ML12333A239

From kanterella
Jump to navigation Jump to search
Core Operating Limits Report for Cycle 10 Operation Revision
ML12333A239
Person / Time
Site: Browns Ferry Tennessee Valley Authority icon.png
Issue date: 11/20/2012
From: James Shea
Tennessee Valley Authority
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
TVA-COLR-BF1C10, Rev 1
Download: ML12333A239 (53)


Text

Tennessee Valley Authority, 1101 Market Street, Chattanooga, Tennessee 37402 November 20, 2012 10 CFR 50.4 ATTN: Document Control Desk U.S. Nuclear Regulatory Commission Washington, D.C. 20555-0001 Browns Ferry Nuclear Plant, Unit 1 Facility Operating License No. DPR-33 NRC Docket No. 50-259

Subject:

Browns Ferry Nuclear Plant, Unit 1 Core Operating Limits Report for Cycle 10 Operation Revision In accordance with the requirements of Technical Specification 5.6.5.d, the Tennessee Valley Authority is submitting the Browns Ferry Nuclear Plant, Unit 1 Cycle 10, Core Operating Limits Report (COLR), Revision 1. Revision 1 of the Unit 1, Cycle 10, COLR revises a figure for a rated power and flow limit.

There are no new commitments contained in this letter. If you have any questions, please contact Terry Cribbe at (423) 751-3850.

Res

ully, Shea President, Nuclear Licensing

Enclosure:

Core Operating Limits Report, (105% OLTP), for Cycle 10 Operation TVA-COLR-BF1C10, Revision 1 cc: (w/Enclosure)

NRC Regional Administrator - Region II NRC Senior Resident Inspector - Browns Ferry Nuclear Plant Printed on recycled paper

Enclosure Tennessee Valley Authority Browns Ferry Nuclear Plant Unit 1 Core Operating Limits Report, (105% OLTP), for Cycle 10 Operation TVA-COLR-BFICIO, Revision I (See Attached)

EDMS L32 121114 800 QA Document Pages Affected: All BFE-3355, Revision 1 Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga, TN 37402 Browns Ferry Unit I Cycle 10 Core Operating Limits Report, (105% OLTP)

TVA-COLR-BFl ClO Revision i (Final)

(Revision Log, Page v)

November 2012 Prepared:

Verified:

'T"I. Eichenberg, Sr. Speciali B.l chell, Engineer Approved:

/

r G. C. Storey, Mana~fr, BWR Fuel Engine(

Reviewed:

Date:,t&.

/'7(

t/

Date:

/,

Date:

(1(14/ 17-.

ering Date:

ng Date:

\\

  • L W. R. Hayes, Manber, Reactor Engineeri Approved:

I Approved:

Date:

,I

EDMS: L32 121114 800 Reactor Engineering and Fuels - BWRFE Date: November 14, 2012 N PG 1101 Market Street, Chattanooga TN 37402 Table of Contents Total Number of Pages = 51 (including review cover sheet)

L ist o f T a b le s.................................................................................................................................................

iii L ist o f F ig u re s................................................................................................................................................

iv Revision Log...................................................................................................................................

v Nomenclature................................................................................................................................................

vi References..................................................................................................................................................

viii 1

Introduction........................................................................................................................

11 1.1.

Purpose.......................................................................................................................

11 1.2 Scope..........................................................................................................................

11 1.3 Fuel Loading...........................................................................................................

11 1.4 Acceptability...........................................................................................................

11 2

APLHG R Lim its..................................................................................................................

13 2.1 Rated Power and Flow Lim it: APLHG RRATED..........................................................

13 2.2 Off-Rated Power Dependent Lim it: APLHG Rp.......................................................

13 2.2.1 Startup without Feedwater Heaters.................................................................

13 2.3 Off-Rated Flow Dependent Lim it: APLHG RF..........................................................

13 2.4 Single Loop O peration Lim it: APLHG RSLO............................................................

13 2.5 Equipm ent O ut-Of-Service Corrections...................................................................

16 3

LHG R Lim its.......................................................................................................................

17 3.1 Rated Power and Flow Lim it: LHG RRATED...............................................................

17 3.2 Off-Rated Power Dependent Lim it: LHG Rp............................................................

17 3.2.1 Startup without Feedwater Heaters.................................................................

17 3.3 Off-Rated Flow Dependent Lim it: LHG RF...............................................................

18 3.4 Single Loop O peration Lim it: LHG RSLO................................................................

18 3.5 Equipm ent Out-Of-Service Corrections...................................................................

18 4

O LM CPR Lim its.................................................................................................................

29 4.1 Flow Dependent M CPR Lim it: M CPRF...................................................................

29 4.2 Power Dependent M CPR Lim it: M CPRp..............................................................

29 4.2.1 Startup without Feedwater Heaters.................................................................

29 4.2.2 Scram Speed Dependent Limits (TSSS vs. NSS vs. OSS).............................

30 4.2.3 Exposure Dependent Lim its............................................................................

30 4.2.4 Equipm ent Out-Of-Service (EOOS) Options..................................................

31 4.2.5 Single-Loop-O peration (SLO ) Lim its..............................................................

31 4.2.6 Below Pbypass Lim its.....................................................................................

31 5

Oscillation Power Range M onitor (O PRM ) Setpoint.....................................................

47 6

APRM Flow Biased Rod Block Trip Settings.................................................................

48 7

Rod Block M onitor (RBM ) Trip Setpoints and O perability..............................................

49 8

Shutdow n M argin Lim it.................................................................................................

51 Browns Fery Unit 1 Cyce 10 Core Operating Limits Report, (105% OLTP)

Page ii TVA-COLR-BFCl0, Revision 1 (Final)

EDMS: L32 121114 800 Reactor Engineering and Fuels - BWRFE Date: November 14, 2012 N PG 1101 Market Street, Chattanooga TN 37402 List of Tables N uclea r Fuel T ypes.....................................................................................................................

12 Startup Feedwater Temperature Basis...................................................................................

17 Nom inal Scram Tim e Basis....................................................................................................

30 MCPRp Limits for Optimum Scram Time Basis: ATRIUM-10................................................

33 MCPRp Limits for Optimum Scram Time Basis: GE 14.........................................................

34 MCPRp Limits for ATRIUM-1i0: Nominal Scram Time Basis................................................

35 MCPRp Limits for GE 14: Nominal Scram Time Basis..........................................................

37 MCPRp Limits for ATRIUM-10: Technical Specification Scram Time Basis.........................

39 MCPRp Limits for GE 14: Technical Specification Scram Time Basis..................................

41 Startup Operation MCPRp Limits for Table 3.1 Temperature Range 1 for ATRIUM-10: Technical Specification Scram Tim e Basis............................................................................................

43 Startup Operation MCPRp Limits for Table 3.1 Temperature Range 1 for GE 14: Technical Specification Scram Time Basis............................................................................................

44 Startup Operation MCPRp Limits for Table 3.1 Temperature Range 2 for ATRIUM-1 0: Technical Specification Scram Time Basis............................................................................................

45 Startup Operation MCPRp Limits for Table 3.1 Temperature Range 2 for GE 14: Technical Specification Scram Time Basis............................................................................................

46 O PRM Setpoint Range..........................................................................................................

47 Analytical RBM Trip Setpoints...............................................................................................

49 R B M Setpoint A pplicability....................................................................................................

49 Control Rod Withdrawal Error Results...................................................................................

50 Browns Feny Unit 1 Cyde 10 Core Operating Liits Report (105% OLTP)

Page iii TVA-COLR-BF1C10, Revision 1 (Final)

EDMS: L32 121114 800 Reactor Engineering and Fuels - BWRFE Date: November 14, 2012 0PG 1101 Market Street, Chattanooga TN 37402 List of Figures APLHG RRATED for ATRIUM -10 Fuel.......................................................................................

14 APLHG RRATED for G E 14 Fuel.................................................................................................

15 LHG RRATED for ATRIUM -1 0 Fuel............................................................................................

19 LHG RRATED for G E14 U0 2 Fuel..............................................................................................

20 Base Operation LHGRFACp for ATRIUM-1 0 Fuel................................................................

21 Base Operation LHGRFACp for GE 14 Fuel..........................................................................

22 LHG RFACF for ATRIUM -1 0 Fuel..........................................................................................

23 LHG RFACF for G E 14 Fuel...................................................................................................

24 Startup Operation LHGRFACp for ATRIUM-10 Fuel: Table 3.1 Temperature Range 1......

25 Startup Operation LHGRFACp for ATRIUM-10 Fuel: Table 3.1 Temperature Range 2......

26 Startup Operation LHGRFACp for GE 14 Fuel:

Table 3.1 Temperature Range 1............. 27 Startup Operation LHGRFACp for GE 14 Fuel:

Table 3.1 Temperature Range 2............. 28 MCPRF for GE 14 and ATRIUM-10 Fuel...................................................

32 Browns Ferry Unit 1 Cycde 10 ComOperagngLimitsRexxt, (105% OLTP)

Page iv TVA-COLR-BF1C10, Revision 1 (Final)

EDMS: L32 121114 800 Date: November 14, 2012

[M ?iNPG Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402 Revision Log Number I Page I Description 1-R1 viii Revised Reference 3 to point at standard GE LHGR limits for GE 14C.

1-R2 20 Revised Figure 3.2 to utilize the standard GNF LHGR limits.

0-RO All New document.

Brown¶s FeffyUnit Cycle10 Core Operating LhftReport (105% OLTP)

Page v TVA-COLR-BFlCl0, Revision 1 (Final)

EDMS: L32 121114 800 Date: November 14, 2012 IM

~NPG Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402 Nomenclature APLHGR APRM AREVA NP Average Planar LHGR Average Power Range Monitor Vendor (Framatome, Siemens)

Beginning of Cycle Backup Stability Protection Boiling Water Reactor BOC BSP BWR CAVEX CD CMSS COLR CPR CRWE CSDM DIVOM EOC EOCLB EOOS FFTR FFWTR FHOOS ft GNF GWd HTSP ICA ICF IS kW Core Average Exposure Coast Down Core Monitoring System Software Core Operating Limits Report Critical Power Ratio Control Rod Withdrawal Error Cold SDM Delta CPR over Initial CPR vs. Oscillation Magnitude End of Cycle End-of-Cycle Licensing Basis Equipment OOS Final Feedwater Temperature Reduction Final Feedwater Temperature Reduction Feedwater Heaters OOS Foot: english unit of measure for length Vendor (General Electric, Global Nuclear Fuels)

Giga Watt Day High TSP Interim Corrective Action Increased Core Flow (beyond rated)

In-Service kilo watt: SI unit of measure for power.

