ML13058A060

From kanterella
Jump to navigation Jump to search
Areva, Topical Report ANP-3127, Rev. 1, Oconee Nulcear Station, Units 1, 2 & 3, Pressure-Temperature Limits at 54 EFPY
ML13058A060
Person / Time
Site: Oconee  Duke Energy icon.png
Issue date: 02/22/2012
From:
Duke Energy Carolinas
To:
Office of Nuclear Reactor Regulation
References
ANP-3127, Rev 1
Download: ML13058A060 (48)


Text

License Amendment Request No. 2012-10 February 22, 2012 ENCLOSURE 2 AREVA Topical Report ANP-3127, Revision 1, Oconee Nuclear Station Units 1, 2, & 3 Pressure-Temperature Limits at 54 EFPY January 2013

Con~trolled Document ANP-3127, Revision 1 January 2013 Oconee Nuclear Station Units 1, 2 & 3 Press u re-Tem peratu re Limits at 54 EFPY

Controlled Document ANP-3127, Revision 1 January 2013 Oconee Nuclear Station Units 1, 2 & 3 Pressure-Temperature Limits at 54 EFPY Prepared by S. J. Noronha P.-Y. Cheng Reviewed by A. D. Nana AREVA Document No.

77-3127-001 Prepared for Duke Energy

Controlled Document A

AREVA ANP-3127, Revision 1 Copyright © 2013 AREVA.

All Rights Reserved

Controlled Document A

AREVA ANP-3127, Revision 1 Record of Revision Revision Pages/SectionslParagraphs No.

Changed Brief Description / Change Authorization 000 All Original Release 001 Section 4.3 Changed words of description Section 4.4 Added reference to IOCFR Part 50 Appendix G Section 7.0 Added reference to I OCFR Part 50 Appendix G Added Tables 7-6 and 7-7.

Changed Figures 7-1 through 7-9 adding more markers.

Section 3.0 Added Statements on fluence and ART exemption requests Through out Deleted the word "basis" from "Technical Specification P-T Limits" Section 8.0 Added 4 more references.

Controlled Document A

ANP-3127, Revision 1 ARE VA Table of Contents Page RECORD OF REVISION........................................................................................................................

I LIST OF TABLES............................................................................................................

III L IS T O F F IG U R E S...............................................................................................................................

IV 1.0 IN T R O D U C T IO N........................................................................................................................

1

2.0 BACKGROUND

1 3.0 ADJUSTED NIL-DUCTILITY TRANSITION REFERENCE TEMPERATURES....................... 2 4.0 DESIGN BASIS FOR PRESSURE-TEMPERATURE LIMITS................................................. 8 4.1 M a te ria l P ro p e rtie s............................................................................................................................

8 4.2 P o stu la te d F la w s................................................................................................................................

8 4.3 Upper Shelf Toughness..........................................................................................................

9 4.4 Uncorrected Reactor Vessel Closure Head Limits............................................................................

9 4.5 Convection Film Coefficient..........................................................................................................

9 4.6 Reactor Coolant Temperature-Time Histories.............................................................................

9 5.0 TECHNICAL BASIS FOR PRESSURE-TEMPERATURE LIMITS......................................... 10 5.1 Fracture Toughness....................................................................................................

11 5.2 Thermal Analysis and Thermal Stress Intensity Factor............................................................

11 5.3 Unit Pressure Stress Intensity Factor for Reactor Vessel Beltline Region...............................

13 5.4 Unit Pressure Stress Intensity Factor for Reactor Vessel Nozzles............................................

14 6.0 PRESSURE CORRECTIONS...............................................................................................

14 7.0

SUMMARY

OF RESULTS........................................................................................................

16

8.0 REFERENCES

39 9.0 CERTIFICATION......................................................................................................................

40

Controlled Document A

AREVA ANP-3127, Revision 1 List of Tables Page Table 3-1: Adjusted Reference Temperature Evaluation for the ONS-1 Reactor Vessel Beltline M a te ria ls a t 5 4 E F P Y......................................................................................................................

4 Table 3-2: Adjusted Reference Temperature Evaluation for the ONS-2 Reactor Vessel Beltline M a te ria ls a t 5 4 E F P Y......................................................................................................................

5 Table 3-3: Adjusted Reference Temperature Evaluation for the ONS-3 Reactor Vessel Beltline M a te ria ls a t 5 4 E F P Y......................................................................................................................

6 Table 3-4: Limiting Adjusted Reference Temperature for ONS Units Locations................................

7 Table 4-1: Material Properties.......................................................................................................

8 Table 6-1: Limiting Location Pressure Corrections Factors for ONS-1...............................................

15 Table 6-2: Limiting Location Pressure Corrections Factors for ONS-2 and ONS-3.............................

15 Table 7-1: Tech. Spec. P-T Limits for Normal Heatup....................................................................

18 Table 7-2: Tech. Spec. P-T Limits for Normal Cooldown...............................................................

21 Table 7-3: Tech. Spec. P-T Limits for ISLH Heatup........................................................................

24 Table 7-4: Tech. Spec. P-T Limits for ISLH Composite Curve.........................................................

27 Table 7-5: Tech. Spec. Criticality Limit P-T Limits..........................................................................

30 Table 7-6: Operational Constraints for Plant Heatup......................................................................

33 Table 7-7: Operational Constraints for Plant Cooldown..................................................................

33 iii

Controlled Document A

AREVA ANP-3127, Revision 1 Figure 7-1:

Figure 7-2:

Figure 7-3:

Figure 7-4:

Figure 7-5:

Figure 7-6:

Figure 7-7:

Figure 7-8:

Figure 7-9:

List of Figures Page Tech. Spec. P-T Limits of ONS-1 for Normal Heatup and Criticality Limit.....................

34 Tech. Spec. P-T Limits of ONS-1 for Normal Cooldown...............................................

34 Tech. Spec. P-T Limits of ONS-1 for ISLH Composite Curve (Heatup, Cooldown).....

35 Tech. Spec. P-T Limits of ONS-2 for Normal Heatup and Criticality Limit...........

35 Tech. Spec. P-T Limits of ONS-2 for Normal Cooldown...............................................

36 Tech. Spec. P-T Limits of ONS-2 for ISLH Composite Curve (Heatup, Cooldown).....

36 Tech. Spec. P-T Limits of ONS-3 for Normal Heatup and Criticality Limit.....................

37 Tech. Spec. P-T Limits of ONS-3 for Normal Cooldown...............................................

37 Tech. Spec. P-T Limits of ONS-3 for ISIH Composite Curve (Heatup, Cooldown).....

38 iv

Controlled Document A

ARE VA ANP-3127, Revision 1

1.0 INTRODUCTION

This report provides Reactor Coolant Pressure Boundary (RCPB) Technical Specification Pressure-Temperature (P-T) operating limits of Oconee Nuclear Station Units 1, 2, and 3 (ONS-1, ONS-2 and ONS-3) for 54 effective full-power years (EFPY). The P-T limits are established in accordance with the requirements of 10 CFR Part 50, Appendix G [1]. These P-T limits are generated for normal operation heatup, normal operation cooldown, inservice leak and hydrostatic test (ISLH) conditions, and reactor core operations.

These limits are expressed in the form of curves of allowable pressure versus temperature. The uncorrected P-T limits for the three ONS units were determined for 54 effective full power years (EFPY) of operation. Pressure correction factors were determined between the pressure sensor locations (pressure tap in the DHRS drop line and two pressure taps in the RCS hot leg) and various regions of the reactor vessel (RV). The Technical Specification pressure-temperature operating limits applicable to ONS-1, ONS-2 and ONS-3 are developed for 54 EFPY of reactor operation. In addition, the minimum temperature for core criticality is determined to satisfy the regulatory requirements of 10 CFR Part 50, Appendix G [1].

2.0 BACKGROUND

The ability of the reactor pressure vessel to resist fracture is the primary factor in ensuring the safety of the primary system in light water-cooled reactors. The three areas of the reactor pressure vessel addressed in the present report are the beltline shell region, the reactor coolant nozzles, and the closure head flange region.

