ML15044A246

From kanterella
Jump to navigation Jump to search
Calculation EP-EALCALC-BNP-0801, Radiological Gaseous Effluent EAL Values (Eals RG1, RS1, RA1 and RU1).
ML15044A246
Person / Time
Site: Brunswick  Duke Energy icon.png
Issue date: 01/30/2015
From: McCain S
Duke Energy Progress
To:
Office of Nuclear Reactor Regulation
Shared Package
ML15044A198 List:
References
BSEP 15-0010
Download: ML15044A246 (32)


Text

BSEP 15-0010 Enclosure 5 Brunswick Steam Electric Plant, Unit Nos. 1 and 2 Renewed Facility Operating License Nos. DPR-71 and DPR-62 Docket Nos. 50-325 and 50-324 License Amendment Request to Adopt Emergency Action Level Scheme Pursuant to NEI 99-01, Revision 6, "Development of Emergency Action Levels for Non-Passive Reactors" Radiological Gaseous Effluent EAL Calculation, EP-EALCALC-BNP-0801, "Radiological Gaseous Effluent EAL Values Calculation (EALs RG1, RS1, RA1 and RU1)"

EP-EALCALC-BNP-0801 Radiological Gaseous Effluent EAL Values (EALs RG1, RS1, RAI and RUI)(REVISION 0c)Document Author: Scott McCain Technical Reviewer:

Mike Millinor EP Reviewer:

Tim Mascarino Author: Technical Reviewer: EP Reviewer: 12/17/08 Scott McCain Date Mike Millinor Date Tim Mascarino Date BNP EAL Technical Bases Calculations

-Rxl Gaseous Series Table of Contents 1 .P u rp o s e .....................................................................................................................

3 2. Methodology

.......................................................................................................

3 3. Design Inputs ........................................................................................................

6 4. Assum ptions ........................................................................................................

11 5. Calculations

........................................................................................................

12 5.1. ODCM Effluent Monitor Lim it ......................................................................

13 5.2. Unusual Event- RU1.1 ..............................................................................

13 5.3. RS1.1 and RG1.1 ay, az and X/Q Values ....................................................

14 5.4. General Emergency-RG 1.1 ......................................................................

15 5.5. Site Area Emergency

-RS1.1 ......................................................................

19 5.6. Alert- RA1.1 ..............................................................................................

19 6. Conclusions

........................................................................................................

19 7. References

..............................................................................................................

20 Attachments Attachment 1, ODCM Lim it Calculation

....................................................................

22 Attachment 2, Meteorological Data ..........................................................................

24 Attachment 3, ay, az and X/Q Values ......................................................................

25 Attachment 4, Release Concentrations to Exceed Target PAGs ..............................

26 Attachment 5, az Dispersion Curve Com parison ..........................................................

27 EP-EALCALC-BNP-0801 Page 2 of 29 Rev Oc BNP EAL Technical Bases Calculations

-Rxl Gaseous Series 1. PURPOSE Documentation of the assumptions, calculations and results for the gaseous effluent monitor values used to establish the Rx1.1 series site specific Emergency Action Level (EAL) values listed below.* RG1.1 (NEI AG1.1)* RSI.1 (NEI AS1.1)* RAI.1 (NEI AAI.1)* RU1.1 (NEI AUI.1)2. METHODOLOGY 2.1. The EAL Technical Basis Manual contains the bases and references for the site specific EAL and FPB values used to implement the NEI 99-01 Rev. 5 guidance methodology.

This calculation document provides additional technical detail specific to the derivation of the gaseous radiological effluent EAL values.2.2. The generic guidance provided in NEI 99-01 is not intended to be used "as is." It is intended to give the logic for developing site specific EAL threshold values (Section 5.3 of NEI 99-01). Appendix A, "Basis for Radiological Effluent Initiating Conditions" provides the following:

1) The fundamental basis for the effluent monitor EALs.2) Guidance on choosing appropriate effluent monitor EAL values.3) Clarification and assistance in developing the effluent monitor EAL values.2.3. RU1.1 and RA1.1 Generic Bases These EALs address radioactivity releases, that for whatever reason, cause effluent radiation monitor readings to exceed either:* 2 times the ODCM limit for 60 minutes or longer (Unusual Event).* 200 times the ODCM for 15 minutes or longer (Alert).The applicable limits are 500 mRem/year whole body or 3000 mRem/year skin from noble gases. Inhalation dose rate limits are not addressed here since the specified surveillance involves collection and analysis of composite samples.This after-the-fact assessment could not be made in a timely manner conducive to accident classification.

EP-EALCALC-BNP-0801 Page 3 of 29 Rev 0c BNP EAL Technical Bases Calculations

-Rxl Gaseous Series 2.4. RS1.1 and RG1.1 Generic Bases These EALs address radioactivity releases, that for whatever reason, cause effluent radiation monitor readings to exceed either:* 100 mRem TEDE or 500 mRem CDE Thyroid for the actual or projected duration of the release (Site Area Emergency).

  • 1000 mRem TEDE or 5000 mRem CDE Thyroid for the actual or projected duration of the release (General Emergency).

2.5. General

Considerations The ODCM specifies default source terms and, for gaseous releases, prescribes the use of pre-determined annual average meteorology in the most limiting downwind sector for showing compliance with the regulatory commitments.

It was the intent of the EAL Task Force to have the RU1 and RA1 EALs indexed to the ODCM alarm setpoints.

2.6. Meteorological

Bases In developing the effluent EALs, the EAL Task Force elected to use annual average meteorology for establishing effluent monitor thresholds.

The impact of the differences between the assumed annual average meteorology and the actual meteorology depends on the particular EAL." For the RU1 and RA1 effluent monitor EALs, there is no impact since the IC and the EALs are based on annual average meteorology by definition.

  • For the RS1 and RG1 effluent monitor EALs, there may be differences since the IC is based on actual meteorology and the monitor EALs are calculated on the basis of annual average meteorology or, on a site specific basis, one of the more conservative derivatives of annual average meteorology.

This is considered as acceptable in that dose assessments using actual meteorology will be initiated for significant radioactivity releases.

Needed escalations can be based on the results of these assessments.