License Condition of Operation Loss of Feedwater Heating LHGR Multiplier (Power or Flow dependent)

Low Power Range Monitor Generator Load Reject, No Bypass LCO LFWH LHGRFAC LPRM LRNB MAPFAC MAPLHGR multiplier (Power or Flow dependent)

Browns Feny Unit 1 Cyde 10 Core Opeating Lirmit Report, (105% OLTP)

Page vi TVA-COLR-BFlCl0, Revision I (Final)

EDMS: L32 121114 800 Date: November 14, 2012

[M ?iNPG Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402 MCPR MSRV MSRVOOS MTU MWd/MTU NEOC NRC NSS NTSP OLMCPR OOS OPRM OSS PBDA Pbypass PLU PLUOOS PRNM RBM RPS RPT RPTOOS SDM SLMCPR SLO TBV TBVIS TBVOOS TIP TIPOOS TLO TSP TSSS TVA Minimum CPR Moisture Separator Reheater Valve MSRV OOS Metric Ton Uranium Mega Watt Day per Metric Ton Uranium Near EOC United States Nuclear Regulatory Commission Nominal Scram Speed Nominal TSP MCPR Operating Limit Out-Of-Service Oscillation Power Range Monitor Optimum Scram Speed Period Based Detection Algorithm Power, below which TSV Position and TCV Fast Closure Scrams are Bypassed Power Load Unbalance PLU OOS Power Range Neutron Monitor Rod Block Monitor Reactor Protection System Recirculation Pump Trip RPT OOS Shutdown Margin MCPR Safety Limit Single Loop Operation Turbine Bypass Valve TBV IS Turbine Bypass Valves OOS Transversing In-core Probe TIP OOS Two Loop Operation Trip Setpoint Technical Specification Scram Speed Tennessee Valley Authority Bftms Ferryunit 1 Cyle 10 Coreoperating UnitsReport, (105% OLTP)

Page vii rVA-COLR-BFlC1O, Revision 1 (Final)

EDMS: L32 121114 800 Reactor Engineering and Fuels - BWRFE Date: November 14, 2012 NPG 1101 Market Street, Chattanooga TN 37402 References

1.

ANP-3123, Revision 0, Browns Ferry Unit I Cycle 10 Reload Safety Report, AREVA NP, Inc., August, 2012.

2.

0000-01 13-6833-SRLR, Revision 1, Supplemental Reload Licensing Report Browns Ferry I Reload 8 Cycle 9, Global Nuclear Fuels, Inc., November 2010.

3.

MEF-TVA-ER1 071, GE 14C LHGR Limits for non-EPU Plants, Letter from M.

Fitzpatrick (GNF) to D. McNelley (TVA), Global Nuclear Fuels, Inc., June 28, 2011.

4.

ANP-2628(P), Rev. 0, Mechanical Design Report for Browns Ferry Units 1, 2, and 3 ATRIUM-10 Fuel Assemblies, AREVA NP, Inc., October 2011.

5.

ANP-3064(P) Revision 0, Browns Ferry Unit I Cycle 10 Plant Parameters Document, AREVA NP, Inc., June 2012.

6.

BFE-3352, Revision 0, Browns Ferry Unit I Cycle 10 Calculation File: Unit I Reload 9 Shuffle, Tennessee Valley Authority, September 05, 2012.

Methodology References

7.

NEDE-2401 1-P-A-16, General Electric Standard Application for Reactor Fuel, October 2007.

8.

NEDE-24011-P-A-16-US, General Electric Standard Application for Reactor Fuel (Supplement for United States), October 2007.

9.

XN-NF-81-58(P)(A) Revision 2 and Supplements 1 and 2, RODEX2 Fuel Rod Thermal-Mechanical Response Evaluation Model, Exxon Nuclear Company, March 1984.

10.

XN-NF-85-67(P)(A) Revision 1, Generic Mechanical Design for Exxon Nuclear Jet Pump BWR Reload Fuel, Exxon Nuclear Company, September 1986.

11.

EMF-85-74(P) Revision 0 Supplement I (P)(A) and Supplement 2(P)(A), RODEX2A (BWR) Fuel Rod Thermal-Mechanical Evaluation Model, Siemens Power Corporation, February 1998.

12.

ANF-89-98(P)(A) Revision 1 and Supplement 1, Generic Mechanical Design Criteria for BWR Fuel Designs, Advanced Nuclear Fuels Corporation, May 1995.

13.

XN-NF-80-19(P)(A) Volume 1 and Supplements 1 and 2, Exxon Nuclear Methodology for Boiling Water Reactors - Neutronic Methods for Design and Analysis, Exxon Nuclear Company, March 1983.

14.

XN-NF-80-19(P)(A) Volume 4 Revision 1, Exxon Nuclear Methodology for Boiling Water Reactors: Application of the ENC Methodology to BWR Reloads, Exxon Nuclear Company, June 1986.

15.

EMF-2158(P)(A) Revision 0, Siemens Power Corporation Methodology for Boiling Water Reactors: Evaluation and Validation of CASMO-4/MICROBURN-B2, Siemens Power Corporation, October 1999.

Browis Ferry Uni 1 Cyde 10 Core Opefating Urrift ReporL (105% OLTP)

Page viii TVA-COLR-BFlCl0, Revision I (Final)

EDMS: L32 121114 800 Reactor Engineering and Fuels - BWRFE Date: November 14, 2012 JNPG 1101 Market Street, Chattanooga TN 37402

16.

XN-NF-80-19(P)(A) Volume 3 Revision 2, Exxon Nuclear Methodology for Boiling Water Reactors, THERMEX: Thermal Limits Methodology Summary Description, Exxon Nuclear Company, January 1987.

17.

XN-NF-84-105(P)(A) Volume I and Volume 1 Supplements 1 and 2, XCOBRA-T: A Computer Code for BWR Transient Thermal-Hydraulic Core Analysis, Exxon Nuclear Company, February 1987.

18.

ANF-524(P)(A) Revision 2 and Supplements 1 and 2, ANF Critical Power Methodology for Boiling Water Reactors, Advanced Nuclear Fuels Corporation, November 1990.

19.

ANF-913(P)(A) Volume 1 Revision 1 and Volume 1 Supplements 2, 3 and 4, COTRANSA2: A Computer Program for Boiling Water Reactor Transient Analyses, Advanced Nuclear Fuels Corporation, August 1990.

20.

ANF-1 358(P)(A) Revision 3, The Loss of Feedwater Heating Transient in Boiling Water Reactors, Advanced Nuclear Fuels Corporation, September 2005.

21.

EMF-2209(P)(A) Revision 3, SPCB Critical Power Correlation, AREVA NP Inc.,

September 2009.

22.

EMF-2245(P)(A) Revision 0 Application of Siemens Power Corporation's Critical Power Correlations to Co-Resident Fuel, Siemens Power Corporation, August 2000.

23.

EMF-2361 (P)(A) Revision 0, EXEM BWR-2000 ECCS Evaluation Model, Framatome ANP Inc., May 2001, as supplemented by the site specific approval in NRC safety evaluation dated April 27, 2012.

24.

EMF-2292(P)(A) Revision 0, ATRIUMrm-10: Appendix K Spray Heat Transfer Coefficients, Siemens Power Corporation, September 2000.

25.

EMF-CC-074(P)(A), Volume 4, Revision 0, BWR Stability Analysis: Assessment of STAIF with Input from MICROBURN-B2, Siemens Power Corporation, August 2000.

26.

BAW-1 0255(P)(A), Revision 2, Cycle-Specific DIVOM Methodology Using the RAMONA5-FA Code, AREVA NP Inc., Inc., May, 2008.

PRNM Setpoint References

27.

Filtered Setpoints - EDE-28-0990 Rev. 3 Supplement E, "PRNM (APRM, RBM, and RFM) Setpoint Calculations [ARTS/MELLL (NUMAC) - Power-Uprate Condition] for Tennessee Valley Authority Browns Ferry Nuclear Plant", October 1997.

28.

Unfiltered Setpoints - EDE-28-0990 Rev. 2 Supplement E, "PRNM (APRM, RBM, and RFM) Setpoint Calculations [ARTS/MELLL (NUMAC) - Power-Uprate Condition]

for Tennessee Valley Authority Browns Ferry Nuclear Plant", October 1997.

29.

GE Letter LB#: 262-97-133, Browns Ferry Nuclear Plant Rod Block Monitor Setpoint Clarification - GE Proprietary Information, September 12, 1997.

Browns Ferry Unit 1 Cyde 10 Core Operating Limits Report, (105% OLTP)

Page ix TVA-COLR-BF1C10, Revision 1 (Final)

EDMS: L32 121114 800 Date: November 14, 2012 RE ?iNPG Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402

30.

NEDC-32433P, Maximum Extended Load Line Limit and ARTS Improvement Program Analyses for Browns Ferry Nuclear Plant Unit 1, 2, and 3, GE Nuclear Energy, April 1995.

Browns Ferry Unit 1 Cyde 10 Core OperWatng Limrts Report (105% OLTP)

Page x rVA-COLR-BF1C1O, Revision I (Final)

EDMS: L32 121114 800 Reactor Engineering and Fuels - BWRFE Date: November 14, 2012 1101 Market Street, Chattanooga TN 37402 I

Introduction In anticipation of cycle startup, it is necessary to describe the expected limits of operation.

1.1 Purpose The primary purpose of this document is to satisfy requirements identified by unit technical specification section 5.6.5. This document may be provided, upon final approval, to the NRC.

1.2 Scope This document will discuss the following areas:

> Average Planar Linear Heat Generation Rate (APLHGR) Limit (Technical Specifications 3.2.1 and 3.7.5)

> Linear Heat Generation Rate (LHGR) Limit (Technical Specification 3.2.3, 3.3.4.1, and 3.7.5)

> Minimum Critical Power Ratio Operating Limit (OLMCPR)

(Technical Specifications 3.2.2, 3.3.4.1, and 3.7.5)

> Oscillation Power Range Monitor (OPRM) Setpoint (Technical Specification Table 3.3.1.1)

> Average Power Range Monitor (APRM) Flow Biased Rod Block Trip Setting (Technical Requirements Manual Section 5.3.1 and Table 3.3.4-1)

> Rod Block Monitor (RBM) Trip Setpoints and Operability (Technical Specification Table 3.3.2.1-1)

> Shutdown Margin (SDM) Limit (Technical Specification 3.1.1) 1.3 Fuel Loading The core will contain previously exposed GNF GE14 fuel, and fresh AREVA NP, Inc., ATRIUM-10 fuel. Nuclear fuel types used in the core loading are shown in Table 1.1. The core shuffle and final loading were explicitly evaluated for BOC cold shutdown margin performance as documented in Reference 6.

1.4 Acceptability Limits discussed in this document were generated based on NRC approved methodologies per References 7 through 26.

