RS-10-112, Additional Information Supporting Request for License Amendment Regarding Ultimate Heat Sink
| ML101830041 | |
| Person / Time | |
|---|---|
| Site: | Byron |
| Issue date: | 07/01/2010 |
| From: | Hansen J Exelon Generation Co, Exelon Nuclear |
| To: | Document Control Desk, Office of Nuclear Reactor Regulation |
| References | |
| RS-10-112 | |
| Download: ML101830041 (110) | |
Text
{{#Wiki_filter:Exelon Generation Company, LLC 4300 Winfield Road www.exelon(orp,(om Nuclear Warrenvill e, IL 60555 RS-10-112 July 1, 2010 U.S. Nuclear Regulatory Commission AnN: Document Control Desk Washington, DC 20555-0001 Byron Station, Units 1 and 2 Facility Operating License Nos. NPF-37 and NPF-66 NRC Docket Nos. STN 50-454 and STN 50-455
Subject:
Additional Information Supporting Request for License Amendment Regarding Ultimate Heat Sink
References:
- 1. Letter from P. R. Simpson (Exelon Generation Company, LLC) to U.S. NRC, "License Amendment Regarding Ultimate Heat Sink, II dated June 30, 2009
- 2. Letter from P. R. Simpson (Exelon Generation Company, LLC) to U.S. NRC, "Additional Information Supporting Request for License Amendment Regarding Ultimate Heat Sink, II dated January 25, 2010
- 3. Email from M. J. David (U.S. NRC) to P. R. Simpson (Exelon Generation Company, LLC), "Byron 1&2 - Additional RAI for Ultimate Heat Sink License Amendment Request (ME1669-70)," dated May 18, 2010 (ADAMS Accession Number ML101380525)
In Reference 1, Exelon Generation Company, LLC (EGC) requested a license amendment for Byron Station, Units 1 and 2, to revise Technical Specifications (TS) to add additional essential service water (SX) cooling tower requirements as a function of SX pump discharge temperature to reflect results of a revised analysis for the ultimate heat sink (UHS). The NRC requested additional information to complete the review of the proposed license amendment, and EGC provided a response to the request in Reference 2. In Reference 3, the NRC further requested additional information to complete the review; the EGC response to this request is provided in the attachments to this submittal. provides the response to the request for additional information from Reference 3, includes schematic representations of the revised scenario alignments, and contains the calculation referenced in the response.
July 1,2010 U.S. Nuclear Regulatory Commission Page 2 EGC has reviewed the information supporting a finding of no significant hazards consideration and the environmental consideration that were previously provided to the NRC in Attachment 1 of Reference 1. The additional information provided in this submittal does not affect the bases for concluding that the proposed license amendment does not involve a significant hazards consideration. In addition, the additional information provided in this submittal does not affect the bases for concluding that neither an environmental impact statement nor an environmental assessment needs to be prepared in connection with the proposed amendment. There are no regulatory commitments contained in this letter. If you should have any questions concerning this letter, please contact Ms. Jean M. Smith at (630) 657-2813. I declare under penalty of perjury that the foregoing is true and correct. Executed on the 1 st day of July 2010. Attachments:
- 1. Response to Request for Additional Information
- 2. Schematic Representations of the Revised Scenario Alignments
- 3. Additional References
ATTACHMENT 1 Response to Request for Additional Information NRC Request
Background:
The January 25, 2010, responses to NRC staff questions 1.a and 9.b stated that certain operator actions would be taken within the first 10 minutes from the control room including, "... 4) Closing the associated riser valve of any fan that does not start in high speed." Scenarios 8A through 80 in the LAR use one set of cell flow rates, which assume 10 percent effective cooling for cells whose fans fail after loss-of-coolant accident (LOCA) initiation. The 10 percent effective cooling was based on the inability to shut the associated riser valve and still take credit for some cooling in an inactive cell with SX flow. This corresponds with the statement in the RAI response on page 16 that, "Postulated breaker failures would also result in the loss of power to the motor operated riser valves for the impacted SXCT [essential service water cooling tower] fan." Apparently, the computer program does not model the closing of riser valves for cells whose fans do not start in high speed as stated in response to NRC staff questions 1.a and 9.b. The same could be said for scenarios 10-13 in the LAR for the riser valves, although they account for local manual closing of the failed bypass valve in 30 minutes. Question: If the operators were able to close one or both of the riser valves for fans that do not start in high speed after LOCA initiation as your procedure calls for, please confirm and justify that the calculations and the corresponding new TS requirements for this LAR are still conservative and bounding regarding SX pump discharge temperature. In other words, please confirm and justify that the SX pump discharge temperature remains at or below 100° F for the scenarios in the LAR that form the basis of the revised TS. If not, please provide the results of additional, bounding analyses demonstrating that SX pump discharge temperature remains at or below 100 0 F, and list and explain any new assumptions in making the additional analyses.
Response
Passive electrical failures that result in the failure of two essential service water cooling tower (SXCT) fans will also result in the loss of power to the associated riser valve for the impacted SXCT fans. The riser valves are enclosed within vaults, and the valves are not readily accessible for manual operation. If a passive electrical failure occurs, the riser valve of the impacted SXCT fans will fail as-is, and without power, the operators would not be able to re-position the associated riser valves. When the essential service water (SX) pump discharge temperature is greater than 82 of, the required number of operable SXCT fans must be running in high speed in accordance with the proposed SXCT fan requirements in Technical Specification (TS) Table 3.7.9-1. Procedural controls are in place to have the associated riser valve open when starting any SXCT fan. In calculation Scenarios 8A, 8B, 8C, 8C1, and 8C2, all of the operable SXCT fans are assumed to be initially running. As discussed above, the operators would not be able to close the riser valves for the two SXCT fans impacted by a passive electrical failure. The calculations Page 1
ATTACHMENT 1 Response to Request for Additional Information previously performed and submitted for this license amendment request (LAR) properly reflect the riser valves as open for the failed SXCT fans. Under the proposed SXCT fan requirements in TS Table 3.7.9-1, when the SX pump discharge temperature is ~ 82 of, the required number of operable SXCT fans may be in standby, and the associated riser valves could be open or closed. If the riser valve on a standby operable SXCT fan is closed, a passive electrical failure could result in closed riser valves for the failed SXCT fans. Thus for Scenarios 80 and 801, the riser valves for the failed SXCT fans could be closed. The calculations previously performed and submitted for this LAR assumed the riser valves for the failed SXCT fans were open. New calculations were made for Scenarios 80 and 801 with the riser valves assumed closed on the cells with failed SXCT fans. One additional calculation, new Scenario 802, was also made for the case with two SXCT fans out of service (OOS) on the same tower with no SXCT fans initially running. The previous calculation had Scenario 802 bounded by the results for Scenario 8C1. Attachment 2 contains schematics for Scenarios 80,801, and 802, and contains the calculations. For the new analysis, the SX flow model was used to calculate SX flow to the cooling tower cells for the scenarios with the riser valves closed on the failed SXCT fans. Cooling tower performance curves were generated for the revised cooling tower water flow rates using the Byron Station cooling tower MRUESC model. The wet bulb temperature assumed for each scenario was unchanged from the previous analysis. Based on the revised cooling tower flows, new inputs were calculated for the percentage of water cooled in each tower, the total flow to the towers, the fraction of overall flow that goes to Tower 1, and the fraction of heat load that goes to Tower 1. The revised inputs were used in the MathCAO transient temperature model to recalculate the maximum basin temperature. The heat load, basin water volume, and initial basin water temperature for each scenario were not changed. The following new assumptions were made:
- 1. For new Scenario 802 a tower performance curve based on 6,000 gpm was used as an input for Tower 2. This assumption had no impact on the calculated results, because in Scenario 802, all of the risers in Tower 2 are isolated with no water flow through operating cells. In addition, the fraction of flow cooled in Tower 2 (Le., f21 and f22) is zero.
- 2. For the new/revised scenarios with riser valves assumed closed on the failed SXCT fans, a higher percentage of the water flow and heat load is directed to one of the two towers. The fraction of load to Tower 1 for each time period, ~1 and ~2, is assumed to be equal to the fraction of flow to Tower 1 for each time period, a1 and 02. This assumption is based on the flow model results that show the accident heat load fraction (Le., the load from the Unit 1 RCFCs and the Unit 1 and Unit 0 CC heat exchangers) going to Tower 1 is approximately the same as the total system flow fraction going to Tower 1.
Page 2
ATTACHMENT 1 Response to Request for Additional Information The new calculations show that with the riser valves closed on the cells with the failed SXCT fans, the calculated maximum basin temperature remains less than or equal to the SX system design temperature of 100 of. These results are summarized in the table below. Cells Cells with Maximum Basin Temperature (OF) Scenario Out of Service Failed SXCT Fans Riser Valves Open Riser Valves Closed on Failed Cells on Failed Cells 80 A&G E&F 99.7 100.0 801 G E&F 99.7 98.2 802 G&H E&F 99.7* 97.5
- Scenario 8C1 maximum Note that for Scenario 80 the tower performance is conservatively modeled using the highest three-hour wet bulb temperature of 82 OF. As indicated in proposed TS Table 3.7.9-1, with six SXCT fans operable and not running in high speed (Le., two SXCT fans out of service) the maximum allowed SX pump discharge temperature is 77 of. With the SX pump discharge temperature limited to 77 of, the actual wet bulb temperature would have to be less than 77 of, since a forced-draft cooling tower is not capable of cooling the water to a temperature lower than the wet bulb temperature. Therefore, margin exists in the calculated maximum basin temperature for Scenario 80.
For the cool weather cases in Design Analysis NEO-M-MSO-011, which was previously submitted in Reference 1, Scenario 10 is the same as Scenario 11, except the riser valves for the failed SXCT fans are closed in Scenario 10 and open in Scenario 11. The previous calculation results show that with the riser valves open, the maximum calculated basin temperature is 98.6 OF (Scenario 11) as compared to 98.4 of with the riser valves closed (Scenario 10). In conclusion, the new TS requirements proposed in Reference 2 are conservative regarding SX pump discharge temperature in the event that riser valves are closed for SXCT fans that do not start in high speed after a LOCA initiation. SX pump discharge temperature remains at or below 100 of for the scenarios provided in the LAR that form the basis of the revised TS. Page 3
ATTACHMENT 2 Schematic Representations of the Revised Scenario Alignments Scenario 80 Scenario 801 Scenario 802
SCENARIO 8D * (RISER VALVES CLOSED) POST LOCA CONFIGURATION TOWER 2 o 28 F 12 C><) 8 18 28 18 RCFC RCFC OOS FAILED TOWER 1 BCD A C 2A 1A
- FOR SCENARIO 80 NO COOLING IS ASSUMED FOR 10 MINUTES.
SCENARIO 8D1* (RISER VALVES CLOSED) POST LOCA CONFIGURATION TOWER 2 o 28 8 18 18 RCFC FAILED TOWER 1 x X
- I:
- I:
(.) (.) (.) (.) ~ ABC 0 11 11 21 21 <>0 <>0 <>0 <>0 A 2A 1A RCFC C 1A 2A RCFC
- FOR SCENARIO 8D1 NO COOLING IS ASSUMED FOR 10 MINUTES.
OOS SCENARIO 8D2* (RISER VALVES CLOSED) POST LOCA CONFIGURATION o 28 28 RCF'C 8 18 FAILED TOWER 1 ABC D 12 11 11 21 21 C><) C<) C<) C<) C<) x x x X X X g g g C\\I CSI A 2A 1A RCF'C C 1A 2A RCFC
- FOR SCENARIO 8D2 NO COOLING IS ASSUMED FOR 10 MINUTES.
ATTACHMENT 3 Additional References Design Analysis NED-M-MSD-009, Revision 8A
AITACHMENT2 Design Analysis Minor Revision Cover Sheet Pa e 1 CC-AA-309-1001 Revision 5 Design Analysis (MInor Revision) Last Page No.
- C21
~------~--------------------~ Analysis No.: I NED-M-MSO-009 Revision: 2 8A ntle: :a Byron Ultimate Heat Sink Cooling Tower Bssln Temperature Calculation: Part IV EC/ECR No.: 4 Statlon(s): ' Unit No.:' Safety/QA Class:
- System Code(s): II 371386 Byron 1 and 2 Safety Related SX Revision:
- 0 Is this Design Analysis Safeguards Information? It Yes 0 No 181 If yes, see SY-M-101-106 Does thl. Dnlgn Analysis contain Unverified As8umptlons? II Yes r8I No 0 If yes, ATI/AR#:
794928-02 This Design Analysis SUPERCEDES: tI In Its entirety. Description of Changes (list affected pages):.4 NED-M-MSD-009 was revised to Include revised Scenarios SO and 801. and to include an additional Scenario S02. These scenarios are Included to respond to a 5/18110 NRC Request for Additional Information (RAI) related to an Ultimate Heat Sink License Amendment Request This minor revision Includes main body pages 1-16, Appendix A (54 pages). Appendix B (6 pages), and Appendix C (21 pages). Disposition of Changes: II See page 13 of this minor revision for dIsposition of change. No change is needed to the Ultimate Heat Sink Ucense Amendment Request Preparer: II Andrew A. Carmean Method of Review: " Reviewer: " Review Notes: II (FofEltIomll~ Ont,l External Approver: ID Exelon Reviewer " Exelon Approver: 1:1 Prinl IIIIt! Detailed Review 181 Altemate ~on8 0 Teeling 0 _S_teve M_._Daw~s:"":,o=n~___ ~~s!1 PrnlRante ~_ Independent review 181 Peer review 0 Michael A. Nena InIName
Exelon'M Nuclear ATTACHMENT 1 CC-AA-309 Revision 9 Page 17 of 17 Level 3 - Information Use Owners Acceptance Review Checklist for External Design Analysis Page 1 of 2 DESIGN ANAL YSIS NO. NED-MSD-M-009 REV: 8A Yes No N/A
- 1.
Do assumptions have sufficient rationale? f8I 0 0 Are assumptions compatible with the way the plant is operated and with the f8I 0 0
- 2.
licensing basis? A LAR hn been submitted for the UHS. This minor revision Is In response to a RAt on the request.
- 3.
Do the design inputs have sufficient rationale? f8I 0 0
- 4.
Are design inputs correct and reasonable with critical parameters identified, if 181 0 0 appropriate?
- 5.
Are design inputs compatible with the way the plant is operated and with the f8I 0 0 licensing basis?
- 6.
Are Engineering Judgments clearly documented and justified? 0 0 181
- 7.
Are Engineering Judgments compatible with the way the plant is operated 0 0 l8I and with the licensing basis?
- 8.
Do the results and conclusions satisfy the purpose and objective of the l8I 0 0 Design Analysis? Are the results and conclusions compatible with the way the plant is operated 181 0 0
- 9.
and with the licensing basis? A lAR has been submitted for the UHS. This minor revision Is In response to a RAI on the request.
- 10.
Does the Design Analysis include the applicable design basis 181 0 0 documentation? Have any limitations on the use of the results been identified and transmitted
- 11.
to the appropriate organizations? A LAR has been submitted for the UHS. The wet 0 0 bulb temperature restrictions for taking two SXCT fans OOS on the same bus has already been Imptemented In procedure OBOl 7.9. An No. 794928-02 tracks the UVA asaoclated with operator action to reduce the heat load.
- 12.
Are there any unverified assumptions? 181 0 0
- 13.
Do all unverified assumptions have a tracking and closure mechanism In 181 0 0 place? An 794928-02. Have all affected design analyses been documented on the Affected f8I 0 0
- 14.
Documents List (ADL) for the associated Configuration Change? Byron EC 371388. Do the sources of inputs and analysis methodology used meet current technical requirements and regulatory commitments? (If the Input sources or
- 15.
analysis methodology are based on an out-of-date methodology or code, 181 0 0 additional reconciliation may be required if the site has since committed to a more recent code)
- 16.
Have vendor supporting technical documents and references (including GE 0 0 DRFs) been reviewed when necessary?
- 17.
HaVet.ma~gin imtPa(cRtsfbeen ideEnRtifAAied 2a O n O d 7 d)OC? umented appropriately for any 0 nega Ive Impac s e erence ~ EXELON REVIEWER: nni'l!ci Str<<nf; <~~ DATE: v Prlntjt Sign CC-AA-309 Revision 9 Page 2 of 2
CALCULATION NO. NEO-M-MSO-O09 REVISION NO. SA PAGE 1 1.0 PURPOSE NEO-M-MSO-009 was revised to include revised Scenarios 80 and 801, and to include an additional Scenario 802. These scenarios are included to respond to a 5/18/10 NRC Request for Additional Information (RAI) related to an Ultimate Heat Sink License Amendment Request [Ref. 4.1]. The summary of the NRC question is: If the operator were able to close riser valves for fans that do not start in high speed as the procedure calls for, are the calculations for this LAR still conservative or bounding? 2.0 DESIGN INPUTS The design inputs specified in Appendix H of Revision 8 of this calculation apply to the present minor revision except the following: 2.1 The accident scenarios used in this minor revision of the calculation are modified from UHS-01 [Ref. 4.8] Attachment B to respond to a 5/18/10 NRC Request for Additional Information (RAI) related to an Ultimate Heat Sink License Amendment Request [Ref. 4.1] and are discussed in more detail in Sections 7.3.1 through 7.3.3. 2.2 The PIPE-FLO model from BYR96-259, Rev. 2 [Ref. 4.5] is used to develop flow through the two trains of the SX cooling tower for each accident scenario. See Section 7.1 for additional information. 2.3 Cooling tower performance curves for scenarios 80, 801, and 802 are based on the model and methodology of BYR97-127, Rev. 1 [Ref. 4.4]. 3.0 ASSUMPTIONS All assumptions in Appendix H of Revision 8 of this calculation apply to the present minor revision except the following: 3.1 For Scenario 802 the flow through the operating cells in Tower B is zero, thus the tower performance curve used for Tower B has no impact on the calculated basin temperature. In this case, the tower performance curve is based on 6,000 gpm, which is the lowest flow rate the model will run at. 3.2 For scenarios 80, 801, and 802, no cooling is credited prior to fan initiation at 10 minutes. Note, this is assumption 3.3 from Revision 8 and is unchanged. 3.3 The heat loads taken from Table 11 of ATO-0063, Rev. 4B [Ref. 4.2] assume that half the RCFC heat load on the accident unit is shed at, or prior to, 30 minutes. Since no procedures are currently in place to implement this operator action, this assumption is considered unverified. (UNVERFIFED) Note, this is assumption 3.4 from Revision 8 and is unchanged. 3.4 For Scenarios 80, 801, and 802, the fraction of load to Tower 1, J31, J32, is set equal to the fraction of flow to Tower 1, 01, 02. This is based on the PIPE-FLO results in Appendix A. The flow model results show that the accident heat load (U-1 RCFC flow, U-1 CCHX flow, and u-o CC HX flow) fraction going to Tower 1 is approximately the same as the fraction of flow going to Tower 1. For example in Scenario 80:
CALCULATION NO. NEO-M-MSO-009 REVISION NO. SA PAGE 2 Total Flow Flow to T1 (gpm) (gpm) 1A11C RCFC Flow 5,962 5,962 1 B/1 D RCFC Flow 5,478 0 U1 CC HX Flow 8,000 8,000 UO CC HX Flow 8,000 4,945 Totals 27,440 18,907 Therefore, ~ = 18,907 1 27,440 = 0.689, which is close to a = 0.678 (from Section 7.3.1).
4.0 REFERENCES
4.1 Byron 1 & 2 - Additional RAI for Ultimate Heat Sink License Amendment Request (ME1669-70), Accession Number ML101380525, dated 5/18/2010. 4.2 ATD-0063, Rev. 4B, "Heat Load to the Ultimate Heat Sink During a Loss of Coolant Accident." 4.3 RS-09-054, "License Amendment Regarding Ultimate Heat Sink," Byron letter to the NRC, dated 6/30109. 4.4 BYR97-127, Rev. 1, "Byron Ultimate Heat Sink Cooling Tower Performance Calculations. " 4.5 BYR96-259, Rev. 2, "SX System FLO-Series Analysis." (Note, minor revisions 2A, 2B, and 2C do not significantly impact the model.) 4.6 PIPE-FLO Version 9.1, Engineered Software Incorporated (S&L Program No. 03.7.100-9.1). 4.7 MRUESC model for Byron Cooling Tower. Validation Report SWR-805, Rev. 1, dated 12/17/91, Chron 177547. 4.8 Attachment B to UHS-01, Rev. 4, "Ultimate Heat Sink Design Basis LOCA Single Failure Scenarios. " 5.0 IDENTIFICATION OF COMPUTER PROGRAMS The maximum service water temperature was determined by running Mathcad Version 11.2a, Program Number 03.7.548-11.2. All computer runs using Mathcad were made on Sargent and Lundy L.L.C. PC No. ZL4868 from Controlled File Path: C:\\Program Files\\MathSoft\\Mathcad 11 Enterprise Edition\\. The hydraulic models were run using PIPE-FLO Version 9.1, Program Number 03.7.100-9.1 [Ref. 4.6]. All computer runs for PIPE-FLO are made on Sargent and Lundy L.L.C. PC No. ZL4868 from Controlled File Path: C:\\Program Files\\Engineered Software\\PIPE-FLO Professional\\ The UHS cooling tower performance results for Attachment C were found using the MRUESC model for the Byron Cooling Tower [Ref. 4.7] run in MS-DOS via VMware
CALCULATION NO. NED-M.. MSD-009 REVISION NO. SA PAGE 3 Player. The MRLlESC model executable has been validated by Exelon under the Exelon Quality Assurance Program. All computer runs for the MRLlESC model are made on Sargent and Lundy L.L.C. PC No. ZL4868. 6.0 METHOD OF ANALYSIS Minor revision 8A of this calculation will use the ESW cooling tower transient model from Revision 8 of this calculation to calculate the basin temperature response for revised Scenarios 80 and 801, and additional Scenario 802. Changes to the Revision 8 Mathcad model required to perform the Revision 8A analysis are summarized as follows and shown in Appendix C:
- 1) For scenarios 80, 801, and 802 new flow rates were generated using PIPE-FLO
[Design Input 2.2] with the riser valves to Cells E and F closed for each scenario.
- 2) Tower performance curves were generated for scenarios 80, 801, and 802 using MRUESC [Design Input 2.3]. For Tower B in scenario 802, there are no active cells.
In this case, the tower performance curve is based on 6,000 gpm, which is the lowest flow rate the model will run at (see Assumption 3.1). The Byron ESW cooling tower performance is acceptable if the calculated basin temperature is at or below the SX cooling tower basin design temperature of 100°F. 6.1 Scenario Descriptions Scenarios 80,801, and 802 were developed by modifying the scenarios in Attachment B of UHS-01 [Ref. 4.8] to have the riser valves closed to failed cells E and F. The following is a short description of each scenario. Note that from a hydraulic standpoint, the Pre-LOCA and Post-LOCA configurations are the same, unless operator action is taken to open or close valves. Also, since no cooling is credited prior to fan operation at 10 minutes (see Assumption 3.2) only the Post-LOCA configuration is shown below. Furthermore, fan operation does not affect the hydraulic analysis. Scenario 80 Cells OOS: Cell A, Cell G SX Pumps: One running on each unit (pre-LOCA) Single failure: breaker 1425Z at 4160V Bus 142 fails open - Loss of power to Cooling Tower Cells E and F fans Post-LOCA Cooling Tower Configuration (SX Pumps: two on Unit 1, one on Unit 2) Following 10 minute operator action to start fans and open riser valves Tower A: 3 riser valves open, 0 bypass valves open Tower A: 3 active cells, 1 OOS cell Tower B: 1 riser valves open, 0 bypass valves open Tower B: 1 active cell, 1 OOS cell, 2 failed cells Scenario 801 Cells OOS: Cell G SX Pumps: One running on each unit (pre-LOCA) Single failure: breaker 1425Z at 4160V Bus 142 fails open - Loss of power to Cooling Tower Cells E and F fans
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA PAGE 4 Post-LOCA Cooling Tower Configuration (SX Pumps: two on Unit 1, one on Unit 2) Following 10 minute operator action to start fans and open riser valves Tower A: 4 riser valves open, ° bypass valves open Tower A: 4 active cells, ° OOS cells Tower B: 1 riser valves open, ° bypass valves open Tower B: 1 active cell, 1 OOS cells, 2 failed cells Scenario 802 Cells OOS: Cell G, Cell H SX Pumps: One running on each unit (pre-LOCA) Single failure: breaker 1425Z at 4160V Bus 142 fails open - Loss of power to Cooling Tower Cells E and F fans Post-LOCA Cooling Tower Configuration (SX Pumps: two on Unit 1, one on Unit 2) Following 10 minute operator action to start fans and open riser valves Tower A: 4 riser valves open, ° bypass valves open Tower A: 4 active cells, ° OOS cells Tower B: ° riser valves open, ° bypass valves open Tower B: ° active cells, 2 OOS cells, 2 failed cells 6.2 Resistance Values The flow rates for the scenarios described in Section 6.1 were run by setting the SX pumps to 100% head and inserting a resistance value (K) into each riser and bypass line that is closed to achieve the desired flow rate of at least 250 gpm for each riser valve leakage and at least 375 gpm for each bypass valve leakage (see methodology from BYR96-259 [Ref. 4.5]). The SX pumps were run at 100% head (as opposed to 95%) with valve leakage modeled. Initial basin temperatures were used for fluid density (77°F for Scenarios 80 and 802, and 82°F for Scenario 801). PIPE-FLO models 8C, 8B, and 8C1 from Appendix H of Revision 8 of this calculation were used as starting points for PIPE-FLO models 80, 801, and 802, respectively. Even though cooling tower efficiency improves with lower flow rates, more leakage (less flow to the active tower cells and more bypass around the active tower cells) is conservative, as it yields higher basin temperatures. This was confirmed in undocumented runs. The K values used to model valve leakage for each scenario are shown in Table 6-1. The results for each scenario are shown in Tables 7-1 and documented in Appendix A. The resistance values (K) for each scenario are shown below in Table 6-1. Table 6 Resistance Values (K) for Each Scenario Scenario Scenario Scenario Additional Resistance (K) 80 801 802 Resistance to Riser Valve OSX 162A (Pipe 857) 20,000 Resistance to Riser Valve OSX162B (Pipe 859) Resistance to Riser Valve OSX162C (Pipe 861) Resistance to Riser Valve OSX1620 (Pipe 863) Total Bypass Line Resistance to "A" Tower (Pipe 864) 90,000 90,000 90,000 Resistance to Riser Valve OSX 162E (Pipe 849) 30,000 30,000 50,000 Resistance to Riser Valve OSX 162F (Pipe 851) 30,000 30,000 50,000 Resistance to Riser Valve OSX162G (Pipe 853) 30,000 30,000 50,000 Resistance to Riser Valve OSX162H (Pipe 855) 50,000 Total Bypass Line Resistance to "B" Tower (Pipe 856) 100,000 100,000 140,000
CALCULATION NO. NEO-M-MSO-009 REVISION NO. SA PAGES 6.3 Tower Performance Curves The tower performance curves are shown in Figures 8-1 through 8-3 for each scenario. These figures plot T Hot VS T Cold for each tower performance curve for each cooling tower as provided by the methodology in BYR97-127 [Ref. 4.4]. For each scenario, two points were selected from the applicable tower performance curve (see Appendix B) to provide a linear approximation of tower performance over the range of T Hot and T Cold temperatures expected for that scenario. The selected points are checked against final results to confirm their applicability to the actual temperature range. These points are listed as Th1, Th2, Th3, Th4, Tc1, Tc2, Tc3, and Tc4 in the Mathcad models.