This delay was deemed to be acceptable since in significant release situations, the plant condition EALs should provide the anticipatory classifications necessary for the implementation of off-site protective measures.Plant specific consideration must be made to determine if annual average meteorology is adequately conservative for site specific use. If not, more conservative techniques described in NEI 99-01 Appendix A should be selected.It is incumbent upon the licensee to ensure that the selection is properly implemented to provide consistent classification escalation.

The RS1 and RG1 calculated ay and az values use a straight line Gaussian distribution for plume dispersion in the Y (crosswind) and Z (vertical) planes.EP-EALCALC-BNP-0801 Page 4 of 29 Rev 0c BNP EAL Technical Bases Calculations

-Rxl Gaseous Series NUREG/CR 3332 equation 2.23 for cyz values diverges from the basis az curves as dispersion increases (see Attachment 5). New equations were developed for az under stability classes A-E, expressed by either a fourth or fifth degree polynomial, to more closely model the original basis az curves.2.7. Source Term Bases The ODCM methodology should be used for establishing the monitor thresholds for the effluent monitor EALs. The ODCM provides a default source term based on expected releases.

In many cases, the ODCM source term is derived from expected and/or design releases tabulated in the FSAR.For RS1 and RG1, the bases suggests the use of the same source terms used for establishing monitor thresholds for RU1 and RA1, or an accident source term if deemed appropriate.

If the same source term is used for all four EALs, the developer must consider the impact of overly conservative iodine to noble gas ratios. The RU1 and RA1 EALs are based on external noble gas exposure.

The RS1 and RG1 ICs are based on the highest of the TEDE or CDE Thyroid dose. TEDE includes a contribution from inhalation exposure (i.e., CEDE) while the CDE Thyroid is due solely to inhalation exposure.

The inhalation exposure is sensitive to the iodine concentration in the source term. Since RU1.1 and RA1.1 are based only on noble gases, and RS1.1 and RG1.1 are dependent on noble gases and iodine, an over conservative iodine to noble gas ratio could result in RS1.1 and RG1.1 monitor thresholds that either overlap or are too close to the RA1.1 monitor thresholds.

2.8. Escalation

Bases Typically, the RA1.1 value will be based on monitor readings that exceed 200 times the ODCM limit for releases that are not terminated within 15 minutes.However, to ensure a realistic near-linear escalation path, a value should be selected roughly half-way between the RU1.1 value and the RS1.1 value.A multiple of 200x ODCM cannot be used for the Stack and RB vent RA1.1 EALs as it would result in the Alert value being too close to the Site Area Emergency value. Therefore, to provide a consistent near-linear progression, all RA1.1 values are set logarithmically half way between the RS1.1 values and the RUI.lvalues.

EP-EALCALC-BNP-0801 Page 5 of 29 Rev 0c BNP EAL Technical Bases Calculations

-Rxl Gaseous Series 3. DESIGN INPUTS 3.1. General Inputs and Conversion Factors 3.1.1. 472 cc/sec per cfm.3.1.2. 1609.3 meters per mile (x value in the dispersion equations).

3.1.3. 0.447 m/sec per mph.3.2. Gaseous Effluent Monitors 3.2.1. Monitor Identification and Ranges (OERP Table 5.7-3)* Main Stack- D12-RM-23S

.........................................

10-7 to 10+5 ptCi/cc* Turbine Building Vent- D12-RM-23

...........................

10-7 to 10+5 tCi/cc" Reactor Building Roof Vent- CAC-AQH-1264-3

....... 10+1 to 10+6 cpm 3.2.2. Monitor Flow Rates (ODCM Section 3.1)The maximum effluent flow rate at the point of release (cfm) are based on design flow rates.* M ain S tack .............................................................................

86 ,000 cfm* Turbine Building Vent (once through) ....................................

95,000 cfm* Reactor Building Roof Vent .................................................

172,800 cfm 3.2.3. Monitor Conversion Factors (OE&RC-2003 Attachment 2)Monitor conversion factor units are in pCi/sec per (cfm x cpm). The Unit 2 monitor conversion factors were used to develop a single conservative EAL threshold value.* M a in S tack ................................................................................

2 .19 E -06* Turbine Building ...............................

4.399E-06 Unit 1 / 7.60E-06 Unit 2* Reactor Building .............................

1.275E-05 Unit 1 / 1.424E-05 Unit 2 EP-EALCALC-BNP-0801 Page 6 of 29 Rev 0c BNP EAL Technical Bases Calculations

-Rxl Gaseous Series 3.3. Source Term 3.3.1. RUI.1 and RAI.1 1. Averaged Annual Release Concentration (ODCM Table 3.1-2)TB Vent RB Vent Stack (Cilyr)TB Vent (Ci/yr)RB Vent (Cilvr)Kr-83m 3.7E+4 O.OE+O O.OE+O Kr-85 2.4E+2 O.OE+O O.OE+O Kr-85m 7.2E+4 6.8E+1 6.OE+O Kr-87 2.05E+5 1.9E+2 6.OE+O Kr-88 2.4E+5 2.3E+2 6.OE+O Kr-89 3.5E+3 O.OE+O O.OE+O Xe-131m 1.9E+2 O.OE+O O.OE+O Xe-133 1.1E+5 2.8E+2 1.32E+2 Xe-133m 3.6E+3 O.OE+O O.OE+O Xe-135 2.8E+5 6.3E+2 6.8E+1 Xe-1 35m 8.8E+4 6.5E+2 9.2E+1 Xe-137 1.1E+4 O.OE+O O.OE+O Xe-138 2.6E+4 1.44E+3 1.4E+1 Ar-41 O.OE+O O.OE+O 2.5E+1 2. ODCM Dose Factors and Dose Constants (ODCM Table 3.1-3)I I 0 =U.E E)IE C.)'.L 0 (0 aE 0 L)-, aE-a a)+(0 Kr-83m 7.56E-02 2.12E+01 2.70E-09 8.21E-07 Kr-85 1.61E+01 1.36E+03 1.69E-06 4.57E-05 Kr-85m 1.17E+03 2.81E+03 1.14E-04 2.33E-04 Kr-87 5.92E+03 1.65E+04 5.12E-04 1.16E-03 Kr-88 1.47E+04 1.91E+04 1.35E-03 2.30E-03 Kr-89 1.66E+04 2.91 E+04 7.59E-04 1.58E-03 Xe-131m 9.15E+01 6.48E+02 2.78E-05 6.41E-05 Xe-133 2.94E+02 6.94E+02 2.22E-05 4.85E-05 Xe-133m 2.51E+02 1.35E+03 2.12E-05 7.04E-05 Xe-135 1.81E+03 3.97E+03 1.82E-04 3.61E-04 Xe-135m 3.12E+03 4.41 E+03 2.62E-04 4.59E-04 Xe-137 1.42E+03 1.39E+04 6.42E-05 4.97E-04 Xe-138 8.83E+03 1.43E+04 8.09E-04 1.46E-03 Ar-41 8.84E+03 1.29E+04 9.71 E-04 1.69E-03 EP-EALCALC-BNP-0801 Page 7 of 29 Rev 0c BNP EAL Technical Bases Calculations