A method for guarding against brittle fracture in reactor pressure vessels is described in Appendix G of the ASME Boiler and Pressure Vessel Code,Section XI, "Rules for Inservice Inspection of Nuclear Power Plant Components" [2]. This method utilizes fracture mechanics concepts and the reference temperature for nil-ductility transition (RTNDT). The RTNDT is defined as the greater of the drop weight nil-ductility transition temperature (per ASTM E208 [3]) or the temperature at which the material exhibits 50 ft-lbs absorbed energy and 35 mils lateral expansion minus 600F. The RTNDT of a given material is used to index that material to a reference stress intensity factor curve (K,,). The K1c curve appears in Appendix G of ASME Code Section Xl [2]. When a given material is indexed to the K1, curve, allowable stress intensity factors can be obtained for this material as a function of temperature. Plant operating limits can then be determined using these allowable stress intensity factors.

The beltline region of the reactor vessel is the most highly exposed to neutron irradiation. The general effects of fast neutron irradiation on the mechanical properties of low-alloy ferritic steels such as Page 1

Controlled Document AREVA ANP-3127, Revision 1 SA-302, Grade B, modified and SA-508, Class 2 forging material used in the fabrication of the ONS units reactor vessels and inlet and outlet nozzles, are well characterized and documented in the literature. The effects of irradiation on these steels include an increase in the yield and ultimate strengths and a decrease in ductility. The most significant effect, however, is an increase in the temperature associated with the transition from brittle to ductile fracture and a reduction in the Charpy upper-shelf energy value.

Pressure-temperature limits for the ONS Units reactor vessels are developed in accordance with the requirements of 10 CFR Part 50, Appendix G [1], utilizing the analytical methods and flaw acceptance criteria of topical report BAW-10046A, Revision 2 [4] and ASME Code Section X1, Appendix G [2].

The ONS-1 reactor vessel contains both axially and circumferentially oriented welds. Therefore, the P-T limits for ONS-1 are based on the postulation of both axial and circumferential flaws in the most limiting axial and circumferential welds. Since ONS-2 and ONS-3 RV do not contain any axial welds in their beltline regions, axial flaws are postulated in the most limiting forging materials of these reactor vessels.

3.0 ADJUSTED NIL-DUCTILITY TRANSITION REFERENCE TEMPERATURES The RTNDT of the reactor vessel materials, and in turn, the pressure-temperature limits of a reactor vessel, must be adjusted to account for the effects of irradiation. The adjusted RTNDT (ART) values are calculated by adding a radiation-induced ARTNDT to the initial RTNDT plus a margin term using Regulatory Guide 1.99 Revision 2 [5] to predict the radiation induced ARTNDT values as a function of the material's copper and nickel content and neutron fluence. The projected fluence values at 54 EFPY are based on NRC approved Topical Report BAW-2241 P-A, Revision 2 [6], which complies with Regulatory Guide 1.190 [7].

The / t (t-thickness of the section) and % t ART values for the ONS units reactor vessels beltline materials applicable to 54 EFPY are listed in Table 3-1 through Table 3-3. These values were calculated in accordance with Regulatory Guide 1.99, Revision 2. The calculation of the ART values for the weld metals used the following information from BAW-2308 Revision 1A and 2A [8]; the initial RTNDT, the associated standard deviation and the added chemistry factor requirement. Duke Energy made an exemption request [9] and already received NRC approval of the exemption request [10] to utilize BAW-2308 Revision 1A and 2A for determining the ART values for the Linde 80 weld metals for the ONS units. Table 3-4 summarizes the limiting ART for ONS units used in the calculation of P-T limits. The characters in parentheses next to the ART values are the material identification.

Page 2

Controlled Document A

AREVA ANP-3127, Revision 1 The circumferential welds with the highest ART values for the ONS-1 reactor vessel are the Intermediate Shell to Upper Shell Circumferential Weld (ID 61%), SA-1229, with an ART value of 164.2 0F at the 1/4t wall location and Intermediate Shell to Upper Shell Circumferential Weld (OD 39%),

WF-25, with an ART value of 132.10F at the %t wall location. Considering the base metal and the longitudinal welds, the materials with the highest ART values are the Upper Shell Longitudinal Weld, SA-1493, with an ART value of 171.0°F at the 1/4t wall location and the Intermediate Shell Plate, C2197-2, with an ART value of 132.9 0F at the %t wall location. At the nozzle belt the highest ART values are 111.9 0F and 83.5 0F at 11/4t and %t locations, respectively, for Nozzle belt forging, AHR 54.

The circumferential weld with the highest ART values for the ONS-2 reactor vessel is the Upper Shell to Lower Shell Circumferential Weld, WF-25, with an ART value of 193.1 0F at the 1/4t wall location and 132.50F at the %t wall location. Considering the base metal (there are no longitudinal welds in ONS-2),

the material with the highest ART values is the Lower Nozzle Belt Forging (Location 3), AMX 77, with an ART value of 161.8 0F at the 1/4t wall location and 135.7 0F at the %t wall location. At the nozzle belt the highest ART values are 102.4 0F and 79.4 0F at 11/4t and %t locations, respectively, for Nozzle belt forging, AMX 77.

The circumferential welds with the highest ART values for the ONS-3 reactor vessel are the Upper Shell to Lower Shell Circumferential Weld (ID 75%), WF-67, with an ART value of 195.6 0F at the 1/4t wall location and the Upper Shell to Lower Shell Circumferential Weld (OD 25%), WF-70, with an ART value of 162.1°F at the %t wall location. Considering the base metal (there are no longitudinal welds in ONS-3), the material with the highest ART values is the Lower Nozzle Belt Forging (Location 3), 4680; with an ART value of 161.4 0F at the 1/4t wall location and 135.2 0F at the %t wall location. At the nozzle belt the highest ART values are 102.9 0F and 79.5 0F at 11/4t and %t locations, respectively, for Nozzle belt forging, 4680.

Page 3

Controlled Document A

AREVA ANP-3127, Revision 1 Table 3-1: Adjusted Reference Temperature Evaluation for the ONS-1 Reactor Vessel Beltline Materials at 54 EFPY Chemical ARTNDT (°F) at 54 ART (°F) at 54 Material Description Composition 54 EFPY Fluence ( /cm)

EFPY Margin (*F)

EFPY Initial Inner Reactor Vessel Beltline Matl.

Heat Cu Ni RTNDT Chemistry Wetted Y. t 3/4/ t V/ t

% t

'/4 t V. t

'. t

/ t Region Location Ident.

Number Type [ 11]

wt%

wt%

(*F)

Factor Surface Location Location Location Location Location Location Location Location Lower Nozzle Belt (LNB)

AHR 54 ZV-2861 A-508, Cl. 2-0.16 0.65

+3 119.3 1.25E+18 7.29E+17 2.650+17 42.5 24.3 70.7 66.6 116.2 93.9 Forging (Location 1)

Lower Nozzle Belt (LNB)

AHR54 ZV-2861 A-508, CI. 2-0.16 0.65

+3 119.3 1.25E+18 5.90E+17 1.40E+17 38.2 16.4 70.7 64.1

<111.9>

<83.5>

Forging (Location 2)

Intermediate Shell (IS) Plate C2197-2 C2197-2 SA-302 Gr. B Mod.b 0.15 0.50

+1 104.5 1.32E+19 7.74E+18 2.81E+18 97.0 68.3 63.6 63.6 161.6

{132.9)

Upper Shell (US) Plate C3265-1 C3265-1 SA-302 Gr. B Mod.'

0.10 0.50

+1 65.0 1.46E+19 8.55E+18 3.1IE+18 62.1 44.2 63.6 63.6 126.7 108.8 Upper Shell Plate C3278-1 C3278-1 SA-302 Gr. B Mod.b 0.12 0.60

+1 83.0 1.46E+19 8.55E+18 3.11E+18 79.4 56.4 63.6 63.6 144.0 121.0 Lower Shell (LS) Plate C2800-1 C2800-1 SA-302 Gr. B Mod.b 0.11 0.63

+1 74.5 1.48E+19 8.63E+18 3.13E+18 71.4 50.8 63.6 63.6 136.0 115.4 Lower Shell Plate C2800-2 C2800-2 SA-302 Gr. B Mod.'

