 86.9 N.EDGl/21.ubcOil 0.002 0.002 5.2 67.2 480V MCC 18-4 0.480 0.:?84 -10.3 0 0 (l.004 0,003 480 V SWG R 18 -0.004 .().003 J<J.7 75.0 480V MCC 19-1 0.480 0.298 *7.6 0 0 0.(J47 o. 029 480 V SW<JR 19 ..fl.060 .(),(137 136.4 84. 7 CorcSpry Emerg Al llJ I B :r 0.004 0,003 9.8 86.5 lll'CI Emcrg AllU #I *T 0.003 0.002 6.3 83.5 RllRSEmcrgAllU IBTcm1 Cl.006 0.004 13.1 KS.I 480V MCC 19-2 0.480 0.:?98 *1.1 0 0 0.030 O.Ol 7 J5CIV DC Chgr I Tenn 0.071 0.(141 ISK.5 86.8 I25VIX: Chgr I Tenn 0.029 Cl.016 64.K KM.I

Calculation QDC-6700-E-2173 Revision 000 Attachment A Page A 11 of A 18 Project: Quad Cities ETAP Page: 2 Location: Cordova, IL 7.0.0N Date: 05-08-2015 Contract: SN: SARGENTLDY Engineer: Revision: Base Study Case: IM I Split M Filename: QUADCIT!ESROOS_LOV Config.: UIMl_U2sdwnL IMISPLITLTCM, 4.16 kV ESS Buses at 2850V, Ul Ml, Split loading, Unit 2 shutdown Bus Voltage Generation Load Load Flow XFMR ID kV kV Ang. MW Mvar MW Mv11r 480V SWGR 19 ID MW

  • 0.131 Mvur

-0.074 Amp 290.9

%PF 87.1

~'aTnp 480V MCC 19*3 0.480 0.295 -7.4 0 0 0.056 0.035 480 V SWOR 19 -0.056 -O.Q35 128.8 85.0 480V MCC 19-4 0.480 0.293 -7.5 0 0 0.091 0.049 480 V SWGR 19 -0.091 -0.049 20J.6 88.1 480V MCC 19-6 0.480 0.292 -7.6 0 0 0.131 O.D78 480 V SWGR 19 *0.131 -0.078 JOl.6 85.8 480V MCC 20-1 0.480 0.337 0.0 0 0 0 0 XFMR 20 HV 0.000 0.000 0.0 0.0 4ROV MCC 28/29-5 0.480 0.297 -7.6 0 0 0 0 480 V SWGR 29 0.000 0.000 0.0 0.0 480V MCC 28* I A 0.480 0.302 -6. 7 0 0 0.074 0.046 Rims Emcrg AllU 2A Tenn o.006 0.004 12.9 85.1 480 V SWGR 28 *0.080 *0.050 179.7 84.9 480V MCC28-IB 0.480 0.30 I -6.8 0 0 0.135 0.081 480 V SWGR 28 *0.135 -0.081 302.5 85.7 480V MCC 28*2 0.480 0.302 -6. 7 0 0 0.047 0.035 480 V SWGR 28 *0.047 *0.035 111.4 79.7 480V MCC 28-3 0.480 0.302 -6. 7 0 () 0.054 0.035 480 V SWGR 28 -0.054 -0.035 123.2 8J.9 480V MCC29*1 0.480 0.297 *7. 7 0 0 0.042 0.028 480 V SWGR 29 -0.042 *0.028 98.8 82.9 480V MCC 29-2 0.480 0.293

  • 7.9 0 0 0.027 0.016 250V DC Chgr 2 Tenn 0.071 0.040 159.8 87.1 125V DC Chgr 2 Tenn 0.029 0.016 65.4 88.4 4ROV SWGR29 *0.127 -0.071 Z85.9 87.3 4KOV MCC 29-J 0.4KO 0.293 -7.6 0 0 0.062 0.039 480 V SWOR 29 -0.062 *0.039 144.0 85.0 4HOV MCC 29-4 0.480 0.294 -7.6 0 0 0.(160 CU>37 480 V SWOR 29 -0.060 -0.037 139.3 85.0 4ROV MCC 29-6 0.480 0.290
  • 7. 7 0 0 0.124 0.077 480 V SWGR 29 -0.124 *0. 077 290.6 85.0 480V MCC30 0.480 0.333 -0.3 0 0 0.029 0.019 XFMR 30 HV -0.029 -0.019 60.2 83.6 480V Pnl 2251-100 0.480 0.285 *10.3 0 0 0 0 480 V SWOR 18 0.000 0.000 0.0 0.0 480V Pump Hm1..: Dist 0.480 0.301 0.1 0 0 0.083 0.049 480V Relay HmL'C Di*t 0.022 0.019 56.4 75.I Xl'MR I LV -0.105 -0.069 240.7 83.6 480V Relay House Dist 0.480 0.301 0.1 0 0 0.(122 0.019 480V Pump House Disl -0.022 -0.019 56.4 75. I 480 V SWOR 18 0.480 0.285 *I 0.3 0 0 0.368 0.266 480V MCC 18*2 0.092 0.066 229.5 81.S 480V MCC 18-3 0.141 0.082 331.1 86.3 480V MCC 18-4 0.004 0.003 10.7 75.0 480V MCC 18-IB 0.195 0.108 451.0 K7.5 480V MCC 18-IA U.098 (l.!160 232.4 KS.2 480V l'nl 2251-100 ().000 0.000 0.0 0.0 XFMR 1811V *1.037 *0.634 2464.3 85.3 l!SS UPS 901-63 T~nn 0.050 0.007 102.7 99.0 N.lnsl Air Compr 112 0.(189 0.042 199.4 90.4 48DVSWOR 19 0.480 0.301 -7.5 0 0 0.31_4 0.190 480V MCC 19*4 0.093 0.050 W3.6 K8.I 480V MCC 19-3 0.057 0.035 128.8 85.1 480V MCC 19*6 0.135 0.081 30l.6 85.7 480V MCC 19-2 0.132 0.(175  :!~Xl.9 87.0 4HOV MCC 19-1 0.060 0.(138 136.4 84.7 4HOV MCC 18119-5 0.026 0.016 58.4 85.4

Calculation QDC-6700-E-2173 Revision 000 Attachment A Page A12 of A18 ETAP Page:

Project: Quad Cilies 3 Locarion: Cordova, IL 7.0.0N Date: 05-08-2015 Conlract: SN: SARGENTLDY Engineer: Revision: Bnse Study Case: IM ISplit M Filename: QUADCITfESR008 LOV Config.: UIMl_U2sdwnL IMISPLITLTCM, 4,16 kV ESS Buses at 2850V, UI Ml, Split loading, Unit 2 shutdown Bus Vollnge Generntioo Load Lond Flow XFMR

_ _ _ _1_0_ _ _ _ ~ ~ ~ ~ ~ ~ ~ _ _ _ _II_)_ _ _ _ _ _M_w __ M_v:_ir___A_m_P_ _cv._.l'F_* _%_Tn_p_

XFMR 19HV -0.8 I 7 -0.484 1824.6 86.0 480 V SWGR 28 0.480 0.303 -6.7 0 0 0.362 0.244 480V MCC 28-2 0.047 0.035 111.4 79.7 480V MCC 28* I B 0.136 0.082 302.5 85.6 480V MCC 28-3 0.054 0.035 123.2 83.9 480V MCC 28* I A 0.080 0.050 179.7 84.9 XFMR 28 HV ..0.730 *0.457 1637.5 84.8 ESS UPS 902-63 Term o.oso 0.009 97.1 98.3 480 V SWGR29 0.480 0.297 -7.6 0 0 0.342 0.237 480V MCC 28/29-5 0.000 0.000 0.0 0,0 480V MCC 29-4 0.061 0.038 139.3 RS.I 480V MCC 29-3 0.063 0.039 144.0 85.1 480V MCC 29-6 0. I 27 0.079 290.6 84.9 fPClgWIJ'l'mp2B 0,058 0,035 131.6 RS.3 480V MCC 29-2 0.128 0.072 28S.9 87. I 480V MCC 29* I 0.042 0.028 98.8 82.9 XFMR2911V ..0.822 -0.528 I 896. 7 84, I 480VTSCMCC 0.480 0.321 -2.7 0 0 0.057 0.033 480V GnlclunLo;e MCC -0.057 -0.033 117.3 86.7 CoreSJll}' Emcrg Al IlJ I A *T 0.480 0.272 -9.5 0 0 0.004 0.(){13 480V MCC 18-IA -0.004 -0.003 10.2 85.0 CoreS(ll)' Emcrg AllU lB *T 0.480 0,283 -5.9 0 0 0.004 0.003 480V MCC 19-1 -0.004 -0.003 9.8 85.0 ESS UPS 901*63 Term 0.480 0.285

  • 10.3 0 0 o.oso 0.007 480 V SWGR 18 -0.050 -0.007 ID2.7 99.0 IJSS UPS 902-63 Term 0.480 0,303 -6. 7 0 0 o.oso 0.009 480 V SWGR 28 -0.050 -0.009 97.1 98.3 FPClgWlrPmp2B 0.480 0.295 -7.6 0 0 0.057 0.035 480 V SWGR 29 -0.057 -0.035 131.6 85.2 llPCI llmcrg AHU #1 *1' 0.4RO 0.286 °6.0 0 0 0.003 0.002 480V MCC 19-1 -0.003 -0.002 6.3 82.0 N.EDGI/21.ubcOil 0.480 0.278 *10.9 0 0 0.002 0.002 480V MCC 18-3 *0.002 -O.!Xl2 5.2 67.2 N.E!Xil/2 Tenn 4. I 60 2.850 0.0 0 0 0 0 4.16kV SWOR 13-1 0.000 0,000 0.0 0.0 N.lnsl AirCompr I/2 0.460 0.285
  • 10.3 0 0 0.089 0.042 480 V SWGR 18 -0.089 -0,042 199.4 90.4 RllRS Emcrg AHU IA *'I' 0.480 0.273 -9.6 0 0 0.005 O.Oll4 480V MCC 18* I A -0.005 *0.004 13.4 !13.0 RllRS Emcrg AHU lB -T 0.480 0.280 -5.4 0 0 0.005 0.004 RJJRS Emcrg AHU 113 Tenn -0.005 -0.004 13.1 83.0 RllRS Emcrg AllU lB Tenn 0.460 0.285 *6.0 0 0 o IUIRS Hm~-rg AllU 113 -T 0,005 0.004 13.1 K3.6 480V MCC 19-1 -0.005 -0.004 13.1 83.6 RJIRS Emcrg MIU 2A -T 0.480 0.284 -4.S 0 0 O,!Kl5 0.004 RllRS Emcrg AllU 2A Tenn *11.005 -0.004 12.9 83.0 RllRS Emcrg AllU 2A Term 0.480 0.295 *5.9 0 0 () 0 4HOV MCC 28* 1A *0,006 -0.(Xl4 12.9 84.3 RllRS Emcrg AIIU 2A -T 0,006 0.004 12.9 84.3 XJIMR I llV 4.160 2.H38 0,1 () 0 () 0 4.16kV SWGR 13-1 *0.114 -0.075 27.8 83.6 XFMR I 1.V 0.114 0.075 27.8 83.6 XFMR I LV 0.480 0.324 -0.2 0 () 0 0 480V P1nnp I lmL~c Dist 0.113 0.074 240.7 83.9 XFMR I !IV *0.113 -0,074 240.7 83.9 XFMR IOJJV 4,160 2.847 0.0 () () 0 0 4.16kV SWGR 13*1 *O.O'l4 -tl.092 26.7 71.3 480V MCC I 0* 1 0.(194 (),(192 26.7 71.3 -2.SllO

Calculation QDC-6700-E-2173 Revision 000 Attachment A Page A13 of A18 Project: Quad Cities ETAP Page: 4 Location: Cordova, IL 7.0.0N 05-08-2015 Date:

Contract: SN: SARGENTLDY Engineer. Revision: Base Study Cose: I Ml Split M Filename: QUADCITIESROOS_LOV Config.: UIMI _U2sdwnL lMlSPLITLTCM, 4.16 kV ESS Buses at 2850V, Ul Ml, Split loading, Unit 2 shutdown Bus Voltage Generntion Lond Lond Flow XFMR XFMR 18HV II) kV

4. 160 kV 2.848 Ang.

0.0 MW 0

Mvar 0

MW 0

Mvar ID 0 4.16kV SWOR 13-1 MW

-1.074 M..-Jr

-0.957 Amp 291.6

%PF 74.6

'loTnp 480 V SWOR 18 1.074 0,957 291.6 74,6 *2.500 XFMR 1911V 4.160 2.846 0,0 0 0 0 4.16kV SWOR 14-1 -0.837 -0.658 215.9 78.6 480VSWOR 19 0.837 0.65H 215.9 78.6 -2.500

.'<l'MR 20 HV 4.160 2.850 0.0 0 0 0 0 4.16kVSWOR23-1 0.000 0.000 0.0 (),()

480V MCC 20-1 (J.000 0.000 0.0 0.0 -2.500 XFMR2811V 4.160  :?.847 0.0 0 0 0 U 4.16kVSWGR23-I *Cl. 746 -0.598 193.8 78.0 480VSWGR28 0.746 0.598 193.8 78.0 -2.500 Xl'MR29HV 4.160 2.849 o.o 0 0 () 0 4.16kV SWOR 24-1 -0,844 -0.718 224.5 76.2 480V SWGR29 Cl.844 0,718 224.5 76.2 -2.500 XFMRJOHV 4, 160 2.849 0.0 0 0 0 0 4,16kVSWGRJI -0.029 -0.Ul 9 7.1 83.3 480V MCC 30 Cl.029 0.019 7,1 83.3 -2.500 XFMR Gatehouse HV 4, 160 2.844 0.0 0 0 0 O 4.16kVSWGR 14-1 *0.359 -0.250 88.8 82.I 480V Gaiehollie MCC 0.359 0.250 88.8 82. I -2.500

  • Indicates a vol~1gc regulated bus ( voluigc conlrollcd or swing lypc machine connected to ii)

~ lndic.1tcs a bus with a load mismalch of more than 0.1 MVA

Calculation QDC-6700-E-2173 Revision 000 Attachment A Page A14 of A18 ETAP Page:

Project: Quad Cities 7.0.0N Date: OS-08-2015 Location: Cordova, IL Contract: SN: SARGENTLDY Engineer: Revision: Base Study Case: 2M 1Split M Filename: QUADCITIESR008_LOV Config.: U2Ml_UlsdwnL 2MlSPLITLTCM, 4.16 kV ESS Buses at 2850V, U2 Ml, Split loading, Unit I shutdown LOAD FLOW REPORT Bus Voltage Generation Land Land Flow XFMR ID

  • 4,16kV SWGR 13-1 kV 4.160 kV 2.850 Ang.