-Rxl Gaseous Series 3.3.2. RS1.1 and RG1.1 1. Core Fission Product Inventory (FPI) and Decay Constants Core FPI values for Noble Gas and Halogen isotopes were taken from NUREG-1 228 Table 2.2 in accordance with OERP Appendix F.975 MWe from Reference 7.12.Decay Constants were taken from Reference 7.7.Core FPI (Ci/MWel Decay Const Mhrs-')Kr-85 5.6E+02 7.38E-06 Kr-85m 2.4E+04 1.55E-01 Kr-87 4.7E+04 5.45E-01 Kr-88 6.8E+04 2.44E-01 Xe-131m 1.OE+03 2.44E-03 Xe-133 1.7E+05 5.51 E-03 Xe-133m 6.OE+03 1.32E-02 Xe-135 3.4E+04 7.61 E-02 Xe-138 1.7E+05 2.94E+00 1-131 8.5E+04 3.60E-03 1-132 1.2E+05 3.01E-01 1-133 1.7E+05 3.33E-02 1-134 1.9E+05 7.91E-01 1-135 1.5E+05 3.60E-03 2. Core Release Fraction -CRF (NUREG-1228 Table 4.1)CRF represents the fraction of radioactive material released from the fuel pin cladding and/or fuel pellet by fission product type or chemical grouping.

The CRFs for a fuel clad failure scenario are as follows:* N oble G ases ......................................................................

0 .03 (3% )* H a loge ns ............................................................................

0 .02 (2 % )3. Process Reduction Factor -PRF (NUREG-1228 Table 4.5)PRF is the fraction of material transmitted in a process. The total effective PRF for a sequence of reductions is the product of the individual PRFs. The PRFs for the release pathways are as follows: Main Stack (RCS-Drywell-Torus-SBGT-Environment)

  • Drywell sprays on, < 2 hr holdup ................................................

0.03" T orus subcooled

.........................................................................

0 .0 1* Standby Gas Treatment System Filters .....................................

0.01* Main Stack release total effective PRF .................................

1.5E-05 EP-EALCALC-BNP-0801 Page 8 of 29 Rev 0c BNP EAL Technical Bases Calculations

-Rxl Gaseous Series Turbine Building Vent (RCS-Turbine Building-Environment)

  • < 2 h r h o ld u p ................................................................................

0 .4* Standby Gas Treatment System Filters .....................................

0.01* TB Vent release total effective PRF ......................................

4.OE-03 Reactor Building Vent (RCS-Reactor Building-SBGT-Environment)

  • R B sprays on, < 2 hr holdup .......................................................

0.03* Standby Gas Treatment System Filters .....................................

0.01" RB Vent release total effective PRF ......................................

3.OE-04 4. Dose Conversion Factors -DCFs (EPA-400)EPA-400 DCFs (R/hr per uci/cc)Immersion Inhalation Deposition Combined Thyroid Kr-85 1.3E+00 O.OE+00 O.OE+00 1.3E+00 O.OE+00 Kr-85m 9.3E+01 O.OE+00 O.OE+00 9.3E+01 O.OE+00 Kr-87 5.1E+02 0.OE+00 O.OE+00 5.1E+02 O.OE+00 Kr-88 1.3E+03 O.OE+00 O.OE+00 1.3E+03 O.OE+00 Xe-131m 4.9E+00 O.OE+00 O.OE+00 4.9E+00 O.OE+00 Xe-133 2.OE+01 O.OE+00 O.OE+00 2.OE+01 O.OE+00 Xe-133m 1.7E+01 O.OE+00 O.OE+00 1.7E+01 O.OE+00 Xe-135 1.4E+02 O.OE+00 O.OE+00 1.4E+02 O.OE+00 Xe-1 38 7.2E+02 O.OE+00 O.OE+00 7.2E+02 O.OE+00 1-131 2.2E+02 3.9E+04 1.3E+04 5.3E+04 1.3E+06 1-132 1.4E+03 4.6E+02 3.1E+03 4.9E+03 7.7E+03 1-133 3.5E+02 7.OE+03 7.3E+03 1.5E+04 2.2E+05 1-134 1.6E+03 1.6E+02 1.3E+03 3.1E+03 1.3E+03 1-135, 9.5E+02 1.5E+03 5.7E+03 8.1E+03 3.8E+04 3.4. Atmospheric Dispersion 3.4.1. RUI.1 and RAI.1 Most Limiting Site Boundary X/Qs" M a in S ta ck ........................................................................................

N /A* Turbine Building Vent (ODCM Table A-i) ........................

1.5E-5 sec/m 3* Reactor Building Roof Vent (ODCM Table A-7) ...............

2.5E-6 sec/m 3 EP-EALCALC-BNP-0801 Page 9 of 29 Rev 0c BNP EAL Technical Bases Calculations

-Rxl Gaseous Series 3.4.2. RS1.1 and RG1.1 1. Nearest stack to site boundary distance of 0.6 miles in the E to S sector directions (ODCM Table 3.2-3).2. 5.82 m/s annual average wind speed (developed in 5.3.1 below)3. "D" annual average Stability Class (see Attachment 2)4. Release Elevations" Main Stack (UFSAR Chapter 15) ............................................

100 m* Turbine and Reactor Building Vents ..............................

0 m (ground)5. 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> Release Duration (NEI 99-01 Rev 5)NEI states; "Since doses are generally not monitored in real time, it is suggested that a release duration of one hour be assumed." 6. X/Q values @ 0.6 miles (developed in 5.3.4 below).* M ain Stack ................................................................

1.78E-6 sec/m 3* Turbine and Reactor Building Vents ..........................