0.11 0.63

+1 74.5 1.48E+19 8.63E+18 3.13E+18 71.4 50.8 63.6 63.6 136.0 115.4 LNB to IS Circ. Weld (100%)

SA-1 135 61782 Linde 80 0.23 0.52

-58.5 167.0' 1.25E+18 7.29E+17 2.65E+17 59.5 34.1 63.9 63.9 64.9 39.5 IS Long. Weld (100%)

SA-1073 1 P0962 Linde 80 0.21 0.64

-48.6 170.6 1.04E+19 6.05E+18 2.20E+18 146.6 101.0 66.6 66.6 164.6 119.0 IS to US Circ. Weld (ID 61%)

SA-1229 71249 Linde 80 0.23 0.59

-53.5 167.6 1.34E+19 7.82E+18 N/A 156.1 N/A 61.6 N/A

[164.2]

N/A IS to US Circ. Weld (OD WF-25 299L44 Linde 80 0.34 0.68

-74.3 220.6 1.34E+19 N/A 2.84E+18 N/A 144.8 N/A 61.6 N/A

[132.1]

US Long. Weld (100%)

SA-1493 8T1762 Linde 80 0.19 0.57

-48.6 167.0' 1.27E+19 7.42E+18 2.70E+18 153.0 107.4 66.6 66.6

{171.0) 125.4 US to LS Circ. Weld (100%)

SA-1585 72445 Linde 80 0.22 0.54

-72.5 167.0c 1.42E+19 8.31E+18 3.02E+18 158.3 112.2 60.9 60.9 146.7 100.6 LS Long. Weld (100%)

SA-1426 8T1762 Linde 80 0.19 0.57

-48.6 167.0c 1.21E+19 7.09E+18 2.57E+18 150.9 105.4 66.6 66.6 168.9 123.4 LS Long. Weld (100%)

SA-1430 8T1762 Linde 80 0.19 0.57

-48.6 167.0c 1.21E+19 7.09E+18 2.57E+18 150.9 105.4 66.6 66.6 168.9 123.4

[]-Highest values of the adjusted reference temperatures for circumferential welds

- Highest values of the adjusted reference temperatures for base metal or longitudinal welds

< > - Highest values of the adjusted reference temperature for the thick 12-inch nozzle belt section a ASTM A-508-64 Cl. 2 Mod. By ASME Code Case 1332-2 bASME SA-302 Gr. B Mod. To ASME Code Case 1339

'Per BAW-2308 Rev. 2-A Page 4

Controlled Document A

AREVA ANP-3127, Revision 1 Table 3-2: Adjusted Reference Temperature Evaluation for the ONS-2 Reactor Vessel Beltline Materials at 54 EFPY Chemical ARTNDT (OF) at 54 ART (OF) at 54 Material Description Composition 54 EFPY Fluence (i/cm)

EFPY Margin (°F)

EFPY Initial Inner A t

'A t

' t Reactor Vessel Beltline Region Matl.

Heat Cu Ni RTNDT Chemistry Wetted

'A t 1A t Locatio

'A t Locati Locati

'A t t

Location Ident.

Number Type [11]

wt%

wt%

(°F)

Factor Surface Location Location n

Location on on Location Location LNB Forging (Location 3)

AMX 77 123T382 A-508, Cl. 2a 0.13 0.76

+3 95.0 1.32E+19 7.72E+18 2.80E+18 88.1 62.0 70.7 70.7

{161.8)

{(135.7)

LNB Forging (Location 4)

AMX 77 123T382 A-508, Cl. 2' 0.13 0.76

+3 95.0 1.25E+18 5.90E+17 1.40E+17 30.4 13.0 69.0 63.4

<102.4>

<79.4>

US Forging AAW 163 3P2359 A-508, CI. 2' 0.04 0.75

+20 26.0 1.40E+19 8.19E+18 2.98E+18 24.5 17.4 24.5 17.4 69.0 54.8 LS Forging AWG 164 4PI885 A-508, Cl. 2' 0.02 0.80

+20 20.0 1.40E+19 8.20E+18 2.98E+18 18.9 13.4 18.9 13.4 57.8 46.8 LNB to US Circ. Weld (100%)

WF-154 406LA4 Linde 80 0.27 0.59

-98.0 182.6 1.32E+19 7.72E+18 2.80E+18 169.4 119.2 60.6 60.6 132.0 81.8 US to LS Circ. Weld(100%)

WF-25 299L4 Linde 80 0.34 0.68

-74.3 220.6 1.35E+19 7.88E+18 2.86E+18 205.8 145.2 61.6 61.6

[193.1]

1 [132.5]

[]-Highest values of the adjusted reference temperatures for circumferential welds

- Highest values of the adjusted reference temperatures for base metal (no longitudinal welds in ONS-2)

< > - Highest values of the adjusted reference temperature for the thick 12-inch nozzle belt section a ASTM A-508-64 Cl. 2 Mod. By ASME Code Case 1332-2 b ASTM A-508-64 Cl. 2 Mod. By ASME Code Case 1332-4 Page 5

Controlled Document A

AREVA ANP-3127, Revision 1 Table 3-3: Adjusted Reference Temperature Evaluation for the ONS-3 Reactor Vessel. Beltline Materials at 54 EFPY Chemical ARTNDT (°F) at 54 Material Description Composition 54 EFPY Fluence n/cm)

EFPY Margin (OF)

ART (OF) at 54 EFPY Initial Inner 3/4 t Reactor Vessel Beltline Mati.

Heat RTNDT Chemistry Wetted 1/4. t

'/4 t V. t 1/4 t

'A t Locati V. t

/ t Region Location ldent.

Number Type...1 ]

Cu wt%

Ni wt%

(OF)

Factor Surface Location Location Location Location Location on Location Location LNB Forging (Location 4680 4680 A-508, Cl. 2' 0.13 0.91

+3 1.26E+19 7.36E+18 2.67E+18 87.7 61.5 70.7 70.7

4)

(135.2)

3) 96.0 LNB Forging (Location 4680 4680 A-508, CI. 2a 0.13 0.91

+3 96.0 1.25E+18 5.90E+17 1.40E+17 63.4

<102.9>

<79.5>

4) 1_____

1 96.0__

30.7 13.2 69.2

63.

<029>

<7.5 US Forging AWS 192 522314 A-508, Cl. 2 b 0.01 0.73

+40 36.0' 1.38E+19 8.07E+18 2.93E+18 33.8 23.9 34.0 34.0 107.8 97.9 LS Forging ANK 191 522194 A-508, CI. 2' 0.02 0.76

+40 17.4c 1.39E+19 8.16E+18 2.96E+18 16.4 11.6 16.4 11.6 72.8 63.2 LNB to US Circ. Weld WF-200 821T44 Linde 80 0.24 0.63

-84.2 178.0 1.26E+19 7.36E+18 2.67E+18 162.7 114.0 59.2 59.2 137.7 89.0 (100%)

US to LS Circ. Weld (ID WF-67 72442 Linde 80 0.26 0.60

-33.2 180.0 1.34E+19 7.83E+18 N/A 167.7 N/A 61.1 N/A

[195.6]

N/A 75%)

1 1

1 US to LS Circ. Weld WF-70 72105 Linde 80 0.32 0.58

-31.1 199.3 1.34E+19 N/A 2.85E+18 N/A 130.9 N/A 62.3 N/A

[162.1]

(OD 25%)

_-_-___I IIII

[]-Controlling values of the adjusted reference temperatures for circumferential welds

- Highest values of the adjusted reference temperatures for base metal (no longitudinal welds in ONS-3)

< > - Highest values of the adjusted reference temperature for the thick 12-inch nozzle belt section a ASTM A-508-64 Cl. 2 Mod. By ASME Code Case 1332-3 b ASTM A-508-64 Cl. 2 Mod. By ASME Code Case 1332-4 c This Chemistry Factor was determined from surveillance data Page 6

Controlled Document A

AREVA ANP-3127, Revision 1 Table 3-4: Limiting Adjusted Reference Temperature for ONS Units Locations Vessel Wall Component Location Limiting RTNDT( 0F)

ONS-1 ONS-2 ONS-3 171.0 161.8 161.4 Beltline t

(SA-1493)

(AMX-77)

(4680)

Axial Weld/Base 132.9 135.7 135.2 Metal t

(C2197-2)

(AMX-77)

(4680) 164.2 193.1 195.6 11/4t Beltline (SA-1229)

(WF-25)

(WF-67)

Circ. Weld 132.1 132.5 162.1

/4t (WF-25)

(WF-25)

(WF-70) 111.9 102.4 102.9

%1/4t Nozzle Belt (AHR-54)

(AMX-77)

(4680)

Upper (t=12")

83.5 79.4 79.5 (AHR-54)

(AMX-77)

(4680)

Page 7

Controlled Document A

AREVA ANP-3127, Revision 1 4.0 DESIGN BASIS FOR PRESSURE-TEMPERATURE LIMITS Essential analytical parameters used in the preparation of ONS-1, 2 and 3 P-T limits are described below.