0.0 MW

!l.905 Mvar 0.742 MW

--- 0 Mvar O Xl'MR 1811V ID

---MW 0,788 Mvar

--- 0,665 Amp

--- 208.9

%Pl' 76.4

%Tap XFMR 1 llV 0.117 0.077 28.4 83.7 XFMR !OHV 0.000 0.000 0.0 0.0

  • 4.16k\I SWGR 14-1 4.160 2.850 0.0 1.156 0.905 0 0 XFMR 19 HV 0.881 0.714 229.7 77.7 XFMR GatehOlL~e HV 0.245 0.172 60.6 81.9 4.16kV SWGR 31 0.029 0.019 7.1 83.3
  • 4.16kV swcm 23-1 4.160 2.850 0.0 1.054 0.913 0 o XFMR 28 HV 0.960 0.820 255.7 76.0 XFMR20HV 0.095 0.093 26.9 71.4 N.EDGl/2 Tenn 0.000 0.000 0.0 0.0
  • 4.16kV SWGR 24-1 4.160 2.850 0.0 0.798 0.669 0 o XFMR29 llV 0.798 0.669 210.9 76.6 4.16kV SWGR 31 4.160 2.849 0.0 0 0 0 0 XFMR30 llV 0.029 0.019 7.1 83.J 4.16kV SWGR 14-1 -0.029 -0.019 7.1 83.3 12SVDC Chgr I Tenn 0.480 0.293 -7.9 0 0 0.029 0.016 480V MCC 19-2 -0.029 -0.016 65.2 88.2 125V DC Chgr2 TL"llll 0.480 11.294 -7.2 0 0 0.029 0.016 480V MCC 29-2 -0.029 -0.016 65.1 88.1 250V DC Chgr I Tenn 0.480 0.292 -8.1 0 0 0.070 0.040 480V MCC 19-2 -(J.070 -0.(140 159.S 87.0 25CJV DC Chgr 2 Term 0.480 0.294 -7.4 0 0 D.070 0.040 480V MCC 29-2 -0.070 -0.040 158.9 86.9 480V Diesel Bldg MCC 0.480 0.325 -1.8 0 0 0,037 0.029 480V G.ncl!OLL~e MCC -0.037 -0.029 83.3 78.3 480\' Ga1ehoLL~e MCC 0.480 O.J26 -1.8 0 0 0.166 0.108 480V Diesel Bldg MCC 0.037 0.029 83.3 78.2 480VTSCMCC (J.039 0.022 79.4 87.6 XFMR Gatehouse !IV -0.242 -0.159 512.1 83.6 480V MCC 10-1 ll.480 0,337 0,0 () 0 0 0 XFMR IOHV ll.000 0.000 o.o 0.0 480V MCC I 8119-5 0,480 0.296 -7.9 (I 0 0.026 0.016 480 V SWGR 19 -0.026 -0.016 59.0 8S.4 480\' MCC 18-IA 0.480 0.295 -7.4 0 0 0.088 0.053 480 V SWGR I 8 -0.093 -0.057 213.4 85.3 RJIRS EmergAllU IA-T 0.(I05 0.004 12.6 83.8 480V MCC 18-113 0.480 0.294 -7.4 () 0 0.124 0.077 480 V SWGR 18 -0.124 -0.077 287.2 85.0 480V MCC 18-2 0.480 ll.298 -7.2 0 0 0.057 0.044 4llOVSWGR 18 -0.057 -0.1144 139.2 79.2 480V MCC 18-3 0,480 0.297 -7.4 0 0 0,062 0.036 4HO V SWGR 18 -0.062 -0.036 139.0 86.7 480V MCC 18-4 0.480 0.299 -7.2 0 0 O.Oll4 O.Oll4 480 V SWGR 18 *0.004 -0.(}()4 11.3 75.0 480V MCC 19-1 0.480 0,294 -K.I 0 0 0.073 0.046 480 V SWGR 19 -0.073 -0.046 16H.9 84.7 4l!OV MCC 19-2 0.480 0.295 -8.I 0 (I 0.030 0,017 2SOV DC Chgr I Tenn 0.071 O.Cl40 159,S 87.1 I 25VDC Chgr I Tenn 0.029 0.016 65.2 88.3 480 V SWOR l 9 -0.130 -0.073 292.6 87.3 480V MCC 19-3 <l.480 fl.292 -7.9 0 () 11.056 0,035 480 V SWGR 19 *0. 056 -IJ.CJ35 130.1 85.0 480V MCC 19-4 0.480 0.292 -7.9 () 0 0,062 0.039 480 V SWGR 19 -0.062 -0.039 144.4 HS.O 480\' MCC 19-6 0.480 0.289 -8.1 0 0 O.IJI 0.078 480 V SWOH 19 -0.131 -0.078 304.6 HS.8 480V MCC 211-1 0.480 0.330 .(1.7 0 0 0.(l94 0.090 XF~IR 2ll llV -0.094 -0.()90  :!27.4 12.3

Calculation QDC-6700-E-2173 Revision 000 Attachment A Page A15 of A18 ETAP Page:

Project: Quad Cities 2 7.0.0N Location: Cordova, IL Date: 05-08-2015 Contract: SN: SARGENTLDY Engineer: Revision: Base Study Case: 2M I Split M Filename: QUADCITIESROOS_LOV Config.: U2Ml_UlsdwnL 2MISPLITLTCM, 4.16 kV ESS Buses at 2850V, U2 Ml, Split loading, Unit I shutdown Bus Voltnge Generation Lond Load Flow XFMR ID 480V MCC 28'29*5 kV 0.480 kV 0.300 Ang.

-7.2 MW 0

Mvar 0

MW 0

Mvar 0

!I) 480 V SWOR 29 MW 0.000 Mv-dr 0.000

/\mp 0.0

%1'1' o.o

%Tap 480V MCC 28* I A 0.480 0.290 -8. 9 0 0 0.073 0.045 RH RS Emcrg AHU 2A Term 0.006 0.004 13.5 85.3 480 V SWOR 28 *0.083 *0.052 195.1 85.1 CorcSpry Emerg AflU 2A *T 0.004 0.003 10.3 87.0 480V MCC 28-113 0.480 0.288 *9.0 0 0 0.170 0.103 480 V SWGR 28 -0.170 *0.103 398.4 85.S 480V MCC 28*2 0.480 0.290 *8.9 0 0 0.077 0.054 480 V SWOR 28 *0.077 *0.054 186.2 82.0 480V MCC 28*3 0.480 0.289 *9.0 0 0 0.117 0.074 480 V SWGR 28 -0.117 *0.074 276.0 84.6 480V MCC 29*1 0.480 0.299 *7.2 0 0 0.043 0.Cl29 480 V SWOR 29 *0.056 *0.037 129.0 83.7 CoreSpry Emerg AllU 28 :r 0.005 0.003 10.0 87.I I IPCI Emerg MIU "2 *T 0.003 0.002 5.8 86.4 IUIRS IJmerg AHU 213 Tcm1 0.006 0.004 13.2 85.5 480V MCC 29*2 0.480 0.296 -7.4 0 0 0.027 O.Ol 6 250V DC Chgr 2 Term 0.071 0.040 158.9 86.9 125V DCChgr2Term 0.029 0.016 65.1 88.2 480V SWGR29 -0.127 -0.072 284.3 87.1 480V MCC 29*3 0.480 0.2% -7.1 0 0 0.062 0.039 480 V SWGR 29 -0.062 -0.039 142.8 85.0 480V MCC 29-4 0.480 0.296 *7.1 0 0 0.060 tl.037 480 V SWGR 29 *0.060 *0.037 13H.I 85.0 480V MCC 29-6 0.480 0.293 . 7.2 0 () 0.124 0.077 480 V SWGR 29 -0.124 *0.077 288.1 HS.O 4KOV MCC30 0.480 0.333 -0.3 (} 0 0.029 Cl.019 XFMR 30 HV -0.029 -0.0l 9 60.2 83.6 480V Pnl 2251-100 0.480 0.292 -8.9 0 0 0 0 480 V SWGR 28 0.000 0.000 0.0 0.0 480V Pump Ilouse Dist 0.480 0.301 0.1 0 0 0.083 0.050 480V Relay lioll~C Dist 0.024 0.021 61.1 76.1 XFMR I l.V 0 0.I 07 *0.070 245.7 83.6 480V Relay House Dist 0.480 0.301 0.1 0 0 O.Cl24 O.o2 I 480V Pump House Dist *0.024 ..().Q2 I 61.1 76.1 480 V SWGR 18 0.480 0.300 -7.2 0 0 0.374 0.269 480V MCC 18-2 0.057 0.044 139.2 79.2 480V MCC 18*3 0.062 ll.036 139.0 86.4 480V MCC 18-4 0.004 0.004 11.3 75.0 480V MCC 18-IB 0.126 0.079 287.2 84.8 480V MCC IR-IA 0.094 0.058 213.4 85.1 XFMR 18HV *II. 769 *0.499 1765.3 83.!I ESS UPS 901 *63 Term 11.050 CJ.009 98.2 '18.4 4KOVSWGR 19 0.480 0.298 *8.0 0 (} 0.314 0.189 480V MCC 19-4 0.063 0.039 144.-4 85.1 4KOV MCC 19*3 0.057 0.035 130.1 85.1 4ROV MCC 19*6 0.135 Cl.081 304.6 85.7 FPClgWtrl'mpl D 0.058 0.035 131.5 85.3 4KOV MCC 19*2 0.131 Cl.074 292.6 87.2 4KOV MCC I !I* I 0.074 0.046 168.9 84.6 4KOV MCC 18119-5 0.026 0.016 59.0 85.5 XFMR 1911V *Cl.858 *0.516 I 941.1 85. 7 480 V SWGR28 0.480 0.292 -8.9 0 () 0.429 0.280 4HOV MCC 28*2 Cl.077 CJ.(154 IK<>.2 82.0

Calculation QDC-6700-E-2173 Revision 000 Attachment A Page A16 of A18 Project: Quad Cities ETAP Page: 3 7.0.0N 05-08-2015 Location: Cordova, IL Date:

Contract SN: SARGENTLDY Engineer: Revision: Base Study Case: 2M I Split M Filename: QUADCITIESR008_LOV Config.: U2Ml_UlsdwnL 2MISPL!TLTCM, 4.16 kV ESS Buses al 2850V, U2 Ml, Split loading, Unit l shutdown Bus Voltnge Generntion Lond Lond Flow XFMR


ID

--kV

-kV- -- Ang.

MW Mvar MW

---Mvnr


ID 480V MCC 28* I B MW Mvnr 0.172 0.105 Amp 398.4

%1'1' 85.4

%Tap 480V MCC 28-3 0.1 I 8 O.o75 276.0 84.5 480V MCC 28-IA 0.084 0.052 195.J 85.0 480V Pnl 225 I -I Oil 0.000 ll.000 0.0 0.0 XFMR2KHV -0.930 -0.573 2160.8 85. I ESS UPS 902-63 Term 0.050 0.008 100.S 98.7 480V SWGR29 0.4HO 0.300 -7.2 0 0 0.343 0.237 480V MCC 28129-5 0.000 0,000 0.0 0.0 480V MCC 29-4 0.061 0.038 138.J KS.I 480V MCC 29-3 0.063 0.039 142.8 85.1 480V MCC 29-6 0.127 0.079 288.1 84.9 480V MCC 29-2 0.128 0.073 284.3 86.9 480V MCC 29-1 0.056 0.037 129.0 83.6 XFMR29HV -0. 778 -0.502 I 782.5 84.0 480VTSCMCC 0.480 0.326 -1.8 0 0 0.039 0.022 480V Gncchonsc MCC *0.039 -0.022 79.4 87.6 CorcSpry Emcrg Al IU 2A -T 0.480 0.271 -6.7 0 0 0.004 O.Cl03 480V MCC 28-1 A *0.11()4 -0.003 10.3 85.0 CorcSpry Em*-rg Al JU 28 -T 0.480 0.279 -4.9 0 0 0.(I04 ll.CKl3 480V MCC 29-1 -0.0(14 -0.CKIJ J0.0 85.0 ESS UPS 901-63 Term 0.480 0.300 -7.2 0 () 0.050 0.009 480 V SWOR 18 -0.050 -0.009 98.2 98.4 ESS UPS 902-63 Term 0.480 0.292 -8.9 0 0 0.050 0.008 480 V SWOR 28 -0.050 -0.008 100.5 98.7 Fl'ClgW!rPmpl B 0.480 0.296 -7.9 0 0 0.057 0.035 480 V SWOR 19 -0.057 -0.035 131.S 85.2 llPCI Emcrg AHU #2 -T 0.480 0.286 -5.7 0 Cl 0.002 0.002 480V MCC 29*1 -0.002 -0.002 S.K 85.0 N.EnGJ/2 Term 4.160 2.850 0.0 0 0 0 0 4.16kV SWGR 23-1 0.000 0.000 0.0 0.0 RIIRS EmcrgAHU IA-T 0.480 0.289 -6.S 0 0 0.005 0.004 480V MCC I S-1 A -0.005 *0.004 12.6 83.0 l!HRS Emcrg AIIU 2A-T 0.480 0.271 -6.6 0 0 0.005 0.004 RJJRS Emcrg AHU 2A Term -0.005 *0.004 13.5 83.0 RllRS Emcrg AIIU 2A Term 0.480 0.283 -8.1 0 0 0 0 4KOV MCC 28* I A *0.006 -0.004 13.5 114.4 RJJRS Emcrg AHU 2A -T O.OCJ6 0.004 13.5 84.4 RHRS Emcrg AllU 2B -T 0.480 0.277 *4.S 0 0 0.005 0.004 RllRS Emcrg AHU 2B Term -0.005 -0.004 13.2 83.0 I

RHRS Emcrg AllU 2B Tenn 0.460 0.282 -5.2 0 0 0 RllRSF.mcrgAllU2B*T 0.005 O.CKJ4 13.2 83.7 480V MCC 29-1 -0.005 -0.004 13.2 83.7 XFMR I !IV 4.160 2.838 0.1 0 0 0 0 4.16kV SWUR 13*1 -0. I 17 *0.076 2K.4 83.6 XFMR I LV 0.117 0.076 28.4 83.6 XFMR I LV 0.480 0.324 -0.2 0 0 () o 480V Pump House Di~c 0.116 0.075 245.7 83.9 XFMR I JJV -0.116 -0.()75 245.7 83.9 XFMR IOllV 4.160 2.850 0.0 0 0 0 0 4.16kV SWGR 13-1 0.000 0.000 Cl.O 0.0 480V MCC 10-1 0.000 0.<KlO 0.0 0,0 -2.500 XFMR IKllV 4.160 2.848 n.o 0 0 (l 0 4.16kVSWGRl3*1 -0. 788 -0.665 208.9 76.4 480 V SWGlt 18 0.788 0.665 208.<I 76.4 -2.500 XFMR 19JJV 4.160 2.846 ().() Cl 0 0 0 4.16kV SWGR 14-1 -0.880 -0.712 229.7 77.7 480 V SWGR 1\1 0.880 0.712 229.7 77.7 *2.50()

Calculation QDC-6700-E-2173 Revision 000 Attachment A Page A17 of A18 ETAP Page: 4 Project Quad Cities Location: Cordova, IL 7.0.0N Date: 05-08-2015 Contract: SN: SARGENTLDY Engineer: Revision: Base Study Case: 2MISplit M Filename: QUADCITIESR008_LOV Config.: U2Ml_UlsdwnL 2MISPLITLTCM, 4.16 kV ESS Buses at 2850V, U2 Ml, Split loading, Unit I shutdown Bus Voltage Generntioo Lond Lond Flow XFMR

_ _ _ _1_0_ _ _ _ ~ ~ Ang. ~ Mvar ~ ~ _ _ _ _lf_)_ _ _ _ _ _M_w __ M_v:_ir___A_m_p_ _%_Pr_* _%_'1_*np_

XFMR2011V 4.160 2.847 0.0 0 0 0 0 4.16kV SWGR 23*1 -0.095 *0.093 26.9 71.4 480V MCC 20-1 0.095 0.093 26.9 71.4 *2.500 XFMR 28 HV 4.160 2.847 0.0 0 {) 0 0 4. I6kV SWGR 23-1 *0.959 *0.819 255.7 76.0 480V SWGR28 0.959 0.819 255.7 76.0 *2.500 XFMR29HV 4.160 2.849 0.0 0 0 0 0 4.16kV SWGR 24-1 *0.797 *0.669 210.9 76.6 480VSWGR29 0.797 0.669 211.0 76.6 -2,500 Xl'MRJOHV 4.160 2.849 0.0 0 0 0 0 4.16kVSWGR31 -0,029 -0.019 7.1 83.J 480V MCC 30 0.029 0.019 7.1 83.3 *2.500 XFMR Oatchow;e HV 4.160 2.846 0.0 0 0 0 0 4.16kV SWGR l.J-1 -0.245 -0.172 60.6 81.9 480V Gatcho11*c MCC 0.245 0.172 60.6 81.9 -2.500

  • Indicates a volmgc regulated bu* ( vollagc c1111trollcd or swing type machine connected to it)
  1. Indicate.* a bus with a load mismmch of more than O. l MVA

Calculation QDC-6700-E-2173 Controlled File Sununary - ETAP (S&L Program No. 03.7.696-7.00) Revision 000 Type: 2 Status: P Effective Date: 08-12-2013 Attachment A Executed 05-08-2015 14:47 Page A18 of A18 Controlled File Path: D:\ETAP700\

I Analysis No. QDC-6700-E-2173 Revision 000 Attachment B PAGE 81 of 821 I Attachment B References

Calculation QDC-6700-E-2173 Attachment 8 Revision ooo Page 82 of 821 EXELON TRANSMITTAL OF DESIGN INFORMATION (TOOi)

!Z1 SAFETY RLATED Originating Organization TODI No.: QDC-15-006 0 NON- SAFETY Revision: 000 RELATED 0 REGULATORY 181 Exelon Nuclear Page: 1of2 RELATED D Other (specify)

TODI Addressed To:

Jim Kolodziej Sergeant and Lundy Warrenville, IL Station: Quad Cities Unit(s): 1 and 2 and O System Designation(s): Auxiliary Power System, 867

Subject:

ETAP data files Prepared By: Brandon Janssen I ~<6=- Date Iii &/ 1.5' Approved By: Rick Swart I <, (1 P~41 Sign

.. .,...-0----*

Print/ Sign Date 1/_t. i /, !/

Status of Information: IZ1 Approved for Use D Unverified Method and Schedule of Verification for Unverified TOOis: NIA Description of Information: This TODI transmits the current ETAP data files for ODC-6700-E-1_503 Revision 008 and the scope of normally running, Safety-Related, low voltage induction motors.