2.78E-5 sec/m 3 7. ay Diffusion Coefficients (NUREG/CR 3332 Table 2.8)A B C D E F a, -0.0234 -0.0147 -0.0117 -0.0059 -0.0059 -0.0029 a 2 0.3500 0.2480 0.1750 0.1080 0.0880 0.0540 8. az Diffusion Coefficients A. Stability Classes A-E A B C D E k 0 1.34E+01 7.21E+00 5.85E-01 3.41E+00 2.95E+00 ki 9.08E-03 7.35E-02 7.27E-02 3.11E-02 2.13E-02 k 2 3.63E-04 3.05E-05 -6.67E-06

-3.87E-06

-2.59E-06 k 3 3.73E-07 2.17E-08 4.82E-10 2.68E-10 1.58E-10 k 4 -6.71E-10

-5.47E-12

-1.21E-14

-6.39E-15

-3.40E-15 k 5 4.33E-13 4.69E-16 B. Stability Class F (NUREG/CR 3332 Table 2.8)1 -0 I b2 I F 1-3.8000 11.41 90 1-0.05 EP-EALCALC-BNP-0801 Page 10 of 29 Rev 0c BNP EAL Technical Bases Calculations

-Rxl Gaseous Series 4. ASSUMPTIONS

4.1. Source

Term 4.1.1. RUI.1 and RAI.1 1. The ODCM source term is based on a normal coolant activity mix that is limited to gaseous isotopes whereby all activity is assumed to be monitored as it is discharged.

2. ODCM Figure F.2 illustrates the waste streams that can flow into the three gaseous effluent release points.4.1.2. RS1.1 and RGI.1 1. The accident source term from NUREG-1 228 includes halogens that are not seen by the noble gas monitor, but are factored into the release concentration necessary to achieve the target PAGs.2. Unit 2 rated power (811 MWe) was used in the calculation, although either power level could be used as the core inventory values are converted to fractions.
3. Source term activity is adjusted for damage type. The damage mix is based on a DBA LOCA yield limited to a gap activity release. The reasons for this are as follows: " The definitions of the Site Area Emergency and General Emergency ECLs assume core damage is imminent or has occurred.

A release of the magnitude required to reach offsite doses at or above the EPA PAGs would not occur unless there was some amount of fuel barrier loss.* Utilizing a non-conservative (non-damage ODCM noble gas only)source term as the basis of RS1.1 and RG1.1 would result in values well above the threshold level of the IC as compared to the dose assessment EALs. This makes the effluent monitor EALs effectively erroneous and places a much greater dependency on dose assessment than is necessary, which could result in inappropriate delay in event classification." Use of an accident mix to determine RS1.1 and RG1.1 values is more realistic, measurable, and equates to true projected site boundary doses." A 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> release using an ODCM noble gas activity mix activity high enough to reach a PAG (or even 10% of a PAG) would require discharging more activity than is available in the RCS in a non-damaged state.EP-EALCALC-BNP-0801 Page 11 of 29 Rev Oc BNP EAL Technical Bases Calculations

-Rxl Gaseous Series 4. A 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> time after shutdown (TAS) was chosen for the source decay period as it is long enough for plant conditions to deteriorate to the point that core damage may occur and a significant release could start.4.2. Atmospheric Dispersion

4.2.1. Average

(most persistent) stability class of 'D' based on it having the highest persistence in consideration of all sectors (numerical and %) and of the sector (NE) with the highest wind direction persistence.

4.2.2. Releases

from the Turbine Building are ground level. Releases from the Reactor Building are considered mixed mode for RU1.1 and RA1.1 and ground level for RS1.1 and RG1.1. Releases from the stack are considered elevated.4.2.3. All receptor locations (z in X/Q equation) are assumed to be at ground level.4.2.4. The RS1.1 and RG1.1 values are based on dose assessment accident X/Qs to maintain consistency with utility, state and federal dose model methodologies.

4.3. The effluent monitor conversion factor for the Reactor Building vent is accepted as a general representation for the mix activities used in all the EAL values (Unusual Event through General Emergency.

EP-EALCALC-BNP-0801 Page 12 of 29 Rev 0c BNP EAL Technical Bases Calculations

-Rxl Gaseous Series 5. CALCULATIONS 5.1. ODCM Effluent Monitor Limit 5.1.1. Whole Body Dose (DDE)500 500 Qt (S x V,) QX xX(5 1 xK 1)QRP 5.1.2. Skin Dose (SDE)Q 3000 Q 3000 JX x YX(Si x (L, + 1.M)) (Si x (L.(-) + 1.1B 1))QRP QS Where: Qt Release rate total for the given ODCM limit (pCi/sec).

Limit ODCM Limit -500 whole body or 3000 skin (mRem/yr)X/QRP Annual Average Dispersion Factor for the release point (sec/mr 3)S= Isotopic fraction of the mix activity released (unit less)V! Whole Body dose constant from an elevated finite plume (mRem/yr per pCi/sec)Ki Whole Body dose correction factor (mRem/yr per pCi/m 3)Li (X/Qs) + 1.1 B= Skin dose constant from an elevated finite plume (mRem/yr per pCi/sec)Lj + 1.1Mj Skin dose correction factor (mRem/yr per pCi/m 3)Stack TB Vent RB Vent at-whole body, (pilsec) 1.00E+06 5.66E+03 7.55E+04 at-skin (pCilsec) 3.22E+06 2.06E+04 2.75E+05 See Attachment 1 for the ODCM setpoint spreadsheet calculations.

EP-EALCALC-BNP-0801 Page 13 of 29 Rev 0c BNP EAL Technical Bases Calculations

-Rxl Gaseous Series 5.2. Unusual Event -RUI.1 The RU1.1 value is 2 times the calculated ODCM effluent monitor setpoint for whole body (the skin limit required a higher release rate value).RU1 .1 = 2 x Qt-whole body I Stack I TB Vent I RB Vent RUI.1 (Cilsec) 2.OOE+06 1.13E+04 1.51E+05 See Attachment 1 for the actual RU1.1 spreadsheet calculations.

5.3. RS1.1 and RG1.1 cry, az and X/Q Values 5.3.1. Average Wind Speed WSavg -F WSsector 16 5 .82 m /s ......................................................................................

A rith m etic See Attachment 2 for the average wind speed calculation.