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA PAGE 6 7.0 NUMERICAL ANALYSIS Operator Actions - All accident scenarios evaluated in this minor revision credit operator action to reduce the heat load rejected to the UHS within 30 minutes post-LOCA by securing fans on two of four RCFCs. 7.1 PIPE-FLO Results The results of all scenario PIPE-FLO runs are summarized in Table 7-1. Table 7 PIPE-FLO Results of All Scenarios Post-LOCA Scenario Scenario Scenario SX Component (gpm) 80 801 802 SX Pump 1A 19,034 19,167 18,599 SX Pump 1B 16,316 16,418 15,981 RCFC 1A 3,055 3,092 2,938 RCFC 1B 2,706 2,739 2,593 RCFC 1C 2,907 2,943 2,796 RCFC 10 2,772 2,805 2,657 SX Pump 2A 0 0 0 SX Pump 2B 28,257 28,439 27,669 RCFC 2A 2,798 2,840 2,671 RCFC 2B 2,867 2,909 2,721 RCFC 2C 2,903 2,947 2,771 RCFC 20 2,796 2,838 2,654 Flow to Riser Valve OSX162A 270 11,220 14,998 Flow to Riser Valve OSX162B 14,048 11,089 14,824 Flow to Riser Valve OSX162C 13,973 11,029 14,745 Flow to Riser Valve OSX1620 13,955 11,014 14,726 Total Bypass Line Flow to "A" Tower 884 826 900 Flow to Riser Valve OSX162E 284 261 287 Flow to Riser Valve OSX162F 283 260 287 Flow to Riser Valve OSX162G 283 260 287 Flow to Riser Valve OSX162H 18,695 17,168 287 Total Bypass Line Flow to "B" Tower 932 898 909 7.2 Cooling Tower Performance The SX flow through each of the riser valves for Scenarios 80,801, and 802 are shown in the table below. Table 7-2: Riser flow rate for Scenarios 80, 801, and 802 SX Component Scenario Scenario Scenario 80 801 802 Flow to Riser Valve OSX162A (gpm) OOS 11,220 14,998 Flow to Riser Valve OSX162B (gpm) 14,048 11,089 14,824 Flow to Riser Valve OSX162C (gpm) 13,973 11,029 14,745 Flow to Riser Valve OSX1620 (g~m) 13,955 11,014 14,726
CALCULATION NO. NEO.. M-MSO-009 REVISION NO. SA PAGE 7 SX Component Scenario Scenario Scenario 8D Flow to Riser Valve OSX162E ( gpm) Failed Flow to Riser Valve OSX162F ( gpm Failed Flow to Riser Valve OSX162G,gpm OOS Flow to Riser Valve OSX162H I gpm 18,695 Failed = cell with failed fan with riser valve closed OOS = fan taken out of service with riser valve closed 801 8D2 Failed Failed Failed Failed OOS OOS 17,168 OOS Table 7-3: Averag e Flow Rate per Cell for Each Cooling Tower (Minus Ora in Line Losses) Average Flow Scenario Scenario Scenario per Active Cell 8D 8D1 8D2 Tower A 13,742 10,838 14,573 Tower B 18,445 16,918 0 7.3 Flow Rate Analysis As discussed in BYR96-259 [Ref. 4.5] and BYR97-127 [Ref. 4.4], leakage is taken into account when determining the average flow rates. The table below shows the applicable flow rates for each scenario. T I 7-4 FI R A abe ow ate nalYSIS Scenario 80 Scenario 801 Scenario 802 14,048 + 13,973 + 13,955-11,220 + 11,089 + 11,029 14,998 + 14,824 + 14,745 Flow through operating cells in T1 750 = 41,226 + 11,014 - 1000 = 43,352 + 14,726 - 1000 = 58,293 14,048 + 13,973 + 13,955 + 11,220 + 11,089 + 11,029 14,998 + 14,824 + 14,745 Total flow through T1 270 + 884 = 43,130 + 11,014 + 826 = 45,178 + 14,726 + 900 = 60,193 Flow through operating cells in T2 18,695 - 250 = 18,445 17,168 - 250 = 16,918 0 18,695 + 284 + 283+ 283 + 17,168 + 261 + 260+ 260 287 + 287 + 287 + 287 + Total flow through T2 932 = 20,477 + 898 = 18,847 909 = 2,057 Average flow per cell in T1 13,742 10,838 14573 Average flow per cell in T2 18,445 16,918 0 Flow to RCFC 1 A 3,055 3092 2.938 Flow to RCFC 1 A + RCFC 1 B 3,055 + 2,706 = 5,761 3,092 + 2,739 = 5,831 2,938 + 2,593 = 5,531 7.3.1 Accident Scenario 8D This scenario is the same setup as Scenario 8C from Revision 8 of this calculation, with the exception that no fans are running initially. No cooling is credited prior to fan initiation at 10 minutes (see Assumption 3.2). The single failure considered for Scenario 8D is the loss of power to Cells E and F cooling tower fans. The initial conditions assume a basin temperature of 7rF with one SX pump running on each unit. This scenario assumes two tower cells (A and G) are out of service (OOS). Initially, no fans on all the other cells are running and all the bypass valves are closed. The total heat load to be used for this scenario is the "Total Heat Load to the UHS" shown in Table 11 of ATD-0063, Rev. 4B [Ref. 4.2], with half of the RCFC heat load subtracted at 30 minutes.
CALCULATION NO. NED-M-MSD-009 REVISION NO. 8A PAGE 8 There is one set of parameters f, a, M 1, B 1, M2, B2, a, and ~ that are needed to determine the basin temperature response. The UHS tower flows, based on Scenario 80 are shown in Table 7-1. The Thot vs Teold relationship is illustrated in Figure 8-1. Determination of f, a, M1, B1, M2, B2, a, and ~. f11, f12 : Flow through operating cells in T 1 = ----------~--~--~----------- Total flow through T 1 including bypass flow = 41,226 gpm = 0.956 43,130 gpm f21, f22 : Flow through operating cells in T2 = ----------~--~--------------- Total flow through T2 including bypass flow = 18,445 gpm = 0.901 20,477 gpm a1,a2 : This is equal to the total flow to T1 and T2, (43,130 + 20,477) gpm = 63,607 gpm M11, B11, M12, B12: Based on an average flow of 13,742 gpm per cell in T1, the tower performance for T1 is generated using a flow of 13,742 gpm (Figure 8-1). Based on the T H, T c values (as determined from the T H values calculated for tower operation in Design Input 2.3), [(118.92, 99.92), (114.17, 98.17)], Mathcad calculates M11, M 12 and B 11, B 12 from the tower performance inputs. M21, B21, M22, B22: a1, a2: Based on an average flow of 18,445 gpm per cell in T2, the tower performance for T2 is generated using a flow of 18,445 gpm (Figure 8-1). Based on the T H, T c values (as determined from the T H values calculated for tower operation in Design Input 2.3), [(124.11,108.11), (118.11,105.11)], Mathcad calculates M21, M22 and B21, B22 from the tower performance inputs. = Flow to Tl = 43,130 gpm = 0.678 Total SX flow, Q 63,607 gpm ~ = a (see Assumption 3.4)
CALCULATION NO. NEO.. M-MSO-009 REVISION NO. SA PAGE 9 8ased on the parameters f, Q, M1, 81, M2, 82, a, and ~ determined above, the coefficients A, 8, and C in Eq (3), renamed A1/A2, 01/02, and C1/C2 here, are calculated by Mathcad. The output from the MathCAD calculation for this scenario is shown on pages C1 through C7. The maximum basin temperature, Tbmax, is calculated to be 100.0°F with an initial basin temperature of 77°F. The temperature at 30 minutes is calculated to be 98.9°F with an initial basin temperature of 77°F. 80th of these values are at or below the acceptance limit of 100°F. 7.3.2 Accident Scenario 801 This scenario is the same setup as Scenario 88 from Revision 8 of this calculation, with the exception that no fans are running initially. No cooling is credited prior to fan initiation at 10 minutes (see Assumption 3.2). The single failure considered for Scenario 801 is the loss of power to Cells E and F cooling tower fans. The initial conditions assume a basin temperature of 82°F with one SX pump running on each unit. This scenario assumes one tower cell (G) is out of service (OOS). Initially, no fans on all the other cells are running and all the bypass valves are closed. The total heat load to be used for this scenario is the "Total Heat Load to the UHS" shown in Table 11 of ATD-0063, Rev. 48 [Ref. 4.2], with half of the RCFC heat load subtracted at 30 minutes. There is one set of parameters f, Q, M1, 81, M2, 82, a, and ~ that are needed to determine the basin temperature response. The UHS tower flows, based on Scenario 801 are shown in Design Input 2.3. The Thot vs T cold relationship is illustrated in Figure 8-2. Determination off, Q, M1, 81, M2, 82, a, and~. f11, f12 : = Flow through operating cells in T1 Total flow through T1 including bypass flow = 43,352 gpm = 0.960 45,178 gpm f21, f22 : = Flow through operating cells in T2 Total flow through T2 including bypass flow = 16,918 gpm = 0.898 18,847 gpm Q1,Q2 : This is equal to the total flow to T1 and T2, (45,178 + 18,847) gpm = 64,025 gpm
CALCULATION NO. NED-M.. MSD-009 REVISION NO. SA PAGE 10 M11, B11, M12, B12: Based on an average flow of 10,838 gpm per cell in T1, the tower performance for T1 is generated using a flow of 10,838 gpm (Figure 8-2). Based on the T H, T c values (as determined from the T H values calculated for tower operation in Design Input 2.3), [(125.27, 97.27), (117.37, 95.37)], Mathcad calculates M11, M 12 and B 11, B 12 from the tower performance inputs. M21, B21, M22, B22: 01, 02: ~: Based on an average flow of 16,918 gpm per cell in T2, the tower performance for T2 is generated using a flow of 16,918 gpm (Figure 8-2). Based on the T H, T c values (as determined from the T H values calculated for tower operation in Design Input 2.3), [(120.68,104.68), (115.04,102.04)], Mathcad calculates M21, M22 and B21, B22 from the tower performance inputs. = __ FI_ow_to_T_1_ = 45,178gpm = 0.706 Total SX flow, Q 64,025 gpm rJ = 0 (see Assumption 3.4) Based on the parameters f, Q, M1, B1, M2, B2, 0, and rJ determined above, the coefficients A, B, and C in Eq (3), renamed A1/A2, 01/02, and C1/C2 here, are calculated by Mathcad. The output from the MathCAO calculation for this scenario is shown on pages C8 through C14. The maximum basin temperature, Tbmax, is calculated to be 98.2°F with an initial basin temperature of 82°F. The temperature at 30 minutes is calculated to be 98.2°F with an initial basin temperature of 82°F. This value is below the acceptance limit of 100°F. 7.3.3 Accident Scenario 802 This scenario is the same setup as Scenario 8C 1 from Revision 8 of this calculation, with the exception that no fans are running initially. No cooling is credited prior to fan initiation at 10 minutes (see Assumption 3.2). The single failure considered for Scenario 802 is the loss of power to Cells E and F cooling tower fans. The initial conditions assume a basin temperature of 77°F with one SX pump running on each unit. This scenario assumes two tower cells (G and H) are out of service (OOS). Initially, no fans on all the other cells are running and all the bypass valves are closed. The total heat load to be used for this scenario is the "Total Heat Load to the UHS" shown in Table 11 of ATO-0063, Rev. 4B [Ref. 4.2], with half of the RCFC heat load subtracted at 30 minutes. There is one set of parameters f, Q, M 1, B 1, M2, B2, 0, and rJ that are needed to determine the basin temperature response.
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA PAGE 11 The UHS tower flows, based on Scenario 802 are shown in Design Input 2.3. The T hot VS T cold relationship is illustrated in Figure 8-3. Determination of f, a, M1, 81, M2, 82, a, and J3. f11. f12 : = Flow through operating cells in T1 Total flow through T1 including bypass flow = 58,293 gpm = 0.968 60,193 gpm f21. f22 : = Flow through operating cells in T2 Total flow through T2 including bypass flow = 0 gpm = 0.000 2,057 gpm a1. a2: This is equal to the total flow to T1 and T2, (60,193 + 2,057) gpm = 62,250 gpm M11. 811. M12. 812: 8ased on an average flow of 14,573 gpm per cell in T1 and a wet bulb temperature of 76°F, the tower performance for T1 is generated using a flow of 14,573 gpm (Figure 8-3). 8ased on the TH, Te values (as determined from the TH values calculated for tower operation in Design Input 2.3), [(117.91, 98.91), (112.77, 96.77)], Mathcad calculates M11, M12 and 811, 812 from the tower performance inputs. M21! 821. M22. 822: a1. a2: ~: 8ased on an average flow of 0 gpm per cell in T2 and a wet bulb temperature of 76°F, the tower performance for T2 is generated using a flow of 6,000 gpm (see Assumption 3.1), since the MRL model was validated down to a minimum flow of 6,000 gpm (Figure 8-3). 8ased on the T H, T e values (as determined from the T H values calculated for tower operation in Design Input 2.3), [(111.82, 83.82), (104.74,82.74)], Mathcad calculates M21, M22 and 821, 822 from the tower performance inputs. = __ FI_ow_to_T_1_ = 60,193gpm =0.967 Total SX flow, a 62,250 gpm J3 = a (see Assumption 3.4)
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA PAGE 12 Based on the parameters f, Q, M 1, B 1, M2, B2, a, and ~ determined above, the coefficients A, B, and C in Eq (3), renamed A1/A2, 01/02, and C1/C2 here, are calculated by Mathcad. The output from the MathCAO calculation for this scenario is shown on pages C 15 through C21. The maximum basin temperature, Tbmax, is calculated to be 97.5°F with an initial basin temperature of 7rF. The temperature at 30 minutes is calculated to be 97.1 OF with an initial basin temperature of 7rF. This value is below the acceptance limit of 100°F.
CALCULATION NO. NED*M*MSD*009 REVISION NO. 8A PAGE 13 8.0 RESULTS AND CONCLUSIONS The results for Scenarios 80,801, and 802 are summarized below. T bl 81 S f S a e ummary 0 cenanos Wet Bulb Initial Basin Basin Max Basin Scenario Cells Temperature Temperature Temperature Temperature 00S1 (OF) (OF) (OF) at 30 (OF) minutes 80 A&G 82 77 98.9 100.0 (at 50 min) 801 G 82 82 98.2 98.2 (at 29 min) 802 G&H 76 77 97.1 97.5 (at 40 min) The single failure considered for all scenarios IS the loss of power to Cells E and F. with riser valves closed. The new calculations show that with the riser valves closed on the cells with the failed fans, the calculated maximum basin temperature remains less or equal to the SX system design temperature of 100°F. No change is needed to the Ultimate Heat Sink License Amendment Request. Limitations Procedures would have to be changed so that in the situation when two fans are going to be taken OOS for maintenance on the same electrical breaker (Scenario 802), operators would have to check that the wet bulb temperature is s 76°F. Results are valid only if half of the RCFC heat load on the accident unit is shed at, or prior to, 30 minutes. Procedures would have to be changed to implement this operator action.
CALCULATION NO. NEO-M-MSO-O09 125 120 115 110 LL ~ 105 8 I-100 95 90 85 90 100 110 REVISION NO. 8A Figure 8-1: Scenario 80 120 130 Toot (OF) PAGE 14 --80 Tower A, 13742 gpm, Twb 82°F - - - 80 Tower B, 18445 gpm, Twb 82°F ,e""'- 140 150 160 170
CALCULATION NO. NEO-M-MSO-O09 120 115 110 105 E ".J 100 95 90 85 90 100 110 REVISION NO. 8A Figure 8-2: Scenario 801 ",/ //// 120 130 T hot (OF) PAGE 15 --801 Tower A, 10838 gpm, Twb 82°F - - -801 Tower B, 16918 gpm, Twb 82°F 140 150 160 170
CALCULATION NO. NEO-M-MSO-O09 REVISION NO. 8A LL L 'a "8 t-115 110 105 100 95 90 85 80 75 70 85 Figure 8-3: Scenario 802 - -~--.~ ------------ - -- - -- - "'-- 95 105 115 125 Toot (OF) PAGE 16 --802 Tower A, 14573 gpm, Twb 76°F - - - 802 Tower B. 6000 gpm, Twb 76°F 135 145 155
CALCULATION NO. NED-M-MSD-009 REVISION NO. 8A APPENDIX A Page A1 System: Scenario 80 Lineup: Scenario 80 rev: 06/24/10 8:58 am Atm pressure: 14.7 psi a Specification 88SX(STD) 88SX (XS) Steel Sch. 10 Steel Sch. 20 Steel Sch. 30 Steel Sch. 40 Steel Std Fluid Zone Water PIPE-FLO 2005 LIST REPORT Total System Volume: 737326 gallons Pressure drop calculations: Darcy-Weisbach method. Calculated: 15 iterations Avg Deviation: 0.003831 % Material 1 Schedule 8yronPipes-NHL 1 STD Valves: standard 8yronPipes-NHL 1 XS Valves: standard Steel A53-836.1 0 110 Valves: standard Steel A53-836.10 120 Valves: standard Steel A53-836.1 0 130 Valves: standard Steel A53-836.10 140 Valves: standard Steel A53-836.10 120 Valves: standard Fluid Water SPECIFICATIONS Roughness 0.036 in C: 100 0.036 in C: 100 0.036 in C: 140 0.036 in C: 140 0.036 in C: 140 0.036 in C: 140 0.036 in C: 140 FLUID ZONES Temp Pressure (OF) (psi g) 77 14.7 Sizing not specified not specified not specified not specified not specified not specified not specified Density (lblfP) 62.33 06/24/10 9: 11 am Company: Sargent & Lundy LLC Project: Design Limits Viscosity cP 0.8883 Pv 1 Pc or k (psi a) 0.4595/3198 pg 1
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA Pipeline 12 154 155 156 157 158 160 161 162 164 165 166 167 168 170 171 172 173 176 178 179 180 181 182 183 233 PIPE-FLO 2005 From Specification AA BBSX (STD) BU Steel Sch. 40 BF Steel Sch. 40 BG Steel Sch. 30 BH Steel Sch. 30 BI Steel Sch. 30 BJ BBSX (STD) Cant. Ref. 1A Steel Sch. 20 BJ Steel Sch. 30 BM Steel Sch. 30 BT Steel Sch. 20 BX Steel Sch. 40 BY Steel Sch. 20 BO Steel Sch. 40 BP Steel Sch. 40 DGJWC-1A Steel Sch. 40 BS Steel Sch. 40 BO Steel Sch. 40 IA Steel Sch. 40 AA BBSX (STD) SX Pump 2A BBSX(STD) CD BBSX(STD) CE BBSX(STD) CF Steel Sch. 20 DA Steel Sch. 30 DO Steel Sch. 30 DA Steel Sch. 30 PIPELINES To Status Fluid Zone SX Pump 1A Water CR Ref. Cond OA Water BG Water BH Water BI Water BJ Water Cont. Ref. 1 A XXX Water BM Water BM Water BT Water BY Water BY Water GD Water BP Water DGJWC-1A Water BS Water BT Water IA Water IB Water SX Pump 2A Water CD Water CE Water CF Water DA Water DO Water DP Water DB Water XXX XXX XXX Flow (US gpm) 19034 1225 1591 3055 4550 5962 o 5962 5962 7833 1618 9451 2146 1871 1871 1871 20 o o 6053 352.9 20 5700 APPENDIX A Velocity (ft/sec) Size (in) 6.262 36 7.866 8 6.478 10 7.114 14 10.6 14 10.48 16 12 o 12 10.48 16 10.48 16 8.642 20 6.589 10 10.43 20 8.738 10 7.62 10 7.62 10 7.62 10 0.222 6 6 36 36 o 36 o 36 6.678 20 0.822 14 0.047 14 10.02 16 dP (psi) Length (ft) (9.039) 71.2 3.66 229.5 7.786 70.35 1.239 129 1.002 42.14 9.212 205.5 17.25 o 23.5 0.733 12.66 (6.652) 47 (7.94) 37 0.549 5.33 (5.111) 43.5 12.41 125.4 9.213 118.5 25.83 111.5 (6.124) 82.25 (1.187) 81.33 0.25 97.75 33.8 o 0.01 o 6.2 22.72 145.8 3.681 8.5 o 3.25 15.6 227.5 Page A2 06/24/10 9:11 am HL (ft) K 0.935 1.054 19.11 9.66 5.327 5.837 2.863 0.644 2.316 0.352 8.163 0.804 1.295 o 1.835 1.695 0.749 2.973 0.833 1.146 0.454 1.269 1.707 3.935 1.705 7.273 1.97 31.46 30.98 59.6 62.45 5.093 2.916 0.006 2.002 0.633 1.875 1.345 o 3.278 o 0.326 3.023 2.257 0.009 0.606 o 0.439 13.07 3.975 pg 2