Purpose of Issuance: The purpose of the issuance of this TOOi is to provide the current ETAP files and normally running motors to support the performance of Loss of Voltage Relay setpoint change Limitations: None Distribution: Velma White, Quad Cities records management

CalcutaHon QDC-6700-E-2173 Attachment 8 Revision 000 Page 83 of 821 EXELON TRANSMITTAL OF DESIGN INFORMATION (TOOi) l8J SAFETY ALATED Originating Organization TOOi No.: QDC-15-006 0 NON- SAFETY Revision: 000 RELATED 0 REGULA TORY

!ZI Exelon Nuclear Page: 2 of 2 RELATED D Other (specify)

The ETAP model has been uploaded to the S&L FTP. The files uploaded are described below with their subject modified dates:

QuadCities.lib Dated 12/10/2009 9:22 AM QuadCitiesR008.MDB Dated 9/8/2014 3:49 PM QuadCitiesR008.0TI Dated 9/8/2014 3:49 PM ETAP Scenarios 1M1 SPLITLTCM, 2M1 SPLITLTCM, 1SdwnlTCM, and 2SdwnlTCM as well as EC Eval 384241 were reviewed to determine the population of normally running, .

safety-related, low voltage induction motors. These motors shall be evaluated for a low voltage scenario within the 5-minute Degraded Voltage timer. The ECCS room cooler fan motors are the only directly connected safety-related loads that may run during normal operation. The motors identified are as follows:

AHU AHU AHU AHU AHU AHU AHU AHU The following Safety-Related low voltage motors were also identified as running in the reviewed ETAP scenarios, but review of station drawings and discussion with Operations has determined they are not considered a normally running load or do not perform an active safety function:

ETAPID Discussion Cont Rm Rtn Air Fn 1/2 - Does not perform an active Safety-Related function.

RHR SWP 1A Cir Fan C Not a normalfv runnina load.

SBGT Fan B Not a normally runnina load.

Calculation QDC-6700-E-2173 Attachments Revision 000 Page 84 of 821 IAV Time Delay Voltage Relays BE /ltot11t:tlv11 RB/ays DESCRIPTION For protection against overvoltage in a three-phase system, psethe IAVSIA relay' The Type IAV relays are single phase (Fig. 2). For instantaneous protect.ion as induction disk ~lays designed to respond, well as time delay, use the IAV71B.

with time delay, to either an increasing or a decreasing voltage, or both. Some models are frequency compensated, and some in- For the detection of grounds on un-clude an instantaneous unit (hinged arma* grounded three-phase systems, two methods ture type). Most models listed in the are in general use. One measures the zero Selection Guide include a target seal-in unit sequence potential (Fig. 4), and the other on all contacts. measures the actual voltage between the sys-tem neutral and ground (Fig. 6).

The basic mechanism of all models is an induction-disk unit with either a tapped coil . For the circuit of Figure 4, use Type or a tapped resistor for setting pickup. IAVS ID, a low pickup relay which has its

[In the overvoltage models, the relay is operating circuit tuned to the rated frequen-calibrated on increasing voltage to close the cy. The potential transformers used in this normally open contact at tap setting. The circuit are connected grounded*Y primary, (Photo 8043218) broken- delta secondary. The* primaries fig. I. Type IAV71A time dial adjusts the angle through which U¥Drvoltage relay the disk rotates and, hence, the time delay.] should have ratings equal to the line-to-line (aut of caso) voltage of the system, and the secondaries In the undervoltage models, the relay is can have ratings of either 67 or 11 S volts. iliary relay. The short-time rating for both calibrated on decreasing voltage to close the IAVSlD and IAVSIK is 360 volts for 10 nonnally closed contact at tap setting. The Select a relay model with a continuous seconds.

time dial adjusts the angle through which rating of three times the potential trans- The IAVSIM relay may be used for a the disk rotates at voltages above tap setting. former secondary voltage. This is necessary definite time delay and the time is adjustable because, when a ground occurs, the zero from 3 to 30 seconds by means ofa time dial.

In the combined overvoltage and under- sequence voltage may be up to three times Operating time is defined as the time to voltage models, the relay is calibrated on the normal transformer secondary voltage. close the contacts with voltage suddenly increasing voltages to close the normally Thus, with a potential transformer second- raised from zero to the rated value.

open contacts at tap setting and on decreas- ary rated 67 volts, use a 199-volt relay coil.

ing voltages to close the normally closed For ground fault protection of ac rotating contacts at various percentages of tap set. machines, use a circiiit similar to that shown UNDERVOLTAGE RELAYS ting. in Figure 6 applying Type IAVS ID or For simple undervoltage protection, se-IAVSIK relays. These are low-pickup lect the IAV relay according to the time For the undervoltage and combined un-relays whose coil circuits are tuned by voltage characteristic required.

  • dervoltage and ovcrvoltage. relays, the two capacitors to their rated frequencies. The connecting plug S2 case is use.d to prevent In .a typical automatic-preferred emer-circuits arc thus rendered only one-eighth as false tripping when the relay is removed or sensitive to the third harmonic as they are to gency throwovcr scheme, the undervoltage replaced. Either plug completes the coil cir* *co!ltacts of the IA VS4E relay are used to the rated frequency.

cuit and thus opens the normally closed trip lhe circuit breaker in the normal.source contact used with undervoltage operation. circuit, and the auxiliary switch (52b) of this Both plugs are needed to complete the con- In Figure 6, a distnl>ution transformer is normal source breaker permits the voltage tact circuits. connected between the machine neutral of closing contacts of an IAVS lA relay i!I the the generator and ground. Normally there is emergency source to close its circuit break-APPLICATION no voltage on the transformer but during a er.

OVERVOLTAGE RELAYS fault, there is a voltage with a worst-case Type IAV overvoltage relays are used for magnitude equal to the phase-to-ground protection against simple overvoltage, but value. COMBINED UNDERVOLTAGE other applications are also common. They AND OVERVOLTAGE RELAYS are applied to ground detection, both on Greater sensitivity can be obtained by Types IAVS3, IA V69, IA V70, and feeders and on ac generators, and they are choosing a distribution transformer with IAV73 relays are time-delay, over- and un-also used in timed switching arrangements, higher secondary voltage. In such a case, the dervoltage relays having lwo 1=onlacts, one where their dependability and accuracy relay will not carry the fault voltage con- of which closes on overvoltage and the other make them preferable to purely mechanical tinuously, and provision must be made to on undervoltage.

timing relays. de-energize the operating coil using an aux-

REFERENCES:

Dimensions ................. Section 16 How to Order ...............Section I Instruction Books ...........* Section 17 Target and Contact Data ....... Section 16 Relay Standards .............. Section 16 Voltage and Frequency Relays Data subject to change without notice Page 10-3

Calculation QDC-6700-E-2173 Attachments Revision 000 Pa9: 85 of 621

. 1AV Time Delay Voltage Relays BE Protect/1111 Relays FREQUENCY COMPENSATION minimum and maximum taps shown in the The combined under- and overvoltage The following Type IA V relays are fre- list below, the following intermediate taps relays are made both "with and without time-quency comll!!nsated: . are available: delay adjustment. -Models IAV53, *69, and Overvoltage relays-IAV7 l, iA V72 -73 have time delays which are functions of Undervoltage relays-IAV74A the setting of the undervoltage contacts.

Tap Range Taps Available Model I~V70 has a time dial which permits Undervoltage anc~ Ov4:~ollilge relays- S.4-20 5.4, 1.s, 12.s, 20 IAV73A, IAV738 adjustment of time delay independently of 10-40 10, 15, 25, 40 the voltage settings.

These rel*ays have uniform characteristics 16-64 16, 24, 40, 64 over a frequency range of 30.90 Hertz. A 28-112 28, 42, 70, 112 TRIPPING CIRCUITS AND typical application is on systems supplied by 55-140 SS, 64, 70, 82, 93, 105, CONTACT RATINGS hydro.-generators, where the frequency 120, 140 tends to'increase when faults occur. Fre- The current carrying rating of the con-110-280 110, 128, 140, 164, 186, tact circuit is determined by whether the .

querii:y c~mpi:'!satiori is provided.by an* R-C 210, 240, 280 circuit across the wound shading ~oils of the relay has a seal-in unit and by the tap used 220-560 220, 256, .280, 328, 372, on the seal-in coil. Without a seal*in unit induction disk operating coil and core unit. 420, 480, *560 the relay contacts will close and carry 30 CHARACTERISTICS amperes for tripping duty and 2 amperes Type IAV relays will continuously with- The ov~rvoltage relays and the under- continuously at control voltages of 250 stand rated voltage on all taps, and tap volt- voltage relays are provided with time dials volts de or less. Refer to Section 16 for data age on all taps above rated voltage. For the for adjustment of time delay.

  • on target seal-in units.*

SELEC"l'.ION GUIDE-Type IAV General Rared Top Rongo Madel Number1 Caso Approx WI, lb (kg)

Vall* Tara**

De1cription Voll* Seiil- Slzo Ac Min MCIX ln Conlact* t----:-:60'""'H,,.o-,rl-*-..--...,50:--:--:-He-:rl,.-z--; Nat Ship OVERVOLTAGE (DEVICE No. $9)

General dury, avervalra;e and canlrol 115 55 140 121AV51A1A 121AV51A4A 1wlrchlng. Time delay 1 la 10 208 10 140 0.2/2 J.N.O. A7A A9A 10<onds at 1.6 llmn 230 110 280 A2A MA lap selflng. 460 220 560 A3A AllA Sl 12 15 SlllM 01 IAV51A 115 55 140 121AV.52AIA 121AV.52A.CA (5 *.C) (6.8) except 2*N.O. Can!Oelt 199 70 140 0.2/2 2*N.O. A7A A9A 1-Target SoaJ.ln. 230 110 280 . (1) A2A A.5A

=nd Ground detadlan an 3-phme r"""on~r ot 200%

11atar

~ 0.75 1a 1~

~ selling, ar .s secondo on N.O. 0 TQ.S.

115<!>

199© 345© 67© 10 16 28 5.4 40 112 20 0.2/2 l*N.O.

121AV51D2A 121AV511C1A D1'i D9A 121AV51D5A 121AV511C2A D.CA OlOA 51 St@

12 (5*.C) 13 (5.9) 15 (6.8) 16 (7.3)

Sarne en IAV51D or IA,V51K uc:apt 199<D 16 121AV52D1A ...... 51 12(5.AI 15(6.8) 2 N.O. Conhxll 67(1) 5.4 ""

20 2-N.O.

12tAV521C1 A 121AV521C2A SICZ 13 (5.91 16 (7.3)

Timing AppRcatlo111 115 55 121AV51MIA 121AV51M2A 208 100 Q.2/2 l*N.O. MU.. 51 12 15 230 110 M3A (5.41 (6.B)

Frequen*cy Comp*111atetl Freque~..nslllve applicallOJIS. Otherwlsa same t1* V51A compemarad 30*90 Hort.I 115 55 140 121AV71AIA 121AV71A3A F~uen~amponlClled; lnstanloneolls unit additd, f~lllC)' compensotwd, for hydro 115 55 I.CO 1-N.O. 121AV7182A.Cll 121AV7183ACll genoratar app8callon11 ;eneral du17 for ac 230 110 280 B5A:Cll ......

gonarotor ov....,oltage prolecllon aiid voltaga 230 110 280 86Afd) ......

"'1!Vlatar backup. I IO 10 mond time delay. 13 16 0.2/2 SI (5.91 Similar la IAV7 IA except 2 N.O. Contods 115 55 uo 121AV72AIA ...... (7.3)

Slmaor IO IAV72A 115 55 121AV72BQ(3) excopl Includes Intl. 1.CO 2*N.O. 121AV7281A(3) 230 110 280 B3AIJ).

unit with 1 N.O. Canracr ******

~;';.aoJ.I:'~~~~~~.~~t~.\i:,d** 115 55 1.CO ...... 121AV72C3A<:!)

CD IAVSID, 51K, 520, and 52K-10 Second Rating at 360 volts.

Includes external capacitor.

@Inst. unit adjustable 120-200 volts.

©Inst. unit adjustable 18(}.300 volts.

Voltage and Frequency Relays Page 10-4 Data subject to change without notice

Calculation QDC-6700-E-2173 Attachment B Revision 000 Page 86 of 821 IAV Time Delay Voltage Relays SE Pratecthte Relays SELECTION GUIDE-Type IAV General Da1cripllon Rated Volta Torger Se<1I- C"'1tact1 Model Number Co**

Si1:e llpprox wr, lb (kg)

Ac Min Mox in 60 Hertz 50 Hetti Ner Ship UNDERVOLTAGE (Dovlre No. 27) 5 Soc Tmt0 Delay 6'1 32 BO 121AV54E14A 01 zero vol11 115 55 140 ElA 121Av54e4A If tel on No. 10 TD 208 110 280 E13A Time Rongo 1 lo 13 soc 230 110 280 E2A ... i:5;..

at 80% of top. 460 220 560 E3A E6A 30 Sec Time Dolor 115 55 140 121AV54FIA at ze10 volts 230 110 280 0.2/2 F2A 121Av54i:4A if 1ot on No. 10 TD "60 460 75 Se& Time Dela,.i: 115 220

.55 140 1 N.C.

F3A 121AV54H1A al zero *alts on q. 1O TO 460 220 560 H2A ...... 52 12 16 Somo a* IAV54E 115 55 140 121AV54JIA ...... (5.4) (7.3)

OJtCOpl no SeoMn 230 110 280 Nono J2A 460 220 560 J3A 121AV54J4i.

S Soc Time Del~ 115 55 140 121AV55C1A 121AV55C4A samo os IAV54E 230 110 280 C2A CSA

..cop! 2 N.C.

  • 460 220 560 C3A C9A SO Sac Time Delay 115 SS 140 0.212 2 N.C. 121AV55F1A ......

230 110 280 F2A ......

75 Sec Time Doloy 115 55 140 121AV55H1A ......

Frequency Compensoted 5 Soc Time Delay al 1ero vo111 11 0.2/2 I N.C. 121AV7.CAIA 13 17 on No. I 0 TDS. Compensated 30-90 H& 5 55 140 52 (5.9) (7.7)

OVER- AND UNDERVOLTAGE (Device No. 27/59)

Gonorol duty; eloctrlcolly separate con-tach with large! seoMn unit l&rlo* 115 SS 140 121AV53KIA 121AV53K4A wllh each contad; UV adlu>tabte from 50 ir i9~: ~~~~1::~2-.!~" delay 230 460 110 220 280 560 0.2/2 (2)

K2A K3A KSA KllA al 2

  • tap. sellfng.

Auromoric control scheme" 1ame o* IAVS31C 115 SS 140 121AV.S3L1A 121AV53L4A except target 1eal-in uni!' ore omitted 230 110 280 L2A LSA 460 220 560 Nono l3A ......

Sinu1ar to IAV53K e~ target 115 55 140 1 N.C. 121AV53N1A ...... 13 17 seal*!n unit. ure oml Tlmfi delCI)' 460 220 560 I N.0. N3A ...... 52 (5.9) (7.7)

O.S sec. at zoro volt1.

  • GonaiaT d~ camman connection between contocls; 0 ...utJ! b Ind~ ol UV 120 SS 140 121AV69A1A 121AV69A3A

~wmenl; UV us!Uble rom 60 lo 95116 of V tap ~large! and IOOl.fn unit 208 110 280 0.2/2 (2) A.CA ......

In 18rlet wllh e contad. 240 110 280 A2A ******

AulOmalk conrrol IChemnr 1omo as IAV69A 120 SS 140 121AV6981A 121AV6983A excepl target soal-ln unl11 ore omitted 240 110 280 N"'10 B2A General du~1 comnlOl'I connection between C"'1tacts; U 1ettlng fi.ud al 95% or mO<G 120 55 140 0.2/2 121AV70AIA ......

of OV :r.J: 1t1Nn91 target 1eol-in unit in 240 110 280 {2) A2A ......

1erie1 wll each contad1 adjustable ~me dolay 30 111COncb mall. on complete lou of V.