Browns Ferry Unit 1 Cycle 10 Core a

Limits Report, (105% OLTP)

Page 11 TVA-COLR-BF1CIO, Revision 1 (Final)

EDMS: L32 121114 800 Date: November 14, 2012 EIM NPG Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402 Table 1.1 Nuclear Fuel Types*

Nuclear Original Number of Fuel Type Fuel Names Fuel Description Cycle Assemblies (NFT)

(Range)

GE14-P1ODNAB406-16GZ-10OT-150-T6-3078 8

40 14 JYE101-JYE148 GE14-P1ODNAB400-17GZ-10OT-150-T6-3081 8

64 15 JYE149-JYE244 GE14-P10DNAB406-15GZ-10OT-150-T6-3079 8

49 16 JYE245-JYE308 GE14-P1ODNAB417-16GZ-0O0T-150-T6-3082 8

32 17 JYE309-JYE356 GE14-P1ODNAB418-16GZ-10OT-150-T6-3080 8

48 18 JYE357-JYE428 GE14-P10DNAB408-16GZ-I0OT-150-T6-3363 9

179 1

JYP1l0-JYP280 GE14-P1ODNAB412-16GZ-10OT-150-T6-3364 9

40 2

JYP281-JYP320 GE14-PI0DNAB404-15GZ-10OT-150-T6-3365 9

16 8

JYP321-JYP336 GE14-P1ODNAB408-17GZ-10OT-150-T6-3366 9

16 19 JYP337-JYP352 ATRIUM-10 A10-3562B-14GV80-FAA 10 168 20 FAA001-FAA168 ATRIUM-10 A10-3676B-10GV80-FAA 10 24 21 FAA169-FAA192 ATRIUM-10 Al 0-4111 B-1 5GV80-FAA 10 88 22 FAA193-FAA280 The table identifies the expected fuel type breakdown in anticipation of final core loading. The final composition of the core depends upon uncertainties during the outage such as discovering a failed fuel bundle, or other bundle damage. Minor core loading changes, due to unforeseen events, will conform to the safety and monitoring requirements identified in this document.

Browns Ferry Unit 1 Cyle 10 Core Operating Liits Report, (105% OLTP)

Page 12 "VA-COLR-BFlCl0, Revision 1 (Final)

EDMS: L32 121114 800 Reactor Engineering and Fuels - BWRFE Date: November 14, 2012

NPG, 1101 Market Street, Chattanooga TN 37402 2 APLHGR Limits (Technical Specifications 3.2.1 & 3.7.5)

The APLHGR limit is determined by adjusting the rated power APLHGR limit for off-rated power, off-rated flow, and SLO conditions. The most limiting of these is then used as follows:

APLHGR limit = MIN (APLHGRp, APLHGRF, APLHGRsLo) where:

APLHGRp off-rated power APLHGR limit

[APLHGRRATED

  • MAPFACp]

APLHGRF off-rated flow APLHGR limit

[APLHGRpATED

  • MAPFACF]

APLHGRSLO SLO APLHGR limit

[APLHGRRATED

  • SLO Multiplier]

2.1 Rated Power and Flow Limit: APLHGRRATED The rated conditions APLHGR for ATRIUM-10 fuel is identified in Reference 1 and shown in Figure 2.1; for GE 14 fuel is identified in Reference 2, and shown in Figure 2.2.

2.2 Off-Rated Power Dependent Limit: APLHGRp Reference 1, for both GE14 and ATRIUM-10 fuel, does not specify a power dependent APLHGR. Therefore, MAPFACp is set to a value of 1.0.

2.2.1 Startup without Feedwater Heaters There is a range of operation during startup when the feedwater heaters are not placed into service until after the unit has reached a significant operating power level. No Additional power dependent limitation is required.

2.3 Off-Rated Flow Dependent Limit: APLHGRF Reference 1, for GE14 and ATRIUM-10 fuel, does not specify a flow dependent APLHGR.

Therefore, MAPFACF is set to a value of 1.0.

2.4 Single Loop Operation Limit: APLHGRSLO The single loop operation multiplier for ATRIUM-10 fuel is 0.85, per Reference 1; for GE 14 fuel the multiplier is 0.93 per Reference 2.

B4~MnS Feny Unit 1 Cycle 10 Page 13 BCwrr Ferry Unit 1ICyde 10 Core Operating Urrits Report (105% OLTP)

Page 13 TVA-C0LR-BF1C10, Revision 1 (Flml)

EDMS: L32 121114 800 Date: November 14, 2012

[M iNPG Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402 15 12

-jIL 9

6 3

0 0

20 40 60 Planar Average Exposure (GWd/MTU) 80 Planar Avg.

APLHGR Exposure Limit 0.0 12.5 15.0 12.5 67.0 7.3 Figure 2.1 APLHGRRATED for ATRIUM-10 Fuel Browns Ferry Unit 1 Cycle 10 Core Operating Umnis Report, (105% OLTP)

Page 14 TVA-COLR-BFlCl0, Revision I (Final)

EDMS: L32 121114 800 Date: November 14, 2012 EIM NPG Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402 15 12 o

3 0

0 20 40 60 80 Planar Average Exposure (GWd/MTU)

Planar Avg.

APLHGR 0.00 12.82 21.09 12.82 63.50 8.00 70.00 5.00 Figure 2.2 APLHGRRATED for GE 14 Fuel Browns Ferry Unit 1 Cyde 10 Core Opeting Linis Report (105% OLTP)

Page 15 "VA-COLR-BF1C10, Revision 1 (FM)

EDMS: L32 121114 800 Date: November 14, 2012

[M ~NPG Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402 2.5 Equipment Out-Of-Service Corrections The limits shown in Figure 2.1 and Figure 2.2 are applicable for operation with all equipment In-Service as well as the following Equipment Out-Of-Service (EOOS) options; including combinations of the options.

In-Service RPTOOS TBVOOS PLUOOS FHOOS (or FFWTR)

All equipment In-Service EOC-Recirculation Pump Trip Out-Of-Service Turbine Bypass Valve(s) Out-Of-Service Power Load Unbalance Out-Of-Service Feedwater Heaters Out-Of-Service or Final Feedwater Temperature Reduction Single Recirculation Loop Operation (SLO) requires the application of the SLO multipliers to the rated APLHGR limits as described previously.

'All equipment service conditions assume 1 SRVOOS.

Browns Feny Unit 1 Cycle 10 Corn Opating Lit Report (105% OLTP)

Page 16

[VA-COLR-BFlC10, Revision I (Fird)

EDMS: L32 121114 800 Date: November 14, 2012

[M iNPG Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402 3

LHGR Limits (Technical Specification 3.2.3, 3.3.4.1, & 3.7.5)

The LHGR limit is determined by adjusting the rated power LHGR limit for off-rated power and off-rated flow conditions. The most limiting of these is then used as follows:

LHGR limit = MIN (LHGRp, LHGRF) where:

LHGRp LHGRF LHGRSLo off-rated power LHGR limit off-rated flow LHGR limit SLO LHGR limit

[LHGRRATED

  • LHGRFACp]

[LHGRRATED

  • LHGRFACF]

[LHGRRATED* SLO Multiplier]

3.1 Rated Power and Flow Limit: LHGRRATED The rated conditions LHGR for ATRIUM-10 fuel is identified in Reference 1 and shown in Figure 3.1; for GE 14 fuel, is identified in Reference 3, and shown in Figure 3.2 for U02 fuel. Separate, concentration dependent limits apply for rods containing Gadolinium; LHGR limits are provided in Reference 3.

3.2 Off-Rated Power Dependent Limit: LHGRP LHGR limits are adjusted for off-rated power conditions using the LHGRFACp multiplier provided in Reference 1, for both ATRIUM-10 and GE 14 fuel. The multiplier is split into two sub cases: turbine bypass valves in and out-of-service. The multipliers are shown in Figure 3.3 and Figure 3.4.

3.2.1 Startup without Feedwater Heaters There is a range of operation during startup when the feedwater heaters are not placed into service until after the unit has reached a significant operating power level. Additional limits are shown in Figure 3.7 and Figure 3.8, based on temperature conditions identified in Table 3.1.

Table 3.1 Startup Feedwater Temperature Basis Temperature Power Range I Range 2

(% Rated)

(°F)

(-F) 25 160.0 155.0 30 165.0 160.0 40 175.0 170.0 50 185.0 180.0 Browns Ferry Unit 1 Cyde 10 Corn Operating Limib Report (105% OLTP)

Page 17 TVA-COLR-BFlClO, Revision I (Frial)

EDMS: L32 121114 800 Date: November 14, 2012

[M iNPG Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402 3.3 Off-Rated Flow Dependent Limit: LHGRF LHGR limits are adjusted for off-rated flow conditions using the LHGRFACF multiplier provided in Reference 1, for both ATRIUM-10 and GE 14 fuel. Multiplier are shown in Figure 3.5 and Figure 3.6.

3.4 Single Loop Operation Limit: LHGRSLO The single loop operation multiplier is 0.93, per Reference 2 for GE 14 fuel. There is no single loop operation restriction for ATRIUM-1 0; therefore the multiplier is 1.0.

3.5 Equipment Out-Of-Service Corrections The limits shown in Figure 3.1 and Figure 3.2 are applicable for operation with all equipment In-Service as well as the following Equipment Out-Of-Service (EOOS) options; including combinations of the options.*

In-Service RPTOOS TBVOOS PLUOOS FHOOS (or FFWTR)

SLO All equipment In-Service EOC-Recirculation Pump Trip Out-Of-Service Turbine Bypass Valve(s) Out-Of-Service Power Load Unbalance Out-Of-Service Feedwater Heaters Out-Of-Service or Final Feedwater Temperature Reduction Single Loop Operation, One Recirculation Pump Out--Of-Service Off-rated power corrections shown in Figure 3.3 and Figure 3.4 are dependent on operation of the Turbine Bypass Valve system. For this reason, separate limits are to be applied for TBVIS or TBVOOS operation. The limits have no dependency on RPTOOS, PLUOOS, FHOOS/FFWTR, or SLO.

Off-rated flow corrections shown in Figure 3.5 and Figure 3.6 are bounding for all EOOS conditions.

Off-rated power corrections shown in Figure 3.7 through Figure 3.10 are also dependent on operation of the Turbine Bypass Valve system. In this case, limits support FHOOS operation during startup. These limits have no dependency on RPTOOS, PLUOOS, or SLO.

  • All equipment service conditions assume 1 SRVOOS.