CALCULATION NO. NED-M.. MSD*009 Pipeline 234 235 236 25 3 327 328 329 330 331 333 334 335 336 337 339 340 341 343 344 345 348 349 351 356 364 367 PIPE-FLO 2005 From Specification DB Steel Sch. 30 DC Steel Sch. 30 DO Steel Sch. 40 CR Ref. Cond OA Steel Sch. 40 SX Pump 1A BBSX (STO) DF Steel Sch. 40 DG Steel Sch. 30 DH Steel Sch. 30 DI Steel Sch. 30 DJ BBSX (STD) Cont. Ref2A BBSX(STO) DJ Steel Sch. 30 DM Steel Sch. 30 DN Steel Sch. 30 DU Steel Sch. 20 DV Steel Sch. 20 DP Steel Sch. 40 DO Steel Sch. 40 DGJWC-2A Steel Sch. 40 DT Steel Sch. 40 DP Steel Sch. 40 AF BBSX(STO) AG BBSX(STO) HA BBSX(STD) HB BBSX(STD) CC HX-1 BBSX(STD) HE BBSX (STD) To Fluid Zone DC Water DO Water DE Water BX Water AD Water OG Water OH Water 01 Water OJ Water Cont. Ref2A Water OM Water DM Water ON Water OU Water DV Water GC Water DO Water OGJWC-2A Water DT Water OU Water JA Water AG Water HA Water HB Water CC HX-1 Water HE Water GF Water REVISION NO. SA PIPELINES Status xxx Flow (US gpm) 4310 2797 1386 1225 19034 1386 2797 4310 5700 873.8 873.8 4826 5700 5700 5700 6033 o o o 20 9288 8122 8000 8000 8000 8122 APPENDIX A Velocity (ft/sec) Size (in) 10.04 14 6.514 14 5.642 10 7.866 8 6.262 36 5.642 10 6.514 14 10.04 14 10.02 16 2.481 12 2.481 12 8.484 16 10.02 16 10.02 16 6.288 20 6.656 20 o 10 10 o 10 o 10 0.222 6 3.056 36 3.881 30 3.823 30 3.823 30 3.823 30 3.881 30 dP (psi) Length (ft) 0.574 26.07 1.221 144 (4.955) 36.95 25.8 248.6 1.946 18.75 6.244 64.54 1.08 130.7 1.006 42.43 11.11 223.5 0.918 20.75 0.009 24.5 2.031 9.25 (2.108) 18.5 (4.632) 31.5 (8.289) 29.75 (5.093) 246 5.948 101.3 112.8 (0.757) 115.8 (7.571) 52.25 0.545 110.8 0.054 42.25 2.011 8.25 8.129 62.75 0.029 12.25 (3.392) 55.75 0.108 13.6 Page A3 06/24/10 9:11 am HL (ft) K 1.357 0.263 2.823 0.934 1.335 1.47 76.71 68.82 1.539 2.403 3.783 5.505 2.497 0.749 2.325 0.503 12.61 3.757 0.272 2.288 0.221 1.656 4.694 4.024 1.177 0.397 1.544 0.38 0.340 0.123 3.977 2.222 o 2.816 32.21 o 69.77 o 2.138 0.009 3.04 0.124 0.569 0.399 1.635 0.289 0.736 0.067 0.19 0.409 1.323 0.250 0.952 pg 3
CALCULATION NO. NED-M.. MSD.. 009 Pipeline 368 369 370 372 384 387 388 389 390 391 393 394 396 397 398 399 4 400 401 402 403 405 406 407 423 425 463 PIPE-FLO 2005 From Specification GF 88SX (STO) CG 88SX (STO) CG 88SX (STO) HF 88SX (STO) CC HX-2 88SX(STO) HI 88SX(STO) GI 88SX (STO) GH 88SX (STO) GE 88SX (XS) GO 88SX(XS) GC 88SX (XS) AH 88SX (STO) SX Pump 1B Steel Sch. 20 AK 88SX(STO) AL 88SX{STO) AM Steel Std AO 88SX{STO) EA Steel Sch. 30 EN Steel Sch. 30 EO Steel Sch. 40 EP Steel Sch. 40 OGJWC-1B Steel Sch. 40 ES Steel Sch. 40 EN Steel Sch. 40 EV Steel Sch. 40 CR Ref. 08 Steel Sch. 40 EY Steel Sch. 40 To Fluid Zone GE Water CF Water HF Water CC HX-2 Water HI Water GI Water GH Water GE Water GO Water GC Water GB Water SX Pump 18 Water AK Water AL Water AM Water EA Water AE Water EN Water EO Water EP Water OGJWC-1B Water ES Water ET Water EV Water CR Ref. 08 Water EY Water EZ Water REVISION NO. SA PIPELINES Status Flow (US gpm) 16383 6053 16103 16000 16000 16000 11160 11262 27646 37097 43130 16316 16316 16316 16316 9359 19034 3881 2433 1626 1901 1901 1901 1449 1043 1043 1449 APPENDIX A Velocity (ft/sec) Size (in) 3.936 42 1.991 36 7.695 30 7.646 30 7.646 30 7.646 30 2.681 42 2.706 42 5.116 48 6.866 48 7.982 48 5.368 36 12.34 24 5.368 36 5.368 36 10.33 20 6.262 36 9.038 14 5.665 14 6.622 10 7.74 10 7.74 10 7.74 10 5.898 10 6.697 8 6.697 8 5.898 10 dP (psi) Length (tt) 0.054 20.75 0.005 4.5 0.602 3.75 13.05 110.8 (4.452) 17.5 0.793 12 0.006 8.5 0.112 123 0.035 14.75 0.119 32.25 15.31 956.2 (9.146) 71.3 2.047 7.22 0.634 0.01 0.070 6.25 26 149 0.863 0.01 2.002 3.75 0.108 2 12.11 137 11.79 223.8 20.26 209 (8.053) 86.5 1.653 5.75 2.234 233 28.54 254.5 0.451 4.5 Page A4 06/24/10 9:11 am HL (tt) K 0.126 0.407 0.011 0.146 1.391 1.482 1.91 1.159 0.309 0.191 1.833 1.919 0.014 0.081 0.258 1.579 0.081 0.129 0.274 0.222 6.141 1.678 0.688 1.054 1.732 0.651 1.466 3.278 0.163 0.322 7.604 2.446 1.994 3.278 0.878 0.606 0.251 0.457 4.846 2.558 37.41 32.8 46.79 43.4 5.386 2.916 0.572 0.868 14.06 9.791 82.97 107.9 1.042 1.78 pg 4
CALCULATION NO. NED-M-MSD-009 REVISION NO. 8A Pipeline 464 465 466 467 5 514 538 560 561 562 564 565 566 568 569 570 571 6 60 602 603 604 605 607 608 609 61 PIPE-FLO 2005 From Specification EA Steel Sch. 30 EB Steel Sch. 30 EC Steel Sch. 30 ED Steel Sch. 40 AE BBSX (STO) EH Steel Sch. 30 EG Steel Sch. 30 EF Steel Sch. 40 EI Steel Sch. 30 EJ 8BSX (STO) Cont. Ref. 1B 8BSX(STO) EJ Steel Sch. 30 EM Steel Sch. 30 ET Steel Sch. 20 EU Steel Sch. 20 EO Steel Sch. 40 IC Steel Sch. 40 AF Steel Std 8A Steel Sch. 30 IF Steel Sch. 40 IG Steel Sch. 40 IH Steel Sch. 40 AH BBSX (STO) SX Pump 2B Steel Sch. 20 CK BBSX (STO) CL 88SX(STO) 8B Steel Sch. 30 To Fluid Zone E8 Water EC Water ED Water EE Water AF Water EI Water EH Water EG Water EJ Water Cont. Ref. 1B Water EM Water EM Water ET Water EU Water EZ Water IC Water PIPELINES Status xxx COOLING WATER BOO.. Water BA Water BB Water IG Water IH Water EU Water SX Pump 2B Water CK Water CL Water CM Water BC Water Flow (US gpm) 5478 4044 2706 1316 19034 4044 2706 1316 5478 o 5478 5478 7379 8205 806.6 806.6 9746 5962 806.6 826.6 826.6 28257 28257 28257 28257 4550 APPENDIX A Velocity (ftJsec) Size (in) 9.63 16 9.417 14 6.301 14 5.359 10 6.262 36 9.417 14 6.301 14 5.359 10 9.63 16 12 o 12 9.63 16 9.63 16 8.141 20 9.053 20 5.177 8 8.965 6 10.75 20 10.48 16 8.965 6 9.187 6 9.187 6 9.297 36 21.37 24 9.297 36 9.297 36 10.6 14 dP (psi) Length (ft) 13.08 141 0.545 28 0.721 145.8 (5.314) 48.75 0.098 6.75 3.948 62 0.988 127 6.996 69.57 6.32 149.5 27.25 0.692 32.75 0.920 13.5 (9.884) 44.75 0.193 11.75 (6.059) 17.5 0.906 97 3.473 16 23.99 85.1 15.85 214.2 0.129 2 1.904 22 2.737 99 (8.015) 87 2.81 6.82 1.902 0.01 0.209 5.75 0.734 29.25 Page AS 06/24/10 9:11 am HL (ft) K 8.485 3.161 1.259 0.265 2.667 0.932 1.267 1.216 0.226 0.326 3.125 0.832 2.284 0.748 3.672 5.919 7.61 2.388 1.491 o 2.28 2.027 1.147 2.002 0.523 0.447 0.265 0.745 0.333 3.094 3.09 10.53 7.422 5.959 2.094 13.68 3.871 0.299 0.112 2.902 0.812 12.08 2.903 3.304 1.875 3.496 0.416 4.396 3.278 0.484 0.322 1.698 0.296 pg 5
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA Pipeline 610 611 612 613 614 616 617 62 63 670 671 672 673 7 711 725 747 748 749 751 752 753 754 759 760 761 762 PIPE*FLO 2005 From Specification CM Steel Sch. 20 FA Steel Sch. 30 FQ Steel Sch. 30 FR Steel Sch. 40 FS Steel Sch. 40 OGJWC-2B Steel Sch. 40 FV Steel Sch. 40 BC Steel Sch. 30 BO Steel Sch. 40 FA Steel Sch. 30 FB Steel Sch. 30 FC Steel Sch. 30 FO Steel Sch. 40 BA Steel Sch. 20 FI Steel Sch. 30 FH Steel Sch. 30 FF Steel Sch. 40 FJ Steel Sch. 30 FK BBSX(STO) Cont. Ref 2B BBSX(STD) FK Steel Sch. 30 FN Steel Sch. 30 FO Steel Sch. 30 FP Steel Sch. 20 FW Steel Sch. 20 FR Steel Sch. 40 JB Steel Sch. 40 To Fluid Zone FA Water FQ Water FR Water FS Water OGJWC-2B Water FV Water FP Water BO Water BE Water FB Water FC Water FD Water FE Water BN Water FJ Water FI Water FH Water FK Water Cont. Ref2B Water FN Water FN Water FO Water FP Water FW Water FX Water JB Water PIPELINES Status xxx xxx COOLING WATER BOO.. Water Flow (US gpm) 6003 338.7 o o o 3055 1591 5664 4267 2867 1420 3784 4267 2867 1420 5664 942.1 942.1 4722 5664 5664 5664 5684 o o APPENDIX A Velocity (ftJsec) Size (in) 6.622 20 0.789 14 o 14 10 10 o 10 o 10 7.114 14 6.478 10 9.957 16 9.937 14 6.677 14 5.783 10 4.175 20 9.937 14 6.677 14 5.783 10 9.957 16 2.675 12 2.675 12 8.301 16 9.957 16 9.957 16 6.249 20 6.271 20 o 8 o 6 dP (psi) Length (ft) 23.63 87.75 1.733 4 o 3.25 83 162.3 (1.622) 142.3 (8.76) 59.5 1.458 144.4 (3.872) 50.04 13.23 138.9 0.622 27.57 1.299 145.8 (4.83) 46.25 3.784 6.5 3.92 59 1.155 133.5 7.989 65.35 6.577 152.3 0.145 27.75 0.781 30.75 2.193 15.25 (2.958) 15.75 (6.785) 30.75 0.097 7.25 (6.221) 23.5 (0.498) 106.5 (1.082) 22.25 Page A6 06/24/10 9:11 am HL (ft) K 2.216 1.986 0.007 0.607 o 0.457 2.371 31.43 o 125.2 o 2.595 3.37 0.932 1.86 1.188 8.741 2.988 1.439 0.299 2.993 0.932 1.436 1.224 0.247 0.819 3.06 0.628 2.67 0.751 3.967 5.466 8.204 2.379 0.235 1.375 0.306 1.93 5.07 4.447 0.913 0.288 1.316 0.259 0.224 0.265 0.369 0.265 o 3.998 o 7.422 pg 6
CALCULATION NO. NED-M-MSD-009 Pipeline 792 793 794 795 8 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 837 838 839 840 841 842 843 PIPE-FLO 2005 From Specification JE Steel Sch. 40 JF Steel Sch. 40 AM BBSX(STO) AN BBSX (STO) BN Steel Sch. 30 AP BBSX (STO) CC HX-O BBSX(STO) HK BBSX(STO) HL BBSX(STO) HM BBSX(STO) HL BBSX (STO) HN BBSX(STO) GG BBSX (STO) GI BBSX (STO) EZ Steel Sch. 20 GK BBSX (STO) GJ BBSX (STO) GK BBSX(XS) CM BBSX (STO) CN BBSX(STO) GL BBSX (XS) FX Steel Sch. 20 GM BBSX(XS) GN BBSX (XS) CN BBSX (STO) AG BBSX (STO) FG(A) BBSX(XS) To Fluid Zone JF Water FW Water AO Water AO Water BO Water CC HX-O Water HK Water HL Water HM Water GG Water HN Water GJ Water GF Water GJ Water GL Water GG Water GK Water GL Water CN Water AQ Water GM Water GM Water GN Water GO Water CG Water AN Water AA Water REVISION NO. SA PIPELINES Status Flow (US gpm) o 20 6957 1043 2166 8000 8000 8000 4945 5067 3055 3155 8261 4840 9654 3194 7995 4801 22255 99.42 14455 6023 20477 20477 22155 1166 19034 APPENDIX A Velocity (ftJsec) Size (in) o 6 0.222 6 2.289 36 0.343 36 5.044 14 3.823 30 3.823 30 3.823 30 2.363 30 2.421 30 1.46 30 1.507 30 1.985 42 1.163 42 10.65 20 0.767 42 1.921 42 0.889 48 7.322 36 0.048 30 2.675 48 6.644 20 3.79 48 3.79 48 7.289 36 0.384 36 3.523 48 dP (psi) Length (ft) (2.596) 16.5 (1.724) 170.8 0.006 4.5 o 2.5 0.082 1.83 12.8 107.3 o 0.01 (2.963) 27.75 0.019 12.5 (1.351) 24.75 (1.382) 89.75 0.016 10.5 0.024 23.25 0.006 29 (1.976) 213.5 0.008 104.8 0.026 19.75 0.804 45.75 0.064 4.5 o 3 0.622 23.75 (5.031) 12.5 0.005 2.25 11.91 1107 0.687 90.25 o 47.25 (22.45) 1021 Page A7 06/24/10 9:11 am HL (ft) K o 1.557 0.014 5.01 0.014 0.146 o 0.097 0.191 0.44 0.596 1.705 o o 0.402 1.532 0.044 0.394 0.127 1.179 0.057 0.919 0.037 0.952 0.055 0.766 0.015 0.547 9.333 2.221 0.018 1.34 0.059 0.92 0.009 0.48 0.147 0.146 o 1.482 0.037 0.222 0.871 1.091 0.012 0.045 1.541 1.623 1.588 1.315 0.002 0.509 1.277 1.744 pg 7
CALCULATION NO. NED-M-MSD-009 Pipeline 845 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 870 871 874 875 897 PIPE-FLO 2005 From Specification FG(B) BBSX (XS) GB BBSX (XS) GO BBSX (XS) GP Steel Sch. 20 GP BBSX (XS) KE Steel Sch. 20 KE BBSX(XS) KF Steel Sch. 20 KF BBSX (XS) KG Steel Sch. 20 KG BBSX (XS) GA Steel Sch. 20 GA BBSX (XS) KA Steel Sch. 20 KA BBSX (XS) KB Steel Sch. 20 KB BBSX (XS) KC Steel Sch. 20 KC BBSX (XS) AO BBSX (STD) AP BBSX (STD) IB Steel Sch. 40 BP Steel Sch. 40 BS Steel Sch. 40 DO Steel Sch. 40 DT Steel Sch. 40 KH Steel Sch. 20 To Fluid Zone AH Water GA Water GP Water Cell E Water KE Water Cell F Water KF Water CellG Water KG Water Cell H Water KH Water CeliA Water KA Water Cell B Water KB Water CeliC Water KC Water CeliO Water KD Water AP Water AO Water IH Water EP Water ES Water FS Water FV Water basin-5 Water REVISION NO. 8A PIPELINES Status xxx xxx xxx xxx xxx Flow (US gpm) 44573 43130 20477 283.8 20194 283.4 19910 282.9 19627 18695 931.9 269.7 42860 14048 28812 13973 14839 13955 883.7 8000 274.6 479.4 APPENDIX A Velocity (fUsec) Size (in) 8.249 48 7.982 48 3.79 48 0.215 24 3.737 48 0.214 24 3.685 48 0.214 24 3.632 48 14.14 24 0.172 48 0.204 24 7.932 48 10.62 24 5.332 48 10.57 24 2.746 48 10.55 24 0.164 48 3.823 30 30 6 1.118 10 10 10 10 0.363 24 dP (psi) Length (tt) (19.48) 1266 8.175 747.6 6.691 810.6 23.94 120.1 0.029 43 23.91 120.1 0.028 43 23.89 120.1 0.027 43 23.86 120.1 19.96 153.2 20.25 90.92 0.129 43 20.12 90.92 0.058 43 20.07 90.92 0.014 35.75 20.05 90.92 16.16 7.25 0.208 5.5 7 10.5 0.006 4.75 4.75 10.5 12 3.464 92.83 Page A8 06/24/10 9:11 am HL (tt) K 8.15 1.717 4.396 0.902 0.967 0.462 21.44 30005 0.066 0.101 21.38 30005 0.065 0.101 21.31 30005 0.063 0.101 21.25 5.487 46.14 100000 12.92 20006 0.298 0.101 12.62 6.172 0.135 0.101 12.49 6.172 0.032 0.101 12.45 6.172 37.35 90000 0.480 2.071 0.89 11.59 0.023 1.007 1.477 1.464 1.665 0.007 2.46 pg 8
CALCULATION NO. NED-M-MSD-009 Pipeline 898 899 9 900 900-1 DO AFP-2B LOOP (939) 00AFP-1B LOOP (938) RCFC-1A (914) RCFC-1A (915) RCFC-1B (922) RCFC-1B (923) RCFC-1C (912) RCFC-1C (913) RCFC-10 (920) RCFC-1D (921) RCFC-2A (918) RCFC-2A (919) RCFC-2B (926) RCFC-2B (927) RCFC-2C (916) RCFC-2C (917) RCFC-20 (924) RCFC-20 (925) SX CC'S & OC-1A (932) SX CC'S & OC-1B (934) SX CC'S & OC-2A (933) SX CC'S & OC-2B (935) PIPE-FLO 2005 From Specification KH Steel Sch. 20 KO Steel Sch. 20 BN Steel Sch. 40 KO Steel Sch. 20 To Fluid Zone basin-4 Water basin-4{OO 1} Water BU Water New Pipe Water New Pipe Basin-3 Steel Sch. 20 Water COOLING WATER BOO.. JE Steel Sch. 40 Water COOLING WATER BOO.. IF Steel Sch. 40 BO Steel Sch. 40 BE Steel Sch. 40 ED Steel Sch. 40 EE Steel Sch. 40 BB Steel Sch. 40 BC Steel Sch. 40 EB Steel Sch. 40 EC Steel Sch. 40 DO Steel Sch. 40 DE Steel Sch. 40 FO Steel Sch. 40 FE Steel Sch. 40 DB Steel Sch. 40 DC Steel Sch. 40 FB Steel Sch. 40 FC Steel Sch. 40 HA Steel Sch. 40 AN Steel Sch. 40 HF Steel Sch. 40 AQ Steel Sch. 40 Water BG Water BF Water EG Water EF Water BI Water BH Water EI Water EH Water OG Water OF Water FH Water FF Water 01 Water OH Water FJ Water FI Water HE Water HM Water GH Water HN Water REVISION NO. SA PIPELINES Status xxx Flow (US gpm) 452.5 503.5 1618 380.2 380.2 806.6 1464 1591 1390 1316 1412 1495 1434 1338 1412 1386 1447 1420 1390 1513 1396 1400 121.9 122.6 102.6 99.42 APPENDIX A Velocity (ftJsec) Size (in) 0.342 24 0.381 24 6.589 10 0.288 24 0.420 20 8 5.177 8 9.397 8 10.21 8 8.921 8 8.447 8 9.061 8 9.597 8 9.204 8 8.587 8 9.06 8 8.893 8 9.289 8 9.115 8 8.922 8 9.708 8 8.963 8 8.987 8 3.075 4 3.093 4 2.587 4 2.508 4 dP (psi) Length (tt) 3.464 77.4 3.464 63.92 1.781 6 2.38 29.58 1.083 22 0.01 40.01 0.01 34.08 0.01 30.17 0.01 34.44 0.Q1 32.75 0.01 38.51 0.01 36.78 0.01 40.64 0.01 36.15 0.01 15.86 0.01 14.57 0.01 21.3 0.01 18.14 0.01 19.74 0.01 18.16 0.01 28.3 0.01 23.76 0.01 66.34 0.01 69.78 0.01 50.22 0.01 51.5 0.01 Page A9 06/24/10 9:11 am HL (tt) K 0.007 3.097 0.006 2.027 0.866 1.086 0.002 1.312 0.004 1.189 303 91.48 220 91.78 67 84.59 52.3 91.6 74.2 86.66 78.3 102 80.1 98.01 68.6 100.9 76.8 96.55 84.4 49.66 39 44.54 36.3 62.24 46.5 56.84 44.1 58.66 47.5 54.98 37.6 72.4 58.1 67.9 54.2 138.6 945 139.1 937.1 97.09 935.1 100 1026 pg 9
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA APPENDIX A Page A10 PIPELINES 06/24/10 9:11 am Pipeline From To Status Flow Velocity dP HL (US gpm) (ft/sec) (psi) (ft) Specification Fluid Zone Size Length K (in) (ft) Train 1A (928) BU BX 392.7 2.52 43.61 127.3 Steel Sch. 40 Water 8 0.01 1292 TRAIN 1B (930) EV EY 405.2 2.601 41.1 119.8 Steel Sch. 40 Water 8 0.01 1142 TRAIN 2A (929) DO DV 332.9 2.136 29.78 92.08 Steel Sch. 40 Water 8 0.01 1301 TRAIN 2B (931) FQ FX 338.7 2.174 32.7 97.23 Steel Sch. 40 Water 8 0.Q1 1326 PIPE-FLO 2005 pg 10
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA APPENDIX A Page A11 NODES 06/24/10 9:11 am Node Elev Status Pressure Grade (ft) (psi g) (ft) AA 354.33 22.45 406.2 AD 335.75 113.4 597.9 AE 335.75 112.6 595.9 AF 335.75 112.5 595.7 AG 335.75 112.4 595.6 AH 354.33 19.48 399.3 AK 335.75 113.1 597.2 AL 335.75 112.5 595.8 AM 335.75 112.4 595.6 AN 335.75 112.4 595.6 AO 335.75 112.4 595.6 AP 335.75 112.2 595.1 AO 335.75 95.52 556.5 BA 385.25 88.47 589.7 BB 408.22 72.61 576.1 BC 408.22 71.88 574.4 BD 408.22 70.42 571 BE 397.41 74.29 569.1 BF 382.55 44.13 484.5 BG 395.22 36.34 479.2 BH 395.22 35.1 476.4 BI 395.22 34.1 474 BJ 408.35 24.89 465.9 BM 408.35 24.15 464.2 BN 393.75 84.68 589.5 BO 393.75 84.6 589.3 BP 415.16 72.19 582 BS 409.25 24.68 466.3 BT 390 30.81 461.2 BU 397 82.9 588.6 BX 370.5 39.3 461.3 BY 370.5 38.75 460.1 CD 335.75 94.82 554.9 CE 335.75 94.82 554.9 CF 335.75 94.82 554.9 CG 335.75 94.83 555 CK 335.75 97.69 561.6 CL 335.75 95.79 557.2 CM 335.75 95.58 556.7 CN 335.75 95.52 556.5 COOLING WATER BOOSTER PUMP-1.. 388.5 79.92 573.2 COOLING WATER BOOSTER PUMP-2.. 388.5 71.8 554.5 DA 385.25 72.1 551.9 DB 408.25 56.5 538.9 DC 408.22 55.93 537.5 DO 408.22 54.71 534.7 DE 395.43 59.66 533.3 OF 384.57 45.09 488.8 DG 395.22 38.85 485 DH 395.22 37.77 482.5 01 395.22 36.76 480.2 OJ 408.3 25.65 467.6 OM 408.3 23.62 462.9 ON 402.25 25.73 461.7 DO 393.75 68.42 551.9 DP 393.75 68.42 551.9 DO 407.5 62.47 551.9 DT 407.5 22.79 460.2 DU 390 30.36 460.2 DV 370.5 38.65 459.8 EA 388.25 86.41 588 EB 410 73.33 579.5 PIPE-FLO 2005 pg 11