4.1 Material Properties Table 4-1 describes the material properties used in the development of the P-T limits for the ONS units.

Table 4-1: Material Properties Temp.

Elastic Thermal(2)

Thermal Specific Density Thermal Modulus Expansion Conductivity Heat Conductivity for Cladding Material (OF)

(106 psi)

(10-6in/inPF)

(Btu-in/hr-ft2-.OF)

(Btu/Ib-°F)

(lb/ft3)

(Btu-in/hr-ft 2-OF) 70 29.9 6.07 278.4 0.104 490.9 103.9 100 29.8(1) 6.13 275.1 0.107 490.5 105.6 150 29.7(1) 6.25 270.8 0.111 489.9 108.4 200 29.5 6.38 267.6 0.115 489.2 111.3 250 29.3(1) 6.49 265.3 0.118 488.6 114.2 300 29.0 6.60 263.7 0.120 487.9 117.0 350 28.8(1) 6.71 262.5 0.123 487.3 119.9 400 28.6 6.82 261.6 0.125 486.7 122.7 450 28.3(1) 6.92 260.6 0.126 486.0 125.6 500 28.0 7.02 259.5 0.128 485.4 128.5 550 27.7(1) 7.12 257.8 0.130 484.7 131.3 600 27.4 7.23 255.6 0.133 484.1 134.2 650 27.0(1) 7.33 252.5 0.135 483.4 137.0 700 26.6 7.44 248.4 0.139 482.8 139.9 Note: (1) The values are obtained by interpolating the available values; (2) Mean coefficients of thermal expansion are used.

4.2 Postulated Flaws

a.

Postulated Reactor Vessel Beltline Flaws Semi-elliptical surface flaws that are 1/4 t deep and 11/2 t long are postulated on the inside and outside surfaces of the reactor vessel beltline region. A longitudinal flaw is postulated in the base metal and the axial seam welds and a circumferential flaw is postulated in the circumferential welds.

Page 8

Controlled Document A

AREVA ANP-3127, Revision 1

b.

Postulated Nozzle Corner Flaw A 1/4 tNB ( tNB - the thickness at the nozzle belt) deep corner flaw is postulated on the inside surface of the reactor vessel inlet and outlet nozzles and core flood nozzle corner.

4.3 Upper Shelf Toughness A maximum value of 200 ksi!in is assumed for the upper shelf fracture toughness (K c)of the reactor vessel beltline. For the nozzle forging materials, a "no cut-off' limit is assumed.

4.4 Uncorrected Reactor Vessel Closure Head Limits Pressure-temperature limits for the reactor vessel head-to-flange closure region for normal operation and ISLH operation were derived for ONS reactor vessel closure heads based on the K fracture toughness curve. The Pressure-Temperature limits derived for the reactor vessel head-to-flange conservatively bounds the minimum required temperature requirements as given in Table 1 of the Appendix G to 10CFR Part 50[1].

4.5 Convection Film Coefficient A value of 1000 BTU/hr-ft 2-OF is used for an effective convective heat transfer film coefficient at the cladding-to-base metal interface for all times during heatup and cooldown when reactor coolant pumps (RCPs) are in use. When no reactor coolant pumps are running (i.e., before the first RCP is started during heatup and after the last RCP is shut off during cooldown), a value of 354 BTU/hr-ft2-IF is used as an effective film coefficient at the cladding-to-base metal interface. For LPI swap a value of 430 BTU/hr-ft2-OF is used as an effective film coefficient at the cladding-to-base metal interface. This value was developed for flow conditions when no RCPs are running and 540F water enters the vessel through the core flood nozzle as the decay heat removal system switches to an idle low pressure injection cooler. The outside surface is always modeled as a perfectly insulated boundary.

4.6 Reactor Coolant Temperature-Time Histories Both ramped and stepped transient definitions are modeled for normal operation heatup and cooldown.

The limiting normal heatup and cooldown transients (as determined by the controlling P-T limits) are also used to simulate the reactor coolant transients used for inservice leak and hydrostatic (ISLH) pressure testing.

The following input temperate-time histories are considered:

Normal Ramp Heatup, 60°F/hr to 270°F and then 1 00°F/hr to 550°F Page 9

Controlled Document A

AR VA ANP-3127, Revision 1 Normal Step Heatup, 60°F/hr to 270°F and then 100°F/hr to 550'F Normal Ramp Cooldown, 100 °F/hr to 270 OF and then 50 °F/hr to 60 OF Normal Step Cooldown, 100 °F/hr to 270 OF and then 50 °F/hr to 60 OF 5.0 TECHNICAL BASIS FOR PRESSURE-TEIVMPERATURE LIMITS Pressure-temperature limits are developed using an analytical approach that is in accordance with the requirements of the ASME Boiler and Pressure Vessel Code,Section XI, Appendix G [2]. Additional requirements are contained in Table 1 of Appendix G to Title 10, Code of Federal Regulations, Part 50[1].

The analytical techniques used to calculate P-T limits are based on an approved linear elastic fracture mechanics methodology described in topical report BAW-10046A, Revision 2[4]. The fundamental equation used to calculate the allowable pressure is PalwýKIR -- KIT Pallow r~n SFX x I, where, Pallow

=

allowable pressure KIR

=

reference stress intensity factor ( K l or Ki )

KIT

=

thermal stress intensity factor ip

=

unit pressure stress intensity factor (due to 1 psig)

SF

=

safety factor For each analyzed transient and steady state condition, the allowable pressure is determined as a function of reactor coolant temperature considering postulated flaws in the reactor vessel beltline, inlet nozzle, outlet nozzle, and closure head. In the beltline region, flaws are postulated to be present at the 1/4t and 3/4t locations of the controlling material (shell forging, or circumferential weld), as defined by the fluence adjusted RTNDT. The reactor vessel nozzle flaws are located at the inside juncture (corner) with the nozzle shell, and the closure head flaw is located near the outside juncture with the head flange. P-T limits for the beltline and nozzle regions are calculated using a safety factor of 2 for normal operation and 1.5 for ISLH operation. The P-T limit curves presented consist of the allowable pressures for the controlling beltline flaw, inlet and outlet nozzles, and closure head, as a function of fluid temperature. These curves have been "smoothed", as necessary, to eliminate irregularities associated with the startup of the first reactor coolant pump during heatup and the initiation of decay heat removal during cooldown. After the initial determination of the P-T limit curves, location specific curves were adjusted for sensor location. No instrument error Page 10

Controlled Document A

AREVA ANP-3127, Revision 1 correction has been applied. The final results include the determination of a minimum/lower bound P-T curve.

The criticality limit temperature is obtained by determining the maximum required ISLH test temperature at a pressure of 2500 psig (approximately 10% above the normal operating pressure). The ISLH analysis considers the most limiting heatup and cooldown transients. The approach satisfies the requirement of Item 2.d in Table 1 of 10 CFR 50, Appendix G [1]. It requires the minimum temperature to be the larger of minimum permissible temperature for inservice system hydrostatic pressure test or the RTNDT of the closure flange material + 1601F.

Various aspects of the calculation procedures utilized in the development of P-T limits are discussed below.

5.1 Fracture Toughness The fracture toughness of reactor vessel steels is expressed as a function of crack-tip temperature, T, indexed to the adjusted reference temperature of the material, RTNDT. Pressure-Temperature limits developed in accordance with ASME Code,Section XI, Appendix G [2], which permits the use of KIc fracture toughness, K1, = 33.2 + 20.734 exp [0.02 (T - RTNDT)]

The upper shelf fracture toughness is limited to an upper bound value of 200 ksi'/in for the reactor vessel welds and shell base metal and "no cut-off' limit for the inlet and outlet nozzles. The crack-tip temperature needed for these fracture toughness equations is obtained from the results of a transient thermal analysis, described below.