Browns Feny Unit1ICycle 10 Core Operaig Urnits Report, (105% OLTP)

Page 18 TVA-COLR-BFlCl0, Revision I (Final)

EDMS: L32 121114 800 Date: November 14, 2012 EIM NPG Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402 15 12

-j 9

6 3

0 0

20 40 60 80 Pellet Exposure (GWd/MTU)

Pellet LHGR Exposure Limit 0.0 13.4 18.9 13.4 74.4 7.1 Figure 3.1 LHGRRATED for ATRIUM-10 Fuel BrowisFeffy Unit I Cydel10 CoreOpeatng Urits Report, (105% OLTP)

Page 19 TVA-COLR-BFlC10, Revision 1 (Final)

EDMS: L32 121114 800 Date: November 14, 2012

[M ~NPG Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402 15 12 9

-J 3

0 0

20 40 60 Pellet Exposure (GWdlMTU)

Pellet LHGR Exposure Limit (GWd/MTU)

(kWIft) 0.00 13.40 16.00 13.40 63.50 8.00 70.00 5.00 Figure 3.2 LHGRRATED for GE14 U0 2 Fuel 80 Browis Fery Unit 1 Cyde 10 Core Operating Limits Report, (105% OLTP)

Page 20

-VA-COLR-BF1C10, Revison 1 (Final)

EDMS: L32 121114 800 Date: November 14, 2012

[M ~NPG Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402

-J 1.10 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 Turbine Bypass Valve In-Service, TBVIS

_"o-Turbine Bypass Valve Out-of-Service, TBVOOS TBVIS,
50% Core Flow TBVOOS,,< 50% Core Flow TBVIS, >50% Core Flow 7

TBVOOS, >50% Core Flow I

20 30 40 50 60 70 80 90 100 110 Core Power (% Rated)

Turbne Bypass In-Service Core Power LHGRFACp 100.0 1.00 65.0 077 30.0 0.61 Core Flow 5% Rated 30.0 1

0.48 25.0 T 0.44 Core Flow5 503%

Rated 30.0 1

0.51 25.0 0.47 Turbine Bypass Out-ofa Svice Core Power LHGRFACp 100.0 I

0.88 65.0 0-73 30.0 0.61 Core Flow~p 50 ae 30.0 1

0.41 25.0 0.36 Core Flowg 50 ae 30.0 1

0.49 25.0 J

0.43 Figure 3.3 Base Operation LHGRFACp for ATRIUM-10 Fuel (Independent of other EOOS conditions)

Browns Ferr Unit 1 Cycle 10 Core Operating LirUn Report (105% OLTP)

Page 21 "VA-COLR-BF1Cl0, Revision 1 (Fial)

EDMS: L32 121114 800 Date: November 14, 2012

[M 1iNPG Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402 a.

U 1.10 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 Turbine Bypas Valve In-Service TBVIS Turbine BypassValve Out-of-Serv cI TBVOOS TBVIS, s i0% Core Flow TBVOOS,!s 50% Core Flow TBVIS, > 50% Core Flow TBVOOS, >50% Core Flow 20 30 40 50 60 70 80 90 100 110 Core Power (% Rated)

Turbine Bypass In-Se'vce core Power iHGRFA*p 100.0 0.99 75.0 0.78 30-0 0.54 core RFl1w, 5" R 30.0 7

0.43 25.0 0.43 Core Flow ! 50% Rae 30.0 T 0.47 25.0 0.43 Turbine Bypass Out-of -Sevice Core Power LHGRFACp 75.0 0-76 30.0 I

0.34 25.0 0.39 25.0 0.39 Figure 3.4 Base Operation LHGRFACp for GE 14 Fuel (Independent of other EOOS conditions)

Bronis Ferry Unit I Cyde 10 Core Operating Urnits Report, (105% OLTP)

Page 22 TVA-COLR-BF1C10, Revision 1 (FM~al)

EDMS: L32 121114 800 Date: November 14, 2012

[M ?iNPG Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402 IU.

C.,

1.10 1.05 1.00 0.95 0.90 0.85 0.80 30 40 50 60 70 80 Core Flow (% Rated) 90 100 110 Core Flow LHGRFACF 30.0 0.87 55.4 1

107.0 1

Figure 3.5 LHGRFACF for ATRIUM-10 Fuel (Values bound all EOOS conditions)

(107.0% maximum core flow line is used to support 105% rated flow operation, ICF)

BrownsFerryUnit 1 Cyclel10 CoreOperating Urits Report, (105% OLTP)

Page 23 TVA-COLR-BF1Cl0, Revision 1 (Final)

EDMS: L32 121114 800 Date: November 14, 2012 IM ~NPG Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402 1.10 1.00 0.90 U.

0.80 0.70 0.60 0.50 30 40 50 60 70 80 90 100 110 Core Flow (% Rated)

Core Flow LHGRFACF 30.0 0.59 81.8 1

107.0 1

Figure 3.6 LHGRFACF for GE 14 Fuel (Values bound all EOOS conditions)

(107.0% maximum core flow line is used to support 105% rated flow operation, ICF)

Browns Feny Unit 1 Cycle 10 Core Operating Limits Report, (105% OLTP)

Page 24 TV-COLR-BF1Cl0, Revision I (Final)

EDMS: L32 121114 800 Date: November 14, 2012 IM NPG Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402 C,

.J 1.10 1.00 0.90 0.80 0.70 0.60 0.50 0.40 n ':A Turbine BypassValve In-ServiceI TBVIS e

-- Turbine Bypas Valve Out-of-Service, TBVOOS TBVIS, < 50% Core Flow TBVOOS,: <50% Core Flow TBVIS, > 50% Core Flow TBVOOS, > 50% Core Flow TIJ. *,*#%,#

20 30 40 50 60 70 80 90 100 110 Core Power (% Rated)

Turbine Bypass In-Service Core Power LHGRFACp 100.0 1.00 65.0 0.77 50.0 0.70 50.0 0.68 30.0 0.54 Core Flow 50% Rad 30.0 T 0.43 25.0 0.39 Come Flow 5 51% Rnad 30.0 T 0.46 25.0 0.41 Turbine Bypass Out-of-Service Core Power LIIGRFACp 100.0 0.88 65.0 0.73 50.0 0.67 50.0 0.66 30.0 0.54 Core Flow x-50% Rated 30.0 1

0.38 25.0 1

0.34 30.0 I

0.45 25.0 0.39 Figure 3.7 Startup Operation LHGRFACp for ATRIUM-10 Fuel:

Table 3.1 Temperature Range 1 (no Feedwater heating during startup)

Browns Feny Unit 1 Cyde 10 Corn Operating rts Reoxxt, (105% OLTP)

Page 25 TVA-COLR-BFIC1O, Revision I (Final)

EDMS: L32 121114 800 Date: November 14, 2012

[M IiNPG Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402 U--

-J 1.10 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 20 30 40 50 60 70 80 90 100 110 Core Power (% Rated)

Turbine Bypass In-Service Core Power LHGRFACp 100.0 11.00 65.0 0.77 50.0 0.70 50.0 0.68 30.0 0.52 Core Flow 3, 50% Raftd 30.0 0.43 25.0 0.38 Core Flow _ 5% Roated 30.0 T 0.45 25.0 0.41 Turbine Bypass Out-of-Service Core Power LHGRFACp 100.0 0.88 65.0 0.73 50.0 0.67 50.0 0.66 30.0 0.52 Core Flow 31 56% Ralled 30.0 0.38 25.0 0.34 Core Flow S 51% Rated 30.0 1

0.45 25.0 0.38 Figure 3.8 Startup Operation LHGRFACp for ATRIUM-1 0 Fuel:

Table 3.1 Temperature Range 2 (no Feedwater heating during startup)

B~nsFer~yunU C~e10 Page 26 Browns Ferry Uni 1 CyRte 10 Core operating Urnfts Report, (105% OLTP)

Page 26 TVA-C0LR-BF1CI0, Revision I (Fwid)

EDMS: L32 121114 800 Date: November 14, 2012

[M ?iNPG Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402 a.

U U-C,

~1 1.10 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 n

)A Turbine BypassValve In-Service, TBVIS Turbine Bypass Valve Out-of-Service, TBVOOS TBVIS, S&0% Core FLow TBVOOS, s 50% Core Flow TBVIS, > 50% Core Flow 7

TBVOOS, >50% Core Flow U.'.'.

20 30 40 50 60 70 80 90 100 110 Core Power (% Rated)

Turbine Bypass In-Sevice Core Power LHGRFACp 100.0 I

0.99 75.0 0.78 30.0 0.46 Core Flow > 50% Rated 30.0 T 0.39 25.0 0.35 Core Flow s 50% Reed 30.0 T 0-42 25.0 0.381 Turbine Bypass Out-of-Se&vic Core Power LHGRFACp 100.0 0.96 75.0 0.76 30.0 0.46 Core Flow 5%Rated 30.0 1

0.35 25.0 0.31 Core Flow <0% Raited 30.0 0.42 25.0 0.36 Figure 3.9 Startup Operation LHGRFACp for GE 14 Fuel:

Table 3.1 Temperature Range 1 (no Feedwater heating during startup)

I Bnrows Fery Unit 1 Cycle 10 Core Operaliigls Report, (105% OLTP)

Page 27 TVA-COLR-BF1C10, Revision 1 (Final)

EDMS: L32 121114 800 Date: November 14, 2012 0 ?iNPG Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402 9L U.-

1.10 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 20 30 40 50 60 70 80 90 100 110 Core Power (% Rated)

Tubine Bypass In-Service Core Power LHGRFACp 100.0 0.99 75.0 0.78 30.0 0.46 Cmre Flow 5>% Rated 30.0 -

0.39 25.0 0.35 Cre Flow S 50 Rmted 25.0 0.38 Tuibine Bypass Out-of-Service Core Power LHGRFACp 100.0 0.96 75.0 0.76 30.0 0.46 Core Flow > 58% Rated 30.0 1

0.35 25.0 0.31 Core Flow 50 Rated 30.0 0.42 25-0 0-36 Figure 3.10 Startup Operation LHGRFACp for GE 14 Fuel:

Table 3.1 Temperature Range 2 (no Feedwater heating during startup)

Bromr.Ferry UnkI CyielO0 CoreOpeiq T& ~kReport (105% OLTP)

Page 28 TVA-COLR-BFIC1O, Resion 1 (F'iK)

EDMS: L32 121114 800 Reactor Engineering and Fuels - BWRFE Date: November 14, 2012 NPG 1101 Market Street, Chattanooga TN 37402 4 OLMCPR Limits (Technical Specification 3.2.2, 3.3.4.1, & 3.7.5)

OLMCPR is calculated to be the most limiting of the flow or power dependent values OLMCPR limit = MAX ( MCPRF, MCPRp) where:

MCPRF core flow-dependent MCPR limit MCPRp power-dependent MCPR limit 4.1 Flow Dependent MCPR Limit: MCPRF MCPRF limits are dependent upon core flow (% of Rated), and the max core flow limit, (Rated or Increased Core Flow, ICF). MCPRF limits are shown in Figure 4.1, per Reference 1. Limits are valid for all EOOS combinations. No adjustment is required for SLO conditions.