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA APPENDIX A Page A12 NODES 06/24/10 9:11 am Node Elev Status Pressure Grade (ft) (psi g) (ft) EC 410 72.78 578.2 ED 409 72.06 575.6 EE 395.45 77.38 574.~ EF 384.5 44.62 487.6 EG 397 37.63 484 EH 397 36.64 481.7 EI 403 32.69 478.6 EJ 410 26.37 471 EM 410.1 25.45 468.9 EN 392 84.41 587.1 EO 392 84.3 586.9 EP 415.15 72.19 582 ES 409.25 27.28 472.3 ET 385.25 35.33 466.9 EU 385.25 35.14 466.5 EV 395.25 82.75 586.5 EY 370.5 41.65 466.8 EZ 370.5 41.2 465.7 FA 388.15 71.95 554.5 FB 409.99 58.72 545.7 FC 409.99 58.1 544.3 FD 410 56.8 541.3 FE 397.4 61.63 539.9 FF 382.5 43.49 483 FH 397 35.5 479.1 FI 397 34.35 476.4 FJ 403 30.43 473.3 FK 410 23.85 465.1 FN 410 21.66 460.1 FO 402.25 24.61 459.1 FP 385.25 31.4 457.8 FQ 392.15 70.22 554.5 FR 392.15 70.22 554.5 FV 405.5 22.64 457.8 FW 385.25 31.3 457.6 FX 370.5 37.52 457.2 GA 398.5 20.25 445.3 GB 384 28.43 449.7 GC 354.75 43.74 455.9 GO 354.75 43.86 456.1 GE 354.75 43.89 456.2 GF 354.75 43.95 456.3 GG 354.75 43.97 456.4 GH 354.75 44 456.5 GI 354.75 44.01 456.5 GJ 354.75 44 456.5 GK 354.75 43.98 456.4 GL 356.6 43.17 456.4 GM 358 42.55 456.4 GN 358 42.55 456.4 GO 384 30.63 454.8 GP 398.5 23.94 453.8 HA 340 110.4 595.2 HE 354.75 44.06 456.6 HF 335.75 94.23 553.6 HL 358 42.64 456.6 HM 358 42.62 456.5 HN 354.75 44.02 456.5 IC 391 83.39 583.8 IF 389.5 39.91 481.8 IH 391 37.88 478.6 JB 391 70.72 554.5 PIPE-FLO 2005 pg 12
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA APPENDIX A Page A13 NODES 06/24/10 9:11 am Node Elev Status Pressure Grade (ft) (psi g) (ft) JE 395.25 26.98 457.6 KA 398.5 20.12 445 KB 398.5 20.07 444.9 KC 398.5 20.05 444.9 KD 398.5 3.896 407.5 KE 398.5 23.91 453.8 KF 398.5 23.89 453.7 KG 398.5 23.86 453.6 KH 398.5 3.897 407.5 New Pipe 404 1.516 407.5 PIPE-FLO 2005 pg 13
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA APPENDIX A Page A14 PUMPS 06/24/10 9:11 am Pump Flow Status Total head dP Speed NPSHa Suction Discharge Suction Discharge (US gpm) (ft) (psi) (rpm) (ft) (psi g) (psi g) (ft) (ft) SX Pump 1A 19034 (194.2) (84) 105.7 31.49 115.4 332.5 332.79 <no catalog data available> SX Pump 1B 16316 (200.3) (86.65) 99.08 28.62 115.2 332.5 332.75 <no catalog data available> SX Pump 2B 28257 (169) (73.12) 96.46 27.49 100.5 332.5 332.75 <no catalog data available> COMPONENTS Component Flow Status Head Loss dP Inlet Outlet Inlet Outlet (US gpm) (ft) (psi) (psi g) (psi g) (ft) (ft) CC HX~O 8000 12.25 5.3 99.39 93.88 364.75 365.25 CC HX~1 8000 12.25 5.3 47.91 40.66 358.5 363 CC HX-2 16000 24.5 10.6 81.18 70 364 365.35 Cont. Ref2A 873.8 4.201 1.817 24.73 23.63 410.15 408.5 Cont. Ref2B 942.1 4.529 1.959 23.7 22.44 410.1 408.5 Cont. Ref. 1A Off 410.1 408.35 Cont. Ref. 1B Off 410.1 408.5 CR Ref. OB 1043 22.73 9.834 80.52 70.19 386.35 387.5 CR Ref. Cond OA 1225 31.48 13.62 79.24 65.1 386.35 387.56 DGJWC-1A 1871 24.68 10.68 62.98 50.51 405 409.15 DGJWC~1B 1901 25.5 11.03 60.39 47.54 405 409.2 DGJWC-2A Off 405.5 409.25 DGJWC~2B Off 405.5 409.25 CONTROLS Control Set Value Elev Flow Status dP HL Inlet Outlet (ft) (US gpm) (psi) (ft) (psi g) (psi g) HB FCV: 8000 358.5 8000 54.33 125.6 102.3 47.94 <no catalog data available> HI FCV: 16000 354.75 16000 29.64 68.52 74.45 44.8 <no catalog data available> HK FCV: 8000 365.25 8000 54.2 125.3 93.88 39.68 <no catalog data available> PIPE~FLO 2005 pg 14
CALCULATION NO. NED-M-MSD.. OO9 REVISION NO. SA APPENDIX A Page A15 TANKS 06/24/10 9:11 am Tank Surface Pressure Level Bottom Elevation Status Flow Pressure Grade (psi g) (ft) (ft) (US gpm) (psi) (ft) Basin-3 0 406.5 380.2 0.433 407.5 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (ft) 900-1 @ 0 ft 380.2 0.433 407.5 Infinite tank/no geometry basin-4 0 406.5 452.5 0.433 407.5 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (ft) 898@Oft 452.5 0.433 407.5 Infinite tank/no geometry basin-4{001} 0 406.5 503.5 0.433 407.5 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (ft) 899@Oft 503.5 0.433 407.5 Infinite tank/no geometry basin-5 0 406.5 479.4 0.433 407.5 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (ft) 897@Oft 479.4 0.433 407.5 Infinite tank/no geometry CeliA 0 0 432.4 269.7 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (ft) 857@Oft 269.7 0 432.4 Infinite tank/no geometry CeliB 0 0 432.4 14048 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (ft) 859@Oft 14048 0 432.4 Infinite tank/no geometry CeliC 0 0 432.4 13973 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (ft) 861 @Oft 13973 0 432.4 Infinite tank/no geometry Cell D 0 0 432.4 13955 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (ft) 863@Oft 13955 0 432.4 Infinite tank/no geometry CeliE 0 0 432.4 283.8 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (ft) 849@Oft 283.8 0 432.4 Infinite tank/no geometry Cell F 0 0 432.4 283.4 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (ft) 851 @ 0 ft 283.4 0 432.4 Infinite tank/no geometry CeliG 0 0 432.4 282.9 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (ft) 853@Oft 282.9 0 432.4 Infinite tank/no geometry PIPE-FLO 2005 pg 15
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA APPENDIX A Tank Cell H FG(A) FG(B) Demand IA IG JA JF PIPE-FLO 2005 Surface Pressure (psi g) Level (ft) o o o Connecting pipelines 855@Oft o Infinite tank/no geometry Connecting pipelines 843@Oft o Infinite tank/no geometry Connecting pipelines 845@Oft o Infinite tank/no geometry Set Value Flow out Flow in Flow out Flow in TANKS Bottom Elevation (ft) 432.4 Flow (US gpm) 18695 407.5 Flow (US gpm) 19034 407.5 Flow (US gpm) 44573 DEMANDS Flow Rate Pressure (US gpm) (psi g) 20 85.79 20 39.78 20 67.88 20 29.58 Status Flow Pressure (US gpm) (psi) 18695 0 Pressure (psi g) Grade (ft) 0 432.4 -19034 0 Pressure (psi g) Grade (ft) 0 407.5 -44573 0 Pressure (psi g) Grade (ft) 0 407.5 Elev Status Grade (ft) (ft) 391 589.3 389.5 481.5 395 551.9 389.25 457.6 Page A16 06/24/10 9:11 am Grade (ft) 432.4 407.5 407.5 pg 16
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA PIPE-FLO 2005 NOTES SPECIFICATIONS FLUID ZONES PIPELINES NODES PUMPS COMPONENTS CONTROLS TANKS DEMANDS APPENDIX A Page A17 06/24/10 9:11 am pg 17
CALCULATION NO. NED-M-MSD-009 REVISION NO. 8A APPENDIX A Page A18 System: Scenario 8D1 Lineup: Scenario 8D1 rev: 06/24/10 9:22 am Atm pressure: 14.7 psi a Specification BBSX (STD) BBSX (XS) Steel Sch. 10 Steel Sch. 20 Steel Sch. 30 Steel Sch. 40 Steel Std Fluid Zone Water PIPE-FLO 2005 LIST REPORT Total System Volume: 737326 gallons Pressure drop calculations: Darcy-Weisbach method. Calculated: 14 iterations Avg Deviation: 0.007847 % Material/Schedule ByronPipes-NHL 1 STD Valves: standard ByronPipes-NHL / XS Valves: standard Steel A53-B36.10 /10 Valves: standard Steel A53-B36.10 / 20 Valves: standard Steel A53-836.10 130 Valves: standard Steel A53-836.1 0 / 40 Valves: standard Steel A53-836.10 120 Valves: standard Fluid Water SPECIFICATIONS Roughness 0.036 in C: 100 0.036 in C: 100 0.036 in C: 140 0.036 in C: 140 0.036 in C: 140 0.036 in C: 140 0.036 in C: 140 FLUID ZONES Temp Pressure CF) (psi g) 82 14.7 Sizing not specified not specified not specified not specified not specified not specified not specified Density (lb/ft3) 62.33 06/24/10 9:22 am Company: Sargent & Lundy LLC Project: Design Limits Viscosity cP 0.8362 Pv 1 Pc or k (psi a) 0.5413/3198 pg 1
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA Pipeline 12 154 155 156 157 158 160 161 162 164 165 166 167 168 170 171 172 173 176 178 179 180 181 182 183 233 PIPE-FLO 2005 From Specification AA BBSX (STO) BU Steel Sch. 40 BF Steel Sch. 40 BG Steel Sch. 30 BH Steel Sch. 30 BI Steel Sch. 30 BJ BBSX (STO) Cont. Ref. 1A Steel Sch. 20 BJ Steel Sch. 30 BM Steel Sch. 30 BT Steel Sch. 20 BX Steel Sch. 40 BY Steel Sch. 20 BO Steel Sch. 40 BP Steel Sch. 40 OGJWC-1A Steel Sch. 40 BS Steel Sch. 40 BO Steel Sch. 40 IA Steel Sch. 40 AA BBSX (STO) SX Pump 2A BBSX(STO) CO BBSX (STO) CE BBSX (STO) CF Steel Sch. 20 OA Steel Sch. 30 DO Steel Sch. 30 OA Steel Sch. 30 To Fluid Zone SX Pump 1A Water CR Ref. Cond OA Water BG Water BH Water BI Water BJ Water Cont. Ref. 1A Water BM Water BM Water BT Water BY Water BY Water GO Water BP Water OGJWC-1A Water BS Water BT Water IA Water IB Water SXPump 2A Water CD Water CE Water CF Water OA Water DO Water OP Water DB Water PIPELINES Status xxx xxx xxx xxx Flow (US gpm) 19167 1241 1610 3092 4606 6035 o 6035 6035 7929 1638 9567 2172 1894 1894 1894 20 o o 6144 357.9 20 5787 APPENDIX A Velocity (ft/sec) Size (in) 6.306 36 7.964 8 6.558 10 7.201 14 10.73 14 10.61 16 12 o 12 10.61 16 10.61 16 8.748 20 6.671 10 10.56 20 8.842 10 7.712 10 7.712 10 7.712 10 0.222 6 6 36 36 o 36 o 36 6.779 20 0.833 14 0.047 14 10.17 16 dP (psi) Length (ft) (9.033) 71.2 3.866 229.5 7.842 70.35 1.268 129 1.026 42.14 9.297 205.5 17.25 o 23.5 0.751 12.66 (6.621) 47 (7.928) 37 0.563 5.33 (5.069) 43.5 12.48 125.4 9.545 118.5 26.45 111.5 (6.071) 82.25 (1.187) 81.33 0.25 97.75 33.8 o 0.01 o 6.2 22.76 145.8 3.681 8.5 o 3.25 15.77 227.5 Page A19 06/24/10 9:22 am HL (ft) K 0.948 1.054 19.59 9.66 5.458 5.837 2.932 0.644 2.373 0.352 8.362 0.804 1.295 o 1.835 1.736 0.749 3.046 0.833 1.174 0.454 1.301 1.707 4.032 1.705 7.445 1.97 32.22 30.98 61.05 62.45 5.216 2.916 0.006 2.002 0.633 1.875 1.345 o 3.278 o 0.326 3.114 2.257 0.009 0.606 o 0.439 13.46 3.975 pg 2
CALCULATION NO. NED-M-MSD-009 Pipeline 234 235 236 25 3 327 328 329 330 331 333 334 335 336 337 339 340 341 343 344 345 348 349 351 356 364 367 PIPE-FLO 2005 From Specification OB Steel Sch. 30 OC Steel Sch. 30 00 Steel Sch. 40 CR Ref. Cond OA Steel Sch. 40 SX Pump 1A BBSX (STO) OF Steel Sch. 40 OG Steel Sch. 30 OH Steel Sch. 30 01 Steel Sch. 30 OJ BBSX(STO) Cont. Ref 2A BBSX (STO) OJ Steel Sch. 30 OM Steel Sch. 30 ON Steel Sch. 30 OU Steel Sch. 20 OV Steel Sch. 20 OP Steel Sch. 40 00 Steel Sch. 40 OGJWC-2A Steel Sch. 40 OT Steel Sch. 40 OP Steel Sch. 40 AF BBSX (STO) AG BBSX (STO) HA B8SX(STO) HB BBSX (STO) CC HX-1 BBSX (STO) HE BBSX (STO) To Fluid Zone DC Water DO Water DE Water 8X Water AO Water OG Water OH Water 01 Water OJ Water Cont. Ref2A Water OM Water OM Water ON Water OU Water OV Water GC Water 00 Water OGJWC-2A Water OT Water OU Water JA Water AG Water HA Water HB Water CC HX-1 Water HE Water GF Water REVISION NO. 8A PIPELINES Status xxx Flow (US gpm) 4375 2840 1407 1241 19167 1407 2840 4375 5787 895.3 895.3 4891 5787 5787 5787 6124 o o o 20 9302 8123 8000 8000 8000 8123 APPENDIX A Velocity (ft/sec) Size (in) 10.19 14 6.613 14 5.728 10 7.964 8 6.306 36 5.728 10 6.613 14 10.19 14 10.17 16 2.542 12 2.542 12 8.598 16 10.17 16 10.17 16 6.384 20 6.757 20 o 10 10 o 10 o 10 0.222 6 3.06 36 3.882 30 3.823 30 3.823 30 3.823 30 3.882 30 dP (psi) Length (tt) 0.592 26.07 1.258 144 (4.938) 36.95 26.64 248.6 1.956 18.75 6.294 64.54 1.113 130.7 1.036 42.43 11.28 223.5 0.924 20.75 0.014 24.5 2.086 9.25 (2.092) 18.5 (4.611) 31.5 (8.284) 29.75 (5.041) 246 5.948 101.3 112.8 (0.757) 115.8 (7.57) 52.25 0.545 110.8 0.054 42.25 2.011 8.25 8.128 62.75 0.029 12.25 (3.392) 55.75 0.108 13.6 Page A20 06/24/10 9:22 am HL (tt) K 1.398 0.263 2.908 0.934 1.376 1.47 78.63 68.82 1.561 2.403 3.898 5.505 2.572 0.749 2.395 0.503 12.99 3.757 0.285 2.288 0.232 1.656 4.821 4.024 1.213 0.397 1.591 0.38 0.350 0.123 4.097 2.222 o 2.816 32.21 o 69.77 o 2.138 0.009 3.04 0.125 0.569 0.399 1.635 0.289 0.736 0.067 0.19 0.409 1.323 0.250 0.952 pg 3
CALCULATION NO. NED-M-MSD-009 Pipeline 368 369 370 372 384 387 388 389 390 391 393 394 396 397 398 399 4 400 401 402 403 405 406 407 423 425 463 PIPE-FLO 2005 From Specification GF BBSX (STO) CG BBSX(STO) CG BBSX (STO) HF BBSX(STO) CC HX-2 BBSX (STO) HI BBSX(STO) GI BBSX (STO) GH BBSX(STO) GE BBSX (XS) GO BBSX(XS) GC BBSX(XS) AH BBSX(STO) SX Pump 1B Steel Sch. 20 AK BBSX (STO) AL BBSX(STO) AM Steel Std AO BBSX(STO) EA Steel Sch. 30 EN Steel Sch. 30 EO Steel Sch. 40 EP Steel Sch. 40 OGJWC-1B Steel Sch. 40 ES Steel Sch. 40 EN Steel Sch. 40 EV Steel Sch. 40 CR Ref. OB Steel Sch. 40 EY Steel Sch. 40 To Fluid Zone GE Water CF Water HF Water CC HX-2 Water HI Water GI Water GH Water GE Water GO Water GC Water GB Water SX Pump 1B Water AK Water AL Water AM Water EA Water AE Water EN Water EO Water EP Water OGJWC-1B Water ES Water ET Water EV Water CR Ref. OB Water EY Water EZ Water REVISION NO. SA PIPELINES Status Flow (US gpm) 17528 6144 16104 16000 16000 16000 11854 11959 29487 39054 45178 16418 16418 16418 16418 9472 19167 3928 2462 1646 1924 1924 1924 1466 1056 1056 1466 APPENDIX A Velocity (ft/sec) Size (in) 4.211 42 2.022 36 7.695 30 7.646 30 7.646 30 7.646 30 2.848 42 2.873 42 5.457 48 7.228 48 8.361 48 5.402 36 12.42 24 5.402 36 5.402 36 10.45 20 6.306 36 9.148 14 5.734 14 6.703 10 7.833 10 7.833 10 7.833 10 5.969 10 6.776 8 6.776 8 5.969 10 dP (psi) Length (ft) 0.062 20.75 0.005 4.5 0.602 3.75 13.05 110.8 (4.452) 17.5 0.793 12 0.007 8.5 0.126 123 0.040 14.75 0.131 32.25 15.57 956.2 (9.142) 71.3 2.056 7.22 0.642 0.01 0.071 6.25 26.08 149 0.875 0.01 2.011 3.75 0.111 2 12.16 137 12.18 223.8 20.75 209 (7.997) 86.5 1.659 5.75 2.377 233 29.39 254.5 0.461 4.5 Page A21 06/24/10 9:22 am HL (ft) K 0.144 0.407 0.011 0.146 1.391 1.482 1.91 1.159 0.309 0.191 1.833 1.919 0.016 0.081 0.291 1.579 0.092 0.129 0.304 0.222 6.735 1.678 0.697 1.054 1.753 0.651 1.484 3.278 0.165 0.322 7.788 2.446 2.022 3.278 0.900 0.606 0.257 0.457 4.964 2.558 38.31 32.8 47.92 43.4 5.514 2.916 0.586 0.868 14.39 9.791 84.94 107.9 1.067 1.78 pg 4
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA Pipeline 464 465 466 467 5 514 538 560 561 562 564 565 566 568 569 570 571 6 60 602 603 604 605 607 608 609 61 PIPE-FLO 2005 From Specification EA Steel Sch. 30 EB Steel Sch. 30 EC Steel Sch. 30 ED Steel Sch. 40 AE BBSX (STO) EH Steel Sch. 30 EG Steel Sch. 30 EF Steel Sch. 40 EI Steel Sch. 30 EJ BBSX(STO) Cant. Ref. 1B BBSX (STO) EJ Steel Sch. 30 EM Steel Sch. 30 ET Steel Sch. 20 EU Steel Sch. 20 EO Steel Sch. 40 IC Steel Sch. 40 AF Steel Std BA Steel Sch. 30 IF Steel Sch. 40 IG Steel Sch. 40 IH Steel Sch. 40 AH BBSX (STO) SX Pump 2B Steel Sch. 20 CK BBSX(STO) CL BBSX (STO) BB Steel Sch. 30 To Fluid Zone EB Water EC Water EO Water EE Water AF Water EI Water EH Water EG Water EJ Water Cont. Ref. 1B Water EM Water EM Water ET Water EU Water EZ Water IC Water PIPELINES Status xxx COOLING WATER BOO.. Water BA Water BB Water IG Water IH Water EU Water SX Pump 2B Water CK Water CL Water CM Water BC Water Flow (US gpm) 5544 4093 2739 1332 19167 4093 2739 1332 5544 o 5544 5544 7468 8304 816.4 816.4 9865 6035 816.4 836.4 836.4 28439 28439 28439 28439 4606 APPENDIX A Velocity (ft/sec) Size (in) 9.746 16 9.531 14 6.377 14 5.424 10 6.306 36 9.531 14 6.377 14 5.424 10 9.746 16 12 o 12 9.746 16 9.746 16 8.239 20 9.162 20 5.24 8 9.074 6 10.88 20 10.61 16 9.074 6 9.296 6 9.296 6 9.357 36 21.51 24 9.357 36 9.357 36 10.73 14 dP (psi) Length (tt) 13.17 141 0.558 28 0.748 145.8 (5.3) 48.75 0.099 6.75 3.98 62 1.011 127 7.034 69.57 6.399 149.5 27.25 0.692 32.75 0.941 13.5 (9.863) 44.75 0.198 11.75 (6.051) 17.5 0.938 97 3.584 16 24.05 85.1 16 214.2 0.132 2 1.934 22 2.859 99 (7.996) 87 2.829 6.82 1.926 0.01 0.212 5.75 0.752 29.25 Page A22 06/24/10 9:22 am HL (tt) K 8.689 3.161 1.289 0.265 2.73 0.932 1.298 1.216 0.229 0.326 3.2 0.832 2.338 0.748 3.761 5.919 7.793 2.388 1.491 o 2.28 2.076 1.147 2.05 0.523 0.458 0.265 0.763 0.333 3.168 3.09 10.78 7.422 6.104 2.094 14.01 3.871 0.306 0.112 2.97 0.812 12.36 2.903 3.346 1.875 3.541 0.416 4.452 3.278 0.490 0.322 1.739 0.296 pg 5
CALCULATION NO. NED-M-MSD-009 REVISION NO. 8A Pipeline 610 611 612 613 614 616 617 62 63 670 671 672 673 7 711 725 747 748 749 751 752 753 754 759 760 761 762 PIPE-FLO 2005 From Specification CM Steel Sch. 20 FA Steel Sch. 30 FQ Steel Sch. 30 FR Steel Sch. 40 FS Steel Sch. 40 OGJWC-2B Steel Sch. 40 FV Steel Sch. 40 BC Steel Sch. 30 BO Steel Sch. 40 FA Steel Sch. 30 FB Steel Sch. 30 FC Steel Sch. 30 FO Steel Sch. 40 BA Steel Sch. 20 FI Steel Sch. 30 FH Steel Sch. 30 FF Steel Sch. 40 FJ Steel Sch. 30 FK BBSX (STO) Cont. Ref2B BBSX(STO) FK Steel Sch. 30 FN Steel Sch. 30 FO Steel Sch. 30 FP Steel Sch. 20 FW Steel Sch. 20 FR Steel Sch. 40 JB Steel Sch. 40 To Fluid Zone FA Water FQ Water FR Water FS Water OGJWC-2B Water FV Water FP Water BO Water BE Water FB Water FC Water FO Water FE Water BN Water FJ Water FI Water FH Water FK Water Cant. Ref2B Water FN Water FN Water FO Water FP Water FW Water FX Water JB Water PIPELINES Status xxx xxx COOLING WATER BOO.. Water Flow (US gpm) 6090 343.6 o o o 3092 1610 5746 4330 2909 1441 3830 4330 2909 1441 5746 964 964 4782 5746 5746 5746 5766 o o APPENDIX A Velocity (ft/sec) Size (in) 6.719 20 0.800 14 o 14 10 10 o 10 o 10 7.201 14 6.558 10 10.1 16 10.08 14 6.774 14 5.867 10 4.225 20 10.08 14 6.774 14 5.867 10 10.1 16 2.737 12 2.737 12 8.407 16 10.1 16 10.1 16 6.34 20 6.362 20 o 8 o 6 dP (psi) Length (ft) 23.65 87.75 1.733 4 o 3.25 83 162.3 (1.622) 142.3 (8.76) 59.5 1.493 144.4 (3.852) 50.04 13.34 138.9 0.640 27.57 1.336 145.8 (4.812) 46.25 3.787 6.5 3.958 59 1.188 133.5 8.039 65.35 6.68 152.3 0.150 27.75 0.787 30.75 2.25 15.25 (2.946) 15.75 (6.768) 30.75 0.100 7.25 (6.216) 23.5 (0.497) 106.5 (1.081) 22.25 Page A23 06/24/10 9:22 am HL (ft) K 2.281 1.986 0.007 0.607 o 0.457 2.371 31.43 o 125.2 o 2.595 3.452 0.932 1.905 1.188 8.995 2.988 1.48 0.299 3.079 0.932 1.477 1.224 0.253 0.819 3.149 0.628 2.747 0.751 4.083 5.466 8.443 2.379 0.246 1.375 0.320 1.93 5.201 4.447 0.940 0.288 1.354 0.259 0.231 0.265 0.380 0.265 o 3.998 o 7.422 pg 6