Automa11c control ltllemes1 uuno a* IAV70A 120 55 140 121AV7081A 121AV7083A Non* ......

except target seal-In unil1 are omillod 240 110 280 B2A .

frequency Co111pensatlld General du~; same as iAV53K except 0.2/2 121AV73A1A ......

Frequency ompenaaled. 30-90 Hz (2) 1 N.C.

115 SS 140 52 13 17 Automatic control Khametr """'° except fruquency Componaoted. 30.90 Hz m IAV53l None 1 N.O.

121AV7381A ...... (5.9) (7.7)

Voltage and Frequency Relays Data subject to change without notice Page 10-5

Calculation QDC-6700-E-2173 Attachment B e Pa~e Revision 000 87 of 821

  • 1AV Time Delay Voltage Relays SE Protective Relays DIAGRAMS AND CHARACTERISTICS H--U::Il-.J cu Potentiol 59 t ran stormer Generator Flp. 3. Typical Time Voltage curve Fig. 2. Typical external far Type IAV51A far Type$ IAV51A, 71 and 72 used far avervaltage pratedlan.

~-......~-A~c-b_u_a..__......~--I 8 ,

7 , ,\


2 Poreo'.:~: T'k.

I\

"'6 "Q ,1 I'\

c:

g5 \I\."

r-. ,__

~ '

"4 \. ' ~

~'"'"'m" ~I; -""" .... _

.E

~3

,~

r-- ... ~ ...,- 9 10 r-j:: "

-po.,

~- a Time 76 dial

~ ~r 2 \I"'\ r-i--

!'.. setting r-.. 54

(-)

- 32 I

OO 200 400 600800 IOOOl2001400IEDO

  • Per cent of tap value Generator Fig. 5. Typical Time Voltage curve for Types IAV51D and 51K Fig. 4. Typical exhlmal far ground fault pratedlan 3ph.

Ungraunded ay1tem Type IAV51D

~ ~~*l~~:

6 I I when wltoge is reduced to the

r. . . . . .

4 Indicated value from left I contact pickup voltage CX'abov9 tW ~

15

..__ -------l 19 r-tAY.51.K..-,

59j 2

pz 59 II)

~, ,.-

2,

..8. e_

~

I..'

'I J

I j

'm'"

when voltage Is suddenly Increased tram zero to the

  • mr, Indicated pickup multiple I.ill,\'
  • ~*-

,1 \' ~

'~5...!,I I I I I I I> !6 Trip or .s _....

.e 6 I ' RIS:t

' 59 3-_1 alarm ' 1

l I R .:591

........ °"' closure con ct I

15

-1 4C I i= 4 ,r II'" I \

\I' "" I' ... .... "~ ... I l________ J 86 * ,...,.--, 'When used

~io.§i 1 for alarm 2- ~-

0

~ ,r teg. ~ ,....

c"Diiil

.... 70 I In 'Yf I~

of let p.ckup cfinta:,

D~___ J o 20 40 60 80 100 120 140 160 180 200 220 240260 Per cent of tap value

- I ransformer Fig. 6. Typical external far ground fault Fig, 7. Typical Time Voltage curve pratedlan of an ac rotating machine Type IAV51D or 51K far Typu IAV53K, 53L, 73A and 738 Voltage and Frequency Relays Page 10-6 Data subject to change without notice

Calculation QDC-6700-E-2173 Attachments Revision 000 Page 88 of 821 INSTRUCTIONS GEI-908100 VOLTAGE RELAY TYPE IAV69A and IAV69B GENERAL f) ELECTRIC

CalculaUon QDC-6700-E-2173 Attachment B Revision 000 Page BS of B21 GEI-90810 Voltage Relay Type IAV69A And B TAP 8LOCK

~~,_ TAP PLUG TOP PIVOT TIME DIAL OVEFIVCUAGE TARGET ANO STATIONARY UNOER-SEAL-IN VOL'Wif CONTACI' ASM saTIONARY OVER-va..TAGE CONlJIGT ASM UtelERVOLTAGE '!MG£T

& SEAL-IM

~*;;:;;;~r-- MAIN MOVING COOT.ACT

"' & CARRIER SPRING ADJUSTING RING DRAG MAGNET Fig. 1 (8031861) Front View of Relay Type

~V69A Withdrawn From Case.

DISK AND SHAFT LOWER JEWEt.

SCREW Fig. 1A (8031862) Back View of Relay Type IAV69A Withdrawn From Caee.

3

.Calculation QDC~6700-E-2173 AttachmentB Revision 000 Page 810 of B21 VOLTAGE RELAY TYPE IAV69A & B DESCRIPTION When not limited by the target and seal-in untt, the contacts of the IA V69 relay will continuously The IA V69 relay is a time delay undervoltage carry and interrupt 0.3 non-inductive amps at 125 and overvoltage relay designed to be used wherever volts DC and 0.15 non-inductive amperes at 250 protection against an abnormal voltage condttlon is volts DC.

required. The relay consists of an induction disk operating element which closes its left hand con-tacts when the voltage increases to a predetermined TABLE "A" value and Us right hand contacts when the voltages decreased to another predetermined value. The TARGET AND SEAL-IN UNIT undervoltage adjustment ts independent of the over-voltage setting. A ttme dial is provided to permit 2 AMP TAP 0.2 AMP TAP easy adjustment of the operating time or the under-voltage setting which are interdependent. The DC Resistance 0,13 Ohms 'l Ohms IAV69A relay has two target and seal-in devices, as indicated in Fig. 2, while the IAV69B relay has Minimum Operating 2.0 Amps 0.2 Amps none; otherwise these two models are identical. Carry Continuously 3.0 Amps 0.30 Amps The lAV69 relay components are housed in an 82 double ended case with each contact connected Carry 30 Amps For 4 Secs. ---------

between the upper and lower blocks while the op- Carry 10 Amps For 30 Secs. 0.2 Secs.

erating coil ls connected to both blocks. This permits the connection plugs to be removed or inserted with the operating coll always energized before the contacts are connected into their cir- CHARACTERISTICS cuits. The normally open and normally closed contacts have a common point due to the use of a Operating Principles stngle control spring. The number of relays re-quired to protect a circuit is determined by the The induction disk operating unit consists of application. an aluminum dtsk which rotates between the pole faces of an electromagnet usuallycalleda U-magneL The operating coil produces the u-magnet's nux APPLICATION which tends to rotate the disk with a force pro-portional to the connected voltage. The disk ts These relays are used for protection and/or restrained by a spiral spring whose setttng deter-control of a-c circuits in reeponse to over and mines the relay pick up. The d~s!t's motion ts undervoltage condlttons. A typical wiring diagram restrained by a permanent magnet drag magnet whose is shown in Fig. 7. restraint is proportional to the disk speed. The disk is fastened to a shaft to which the contacts are connected, The time delay is adjusted by RATING changtng the distance the disk must travel to close lts contacts and the time-voltage relay character-The IAV69 relays covered by these instructions istics are shown tn Ftg. 4. Adjustment of the tlme are available with 120 and 240 volt operating coils delay is made by rotating the ttme dial upon which 50 or 60 cycles. The relay pickup and dropout can the normally closed voltage stationar7 contact ls be adjusted to operate between 45 and 115 percent mounted. Fig. 4A shows the percent o tap value to of rated voltage. The coll will stand rated voltage close the undervoltage contact at the different time continuously on any tap and tap voltage on taps above dial settings. The overvoltage contact ts calibrated rated voltage. to close at tap value and its adjustment ls independent of the undervolta.ge adjustment. The normally closed The current closing rating of the contacts is undervoltage contact can be adjusted to close from 30 amperes at 250 volts or below. The current 60 to 90% of tap voltage by varying the dial setting.

carrying rating of the contacts ls limited by the When operating coil voltage ls between pickup and target and seal-in unit where used as indicated in dropout values both contacts are open.

Table A.

These inst*ructions do not purport to cover all deta.ils or variations In equipment nor to provide for every possible C()IJLingency to be met in oonnect:ion wit./1 installation, operation or maintenance, Should further inforllldtion be desired or should particul<Jr problems arise which are not covered su££ic1ently for:

the purchaser's pu1poses, the matter should be referred to the General P.Jectr:ic Company.

  • ro Lhe elftent required tha pn><lucts desc:ribetl herein meet applicable ANSI, ff:E:E and NEH/l standards; hut no such assurance is yiven *dth respect to local codes illld ordinilnccs because they vary greatly.

3

..Calculation .QDC'6700-E-2:173 Attachment B Revision 000 Page 811 of 821 GEI-90810 Voltage Relay Type IA V69A AND B 11 15 11 16 r~ 1.  !~

20 20

1. Sl l 1.

OVERVOLTAGE OVERVOLTAGE UNDERVOLTAGE ILEFTI (LEFT) IRIGHTI l1 8

  • SHOAT FINGER *.,SHORT FINGER rig. "  ;:0165A75{0-l) Inte:-nal Connections For F,ig. 3 (Ol65A7559-l) Internal Connections For Rela~* Type IAV69A (Fror.t View) Relay Type IAV69B (Fro~t View)

Burden completes the electrical connections between the case block and the cradle block. To test the relay The burden imposed on a potential transformer ln its case this connection blc:>ck can be replaced by a 120 volt IAV69 relay operating at rated voltage by a test plug. The cover, which ls attached to and frequency ls given in Table B. Burdens are the front of the relay casei contains the target reset essentially the same for the 240 volt relay. mechanism and an inter ock arm whlch prevents the cover from being replaced until the connection TABLE "B" plugs have been lnseryed.

TAP 60 CYCLE 50 CYCLE The relay case is suitable for either seml-VULT v'ULT flush or surface mounting on all panels up to 2 RATING WATTS WATTS inches thtck and appropriate hardware is available.

AMP. AMP~

However, panel thickness must be indicated on the 55 11. l 28.9 7.3 22.0 relay order to insure that proper hardware will be 64 7.3 20. l 5.3 16,0 included.

70 5.8 16.8 4.2 13.1 Every circuit ln the drawout case has an auxi-82 3.9 12.2 2.9 9.3 liary brush as shown in Ftg. 5 to provide adequate 93 2.9 9.4 2,2 7.2 overlap when the connecting plug ls withdrawn or 105 2.1 7.2 1.6 5.6 inserted. It ls important that the awclliary brush 120 1.6 5.3 1.2, 4.3 makes contact as indicated in Fig. 5 wtth adequate 140 L.3 4.0 o.9 3,1 pressure.

CONSTRUCTION RECEIVING, HANDLING AND STORAGE The components of the IA V69 relay are mounted These relays, when not included as part of a in a 82 case whose outline and drtllingplan is shown control panel, will be shipped in cartons designed in Flg. 8. to protect them a1!t9-inst damage. Immediately upon receipt of a relay, examine it for any damage sus-The relay components are mounted in a cradle tained in transit. If injury or damage resulting assembly which ts latched into a drawout case when from rough handling is evident, me a damage clalm

.he relay ls ln operation but it can be easily re- at once with the transportation companyandprompt-moved when desired. To do this, the relay is first ly notify the nearest General Electric Apparatus disconnected by removing the connection plug which Sales Office.

4

. 'Calculation"QDC.:6700,E.2173 1\ttachment 8 Revision 000 Page 812 of 821 Voltage Relay Type IAY69A And B GEI-90810 BEST COPY AVAILABLE

'. .,.,p

  • ._*;-t

..,*-'*w'"i*.:*::*; ~.~:.: ::L;~o:*£:*'.t::;:-.::::I.

  • 1 H '-'1*'- H*' *1*,.._, **.; ~**:1****
    • 1":**...f.l: .......... jo- * *tf*L ,. ........ ,.,..i. *t-~L **:*i ~**;1

-1*

.~

?ig. !L (o.1.65A7566-2) Time Voltage Cha,*~cterfatics For Relay 'l'ype IAv69 Tn"TT1'T.U 1

CO . . .., --... . *i. .:.! .*

TI::::::~~ -l

-ti*. r1:1 * . ~ .. .~

.:1 *so* ..,

w t. .. r*~.

~

...J

<(

111 :I 0.

<( . , 60

    • I

~

Ht

.. : J

... **i* ~ ** .J,.

+*:. ..

0 ,.. ...

0 1 ., 2 :r.*-*: 3 j_ 4 5 .. 6 7 ,.

  • Ttt.

..  :~lll~~ *tH* ... .. +!-+

.1ttt:. *j~c-

-*+* -

-I+*.

+H~ ji:!:I TIME DIAL SETI ING

~ * -I+

1*1-- lllL

.,.. ~

Fig. 4A (016'5A"(')b7-l} Percent Of *1*ap Value To Close Right Hand Contact vs Time Dl1!.l Setting Relay Type IAV69B 5

  • '.Calculation*.aoC-6700..E-2173 " "Attachment B Revision 000 Page 813 of 821 GEI-90810 Voltage Relay Type JAV89A And B Reasonable care should be exercised In un-packing the relay. If the relays are not to be in-stalled immediately, they should be stored tn their CONNECTING PLUG MAIN BRUSH original cartons in a place that ts free from mois-ture, dust and metallic chips. Foreign matter collected on the outside of the case may ftnd lts way inside when the cover ts removed and cause trouble in the operation of the relay.

ACCEPTANCE TEST Immediately upon receipt of the relay, an inspection and acceptance test should be made to TERMINAL BLOCK insure that no damage has been sustained in ship- SHORTING BAR ment and that the relay calibrations have not been '40TE. AFTER ENGAGING AUXILIARY BRUSH, CONNECTING PLUG disturbed. rRAVEL.S 1/4 INCH BEFORE ENGAGING THE MAIN BRUSH ON rHE TERMINAL BLOC!<.

Visual Inspection Check the nameplate stamping to insure that the model number, rating and calibration range of the relay received agree with the requisition. Fig, 5 (8025039) Cross Section Of Drawout Case Showing Position Of Aux.iHe.ry Brush And Shorting Dar Remove the relay from lts case and check by visual inspection that there are no broken or cracke<l the pickup and dropout times agree approximately molded parts or other signs of physical damage. with times given tn Fig. 4 for the settings used.

and that all screws are tight. The drag magnet Relay pickup settings between tap voltages can be should be fastened securely in posttlon on Its mount- made by control spring adjustment if desired by ing shelf. There must not be any metalllc particles moving the spring adjusting ring. Check that the or other foreign matter in the alr gap of either the relay operates with one test plug removed.

drive magnet or the drag magnet.

When testing an IAV69A relay connect a DC Mechanical Tests source of power as shown in Ftg. dand check that the target seal-in units operate at or below the tap

1. Manually operate the relay and check that both rating used.

contacts have approximately 1/32 inch wipe.

If adjustments are necessary, check the section

2. Rotate the time dial to the No. 7 setting and on SERVICING. .

check that disk rotates without binding or touching the drag magnet or U-magnet. PERIODIC CHECKS AND ROUTINE

3. Operate the target seal-in units and check that MAINTENANCE they operate without binding.

In view of the vital role of protective relays in Electrical Tests the operation of a power system lt is important that a periodic test program be followed. It ts recognized Connect a variable source of power at rated that the lr.terval between periodic checks will vary frequency to studs 5 and 6 or 15 and 16, and check upon environment, type of relay, and the user's that the relay picks up at tap value +/-5% on at least experience with periodic testing. Untu the user has two taps. accumulated enough experience to select the test interval best suited to his individual requirements INSTALLATION PROCEDURE lt is suggested that the following points be checked at an interval of from one to two years.

If after the acceptance tests the relay is held in storage before shipment to the job site, it is 1. Repeat the visual and mechanical inspection recommended that the visual and mechanical in- described under section on ACCEPTANCE spection described under the section on ACCEPT- TESTS.

ANCE TESTS be repeated before installation.