4.2 Power Dependent MCPR Limit: MCPRp MCPRp limits are dependent upon:

" Core Power Level (% of Rated)

" Technical Specification Scram Speed (TSSS), Nominal Scram Speed (NSS), or Optimum Scram Speed (OSS)

" Cycle Operating Exposure (NEOC, EOC, and CD - as defined in this section)

" Equipment Out-Of-Service Options

" Two or Single recirculation Loop Operation (TLO vs. SLO)

The MCPRp limits are provided in the following tables, where each table contains the limits for all fuel types and EOOS options (for a specified scram speed and exposure range). The CMSS determines MCPRp limits, from these tables, based on linear interpolation between the specified powers.

4.2.1 Startup without Feedwater Heaters There is a range of operation during startup when the feedwater heaters are not placed into service until after the unit has reached a significant operating power level. Additional power dependent limits are shown in Table 4.8, Table 4.9, Table 4.10, and Table 4.11, based on temperature conditions identified in Table 3.1.

BitwisFerryUnitl CydalO Page 29 Browns Ferny Unit 1 Cye 10 Core Operating Umnits Report, (105% OLTP)

Page 29 TVA-C0LR-BF1C10, Revision 1 (Final)

EDMS: L32 121114 800 Date: November 14, 2012 DIMNPG Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402 4.2.2 Scram Speed Dependent Limits (TSSS vs. NSS vs. OSS)

MCPRp limits are provided for three different sets of assumed scram speeds. The Technical Specification Scram Speed (TSSS) MCPRp limits are applicable at all times, as long as the scram time surveillance demonstrates the times in Technical Specification Table 3.1.4-1 are met. Both Nominal Scram Speeds (NSS) and/or Optimum Scram Speeds (OSS) may be used, as long as the scram time surveillance demonstrates Table 4.1 times are applicable.*t Table 4.1 Nominal Scram Time Basis Notch Nominal Optimum Position Scram Timing Scram Timing (index)

(seconds)

(seconds) 46 0.420 0.380 36 0.980 0.875 26 1.600 1.465 6

2.900 2.900 In demonstrating compliance with the NSS and/or OSS scram time basis, surveillance requirements from Technical Specification 3.1.4 apply; accepting the definition of SLOW rods should conform to scram speeds shown in Table 4.1. If conformance is not demonstrated, TSSS based MCPRp limits are applied.

On initial cycle startup, TSSS limits are used until the successful completion of scram timing confirms NSS and/or OSS based limits are applicable.

4.2.3 Exposure Dependent Limits Exposures are tracked on a Core Average Exposure basis (CAVEX, not Cycle Exposure).

Higher exposure MCPRp limits are always more limiting and may be used for any Core Average Exposure up to the ending exposure. Per Reference 1, MCPRp limits are provided for the following exposure ranges:

BOC to NEOC BOC to EOCLB BOC to End of Coast NEOC corresponds to EOCLB corresponds to End of Coast 29,932.4 MWd / MTU 32,824.7 MWd / MTU 34,132.4 MWd / MTU NEOC refers to a Near EOC exposure point.

. Reference 1 analysis results are based on information identified in Reference 5.

t Drop out times consistent with method used to perform actual timing measurements (i.e., including pickup/dropout effects).

I I

Browns Ferry Unit 1 Cycle 10 Core Operating Limbt Report (105% OLTP)

Page 30 TVA-COLR-BF1 Cl 0, Revision I (Final)

EDMS: L32 121114 800 Date: November 14, 2012

[M 1NPG Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402 The EOCLB exposure point is not the true End-Of-Cycle exposure. Instead it corresponds to a licensing exposure window exceeding expected end-of-full-power-life.

The End of Coast exposure point represents a licensing exposure point exceeding the expected end-of-cycle exposure including cycle extension options.

4.2.4 Eguipment Out-Of-Service (EOOS) Options EOOS options* covered by MCPRp limits are given by the following:

In-Service RPTOOS TBVOOS RPTOOS+TBVOOS PLUOOS PLUOOS+RPTOOS PLUOOS+TBVOOS PLUOOS+TBVOOS+RPTOOS FHOOS (or FFWTR)

All equipment In-Service EOC-Recirculation Pump Trip Out-Of-Service Turbine Bypass Valve(s) Out-Of-Service Combined RPTOOS and TBVOOS Power Load Unbalance Out-Of-Service Combined PLUOOS and RPTOOS Combined PLUOOS and TBVOOS Combined PLUOOS, RPTOOS, and TBVOOS Feedwater Heaters Out-Of-Service (or Final Feedwater Temperature Reduction)

For exposure ranges up to NEOC and EOCLB, additional combinations of MCPRp limits are also provided including FHOOS. The coast down exposure range assumes application of FFWTR. FHOOS based MCPRp limits for the coast down exposure are redundant because the temperature setdown assumption is identical with FFWTR.

4.2.5 Sin-gle-Loop-Operation (SLO) Limits MCPRp limits, for both ATRIUM-10 and GE 14, are increased by 0.02 to support SLO, per Reference 1.

4.2.6 Below Pbypass Limits Below Pbypass (30% rated power), MCPRp limits depend upon core flow. One set of MCPRp limits applies for core flow above 50% of rated; a second set applies if the core flow is less than or equal to 50% rated.

  • All equipment service conditions assume 1 SRVOOS.

Browns Ferry Unit 1 Cyde 10 Core Operating Limits Report (105% OLTP)

Page 31 TVA-COLR-BF1C10, Revision 1 (Final)

EDMS: L32 121114 800 Date: November 14, 2012

[M NPG Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402 2.00 1.80 1.60 0.

C 1.40 1.20 1.00 30 40 50 60 70 80 90 100 110 Core Flow (% Rated)

Core Flow MCPRF 30.0 1.61 78.0 1.28 107.0 1.28 Figure 4.1 MCPRF for GE 14 and ATRIUM-10 Fuel (Values bound all EOOS conditions)

(107.0% maximum core flow line is used to support 105% rated flow operation, ICF)

Browns Fery Unit 1 Cycle 10 Core Operng Umits Report, (105% OLTP)

Page 32 TVA-COLR-BFlCl0, Revision 1 (Final)

EDMS: L32 121114 800

[M JiNPG Reactor Engineering and Fuels - BWRFE Date: November 14, 2012 1101 Market Street, Chattanooga TN 37402 Table 4.2 MCPRp Limits for Optimum Scram Time Basis: ATRIUM-10*

BOC BOC BOC opeat Power to to to End of Conditio

(% of rated)

NEOC EOCLB Coast 100 1.44 146 1.48 75 1.57 1.57 1.60 65 1.67 1.67 1.71 50 1.79 1.79 1.84 50 1.89 1.90 1.91 Base Case 40 1.96 1.98 2.04 30 2.21 221 2.32 30 at > 50%F 2.70 2.70 2.80 25 at > 50%F 2.96 2.96 3.09 30 at r. 50%F 2.56 2.56 2.65 25 at s 50%F 2.81 2.81 2.93 100 1.47 1.48 75 159 1.60 65 1.71 1.71 50 1.84 1.84 50 1.89 1.91 FHOOS 40 2.04 2.04 30 2.32 2.32 30 at > 50%F 2.80 2.80 25 at > 50%F 3.09 3.09 30 at s 50%F 2.65 2.65 25 at f 50%F 2.93 2.93

  • All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service. For single-loop operation, MCPRp limits will be 0.02 higher.

FFWTR/FHOOS is supported for the BOC to End of Coast limits.

Browns Ferry Unit 1 Cyde 10 Core Operating Lif Report, (105% OLTP)

Page 33 TVA-C0LR-BF1 C10, Revision I (Rnal)

EDMS: L32 121114 800 flIMNPG Reactor Engineering and Fuels - BWRFE Date: November 14, 2012 1101 Market Street, Chattanooga TN 37402 Table 4.3 MCPRp Limits for Optimum Scram Time Basis: GE 14" BOC SOC BOC operat Power to to to End of Condm*ion

(% of rated)

NEOC EOCLB Coast 100 1.45 1.47 1.49 75 1.58 1.58 1.61 65 1.68 1.8 1.72 50 1.84 1.84 50 1.90 1-90 1.92 Base Case 40 2.05 2.05 2.15 30 2.36 236 2.48 3D at > 50%F 2.89 2.89 3.02 25 at > 50%F 321 321 3.37 30 at r 50%F 2.83 2.83 2,94 25 atc

,50%F 3.11 3.11 3.26 100 1.48 1.49 75 1.61 1.61 65 1.72 1.72 50 50 1.92 1.92 FHOOS 40 2.15 2.15 30 2.48 2.48 30at > 50%F 3.02 3.02 25 at > 50%F 3.37 3.37 30 at r 50%F 2.94 2.94 25 at: <50%F 3.26 3.26 All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service. For single-loop operation, MCPRp limits will be 0.02 higher.

FFWTR/FHOOS is supported for the BOC to End of Coast limits.

Browns Ferry Unit I Cycle 10 Core Operating Units Report, (105% OLTP)

Page 34 "VA-COLR-BFIC10, Revision 1 (Final)

EDMS: L32 121114 800 EIM NPGj Reactor Engineering and Fuels - BWRFE Date: November 14, 2012 1101 Market Street, Chattanooga TN 37402 Table 4.4 MCPRp Limits for ATRIUM-1O: Nominal Scram Time Basis*

8oC BOC BOC Power to to to End of condkn

(% of rated)

NEOC EOCLB Coast 100 1.46 1.48 1.49 75 1.61 1.61 1.64 65 1.69 1.69 1.73 50 1.80 180 1.86 50 1.90 1.92 1.92 Base Case 40 1.98 1.99 206 30 223 2.23 2.35 30 at 3-50%F 2.70 2.70 2.80 25 at 50%F 2.96 2.96 3.09 30 atS 50%F 2.56 2.56 2.65 25 at s 50%F 2.81 2.81 2.93 100 1.50 1.52 1.53 75 1.65 1.65 1.66 65 1.74 1.74 1.77 50 1.85 1.85 1.90 50 1.90 1.92 1.92 TBVOOS 40 1.99 1.99 Z07 30 2.24 2-24 2.35 30 at > 50%F 3.25 3.25 3.39 25 at > 50%F 3.68 3.68 3.82 30 ato 50%

2.75 2.75 2,88 25 at r 50%F 3.16 3.16 3.32 100 1.49 1.49 75 1.62 1.64 65 1.73 1.73 50 1.86 1.86 50 1.90 1.92 FHOOS 40 2.06 2.06 30 2.35 2_35 30 at > 50%F 2.80 2.80 25 at > 50%F 3.09 3.09 30 at ' 50%F 2.65 2.65 25 at ' 50%F 2.93 2.93 100 1.46 1.48 1.49 75 1.61 1.61 1.64 65 1.81 1.84 1.84 50 50 1.90 1.92 1.92 PLUOOS 40 1.98 1.99 2.06 30 2.23 223 2.35 30 at > 50%F 2.70 270 2.80 25 at > 50%F 2.96 2.96 3.09 30 at 50%M 2.56 2.56 2.65 25 atS*, 5 2.81 2.81 2.93 All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service. For single-loop operation, MCPRp limits will be 0.02 higher.