CALCULATION NO. NED-M-MSD-009 Pipeline 792 793 794 795 8 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 837 838 839 840 841 842 843 PIPE-FLO 2005 From Specification JE Steel Sch. 40 JF Sleel Sch. 40 AM BBSX (STO) AN BBSX(STO) BN Steel Sch. 30 AP BBSX(STO) CC HX-O BBSX (STO) HK BBSX (STO) HL BBSX(STO) HM BBSX (STO) HL BBSX (STO) HN BBSX (STO) GG BBSX(STO) GI BBSX(STO) EZ Steel Sch. 20 GK BBSX (STO) GJ BBSX (STO) GK BBSX(XS) CM BBSX(STO) CN BBSX(STO) GL BBSX (XS) FX Steel Sch. 20 GM BBSX(XS) GN BBSX (XS) CN BBSX (STO) AG BBSX (STO) FG(A) BBSX (XS) To Fluid Zone JF Water FW Water AO Water AO Water BO Water CC HX-O Water HK Water HL Water HM Water GG Water HN Water GJ Water GF Water GJ Water GL Water GG Water GK Water GL Water CN Water AQ Water GM Water GM Water GN Water GO Water CG Water AN Water AA Water REVISION NO. 8A PIPELINES Status Flow (US gpm) o 20 6946 1054 2192 8000 8000 8000 4977 5101 3023 3124 9405 4146 9770 4303 7269 2966 22349 100.9 12736 6110 18846 18846 22248 1178 19167 APPENDIX A Velocity (ft/sec) Size (in) o 6 0.222 6 2.285 36 0.347 36 5.103 14 3.823 30 3.823 30 3.823 30 2.378 30 2.438 30 1.444 30 1.493 30 2.26 42 0.996 42 10.78 20 1.034 42 1.747 42 0.549 48 7.353 36 0.048 30 2.357 48 6.741 20 3.488 48 3.488 48 7.32 36 0.388 36 3.547 48 dP (psi) Length (ft) (2.596) 16.5 (1.724) 170.8 0.006 4.5 o 2.5 0.084 1.83 12.8 107.3 o 0.01 (2.963) 27.75 0.019 12.5 (1.35) 24.75 (1.382) 89.75 0.016 10.5 0.031 23.25 0.005 29 (1.879) 213.5 0.014 104.8 0.021 19.75 0.802 45.75 0.064 4.5 o 3 0.618 23.75 (5.02) 12.5 0.005 2.25 11.81 1107 0.693 90.25 o 47.25 (22.44) 1021 Page A24 06/24/10 9:22 am HL (ft) K o 1.557 0.014 5.01 0.014 0.146 o 0.097 0.195 0.44 0.596 1.705 o o 0.401 1.532 0.044 0.394 0.128 1.179 0.055 0.919 0.036 0.952 0.071 0.766 0.011 0.547 9.556 2.221 0.032 1.34 0.049 0.92 0.003 0.48 0.148 0.146 o 1.482 0.029 0.222 0.897 1.091 0.011 0.045 1.306 1.623 1.602 1.315 0.002 0.509 1.294 1.744 pg 7
CALCULATION NO. NED-M-MSD-009 Pipeline 845 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 870 871 874 875 897 PIPE-FLO 2005 From Specification FG(B) BBSX (XS) GB BBSX (XS) GO BBSX(XS) GP Steel Sch. 20 GP BBSX (XS) KE Steel Sch. 20 KE BBSX(XS) KF Steel Sch. 20 KF BBSX(XS) KG Steel Sch. 20 KG BBSX (XS) GA Steel Sch. 20 GA BBSX (XS) KA Steel Sch. 20 KA BBSX (XS) KB Steel Sch. 20 KB BBSX(XS) KC Steel Sch. 20 KC BBSX (XS) AO BBSX (STO) AP BBSX(STO) IB Steel Sch. 40 BP Steel Sch. 40 BS Steel Sch. 40 DO Steel Sch. 40 OT Steel Sch. 40 KH Steel Sch. 20 To Fluid Zone AH Water GA Water GP Water Cell E Water KE Water Cell F Water KF Water CeliG Water KG Water Cell H Water KH Water CeliA Water KA Water Cell B Water KB Water CeliC Water KC Water CeliO Water KO Water AP Water AO Water IH Water EP Water ES Water FS Water FV Water basin-5 Water REVISION NO. SA PIPELINES Status xxx xxx xxx xxx xxx Flow (US gpm) 44858 45178 18846 260.7 18585 260.2 18325 259.8 18065 17168 897.6 11220 33958 11089 22869 11029 11841 11014 826.3 8000 277.5 461.8 APPENDIX A Velocity (ftJsec) Size (in) 8.302 48 8.361 48 3.488 48 0.1 97 24 3.44 48 0.197 24 3.391 48 0.196 24 3.343 48 12.98 24 0.166 48 8.486 24 6.285 48 8.387 24 4.233 48 8.341 24 2.191 48 8.33 24 0.153 48 3.823 30 30 6 1.13 10 10 10 10 0.349 24 dP (psi) Length (ft) (19.43) 1266 8.358 747.6 6.627 810.6 22.49 120.1 0.024 43 22.46 120.1 0.024 43 22.44 120.1 0.023 43 22.42 120.1 18.52 153.2 18.15 90.92 0.081 43 18.07 90.92 0.037 43 18.03 90.92 0.009 35.75 18.02 90.92 14.13 7.25 0.208 5.5 7 10.5 0.006 4.75 4.75 10.5 12 3.464 92.83 Page A25 06/24/10 9:22 am HL (ft) K 8.251 1.717 4.821 0.902 0.819 0.462 18.1 30005 0.056 0.101 18.03 30005 0.055 0.101 17.97 30005 0.053 0.101 17.92 5.487 42.81 100000 8.052 6.172 0.187 0.101 7.865 6.172 0.085 0.101 7.779 6.172 0.020 0.101 7.759 6.172 32.65 90000 0.480 2.071 0.89 11.59 0.023 1.007 1.477 1.464 1.665 0.007 2.46 pg 8
CALCULATION NO. NED-M-MSD-009 Pipeline 898 899 9 900 900-1 DD AFP-2B LOOP (939) DDAFP-1B LOOP (938) RCFC-1A (914) RCFC-1A (915) RCFC-1B (922) RCFC-1B (923) RCFC-1C (912) RCFC-1C (913) RCFC-1D (920) RCFC-1D (921) RCFC-2A (918) RCFC-2A (919) RCFC-2B (926) RCFC-2B (927) RCFC-2C (916) RCFC-2C (917) RCFC-2D (924) RCFC-2D (925) SX CC'S & OC-1A (932) SX CC'S & OC-1B (934) SX CC'S & OC-2A (933) SX CC'S & OC-2B (935) PIPE-FLO 2005 From Specification KH Steel Sch. 20 KD Steel Sch. 20 BN Steel Sch. 40 KD Steel Sch. 20 To Fluid Zone basin-4 Water basin-4{001} Water BU Water New Pipe Water New Pipe Basin-3 Steel Sch. 20 Water COOLING WATER BOO.. JE Steel Sch. 40 Water COOLING WATER BOO.. IF Steel Sch. 40 BD Steel Sch. 40 BE Steel Sch. 40 ED Steel Sch. 40 EE Steel Sch. 40 BB Steel Sch. 40 BC Steel Sch. 40 EB Steel Sch. 40 EC Steel Sch. 40 DD Steel Sch. 40 DE Steel Sch. 40 FD Steel Sch. 40 FE Steel Sch. 40 DB Steel Sch. 40 DC Steel Sch. 40 FB Steel Sch. 40 FC Steel Sch. 40 HA Steel Sch. 40 AN Steel Sch. 40 HF Steel Sch. 40 AQ Steel Sch. 40 Water BG Water BF Water EG Water EF Water BI Water BH Water EI Water EH Water DG Water DF Water FH Water FF Water DI Water DH Water FJ Water FI Water HE Water HM Water GH Water HN Water REVISION NO. SA PIPELINES Status xxx Flow (US gpm) 435.8 470.8 1638 355.5 355.5 816.4 1482 1610 1407 1332 1429 1514 1451 1354 1433 1407 1468 1441 1411 1536 1417 1421 123.5 124.3 104.1 100.9 APPENDIX A Velocity (ft/sec) Size (in) 0.330 24 0.356 24 6.671 10 0.269 24 0.392 20 8 5.24 8 9.512 8 10.34 8 9.029 8 8.549 8 9.172 8 9.715 8 9.315 8 8.691 8 9.198 8 9.029 8 9.424 8 9.248 8 9.058 8 9.856 8 9.093 8 9.117 8 3.114 4 3.134 4 2.626 4 2.544 4 dP (psi) Length (ft) 3.464 77.4 3.463 63.92 1.79 6 2.38 29.58 1.083 22 0.01 40.97 0.01 35.06 0.01 31.07 0.01 35.4 0.01 33.67 0.01 39.6 0.01 37.82 0.01 41.7 0.01 37.16 0.01 16.52 0.01 15.16 0.01 22.09 0.01 18.86 0.01 20.52 0.01 18.89 0.01 29.21 0.01 24.62 0.01 67.87 0.01 71.39 0.01 51.49 0.01 52.77 0.01 Page A26 06/24/10 9:22 am HL (ft) K 0.007 3.097 0.006 2.027 0.888 1.086 0.002 1.312 0.004 1.189 303 93.71 220 94.05 67 86.68 52.3 93.83 74.2 88.77 78.3 104.5 80.1 100.4 68.6 103.4 76.8 98.9 84.4 51.18 39 45.91 36.3 64.07 46.5 58.51 44.1 60.45 47.5 56.66 37.6 74.52 58.1 69.89 54.2 142.1 945 142.8 937.1 100 935.1 103 1026 pg 9
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA APPENDIX A Page A27 PIPELINES 06/24/10 9:22 am Pipeline From To Status Flow Velocity dP HL (US gpm) (ft/sec) (psi) (ft) Specification Fluid Zone Size Length K (in) (ft) Train 1A (928) BU BX 397.5 2.551 44.96 130.4 Steel Sch. 40 Water 8 0.01 1292 TRAIN 1 B (930) EV EY 410.1 2.632 42.36 122.7 Steel Sch. 40 Water 8 0.01 1142 TRAIN 2A (929) DO DV 337.9 2.169 30.98 94.87 Steel Sch. 40 Water 8 0.01 1301 TRAIN 2B (931) FQ FX 343.6 2.206 33.92 100.1 Steel Sch. 40 Water 8 0.01 1326 PIPE-FLO 2005 pg 10
CALCULATION NO. NED-M-MSD-009 REVISION NO. 8A APPENDIX A Page A28 NODES 06/24/10 9:22 am Node Elev Status Pressure Grade (ft) (psi g) (ft) AA 354.33 22.44 406.2 AD 335.75 113.3 597.6 AE 335.75 112.4 595.6 AF 335.75 112.3 595.3 AG 335.75 112.2 595.2 AH 354.33 19.43 399.2 AK 335.75 113 596.9 AL 335.75 112.3 595.4 AM 335.75 112.2 595.2 AN 335.75 112.2 595.2 AO 335.75 112.2 595.2 AP 335.75 112 594.7 AQ 335.75 95.16 555.7 BA 385.25 88.24 589.2 BB 408.22 72.24 575.2 BC 408.22 71.48 573.5 BD 408.22 69.99 570 BE 397.41 73.84 568.1 BF 382.55 42.77 481.4 BG 395.22 34.93 476 BH 395.22 33.66 473 BI 395.22 32.64 470.7 BJ 408.35 23.34 462.3 BM 408.35 22.59 460.6 BN 393.75 84.45 589 BO 393.75 84.36 588.8 BP 415.16 71.88 581.3 BS 409.25 23.14 462.7 BT 390 29.21 457.5 BU 397 82.66 588.1 BX 370.5 37.7 457.6 BY 370.5 37.14 456.3 CD 335.75 94.46 554.1 CE 335.75 94.46 554.1 CF 335.75 94.46 554.1 CG 335.75 94.46 554.1 CK 335.75 97.36 560.8 CL 335.75 95.43 556.4 CM 335.75 95.22 555.9 CN 335.75 95.16 555.7 COOLING WATER BOOSTER PUMP-1..388.5 79.52 572.3 COOLING WATER BOOSTER PUMP-2.. 388.5 71.42 553.6 DA 385.25 71.7 551 DB 408.25 55.92 537.5 DC 408.22 55.33 536.1 DO 408.22 54.07 533.2 DE 395.43 59.01 531.8 OF 384.57 43.85 485.9 DG 395.22 37.56 482 DH 395.22 36.44 479.5 01 395.22 35.41 477.1 OJ 408.3 24.13 464.1 OM 408.3 22.04 459.3 ON 402.25 24.14 458 DO 393.75 68.02 551 DP 393.75 68.02 551 DQ 407.5 62.07 551 DT 407.5 21.18 456.5 DU 390 28.75 456.5 DV 370.5 37.03 456.1 EA 388.25 86.16 587.4 EB 410 72.99 578.7 PIPE-FLO 2005 pg 11
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA APPENDIX A Page A29 NODES 06/24/10 9:22 am Node Elev Status Pressure Grade (ft) (psi g) (ft) EC 410 72.44 577.4 ED 409 71.69 574.7 EE 395.45 76.99 573.4 EF 384.5 43.32 484.6 EG 397 36.29 480.9 EH 397 35.28 478.5 EI 403 31.3 475.3 EJ 410 24.9 467.6 EM 410.1 23.96 465.5 EN 392 84.15 586.5 EO 392 84.04 586.3 EP 415.15 71.88 581.3 ES 409.25 25.83 469 ET 385.25 33.83 463.4 EU 385.25 33.63 463 EV 395.25 82.5 586 EY 370.5 40.14 463.3 EZ 370.5 39.68 462.2 FA 388.15 71.57 553.6 FB 409.99 58.23 544.6 FC 409.99 57.59 543.1 FD 410 56.25 540 FE 397.4 61.06 538.5 FF 382.5 42.2 480 FH 397 34.16 476 FI 397 32.97 473.2 FJ 403 29.01 470.1 FK 410 22.33 461.6 FN 410 20.09 456.4 FO 402.25 23.03 455.5 FP 385.25 29.8 454.1 FQ 392.15 69.84 553.6 FR 392.15 69.84 553.6 FV 405.5 21.04 454.1 FW 385.25 29.7 453.9 FX 370.5 35.92 453.5 GA 398.5 18.15 440.5 GB 384 26.51 445.3 GC 354.75 42.07 452 GO 354.75 42.2 452.3 GE 354.75 42.24 452.4 GF 354.75 42.31 452.5 GG 354.75 42.34 452.6 GH 354.75 42.37 452.7 GI 354.75 42.38 452.7 GJ 354.75 42.38 452.7 GK 354.75 42.36 452.7 GL 356.6 41.56 452.7 GM 358 40.94 452.6 GN 358 40.93 452.6 GO 384 29.12 451.3 GP 398.5 22.49 450.5 HA 340 110.2 594.8 HE 354.75 42.42 452.8 HF 335.75 93.86 552.7 HL 358 41.01 452.8 HM 358 40.99 452.7 HN 354.75 42.4 452.8 IC 391 83.1 583.1 IF 389.5 38.55 478.6 IH 391 36.49 475.3 JB 391 70.34 553.6 PIPE-FLO 2005 pg 12
CALCULATION NO. NED.. M.. MSD-009 REVISION NO. SA APPENDIX A Page A30 NODES 06/24/10 9:22 am Node Elev Status Pressure Grade (ft) (psi g) (ft) JE 395.25 25.38 453.9 KA 398.5 18.07 440.3 KB 398.5 18.03 440.2 KC 398.5 18.02 440.2 KD 398.5 3.896 407.5 KE 398.5 22.46 450.4 KF 398.5 22.44 450.4 KG 398.5 22.42 450.3 KH 398.5 3.896 407.5 New Pipe 404 1.516 407.5 PIPE-FLO 2005 pg 13
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA APPENDIX A Page A31 PUMPS 06/24/10 9:22 am Pump Flow Status Total head dP Speed NPSHa Suction Discharge Suction Discharge (US gpm) (ft) (psi) (rpm) (ft) (psi g) (psi g) (ft) (ft) SX Pump 1A 19167 (193.9) (83.87) 105.5 31.48 115.2 332.5 332.79 <no catalog data available> SX Pump 18 16418 (200.1) (86.55) 98.78 28.57 115 332.5 332.75 <no catalog data available> SX Pump 28 28439 (168.4) (72.87) 96.13 27.43 100.2 332.5 332.75 <no catalog data available> COMPONENTS Component Flow Status Head Loss dP Inlet Outlet Inlet Outlet (US gpm) (ft) (psi) (psi g) (psi g) (ft) (ft) CC HX-O 8000 12.25 5.3 99.22 93.71 364.75 365.25 CC HX-1 8000 12.25 5.3 46.27 39.02 358.5 363 CC HX-2 16000 24.5 10.6 80.81 69.63 364 365.35 Cant. Ref2A 895.3 4.304 1.862 23.21 22.06 410.15 408.5 Cont. Ref 28 964 4.618 1.998 22.18 20.88 410.1 408.5 Cont. Ref. 1A Off 410.1 408.35 Cont. Ref. 18 Off 410.1 408.5 CR Ref. 08 1056 23.33 10.09 80.12 69.53 386.35 387.5 CR Ref. Cond OA 1241 32.21 13.94 78.79 64.33 386.35 387.56 DGJWC-1A 1894 25.31 10.95 62.34 49.59 405 409.15 DGJWC-18 1924 26.12 11.3 59.7 46.58 405 409.2 DGJWC-2A Off 405.5 409.25 DGJWC-28 Off 405.5 409.25 CONTROLS Control Set Value Elev Flow Status dP HL Inlet Outlet (ft) (US gpm) (psi) (ft) (psi g) (psi g) H8 FCV: 8000 358.5 8000 55.8 129 102.1 46.3 <no catalog data available> HI FCV: 16000 354.75 16000 30.91 71.46 74.08 43.17 <no catalog data available> HK FCV: 8000 365.25 8000 55.66 128.7 93.71 38.04 <no catalog data available> PIPE-FLO 2005 pg 14
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA APPENDIX A Page A32 TANKS 06/24/10 9:22 am Tank Surface Pressure Level Bottom Elevation Status Flow Pressure Grade (psi g) (tt) (tt) (US gpm) (psi) (tt) Basin-3 0 406.5 355.5 0.433 407.5 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (ft) 900-1 @ 0 ft 355.5 0.433 407.5 Infinite tank/no geometry basin-4 0 406.5 435.8 0.433 407.5 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (tt) 898@Oft 435.8 0.433 407.5 Infinite tank/no geometry basin-4{001} 0 406.5 470.8 0.433 407.5 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (ft) 899@Oft 470.8 0.433 407.5 Infinite tank/no geometry basin-5 0 406.5 461.8 0.433 407.5 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (ft) 897@Oft 461.8 0.433 407.5 Infinite tank/no geometry CeliA 0 0 432.4 11220 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (tt) 857@Ott 11220 0 432.4 Infinite tank/no geometry Cell B 0 0 432.4 11089 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (ft) 859@Ott 11089 0 432.4 Infinite tank/no geometry CeliC 0 0 432.4 11029 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (tt) 861 @Oft 11029 0 432.4 Infinite tank/no geometry CeliO 0 0 432.4 11014 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (tt) 863@Oft 11014 0 432.4 Infinite tank/no geometry Cell E 0 0 432.4 260.7 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (ft) 849@Oft 260.7 0 432.4 Infinite tank/no geometry Cell F 0 0 432.4 260.2 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (tt) 851 @Oft 260.2 0 432.4 Infinite tank/no geometry CeliG 0 0 432.4 259.8 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (ft) 853@Oft 259.8 0 432.4 Infinite tank/no geometry PIPE-FLO 2005 pg 15
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA APPENDIX A Tank Cell H FG(A) FG (B) Demand IA IG JA JF PIPE-FLO 2005 Surface Pressure (psi g) Level (ft) o o o Connecting pipelines 855@Oft o Infinite tank/no geometry Connecting pipelines 843@Oft o Infinite tank/no geometry Connecting pipelines 845@Oft o Infinite tank/no geometry Set Value Flow out Flow in Flow out Flow in TANKS Bottom Elevation (ft) 432.4 Flow (US gpm) 17168 407.5 Flow (US gpm) 19167 407.5 Flow (US gpm) 44858 DEMANDS Flow Rate Pressure (US gpm) (psi g) 20 85.55 20 38.42 20 67.47 20 27.98 Status Flow Pressure (US gpm) (psi) 17168 0 Pressure (psi g) Grade (ft) 0 432.4 -19167 0 Pressure (psi g) Grade (ft) 0 407.5 -44858 0 Pressure (psi g) Grade (ft) 0 407.5 Elev Status Grade (ft) (ft) 391 588.8 389.5 478.3 395 551 389.25 453.9 Page A33 06/24/10 9:22 am Grade (ft) 432.4 407.5 407.5 pg 16
CALCULATION NO. NED-M-MSD-009 PIPE-FLO 2005 REVISION NO. SA NOTES SPECI FICATIONS FLUID ZONES PIPELINES NODES PUMPS COMPONENTS CONTROLS TANKS DEMANDS APPENDIX A Page A34 06/24/10 9:22 am pg 17
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA APPENDIX A Page A35 System: Scenario 8D2 Lineup: Scenario 8D2 rev: 06/24/10 9:29 am Atm pressure: 14.7 psi a Specification BBSX (STD) BBSX (XS) Steel Sch. 10 Steel Sch. 20 Steel Sch. 30 Steel Sch. 40 Steel Std Fluid Zone Water PIPE-FLO 2005 LIST REPORT Total System Volume: 737326 gallons Pressure drop calculations: Darcy-Weisbach method. Calculated: 17 iterations Avg Deviation: 0.0001865 % Material 1 Schedule ByronPipes-NHL / STD Valves: standard ByronPipes-NHL / XS Valves: standard Steel A53-836.10 / 10 Valves: standard Steel A53-836.10 / 20 Valves: standard Steel A53-B36.1 0 / 30 Valves: standard Steel A53-836.1 0 / 40 Valves: standard Steel A53-B36.10 / 20 Valves: standard Fluid Water SPECIFICATIONS Roughness 0.036 in C: 100 0.036 in C: 100 0.036 in C: 140 0.036 in C: 140 0.036 in C: 140 0.036 in C: 140 0.036 in C: 140 FLUID ZONES Temp Pressure (OF) (psi g) 77 14.7 Sizing not specified not specified not specified not specified not specified not specified not specified Density (Ib/fP) 62.33 06/24/10 9:29 am Company: Sargent & Lundy LLC Project: Design Limits Viscosity cP 0.8883 Pv / Pc or k (psi a) 0.4595/3198 pg 1