2. Repeat the electrical tests described under the Electrical Tests section on INSTALLATION PROCEDURE.

The relay should be mounted in its final loca- 3. Check that the contacts are untarnished and tn lion if possible and should be allowed to warm up good condition.

for 15 minutes with rated voltage connected to the operating coil. SERVICING Connect the relay as shown in Fig. 6 and set the relay to pick up at the desired voltage. Set the If it is found that the relay calibrations are dropout voltage at the desired value and check that out of adjustment then proceed as follows:-

6

  • ..catoolalion . aoc-6700-E-2173 ' *Attachment B Revision 000 Page 814 of 821 Voltage Relay Type IAV69A And B GEl-90810
1. Set the tap plug ln the 93 volt tap for the 120 be in both taps at the same ttme as pickup for volt relay or 186 volt t.ap for the 240 volt relay. d-c will be the higher tap value and a-c picl<

Set the time dtal at zero and check that the up will be increased, relay ptcks up at tap voltage +/-5 percent, Rotate the control sprtng adjuster until correct 4. For cleaning fine silver contacts a flexible pick up is obtained. burnishing tool should be used. This consists of an etched roughened strtp of flexible metal

2. The relay operating ttme can be adjusted by resembling a superfine flle which removes moving the drag magnet on lts mounting shelf corroded material quickly without scratching ln towards the back of the case to decrease the the surface. The flexlbtllty of the tool insures time and out to increase tt. The outer edge the cleaning of the actual points of contact.

of the drag magnet must always be at least Never use knives, files, abrasive paper or 1/8" from the edge of the disk. If relay time cloth to clean fine silver contacts. A burnlshtng ls out of adjustment by a considerable amount, tool as described above c~n be obtained from check for friction causes such as particles tn the factory.

the air gaps or cracked jewel bearings.

3. To change target seal-in tap settings, proceed RENEWAL PARTS*

as follows: -

It ts recommended that sufftctent quantities The tap plug is the screw holding the rtght- of renewal parts be carried in stock to enable the

  • hand stationary contact of the seal-tn unit. prompt replacement of any that are worn, broken or To change the tap setting, first remove the damaged.

connecting plug. Then, take a screw from the left-hand stationary contact and place tt in When ordering renewal parts, address the the desired tap. Next remove the screw from nearest Sales Office of the General Electi:tc Company,,

the other tap, and place it tn the left-hand specify quantity required, name of the part wanted, contact. Thts procedure ts necessary to pre- and give complete nameplate data. If possible, vent the rtght-hand stationary contact from gtve the General Electric requlsltlon number on, getttng out of adjustment. Screws should not which the relay was furnished.

A-C BUS OR LI NE 11.C.

aJN1All l'OW(R

+

.+-------~v r~ooEHCY NOTE: USC 1HfSE CONN.

!MEN TESTIKG IAV69) REl./>Y VAiii ABLE

' - - - - - - - - - - ~ A.C. SOORCE RATED POTENTIAL TRANS

  • CLOSES OVEllVO~NlE r ~

11 OHLY

~~ILIAifl' REL)YS OR CLOSES INDICATING OH DEVICE UllDERVOLT 20

! 7* Si-UlfDER AHO OVERVOLT AGE RELAY 15 T'IPE IAV Fig. 6 (0165A6714-0) Field Test Connections For Fig. 7 (Ol65A7639-2) Typical Elcternal CcMections Relay Type IAv69 Dill8ram. For Relay Type 1:A.V69

  • Cafcu1ation,QDC-6700-E-2173 * *Attachment B Revision 000 Page 815 of 821 GEl-90810 Voltage Relay Type IA V89A And B PANEL LOCATION (2) 5/16-18 STUDS 6.625 SEMI-FLUSH SURFACE FOR SURFACE MTG.

- 168MM I-MTG. MTG~I r 1-

,c 1917151311 00000 00000

9. 875 20 18 16 l 4 12 250MM 0.312 (4) 10-32 x 3/8 STUD 261MM MTG. SCREIJS NUMBERCNG 9 7 5 3 l GLASS 00000

~

r ,.., 00000.

10 8 6 4 2 I . 15 BACK VIEW 1/4 DRILL 4 HOLES GMM~

6 . 187 I ~iMM t57MM - ~76MMI-- 3. 0 CUTOUTS MAY REPLACE DRILLED HOLES I

I

  • 1-*- *I 4.875 2.781 I 5 .000 123MM l 27MM l. 7s .

71MM l (46MM f I

-ct- - - - j_

5.562T CUTbUT 10.000

!42MM I 254MM

' I I

'I

_._2.843

~l-

_l .718

-.-jI 18MM

.218 . 172MM 1-- .218 SMM l - 5MM I I 5.687 144MM PANEL_/J I 3/4 DRILL 20 HOLES PANEL DRILLING l9MM PANEL DRILLING FOR SEM[-FLUSH MOUNTING FOR SURFACE MOUNTING FRONT VIE\J CA FRONT VIEIJ TYP[CAL DIM.

CNCHES MM F1g. 8 (K6209272(7]_ Outline and Panel Drilling for Relay Type IAV69A and IAV698

  • Indicates revision (Sf.9/931 111001 GENERAL ELECTRIC METER AND CONTROL BUSINESS DEPT., MALVERN, PA 19355
  • Calculation QDC-6700~E-2173 *..Attachment 8 Revision ooo Page 816 of 821 **-;-*_.

.~.~-~* ~..:**,

. f.f:..*,

., . . .'"\

Severe & Hazardous Duty Motors ~*{.:

.~'.[if!} . :

.. *~* *..

RGZESD I RGZZESD I RGZESDB HIGH EFFICIENT "*~J... :*-

460 Volts, NEMA Design B<except as noted), 40°C Ambient

, .. *:*' 1 >;i. * . ~***". :. . . "--~" :: "Cilrrent:[AJ.::~*: *,:"* *, ;,_Nomlnill!Effii!lency-G\i)>* **:r .POwer*Fai:totl%)"*.:*; ,.. *.: **.-<To'r'que.1~' . ,.,... ;;.*.. 1. l:RStill ~me" * *"'*.: -1~* :;;~*-~ :* i.

.*. :. :;j;j~: .~t:*~ :.(;:. ;;:.~~2 .* :. ~ui;~*~*Lci:*:~~~i';.;;:,*;*'.,::;~ : : ~ '..:'~'.;.j~~;~'<.;:"-:.h:'.;'.~ j*d:~~~i1\: ~*~t:~; ':::;:;:i::~~:;~*. ~~~{' .:~~t~~*:~:~~j [~-~:*:*;

.}Ip ~"RP.fl.ii:* RPM1 :Frariii 'toad' .*L.Oiiii Rot0i 1tod~ *.. ;n *:.::** 3t4'c 't.oad< . ::112: *: .. 3,4*;* .. :,.i..oaa*.; (lb-ft) *;<%) ._,.' ;;--..(%)'** . ,. csec)** '(sec)*" .. *tion:.3 ..>, *t:  :

. 1 .. 18~0";;4S 143T . ~--1 . *1.S '"11 K .. " 78.7.. ~1:8 ' . 8~.S .. S2 . 66 . 76 , . 3 , 290. .320. 14. 30 .. ~ye :r-::~:  :.

1 1200 1140 14ST 1.3 1.8 9 J 76.4 78.8 80 42 S6 6S 4.6 230 290 19 40 wye  :._~.-*.::..~'

l~S 3:~~ 3::~ ~:~~ ~:! ~-

1.S 1800 1740 14ST 1.4 2.2 9

1:

17

~ ~:* ~~*

K 6

80.7 83.S 9

~~::

84 54

~:

'67 76

~:~ ~~~

4.5 290

~~~ ~~ ;~

320 13 29

'./?ft wye .,. 1** *.

1.5 1200 1160 182T 1.S 2.3 16 K 81 .6 84.2 8S.5 50 63 71 6.8 280 320 22 33 wye  :~'.:.,,: '.; ::

1-1_.5--+-_9_0_0+-8_60-+-1_84_T-+-_1._8+-2-.6-+-_1_3-+--H--+_78_-+-8_o_.4__8_o_+-4_S--1-_s_a_ _ 68_+-_9_.2-+-_2_20_+-_27_0--+_1a_ _3_o-+-_w,_v1e-i; *.: . : ,_:.'.

2 3600 349S 14ST 1.1 2.5 22 K 79.9 83.2 84 73 83 89 3 270 320 lS 33 wye , *:.... ; *:

2 1800 173S 14ST 1.9 2.9 21 K 80.7 83.6 84 52 67 77 6.1 290 310 12 2S wye '-~---

~ 1!~~ 1~:~ ~~:~ ~:~  :.3 ~~ ~ :~-5 :~  :~:: !~ :~  :! 1 ~.1 ~~~ ~~~ 229~ :~  ::  ;::~:~>. /

I i--:--+-~-:-~-~+-~-~-:~-+-~-:2-2~-+--~:-~+-:-::--+--:-~-+--~--+-:~-::--:-:-.2-+-:-~-::--1--~-:--1--~-:--:~-+--:-:~---~-~o-o--1--!~-~--1--~:-1--:-;--+---wyw-y:1-iJ~.~'. ::':;'

3 1200 116S 213T 2.3 4 32 K 85.8 87.6 87.S S8 73 80 14 210 300 17 3S wye !q;~:'.<.*;

1--3--+-_9_0_0+-8_6s-+-2_1_sr-+-_3._1+-4-.7-+-_2_6-+-_H__8_2_.s__8_4_.2--1-_8_4_+-4_8-+-_6_2--r_11_+-1_8__,1--1_90_+-_28_0--1--1s_1--3-2-+---'-wy1e-i,-*~;.....

5 3600 3490 184T 1.8 5.8 46 J 86.S 87.8 87.S 82 89 92 8 260 320 12 26 wye I 5 1800 1730 184T 3.2 6.5 46 J 87.S 88.2 87.5 63 7S 82 1S 260 300 17 36 wve S 1200 1160 21ST 3.3 6.8 46 J 89 89.7 88.5 59 71 78 23 210 300 14 29 wye S 900 86S 2S4T 4.1 7.S 40 H 86 87 86.5 53 66 72 30 180 260 13 25 wve 7.S 3600 3S15 213T 3.4 8.8 64 H 87 88 88.S 77 86 90 11 190 280 11 25 wye I 7.S 1800 17SO 213T 4.2 9.S 64 H 89 90 89.5 66 77 83 23 210 270 14 29 wye 7 .S 1200 1170 254T 4.S 9.8 60 H 90.6 90.9 90.2 59 72 78 34 180 250 18 3S wye 7.S 900 86S 2S6T 6.6 12 64 H 87 88 87.S 49 61 69 46 190 260 1S 30 wye ...- .. *-.-

10 3600 3SOS 215T 4 12 81 H 89 89.8 89.5 80 89 87 1S 190 260 14 29 wye _-,;~ *..

10 1800 17SO 21ST S.4 13 81 H 89.S 90 89.5 68 79 84 30 210 270 1S 30 wye .. ~; . * ..

10 1200 116S 2S6T S 13 7S G 91.7 91.S 90.2 6S 7S 80 4S 170 2SO 18 3S wye '*!£.'

1--10..__9_o_o-t--8_7S-+-2_8_4T-+-_9._1_15_ _8_1-+-_H-_89_.4 __9_o_.9__9_1_+-s_o__6_1_ _69_+-6_0__,1--1_s_o--1--22_0_ _ 1s_1--3~0--1-_d_e_lt_a-i; *,g.:\/

1S 3600 3S30 2S4T S 17 116 G . 88.S 90 90.2 84 90 92 22 190 260 17 31 wye

..-.~

15 1800 1760 254T 7.3 19 116 G 91.7 92.1 91.7 68 78 82 45 190 260 18 3S wye lS 1200 117S 284T 10 20 116 G 91 91.7 91 S7 71 77 67 160 270 20 4S delta 15 900 87S 286T 14 23 116 G 90.1 91.4 91 SO 60 67 90 1SO 220 18 35 delta 20 3600 3S25 2S6T 7.4 23 14S G 88.3 89.9 90.2 82 86 90 30 180 260 17 2S wye 20 1800 17SS 2S6T 9.1 26 14S G 92.1 92.4 91.7 67 76 80 60 190 270 18 3S wye 20 1200 117S 286T 12 26 14S G 92.1 92.4 91.7 62 73 79 89 160 2SO 19 43 delta 20 900 880 324T 18 31 14S G 90 91.2 91 so 61 67 119 140 200 1S 3S delta 2S 3600 3S2S 284TS 8 29 183 G 92 92.2 91.7 80 8S 88 37 160 2SO 16 30 delta 2S 1800 176S 284T 13 29 183 G 93.3 93.(; 93 72 82 87 74 220 280 19 40 delta 2S 1200 1180 324T 1S 33 183 G 92.2 92.7 92.4 S7 69 77 111 170 240 25 SO delta 25 900 880 326T 22 38 183 G 89.2 90.S 90.2 SO 61 68 149 1SO 200 22 40 delta 30 3600 3S2S 286TS 9.S 34 218 G 92 92.2 91.7 84 89 90 4S 160 2SO 16 30 delta 30 1800 176S 286T lS 3S 218 G 93.2 93.6 93 71 82 86 89 220 280 19 40 delta 30 1200 1180 326T 19 39 218 G 92.6 92.9 92.4 58 70 78 134 170 240 2S 50 delta 30 900 88S 364T 26 47 218 G 89.9 91.3 91 50 62 66 178 lSO 200 22 40 delta DOE#CC032A 2007 Low Voltage AC Motors Selection and Pricing Guide MM

  • calculaHcin QDC-6700-E-2173 Attachment 8 Revision 000 Page 817 of 821 Revision O NES-EIC-10.03 r , *-z,,.ti:

. t; ~o

.$~,tGf/./ /f;'e 1

J 1 I . ;** y 1*

I ~~.__:;;~

I

1.

}:_. *... - :. .

I .. ~! I. ~- I *I ..  :.: '.' *'* ' - ___!._,__

'" : :* I  :::.I

. r.-.

I STANDARD Exelon. Standard for Thermal Overload NES-EIC-10.03 Nudea1 Relay Element Selection For Nuclear Generation Group Sheet 20 of21 Nuclear Engineering Standards Continuous Duty Motors Revision O

. '.Calculation ODC..S700-E*2173 * *Attachment 8 Revision 000 Page 818 of 821 Revision 0 I

_.. 8ENERAL fl) ELECTRIC r..1n**.:---------1Tiy1TirL;-E--m'"'llll'ZJI,-lf'llll l=t.4!.' NA\~

HKLA.l'A'1rr-----""11ao*r o* aNur ,.#'.

  • i..:N~o*---------4 HEATER TRIPPING ZONE'S l (Fai OPKN BILAI..OPl!K STARTBR CR BllCLOSID STARTB8S F'IRST MADE F'DR
  • I """'011 SMEE* SH NO.

HEATER !2fi! ~ 12!!

123 C0.36A A 12) C4.l9A c C0.39A B C/+.66A c C0.43A A C5.26A c C0.48A A* C5.92A c C0.54A 8 C6.)0A c C0.60A A c6.95A c C0.66A B C7.78A c C0.7l.A 8 C8"MA c C0.78A B C9.55A c co.s?A c Cl0.48 c OJ.'rlA B Cll.38 c Cl.09A B Cl2.SB c Cl.18A 8 Cl.3.?B 8 C1 * .31A c Gl.S.18 B Cl.48A B' Cl6.)8 B Cl.631. B CJ.S.OB B Cl.84A B Cl9.8B c Cl.96A B C2l.48 e*

C2.20A B B

. 022.88 c2.s.oe B

B C2o.39A C2.68A c C27* .3B c C3.0l.A c C'.J0.3~ B C3.26A c C,3).0B c C).56A A C36.6B c C.3.79A c 040.0B' c cb4.CJ3 :e Fat TRIP?IOO RANGES AT 150% TO 8007. OF NOMDlAL HEATER RATI~

SEE SHEEl'S 1 or 2 AS FOLLOWS:

OPEN R!IAY CRl.24C cR12l&D SHEET l OPEN STARTER CR106A CRl~ SHEE1' l CRl06B CRlo6D CR106G ENCL~ED STARTm CR106Al00 SHm 2 CRJ.CIEBloo ClU~ClOO CRlo6DlOO CR106Cl00 STANDARD Exelon. Standard for Thermal Overload NES-EIC-10.03 Nuclear Relay Element Selection For Nuclear Generation Group Sheet 21 of21 Continuous Duty Motors Nuclear Engineering Standards Revision 0

. Calct:1latioh QDC-6700-E-2173 Attacl:\ment8 Revision 000 Page 819 of 821 GEK-34053 ttt SEl911C RATED INST#liTAHEOlJS UNIT OPERATING TIME I


~ -l I

I -~* - . I I I

. -~

-+- **~ I

  • J25 +- : I I -~ - : .-! ~ . _....-.! ... +.
    • -**r* _,.J .. *1*- r

~- .I .--~ .

  • ~: ----~-I -**t- -t*-**t-,; ....t'.... *:.~ . --

t-.. I .

  • --1* -f. **t 4- . r:

i . I

.* 020 -i  ! *- - --'** '

I II : -. J

. I - .

I a

l#

!: .OI

~

Q.

8ii: *010 +--t--1..

.-* -'.-+ *- -i.-. -RANG"'-E-FO..._R-ANY_.__, -*--+-- .. .i- - -- --t-

'.-l-- -1 **l . , -;*--+1 -**

1 *t I I I

~--~-

1.5 2 3 5 6 7 e g 10 tJIJLTI Pl ES OF PIClCUP Figure 8 (0208A8695-l) Time/Current Characteristics of the Instantaneous Unit 26

Calculation QDC-6700-E~2173 * *Attachment 8 Revision 000 Page 820 of 821 GEK-86054 0

LO OI J I-IO Cll

"'GO 0

C\I 0

I

- m

~~~

~~ ~0: ~ I

... ~ 0..

ffi ~ a:~ I

@ij 1:11:

I l ....

y

--=

j I

I II I I v

v ./ .

in

~~ 0 tn 8

~'ON003S NI 3Wll dn>IOld Figure 7 (0208A8695-l) Operating Time Versus Current for the Standard Instantaneous Unit 28

.* *Attachment B Galculation.QDC,6700-E"2173 Page 821 of 821 Revision 000 GEH-1'190 Type PlC Instantaneous Current Relays eesr COPY AVAILABLE Figure 1. (8014170) Type PJC11A Relay Disusembled (Cover Nol Shown)

-. Figure 2. (418A711-1) Time-Current Curves tor Type PJC Relays,

  • Denotes change since supc:-seded 11:1sue.