5.2 Thermal Analysis and Thermal Stress Intensity Factor Through-wall temperature distributions are determined by solving the one-dimensional transient axisymmetric heat conduction equation, P T = k0 2T + IaT subject to the following boundary conditions:

at the inside surface, where r = Ri, Page 11

Controlled Document A

AREVA ANP-3127, Revision 1

- k aT = h(Tw-Tb) ar at the outside surface, where r = Ro, cI T

0

-- 0 4ýr

where, p=

density Cp=

specific heat k =

thermal conductivity T =

temperature r =

radial coordinate t =

time h =

convection heat transfer coefficient T=

wall temperature Tb =

bulk coolant temperature Ri =

inside radius of vessel R=

outside radius of vessel The above equation is solved numerically using a finite difference technique to determine the temperature at 17 points through the wall as a function of time for prescribed changes in the bulk fluid temperature, such as multi-rate ramp and step changes for heatup and cooldown transients.

An equivalent linear thermal bending stresses (based on AT through the wall) is derived from the through-wall temperature distribution at each solution time point. Through-wall thermal stress distributions are determined by trapezoidal integration of the following expression:

Thermal hoop stresses:

Ea 1 r 2 +R2

+

'Trdf._

Trdr-Tr2 0 1 -R 2 R?

R J

[12, Eqn (255)]

Page 12

Controlled Document A

AR VA ANP-3127, Revision 1 Expressing the thermal stress distributions by G(X) = Co + C1 (x/a) + C2 (x/a)2 + C3 (x/a)3,

where, x =

is a dummy variable that representsthe radial distance from the appropriate (i.e., inside or outside) surface, in.

a =

the flaw depth, in.

The thermal stress intensity factors are defined by the following relationships:

For a 1/4 t inside surface flaw during cooldown, Kit=

(1.0359 Co + 0.6322 C1 + 0.4753 C2 + 0.3855 C3) *a For a 1/4 t outside surface flaw during heatup, Kit =

(1.043 Co + 0.630 CI + 0.481 C2 + 0.401 C3)Q a 5.3 Unit Pressure Stress Intensity Factor for Reactor Vessel Beltline Region The membrane stress intensity factor in the reactor vessel shell due to a unit pressure load is Kim=

MmxRi/t where R=

vessel inner radius, in.

t =

vessel wall thickness, in.

For a longitudinal 1/4 -thickness x '/2 -thickness semi-elliptical surface flaw:

at the inside surface, Mm 1.85 for /t < 2

= 0.926 4t for 2 <__

  • t*___3.464

3.21 for 4t > 3.464 at the outside surface, Mm

1.77 for 4t < 2

=

0.893 4t for 2 <' /t*< 3.464

= 3.09 for 4t > 3.464 Page 13

Controlled Document A

AREVA ANP-3127, Revision 1 5.4 Unit Pressure Stress Intensity Factor for Reactor Vessel Nozzles Considering a nozzle as a hole in a shell, WRC Bulletin 175 [13] presents the following method for estimating stress intensity factors for a nozzle corner flaw:

Kim = c-a F(a/rn) where o=

Ri/t R=

nozzle belt shell inner radius, in.

t =

nozzle belt shell wall thickness, in.

a=

flaw depth, in.

rn=

apparent radius of nozzle, in.

=

ri + 0.29rc ri=

inner radius of nozzle, in.

rc=

nozzle corner radius, in.

and F(a/r,) = 2.5 - 6.108(a/rn) + 12(a/rn) 2 - 9.1664(a/rn)3 6.0 PRESSURE CORRECTIONS The uncorrected P-T limits are calculated at the required locations or components in the RCS. The plants use two instrument locations for indicated pressures, the low range taps in the decay heat drop lines and two taps (a narrow range tap and a wide range tap) in the hot legs. Therefore, the uncorrected P-T limits may be corrected to one or both of these locations. These location corrections were analyzed for various temperatures and pump combinations. The location corrections for ONS-1 are summarized in Table 6-1.

The location correction factors for ONS-2 and ONS-3 are shown in Table 6-2. The limiting correction factors at various temperature ranges are then determined for beltline and closure head, as tabulated in Table 6-1 for ONS-1; and Table 6-2 for ONS-2 and ONS-3. The correction factors for the beltlines are also applicable to the nozzles.

Page 14

Controlled Document A

AREVA ANP-3127, Revision 1 Table 6-1: Limiting Location Pressure Corrections Factors for ONS-1 Temperature 50-99 100-299 300-399 400-532*

Range, OF Component AP, psi RCP AP, psi RCP AP, psi RCP AP, psi RCP 2/0 2/1 Beltline &

2 1t 93 105 0/0 or or 115 2/2 Nozzle (E12WR)

(D7A1 WR) 0/2 (D51 WR) 1/2 2/0 131 72 RVCH 0/0 or N/A N/A (E12WR)

(D7A1 WR) 0/2

  • The correction factor is used for temperatures above 5320F since the values are bounding for higher temperature tThese correction factors are from Table 8-2 in Ref. 2 Table 6-2: Limiting Location Pressure Corrections Factors for ONS-2 and ONS-3 Temperature 50-99 100-299 300-399 400-532*

Range, OF Component AP, psi RCP AP, psi RCP AP, psi RCP AP, psi RCP 2/0 2/1 Beltline &

21 88 100 0/0 or or 109 2/2 Nozzle (E12 WR)

(E7A1 WR) 0/2 (E51 WR) 1/2 2/0 13 68 RVCH 0/0 or N/A N/A (E12WR)

(E7A1 WR) 0/2

  • The correction factor is used for temperatures above 532 0F since the values are bounding for higher temperature Page 15

Controlled Document A

ARE VA ANP-3127, Revision 1 7.0

SUMMARY

OF RESULTS The following is a summary of results for the ONS-1, ONS-2 and ONS-3 P-T limits at 54 EFPY. The analyses are corrected for location only. Correction due to instrument uncertainty is not included.

Technical Specification (Tech. Spec.) P-T limits for normal heatup and criticality conditions; normal cooldown, and inservice leak hydrostatic conditions are provided in Figure 7-1 through Figure 7-3 for ONS-1, Figure 7-4 through Figure 7-6 for ONS-2 and Figure 7-7 through Figure 7-9 for ONS-3, respectively.

These P-T limits have been developed considering the operational conditions described in Section 4.0.

Maintaining the reactor coolant system pressure below the upper limit of the pressure-temperature limit curves ensures protection against non-ductile failure. Acceptable pressure and temperature combinations for reactor vessel operation are below and to the right of the applicable P-T limit curves. These P-T limit curves have been adjusted based on pressure differential between point of system pressure measurement and the point in the reactor vessel that establishes the controlling unadjusted pressure limit. The P-T limit curves provided in Figure 7-1 through Figure 7-9 do not include margins for instrument error. The reactor is not permitted to be critical until the pressure-temperature combinations are, as a minimum, to the right of the criticality curve. The numerical values for the Technical Specification P-T curves provided in Figure 7-1 through Figure 7-9 are shown in Table 7-1 through Table 7-5. The operational constraints for these curves are tabulated in Table 7-6 and Table 7-7. These Technical Specification P-T curves meet all the pressure and temperature requirements for the reactor pressure vessel listed in Table 1 of 1 OCFR Part 50, Appendix G[1].

The Tech. Spec. P-T limits for normal heatup for ONS units 1, 2 and 3 are shown in Table 7-1. The Tech.

Spec. P-T limits for normal cooldown for ONS units 1, 2 and 3 are generated as the limiting allowable pressure at every calculated temperature as shown in Table 7-2. The Tech. Spec. P-T limits for ISLH heatup of the three ONS units are shown in Table 7-3. The limiting composite curves for Tech. Spec. P-T limits for ISLH are shown in Table 7-4. The criticality limit temperature corresponding to a pressure of 2500 psig is determined through interpolation of ISLH heatup data in Table 7-3. As shown in Table 7-5(a), the criticality limit temperatures for ONS-1, ONS-2 and ONS-3 are 252.9 0F, 243.50F and 243.20F, respectively.

The criticality-limit P-T limits data are shown in Table 7-5(b).