CALCULATION NO. NED-M-MSD.. 009 REVISION NO. 8A Pipeline 12 154 155 156 157 158 160 161 162 164 165 166 167 168 170 171 172 173 176 178 179 180 181 182 183 233 PIPE-FLO 2005 From Specification AA BBSX (STO) BU Steel Sch. 40 BF Steel Sch. 40 BG Steel Sch. 30 BH Steel Sch. 30 BI Steel Sch. 30 BJ BBSX(STO) Cont. Ref. 1A Steel Sch. 20 BJ Steel Sch. 30 BM Steel Sch. 30 BT Steel Sch. 20 BX Steel Sch. 40 BY Steel Sch. 20 BO Steel Sch. 40 BP Steel Sch. 40 OGJWC-1A Steel Sch. 40 BS Steel Sch. 40 BO Steel Sch. 40 IA Steel Sch. 40 AA BBSX (STO) SX Pump 2A BBSX (STO) CO BBSX (STO) CE BBSX(STO) CF Steel Sch. 20 OA Steel Sch. 30 DO Steel Sch. 30 OA Steel Sch. 30 To Fluid Zone SX Pump 1A Water CR Ref. Cond OA Water BG Water BH Water BI Water BJ Water Cont. Ref. 1A Water BM Water BM Water BT Water BY Water BY Water GO Water BP Water OGJWC-1A Water BS Water BT Water IA Water IB Water SX Pump 2A Water CD Water CE Water CF Water OA Water DO Water OP Water DB Water PIPELINES Status xxx xxx xxx xxx Flow (US gpm) 18599 1178 1530 2938 4376 5733 o 5733 5733 7535 1556 9090 2060 1801 1801 1801 20 o o 5780 337.9 20 5442 APPENDIX A Velocity (ft/sec) Size (in) 6.12 36 7.561 8 6.23 10 6.841 14 10.19 14 10.08 16 12 o 12 10.08 16 10.08 16 8.312 20 6.334 10 10.03 20 8.387 10 7.334 10 7.334 10 7.334 10 0.222 6 6 36 36 o 36 o 36 6.377 20 0.787 14 0.047 14 9.567 16 dP (psi) length (ft) (9.057) 71.2 3.033 229.5 7.613 70.35 1.146 129 0.927 42.14 8.947 205.5 17.25 o 23.5 0.678 12.66 (6.749) 47 (7.977) 37 0.508 5.33 (5.239) 43.5 12.16 125.4 8.211 118.5 23.93 111.5 (6.286) 82.25 (1.187) 81.33 0.25 97.75 33.8 o 0.01 o 6.2 22.61 145.8 3.681 8.5 o 3.25 15.1 227.5 Page A36 06/24/10 9:29 am Hl (ft) K 0.893 1.054 17.66 9.66 4.927 5.837 2.649 0.644 2.143 0.352 7.551 0.804 1.295 o 1.835 1.568 0.749 2.75 0.833 1.06 0.454 1.173 1.707 3.641 1.705 6.701 1.97 29.14 30.98 55.21 62.45 4.718 2.916 0.006 2.002 0.633 1.875 1.345 o 3.278 o 0.326 2.757 2.257 0.008 0.606 o 0.439 11.92 3.975 pg 2
CALCULATION NO. NED-M-MSD-009 Pipeline 234 235 236 25 3 327 328 329 330 331 333 334 335 336 337 339 340 341 343 344 345 348 349 351 356 364 367 PIPE-FLO 2005 From Specification DB Steel Sch. 30 DC Steel Sch. 30 DO Steel Sch. 40 CR Ref. Cond OA Steel Sch. 40 SX Pump 1A BBSX (STO) OF Steel Sch. 40 OG Steel Sch. 30 OH Steel Sch. 30 01 Steel Sch. 30 OJ BBSX (STO) Cant. Ref 2A BBSX (STO) OJ Steel Sch. 30 OM Steel Sch. 30 ON Steel Sch. 30 OU Steel Sch. 20 OV Steel Sch. 20 OP Steel Sch. 40 DO Steel Sch. 40 OGJWC-2A Steel Sch. 40 OT Steel Sch. 40 OP Steel Sch. 40 AF BBSX (STO) AG BBSX(STO) HA BBSX (STO) HB BBSX(STO) CC HX-1 BBSX (STO) HE BBSX(STO) To Fluid Zone DC Water DO Water DE Water BX Water AD Water OG Water OH Water 01 Water OJ Water Cant. Ref2A Water OM Water OM Water ON Water OU Water OV Water GC Water DO Water OGJWC-2A Water OT Water OU Water JA Water AG Water HA Water HB Water CC HX-1 Water HE Water GF Water REVISION NO. SA PIPELINES Status xxx Flow (US gpm) 4115 2671 1323 1178 18599 1323 2671 4115 5442 810.9 810.9 4632 5442 5442 5442 5760 o o o 20 9231 8117 8000 8000 8000 8117 APPENDIX A Velocity (ft/sec) Size (in) 9.583 14 6.219 14 5.387 10 7.561 8 6.12 36 5.387 10 6.219 14 9.583 14 9.567 16 2.302 12 2.302 12 8.142 16 9.567 16 9.567 16 6.004 20 6.355 20 o 10 10 o 10 o 10 0.222 6 3.037 36 3.879 30 3.823 30 3.823 30 3.823 30 3.879 30 dP (psi) Length (tt) 0.522 26.07 1.114 144 (5.006) 36.95 23.28 248.6 1.916 18.75 6.1 64.54 0.985 130.7 0.917 42.43 10.63 223.5 0.902 20.75 (0.004) 24.5 1.87 9.25 (2.153) 18.5 (4.69) 31.5 (8.302) 29.75 (5.245) 246 5.948 101.3 112.8 (0.757) 115.8 (7.571) 52.25 0.545 110.8 0.053 42.25 2.011 8.25 8.129 62.75 0.029 12.25 (3.392) 55.75 0.1 08 13.6 Page A37 06/24/10 9:29 am HL (tt) K 1.237 0.263 2.574 0.934 1.218 1.47 70.88 68.82 1.47 2.403 3.449 5.505 2.277 0.749 2.12 0.503 11.5 3.757 0.234 2.288 0.190 1.656 4.323 4.024 1.074 0.397 1.408 0.38 0.310 0.123 3.627 2.222 o 2.816 32.21 o 69.77 o 2.138 0.009 3.04 0.123 0.569 0.398 1.635 0.289 0.736 0.067 0.19 0.409 1.323 0.250 0.952 pg 3
CALCULA rlON NO. NED-M-MSD-009 Pipeline 368 369 370 372 384 387 388 389 390 391 393 394 396 397 398 399 4 400 401 402 403 405 406 407 423 425 463 PIPE-FLO 2005 From Specification GF BBSX (STD) CG BBSX (STD) CG BBSX (STD) HF BBSX(STD) CC HX-2 BBSX(STD) HI BBSX(STD) GI BBSX(STD) GH BBSX(STD) GE BBSX (XS) GD BBSX (XS) GC BBSX (XS) AH BBSX (STD) SX Pump 1B Steel Sch. 20 AK BBSX (STD) AL BBSX(STD) AM Steel Std AD BBSX(STD) EA Steel Sch. 30 EN Steel Sch. 30 EO Steel Sch. 40 EP Steel Sch. 40 DGJWC-1B Steel Sch. 40 ES Steel Sch. 40 EN Steel Sch. 40 EV Steel Sch. 40 CR Ref. OB Steel Sch. 40 EY Steel Sch. 40 To Fluid Zone GE Water CF Water HF Water CC HX-2 Water HI Water GI Water GH Water GE Water GD Water GC Water GB Water SX Pump 1B Water AK Water AL Water AM Water EA Water AE Water EN Water EO Water EP Water DGJWC-1B Water ES Water ET Water EV Water CR Ref. OB Water EY Water EZ Water REVISION NO. 8A PIPELINES Status Flow (US gpm) 26034 5780 16097 16000 16000 16000 19211 19309 45342 54432 60193 15981 15981 15981 15981 8977 18599 3726 2337 1564 1823 1823 1823 1389 1001 1001 1389 APPENDIX A Velocity (ft/sec) Size (in) 6.255 42 1.902 36 7.692 30 7.646 30 7.646 30 7.646 30 4.616 42 4.639 42 8.392 48 10.07 48 11.14 48 5.258 36 12.09 24 5.258 36 5.258 36 9.904 20 6.12 36 8.678 14 5.442 14 6.369 10 7.422 10 7.422 10 7.422 10 5.657 10 6.425 8 6.425 8 5.657 10 dP (psi) Length (ft) 0.137 20.75 0.004 4.5 0.601 3.75 13.05 110.8 (4.452) 17.5 0.793 12 0.018 8.5 0.328 123 0.094 14.75 0.255 32.25 17.82 956.2 (9.158) 71.3 2.017 7.22 0.608 0.01 0.068 6.25 25.74 149 0.824 0.01 1.973 3.75 0.100 2 11.95 137 10.49 223.8 18.64 209 (8.24) 86.5 1.634 5.75 1.751 233 25.68 254.5 0.415 4.5 Page A38 06/24/10 9:29 am HL (ft) K 0.317 0.407 0.010 0.146 1.39 1.482 1.91 1.159 0.309 0.191 1.833 1.919 0.043 0.081 0.757 1.579 0.217 0.129 0.590 0.222 11.94 1.678 0.660 1.054 1.661 0.651 1.406 3.278 0.156 0.322 6.997 2.446 1.904 3.278 0.810 0.606 0.231 0.457 4.484 2.558 34.4 32.8 43.03 43.4 4.953 2.916 0.526 0.868 12.95 9.791 76.37 107.9 0.958 1.78 pg 4
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA Pipeline 464 465 466 467 5 514 538 560 561 562 564 565 566 568 569 570 571 6 60 602 603 604 605 607 608 609 61 PIPE-FLO 2005 From Specification EA Steel Sch. 30 EB Steel Sch. 30 EC Steel Sch. 30 EO Steel Sch. 40 AE BBSX (STO) EH Steel Sch. 30 EG Steel Sch. 30 EF Steel Sch. 40 EI Steel Sch. 30 EJ BBSX (STO) Cont. Ref. 1B BBSX (STO) EJ Steel Sch. 30 EM Steel Sch. 30 ET Steel Sch. 20 EU Steel Sch. 20 EO Steel Sch. 40 Ie Steel Sch. 40 AF Steel Std BA Steel Sch. 30 IF Steel Sch. 40 IG Steel Sch. 40 IH Steel Sch. 40 AH BBSX(STO) SX Pump 2B Steel Sch. 20 CK BBSX (STO) CL BBSX (STO) BB Steel Sch. 30 To Fluid Zone EB Water EC Water EO Water EE Water AF Water EI Water EH Water EG Water EJ Water Cont. Ref. 1B Water EM Water EM Water ET Water EU Water EZ Water IC Water PIPELINES Status xxx COOLING WATER BOO.. Water BA Water BB Water IG Water IH Water EU Water SX Pump2B Water CK Water CL Water CM Water BC Water Flow (US gpm) 5250 3876 2593 1261 18599 3876 2593 1261 5250 o 5250 5250 7073 7866 773 773 9369 5733 773 793 793 27669 27669 27669 27669 4376 APPENDIX A Velocity (ftJsec) Size (in) 9.23 16 9.026 14 6.039 14 5.136 10 6.12 36 9.026 14 6.039 14 5.136 10 9.23 16 12 o 12 9.23 16 9.23 16 7.803 20 8.678 20 4.961 8 8.591 6 10.34 20 10.08 16 8.591 6 8.814 6 8.814 6 9.104 36 20.93 24 9.104 36 9.104 36 10.19 14 dP (psi) Length (ft) 12.78 141 0.500 28 0.628 145.8 (5.358) 48.75 0.093 6.75 3.838 62 0.908 127 6.867 69.57 6.053 149.5 27.25 0.692 32.75 0.849 13.5 (9.955) 44.75 0.178 11.75 (6.085) 17.5 0.797 97 3.101 16 23.8 85.1 15.41 214.2 0.119 2 1.805 22 2.322 99 (8.073) 87 2.748 6.82 1.823 0.01 0.201 5.75 0.679 29.25 Page A39 06/24/10 9:29 am HL (ft) K 7.795 3.161 1.157 0.265 2.451 0.932 1.165 1.216 0.216 0.326 2.872 0.832 2.099 0.748 3.374 5.919 6.992 2.388 1.491 o 2.28 1.862 1.147 1.839 0.523 0.411 0.265 0.685 0.333 2.843 3.09 9.669 7.422 5.507 2.094 12.65 3.871 0.275 0.112 2.672 0.812 11.12 2.903 3.168 1.875 3.351 0.416 4.214 3.278 0.464 0.322 1.57 0.296 pg 5
CALCULATION NO. NED.. M.. MSD.. 009 REVISION NO. SA Pipeline 610 611 612 613 614 616 617 62 63 670 671 672 673 7 711 725 747 748 749 751 752 753 754 759 760 761 762 PIPE-FLO 2005 From Specification CM Steel Sch. 20 FA Steel Sch. 30 FQ Steel Sch. 30 FR Steel Sch. 40 FS Steel Sch. 40 OGJWC-2B Steel Sch. 40 FV Steel Sch. 40 BC Steel Sch. 30 BD Steel Sch. 40 FA Steel Sch. 30 FB Steel Sch. 30 Fe Steel Sch. 30 FD Steel Sch. 40 BA Steel Sch. 20 FI Steel Sch. 30 FH Steel Sch. 30 FF Steel Sch. 40 FJ Steel Sch. 30 FK BBSX(STD) Cont. Ref 2B BBSX (STD) FK Steel Sch. 30 FN Steel Sch. 30 FO Steel Sch. 30 FP Steel Sch. 20 FW Steel Sch. 20 FR Steel Sch. 40 JB Steel Sch. 40 To Fluid Zone PIPELINES Status Flow (US gpm) FA 5697 Water FQ 321.6 Water FR 0 Water FS XXX Water DGJWC-2B XXX Water FV 0 Water ~ 0 Water BD ~~ Water BE 1530 Water FB 5375 Water FC 4050 Water FD 2721 Water FE 1348 Water BN 3635 Water FJ 4050 Water FI 2721 Water FH 1348 Water ~ ~~ Water Cont. Ref 2B 866.3 Water FN 866.3 Water FN 4509 Water FO 5375 Water FP 5375 Water FW 5375 Water FX 5395 Water JB 0 Water COOLING WATER BOO.. 0 Water APPENDIX A Velocity (ft/sec) Size (in) 6.285 20 0.749 14 o 14 10 10 o 10 o 10 6.841 14 6.23 10 9.449 16 9.431 14 6.336 14 5.488 10 4.011 20 9.431 14 6.336 14 5.488 10 9.449 16 2.46 12 2.46 12 7.926 16 9.449 16 9.449 16 5.93 20 5.952 20 o 8 o 6 dP (psi) Length (ft) 23.53 87.75 1.733 4 o 3.25 83 162.3 (1.622) 142.3 (8.76) 59.5 1.349 144.4 (3.932) 50.04 12.85 138.9 0.561 27.57 1.171 145.8 (4.891) 46.25 3.776 6.5 3.788 59 1.041 133.5 7.819 65.35 6.225 152.3 0.129 27.75 0.761 30.75 2 15.25 (2.997) 15.75 (6.841) 30.75 0.087 7.25 (6.237) 23.5 (0.498) 106.5 (1.082) 22.25 Page A40 06/24/10 9:29 am HL (ft) K 1.996 1.986 0.006 0.607 o 0.457 2.371 31.43 o 125.2 o 2.595 3.118 0.932 1.72 1.188 7.873 2.988 1.296 0.299 2.697 0.932 1.293 1.224 0.228 0.819 2.757 0.628 2.405 0.751 3.573 5.466 7.39 2.379 0.199 1.375 0.259 1.93 4.623 4.447 0.822 0.288 1.186 0.259 0.202 0.265 0.333 0.265 o 3.998 o 7.422 pg 6
CALCULATION NO. NED-M-MSD-009 Pipeline 792 793 794 795 8 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 837 838 839 840 841 842 843 PIPE-FLO 2005 From Specification JE Steel Sch. 40 JF Steel Sch. 40 AM BBSX (STO) AN BBSX (STO) BN Steel Sch. 30 AP BBSX (STO) CC HX-O BBSX (STO) HK BBSX (STO) HL BBSX (STO) HM BBSX (STO) HL BBSX(STO) HN BBSX (STO) GG BBSX (STO) GJ BBSX(STO) EZ Steel Sch. 20 GK BBSX (STO) GK BBSX (STO) GL BBSX (XS) CM BBSX (STO) CN BBSX (STO) GM BBSX (XS) FX Steel Sch. 20 GM BBSX (XS) GN BBSX (XS) CN BBSX (STO) AG BBSX (STO) FG(A) BBSX (XS) To Fluid Zone JF Water FW Water AO Water AO Water BO Water CC HX-O Water HK Water HL Water HM Water GG Water HN Water GJ Water GF Water GI Water GL Water GG Water GJ Water GK Water CN Water AQ Water GL Water GM Water GN Water GO Water CG Water AN Water AA Water REVISION NO. SA PIPELINES Status Flow (US gpm) o 20 7004 996 2080 8000 8000 8000 6193 6311 1807 1901 17916 3211 9255 11605 1310 12916 21972 94.47 3660 5717 2056 2056 21878 1114 18599 APPENDIX A Velocity (ft/sec) Size (in) o 6 0.222 6 2.304 36 0.328 36 4.843 14 3.823 30 3.823 30 3.823 30 2.959 30 3.016 30 0.863 30 0.908 30 4.305 42 0.772 42 10.21 20 2.788 42 0.315 42 2.39 48 7.229 36 0.045 30 0.677 48 6.307 20 0.381 48 0.381 48 7.198 36 0.366 36 3.442 48 dP (psi) Length (ft) (2.596) 16.5 (1.724) 170.8 0.006 4.5 o 2.5 0.076 1.83 12.8 107.3 o 0.01 (2.963) 27.75 0.030 12.5 (1.321) 24.75 (1.397) 89.75 0.006 10.5 0.111 23.25 0.003 29 (2.302) 213.5 0.101 104.8 o 19.75 (0.773) 45.75 0.062 4.5 o 3 (0.605) 23.75 (5.068) 12.5 o 2.25 11.26 1107 0.670 90.25 o 47.25 (22.47) 1021 Page A41 06/24/10 9:29 am HL (ft) K o 1.557 0.014 5.01 0.015 0.146 o 0.097 0.176 0.44 0.596 1.705 o o 0.402 1.532 0.068 0.394 0.197 1.179 0.020 0.919 0.013 0.952 0.258 0.766 0.007 0.547 8.58 2.221 0.233 1.34 0.002 0.92 0.062 0.48 0.143 0.146 o 1.482 0.002 0.222 0.785 1.091 o 0.045 0.017 1.623 1.549 1.315 0.002 0.509 1.219 1.744 pg 7
CALCULATION NO. NED-M-MSD-009 Pipeline 845 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 870 871 874 875 897 PIPE-FLO 2005 From Specification FG(B) BBSX(XS) GB BBSX(XS) GO BBSX (XS) GP Steel Sch. 20 GP BBSX(XS) KE Steel Sch. 20 KE BBSX(XS) KF Steel Sch. 20 KF BBSX (XS) KG Steel Sch. 20 KG BBSX (XS) GA Steel Sch. 20 GA BBSX (XS) KA Steel Sch. 20 KA BBSX (XS) KB Steel Sch. 20 KB BBSX(XS) KC Steel Sch. 20 KC BBSX (XS) AO BBSX (STD) AP BBSX(STD) IB Steel Sch. 40 BP Steel Sch. 40 BS Steel Sch. 40 DO Steel Sch. 40 DT Steel Sch. 40 KH Steel Sch. 20 To Fluid Zone AH Water GA Water GP Water Cell E Water KE Water Cell F Water KF Water CeliG Water KG Water Cell H Water KH Water CeliA Water KA Water Cell B Water KB Water CeliC Water KC Water CeliO Water KD Water AP Water AO Water IH Water EP Water ES Water FS Water FV Water basin-5 Water REVISION NO. SA PIPELINES Status xxx xxx xxx xxx xxx Flow (US gpm) 43650 60193 2056 286.9 1769 286.9 1482 286.9 1196 286.9 908.6 14998 45195 14824 30371 14745 15626 14726 900.3 8000 258.6 467.4 APPENDIX A Velocity (ft/sec) Size (in) 8.078 48 11.14 48 0.381 48 0.217 24 0.327 48 0.217 24 0.274 48 0.217 24 0.221 48 0.217 24 0.168 48 11.34 24 8.364 48 11.21 24 5.621 48 11.15 24 2.892 48 11.14 24 0.167 48 3.823 30 30 6 1.053 10 10 10 10 0.353 24 dP (psi) Length (ft) (19.62) 1266 9.971 747.6 6.277 810.6 30.47 120.1 o 43 30.47 120.1 o 43 30.47 120.1 o 43 30.47 120.1 26.57 153.2 20.89 90.92 0.143 43 20.74 90.92 0.065 43 20.68 90.92 0.015 35.75 20.66 90.92 16.77 7.25 0.208 5.5 7 10.5 0.004 4.75 4.75 10.5 12 3.464 92.83 Page A42 06/24/10 9:29 am HL (ft) K 7.817 1.717 8.548 0.902 0.011 0.462 36.52 50005 o 0.101 36.52 50005 o 0.101 36.52 50005 o 0.101 36.52 50005 61.42 140000 14.38 6.172 0.331 0.101 14.05 6.172 0.150 0.101 13.9 6.172 0.035 0.101 13.87 6.172 38.76 90000 0.480 2.071 0.89 11.59 0.020 1.007 1.477 1.464 1.665 0.007 2.46 pg 8
CALCULATION NO. NED-M-MSD-009 Pipeline 898 899 9 900 900-1 DO AFP-2B LOOP (939) 00AFP-1B LOOP (938) RCFC-1A (914) RCFC-1A (915) RCFC-1B (922) RCFC-1 B (923) RCFC-1C (912) RCFC-1C (913) RCFC-10 (920) RCFC-1O (921) RCFC-2A (918) RCFC-2A (919) RCFC-2B (926) RCFC-2B (927) RCFC-2C (916) RCFC-2C (917) RCFC-20 (924) RCFC-20 (925) SX CC'S & OC-1A (932) SX CC'S & OC-1 B (934) SX CC'S & OC-2A (933) SX CC'S & OC-2B (935) PIPE-FLO 2005 From Specification KH Steel Sch. 20 KO Steel Sch. 20 BN Steel Sch. 40 KO Steel Sch. 20 To Fluid Zone basin-4 Water basin-4{001} Water BU Water New Pipe Water New Pipe Basin-3 Steel Sch. 20 Water COOLING WATER BOO.. JE Steel Sch. 40 Water COOLING WATER BOO.. IF Steel Sch. 40 BD Steel Sch. 40 BE Steel Sch. 40 EO Steel Sch. 40 EE Steel Sch. 40 BB Steel Sch. 40 BC Steel Sch. 40 EB Steel Sch. 40 EC Steel Sch. 40 DO Steel Sch. 40 DE Steel Sch. 40 FO Steel Sch. 40 FE Steel Sch. 40 DB Steel Sch. 40 DC Steel Sch. 40 FB Steel Sch. 40 FC Steel Sch. 40 HA Steel Sch. 40 AN Steel Sch. 40 HF Steel Sch. 40 AQ Steel Sch. 40 Water BG Water BF Water EG Water EF Water BI Water BH Water EI Water EH Water OG Water OF Water FH Water FF Water 01 Water DH Water FJ Water FI Water HE Water HM Water GH Water HN Water REVISION NO. SA PIPELINES Status xxx Flow (US gpm) 441.2 512.9 1556 387.4 387.4 773 1408 1530 1332 1261 1358 1438 1375 1282 1348 1323 1373 1348 1327 1444 1325 1329 117.1 117.6 97.34 94.47 APPENDIX A Velocity (ft/sec) Size (in) 0.334 24 0.388 24 6.334 10 0.293 24 0.427 20 8 4.961 8 9.037 8 9.82 8 8.55 8 8.096 8 8.714 8 9.229 8 8.822 8 8.231 8 8.651 8 8.492 8 8.815 8 8.65 8 8.519 8 9.27 8 8.506 8 8.528 8 2.952 4 2.967 4 2.455 4 2.383 4 dP (psi) Length (tt) 3.464 77.4 3.464 63.92 1.752 6 2.38 29.58 1.083 22 0.01 36.78 0.01 31.1 0.01 27.42 0.01 31.21 0.01 29.7 0.01 35.2 0.01 33.59 0.01 37.09 0.01 32.75 0.01 13.96 0.01 12.87 0.01 18.62 0.01 15.7 0.01 17.5 0.01 16.06 0.01 25.18 0.01 20.84 0.01 61.66 0.01 64.99 0.01 46.05 0.01 47.3 0.01 Page A43 06/24/10 9:29 am HL (tt) K 0.007 3.097 0.007 2.027 0.801 1.086 0.002 1.312 0.004 1.189 303 84.01 220 84.88 67 78.23 52.3 84.15 74.2 79.61 78.3 94.36 80.1 90.65 68.6 92.73 76.8 88.7 84.4 45.27 39 40.61 36.3 56.05 46.5 51.18 44.1 53.48 47.5 50.13 37.6 65.21 58.1 61.15 54.2 127.8 945 128 937.1 87.45 935.1 90.33 1026 pg 9
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA APPENDIX A Page A44 PIPELINES 06/24/10 9:29 am Pipeline From To Status Flow Velocity dP HL (US gpm) (ft/sec) (psi) (tt) Specification Fluid Zone Size Length K (in) (tt) Train 1A (928) BU BX 377.7 2.424 39.47 117.7 Steel Sch. 40 Water 8 0.01 1292 TRAIN 1 B (930) EV EY 388.3 2.493 36.89 110 Steel Sch. 40 Water 8 0.01 1142 TRAIN 2A (929) DO DV 317.9 2.041 26.28 84 Steel Sch. 40 Water 8 0.01 1301 TRAIN 2B (931) FQ FX 321.6 2.064 28.54 87.63 Steel Sch. 40 Water 8 0.01 1326 PIPE-FLO 2005 pg 10