4

I Analysis No. QDC-6700-E-2173 Revision 000 Attachment C PAGE C1 of C17 I Attachment C Passport Data - LOV Relay Settings

Calculallon QDC-6700-E-2173 Revision 000 AttachmentC Page C2 Of C17 t g!J TIM003ll

  • EQUIPMENT/COMPONENT HEADER* [ NuclearProduction(PN4P) I Fe~lllya~ statua:te-~:-W:..~.81.tli!!~q~,5!§! ****,

Unlfcl!!t:_;_~ *. ***;' Op Status:jO~IJATIH :: *  ::£) bQ/1!!m.!0~.]§ 1~;!9i]

Op Syutemat....:..:::_:;_~.:J RV status:jlS!i_l$'!~'~._~ .. :(fil l!Mf1.~qJtt'.'.i!l Divi:si111*r:.*. *** '_ . . "./ :*. *:. '*:.:'.*. ,] Are.,.L_*_~;.,*_*_:__; .J Syatam=ll!liZ '.,:", _ *.:J ci..~I.. : ....~ ..-1u Equipment-I~.~.. -."'"*13-:""'*~:-

'"1!!703"-:

  • :!' camponent*I!!,~.'.::. ..' '.:J '"ll-?r--*J""';'.:"'".:."'"'.*.,.,~""'r;-_;_-.:. " * :" '".~.""""'.J

£quip Rev:~ RevTrk: Rl *Locatlonalj I EqulpTsgali~~il;.~~=-t * .. * .*,_.. . .,:*. *' L* . . _.:.: ... *..:: . . . . : - . ..:. . -:.1

  • I I
  • I t

1.

1 1

I 1

I

",tf I

I I

0:

1 I

I I

1 f

1

Calculation QDC-6700-E-2173 Revision 000 AttachmentC Page C3 of C17

'gjJ TIM0071- EQUlPMENT/COMPONENTl\ITC PARAMETERS - [ Nud*arProduction(PN4P) I

  • ~i~~~~_j~~..;;~ iJp:cJ..1lf.P.Ul!:_e_i{~itl.*

l Enter parameter name anel value data.

. . **~* ** 1*

  • ~'- -~ ...'*'1111t111m

-~!!

Faclllly:~ *Unll:IJIJ~ ::.J lfl'C:k. ....::....,~::__j_: J .st.ius:l!<9-1Y.E:.'...:.::....:;8 op.SylliDIY/Area:I:_. ,.-:=:..: *_jf] 1.* :...:_.'._:_:.c._**~..:'..'_- _.~ .,j~I t*: ~*,. ~*. ~cl Sya1C1s:I~--- ~~J .-i_-,-..-_,-'.]~l].;

  • equrpmen~l~...:.:..J 1§7~1.(, __ i: ..'.'..::...:..i\ hnL ::...:~ b~!+/-.:.- *~~*..::.-.~;,:.:.iJ Equip Rev:t9!1).~*~:J
  • Template:L:.!.....:_: *_::: ... :~-:.'.*.... :,_._.::.:_: .::...:-~:.*:.:.:.:...::J .

ADMN:UMITS'* " .: * : *. * * *.. , +1--1:83V'.' '. . . .* . : .n:ir> ['T. -11i11712DOO'. -.,; ~

1f., .' ... . .'. . . f;; o4!1&iio0{ ~

.* f~:ZOljE, r .

  • \. ~~!1A.* *... '. J'f, .04'1W0.1 ; * ~;

.* iiliStEft:ANEous ~. *

    • :*i:
  • si>EcF.x::DM:f.TY.iif * **-':. :......

i

. : , **

  • 1o::ACr.:orfii¢:ilRQ£<;

"* *.. * ~

I ,' '

  • . *~,. .. . *, .*" ... : l".i .
  • ..  : . x,* *::.:** .*; .. . *, : Pl ,_.i .
    • ~
  • I ', *  : ,' *.:*

. l?.i* .. _, .  ;".: :. :i

Calculation QDC-6700-E-2173 Revision 000 AttachmentC Page C4 Of c 17

!J TIM0030 - EQUIPMENT/COMPONENT HEADER - [ NuclearProductian(PN4P)]

-~,.'Ed,it*, lia'~at.e*'*9Pt1onal. viev-.:~~P*: _:;:-. .: , "!.: . ,*,*

~ . .. ; .-.

!use More De tall to ~ew addltlonal equl;;-ent data.

0

,I II Facllly~~ Slatua:I@_;._:__:,@ h<!!i!laJ!!!.O,~j *+9n+I Una=l!!f * :~:... .. '.: Op Statua:l~tti(  ; .@ b!!l!DB.i!Oil;@'i ll!Q;qji,,;*I Op Syu111m-f\_:::.:...:.~ .! RV Stutua:l~f..~ :: ;__;([j IJ!Y.1~11.i!J:i§j Olvlsinn-i_... .., *. : . *-** ***. :.. :J Area-I.,. *.... ;.~:- ....:..: J System=f8'7.i:'..: .*L' Cl*-1....:...,:,:..,.]

Equlp11111nt*I~ *:,*: ; '"'(~---."'"')3-'.:°°"::,. .:.-.,""":-.....~.-,-.'.~"'*::,....~'.: eomponant*l.R.10..::. .*. ~:J m- "'1 .. "':~""";_""*:-..-..:.""~--~-..:""::.-..:"""."...,:!"

EqulpRllv:~ RmrTri: Ri Locat1o.SllJ l I EqulpTall"(!~~"'!~W.~......... : * *.. _-.:*. ::~ .:. (. - ;_

Neme:l.i!.u~ 1}.11-;~~ QF:*~Q~IJ.l!'IS,i>RPro;!l!ltt~'!:..c. -.:*..::. *:-:::':-.-*. : .:: '.:: *:: ' '.: :>: -.-:.::. :::-*:::*.-:.:::: '* ~i lac.DBsc:I. ."~*~...:.._*. __::..' _ ::. __*,~, .:.:-!..', .~ .:*/..::-~*~:..:~*.: ..'!.. :::: *** ~.~." .!_0 r~." ./,_ ----**-*.:~*.::~n'.*t.. ~:, __ _:

PEGa~ 11.~.£1!1.*~ru., <<.; * *<>.j eqsu~rype-L_ * ;_;

I

  • CllantD-1 1 l I*
  • -;I I

1 I

  • I

. I II I

0 f l . . - . -..:-:._...,...'""'.=-::_,-__""':._-_:"'":-_:._=-~,........_.,.,**.-........,**"..,....-,.,...:_-_,,-._.....,._:_.-,.'""'J I

Calculation QDC-6700-E-2173 Revision ooo AttachmentC Page C5 Of C17

'f!J 11MD071

  • EQUIPMENT/COMPONENTNTC PARAMETERS* ( NuclearProduction(PN4P) I

_f;t,1.e:* tdii:*B~a_:e**,JP.t-~f~* .v1eii: i~lP. :'." ~: '.: .. *~ ..,.....,...:.:.:;* ,* .... i

.:*~*.,* ... -.*~.*-***!:*

.... . .. *..... ~111*

I Enter parameter name and value data.

  • ~

...  ;.!l~

Facillt'r.l@D un11:J9.(,i;L_,;J urc:l.:.'...'.:_,_*_:_:::~** .J Stllf!IS!l~~- ...:. *_:@

opSyullliv/Araa:i: ... ,;____:.:,*1l I...,:..:_;_~*~: **L;_::,_;_,__~ :.::..:l ,_ :. -'"~:.:J Sy111C1s:i~ - ... JL ...-.*---*-.*""'m Equlpmen~I~....::*.; 1~~13';;;,L.'.,i :.:.;.':_; IR'!E"~) h:rr~:~-..::.. *::.:.:~. ::..LI fqulpRov:jQ~t. :..J T~mpllllef. ,_,*_,_.~_::*._ ~ :.,,.:_:_:_, *:.* :_;*:_'_..; .* :.j .

. '" *aiCDM:e'tl1'E .. *:* *. :-,.-. '.. :'.* .: 1'* ,'. Pilcna:rftlE;iifl.Av"'.-. '." '. :. * '"'* . "'iElff**:****. ~- :: WJ .1otf7l:z000: ~:::.,*

f'* ~~.SETTINGir
oL(iNs'JR;~)" *. '.":-, *< *: iQ7.0p.1fa.: ': .....- *" * ... -TElCI' '. ". : ~ 1ai1:7~; ..:1:;

i~*otli!f~:ORDEC: ... . .. . . "i>EC*. * .. ..... ,:,. *;** * '; ".ti:icr:: ... ***: l'l.i 1:or.i9riaoo* *5'

... ,. .. .. .. :* l'~F ... : *...:: ..- .....

.f I\ * . *.' : . *: I *' **. fl' :..: :: :. *..

.:". *. . **. ...* ***f1,'.  :"'" ..
  • ."*,* ..... *,. I'll,*

.. ,..:.* ,'* .. . *, ; re

~' **.:: *.**. ...*-* -...* . . ff, ..'*

  • ~

Calculation QDC-6700-E-2173 Revision 000 Attachment C Page CG of C17 E!J TIMD030 - EQUIPMENT/COMPONENT HEADER - [ Nuclearllroduction(PN4P))

File,_:*Mit:: li~~a;e. '9P.tiai\~: y~e.i1!!'ii$' * *:~:. *: . __ ...i:...._......

I I use More Detail to view addlUonal equipment data.

Facmiy.fiW:3' status:JA'"'" *:.: .. ,Ji! l~iit10i2ooo"=

  • ~!'J.~":' ........ -.14,'U ....__.._ - .... ).=:I MMMI

-=====-=-~'

UntnlP1' , *.'....:.:i opstetus:l!J~'Q!!. :~-~.] l1!!/t11Ri!i!i1J§i l~~;.J Op ~tern-('..:: L:U RVStu1us:I~: ~** .* ::11lJ (1W-1tiP.Q!!fJS DM!lllln*h . . * . . . " . .' .' . '. _.,,,__ ~j Area-I . \ ** .:~ ~- *~ :*J SyatenPl~'..*..' ~.:_* ! Cla11&oj :.:...~,~~!f:l

  • Equ_,me*H~ L' ""1§7o4.:- ..""".""'"1:1-,""'. !,. .'.:.*
  • .-:"";:"'";:-,:""';..,....,:.£ Cumpananl*l!li~;.i:*~~~:J ,..b-"?J--,~..,.;:._.,..:_-.,..,.._._,....:...-~.- __..,.:__-~""":.;l EqulpRev:(.D\11;_.*J
  • RevTrlc: ~ 1.11ca11a~r--f] I . I EqutpTao-l.1~!4::f~*m:L : ;,,_,_._ ... * *.: :* ~~,. . ' :.- * .. ~* -* .* .. ,:*-..*.. *.*-.... M ..  :*-J nam.:(BU$_1f.1 ~~~Qf.;\[Qli:~:PJ!O~!;T!Ql!~Y~ .. *.... : .*' ... : _.. ,. _,: __.___.: .. -* '_~;.::* 1 LucDesc:(, . ~ :_ .. : ~ ~ *.... '..* __ _.: ~- .-. ._ ::'.- **. *~*-~c;_._._:::.~;.. _.': .* :.: .:**~"-* *.*:*'_:_._:'..:_ :-~.=.*.. ..:..: ~*~ J PEGa~ L ' .- ..: ._* _.. __..... ~. "_'.* .. *'.'.} Eq.Sull-l'fpe-L'.*. .J cg,,1110.1 I 1,. .,:::.-_-_-,

,-* --~...-._. ,.,_-..,. ,_;_:....."'"'.:=_"".-~""~:_.,...

.. --~-"""~,....i._-,.,...

.. -*.:...""".*'""~,...,*_j I *

    • '
  • l *  ; *.
  • , * :t *I 11 I  :

I " It I

  • t

Calculation ODC-6700-E-2173 Revision 000 Attachment C Page C7 of C17

'g!J TIMD071

  • EQUIPMENT/COMPONENT/UTC PARAMETERS - ( NlldearProduction(PN4P)] [*1p+ISl-jllillijjl'
  • iue.*F.dit fi;,..;:1.ga'te*:1l'~*~:rs;o vii:v' ;Hf:i:p*.:: *. ".*** ***  :'. ... ":~~- ..... ..::____..,." * * *.* -~;ij

.I TE,;rpa;~;~e-rna~u-:;';;ata.... .. . = . ~- .* :fiii=151 Ir .

t~:; "'1ti!flii;~,*~A-~Clf;[j,~~~:~!~. 1 ~~§1 fl~*~t4(!&Jii!t~:~;j/Qf~~~I~. ~:~ *:: 1 ~~ ,,:{~~~:~:~. ';\ 1 ~f*.~ ;i~*;*~~~\*~*;::.,~~- 'c:.r:~ *~:r~*1 :i; 1 ~:--; ~,'~~t,. :.;r>:: ~'.,*'..;,..:. :~~:'i : . *.,...-~~~* v.*:*\r* ~t.~.~~'.""'.1, ...._~*.:. ,-~*:iit .: ;* "'"':~

FacJ!l'Y:~ un1t.[gr :..,,,.:.....J urc:f,.: .*.. :: _::: ::.: .~ .* i Statua:I~::*,_,_ *. :-~ .

opSya1Dtv/Ar**:L .. *_-__ *.:iJl.:*i..... :. __ ._,: ~--~- ;__ .__:t*o.' ...C'"...! Sys1c1s:le11.tJ_jL-'--'-~:.::.: ttl' ECiUfllmon~f~!l'l:l..:'...! l@7.Qf.::1.L.::.,*:.:~~!:.:.~* hu~~-r~*..d lm-:1L*'.:::.O. .:;,,:.::. :.J E~ul?Rev:ID!!!i,..:.JJ Template: I.~~~.~- --~-.:.'. ;_.. J...._: ~* ,:".. ~:- .: ** .' "'.:)

i.rniflpASsWE*- ' ' . *" ' . *, Acl)Ve*.*.. " ' (: . . "* fl. O.tiiit.zaii:f *i=< ,i:

  • ADr.i1N:1..mits** . : *.:." ... * <1-*1.s3v.
  • mer.- * . w. ioi29J2ooa *:,..~:. ~

. APPENODqi' . .  : rL . ~ 04f.t!ll;2oor. '{

E:licrii<<:Ai:. ct.Ass* :* " . <1°£: * .. ., , 17.i 11<1118t200;:,. . :~

I

. "' l'J*: . . **:" * **:

"I*** Wi :* :: : .*.',* ' :

' . *.:I'?:'*. : "-~:*, ....

'. '/** "!.