The Low Temperature Overpressurization Protection (LTOP) pressure limit at 54 EFPY that bounds all three ONS units is 540 psig (ONS-1). The 54 EFPY LTOP limiting pressure remains above the current Pressurizer Power-Operated Relief Valve (PORV) setpoint of 535 psig. Therefore, the current PORV low-pressure setpoint (535 psig) remains acceptable for plant operation to 54 EFPY for all three ONS units.

Page 16

Controlled Document A

AREVA ANP-3127, Revision 1 The minimum 54 EFPY LTOP enable temperature that bounds all three ONS units with instrument uncertainty is 276.8°F (ONS-3). This value is lower than the current LTOP enable temperature of 325 0F at 33 EFPY. Therefore, the current LTOP temperature of 3250F remains acceptable for plant operation to 54 EFPY for all three ONS units.

Page 17

Controlled Document A

AREVA ANP-3127, Revision 1 Table 7-1: Tech. Spec. P-T Limits for Normal Heatup ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing TemGp Adjusted Tergp Adjusted Temp Adjusted Pressure Pressure Pressure (0F)

(psi)

(OF)

(psi)

(OF)

(psi) 60 65 70 72 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 167 170 170 170 170 175 180 185 190 195 200 528 528 528 528 528 528 528 528 528 528 528 534 545 553 553' 553 557' 557' 557' 557' 557' 557' 557 557 557 567 593 729 804 834 867 903 943 987 60 65 70 72 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 167 170 170 170 170 175 180 185 190 195 200 527 527 527 527 527 527 527 527 527 527 527 532 543 550 550' 550*

550*

550' 550' 550*

550*

550' 550 550 550 582 613 776 825 867 914 965 1021 1083 60 65 70 72 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 167 170 170 170 170 175 180 185 190 195 200 528 528 528 528 528 528 528 528 528 528 528 533 544 552 552*

552*

552' 552*

552' 552' 552' 552' 552 552 552 582 614 778 829 872 919 970 1027 1090 Page 18

Controlled Document A

AREVA ANP-3127, Revision 1 ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing Temp Adjusted Temp Adjusted Temp Adjusted Pressure Pressure Pressure (0F)

(psi)

(OF)

(psi)

(OF)

(psi) 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 1035 1089 1148 1213 1285 1364 1451 1547 1653 1771 1900 2044 2202 2374 2500 2655 2834 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 1145 1210 1281 1360 1446 1542 1648 1764 1893 2035 2192 2365 2557 2755 2906 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 1150 1215 1287 1366 1452 1548 1654 1770 1899 2041 2198 2372 2564 2773 2925 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 Page 19

Controlled Document A

AREVA ANP-3127, Revision 1 ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing Temp Adjusted Temp Adjusted Temp Adjusted Pressure Pressure Pressure (0F)

(psi)

(OF)

(psi)

(OF)

(psi) 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 554 558 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 554 558 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 554 558 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 tValue adjusted to avoid negative slope in the curve Page 20

Controlled Document A

AREVA ANP-3127, Revision 1 Table 7-2: Tech. Spec. P-Tr Limits for Normal Cooldown ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing TeFup Adjusted Temp Adjusted Temp Adjusted Pressure Pressure Pressure (0F)

(psi)

(OF)

(psi)

(OF)

(psi) 550 545 540 535 530 525 520 515 510 505 500 495 490 485 480 475 470 465 460 455 450 445 440 435 430 425 420 415 410 405 400 395 390 385 380 375 370 2978 2969 2952 2933 2913 2893 2873 2853 2833 2815 2796 2779 2761 2745 2729 2714 2699 2685 2672 2659 2646 2634 2623 2611 2601 2591 2581 2571 2562 2554 2546 2546 2540 2533 2526 2519 2513 550 545 540 535 530 525 520 515 510 505 500 495 490 485 480 475 470 465 460 455 450 445 440 435 430 425 420 415 410 405 400 395 390 385 380 375 370 2984 2975 2958 2939 2919 2899 2879 2859 2839 2821 2802 2785 2767 2751 2735 2720 2705 2691 2678 2665 2652 2640 2629 2617 2607 2597 2587 2577 2568 2560 2552 2552 2545 2538 2531 2524 2518 550 545 540 535 530 525 520 515 510 505 500 495 490 485 480 475 470 465 460 455 450 445 440 435 430 425 420 415 410 405 400 395 390 385 380 375 370 2984 2975 2958 2939 2919 2899 2879 2859 2839 2821 2802 2785 2767 2751 2735 2720 2705 2691 2678 2665 2652 2640 2629 2617 2607 2597 2587 2577 2568 2560 2552 2552 2545 2538 2531 2524 2518 Page 21

Controlled Document A

AREVA ANP-3127, Revision 1 ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing Temp Adjusted Temp Adjusted Temp Adjusted Pressure Pressure Pressure (0F)

(psi)

(OF)

(psi)

(0F)

(psi) 365 360 355 350 345 340 335 330 325 320 315 310 305 300 295 290 285 280 275 270 265 260 255 251 250 246 245 241 240 236 235 231 230 226 225 221 220 216 2506 2501 2495 2490 2485 2480 2475 2471 2467 2463 2459 2456 2452 2449 2449 2449 2449 2449 2447 2444 2444 2444 2444 2231 2231' 2221 2187 2058 2028 1912 1884 1779 1754 1659 1636 1550 1529 1452 365 360 355 350 345 340 335 330 325 320 315 310 305 300 295 290 285 280 275 270 265 260 255 251 250 246 245 241 240 236 235 231 230 226 225 221 220 216 2511 2506 2500 2495 2490 2485 2480 2476 2472 2468 2464 2461 2457 2454 2454 2454 2454 2454 2452 2449 2449 2449 2449 2365 2365' 2365 2365' 2365 2338 2199 2165 2039 2009 1895 1867 1764 1739 1646 365 360 355 350 345 340 335 330 325 320 315 310 305 300 295 290 285 280 275 270 265 260 255 251 250 246 245 241 240 236 235 231 230 226 225 221 220 216 2511 2506 2500 2495 2490 2485 2480 2476 2472 2468 2464 2461 2457 2454 2454 2454 2454 2454 2452 2449 2449 2449 2449 2365 2365*

2365 2365' 2365 2353 2212 2179 2051 2021 1906 1878 1774 1749 1655 Page 22

Controlled Document A

AREVA ANP-3127, Revision 1 ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing Temp Adjusted Temp Adjusted Temp Adjusted Pressure Pressure Pressure

(° F)

(psi)

(o F)

(psi)

(°OF)

(psi) 215 211 210 206 205 201 200 196 195 191 190 186 181 176 171 166 161 156 155 146 135 110 105 100 95 90 85 80 75 70 65 60 1433 1363 1346 1282 1267 1209 1195 1143 1131 1083 1053 1029 981 910 837 824 765 720 710 636 611 531 527 513 513 513 513 513 513 513 512 506 215 213.

210 206 205 201.

200 196 195 191.

190 186 181 176 171.

166 161 156 155 146 135 110 105 100 95 90 85 80 75 70 65 60 1623 1539 1518 1442 1423 1354 1338 1275 1260 1203 1166 1138 1079 1021 907 907 871 814 802 708 670 557 557 544 544 544 544 544 544 534 525 518 215 211 210 206 205 201 200 196 195 191 190 186 181 176 171 166 161 156 155 146 135 110 105 100 95 90 85 80 75 70 65 60 1632 1547 1526 1449 1431 1361 1344 1281 1266 1209 1172 1143 1084 1026 910 910 876 818 806 711 672 557 557 545 545 545 545 545 545 535 526 519 IVaPue adjusted to avoid negative slope in the curve Page 23

Controlled Document A

AREVA ANP-3127, Revision 1 Table 7-3: Tech. Spec. P-T Limits for ISLH Heatup ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing Temp Adjusted Temp Adjusted Temp Adjusted Pressure Pressure Pressure (0F)

(psi)

(OF)

(psi)

(0F)

(psi) 60 65 70 72 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 167 170 170 170 170 175 180 185 190 195 200 205 210 553 553 553 553 553 553 553 553 553 553 553 610 752 774 774*