5.3.2. (Ty (NUREG/CR 3332 equation 2.22)a'y = (a,

  • ln(x) + a 2)x Note: The ay stability class G equation is from the NRC derived relationship with stability class F (NUREG/CR 3332 page 2-23).('Y(G) = 2/3a"Y(F)6.51 E +01 ........................................................................

a 'y (D) @ 0.6 m iles See Attachment 3 for the ay spreadsheet calculations.

5.3.3. az (r'Z(AB) = k° + kjX1 + k 2 X 2 + k 3 X 3 + k 4 X 4 + k 5 X 5 CY Z(c -E) = k° + klx' + k 2 X 2 + k 3 X 3 + k 4 X 4 Note: The az stability class F equation is from NUREG/CR 3332 equation 2.23.O'Z(F) = (1/2.15)

  • e (bl + b2
  • ln(x) + b3
  • ln(x)2)EP-EALCALC-BNP-0801 Page 14 of 29 Rev 0c BNP EAL Technical Bases Calculations

-Rxl Gaseous Series Note: The az stability class G equation is from the NRC derived relationship with stability class F in NUREG/CR 3332 page 2-23.OTZ(G) = 3/5OTZ(F)Calculated az values are capped at a maximum of 1000 meters.3.01 E+01 ........................................................................

O 'Z(D) @ 0.6 m iles See Attachment 3 for the az spreadsheet calculations.

5.3.4. X/Q Values (Meteoroloqiy and Atomic Enerqy, equation 3.115)___ -(z -h)2 -(z +h)2 X I 2Crz-2 2Uz2 Q=(2*7*ay*az

  • ws (e *e +e Where: X Downwind Concentration (Ci/m 2 or iCi/cc)Q Release Rate (Ci/sec)lay Standard Deviation in the Crosswind Direction (meters)TZ Standard Deviation in the Vertical Direction (meters)ws Wind Speed (m/sec)h Source elevation above the ground plane (meters)y Distance off centerline (meters)z Receptor height above ground level (meters)1.78E-06 sec/m 3 ...........................

..................... Elevated X/Q @ 0.6 m iles 2.78E-05 seclm 3 ............................

...................... Ground X/Q @ 0.6 m iles See Attachment 3 for the X/Q spreadsheet calculations.

EP-EALCALC-BNP-0801 Page 15 of 29 Rev 0c BNP EAL Technical Bases Calculations

-Rxl Gaseous Series 5.4. General Emergency-RG1.1 5.4.1. Fission Product Inventory (FPI)The values for FPI are derived from NUREG-1228 Table 2.2.FPli (Ci) = FPI 1 (Ci/MWe) x Unit MWe Core FPI (ci) 1 Kr-85 5.46E+05 Kr-85m 2.34E+07 Kr-87 4.58E+07 Kr-88 6.63E+07 Xe-1 31m 9.75E+05 Xe-133 1.66E+08 Xe-133m 5.85E+06 Xe-1 35 3.32E+07 Xe-1 38 1.66E+08 1-131 8.29E+07 1-132 1.17E+08 1-133 1.66E+08 1-134 1.85E+08 1-135 1.46E+08 See Attachment 4 for the FPI spreadsheet calculations.

5.4.2. Activity

Available for Release (AAR)The equation for AAR is derived from NUREG-1 228 Section 5.2 and adjusted for decay.AARi = FPI 1 x CRF 1 x %D x PRFi x EF x e -XiTAS Where: AARi Activity available for release to the environment (Ci)FPI 1 Core Fission Product Inventory (Ci).CRFi Core Release Fraction.

See section 3.3.2.2.%D % Core/Clad Damage (not applicable for this purpose -this method uses isotopic ratios which are independent of % damage)PRF 1 Total effective Process Reduction Factor. See section 3.3.2.3.EF Escape Fraction (not applicable for this purpose -involves containment leakage/failure scenarios) e"XiTAS Decay Correction Factor where X 1 is the decay constant for isotope i in hours 1 and TAS is in hours.EP-EALCALC-BNP-0801 Page 16 of 29 Rev 0c BNP EAL Technical Bases Calculations

-Rxl Gaseous Series Stack TB Vent RB Vent Kr-85 1.64E+04 1.64E+04 1.64E+04 Kr-85m 6.01E+05 6.01E+05 6.01E+05 Kr-87 7.97E+05 7.97E+05 7.97E+05 Kr-88 1.56E+06 1.56E+06 1.56E+06 Xe-1 31 m 2.92E+04 2.92E+04 2.92E+04 Xe-133 4.95E+06 4.95E+06 4.95E+06 Xe-133m 1.73E+05 1.73E+05 1.73E+05 Xe-135 9.22E+05 9.22E+05 9.22E+05 Xe-138 2.63E+05 2.63E+05 2.63E+05 1-131 4.95E+01 6.61 E+03 4.95E+02 1-132 5.20E+01 6.93E+03 5.20E+02 1-133 9.62E+01 1.28E+04 9.62E+02 1-134 5.04E+01 6.72E+03 5.04E+02 1-135 7.90E+01 1.05E+04 7.90E+02 MixTotal 9.31E+06 9.35E+06 1 9.31E+06 See Attachment 4 for the AAR spreadsheet calculations.

5.4.3. Normalized

Activity Available for Release (NAAR)The mix fraction for each isotope is determined as follows: NAARI = AAR 1 I AARTotal Stack TB Vent RB Vent Kr-85 1.76E-03 1.75E-03 1.76E-03 Kr-85m 6.46E-02 6.43E-02 6.46E-02 Kr-87 8.57E-02 8.53E-02 8.56E-02 Kr-88 1.67E-01 1.67E-01 1.67E-01 Xe-I 31 m 3.14E-03 3.12E-03 3.13E-03 Xe-133 5.31E-01 5.29E-01 5.31E-01 Xe-133m 1.86E-02 1.85E-02 1.86E-02 Xe-1 35 9.90E-02 9.86E-02 9.90E-02 Xe-138 2.82E-02 2.81 E-02 2.82E-02 1-131 5.32E-06 7.07E-04 5.32E-05 1-132 5.58E-06 7.41 E-04 5.58E-05 1-133 1.03E-05 1.37E-03 1.03E-04 1-134 5.42E-06 7.19E-04 5.41E-05 1-135 8.49E-06 1.13E-03 8.49E-05 MixTotal 1.OOE+00 ] 1.OOE+00 I 1.OOE+00 See Attachment 4 for the NAAR spreadsheet calculations.