Calculation QDC-6700-E-2173 Revision 000 Attachment C PageCBofC17

'iiJ TIMD030 - EQUIPMENT/COMPONENT HEADER - [ NuclearProduction(PN4P))

~~~~ .*f.dii;~**~ilyigaiL~~'~*v~elit* '.~~P~~;-.

i !Use More Detail to view addlHonal equipment data.

11 1~):*~rij\.~'iWitt!f!l*.mH:;o!rg*oo:;~1 Facf(lly*f9Ql:;j.  !>!*wa:IAm:.:..:.. ~lfl l!cv.i.~l!!lfi!iil Miii!MI Unit-~ op staws:l~w. . ~ i!J liqM@oo.@ IJK!;qG.::. l Op Syatemat~~,'...:'..:i J !tV Stlllus:I~:.:.~:~ *~El l~~o?t '.§j Oivislon-t" _*...-:_

  • _:.:> .. ..,*'.~..J Anos-I.::~*- .... ~!

Syatemo(~:~ *,*_j C!aaPL . *:.l.. JiJ

  • Equlpment-l~....J..:::. l"'t1t"'.941,.,,...1;4-;*-

.* ""'.".-.:..""':.:""~-.*.-:.:""~~"':;i campanent*f,lij~:.: * .::.~J '""b21.,.._.-~-:""'::,,...:~*-.:"":~""*:.-:.....-*_-.-.:.:.,""'

EqupRev:l.~i:. ...-i RevTr1c: j;ij LDcaUo~I l EqulpTao-b§'!!~1+.17f'L .: ..~ ".* *.. *\* * .~ *..:I .......... .:* ..: .. _ .*., ..i N11mr::[B.U$.1,.t_1..~Q~!Jf.*'{Q~i:"-~:~~~~J!t~Y.. .. : : .... _::.: ..: ... *~-~*~ :..~* -*~~* .. *_.. :_'. *-* . :: ~-~:* ...J lcicOosc:I...-.. _,; * _ ... ,, '..*._.__* ... : .......: ..*. '*.<'...*: .. ,..,...:.~L'.'..;;1.... i~*-* *-'-~ *. : .. :.:**...:*__.:. .."'i PEG*~L* .. . : . :* .. :; ::..~ ... 'J Eq51!t1-TyJie<>l. ... ~.'.:~

Cll8ntD=J I ..... __,. . ,-,_-...-_-.!~---.-.""'~::'"".. -""'.'""'.:*,.__. -.~'"'*:_.,....,-_.,..,.!..-. .-_.;""'::*,....__-*....:J"""".'

  • 1.:1 * * ' * * ** * *
  • I I *1 *I
  • I It I ,
  • II I * *
  • I
  • I I '
  • I '

Calculation QDC-6700-E-2173 Revision 000 Attachment C Page C9 Of c 17 m11MD071- EQUIPMENT/COMPONENT/UTC PARAMETERS - ( NuclearProduction(PN4P)]

. File.*'~~** Hii~~i~~e 'Jp,t~~. *View,'. ~lP~ *.,

  • _;_. * *.. _r*. :*. *-~- *.* ** - * . *_ . .-.- ,i.-11111::

I !Enter parameter name and value data.

  • -  ;....... "" 1!11!1 Mimi?

Facllly.~ *Unl!:l!t1.. J:::.:.:'...l urc:L_,;,_ ~.,_;] Stalus:IA_C!l_ll!;c:;__..;_;._:]'

Op Sy~lv/Aroa:( _* -~-~ : _._:if(. __ . ~- ;*_.-i_::~~ _ *. :':_: '.*'.::__; ( ;, :..*~* *:.::. *:J Systets:I~~<.'." .._'l '"l.__..,.~"":c'".-~---_ill-.,

  • EQuipmen~I~_;_ ::._: l~tl!fi.f. :.:...:: * .2.-:i _;:J '(R1!.l;.:._'., . .J !;~~~-..':. :--_;;..:_~:..J Equip Rev:(.@L~:;j Templolll:[. ~-*~*~:. ', ~:~ ,'.:..**. ..:*.. ___ *.:: .'. **-'"*--* ,~J AD/!IN:l:IlllTS'" .* .,:,_,1.83V;. ** * * * . * ,.. :rexi:* l'1. 1Dt.'712Dob . :';'.*,. ~
  • F.IRE'z!iri(* . . ~ ** '"* ." ~-U~...\ , _: , . . . .. ** -* -*:., 1'1, .04t1~f.-
  • t-: *
    • .MISW1ANEoiis1-'. '*' ... .... ..... =;1'bil'~Sd:.i*'sff '. * : mfr..: ** !?.: 10/JQ.liooo iJ.

PrRAllO: .... *. .........,.. ... :'35i.1::: .-. *: ':.... ~:.' .. !'IJ 1°'2arioQ9.:~

  • ... ;-;:: *: Rif1_;97:~r.::*:- . *"" ..: ~* ..... '...:1.. *...~~~:::.. .11'.. ~- *N*t... -.~ *.:.~:/**/1.* .J _:_,*... ~1 ;;_;:; :* .. ::~:.- . : ~"!" 1 :~ ,.., .':.~_,.;_ . ~ ~... :. ~ *~pa_Dof>~-.~ -~
  • << siiEi:FiC DEVl:l:::Mie* *: .: " . *_.; ,, ..* '-* .. '*": '.' iiRoiECTM:;Ra..AY;.. ...*' : .'" .:::: ' ,: :: 'fu!:rf .~- .~ ' It ,citi712boO. ~:

, . .. ~e-SiiP.rs$"mdiren;(fisiR;fr * . *, ** ""* 8;!;7~.1!7:V::** * :..... ;* *. '. *:: . : . *:".", ti,Xr***.-:. .. . 17! 1oh.1lioo0i .....,.,_

  • iD:Ac;i;q~IHl:oitllf4':* .. *:*.:... *. *0ce*.. *..-,*.** *.. :_:/ :. "*,::.mer,""; . " l'?.~_or.i!iiiollo .-:f-.t

.... .. .. "*;**'*.::It:*:* ... :... :- ::

'I*.  : ,. '.* .:. ' l'1: *'" ~ ' "' . . ... .,

  • .... * . ..... ~- .*, °':.. ' . f1, ... *:* *, *. ,:

.... *. *.- . PF,

  • ',  :.*** . *'::* ., ... ':? * . . I';;'

Calculation QDC-6700-E-2173 Revision 000 Attachment C PageC10ofC17

'm TIMD030 - EQUIPMENT/COMPONENT HEADER* [ NuclearProduction(PN4P) )

F:ilf!" *:Edit ..

-~~~a;~ *:~~_81 ~Vie~ =~ip I IUse More Detail to view addlttonal equipment data.

  • *. * . * .. *: . * * * . * * * ** ~-,,,**: ..'"" *.: .: .:* .. *.' . : . 2~!r Facli!ys~ 51atus:~.;*.~ ..JI b!!l(o@J!9;@1
  • HMM Uni!oJ~.:. : __.j Op Status:jQ~ll!('...: ;\!'I lrtg1g11Jj l!l9~92J OpSyatem=t .::. ~-:' J RVstatue:J~v!:Q:.:,* ~i: jj j~~~q11.1:id Olvision*L .' *. * * ..*... : ... _ *~~*: *. .".:.;J Areo*I.-. _* ._,::_'._ .:..:..::

Syatem=I~:: ...... ~ .i Clssaal: ..:*.** *.' ::.1J

  • Equ!p11111ntal~. :.--~l!i7-_r.;;-.-.~-~-.,:-*~-,*:.-'.~-**~-i:-~:._-,*:....-*l' Compon*nt*lfilt..:::.~ l -b21- ..-41.-.-.-~--~-..J-*:::_-:::...-*-*. *.-::*~--j_

Equ!pRtiv:~ RevTricR: Loca~I I Equ!pTau-IW.~1~:1.. .*  : .... ,. *, r ....* : -:_.... .... j I ..*. :I'

. * ...... I t

I I

'. I

. **~**.*.

  • I

Calculation QDC-6700-E-2173 Revision 000 Attachment C Page C11 Of C17 rm T1M0071 - EQUIPMENT/COMPONENT/UTC PARAMETERS - ( NuclearProduction(PN4P) I

~i~ : Edi~*, *lifV#i11't_~*' '?;it;i,1lti.~, *-v~""***.:ljiiiti":. *.*.

I 1 enter parameter name and value data.

FacJi!Y:!'AALl *Un11:l~L.::'.j urc:j;,.;__:.;.,. :*. ~__.. ..;..'.;;2J Stiltus:!A~::..:.:..-~*ffi OpSya/D!v/Ateo:(. '.~- ._.J] j_-_,:._.:..'..:,*_::_ .. ~:~_i.. :::*:d: -.'. -'*."....:.)

u ** Sya/Cf:>:(~..:_;*~_;_)L_ ,,..,..._-;*~"".:-:..:_""',fil'"';

~n~l.~.U !W..P.~:: .:.'~_*:..:.:::.. '.,~: IR1~. :..'..::::J bit~__:_ .L: ~ :. * .; i Equip Rev:l~l:.. L,;i

  • Temp1ote:I, ~ -~*c~ __ .:*..:.:......~.. :.:::....__:., *. __,..:.J Aciliicn>ASSIVE-. ',-. , ,. ,.. ,_. -:~crilli::-.: .". *, *, ,,_.,.. .. . * ':.:.:. (?; ~eii001.:* .. ~,; ~

-~ ADMlll"UMITS 0. '. * . . .+i-:1.83V. .. *: . " TEXT" ";.:._. ('1, .1fl08/2liob;. t/ ~

~ocR  :, N: . .".. ~ 04i18i2w"f: "-:

  • '41SCB;~u!l1~ * *'mliruEi;='.i.4.s-;;;; * ._ .. *.:."JJir.- '. l'J'j11~oo' - *~*:

i--t----1._Rl' . .RA110 ' :iiii':!*." . * .. . : '. mrr* . f1.l .1.f"mst'iDOo'. ....,.~.

~'1.!17.'i:J\T * '*, * * <* : It *" *: .. , *: '_ *. , l"J 0:111_!112l!DI*\ :~,.

. r.* *.- S~tc;pEVJCE.il,Yp.E' ... ., . ~:.t .:,::*~*- .. ::,: **, P.RDTE~!~Y.~-~;_ ... ;'.f_. 1 i1£XT~'*,;1.* .:* *_: ~ ~1JtiiVIoOiJi~~~*.::"1f.

  • .,.'* .1~~t~~1) .... *: , ~*:'*; .* 83!7~y1~7V~~ ,:. *.:. ~..:'* : .. * *,.i~.. '.-':TE;<<~t** :.:.-~.'.'~ .. ft :1'1~.: ~~~~

...... /;'. l ... *. *1 Wt ....

l  ; .*, ** * ,1 .. '* ' fl, .

. 11. * **  !. * *.. I'} . ,*

,. .'* ..... ** ., _:1,:.. -*

... *. *~ '. '

.. **, ..  : 1; ; *: I

"'.'0 ',,' '*."

' I ,* ',',' ,** ff,;*' .. :* ...

Calculation QDC-6700-E-2173 Revision 000 Attachment C PageC12ofC17

J TIMD030 - EQUIPMENT/COMPONENT HEADER - ( Nucl..arProduction(PN4P))
  • F:l.:i.e:. £die*, *Narigin:e' "!!Ptii;,i,;'- *Vieii:" :lll!if" .. * *: . ~. '. __,_.

F"aclllyo~. statua:fe:gj)IJ, ~..:....ill l:!.1i!1~1!Jl:iS i+!M Unl=I~::." .: '... ! Op Slatus:fO~TI[..~:~..:!J '191\<<!.@i!Oj§j I~~,~~

Op Sylllllm-1'.:..: ...::.:: ! J riY stW1ua:[~s11at:.:~~; jfl l.!M!1~1J..01 iii Divi:iion-I *. *-.. . ... *.~: ~-- .:._:_..:..!..: .'"Ll Arn-L_ """:: .. ""~

SyalerrPI llQt:: ,__,J ciassoL_:.._ . ill

  • Equ,ment-I~.::; :~ -~-.:~-~."'"*:*~--. ...

l..-!i10'J-;-_-, ~:"'"::.-~-.-*...."'*~!...,*:' eomponent*IR.11!'.. .:.:~] ""j:m-_-.~...

  • ~~-<,....*..~.,.:~,,..*."'":"""_:._""*._-_..,,,]*

Equip Rav:l!!iJL... :J RevTrle l"i i.ocalfo~ .

  • :. ....... J * **

Nome:le.il~~1:\,~9.E.V!J~~il5~~!t~.'* ~- ."-*- ...,,:*.:.:...... ~-' *.;._ *... :;* .. ,.:.!

locOasc:L. ."..: ..-* ... ,: ::.".. ~-;_,;;..::,. . *._~;:,. __ ,__:.__ _; __ ....: ...;....: *... *.;.._ ..~*-' :__,__.:'..'~:..-::_._._ ~~" ..... *._ '-~*I PEG-~f:..:..... :*_.',:~_..:*.:~,."~::.'.:'.-  ::J Eq.SUb-Type=C':'."?:J aontD= L: __ -+ .::.. . :!..:...:~--.:.:...:.::_::.:_*_,*_:-_,~L-,...:::1.

  • .. t I* , * * ' o I t 1 , 1 "/tl I ,, I ,

1

  • I I t I I I 1

I

  • I ' o

Calculation QDC-6700-E-2173 Revision 000 AttachmentC Page C13 of C17

'm TIMD071

  • EQU!PMENT/COMPONENTNTC PARAMETERS - [ Nucl!arProduction(PN4P)]

,; *... *.:~ii Facfl!Y:~. una:l!i?;~,::;,.;,.J urc:L __ :1 ***~--* .! sta1~:l!1~;,",;-~i!

Op Sya/Div/Area:L. \_ *.. :ill L~--~ *..:,_:.,;:. _ *,, .:'.*. ~: .': .'... : I:** : ~_-_:_ .~) Sy&IC1s:l!1W~~; _j -1,_-._:-.,!-**;-_.-_]J-i; Eqillpman~I~;*;:'...! I~~;~:'..:..~ .'..* ~ :'..>:: l!\1L _'__;;: i b.~":'l':.: '.... ~-- ".L.:*: :.J Equip Rev:i!Jll'.k.LJ Tempmb:L .. ;_ .*_ .. ~ ::.._,.-:._ '.:.:. _ .::-".: **" . .:. _* .....;J

  • ~. . .* * * .. , *~ * : -ACTM: . ... . ... . ... .: . Fl. iw.im1:~ ,::.... 1:

~'tf . . *_ .. ** N*: . . r1J ~411alio()1: *:7~

._ FiREzoNE;- . . * *. ":*: ., .. ,.. 8.,2:8;.Ei .. , ...: .. =*: *.. l'1j .04i.11_112901: -:"'"'

  • FIJNC'tidif1<. ~- . '*.* ..- ACtUA~~-:<i_F,Eccs** *" .. -. :rfxt.l --"-' l'ii 11~00:: . .;"

.-.;*, 'i.fiSci:'Ll.ANw'us1 " "'roR:RESff.... 2..S+>--:.- . li:Xi:' . ". "F?L11rost2000: ..'i).:

'I *- f't:AA.'fP: .. * . *'~" ~.1. '-* _.. . .. .. . *-. TEin\~........ :" !'1.11~: :'"*:*

. ~--~-=:; R&:fs7:;cAi:~.:t *:-~*~:*-. . ~***--~~~~- ~ <*-., ..-/*_; N*-* r*.*! *. . ~*.'j.:". . *._ ..... *:*. ~*. _ ,:~ :*.. * ,- -~--iJ:. 1 .:~;--, f'ifQ~i:ufiiG01! *.~.r;.:.'.

,... sftci:!CbE\ix:i:~ .: :.* 1 , ....:'-.;"~ *. ~;i!ELAV'* ..:.'/': .' *:' * *" :*':rExi"". * ;":* ~ 11iilili2o'iM!':*~~-r

r. ...- *** i ~ ** ,,,.. ". .,
  • f1,; ',-: .,

.:.J

" fij . " .

  • ~ l.. * * * **

,.,, *:.*;m ..:.* .....

..... ... . " ""*"L':: ,",. ," p;,; ., , .. ,

'~I '

  • 1

\'.

Calculation QDC-6700-E-2173 Revision 000 Attachment C PageC14ofC17

'i!J TIMD030

  • EQUIPMENT/COMPONENT HEADER * ( NuclearProduction{PN4P)]

Faclllly*~ status:ll.\!IDV! _:;.i.:_@ l.ti!ti~l!!ll@ i§M una=I~.:. *: __ ::

~ Opsta~:(Ci~TYC.:*""'ill l1~1~qoj§i j!J:.q,o~. :

Op System-(! _***::..._ ::..J* RV sta!"a:l~11B?:..:.::~: . ~w l'!#i~fllii Dlv~ri*l ** .* ~: _: >.-~: A,.,aal__::_ ..1.:-~1 svate11FI~: .. .-~i ClasaoLA: .'.'.°.. .;fl Equlprnnnt-I~:. ~_;: .: ""l.!J71W.24-~.-

.. "'"*:""*'--~-:*-

... _"""':~--_.-!~--'"'*!~,....-£ campanant-IR.1r~-~ :. .J '"(,-~---~....,;*"'1.'""*'"-*.:...'"':~"'*~"":_-**-.::_-.._~J Equip Rev:fi!\11:_ " .i RllY Trlc PJ *lacsllan*.i---:tJ

.-.:r  : '

Cllant~

I'* 11** ' I ' ' I 11

  • - * **: ";o,; ***.*

"; **;11 'I t1 I  ;

I" I

  • I I
  • I ~ * " I
  • Calculation QDC-6700-E-2173 Revision 000 AttachmentC Page C15 Of C17 ff5 11MD071- EQUIPMENT/COMPONENTNTC PARAMETERS* ( Nude*rProduction(PN4P)]
  • r1:~;~:~~:~:*a~P~~;:~a~~ . . . .:. ' * * ,.,. * *. . . .J;_; *** .. * ... * * ~,,. *  :~!i 1*(~ ::ff. *;&Ji~:.'~ . . '~I ,*,:lil1~¢(~.~~J~.11iSm.C9fliJ~'.:_~~@.~:_'. ~~~*.~DttatU~n~~;*::Y\;:!:*~ "~'f;~~.

1

~-':~:~~6~:.~..~:;,.;~~":**~-1*. ~ ',J 1:~:1 ~t**:t*.*~*~**~.1 0

II '1; J~~* _;'.-~i~!'~*{*~ .,~,\,~~ ...,.~{ *. :'(::**:~: .:-: j:,*! .... i(~: :~

1 Faclily:~ Un1t:IQ?.L'..:.~J urc:JL~'~.::..:::.:.~-*~j .Stat~le.~:~~: ~ Jil Op.Sy&llliv/Area:I,-'-* _:_ -*- Jfil I.'::~:~,*_ ~ :'. _.."..: ..:*~::_.) J~, ' -'-*.; ___

  • J Sys/Cts:Jllil:i'~:,_;.;.J ,....(_-_.:--.--.~-,.:...,ill EqillpmentJ~.i_:'.j l!f.!@J: _-__,_~;: ._L ::~"t..:' J~Jg:': _:,_,_:j h:zt:'!L.!:._~~'.;: *::,:;j EQU!i! Rev:lo9'.fr ~J; Tampla!e:J. : *~~ *....*:_...:__;_: ::_: __ ~.:'.! .* *:.... -~- . -*-:..J *.\