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA APPENDIX A Page A45 NODES 06/24/10 9:29 am Node Elev Status Pressure Grade (ft) (psi g) (ft) AA 354.33 22.47 406.3 AD 335.75 113.9 599.1 AE 335.75 113.1 597.2 AF 335.75 113 596.9 AG 335.75 112.9 596.8 AH 354.33 19.62 399.7 AK 335.75 113.6 598.4 AL 335.75 113 597 AM 335.75 112.9 596.8 AN 335.75 112.9 596.8 AO 335.75 112.9 596.8 AP 335.75 112.7 596.3 AO 335.75 96.68 559.2 BA 385.25 89.2 591.4 BB 408.22 73.79 578.8 BC 408.22 73.11 577.2 BO 408.22 71.76 574.1 BE 397.41 75.69 572.4 BF 382.55 48.28 494.2 BG 395.22 40.67 489.2 BH 395.22 39.52 486.6 BI 395.22 38.59 484.4 BJ 408.35 29.65 476.9 BM 408.35 28.97 475.3 BN 393.75 85.42 591.2 BO 393.75 85.35 591 BP 415.16 73.19 584.3 BS 409.25 29.43 477.3 BT 390 35.72 472.6 BU 397 83.67 590.4 BX 370.5 44.2 472.7 BY 370.5 43.69 471.5 CD 335.75 96 557.7 CE 335.75 96 557.7 CF 335.75 96 557.7 CG 335.75 96.01 557.7 CK 335.75 98.76 564 CL 335.75 96.94 559.8 CM 335.75 96.74 559.4 CN 335.75 96.68 559.2 COOLING WATER BOOSTER PUMP-1.. 388.5 81.24 576.3 COOLING WATER BOOSTER PUMP-2.. 388.5 73.05 557.4 OA 385.25 73.4 554.9 DB 408.25 58.29 543 DC 408.22 57.77 541.8 DO 408.22 56.66 539.2 DE 395.43 61.66 538 OF 384.57 48.79 497.4 OG 395.22 42.69 493.9 OH 395.22 41.71 491.6 01 395.22 40.79 489.5 OJ 408.3 30.16 478 OM 408.3 28.29 473.7 ON 402.25 30.44 472.6 DO 393.75 69.72 554.9 OP 393.75 69.72 554.9 DO 407.5 63.77 554.9 OT 407.5 27.56 471.2 OU 390 35.13 471.2 OV 370.5 43.43 470.9 EA 388.25 87.21 589.8 EB 410 74.43 582 PIPE*FLO 2005 pg 11
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA APPENDIX A Page A46 NODES 06/24/10 9:29 am Node Elev Status Pressure Grade (ft) (psi g) (ft) EC 410 73.93 580.9 ED 409 73.3 578.4 EE 395.45 78.66 577.3 EF 384.5 48.96 497.7 EG 397 42.09 494.3 EH 397 41.18 492.2 EI 403 37.34 489.3 EJ 410 31.29 482.3 EM 410.1 30.44 480.5 EN 392 85.24 589 EO 392 85.14 588.8 EP 415.15 73.18 584.3 ES 409.25 32.15 483.6 ET 385.25 40.39 478.6 EU 385.25 40.22 478.2 EV 395.25 83.6 588.5 EY 370.5 46.72 478.5 EZ 370.5 46.3 477.5 FA 388.15 73.21 557.4 FB 409.99 60.35 549.5 FC 409.99 59.79 548.2 FD 410 58.62 545.5 FE 397.4 63.51 544.2 FF 382.5 47.82 493 FH 397 40 489.5 FI 397 38.96 487 FJ 403 35.17 484.3 FK 410 28.94 476.9 FN 410 26.94 472.3 FO 402.25 29.94 471.5 FP 385.25 36.78 470.3 FQ 392.1 5 71.47 557.4 FR 392.15 71.47 557.4 FV 405.5 28.02 470.3 FW 385.25 36.69 470.1 FX 370.5 42.93 469.7 GA 398.5 20.89 446.8 GB 384 30.86 455.3 GC 354.75 48.68 467.3 GO 354.75 48.93 467.9 GE 354.75 49.03 468.1 GF 354.75 49.16 468.4 GG 354.75 49.28 468.7 GH 354.75 49.36 468.8 GI 354.75 49.37 468.9 GJ 354.75 49.38 468.9 GK 354.75 49.38 468.9 GL 356.6 48.6 468.9 GM 358 48 469 GN 358 48 469 GO 384 36.74 468.9 GP 398.5 30.47 468.9 HA 340 110.9 596.4 HE 354.75 49.27 468.6 HF 335.75 95.41 556.3 HL 358 47.98 468.9 HM 358 47.96 468.9 HN 354.75 49.38 468.9 IC 391 84.34 586 IF 389.5 44.46 492.3 IH 391 42.54 489.3 JB 391 71.97 557.4 PIPE-FLO 2005 pg 12
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA APPENDIX A Page A47 NODES 06/24/10 9:29 am Node Elev Status Pressure Grade (ft) (psi g) (ft) JE 395.25 32.37 470.1 KA 398.5 20.74 446.5 KB 398.5 20.68 446.3 KC 398.5 20.66 446.3 KD 398.5 3.896 407.5 KE 398.5 30.47 468.9 KF 398.5 30.47 468.9 KG 398.5 30.47 468.9 KH 398.5 3.897 407.5 New Pipe 404 1.516 407.5 PIPE-FLO 2005 pg 13
CALCULATION NO. NED-M-MSD-009 REVISION NO. 8A APPENDIX A Page A48 PUMPS 06/24/10 9:29 am Pump Flow Status Total head dP Speed NPSHa Suction Discharge Suction Discharge (USgpm) (ft) (psi) (rpm) (ft) (psi g) (psi g) (ft) (ft) SX Pump 1A 18599 (195.2) (84.42) 105.8 31.53 115.8 332.5 332.79 <no catalog data available> SX Pump 1B 15981 (201) (86.97) 99.44 28.78 115.6 332.5 332.75 <no catalog data available> SX Pump2B 27669 (170.9) (73.93) 96.93 27.69 101.5 332.5 332.75 <no catalog data available> COMPONENTS Component Flow Status Head Loss dP Inlet Outlet Inlet Outlet (US gpm) (ft) (psi) (psi g) (psi g) (ft) (ft) CC HX-O 8000 12.25 5.3 99.93 94.42 364.75 365.25 CC HX-1 8000 12.25 5.3 53.13 45.88 358.5 363 CC HX-2 16000 24.5 10.6 82.36 71.17 364 365.35 Cont. Ref2A 810.9 3.899 1.687 29.26 28.28 410.15 408.5 Cont. Ref2B 866.3 4.165 1.802 28.81 27.7 410.1 408.5 Cont. Ref. 1A Off 410.1 408.35 Cont. Ref. 1B Off 410.1 408.5 CR Ref. OB 1001 20.7 8.954 81.85 72.4 386.35 387.5 CR Ref. Cond OA 1178 29.2 12.63 80.64 67.48 386.35 387.56 DGJWC-1A 1801 22.71 9.824 64.98 53.36 405 409.15 DGJWC-1B 1823 23.31 10.09 62.69 50.79 405 409.2 DGJWC-2A Off 405.5 409.25 DGJWC-2B Off 405.5 409.25 CONTROLS Control Set Value Elev Flow Status dP HL Inlet Outlet (ft) (US gpm) (psi) (ft) (psi g) (psi g) HB FCV: 8000 358.5 8000 49.65 114.8 102.8 53.16 <no catalog data available> HI FCV: 16000 354.75 16000 25.46 58.85 75.63 50.17 <no catalog data available> HK FCV: 8000 365.25 8000 49.39 114.2 94.41 45.02 <no catalog data available> PIPE-FLO 2005 pg 14
CALCULATION NO. NED.. M.. MSD.. OO9 REVISION NO. SA APPENDIX A Page A49 TANKS 06/24/10 9:29 am Tank Surface Pressure Level Bottom Elevation Status Flow Pressure Grade (psi g) (tt) (tt) (US gpm) (psi) (tt) Basin*3 0 406.5 387.4 0.433 407.5 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (tt) 900-1 @ 0 ft 387.4 0.433 407.5 Infinite tank/no geometry basin4 0 406.5 441.2 0.433 407.5 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (ft) 898@Oft 441.2 0.433 407.5 Infinite tank/no geometry basin4{001} 0 406.5 512.9 0.433 407.5 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (tt) 899@Oft 512.9 0.433 407.5 Infinite tank/no geometry basin-5 0 406.5 467.4 0.433 407.5 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (tt) 897@Ott 467.4 0.433 407.5 Infinite tank/no geometry CeliA 0 0 432.4 14998 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (tt) 857@Ott 14998 0 432.4 Infinite tank/no geometry Cell B 0 0 432.4 14824 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (ft) 859@Ott 14824 0 432.4 Infinite tank/no geometry CellC 0 0 432.4 14745 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (ft) 861 @Oft 14745 0 432.4 Infinite tank/no geometry CeliO 0 0 432.4 14726 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (tt) 863@Ott 14726 0 432.4 Infinite tank/no geometry Cell E 0 0 432.4 286.9 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (tt) 849@Oft 286.9 0 432.4 Infinite tank/no geometry Cell F 0 0 432.4 286.9 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (tt) 851 @Oft 286.9 0 432.4 Infinite tank/no geometry CellG 0 0 432.4 286.9 0 432.4 Connecting pipelines Flow (US gpm) Pressure (psi g) Grade (tt) 853@Oft 286.9 0 432.4 Infinite tank/no geometry PIPE-FLO 2005 pg 15
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA APPENDIX A Tank Cell H FG(A) FG (B) Demand IA IG JA JF PIPE-FLO 2005 Surface Pressure (psi g) Level (ft) o o o Connecting pipelines 855@Oft o Infinite tank/no geometry Connecting pipelines 843@Oft o Infinite tank/no geometry Connecting pipelines 845@Oft o Infinite tank/no geometry Set Value Flow out Flow in Flow out Flow in TANKS Bottom Elevation (ft) 432.4 Flow (US gpm) 286.9 407.5 Flow (US gpm) 18599 407.5 Flow (US gpm) 43650 DEMANDS Flow Rate Pressure (US gpm) (psi g) 20 86.54 20 44.34 20 69.17 20 34.97 Status Flow Pressure (US gpm) (psi) 286.9 0 Pressure (psi g) Grade (ft) 0 432.4 -18599 0 Pressure (psi g) Grade (ft) 0 407.5 -43650 0 Pressure (psi g) Grade (ft) 0 407.5 Elev Status Grade (ft) (ft) 391 591 389.5 492 395 554.9 389.25 470.1 Page A50 06/24/10 9:29 am Grade (ft) 432.4 407.5 407.5 pg 16
CALCULATION NO. NED-M-MSD-009 PIPE-FLO 2005 REVISION NO. SA NOTES SPECIFICATIONS FLUID ZONES PIPELINES NODES PUMPS COMPONENTS CONTROLS TANKS DEMANDS APPENDIX A Page A51 06/24/10 9:29 am pg 17
FG(AlO:OOO SXPumpl" {1Q1(2) 1 :036. r.::::--a:0 !IF tQiol4 AD 113.4 t~JJ'iim4~~5 I ~~0l6
1~..
I I L. "';" "I'"-""~-'"F "~ I ~ ~ I 3$4~036 \\200.3) HE 03&4-*06 ~~.'r". j 370:0 fi1(ij f I I .~." ~ D~ 33"""1 =-::r--~~!1-. --ON 330-.:0 na C-allR.(2A 26,13 1.811 "~'6 d:.::~~:l'.: '~!:'l 111~
],....
1 ..;:,~_~~3() cl':,
- 'e.m~T~;>aJ...
"~""--------+--
L"?'?_
605 036 I SXPLnlp2S CK (169-) 9Hi9 >>roD. 77~J RCfC-\\Bjll231: 1~ 7:024 282.., Cl 96.19 CM.... .--------.------.-+/--... ~------------ ~Rat_18 l\\U6-ep"'--f9tif 138 12'.li OGJWC.tB fI 11.03 511: 06 DQAfP.'B LO Ie 806.6 80&.&' a3.~ COOUNGW"TE~~TERF'U:MP-18 EM 566i01 ':fJ/'Jlti t4~2 I 1G::!l20 EV~"" 2"1'' EY "'0 J 827S lOO 1t""3 -r 1~--- CRRft,Q9 9.>l4 I <002 6H:0,4 33tt'T FR 10.22 FV 27.64 '~51 m~.ta ~ ""f..J": '12:g 14j6ii: Ii!-)o 00JWC.28 OI! °Nt~0a I po JE I 70.12:COOlINGWATE~1~J"ER~ 24.11. i..._ __._. ____ ~~.!'..'-----'='--+---~ FF 43... Lineuo: Scenario 80 System: Scenario 80 Date: 06/24110 3:55 pm Company: Sargent & Lundy LLC Project: by: 1"" "'"1: =J~~ ~,;1 KF ~~'" b~ n.. ~''A...,:... II< 479" A;,~QOl .. *~,iti.j.~~or.,.. ~..,... ~ ~,,'"'t24,~Nl"~ c.;IEQOOOc.tF~OOIlAlGO(l! o H~C1QO oarcv-Weisbach PIPE-FLO 2005 Pipes: US gpm Nodes: psi 9 Pumps: ft Components: psi Controls: psi Level: ft Volume: gallons o >> r-o c: ~ -f o Z z 9 z m c I s:
- s:
en c 6 o U)
- 0 m
en o z z 9 00 >> "tJ "tJ m Z C "tJ Q) (Q CD >> CJI N
FG("'~O.O ~91:;,a 5~~' B8TRCfC-I~l 7:1~~ 1 156 ~lo4 9C1"'RCFC-1C !"JJ '0.~ B~:"~-{~* : BG 7~"" ""1" .~ 613,: 0'0 1.w: '~ !tf 7~~rdt.W*":77 SXPumpl... 1 ' 0 36 ( 19:U~1 1918., AD 11>.3 ON i 7 : 0]0 ----... ,~,...~
- ~i":!9~i ---,ITI2'*,0--tG3-,. _
_ ~ : 0e I l~ ~~ - --~
- 1.
&2Ji6 CR~i~~ aoll!" 1!1 'W010 = 170,01 84~ 2J72 li§i L..;......J 1 17z.t06 ~'" I ; "".:~.\\ I........ t /4E.'9~*( /IF-112.* 112.l !L"~ ~"'. 2ll 01$ 367: -"- 7 _.. __ ""I~:'-~~~..!L8 _____ ~~ _______ ~ OPEL-cp ,",ur O or OGJNC->A o \\ I JA::.,,. L J ~.'-~J2 13\\ _ ~12 1 ..:::c:1U---M.l ~3Cont..Rtlf'l" I I 131~~20 I --j---,.,;:,-------_.. _------+--- 87.1"'0 81 ":Sl~" GO,." L ,M I~h~~~~ '+~~_ I 13090j~ .l......-.....-_~~g~~~(933):0. u _ 00 SX~2A 94~"':; 94~.a 0 ~.~ hi.. 396:0:104- "l Oi0 ,,0 ~'13 112.3 ~0~1~ 112..2~:i36~ ... lol&" 11>2 37~6;1~JO ~ 3r;~~ ~~-2 ~~ : FCV~ ' 6000 3&:~~ ----- 93.86 10.6 lO,9 1 &7~ 1" 10
t------'*'t'i,i't~~"""-------__1f-- -----~----*-*-.. -'-.. -- ---.--~--.-----i~
-'f'--~l~~ ~ r~
:r.....,
_~ -cl. __ ~_- _ (108.4) 9'.36 .. "'4:. HI. . '.01 8~~ EA CoolF\\e(, lB O!! ~~ 0 U QGJ'llCI. 1>9." EV 62.' 11.3 I I ._~:...08 53 425 : 08,q. .~J'_IO ___ ~ 1Q.56 C'R,'SOO 1066 14 1.. It 8HU 8<<;.4 83,1 COOUNGWATE~~TERP\\.MP-1B e:~ ~ ",14 ' Qln ll'i.1A*Qll(l- ~ 2~04 ill: 0. 14~ \\612 :8 1-4'~ '1"3' :")0 3436 0 OG.M'C-l& 13106 0It' J ?F001l ~-- -".- - -- -JE 0 - ~ I 70.)4CCX)LtNGWATeRBOOSTERPUMP-2B 26.31 \\ i +=~~.:Jo\\IlL_-- r,~~" ~:~~,: -~~~l- ~ l" 1. ~ ~=28 lO~fS!5""~ Lineup: Scenario 8D1 Darcy-Weisbach System: Scenario 8D1 Date: 06124/10 3:58 pm Company: Sargent & Lundy LLC Project: by: ~~ ' Q O \\ PIPE-FLO 2005 Pipes: US gpm Nodes: psi g Pumps: It Components: psi Controls: psi Level: It Volume: gallons n >> r-n c: ~ -I o Z Z P z m c 3:
- 3:
en c
- o o
CD
- 0 m
en o z z p Q) >> m Z C Q) CO CD >> U1 w
Z >> r Q m o " m z c X FG(A)O' O@O co ______ ~7~------- SXP~lA {196.2) 1
- "J6, ~: "
1 AI) 113.i OG.NtC*\\A.- eN gUt CcwLRef. l'- DO Conl.Ret. 18 Of! L. 4O~ I" to EV au CXlJWC.ta '0.09 Ie Tn n) M.3oC COOUNGW"~TTERP\\.HP-1B 42:~~ 8 E2J ~,;,.~ a ~ 37O:0lO -~- &OC-1BiVJ04l :S 4 ~ 00 ~ 13... 182 :9,. E--TRHN'lA(9'2'9j~-.---- ~ t&3 014 .):3;1 ero ," ":~,, '".:'r*,. ~ h '0 'I rtr )44 0 ~~U1 1 32S~1 JA:Ml:G2'O RO'C-2A~8 DG ~_t7 '-----r ,~ DO 42.199 I "0 327010 OJ ~~.. ~,;&r -"M"i-c""' ";;.';" lUIS 1 3 ~79 ~::2A -l i I l>O~20 L _____ ___ ~ ____ ~: _ '~~~_' _____ m""""_ *. ***~ "i GO..... ' .7elO
- O\\ql 81l
~ 614 1"'0 ":'.. <2 C I SXGC'S&QC.2A1!!n : 04 48.1 t ---.r:>4 I G>< J...--.- >n ',,>o ".1II i HF--.-1~---.~ ...£----"~- 381 ' 388 042 I ~, "~.... _~.,_ ~r--_ _ ~;d;'" .. L, " '0.6 ~.. -l--- -+-:.. I itol7 I !1~~,~::J~---------. ".1 HI< L'I*3I elsa 47.96 8H;0l4 32U5 ~~ Fe FR .n 11,.(7 !612~0W~*,,,,_.w ~ i nH08 Off i 7'B ; @6 OO"ff=i'lC j 1~"'~""T<~TE'~ GC .. ~ FP FYI ---"f¥~~~~& J6~ 0it6li '*2FXg;) &31~.ca 48.l1 1<<1:9 OM 5196 5117 4(1 ">£,, u '\\ r \\ a40~4&
- 00
~~OO I "'-'~""'" I.StO SJOO.~ _~20 a..~OI jE~' "'~, Kf -.'" ~ ",."t"'~2' ?""~". '00' !' _. __ ".... ".47 ~ .....t:~~e,~ \\t~-~ / "'2
- ..: I6lt".;.YI'6~,
""'E~OOO("'IF ' O.a::.oGO III Q 0 O<<:.lHci° OO _-""., J r' '380~~ LineuQ: Scenario 802 Darcv-Weisbach PIPE-FLO 2005 System: Scenario 802 Pipes: US gpm Date: 06/24/10 3:58 pm Nodes: psi 9 Company: Sargent & Lundy LLC Pumps: II Project: Components: psi by: Controls: psi Level: II Volume: gal/ons o >> r o c: ~ -t o Z z 9 z m c I 3: I 3: CJ) C I o o CD
- 0 m en o z z
9 (X) >> m Z C X s:u CQ CD >> (11 ~
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA APPENDIX 8 Page 81 scenario 8D Tower A.TXT MRL/ESC MODEL FOR BYRON ESW COOLING TOWER 9/91 06-04-2010 09:05:57 INPUT DATA 29.92 BAROMETRIC PRESS (In HgA) WATERFLOW (GPM) MINIMUM 13742 82.00 75.00 10.00 MAXIMUM 13742 82.00 75.00 40.00 INCREMENT INLET WET BULB (F) INLET REL HUMIDITY (%) RANGES (F) OUTPUT DATA water Flow to Tower (GPM) Air Inlet Dry Bulb (F) Air Inlet Wet Bulb (F) cooling Range (F) Air Outlet Wet Bulb (F) Evaporation (% of WF2) volumetric Air Flow Rate at Fan (CFM) 1 1.00 1.00 3.00 WF2 DB1 TWB1 RGE TWB2 EVAP CFM L/G KAV/L CW Water-To-Air Loading (lb/hr-water / lb/hr-dry air) cooling Tower Thermal Transfer coefficient Predicted cold Water Temperature (F) WF2 13742 13742 13742 13742 13742 13742 13742 13742 13742 13742 13742 DB1 88.91 88.91 88.91 88.91 88.91 88.91 88.91 88.91 88.91 88.91 88.91 RH1 TWB1 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 RGE TWB2 EVAP CFM 10.00 102.49 0.84 603789 13.00 107.35 1.09 603795 16.00 111.82 1.35 603799 19.00 115.96 1.61 603794 22.00 119.79 1.87 603796 25.00 123.37 2.13 603798 28.00 126.73 2.40 603795 31.00 129.89 2.67 603796 34.00 132.87 2.94 603798 37.00 135.71 3.21 603794 40.00 138.40 3.48 603795 page 1 L/G 2.89 2.95 3.01 3.07 3.13 3.20 3.26 3.33 3.39 3.46 3.53 DESIGN 12500 78.00 75.00 23.20 KAV/L CW 1.645 93.79 1.634 96.14 1.623 98.17 1.612 99.92 1.601 101.44 1.591 102.78 1.580 103.97 1.569 105.04 1.559 106.01 1.548 106.90 1.538 107.73
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA APPENDIX 8 scenario 80 Tower B.TXT MRL/ESC MODEL FOR BYRON ESW COOLING TOWER 9/91 06-04-2010 10:33:28 INPUT DATA 29.92 BAROMETRIC PRESS (In HgA) WATERFLOW (GPM) MINIMUM 18445 82.00 75.00 13.00 MAXIMUM 18445 82.00 75.00 40.00 INCREMENT INLET WET BULB (F) INLET REL HUMIDITY (%) RANGES (F) OUTPUT DATA water Flow to Tower (GPM) Air Inlet Dry Bulb (F) Air Inlet Wet Bulb (F) cooling Range (F) Air outlet wet Bulb (F) Evaporation (% of wF2) volumetric Air Flow Rate at Fan (CFM) 1 1.00 1.00 3.00 WF2 DB1 TWB1 RGE TWB2 EVAP CFM L/G KAV/L CW Water-To-Air Loading (lb/hr-water / lb/hr-dry air) cooling Tower Thermal Transfer Coefficient Predicted cold water Temperature (F) WF2 18445 18445 18445 18445 18445 18445 18445 18445 18445 18445 DB1 88.91 88.91 88.91 88.91 88.91 88.91 88.91 88.91 88.91 88.91 RH1 TWB1 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 RGE TWB2 EVAP CFM 13.00 117.40 1.10 526047 16.00 123.10 1.37 526056 19.00 128.26 1.64 526054 22.00 132.97 1.91 526057 25.00 137.31 2.19 526055 28.00 141.33 2.47 526056 31.00 145.08 2.75 526055 34.00 148.60 3.03 526057 37.00 151.92 3.31 526055 40.00 155.05 3.60 526055 page 1 L/G 4.77 4.92 5.07 5.23 5.39 5.57 5.75 5.94 6.14 6.36 Page 82 DESIGN 12500 78.00 75.00 23.20 KAV/L CW 1.388 105.11 1.373 108.11 1.359 110.62 1.345 112.78 1.331 114.67 1.316 116.33 1.302 117.83 1.288 119.21 1.273 120.49 1.258 121.71
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA APPENDIX B scenario 8D1 Tower A.TXT MRL/ESC MODEL FOR BYRON ESW COOLING TOWER 9/91 06-04-2010 10:35:42 INPUT DATA 29.92 BAROMETRIC PRESS (In HgA) WATERFLOW (GPM) MINIMUM 10838 82.00 75.00 10.00 MAXIMUM 10838 82.00 75.00 40.00 INCREMENT INLET WET BULB (F) INLET REL HUMIDITY (%) RANGES (F) OUTPUT DATA Water Flow to Tower (GPM) Air Inlet Dry Bulb (F) Air Inlet wet Bulb (F) cooling Range (F) Air outlet wet Bulb (F) Evaporation (% of wF2) volumetric Air Flow Rate at Fan (CFM) 1 1.00 1.00 3.00 WF2 DB1 TWB1 RGE TWB2 EVAP CFM L/G KAV/L CW Water-To-Air Loading (lb/hr-water / lb/hr-dry air) cooling Tower Thermal Transfer coefficient Predicted cold water Temperature (F) WF2 10838 10838 10838 10838 10838 10838 10838 10838 10838 10838 10838 DB1 88.91 88.91 88.91 88.91 88.91 88.91 88.91 88.91 88.91 88.91 88.91 RH1 TWB1 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 RGE TWB2 EVAP CFM 10.00 97.65 0.85 651794 13.00 101.58 1.10 651798 16.00 105.23 1.34 651798 19.00 108.66 1.59 651800 22.00 111.87 1.85 651802 25.00 114.91 2.11 651798 28.00 117.78 2.36 651797 31.00 120.50 2.63 651797 34.00 123.09 2.89 651800 37.00 125.56 3.15 651797 40.00 127.92 3.42 651798 page 1 L/G 2.08 2.11 2.14 2.17 2.20 2.23 2.27 2.30 2.33 2.37 2.40 Page B3 DESIGN 12500 78.00 75.00 23.20 KAV/L CW 1.843 89.85 1.834 91.52 1.824 92.97 1.815 94.25 1.806 95.37 1.797 96.37 1.789 97.27 1.780 98.08 1.771 98.81 1.763 99.48 1.754 100.10