FFWTR and FHOOS assume the same value of temperature drop. Consequently, FHOOS limits are not provided for BOC to End of COAST due to redundancy. Thermal limits for the "BOC to End of COAST" exposure applicability window are developed to conservatively bound FHOOS limits for earlier exposure applicability windows.

A 50% power step change for PLUOOS limits is not supported. When core power is 5 50%, the LRNB event is the same with, or without PLUOOS.

Browns FerryUnit1 Cyle 10 Core oertng UrrtReport~ (1105% OLTP)

Page 35 TVA-COLR-BFIC10, Revision 1 (Final)

EDMS: L32 121114 800

[M liNPG Reactor Engineering and Fuels - BWRFE Date: November 14, 2012 1101 Market Street, Chattanooga TN 37402 Table 4.4 MCPRp Limits for ATRIUM-10: Nominal Scram Time Basis (continued)*

BOC BOc 5OC Operatkig Power to to to End of CondiNon

(% of rated)

NEOC EOCLB Coast 100 1.52 1.53 75 1.65 1.66 65 1.77 1.77 50 1.90 50 1.90 1.92 raOOS 40 2.07 2.07 3D 2.35 2.35 30 at 50F 3.39 3.39 25 at> 50%F 3.82 3.82 30at9 50%F 2.86 2.86 25at 9 50%F 3.32 3.32 100 150 1.52 1.53 75 1.65 1.65 1.66 65 1.81 1.84 1.84 50 50 1.90 1.92 1.92 1BVOos 40 1.99 1.99 2.07 30 2.24 2.24 2.35 30 at > 50%F 325 3.25 3.39 25 at > 50%F 3.68 3.68 3.82 30 at 3 50%F 2.75 2.75 2.88 25 at 50%F 3.16 3.16 3.32 100 1.49 1.49 75 1.62 1.64 65 1.81 1.84 50 50 1.90 1.92 40 2.06 2.06 30 2.35 2.35 30 at > 50%F 2.80 2.80 25 at > 50%F 3.09 3.09 30 at 6 50%F 2.65 2.65 25 at s 50%F 2.93 2.93 100 1-52 1.53 75 1.65 1.66 65 1.81 1.84 50 TBVOOS 50 1.90 1.92 FHOOS 40 2.07 2.07 PLUOOS 30 2.35 2.35 30 at > 50%F 3.39 3.39 25 at > 50%F 3.82 3.82 30 at 950%F 2.88 2.88 25 at, 950%F 3.32 3.32 All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service. For single-loop operation, MCPRP limits will be 0.02 higher.

FFWTR and FHOOS assume the same value of temperature drop. Consequently, FHOOS limits are not provided for BOC to End of COAST due to redundancy. Thermal limits for the "BOC to End of COAST" exposure applicability window are developed to conservatively bound FHOOS limits for earlier exposure applicability windows.

A 50% power step change for PLUOOS limits is not supported. When core power is < 50%, the LRNB event is the same with, or without PLUOOS.

B~rowsFerryUnit ICycle 10 CoreOeiang Un~itsReport, (105% OLTP)

Page 36 TVA-COLR-BF1C10, Revision I (Final)

EDMS: L32 121114 800

[M liNPG Reactor Engineering and Fuels - BWRFE Date: November 14, 2012 1101 Market Street, Chattanooga TN 37402 Table 4.5 MCPRP Limits for GE 14: Nominal Scram Time Basis*

BEM BOM BOC Power to to to End of C

(% of rated)

NEOC EOCLB Coast 100 1.48 1.48 1.51 75 1.61 1.61 1.64 65 1.71 1.71 1.75 50 1.87 1.87 50 1.91 1.91 1.95 Base Case 40 2.08 2.08 2.18 30 2.39 2.39 2.51 30 at > 50%F 2.89 2.89 3.02 25 at > 50%F 321 3.21 3.37 30 at 9 50%F 2.83 2.83 2.94 25 at! ;50%F 3.11 3.11 326 100 1.52 1.52 1.54 75 1.65 1.65 1.67 65 1.76 1.76 1.79 50 1.88 1.88 50 1.91 1.91 1.96 TOVOOS 40 2-09 2.09 2.18 30 2.39 2.39 2.51 30 at > 50%F 3.31 3.31 3.47 25 at > 50%F 3.76 3.76 3.91 30 at' 50%F 2-96 2.96 3.15 25 at 9 50%M 3.45 3.45 3.64 100 1.51 1.51 75 1.64 1.64 65 1.75 1.75 50 50 1.95 1.95 FHOOS 40 2.18 2.18 30 2.51 2.51 30at > 50%F 3.02 3.02 25 at> Sow 3.37 3.37 30 at, 950%F 2.94 2.94 25 at s 50%F 326 326 100 1.48 1.48 1.51 75 1.61 1.61 1.64 65 1.82 1.83 1.83 so 50 1.91 1.91 1.95 PLUS00 40 2.08 2.08 2.18 30 2.39 2.39 2.51 30 at > 50%F 2.89 2.89 3.02 25 at > 50%F 3.21 321 3.37 30 at!9 50%F 2.83 2.83 2.94 25 atg 50%

3.11 3.11 326

" All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service. For single-loop operation, MCPRp limits will be 0.02 higher.

FFWTR and FHOOS assume the same value of temperature drop. Consequently, FHOOS limits are not provided for BOC to End of COAST due to redundancy. Thermal limits for the "BOC to End of COAST" exposure applicability window are developed to conservatively bound FHOOS limits for earlier exposure applicability windows.

A 50% power step change for PLUOOS limits is not supported. When core power is < 50%, the LRNB event is the same with, or without PLUOOS.

Browns Feny Unit I Cycle 10 Core operating Lnits Report, (105% OLTP)

Page 37 TVA-COLR-BFlCl0, Revision 1 (Final)

EDMS: L32 121114 800 EIMNPG Reactor Engineering and Fuels - BWRFE Date: November 14, 2012 1101 Market Street, Chattanooga TN 37402 Table 4.5 MCPRp Limits for GE 14: Nominal Scram Time Basis (continued)*

BOC BOC BOC operati" Power to to to End of ConitMio C% of rated)

NEOC EOCLB Coast 100 1.54 1.54 75 1.67 1.67 65 1.79 1.79 50 50oss 1.96 1.96 TBVOOS 40 2.18 2.16 30 2.51 2.51 30 at > 50%F 3.47 3.47 25 at > 50%F 3.91 3.91 30 at ; 50%F 3.15 3.15 25 at it50%F 3.64 3.64 100 1.52 1.52 1.54 75 1.65 1.65 1.67 65 1.82 1.83 1.83 50 TUVOGS 50 1.91 1.91 1.96 40 2.09 2.09 2.18 30 2.39 2.39 2.51 30at>50%F 3.31 3.31 3.47 25 at > 50%F 3.76 3.76 3.91 30 at :50%M 2.98 2.98 3.15 25at50%F 3.45 3.45 3.64 100 1.51 1.51 75 1.64 1.64 65 182 1.83 so FHOOS 50 1.95 1.95 Piuoos 40 2.18 2.18 30 2.51 2.51 30 at > 50%F 3.02 3.02 25 at > 50%F 3.37 3.37 30 at1:650%F 2.94 2.94 25 at 9 50%F 326 326 100 1.54 1.54 75 1.67 1.67 65 1.82 1.83 50 TBVOOS 50 1.96 1.96 HiOOS 40 2.18 2.18 PLUOOS 30 2.51 2.51 30 at > 50%F 3.47 3.47 25 at > 50%F 3.91 3.91 30 at r. 5 F

3.15 3.15 1 25 at 9 50%F 3.64 3.64

  • All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service. For single-loop operation, MCPRP limits will be 0.02 higher.

FFWTR and FHOOS assume the same value of temperature drop. Consequently, FHOOS limits are not provided for BOC to End of COAST due to redundancy. Thermal limits for the "BOC to End of COAST" exposure applicability window are developed to conservatively bound FHOOS limits for earlier exposure applicability windows.

A 50% power step change for PLUOOS limits is not supported. When core power is < 50%, the LRNB event is the same with, or without PLUOOS.

Browns Feny Unit 1 Cycle 10 Core Opeating Lmnits Report, (105% OLTP)

Page 38 TVA-C0_R-BFl1Cl0, Revision 1 (Final)

EDMS: L32 121114 800 EIM NPG Reactor Engineering and Fuels - BWRFE Date: November 14, 2012 1101 Market Street, Chattanooga TN 37402 Table 4.6 MCPRp Limits for ATRIUM-I0: Technical Specification Scram Time Basis*

BOC BOC BOG Opera" Power to to to End of Con

(% of rated)

NEOC EOCLB Coast 100 1.49 1.50 1.52 75 1.62 1.63 1.65 65 1.71 1.71 1.75 50 1.82 1 82 1.87 50 1.91 1.93 1,93 Base Case 40 1.99 2.00 2.08 30 2.26 226 237 30 at > 50%F 2.70 2.70 2.80 25 at > 50%F 2.96 2.96 3.09 30 at 1 50%F 2.56 2.56 2.65 25 att 50%F 2.81 2.81 2.93 100 1.53 1.54 1.56 75 1.6 1-67 1.69 65 1.76 1.76 1.79 50 1.87 1.87 1.92 50 1.91 1.93 1.93 TBVOOS 40 2.01 2.01 2.10 30 2.27 2.27 2.38 30 at > 50%F 3.25 325 3.39 25 at > 50%F 3.68 3.68 3.82 30 at 9 50%F 2.75 2.75 2.88 25at s 50%F 3.16 3.16 3.32 100 1.52 1.52 75 1.65 1.65 65 1.75 1.75 50 1.87 1 87 50 1.91 1.93 FHOOS 40 2.06 2.06 30 2.37 2.37 30 at > 50%F 2.80 2.80 25 at > 50%F 3.09 3.09 30 at i 50%F 2.65 2.65 25 at 9 50%F 2.93 2.93 100 149 1.50 1.52 75 1.62 1.63 1.65 65 1.82 1A86 1.86 50 50 1.91 1.93 1.93 PLUOOS 40 1.99 2.00 2.08 30 2.26 2.26 2.37 30 at > 50%F 2.70 2.70 2.80 25 at > 50%F 2.96 2.96 3.09 30 at s; 50%F 2.56 2.56 2.65 25 at % 50%F 2.81 2.81 2.93 All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service. For single-loop operation, MCPRp limits will be 0.02 higher.