APPENODCR* *. : :" . ., N: ." ' ' .. .. - . **. *:* . . '.. *, It 11411!!/2.oli~; .*,,,:

. el.B:lRi:A1:.ct..Ass" . :,£. . .. ........* . . .*.* :.. -* .:*;* ...

  • l'i.i 04ti'ai2adf J::j'

~HJT.*CAT.*. ... .... .. .. : !I.* *. :;*.'* ..*. '":: *:: .... _ I. . . * :.::- * * ** f'j li1{.:1_iji;zop1"*"" ..~'

. *_;. '. -: : sPECF.1t:bfvK$;T,vp.c:. _. ~ * .. * :.. *~.1-.,~-.. * ~ '.*-=":/ ;, PROTI;~:~Y,t'.~:;4 :.~~ *-~ ,,,.. -.~";*. ;.***.. ~~*:Ji":<< *!*-.; ~ ~ *,_;_ro&QpoO~ ~.:,r;f..'.'

. ": ; 1S:Saiir~t~1):: ,::*::*..... :'

  • a3:1":i/.:;1;1,\/:-. .* ,.. * '"~: . ** .' **~ .;.1 ~:r: .":~*: PT. i1iu8i2oilo; ;i:Y

... : . 11~'.~_Cr!)~'lC:tiR.~;*. >~*'... tifci". *:. ..... '-'..:'..::..:" . " .. .~-.:,} :,: . f'1j 1~iaal2000~ .~*

'~  :,.:~' '~. I":.~,.,'., f1j *' : '*

0

  • *"" f * .... , ..  :- **.*. ..: '
- . ' ,*. -~~ * ... ' 'f I. ~** ,.

. ., ...... *.* :'*.:.*  ;*:* ...., .,: ....

  • 1'1.!; .* I',
    • .**:. . *.. .. --~ .~* -~** :~:
  • = *
  • I~ * * **.\.'.. 'j .:*.. :' .. *.-.~ .* ***: *._., ... PL . ~; *., ... ** *-*~

I,*,

.;, ~ ... .. i .;. -. ~-

ii .. ,. '* 1,\ ......... *., ........ *f',i '. "- . *' .* ~

Calculation QDC-6700-E-2173 Revision 000 AttachmentC PageC16ofC17

!5 TIMD030 - EQUIPMENT/COMPONENT HEADER - [ Nuclearl'roducticm(PN4P) I
!1-1.:~  :*wi;,; 11eytgai:~. *:oiitiiiru;i: :v~~v* * *aei:P . * * ., *,. .,,

===--.._.* . . i I !use More Delall to vtew addlUonal equipment data.

II Feclmya~ Slalus*.r.....,;, ', ..: *!!1,11cif.ionooo,1d

~~.!.,-~ t,.;,.J:.,1,,.~ **-~

r

- .. ~--=

Mijfiii!MI m::i::::ll a:m:i *immm.

UnU*t~.:_:__:..'..".J OpSlalus:(gm:rl(IL~-t '.1 l1!1i1~tiJ§i l91!;4!!~}

Op Syalem-L::: :L:'* i RV Status:(i?$..!ii=l),':.l.:_ ,::.~'ffi l~99-t"'.j Olvislnnal .. *.*~,_"*: ;: ~~-~  ::~-'---'~.:-*. 1** ...;J Area*I. .* :~ ,*.. .:*' _,__!

Syalem:ll!&? -~:J c1m=L :. .::.~ Jfl Eq~mant-I~.::: .** f,..!F!-.~..., .. **"':,~"".:*"":__"' .*"":*.""'~

..:-,*:.,..:;,...-;.,..;__- Companent~f R.i~*~._.: :JI,..m_,..~..,._._....-~-~."":;_*.,...,-.~-.-~-.~-,.""'.\

Equip Rev:~ Rev'l'rlc r.!i LDt11tmner--1) I Equip Teo-IUJ~!.n'--2. _.: __ ... : *:. ; .,:~. *: : . ... .' .. :J. I , , . _. - '-# . .... .:.i Nmill:JJ:!!!.~~f~*P.f-i\lQ~Y..il!;'PRQ.i!:qiqt(~~Y.'.* .:.: .. .* *' ....! ... : *.*. :: . . * :. **....: *_...'.;.::..,* +/-J Locllesc:I._: '- '.*" .:*.* *:-.:.. :. -~:.. '.'.. :'.:....'.' .:_1 .. _ *. -..:_;_; ~ ..:~:.....-.'. _._ .....::.'.. :_ :.":, .. ~'."..:-'* ...'*- .-..J PEGa~ I  :;....:*.; ._:;.:~ " ,__ ~- . :_,_.:_: EqSub-l'jp.,.I_._  :...~:~~

...... *1* 1*" *1* **1*

Cllant1PI I "'"!:..""':_,....:...:.-=-:,._'"""::.,.,..~~-:-:

...-=-.:~,,..:-_:""":.:."""':*,....:._...,,_~--:-.,,-_;_...,-:*,-.

.. -._-.::.'.J.,.,;.

  • I ** *  : *  :..
  • I I a * * ~ t I f I I I l
  • I I 1 I
  • I I L I 0,:
  • I **I

Calculation QDC-6700-E-2173 Revision 000 AttachmentC Page C17 of C17 m 11MD071

  • EQUIPMENT/COMPONENTNTC PARAMETERS* { NudearProduction(PN4P))

Fsci!fy:~ *Una:lmt.:...::...J urc:k .:.~_,__L..:~,_J sto!us!l~~;~-~-*~.::il OpSyslDiv/Arao:l ** .: ___ ' ]  !.:~*'**'"** ~ . . *~:: :~ ". . :~.:;._. '..:~~,'J.; * . * '.- .. *:.. .] Sys/t:ts:l!!~'*: '. .wl .-L-,-:_,.. __. . ,:_*""'fil"";

E<!Ulpmentl~,,; *~.: l!!?M:~*: *. ~~"- ~-:+/--:_,_;_:: tg1~,:.:, G.: b:z.t~l...:;.: -~ ~~::. .U . Equip Rev:j.!J!lj;*.:.:::J Template:L.1 _;_:_:/,.. .:.. .'./: -~*.'::. :'....:-~ '.':,_c.'.*.::l AcmiEIPASSiYE. * * " , * . ' . ~mjvf *.**. ,.

. A'PPENiil1cR*._ tl.,'..:. * " ** . . . *. ' *., . If. 0018.'.iOOi: *:.; :

  • Misc:fi:viNeous.i ._ * ".- * * .*: : . : * *:ro~*RE$-.2.i's+.. * . '.. met' **, :-, ffi i'iitiar.iiloo *.y-~
  • . *.!' .... sPJ;ci:C~rii'E* * ..-. ***"* *** *. * ": ;; ~tjM;llfCAv** <:*: ... ..* *.:.! 'f:iExf/: .:::**: l'1.i *1111iiiQoOO'* :;;;.:
  • ....*, .... .. " . *... *. ;17.

. ~ .. ~ . "... ._,. "': . .. .*.

  • * * * * '* *~*. ..1 * : ** '.*.:.. ... . .  ;~:

' ** *' ' - .j., * 'I ' ' * * *, ".,* ' I I * " ' \ fi.'1 ~ :'" ,* *, * ~ I ** * : '

/,...-"1----1----------------1-----~-~~-,.,.-'--,---J-....,,~- fl. : .... . -""'"7'

... : ./... /*,I'! '

1* ** . ; . *. \,: ...* . f1,. .,, '

I Analysis No. QDC-6700-E-2173 Revision 000 Attachment D PAGE 01 of 04 I Attachment D Selected Pages from Calculations 9390-02-19-1 Rev. 003, 9390-02-19-2 Rev. 003, and 9390-02-19-3 Rev. 003

Calculation For Diesel Generator 1 loading Under Cale. No. 9390-02-1g..1 Design Bases Accident Condition Rav.2 !Data x I.safety-Related I !Non-Safety-Related Page ,,,_,,_ ,

Of~"-

Client ComEd Prepared by Data Project Qua*d Cities Station Reviewed by Date Proj. No. 9390-002 Equip. No. 6601 Approved by Date XI. CONCLUSION The results of the calculation show that the maximum continuous running load under the maximum loading scenario ls below the nameplate (2000 hrs/year) raUng of the DG.

Also, the worst voltage recovery after one second following the start of large 4kv motor (Core Spray Pump motor during LOOP / LOCA) is above 85% of DG terminal rated voltage for LOOP I LOCA and more than 84% of Bus rated voltage when the Service Water Pump Motor is started during LOOP without LOCA. This voltage recovery Is above the minimum voltage recovery of 80% per the DG specification K-2183 requirement.

Also, the analysis in Table 2 and e shows, and the detailed explanation under the Calculation and Results section shows that while some of the control circuits may dropout during the lowest portion of the voltage dip, no adverse effects are Identified and no protective devices are expected to oper~te. The calculation also shows that momentary voltage dip will not cause the travel time of any MOV to Increase any longer than allowable. *

  • The calculation also shows that the starting time of automatically started 4-kv RHR pump motors Is under 4 seconds ~nd the sta~ing time for the. Cora Spray pump motor Is under 5 seconds. Starting times for all these pump motors are within the time setting requirements, which incl\,ide the 5 second interval +/- 10% as required by Reference 72.

Calculation QDC*6700*E*2173 Revision 000 Attachment D Page D2of 04

Calculation For Diesel Generator 2 Loading Under Design Cale. No. 9390-02-19.2 -

Barge Design Bases Accident Condition Rev.2 joate

( x ISafety-Related II I Non-Safety-Related Page //.O-/ of ,.,......

Client ComEd Preoared bv Date Project Quad Cities Station Reviewed by Date ProJ. No. 9390-002 Equip. No.6601 Aooroved by Date l I

'!t'Ull. o't'*'..NUUNHNo"NU,f,U.'Nt','U-"NU.., ......UflllUNIHINt'llUtl',fh'N,ft'Nt'IUNt'~IU/#(lfllfNllllllNUNlllll'llllNNl'l"lt'.'Jo'Uo'l'N,.",'V.Nlo"INN ...'UNN.NN.....'M"......,_.,,_.,1,-H,\'NIN,/,"/'*'tl'o'INllNll.-N.'."o'.INN-">rl',/'ll"/'Nlo..........,,.,.,,,,,,....\."N\'IN(','l1'UNt'l'h'l'ltN~oWd, 0

XI. CONCLUSION

  • ~

1 The results of the calculation show that the maximum continuous running load under the maximum ~

~ loading scenario is below the nameplate rating of the DG. Also, the worst voltage recovery after ~

  • one second following the start of large 4kv motor (Core Spray Pump motor during LOOP I LOCA) is ~

above 85% of DG terminal rated voltage for LOOP I LOCA and more than 84% of Bus rated voltage l when the Service Water Pump Motor is started during LOOP without LOCA. This voltage recovery i is above the minimum voltage recovery of 80% per the DG specification K-2183 requirement. i

,~

Also, the analysis in Table 2 and 6 shows, and the detailed explanation under the Calculation and  !

Results section show that while some of the control circuits may dropout during the lowest portion o~ '

the voltage dip, no adverse effects are identified and no protective devices are expected to operate. ~

The calculation also shows that momentary voltage dip will not cause the travel time of any MOV to ~

increase any longer than allowable. ~

~

The calculation also show that the starting time of automatically started 4-kv RHR Pump motors 2C ~

& 20 are less than 4 Seconds and the starting time for Core Spray Pump motor is under 5 seconds. ~

Starting time of all these pump motors are within the time setting requrements, even with a +/-10% to) erance (Ref. 68) in the time setting interval.  !

~

~

~

~

~

~

~

~

~

~<'

~~ I

~

~

~

~

j I

I I

I

~

l

~

Calculation QDC-6700-E-2173 i

~

, Revision 000 ~

~-..............................................................., ..................,.-...........,.........., ..... ,,..............*.........*...*.,............... ,.,.................... *******'**"*"*'"*********'"***********.-......*. 1:\ttachmaol.D............,."*****w***'*"'J Page 03 of04

Calculation For Diesel Generator 112 Loading Under Cale. No. 9390-02-19-3 Design Basis Accident Condition Rev. 3 Date x I Safety-Related II I Non-Safety-Related Page IJ.0-1 of~.;.

Client ComEd Preoared bv Date Project Quad Cities Station Reviewed by Date Proj. No. 9390-002 Equip. No.0-6601 Aooroved by Date XI. CONCLUSION The results of the calculation show that the maximum continuous running load under the maximum loading scenario is above the nameplate rating of the DG, but is less than the 2000 hour0.0231 days <br />0.556 hours <br />0.00331 weeks <br />7.61e-4 months <br /> per year rating of the Diesel Generator. Also, the worst voltage recovery after one second following the start of large 4kv motor (Core Spray Pump motor during LOOP I LOCA) is above 88% (for Unit 1 Division 1) and 84% (for Unit 2 Division 1) of DG terminal rated voltage for LOOP I LOCA and more than 84% of Bus rated voltage when the Service Water Pump Motor is started during LOOP without LOCA. This voltage recovery is above the minimum voltage recovery of 80% per the DG specification K-2183 requirement.

Also, the analysis in Table 2 and 6 shows, and the detailed explanation under the Calculation and Results section show that while some of the control circuits may dropout during the lowest portion of the voltage dip, no adverse effects are identified and no protective devices are expected to operate. The calculation also shows that momentary

- voltage dip will not cause the travel time of any MOV to increase any longer than allowable.

The calculation also shows that the starting time of automatically started 4-kv motors (i.e.

RHRs and Core Spray) are under 4 seconds which are within the time setting requrements. This includes allowing for tolerance of +/-10% (+/-0.5 seconds) in the timer setting interval.

ffe 1*

L.,. . ,. , ,. .,_,. . . . . . . . . . .,,.....,,. .,. .**"'"". . . . . .__.,. . . .,.,. . .,. , . ,.__..-.-.. .,. ,.......,. . .,. . . . . . ,. . ,:***'******'****w******'**"-*'**************"**'**-**. W"*'.........--~**catcUlatiil"i'f'QOC*:57oo~E~t173**'***.......,.......__.........., ...........

Revision 000 Attachment o Page 04 of 04