EP-EALCALC-BNP-0801 Page 17 of 29 Rev 0c BNP EAL Technical Bases Calculations

-Rxl Gaseous Series 5.4.4. Relative TEDE and CDE Doses (RTD and RCD)This step provides the offsite dose for a total release rate of 1 pCi/sec for 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> having the isotopic ratios calculated above. It is determined as follows: RTD or RCD = NAARi xx DCF, x(1 _e,,) X 1.0E- 06 Where: NAARi Mix fraction of isotope i (pCi/sec)X/Q Relative concentration factor at the downwind distance being considered (sec/m 3)DCF 1 Applicable dose conversion factor (Rem/hr per pCi/cc). See section 3.3.2.4 for the DCFs.1E-6 Unit Conversion Factor (M 3 to cc).RD Release Duration (hr).Stack TB Vent RB Vent RTD (Rem) 4.69E-10 9.27E-09 7.48E-09 RCD (Rem) 1.69E-1 1 3.51 E-08 I2.64E-09 See Attachment 4 for the RTD and RCD spreadsheet calculations.

5.4.5. TEDE and CDE Correction Factor (CFT and CFC)The correction factor establishes the value needed to adjust the relative isotopic release rate to the release rate necessary to achieve the desired PAG. It is determined as follows: CFT = PAGTEDE RTD CFC = PAGcDE I RCD Stack TB Vent RB Vent CFT 2.13E+09 1.08E+08 1.34E+08 CFC 2.96E+11 1.43E+08 1.89E+09 See Attachment 4 for the CFT and CFC spreadsheet calculations.

EP-EALCALC-BNP-0801 Page 18 of 29 Rev 0c BNP EAL Technical Bases Calculations

-Rxl Gaseous Series 5.4.6. Measured TEDE and CDE Release Rates (MTRR and MCRR)Since the effluent monitor only reads the noble gas component, CFT and CFC must be corrected to remove the halogen component as follows: MTRR = CFT x (NAARNG I NAARTOTAL)

MCRR = CFC x (NAARNG / NAARTOTAL)

Stack TB Vent RB Vent MTRR 2.13E+09 1.07E+08 1.34E+08 MCRR 2.96E+11 1.42E+08 1.89E+09 The lower of the two (most conservative) non-zero values represent the RGI.1 EAL value.See Attachment 4 for the RG1.1 EAL value spreadsheet calculations.

5.5. Site Area Emergency

-RSI.1 The RS1.1 value is 10% of RG1.1 value.I Stack TB Vent I RB Vent F RSI.1 (pCilsec) 2.13E+08 1.07E+07 1.34E+07 See Attachment 4 for the RS1.1 EAL value spreadsheet calculation.

5.6. Alert- RAI.1 The equation selected to determine RA1.1 value is intended to provide a straight logarithmic progression between the RU1.1 and RS1.1 values as follows: RAI, =lnIn(RSl.l);In(Rul.l))

Stack TB Vent RB Vent F RAI.1 (Cilsec) 2.07E+07 3.49E+05 1.42E+06 See Attachment 4 for the RA1.1 EAL value spreadsheet calculation.

5.7. Reactor

Building Vent Unit Correction RB Vent (cpm) = RB Vent (pCilsec)

/ (MCF x Vent Flow)RB Vent RUI.1 (cpm) 6.14E+04 RAI.1 (cpm) 6.36E+10 RSI.1 (cpm) 6.59E+16 RGI.1 (cpm) 6.59E+17 See Attachments 1 and 4 for the RB Vent cpm spreadsheet calculation.

EP-EALCALC-BNP-0801 Page 19 of 29 Rev Oc BNP EAL Technical Bases Calculations

-Rxl Gaseous Series 6. CONCLUSIONS RUI.1 RAI.1 RS1.1 RGI.1 Stack (pCi/sec)2.OOE+06 2.07E+07 2.13E+08 2.13E+09-4--TB Vent (pCi/sec)1.13E+04 3.49E+05 1.07E+07 1.07E+08-4-RB Vent (cpm)6.14E+04 6.36E+10 6.59E+16 6.59E+17 I Note: The Reactor Building Vent is only capable of monitoring the to the Unusual Event level as 10+6 cpm is the maximum range of the instrument.

EP-EALCALC-BNP-0801 Page 20 of 29 Rev 0c BNP EAL Technical Bases Calculations

-Rxl Gaseous Series 7. REFERENCES 7.1. NEI 99-01 R5, Methodology for Development of Emergency Action Levels, February 2008 7.2. NUREG-1 228, Source Term Estimation During Incident Response to Severe Nuclear Power Plant Accidents, October 1988 7.3. NUREG-1465, Accident Source Terms for Light-Water Nuclear Power Plants, February 1995 7.4. NUREG/CR 3332, Radiological Assessment, September 1983 7.5. EPA 400-R-92-001, Manual of Protective Action Guides and Protective Actions for Nuclear Incidents.

7.6. Meteorology

and Atomic Energy, 1968 7.7. Nuclear Decay Data for Radionuclides Occurring in Routine Releases from Nuclear Fuel Cycle, D.C. Kocher 7.8. Brunswick Steam Electric Plant Offsite Dose Calculation Manual (ODCM) Rev 31* ODCM Table 3.1-2, Gaseous Source Terms* ODCM Table 3.1-3, Dose Factors and Constants" ODCM Table 3.2-3, Distance to Site Boundaries Based Upon Brunswick Plant Center and Directions From the Stack* ODCM Table A-1, X/Q Values at the Special Locations for Releases From the Turbine Buildings" ODCM Table A-7, X/Q Values at the Special Locations for Releases From the Reactor Buildings" ODCM Tables B-2 through B-32, Joint Frequency Distribution for [applicable]