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA APPENDIX B Scenario 801 Tower B.TXT MRL/ESC MODEL FOR BYRON ESW COOLING TOWER 9/91 06-04-2010 10:38:58 INPUT DATA 29.92 BAROMETRIC PRESS (In HgA) WATERFLOW (GPM) MINIMUM 16918 82.00 75.00 13.00 MAXIMUM 16918 82.00 75.00 40.00 INCREMENT INLET WET BULB (F) INLET REL HUMIDITY (%) RANGES (F) OUTPUT DATA Water Flow to Tower (GPM) Air Inlet Dry Bulb (F) Air Inlet Wet Bulb (F) cooling Range (F) Air outlet Wet Bulb (F) Evaporation (% of WF2) volumetric Air Flow Rate at Fan (CFM) 1 1.00 1.00 3.00 WF2 DB1 TWB1 RGE TWB2 EVAP CFM L/G KAV/L CW Water-To-Air Loading (lb/hr-water / lb/hr-dry air) cooling Tower Thermal Transfer coefficient predicted cold Water Temperature (F) WF2 16918 16918 16918 16918 16918 16918 16918 16918 16918 16918 DB1 88.91 88.91 88.91 88.91 88.91 88.91 88.91 88.91 88.91 88.91 RH1 TWB1 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 RGE TWB2 EVAP CFM 13.00 114.06 1.10 551289 16.00 119.34 1.36 551295 19.00 124.18 1.63 551298 22.00 128.62 1.90 551296 25.00 132.73 2.17 551298 28.00 136.55 2.44 551296 31.00 140.12 2.72 551297 34.00 143.48 3.00 551299 37.00 146.64 3.28 551297 40.00 149.64 3.56 551296 page 1 L/G 4.11 4.22 4.33 4.45 4.57 4.69 4.83 4.96 5.10 5.25 Page 84 DESIGN 12500 78.00 75.00 23.20 KAV/L CW 1.460 102.04 1.447 104.68 1.434 106.95 1.421 108.91 1.408 110.62 1.395 112.13 1.382 113.49 1.369 114.72 1.356 115.87 1.343 116.94
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA APPENDIX B Page 85 scenario 8D2 Tower A.TXT MRL/ESC MODEL FOR BYRON ESW COOLING TOWER 9/91 06-04-2010 10:41: 29 INPUT DATA 29.92 BAROMETRIC PRESS (In HgA) WATERFLOW (GPM) MINIMUM 14573 76.00 75.00 10.00 MAXIMUM 14573 76.00 75.00 40.00 INCREMENT INLET WET BULB (F) INLET REL HUMIDITY (%) RANGES (F) OUTPUT DATA Water Flow to Tower (GPM) Air Inlet Dry Bulb (F) Air Inlet wet Bulb (F) cooling Range (F) Air Outlet wet Bulb (F) Evaporation (% of WF2) volumetric Air Flow Rate at Fan (CFM) 1 1.00 1.00 3.00 WF2 DB1 TWB1 RGE TWB2 EVAP CFM L/G KAV/L CW Water-To-Air Loading (lb/hr-water / lb/hr-dry air) cooling Tower Thermal Transfer coefficient Predicted cold Water Temperature (F) WF2 14573 14573 14573 14573 14573 14573 14573 14573 14573 14573 14573 DB1 82.43 82.43 82.43 82.43 82.43 82.43 82.43 82.43 82.43 82.43 82.43 RH1 TWB1 75.00 76.00 75.00 76.00 75.00 76.00 75.00 76.00 75.00 76.00 75.00 76.00 75.00 76.00 75.00 76.00 75.00 76.00 75.00 76.00 75.00 76.00 RGE TWB2 EVAP CFM 10.00 100.23 0.82 590053 13.00 105.81 1.07 590060 16.00 110.85 1.32 590062 19.00 115.46 1.58 590058 22.00 119.71 1.84 590060 25.00 123.64 2.11 590058 28.00 127.30 2.37 590058 31.00 130.73 2.64 590061 34.00 133.96 2.92 590058 37.00 137.00 3.19 590060 40.00 139.89 3.47 590061 page 1 L/G 3.11 3.18 3.25 3.33 3.40 3.47 3.55 3.63 3.71 3.79 3.88 DESIGN 12500 78.00 75.00 23.20 KAV/L cw 1.605 91.29 1.593 94.26 1.581 96.77 1.569 98.91 1.557 100.76 1.546 102.37 1.535 103.78 1.523 105.05 1.512 106.20 1.501 107.24 1.489 108.21
CALCULA liON NO. NED-M-MSD-009 REVISION NO. SA APPENDIX B Page B6 scenario 8D2 Tower B.TXT MRL/ESC MODEL FOR BYRON ESW COOLING TOWER 9/91 06-04-2010 09:14:15 INPUT DATA BAROMETRIC PRESS (In HgA) WATERFLOW (GPM) 29.92 MINIMUM 6000 76.00 75.00 10.00 MAXIMUM 6000 76.00 75.00 40.00 INCREMENT INLET WET BULB (F) INLET REL HUMIDITY (%) RANGES (F) OUTPUT DATA Water Flow to Tower (GPM) Air Inlet Dry Bulb (F) Air Inlet Wet Bulb (F) cooling Range (F) Air outlet Wet Bulb (F) Evaporation (% of wF2) volumetric Air Flow Rate at Fan (CFM) 1 1.00 1.00 3.00 WF2 DB1 TWB1 RGE TWB2 EVAP CFM L/G KAV/L CW Water-To-Air Loading (lb/hr-water / lb/hr-dry air) cooling Tower Thermal Transfer coefficient Predicted cold Water Temperature (F) WF2 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 DB1 82.43 82.43 82.43 82.43 82.43 82.43 82.43 82.43 82.43 82.43 82.43 RH1 TWB1 75.00 76.00 75.00 76.00 75.00 76.00 75.00 76.00 75.00 76.00 75.00 76.00 75.00 76.00 75.00 76.00 75.00 76.00 75.00 76.00 75.00 76.00 RGE TWB2 EVAP CFM 10.00 85.28 0.87 731763 13.00 87.76 1.10 731773 16.00 90.15 1.33 731773 19.00 92.43 1.56 731772 22.00 94.61 1.80 731768 25.00 96.71 2.04 731769 28.00 98.74 2.28 731769 31.00 100.68 2.52 731771 34.00 102.56 2.77 731770 37.00 104.37 3.01 731768 40.00 106.12 3.26 731770 page 1 (FINAL PAGE OF APPENDIX B) L/G 0.98 0.99 1.00 1.00 1.01 1.02 1.03 1.04 1.04 1.05 1.06 DESIGN 12500 78.00 75.00 23.20 KAV/L CW 2.380 79.78 2.373 80.64 2.367 81.41 2.361 82.11 2.354 82.74 2.348 83.30 2.342 83.82 2.336 84.29 2.330 84.72 2.325 85.11 2.319 85.46
CALCULATION NO. NED*M*MSD*009 REVISION NO. SA APPENDIX C Scenario 8D (Riser Valves Closed) Two Tower Model - (Heat load for Power Uprate) Breaker Failure (Loss of power to Cells E and F) with Cells A and G OOS gal ORIGIN== I in== lL Ibm== IMF== lQ see== IT gpm:= -.,IDJ1:= Ibm*F mill Cooling Tower Performance ( 118.92) Thl :=
- F 114.17
( 124.11) Th2:=
- F 118.11
( 118.92) Th3 :=
- F 114.17
( 124.11) Th4:=
- F 118.11 (99.92)
- F 98.17
( 108.11 ) Te2 :=
- F 105.11 Te3:= (99.92).F 98.17
( 108.11 ) Te4:=
- F 105.11 MBTU := BTU. 106 Page C1
CALCULATION NO. NED-M.. MSD-009 REVISION NO. SA APPENDIXC Page C2 Qvrate Heat load (L42 ) 83 0.00 83 0.17 769 0.35 760 0.50 749 0.75 724 2.00 721 2.17 718 2.33 715 2.50 701 3.32 682 4.98 666 6.65 652 8.32 640 9.98 630 11.50 934 11.65 914 13.32 890 14.98 866 16.65 844 MBTU 18.32 L2:= T2:=
- min 823 hr 19.98 804 21.65 786 23.32 527 29.98 452 39.98 406 49.98 385 59.98 330 83.32 293 116.65 212 166.65 181 333.32 178 480.00 487 480.17 481 540.00 476 600.00 474 627.50 471 660.00 411 660.17 406 732.00 386 732.17
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA SX System Flow rate Q I := 63607* gpm Q2 := 63607* gpm Basin Mass 6 V:= 1.068*10 *gal Ibm p:= 8.33*- gal Fans (Active/Total) fll := 0.956 fl2:= 0.956 f21 := 0.901 f22:= 0.901 (Total flow to T1 and T2 gpm) (Total flow to T1 and T2 gpm) (Design input 2.1 ) BTU C := 1*-- P F.Ibm 6 Mb = 8.9 x 10 Ibm Time Constant V 'tl :=- QI V 't2 := - Q2 APPENDIXC Fraction of flow to Tower 1 Fraction of heat load to Tower 1 al := 0.678 a2:= 0.678 PI := 0.678 P2 := 0.678 Find Slopes and Intercepts of cooling towers 1 and 2 Page C3 MIl := slope(Thl, Tel) B11:= intercept(ThI, Tcl) MI2 := sIope(Th3, Tc3) BI2:= intercept(Th3, Tc3) M21 := sIope(Th2, Tc2) B21:= intercept(Th2, Tc2) MIl = 0.368 M21 = 0.5 B11 = 56.107F B21 = 46.055 F M22 := sIope(Th4, Tc4) B22:= intercept(Th4, Tc4) MI2 = 0.368 M22 = 0.5 B12 = 56.107F B22 = 46.055 F
CALCULATION NO. NED.. M-MSD-009 REVISION NO. SA APPENDIXC Calculate Intermediate Constants Al := (- ~I}[ I - (<1.[(1 - fll) + fll*Mllj - (I - al)*(1 - f21 + f21* M21)] A2 := (-~2}[ I - a2*[( I - fl2) + f12*MI2j - (I - (2).(1 - f22 + f22.M22)] ~ 1* (1 - fIl + fIl* M 11) + (1 - ~ I). (1 - f21 + f21* M21 ) DI := ~---------------'--------- ~2*(l-fI2+ fI2*M12) + (1- ~2).(I-f22+ f22*M22) D2:=~---------------'----------~ Mb'Cp aJ *fIl*Bll + (1 - al).f2I.B21 Cl := QI*---------- V a2*fI2*B12 + (I - a2).f22.B22 C2:= Q2*---------- V 1 Al = -0.03- -8 F Dl = 5.01 x 10 -- min BTU 1 A2 = -0.03- -8 F D2 = 5.01 x 10 -- min BTU Integrating to Solve for Basin Temperature Vb I := 77*F i:= 1.. 99 H:=.1* min st. := i*H 1 (linterp(T2, L2, sti)] Vb. I.- Vb. +
- H 1+
1 Mb'Cp .ti= 100.. 299.!L:=.1* min st. := i*H 1 ),.,,:= 300.. 2400 };l,:=.I*min st. := i*H 1 F Cl = 2.96-min F C2= 2.96-min use uprate heat load with operator action at t=30 minutes to reduce heat load use uprate heat load with operator action at t=30 minutes to reduce heat load Page C4
CALCULATION NO. NED-M-MSD-009 Results 107 103 99 95 r.t-. Ubi 91 0 87 83 79 75 0 2000 4000 REVISION NO. SA 6000 s1j 8000 k:= 1,20.. 7000 APPENDIXC Page C5 Basin Temperature Response vs. Time (sec) use uprate heat load maximum := maximum f- 0 max(Ub) = 99.97 F @ t = 49.9 min Ub300 = 98.9 F Ub100 = 89.5 F Ub. d
99.97 F III ex index :
st. d = 2994 sec III ex for i E 300.. 2400 maximum f-max(Ubi) if max(Ubi) ~ maximum index f- 0 maximum f- 0 for i E 300.. 2400 maximum = 99.97 F maximum f-max(Ubi) if max(Ubi) ~ maximum index f-i if max(Ubi) ~ maximum index = 499
CALCULATION NO. NED-M-MSD-009 REVISION NO. 8A APPENDIX C Basin Temperature and UHS Heat Load vs. Time Ub. I F 77 80.19 83.46 86.59 89.56 91.08 92.79 94.29 95.61 96.76 97.73 98.43 98.89 99.2 99.44 99.63 linterp(T2, L2, sti) MBTU hr 83 713.29 680.85 658.04 639.21 922.62 888.28 853.49 821.63 793.76 716.78 619.56 526.1 507.35 488.6 469.85 ,1= 1,26.. 1000 st. 1 min 0.1 2.6 5.1 7.6 10.1 12.6 15.1 17.6 20.1 22.6 25.1 27.6 30.1 32.6 35.1 37.6 Page C6
CALCULATION NO. NEO-M-MSO.. 009 REVISION NO. SA APPENOIXC Page C7 ii= 1,20.. 6000 1000~------------------------------------------~ 800 600 linterp{ T2, L2, sti) 400 200 II***************************.**************........... O~------------~----------------------------~ o 1000 2000 3000 4000 5000 6000 Post LOCA Time (sec) UHS Accident Heat Load Profile L42
CALCULATION NO. NEO-M-MSO.. 009 REVISION NO. SA APPENOIXC Scenario 8Dl (Riser Valves Closed) Two Tower Model - (Heat load for Power Uprate) Breaker Failure (Loss of power to Cells E and F) with Cell G OOS gal ORIGIN== I in== IL Ibm== IMF== IQ sec== IT gpm:= -.,.IDlL.:= Ibm*F mm Cooling Tower Performance ( 125.27) Thl :=
- F 117.37
( 120.68) Th2:=
- F 115.04
( 125.27) Th3:=
- F 117.37
( 120.68) Th4:=
- F 115.04
( 97.27) Tel:=
- F 95.37
( 104.68) Tc2:=
- F 102.04 Tc3 := (97.27).F 95.37
( 104.68) Tc4:=
- F 102.04 MBTU:= BTU.1Q6 Page CS
CALCULATION NO. NED*M*MSD*009 REVISION NO. SA APPENDIX C Page C9 flJ.2r.~t~ H~~t lQ~Q (I,d2.l 83 0.00 83 0.17 769 0.35 760 0.50 749 0.75 724 2.00 721 2.17 718 2.33 715 2.50 701 3.32 682 4.98 666 6.65 652 8.32 640 9.98 630 11.50 934 11.65 914 13.32 890 14.98 866 16.65 844 MBTU 18.32 L2:= T2:=
- min 823 hr 19.98 804 21.65 786 23.32 527 29.98 452 39.98 406 49.98 385 59.98 330 83.32 293 116.65 212 166.65 181 333.32 178 480.00 487 480.17 481 540.00 476 600.00 474 627.50 471 660.00 411 660.17 406 732.00 386 732.17
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA SX System Flow rate Q 1 := 64025* gpm Q2 := 64025* gpm Basin Mass 6 V:= 1.068*10 *gal Ibm p:= 8.33*- gal Fans (Active/Total) fl1 := 0.960 f12:= 0.960 f21 := 0.898 f22:= 0.898 (Total flow to T1 and T2 gpm) (Total flow to T1 and T2 gpm) (Design input 2.1) BTU C := 1*-- P F.lbm 6 Mb = 8.9 x 10 Ibm Time Constant V 'tl :=- QI V 't2:=- Q2 APPENDIX C Fraction of flow to Tower 1 Fraction of heat load to Tower 1 a1 := 0.706 a2 := 0.706 PI := 0.706 P2 := 0.706 Find Slopes and Intercepts of cooling towers 1 and 2 Page C10 MIl := slope(Thl, Tcl) B11:= intercept(Thl, Tcl) MI2 := slope(Th3, Tc3) BI2:= intercept(Th3, Tc3) M21 := slope(Th2, Tc2) B21:= intercept(Th2, Tc2) MIl = 0.241 M21 = 0.468 B11 = 67.142 F B21 = 48.191 F M22 := slope(Th4, Tc4) B22:= intercept(Th4, Tc4) M12 = 0.241 M22 = 0.468 B12 = 67.142F B22 = 48.191 F
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA APPENDIX C Calculate Intermediate Constants Al := (-~I}[ I - al*[( I - fll) + fll*MII) - (I - al).(1 - 121 + 121.M21)] A2 := (-~}[ I - a2*[( I - fl2) + fl2*M12) - (I - (2).(1 - 122 + 122* M22)] PI. (1 - fli + fll* M 11) + (I - pI). (1 - f2I + f21* M21 ) DI :=..:...-.....:--------.;;.-----:..-...:..-------...:.. Mb'Cp D2:= p2*(1 - fl2 + fl2*MI2) + (1 - p2).(l - f22 + f22*M22) Mb'Cp aI*fIl*BII + (1 - aI).f2I.B21 CI := QI*----~---...:...--- V a2*fI2*BI2 + (1 - (2)*f22.B22 C2:= Q2*---------- V 1 Al = -0.04- -8 F DI = 3.88 x 10 -- min 1 A2== -0.04-min BTU - 8 F D2 = 3.88 x 10 -- BTU Integrating to Solve for Basin Temperature UbI := 82*F i := 1.. 99 H:=.1* min st. := i*H 1 (linterp( T2,L2, sti)). Ub. 1'- Vb. + H 1+ 1 Mb'Cp Ai= 100.. 299.!L:=.1. min st.:= i*H 1 Ai= 300.. 2400 .!L:=.I*min st. := j*H 1 F CI = 3.49-min F C2 = 3.49-min use uprate heat load with operator action at t=30 minutes to reduce heat load use uprate heat load with operator action at t=30 minutes to reduce heat load Page C11
CALCULATION NO. NEO-M-MSO-009 Results 107 103 99 95 ~ Ub* 91 0 1 87 83 79 75 0 2000 4000 6000 s~ REVISION NO. 8A APPENOIXC ~:= 1,20.. 7000 8000 Page C12 Basin Temperature Response vs. Time (sec) use uprate heat load maximum := maximum +- 0 max(Ub) = 98.22 F @ t = 29.0 min Ub300 = 98.2 F Ub 100 = 94.5 F Ub. d
98.22 F m ex index :
st. d = 1740sec m ex for i E 200.. 2400 maximum +- max(Ubi) if max(Ubi) ~ maximum index +- 0 maximum+- 0 for i E 200.. 2400 maximum = 98.22 F maximum +- max(Ubi) if max(Ubi) ~ maximum index +- i if max(Ubi) ~ maximum index = 290
CALCULATION NO. NED.. M.. MSD*009 REVISION NO. SA APPENDIXC Basin Temperature and UHS Heat Load vs. Time Ub. I F 82 85.19 88.46 91.59 94.53 95.16 95.97 96.64 97.21 97.67 98.02 98.2 98.2 98.13 98.03 97.91 linterp( T2, L2, sti) MBTU hr 83 713.29 680.85 658.04 639.21 922.62 888.28 853.49 821.63 793.76 716.78 619.56 526.1 507.35 488.6 469.85 k:= 1,26.. 1000 st. 1 min 0.1 2.6 5.1 7.6 10.1 12.6 15.1 17.6 20.1 22.6 25.1 27.6 30.1 32.6 35.1 37.6 Page C13
CALCULATION NO. NED-M.. MSD.. 009 REVISION NO. SA APPENDIXC linterp{ T2, L2, sti) (M::U) ~:= 1,20.. 6000 1000r-------------~-----------------------------, 800 600 400 200 O~----~------~----------------------------~ o 1000 2000 3000 s~ 4000 Post LOCA Time (sec) UHS Accident Heat Load Profile L42 5000 6000 Page C14
CALCULATION NO. NED.. M.. MSD.. 009 REVISION NO. SA APPENDIXC Scenario 8D2 (Riser Valves Closed) Two Tower Model - (Heat load for Power Uprate) Breaker Failure (Loss of power to Cells E and F) with Cells G and H OOS gal ORIGIN== 1 in== IL Ibm== IMP== IQ see== IT gpm:= -..JUJL.:= Ibm*P mIll Cooling Tower Performance ( 117.91) Th1 := .p 112.77 ( 98.91 ) Tel:= .p 96.77 ( 111.82) Th2:= .p 104.74 ( 83.82) Te2:= .p 82.74 ( 117.91) Th3 := .p 112.77 ( 98.91 ) Te3 := .p 96.77 ( 111.82) Th4:= .p 104.74 ( 83.82) Te4:= .p 82.74 MBTU:= BTU. 106 Page C15
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA APPENDIXC Page C16 QQ~~~~ H~~~ lQeQ (L~ 2. ~ 83 0.00 83 0.17 769 0.35 760 0.50 749 0.75 724 2.00 721 2.17 718 2.33 715 2.50 701 3.32 682 4.98 666 6.65 652 8.32 640 9.98 630 11.50 934 11.65 914 13.32 890 14.98 866 16.65 844 MBTU 18.32 L2:= T2:=
- min 823 hr 19.98 804 21.65 786 23.32 527 29.98 452 39.98 406 49.98 385 59.98 330 83.32 293 116.65 212 166.65 181 333.32 178 480.00 487 480.17 481 540.00 476 600.00 474 627.50 471 660.00 411 660.17 406 732.00 386 732.17
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA SX System Flow rate Ql := 62250'gpm Q2 := 62250* gpm Basin Mass 6 V:= 1.068* 10. gal Ibm p:= 8.33*- gal Fans (Active/Total) fl1 := 0.968 fl2:= 0.968 f21 := 0.000 f22:= 0.000 (Total flow to T1 and T2 gpm) (Total flow to T1 and T2 gpm) (Design input 2.1) BTU C := 1*-- P F.]bm 6 Mb = 8.9 x 10 Ibm Time Constant V tl:= - Ql V 1'2 := - Q2 APPENDIX C Fraction of flow to Tower 1 Fraction of heat load to Tower 1 al := 0.967 a2:= 0.967 ~I := 0.967 ~2 := 0.967 Find Slopes and Intercepts of cooling towers 1 and 2 Page C17 Mll := slope(Thl, Tcl) B11:= intercept(Thl, Tel) M12 := slope(Th3, Tc3) BI2:= intercept(Th3, Tc3) M21 := slope(Th2, Tc2) B21:= intercept(Th2, Tc2) Mil = 0.416 M21 = 0.153 B11 = 49.819F B21 = 66.763 F M22 := slope(Th4, Tc4) B22:= intercept(Th4, Tc4) M12 = 0.416 M22 = 0.153 B12 = 49.819F B22 = 66.763 F
CALCULATION NO. NED-M-MSD-009 REVISION NO. 8A APPENDIXC Calculate Intermediate Constants Al := (~ ~I}[ I ~ al*[(l ~ fll) + fll* Mll] ~ (I ~ atJ*(l ~ 121 + 121.M21)] A2 := (~ ~2}[ I ~ a2*[( I ~ fl2) + fl2*MI2] ~ (I ~ a2).( I ~ f22 + f22.M22)] ~ 1. (l - fIl + fIl* M 11) + (I - ~ I). (l - f21 + f21* M21 ) 01 :=..:..-.....:-------...:.---...:.--.:-....:..------~ 02:= ~2*(1 - fI2 + fI2*M12) + (1 - ~2).(1 - f22 + f22*M22) Mb'Cp al*fI1*BII + (I - al).f2I.B21 Cl := QI*----~---..;..--- V a2*fI2*BI2 + (1 - a2).f22.B22 C2:= Q2*----~-~--- V I Al = -0.03-min -8 F 01 = 5.1 x 10 -- BTU I A2 = -0.03- - 8 F 02 = 5.1 x 10 -- min BTU Integrating to Solve for Basin Temperature UbI := 77*F i:= 1.. 99 H:=.1* min ( linterp( T2, L2, s\\) J Ub. 1'- Ub.+
- H 1+
1 Mb'Cp ~= 100.. 299 J!,:=.I*min st.:= i*H 1 ~:= 300.. 2400 J!,:=.I*min st.:= i*H 1 st. := i*H 1 F Cl = 2.72-min F C2 = 2.72-min use uprate heat load with operator action at t=30 minutes to reduce heat load use uprate heat load with operator action at t=30 minutes to reduce heat load Page C18
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA APPENDIXC Page C19 ~ 0 Results ~:= 1,20.. 7000 109 105 101 97 Ubi 93 89 85 81 77 0 2000 4000 6000 stj 8000 Basin Temperature Response vs. Time (sec) use uprate heat load maximum := maximum +- 0 for i E 300.. 2400 maximum +- max(Ubj) if max(Ubj) ~ maximum max(Ub) = 97.45 F @ t = 39.9 min Ub300 = 97.1 F Ub IOO = 89.5 F maximum = 97.45 F Ub. d
97.45 F In ex index :
index +- 0 st. d = 2394 sec In ex maximum +- 0 for i E 300.. 2400 maximum +- max(Ubj) if max(Ubj) ~ maximum index +- i if max(Ubj) ~ maximum index = 399
CALCULATION NO. NED-M-MSD-009 REVISION NO. SA APPENDIX C Basin Temperature and UHS Heat Load vs. Time Ub. I F 77 80.19 83.46 86.59 89.55 90.77 92.21 93.46 94.55 95.5 96.29 96.82 97.11 97.27 97.37 97.43 linterp(T2, L2, sti) MBTU hr 83 713.29 680.85 658.04 639.21 922.62 888.28 853.49 821.63 793.76 716.78 619.56 526.1 507.35 488.6 469.85 j;= 1,26.. 1000 st. 1 min 0.1 2.6 5.1 7.6 10.1 12.6 15.1 17.6 20.1 22.6 25.1 27.6 30.1 32.6 35.1 37.6 Page C20
CALCULATION NO. NED*M*MSD*009 REVISION NO. SA APPENDIX C Iinterp{ T2, L2, s~) (M:m) 1.v:= 1,20.. 6000 1000~----------------------------------------~ 800 400 200 y I O~----~------~--------------------------~ o 1000 2000 3000 s~ 4000 Post LOCA Time (sec) UHS Accident Heat Load Profile L42 (FINAL PAGE OF APPENDIX C) 5000 6000 Page C21}}