FFWTR and FHOOS assume the same value of temperature drop. Consequently, FHOOS limits are not provided for BOC to End of COAST due to redundancy. Thermal limits for the "BOC to End of COAST" exposure applicability window are developed to conservatively bound FHOOS limits for earlier exposure applicability windows.

A 50% power step change for PLUOOS limits is not supported. When core power is < 50%, the LRNB event is the same with, or without PLUOOS.

Browns Ferry Unit I Cyce 10 Core Operating Limits Report, (105% OLTP)

Page 39 TVA-COLR-BF1C10, Revision I (Final)

EDMS: L32 121114 800

[M ~NPG Reactor Engineering and Fuels - BWRFE Date: November 14, 2012 1101 Market Street, Chattanooga TN 37402 Table 4.6 MCPRp Limits for ATRIUM-I0: Technical Specification Scram Time Basis (continued)"

BOC BOC BOC operating Power to to to End of Conditon

(% of rated)

NEOC EOCLB Coast 100 1.55 1.56 75 1.68 1.69 65 1-79 1.79 50 1.92 IDVOOS 50 1.92 1.93 40 2.10 2.10 30 238 2.38 30at > 50%F 3.39 3.39 25 at > 50%F 3.82 3.82 30 at 9 50%F 288 2.68 25 at 6 50%F 3.32 3.32 100 1.53 1.54 1.56 75 1.66 1.67 1.69 65 1.82 1.86 1.86 50 50 1.91 1.93 1.93 v'uooS 40 2.01 2.01 2.10 30 2.27 2.27 2.38 30 at > 50%F 3.25 3.25 3.39 25 at > 50%F 3.68 3.68 3.82 30 at c 50%F 2.75 2.75 2.68 25 at f50%F 3.16 3.16 3.32 100 1.52 1.52 75 1.65 1.65 65 1.82 1.66 50 FHOOS 50 1-91 1.93 PLUGOS 40 2.08 2.08 30 2.37 237 30at > 50%F 2.80 2.80 25at > 50%F 3.09 3.09 30 at j 50%F 265 2.65 25ao s 50%F 2.93 2.93 100 1.55 1.56 75 1.68 1.69 65 1.82 1.86 50 TiVOOS 50 1.92 1.93 FHOOS 40 2.10 2.10 PLUOOS 30 236 2.38 30 at > 50%F 3.39 3.39 25 at - 50%F 3.82 3.82 30 at 50%F 2.88 2.88 25 at 50%F 3.32 3.32 All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service. For single-loop operation, MCPRP limits will be 0.02 higher.

FFWTR and FHOOS assume the same value of temperature drop. Consequently, FHOOS limits are not provided for BOC to End of COAST due to redundancy. Thermal limits for the "BOC to End of COAST" exposure applicability window are developed to conservatively bound FHOOS limits for earlier exposure applicability windows.

A 50% power step change for PLUOOS limits is not supported. When core power is < 50%, the LRNB event is the same with, or without PLUOOS.

Browns Feran Unit 1 Cycle 10 Core Operating Limits Report, (105% OLTP)

Page 40 TVA-COLR-BFIC10, RevWon 1 (Final)

EDMS: L32 121114 800

[MI NPG Reactor Engineering and Fuels - BWRFE Date: November 14, 2012 1101 Market Street, Chattanooga TN 37402 Table 4.7 MCPRp Limits for GE 14: Technical Specification Scram Time Basis*

BOC BOC BOC operat Power to to to End of Condition

(% of rated)

NEOC EOCLB Coast 100 1.50 1.50 1.54 75 1.65 1.65 1.67 65 1.73 1.73 1.76 50 1.89 1.89 50 1.92 1.92 1.97 Base Case 40 2.11 2.11 220 30 2.41 2.41 2.,54 30 at > 50%M 2.89 2.89 3.02 25 at > 50%F 3.21 3.21 3.37 30 at 50%F 2.83 2.83 2.94 25 at 950%F 3.11 3.11 3.26 100 1-54 1.55 1.57 75 1.69 1.69 1.70 65 1.78 1.78 1.81 50 1.91 1.91 50 1.92 1.92 1.99 TBVOOS 40 2.12 2.12 221 30 2.41 2.41 2.54 30 at>,50%F 3.31 3.31 3.47 25 at > 50%F 3.76 3.76 3.91 30 at 50%

2.98 2.96 3.15 25 atO 50%F 3.45 3.45 3.64 100 1.54 1.54 75 1.67 1.67 65 1.76 1.76 5D 50 1.97 1.97 FIHOOS 40 2.20 2.20 30 2.54 2.54 30 at > 50%F 3.02 3.02 25 at > 50%F 3.37 3.37 3D at t 50%F 2.94 2.94 25 at 950%F 3.26 3.26 100 1.50 1.50 1.54 75 1.65 1.65 1.67 65 1.83 1.85 1.865 50 50 1.92 1.92 1.97 PLUOOS 40 2.11 2.11 2.20 30 2.41 2.41 2.54 30 at > 50%F 2.89 2.89 3.02 25 at > 50%F 3.21 3.21 3.37 30 at r 50%F 2.83 283 2.94 25 at r.50%

3.11 3.11 326

" All limits, including "Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service. For single-loop operation, MCPRp limits will be 0.02 higher.

FFWTR and FHOOS assume the same value of temperature drop. Consequently, FHOOS limits are not provided for BOC to End of COAST due to redundancy. Thermal limits for the "BOC to End of COAST" exposure applicability window are developed to conservatively bound FHOOS limits for earlier exposure applicability windows.

A 50% power step change for PLUOOS limits is not supported. When core power is < 50%, the LRNB event is the same with, or without PLUOOS.

Browns Ferry Unit 1 Cyde 10 Co Opeting Limits Report (105% OLTP)

Page 41 TVA-COLR-BFlC1O, Revision 1 (Final)

EDMS: L32 121114 800

[M NPG Reactor Engineering and Fuels - BWRFE Date: November 14, 2012 1101 Market Street, Chattanooga TN 37402 Table 4.7 MCPRp Limits for GE 14: Technical Specification Scram Time Basis (continued)*

BOC BOC 8OC Power to to to End of Condar)n

(% of rated)

NEOC EOC.B Coast 100 1.57 1.57 75 1.70 1.70 65 1.81 1.61 50 T5VOOS s0 1.99 1.99 40 221 221 30 2.54 2.54 30 at > 50%F 3.47 3.47 25 at > 50%F 3.91 3.91 30 at-i50%F 3.15 3.15 25at i 50%F 3.64 3.64 100 1.54 1.55 1.57 75 1.69 1.69 1.70 65 1.83 1.85 1.85 50 TBVOOS 50 1.92 1.92 1.99 rU0os 40 2.12 2.12 2.21 30 2.41 2.41 2.54 30 at > 50%F 3.31 3.31 3.47 25 at > 50%F 3.76 3.76 3.91 3D at s 50%F 2.98 2.98 3.15 25 at 50%

3.45 345 3.64 100 1.54 1.54 75 1.67 1.67 65 1.83 1.85 50 50 1.97 1.97 FHOOS 40 2.20 2.20 30 2.54 2.54 30at > 50%F 3.02 3.02 25 at > 50%F 3.37 3.37 30 at - 50%F 2.94 2.94 25 at 50%F 3.26 3.26 100 1.57 1.57 75 1.70 1.70 65 183 1.85 50 TBVOOS 50 1.99 1.99 FItOOS 40 2"21 2.21 PLU OOS 30 2.54 2.54 30 at >50%F 3.47 3.47 25 at > 50%F 3.91 3.91 30 at ic 50%F 3.15 3.15 25 at j; 50%F 3.64 3.64 All limits, including 'Base Case," support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service. For single-loop operation, MCPRp limits will be 0.02 higher.

FFWTR and FHOOS assume the same value of temperature drop. Consequently, FHOOS limits are not provided for BOC to End of COAST due to redundancy. Thermal limits for the "BOC to End of COAST" exposure applicability window are developed to conservatively bound FHOOS limits for earlier exposure applicability windows.

A 50% power step change for PLUOOS limits is not supported. When core power is s 50%, the LRNB event is the same with, or without PLUOOS.

Browns Ferry Unit 1 Cycle 10 Core Operating Limits Report, (105% OLTP)

Page 42 TVA-COLR-BFIC10, Revision 1 (Final)

EDMS: L32 121114 800

[M ?iNPG Reactor Engineering and Fuels - BWRFE Date: November 14, 2012 1101 Market Street, Chattanooga TN 37402 Table 4.8 Startup Operation MCPRp Limits for Table 3.1 Temperature Range 1 for ATRIUM-10: Technical Specification Scram Time Basis*

BOC BOC BOC Power to to to End of Con

(% of rated)

NEOC EOCLB Coast 100 1.52 1.52 1.52 75 1,65 1.65 1.65 65 1.82 1.86 1.86 50 50 2.02 2.02 2.02 TBVIS 40 2.30 2.30 2.30 30 2.64 2,64 2.64 30 at > 50%F 3.07 3.07 3.07 25 at > 0%F 3.42 3.42 3.42 30 at, 50%F 2.8B 2.88 2.88 25 at r. 50%F 3.23 3.23 3.23 100 1.55 1.56 1.56 75 1.68 1.69 1.69 65 1.82 1.86 1.86 50 50 203 2.03 2.03 TBVOOS 40 2.31 2.31 2.31 30 2.63 2.63 2.63 30 at > 50%F 3.61 3.61 3.61 25 at > 50%F 4.06 4.06 4.06 30 at s 50%F 3.07 3.07 3.07 25 at r 50%F 3.57 3.57 3.57 Limits support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service. For single-loop operation, MCPRp limits will be 0.02 higher.

Limits are applicable for all other EOOS scenarios, apart from TBV.