Sector (%) Period 1-1-00 Through 12-31-04* ODCM Figure F.2, Gaseous Radwaste Effluent System 7.9. Brunswick Updated Final Safety Analysis Report (UFSAR)7.10. OERP, Radiological Emergency Response Plan, Rev 70 7.11. OE&RC-2003, Reporting of Radioactive Airborne Effluent Releases 7.12. E-mail from Tim Mascareno to Scott McCain dated 12/04/08 at 4:14 PM CST.EP-EALCALC-BNP-0801 Page 21 of 29 Rev Oc Attachment I ODCM Limit Calculation p ODCM Table 3.1-2 ODCM Table 3.1-3 Relative Fractions.1~0 m 0 I-4-.I-0 4-w (U 4)0'0 0.0 Z0 C.)(U 4-.(I, 5 U)a)E U)0 c3'=)+ C E--Et u. E 0s Ea 0 U.0 0W Mn C.)E (0 0~S Ma.1~a)0)0~-~mo a)'-.~ .~M0)mo 1..C.)I-C., I-C., Kr-83m 3.70E+04 O.OOE+00 0.OOE+00 2.70E-09 8.21 E-07 7.56E-02 2.12E+01 Kr-85 2.40E+02 O.OOE+00 O.OOE+00 1.69E-06 4.57E-05 1.61E+01 1.36E+03 Kr-85m 7.20E+04 6.80E+01 6.OOE+00 1.14E-04 2.33E-04 1.17E+03 2.81E+03 Kr-87 2.05E+05 1.90E+02 6.OOE+00 5.12E-04 1.16E-03 5.92E+03 1.65E+04 Kr-88 2.40E+05 2.30E+02 6.OOE+00 1.35E-03 2.30E-03 1.47E+04 1.91E+04 Kr-89 3.50E+03 0.OOE+00 O.OOE+00 7.59E-04 1.58E-03 1.66E+04 2.91E+04 Xe-131m 1.90E+02 0.OOE+00 0.OOE+00 2.78E-05 6.41E-05 9.15E+01 6.48E+02 Xe-133 1.1OE+05 2.80E+02 1.32E+02 2.22E-05 4.85E-05 2.94E+02 6.94E+02 Xe-133m 3.60E+03 0.OOE+00 0.OOE+00 2.12E-05 7.04E-05 2.51E+02 1.35E+03 Xe-135 2.80E+05 6.30E+02 6.80E+01 1.82E-04 3.61E-04 1.81E+03 3.97E+03 Xe-135m 8.80E+04 6.50E+02 9.20E+01 2.62E-04 4.59E-04 3.12E+03 4.41E+03 Xe-137 1.1OE+04 O.OOE+00 O.OOE+00 6.42E-05 4.97E-04 1.42E+03 1.39E+04 Xe-138 2.60E+04 1.44E+03 1.40E+01 8.09E-04 1.46E-03 8.83E+03 1.43E+04 Ar-41 0.OOE+00 O.OOE+00 2.50E+01 9.71E-04 1.69E-03 8.84E+03 1.29E+04 3.44E-02 0.OOE+00 O.OOE+00 2.23E-04 0.OOE+00 O.OOE+00 6.69E-02 1.95E-02 1.72E-02 1.90E-01 5.45E-02 1.72E-02 2.23E-01 6.59E-02 1.72E-02 3.25E-03 0.OOE+00 O.OOE+00 1.76E-04 0.OOE+00 O.OOE+00 1.02E-01 8.03E-02 3.78E-01 3.34E-03 0.OOE+00 O.OOE+00 2.60E-01 1.81E-01 1.95E-01 8.17E-02 1.86E-01 2.64E-01 1.02E-02 0.OOE+00 O.OOE+00 2.42E-02 4.13E-01 4.01E-02 0.OOE+00 O.OOE+00 7.16E-02 1.OOE+00 I 1.OOE+001 1.OOE+00 1.08E+06 3.49E+03 3.49E+02 EP-EALCALC-BNP-0801 Page 22 of 29 Rev 0c Attachment 1 ODCM Limit Calculation Attachment I ODCM Limit Calculation Whole Body-DDE (mRem/yr):

500 Skin-SDE (mRem/yr):

3000 Unit Conversion (cc/sec per cfm): 47il Stack TB Vent RB Vent X/Q (sec/m3):

4 95 J 2.50E-06_1 Vent flow rate (cfm): 8.60E+04 9.50E+04 1.73E+05 j Monitor Conversion (uCi/sec per (cfm x cpm) 2.19E-06 7.60E-06 I1.42E-05 j ODCM Limit for DDE (uCi/sec):

ODCM Limit for SDE (uCi/sec):

2x ODCM Limit (uCi/sec):

200x ODCM Limit (uCi/sec):

2x ODCM Limit (uCi/cc): 200x ODCM Limit (uCi/cc): 2x ODCM Limit (cpm): 200x ODCM Limit (cpm): EP-EALCALC-BNP-0801 Page 23 of 29 Rev 0c Attachment 2 Meteorological Data Attachment 2 Meteorological Data 6.29 7.81 6.16 4.31 4.62 6.63 4.85 3.15 0.17 0.02 0.62 1.13 tJf- I lI I 0.39 0.55 0.95 5.71 1.50 1.86 5.15 3.69 1.67 1.23 U, 0.-Zr 1, 0.0.0, 0.04 0.06 0.26 6.27 4.29 0.09 0.14 0.29 1.15 w.0.0.0.0.0.0.0.0 O 0..43 4.23.57 7.11.41.77 13.02.67 4.91.69 4.28.60 4.33.66 5.06.72 6.27.82 7.84 6.49 4.38 0.17 0.20 0.29 1.34 1.13 6.31 4.58 0.28 0.27 0.43 1.74 0.98 6.28 4.75 0.24 0.24 0.42 2.81 1.21 6.37 5.01 0.12 0.19 0.33 4.02 1.53 U.6.34 4.96 0.10 0.21 0.48 3.69 1.55 0.68 0.90 7.60 6.02 4.61 0.37 0.45 0.68 3.10 1.51 0.56 0.74 7.41 5.02 3.80 0.31 0.40 0.44 1.50 1.14 0.47 0.53 4.79 4.49 4.42 3.29 0.21 0.25 0.32 0.85 0.88 0.39 0.43 3.33 S3.13 0.19 0.25 0.30 0.88 0.72 0.31 0.43 3.09 0 I 3.28 0.17 0.16 0.25 0.91 0.94 0.42 0.36 3.21 m--- -- -. Y .- .- I ---4.33 2.98 4.03 7.50 25.71 10.10 9.73 4.33 2.98 4.03 7.50 26.71 10.10 9.73 EP-EALCALC-BNP-0801 Page 24 of 29 Rev 0c Attachment 3 cry, az and X/Q Values Attachment 3 ay, az and XIQ Values 3.29E+01 I 1.33E+01 I 5.24E+01 I 1.84E+01 I 9.84E+01 I 2.73E+01 2.19E+01 I 7.99E+00 I 3.50E+01 I 1.11E+01 I 6.56E+01 I 1.64E+01 Wind speed (mph): I Wind speed (m/s): 5.8[Centerline Offset -y (meters):