774ý 774' 774' 774' 774' 774' 774' 774 774 774 787 821 1002 1103 1143 1187 1235 1288 1347 1412 1483 60 65 70 72 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 167 170 170 170 170 175 180 185 190 195 200 205 210 557 557 557 557 557 557 557 557 557 557 557 622 753 763 763' 763' 763*

763' 763' 763' 763' 763' 763 763 763 805 847 1065 1130 1186 1248 1316 1390 1473 1557 1643 60 65 70 72 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 167 170 170 170 170 175 180 185 190 195 200 205 210 557 557 557 557 557 557 557 557 557 557 557 614 755 766 766*

766t 766t 766t 766' 766' 766*

766' 766 766 766 806 848 1067 1135 1192 1255 1323 1399 1483 1563 1650 Page 24

Controlled Document A

AREVA ANP-3127, Revision 1 ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing Temp Adjusted Temp Adjusted Temp Adjusted TPressure Pressure Pressure (0F)

(psi)

(OF)

(psi)

(0F)

(psi) 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 1562 1649 1745 1852 1969 2098 2241 2398 2572 2765 2977 3197 3364 3571 3809 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385

,390 395 400 1738 1842 1958 2085 2226 2382 2553 2743 2952 3183 3438 3702 3904 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395

.400 1746 1850 1966 2093 2234 2390 2562 2751 2960 3192 3447 3726 3929 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 Page 25

Controlled Document A

AREVA ANP-3127, Revision 1 ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing Temp Adjusted Temp Adjusted Temp Adjusted Pressure Pressure Pressure (0F)

(psi)

(OF)

(psi)

(OF)

(psi) 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 554 558 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 554.

558 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 554 558 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 Value adjusted to avoid negative slope in the curve Page 26

Controlled Document A

ANP-3127, Revision 1 AReEVA Table 7-4: Tech. Spec. P-T Limits for ISLH Composite Curve ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing Adjusted Temp Adjusted Temp Adjusted Pressure Pressure Pressure (0F)

(psi)

(OF)

(psi)

(OF)

(psi) 60 553 60 557 60 557 65 553 65 557 65 557 70 553 70 557 70 557 75 553 75 557 75 557 80 553 80 557 80 557 85 553 85 557 85 557 90 553 90 557 90 557 95 553 95 557 95 557 100 553 100 557 100 557 105 553 105 557 105 557 110 610 110 614 110 614 115 752 115 753 115 755 120 774 120 763 120 766 125 774 125 763 125 766 130 774 130 763 130 766 135 774 135 763 135 766 140 774 140 763 140 766 145 774 145 763 145 766 150 774 150 763 150 766 155 774 155 763 155 766 160 774 160 763 160 766 165 774 165 763 165 766 167 774 167 763 167 766 170 774 170 763 170 766 170 787 170 805 170 806 170 821 170 847 170 848 170 1002 170 1065 170 1067 175 1103 175 1130 175 1135 180 1143 180 1186 180 1192 185 1187 185 1248 185 1255 190 1235 190 1316 190 1323 195 1288 195 1390 195 1399 200 1347 200 1473 200 1483 205 1412 205 1557 205 1563 210 1483 210 1643 210 1650 215 1562 215 1738 215 1746 Page 27

Controlled Document A

AREVA ANP-3127, Revision 1 ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing Temp Adjusted Temp Adjusted Terp Adjusted Pressure Pressure Pressure (0F)

(psi)

(OF)

(psi)

(OF)

(psi) 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 1649 1745 1852 1969 2098 2241 2398 2572 2765 3290 3290 3293 3297 3300 3300 3300 3300 3305 3309 3314 3319 3324 3330 3336 3342 3348 3355 3362 3369 3377 3385 3394 3403 3412 3422 3432 3432 3443 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 1842 1958 2085 2226 2382 2553 2743 2952 3183 3295 3295 3298 3302 3305 3305 3305 3305 3310 3314 3319 3324 3329 3335 3341 3347 3353 3360 3367 3374 3382 3390 3399 3408 3417 3427 3437 3438 3449 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 1850 1966 2093 2234 2390 2562 2751 2960 3192 3295 3295 3298 3302 3305 3305 3305 3305 3310 3314 3319 3324 3329 3335 3341 3347 3353 3360 3367 3374 3382 3390 3399 3408 3417 3427 3437 3438 3449 Page 28

Controlled Document A

AREVA ANP-3127, Revision 1 ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing Temp Adjusted Temp Adjusted Temp Adjusted Pressure Pressure Pressure (OF)

(psi)

(OF)

(psi)

(OF)

(psi) 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 554 558 3455 3467 3479 3492 3506 3520 3536 3551 3567 3583 3601 3619 3637 3657 3677 3698 3720 3743 3767 3791 3816 3842 3869 3896 3923 3950 3975 3997 4008 4009 4009 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 554 558 3461 3473 3485 3498 3512 3526 3542 3557 3573 3589 3607 3625 3643 3663 3683 3704 3726 3749 3773 3797 3822 3848 3875 3902 3929 3956 3981 4003 4014 4015 4015 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 554 558 3461 3473 3485 3498 3512 3526 3542 3557 3573 3589 3607 3625 3643 3663 3683 3704 3726 3749 3773 3797 3822 3848 3875 3902 3929 3956 3981 4003 4014 4015 4015 Page 29

Controlled Document A

AREVA ANP-3127, Revision 1 Table 7-5: Tech. Spec. Criticality Limit P-T Limits (a) Criticality Limit Determination ONS-1 ONS-2 ONS-3 Pressure Temp.

Pressure Temp.

Pressure Temp.

(psig)

(F)

(psig)

(F)

(psig)

(F) 2398 250 2382 240 2390 240 2572 255 2553 245 2562 245 Interpolating Interpolating Interpolating 2500 252.9 2500 243.5 2500 243.2 (b) Criticality Limit P-T Limits ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing Temp Adjusted Temp Adjusted Temp Adjusted Pressure Pressure Pressure (0F)

(psi)

(OF)

(psi)

(OF)

(psi) 252.9 252.9 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 0

1124 1148 1213 1285 1364 1451 1547 1653 1771 1900 2044 2202 2374 2500 2655 2834 2978 2978 2978 2978 2978 2978 243.5 243.5 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 0

1126 1145 1210 1281 1360 1446 1542 1648 1764 1893 2035 2192 2365 2557 2755 2906 2984 2984 2984 2984 2984 2984 2984 2984 243.2 243.2 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 0

1128 1150 1215 1287 1366 1452 1548 1654 1770 1899 2041 2198 2372 2564 2773 2925 2984 2984 2984 2984 2984 2984 2984 2984 Page 30

Controlled Document A

AREVA ANP-3127, Revision 1 ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing Temp Adjusted Temp Adjusted Temp Adjusted Pressure Pressure Pressure (0F)

(psi)

(OF)

(psi)

(OF)

(psi) 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 2978 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 2984 Page 31

Controlled Document A

AREVA ANP-3127, Revision 1 ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing Temp Adjusted Temp Adjusted Temp Adjusted Pressure Pressure Pressure (0 F)

(psi)

(OF)

(psi)

(OF)

(psi) 550 2978 550 2984 550 2984 555 2978 555 2984 555 2984 560 2978 560 2984 560 2984 565 2978 565 2984 565 2984 570 2978 570 2984 570 2984 575 2978 575 2984 575 2984 580 2978 580 2984 580 2984 585 2978 585 2984 585 2984 590 2978 590 2984 590 2984 594 2978 594 2984 594 2984 598 2978 598 2984 598 2984 Page 32

Controlled Document A

AREVA ANP-3127, Revision 1 Table 7-6: Operational Constraints for Plant Heatup CONSTRAINT RC TEMPERATURE HEATUP RATE ALLOWED PUMP COMBINATION RC Temperature T < 2701F

< 30°F in any 1/2 hr period NA T _ 270°F

< 50°F in any 1/2 hr period NA RC Pumps T < 100OF NA No pumps 100°F < T < 300OF NA

_ two pumps T _> 300°F NA Any Table 7-7: Operational Constraints for Plant Cooldown CONSTRAINT RC TEMPERATURE COOLDOWN RATE ALLOWED PUMP COMBINATION RC Temperature T > 270°F

< 50°F in any 1/2 hr period NA 140OF < T < 270°F

< 25°F in any 1/2 hr period NA T<1400 F

_ 500F in any one hr period NA RCS depressurized

_ 50 °F in any one hr period NA T >_ 300OF NA Any RCPumps 100FT < 300OF NA

  • two pumps T < 100°F NA No pumps Page 33

Controlled Document A

AREVA ANP-3127, Revision 1 Figure 7-1: Tech. Spec. P-T Limits of ONS-1 for Normal Heatup and Criticality Limit 0

CI 0

0 C) 1~

0~cn C-)

C)

CU 2400 2000 1600 1200 800 400 0

0 50 100 150 200 250 300 350 Indicated RCS Inlet Temperature, OF Figure 7-2: Tech. Spec. P-T Limits of ONS-1 for Normal Cooldown 0,

0 0.