Browns Ferry Unit I Cyde 10 Core Operating Limits Report, (105% OLTP)

Page 43 "VrA-COLR-BF1C10, Revision 1 (Final)

EDMS: L32 121114 800 U2 IiNPG Reactor Engineering and Fuels - BWRFE Date: November 14, 2012 1101 Market Street, Chattanooga TN 37402 Table 4.9 Startup Operation MCPRp Limits for Table 3.1 Temperature Range 1 for GE 14: Technical Specification Scram Time Basis*

BOC BOC BOC Power to to to End of Condee

(% of rated)

NEOC EOCLB Coast 100 1,54 1.54 1,54 75 1.67 1.67 1.67 65 1.83 1.85 1.85 50 50 2.16 2.16 2.16 TBVIS 40 2.44 2.44 2.44 30 2.83 2.83 2.83 30 at > 50%F 3.32 3.32 3.32 25 at > 50%F 3.75 3.75 3.75 30 atS 50%F 321 3.21 321 25 at' 50%F 3.61 3.61 3.61 100 1.57 1.57 1.57 75 1.70 1.70 1.70 65 1.83 1.85 1.85 50 s o 50 2.17 2.17 2.17 TBVOOS 40 2.44 2.44 2.44 30 2.80 2.80 2.80 30 at > 50%F 3.72 3.72 3.72 25 at > 50%F 421 421 4.21 30 at,50%F 3.37 3.37 3.37 25 at r 50%F 3-94 3.94 3.94

" Limits support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service. For single-loop operation, MCPRp limits will be 0.02 higher.

Limits are applicable for all other EOOS scenarios, apart from TBV.

Browns Ferry Unt 1 Cycle 10 Core Operating Limits Report (105% OLTP)

Page 44 TVA-COL-BFlCl0, Revision 1 (Final)

EDMS: L32 121114 800 0 /iNPG Reactor Engineering and Fuels - BWRFE Date: November 14, 2012 1101 Market Street, Chattanooga TN 37402 Table 4.10 Startup Operation MCPRp Limits for Table 3.1 Temperature Range 2 for ATRIUM-1 0: Technical Specification Scram Time Basis*

BOC OC BMOC operat Power to to to End of Condtio

(% of rated)

NEOC EOCLB Coast 100 1.52 1.52 1.52 75 1.65 1.65 1.65 65 1.82 1.86 1.86 50 50 2.03 2.03 2.03 TSVIS 40 2.31 2.31 2.31 30 2.66 2.66 2.66 30 at > 50%F 3.09 3.09 3.09 25 at > 50%F 3.44 3.44 3.44 30 at r 50%F 2.91 2.91 2.91 25 at r 50%F 3.25 325 3.25 100 1.55 1.56 1.56 75 1.68 1.69 1.69 65 1.82 1.86 1.86

50) 50 204 2.04 2-04 W'VOOS 40 232 2.32 2.32 30 2.65 2.65 2.65 30 at > 50%F 3.62 3.62 3.62 25 at > 50%F 4.08 4.08 4.08 30 at a 50%F 3.09 3.09 3.09 25 at.a,:

50%F 3.58 3.58 3.58

" Limits support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service. For single-loop operation, MCPRP limits will be 0.02 higher.

Limits are applicable for all other EOOS scenarios, apart from TBV.

Browns Ferry Unit 1 Cycle 10 Core Operating ULnits Report, (105% OLTP)

Page 45 TVA-COLR-BFlCl0, Revision 1 (Final)

EDMS: L32 121114 800

[M iNPG Reactor Engineering and Fuels - BWRFE Date:

November 14, 2012 1101 Market Street, Chattanooga TN 37402 Table 4.11 Startup Operation MCPRp Limits for Table 3.1 Temperature Range 2 for GE 14: Technical Specification Scram Time Basis*

BOC BOC BOC Power to to to End of Condition C% of rated)

NEOC EOCLB Coast 100 1.54 1.54 1.54 75 1.67 1.67 1.67 65 1.83 1.85 1.85 50 50 2.17 2.17 2.17 TBvIS 40 2.46 246 2.46 30 2.85 2.85 2.85 30 at > 50%F 3.34 3.34 3.34 25 at > 50%F 3.77 3.77 3.77 30 at 50%

3.23 3.23 323 25 at s: 50%F 3.63 3.63 3.63 100 1.57 1.57 1.57 75 1.70 1.70 1.70 65 1.83 185 1.85 50 50 2.18 2.18 2.18 TBVOOS 40 2.45 2.45 2.45 30 2.82 2.82 2.82 30 at > 50%F 3.73 3.73 3.73 25 at > 50%F 423 4.23 4.23 30 at:,50%F 3.39 3.39 3.39 25 at s; 50%I 3.96 3.96 3.96 Limits support RPTOOS operation; operation is supported for any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service. For single-loop operation, MCPRp limits will be 0.02 higher.

Limits are applicable for all other EOOS scenarios, apart from TBV.

Brors FerryUnit1ICyle 10 Coreoerating Limits Report, (105% OLTP)

Page 46 TVA.COLR-BFlCIO, Revision 1 (Final)

EDMS: L32 121114 800 Date: November 14, 2012 U 1iNPG Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402 5

Oscillation Power Range Monitor (OPRM) Setpoint (Technical Specification 3.3.1.1)

Technical Specification Table 3.3.1.1-1, Function 2f, identifies the OPRM upscale function.

Instrument setpoints are established, such that the reactor will be tripped before an oscillation can grow to the point where the SLMCPR is exceeded. An Option III stability analysis is performed for each reload core to determine allowable OLMCPR's as a function of OPRM setpoint. Analyses consider both steady state startup operation, and the case of a two recirculation pump trip from rated power.

The resulting stability based OLMCPR's are reported in Reference 1. The OPRM setpoint (sometimes referred to as the Amplitude Trip, Sp) is selected, such that required margin to the SLMCPR is provided without stability being a limiting event. Analyses are based on cycle specific DIVOM analyses performed per Reference 26. The calculated OLMCPR's are shown in Table 5.1. Review of results shown in COLR Table 4.2 and Table 4.3 indicates an OPRM setpoint of 1.15 may be used.

Table 5.1 OPRM Setpoint Range OPRM OLMCPR OLMCPR Setpoint (SS)

(21PT) 1.05 1.18 1.14 1.06 1.20 1.16 1.07 1.22 1.17 1.08 1.24 1.19 1.09 1.26 1.21 1.10 1.28 1.23 1.11 1.30 1.25 1.12 1.32 1.27 1.13 1.34 1.29 1.14 1.36 1.31 1.15 1.39 1.34 "Extrapolation beyond a setpoint of 1.15 is not allowed Bro*r. Ferry Unit ICclde10 CoreOegLraingLnsReport, (105% OLTP)

Page 47 TVA-COLR-BF1Cl0, Revision 1 (Final)

EDMS: L32 121114 800 Reactor Engineering and Fuels - BWRFE Date: November 14, 2012 1101 Market Street, Chattanooga TN 37402 6 APRM Flow Biased Rod Block Trip Settings (Technical Requirements Manual Section 5.3.1 and Table 3.3.4-1)

The APRM rod block trip setting is based upon References 27 & 28, and is defined by the following:

SRB _ (0.66(W-AW) + 61%)

Allowable Value SRB _ (0.66(W-AW) + 59%)

Nominal Trip Setpoint (NTSP) where:

SRB

=

Rod Block setting in percent of rated thermal power (3458 MWt)

W

=

Loop recirculation flow rate in percent of rated AW

=

Difference between two-loop and single-loop effective recirculation flow at the same core flow (AW=0.0 for two-loop operation)

The APRM rod block trip setting is clamped at a maximum allowable value of 115%

(corresponding to a NTSP of 113%).

Browns FerryUnit I Cyde 10.

Core Operating Linits Report, (105% OLTP)

Page 48 "VA-COLR-BFIC10, Revision 1 (Final)

EDMS: L32 121114 800 Date: November 14, 2012 0 1iNPG Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402 7 Rod Block Monitor (RBM) Trip Setpoints and Operability (Technical Specification Table 3.3.2.1-1)

The RBM trip setpoints and applicable power ranges, based on References 27 & 28, are shown in Table 7.1. Setpoints are based on an HTSP, unfiltered analytical limit of 117%. Unfiltered setpoints are consistent with a nominal RBM filter setting of 0.0 seconds; filtered setpoints are consistent with a nominal RBM filter setting less than 0.5 seconds. Cycle specific CRWE analyses of OLMCPR are documented in Reference 1, superseding values reported in References 27, 28, and 30.

Table 7.1 Analytical RBM Trip Setpoints*

Allowable Nominal Trip RBM Value Setpoint Trip Setpoint (AV)

(NTSP)

LPSP 27%

25%

IPSP 62%

60%

HPSP 82%

80%

LTSP - unfiltered 124.7%

123.0%

- filtered 123.5%

121.8%

ITSP - unfiltered 119.7%

118.0%

- filtered 118.7%

117.0%

HTSP - unfiltered 114.7%

113.0%

- filtered 113.7%

112.0%

DTSP 90%

92%

As a result of cycle specific CRWE analyses, RBM setpoints in Technical Specification Table 3.3.2.1-1 are applicable as shown in Table 7.2. Cycle specific setpoint analysis results are shown in Table 7.3, per Reference 1.

Table 7.2 RBM Setpoint Applicability Thermal Power Applicable Notes from

(% Rated)

MCPRt Table 3.3.2.1-1 Comment

> 27% and < 90%

< 1.70 (a), (b), (f), (h) two loop operation

< 1.74 (a), (b), (f), (h) single loop operation

> 90%

< 1.43 (g) two loop operationt Values are considered maximums. Using lower values, due to RBM system hardware/software limitations, is conservative, and acceptable.

t MCPR values shown correspond with, (support), SLMPCR values identified in Reference 1.

Greater than 90% rated power is not attainable in single loop operation.

BrowNnsFerryLUnit 1 Cylel10 Core operating Limits Report, (105% OLTP)

Page 49 TVA-COLR-BF1C10, Revision 1 (Final)

EDMS: L32 121114 800 Date: November 14, 2012

[M iNPG Reactor Engineering and Fuels - BWRFE 1101 Market Street, Chattanooga TN 37402 Table 7.3 Control Rod Withdrawal Error Results RBM CRWE HTSP Analytical Limit OLMCPR Unfiltered 107 1.30 111 1.34 114 1.38 117 1.40 Results, compared against the base case OLMCPR results of Table 4.2, indicate SLMCPR remains protected for RBM inoperable conditions (i.e., 117% unblocked).

BroymFerryUnft1 Cydel10 CorOperating kits Report, (105% OLTP)

Page 50 TVA..oLR-BFlClO, Revsion 1 (Fial)

EDMS: L32 121114 800 Reactor Engineering and Fuels - BWRFE Date: November 14, 2012

NPG, 1101 Market Street, Chattanooga TN 37402 8 Shutdown Margin Limit (Technical Specification 3.1.1)

Assuming the strongest OPERABLE control blade is fully withdrawn, and all other OPERABLE control blades are fully inserted, the core shall be sub-critical and meet the following minimum shutdown margin:

SDM

> 0.38% dk/k BromriiFerryUnitI Cyde 10 Core operaing Limits Report, (105% OLTP)

Page 51 TVA-COLR-BF1Cl0, Revision 1 (Final)