0.0 Receptor

Height -z (meters):

0.0 Source

Height -h (meters):

0E0 Wind speed (mph): Wind speed (m/s): 5.81 Centerline Offset -y (meters):

0.0 Receptor

Height -z (meters):

0.0 Source

Height -h (meters):

100.0 EP-EALCALC-BNP-0801 Page 25 of 29 Rev 0c Attachment 4 Release Concentrations to Exceed Target PAGs Attachment 4 Release Concentrations to Exceed Target PAGs Stack TB Vent I KB Vent stack TB Vent RB Vent Stack TB Vent RB Vent 1.64E+04 1.64E+04 1.64E+04 1.76E-03 1.75E-03 1.76E-03 4.07E-15 6.34E-14 6.37E-14 6.01 E+05 6.01 E+05 6.01E+05 6.46E-02 6.43E-02 6.46E-02 9.90E-1 2 1.54E-10 1.55E-10 7.97E+05 7.97E+05 7.97E+05 8.57E-02 8.53E-02 8.56E-02 5.99E-1 1 9.33E-10 9.38E-10 1.56E+06 1.56E+06 1.56E+06 1.67E-01 1.67E-01 1.67E-01 3.44E-1 0 5.35E-09 5.38E-09 2.92E+04 2.92E+04 2.92E+04 3.14E-03 3.12E-03 3.13E-03 2.73E-14 4.25E-13 4.27E-13 4.95E+06 4.95E+06 4.95E+06 5.31E-01 5.29E-01 5.31E-01 1.88E-11 2.94E-10 2.95E-10 1.73E+05 1.73E+05 1.73E+05 1.86E-02 1.85E-02 1.86E-02 5.59E-13 8.71E-12 8.75E-12 9.22E+05 9.22E+05 9.22E+05 9.90E-02 9.86E-02 9.90E-02 2.37E-1 1 3.70E-10 3.72E-10 2.63E+05 2.63E+05 2.63E+05 2.82E-02 2.81E-02 2.82E-02 1.17E-11 1.82E-10 1.82E-10 4.95E+01 6.61E+03 4.95E+02 5.32E-06 7.07E-04 5.32E-05 5.01E-13 1.04E-09 7.84E-11 5.20E+01 6.93E+03 5.20E+02 5.58E-06 7.41 E-04 5.58E-05 4.20E-14 8.73E-1 1 6.58E-12 9.62E+01 1.28E+04 9.62E+02 1.03E-05 1.37E-03 1.03E-04 2.71E-13 5.64E-10 4.25E-11 5.04E+01 6.72E+03 5.04E+02 5.42E-06 7.19E-04 5.41E-05 2.06E-14 4.29E-11 3.23E-12 7.90E+01 1 I.05E+041I 7.90E+021I 8.49E-06 1.13E-03 8.49E-05 1.16E-13 2.41E-10 I 1.82E-11 9.31 E+061 9.35E+061 9.31 E+061 1.OOE+00 I OOE+001T1.

Stack TB Vent RB Vent NG CRF: 3.[0E-02 Halogen CRF: 2.00E-02 TAS (hours): 1 Power (MWe): 975 RD (hours): UCF (m3 to cc): 1 TEDE PAG (Rem): 1 CDE PAG (Rem): 5 PRFJ 3.00E-05 I 4.OOE-03 1 3ý.OE-04 X/Q (sec/m3):

1.78E-06 2.78E-05 2.78E-05 CFT: CFC: MTRR (uCisec):

-MCRR (uCVsec): Stack TB Vent RB Vent (cuiswewc (cu~sec) (cp RU1.1:_RAI.1: RS1.1: RG1.1: I Stack TB Vent 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 1.23E-11 2.55E-08 1.92E-09 RB Vent 6.60E-14 3.98E-12 8.65E-1 5 C KE4 1 .37E-1 0 8.27E-09 1.80E-11I 11 .110 o 1.03E-1 1 6.23E-1 0 1.35E-12 a r.')c 44.EP-EALCALC-BNP-0801 Page 26 of 29 Rev 0c Attachment 5 crz Dispersion Curve Comparison Meteorology and Atomic Energy Figure 3.11 3x 10 2 10O3 5 2 w LI 10 z CL 2J> to 5 2 2 5 I0o DISTANCE FROM SOURCE (m)Fig. 3.11-Vertical turbulence types.diffusion, a2, vs. downwind distance from source for Pasquill's EP-EALCALC-BNP-0801 Page 27 of 29 Rev 0c Attachment 5 az Dispersion Curve Comparison Attachment 5 az Dispersion Curve Comparison NUREG/CR -3332 Equation 2.23 IE+3 IE+2_IE -IE+2-A-B-D-E-F-G 1E+3 Distance from Source (m)1E+4 EP-EALCALC-BNP-0801 Page 28 of 29 Rev Oc Aftachment 5 az Dispersion Curve Comparison Attachment 5 rz Dispersion Curve Comparison Derived Polynomial Equation IE+3 E c 1E+2 IE -000 IE+O -1E+2-A-B-D-E---F'---G 1E+3 1E+4 Distance from Source (m)EP-EALCALC-BNP-0801 Page 29 of 29 Rev Oc BSEP 15-0010 Enclosure 6 Brunswick Steam Electric Plant, Unit Nos. 1 and 2 Renewed Facility Operating License Nos. DPR-71 and DPR-62 Docket Nos. 50-325 and 50-324 License Amendment Request to Adopt Emergency Action Level Scheme Pursuant to NEI 99-01, Revision 6, "Development of Emergency Action Levels for Non-Passive Reactors" BSEP EAL Wall Charts, OPEP-02.1,"Initial Emergency Actions" The following 2 Drawings specifically reference

Enclosures:

Brunswick Nuclear Plant Emergency Actions OPEP-02, 1, Rev. 6 Draft A DOI to D02X