I-0 0

I..0.

U, C.)

~0 C)

CU

(.1

~0 2400 2000 1600 1200 800 400 0

0 50 100 150 200 250 300 Indicated RCS Inlet Temperature, OF Page 34

Controlled Document A

AREVA ANP-3127, Revision 1 Figure 7-3: Tech. Spec. P-T Limits of ONS-1 for ISLH Composite Curve (Heatup, Cooldown) 2400 2000 p

ISLH Composite (HU/CD) Curve 0.

0 I..

(h 0

I..

0~

U, C.,

0 (U

1600 -

ISLH Composite Temp.

Press.

(°F)

(psig) 60 553 105 553 110 610 115 752 120 774 170 774 170 1002 175 1103 190 1235 210 1483 230 1852 1200 1 800 400 i

0 0

50 100 150 200 250 300 Indicated RCS Inlet Temperature, OF Figure 7-4: Tech. Spec. P-T Limits of ONS-2 for Normal Heatup and Criticality Limit 0,0.

0 0,

0I..

0~

C,,

U 0

(U 2400 2000 1600 1200 800 400 0

0 50 100 150 200 250 300 350 Indicated RCS Inlet Temperature, OF Page 35

Controlled Document A

AREVA ANP-3127, Revision 1 Figure 7-5: Tech. Spec. P-T Limits of ONS-2 for Normal Cooldown So U.

Q 2400 2000 1600 1200 800 I

Normal Cooldown Temp.

Press.

('F)

(psig) 251 2365 241 2365 231 2039 211 1539 191 1203 190 1166 186 1138 176 1021 171 907 166 907 161 871 155 802 146 708 135 670 110 557 105 557 100 544 75 544 70 534 60 518 S-Composite CD Curve

___________________ I ___________________

400 -

0 0

50 100 150 200 250 300 Indicated RCS Inlet Temperature, *F Figure 7-6: Tech. Spec. P-T Limits of ONS-2 for ISLH Composite Curve (Heatup, Cooldown) 0/)

0 Co I-2400 2000 1600 1200 800 400 0

0 50 100 150 200 250 300 Indicated RCS Inlet Temperature, F Page 36

Controlled Document A

ANP-3127, Revision 1 AR EVA Figure 7-7: Tech. Spec. P-T Limits of ONS-3 for Normal Heatup and Criticality Limit 2400 Composite HU Curve Criticality Limit P-T Limit Curve 2000

/-___-___

(A Normal Heatup Criticality Limit Temp. Press.

Temp. Press.

1600

(*F) (psig)

(*F)

(psig) 60 528 243 0

105 528 243 1128 115 544 250 1215 120 552 260 1366 1200 170 552 270 1548 j

170 778 280 1770 190 970 290 2041 210 1215 300 2372 230 1548 U

800 250 2041 0 -260 2372 400 1-0 7

r 0

50 100 150 200 250 300 350 Indicated RCS Inlet Temperature, OF Figure 7-8: Tech. Spec. P-T Limits of ONS-3 for Normal Cooldown 2400 Normal Cooldown Temp.

Press.

-Composite CD Curve 2000 (F)

(psig) 2000 251 2365 241 2365 231 2051 211 1547 1600 191 1209 Ce 190 1172 C) 186 1143 176 1026

01.

171 910 o

1200 166 910 161 876 155 806 S

80 146 711 800 135 672 110 557 105 557 100 545 75 544 400 70 535 60 519 0

r 050 100 10 200 250 300 Indicated RCS Inlet Temperature, OF Page 37

Controlled Document A

AREVA ANP-3127, Revision 1 Figure 7-9: Tech. Spec. P-T Limits of ONS-3 for ISLH Composite Curve (Heatup, Cooldown) 2 4 0 0

-,I I

ISLH Composite (HU/CD) Curve 2000 ISLH Composite Temp.

Press.

I

(-F)

(psig) 60 557 1600 105 557 110 614 U)115 755 S)120 766 (L'

170 766 1200 170 1067 tt#180 1192 "I*200 1483 220 1850 800 240 2390 400 0

s0 100 150 200 250 300 Indicated RCS Inlet Temperature, *F Page 38

Controlled Document A

AR VA ANP-3127, Revision 1

8.0 REFERENCES

1.

Code of Federal Regulations, Title 10, Part 50 - Domestic Licensing of Production and Utilization Facilities, Appendix G - Fracture Toughness Requirements, Federal Register Vol. 60, No. 243, January 31, 2008

2.

American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code,Section XI, "Rules for Inservice Inspection of Nuclear Power Plant Components," Appendix G, "Fracture Toughness Criteria for Protection Against Failure," 1998 Edition with Addenda through 2000

3.

ASTM Standard E 208-81, "Standard Method for Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels," American Society for Testing and Materials, Philadelphia, PA

4.

AREVA NP Document BAW-10046A, Rev. 2, "Methods of Compliance with Fracture Toughness and Operational Requirements of I OCFR50, Appendix G," by H. W. Behnke et al., June 1986

5.

US Nuclear Regulatory Commission, "Radiation Embrittlement of Reactor Vessel Materials," Regulatory Guide 1.99, Revision 2, May 1988

6.

AREVA NP Document BAW-2241P-A, Rev. 2, "Fluence and Uncertainty Methodologies,"

7.

US Nuclear Regulatory Commission, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence," Regulatory Guide 1.190, March 2001

8.

AREVA NP Document BAW-2308, Rev. IA and Rev. 2A, "Initial RTNDT of LINDE 80 Weld Materials," by K. K. Yoon, August 2005 and March 2008

9.

Duke Energy to NRC Letter dated August 3, 2011 "Request for Exemption from Certain Requirements Contained in 10 CFR 50.61 and 10 CFR 50, Appendix G" (Accession No. ML11223A010)

10.

NRC Letter to Duke Energy dated March 30, 2012 "Oconee Nuclear Station, Units 1, 2 and 3 -

Environmental Assessment and Finding of No Significant impact related to the Proposed Exemption from the Requirements of Title 10 of the Code of Federal Regulations (10 CFR), Part 50.61 and 10CFR Part 50, Appendix G" (Accession No. ML120580101)

11.

AREVA NP Document BAW-2313 Rev. 6, "B&W Fabricated Reactor Vessel Materials and Surveillance Data Information," November 2008

12.

Timoshenko, S.P., and Goodier, J.N., "Theory of Elasticity," Third Edition, McGraw-Hill Book Company, 1970

13.

PVRC Ad Hoc Group on Toughness Requirements, "PVRC Recommendations on Toughness Requirements for Ferritic Materials," Bulletin No. 175, Welding Research Council, August 1972 Page 39

Controlled Document AR EVA ANP-3127, Revision 1 9.0 CERTIFICATION Pressure-Temlperature limits for the ONS-l, 2 and 3 reactor vessels have been calculated to satisfy the requirements of 10 CFR Part 50, Appendix G using analytical methods and acceptance criteria of the ASME Boiler and Pressure Vessel Code,Section XI, Appendix G, 1998 Edition with 2000 Addenda.

Silvester J. Noronha, Engineer IV Date Component Analysis and Fracture Mechanics Pei-Yuan Cheng, Engineer IlI Date Component Analysis and Fracture Mechanics This report has.been reviewed for technical content and accuracy.

Ashok D. Nana, Supervisor Date Component Analysis and Fracture Mechanics Verification of independent review.

Tim M. Wiger, Manager I Date Component Analysis and Fracture Mechanics

  • L. M. LESNIAK This report is approved for release L M iAK LAN 3M 1 "A Larry M. Lesniak. Proiect Manap-er Date Page 40